1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
214 elf_read (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
218 if ((buf
= bfd_alloc (abfd
, size
)) == NULL
)
220 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
222 if (bfd_bread (buf
, size
, abfd
) != size
)
224 if (bfd_get_error () != bfd_error_system_call
)
225 bfd_set_error (bfd_error_file_truncated
);
232 bfd_elf_mkobject (bfd
*abfd
)
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
237 if (elf_tdata (abfd
) == 0)
239 /* Since everything is done at close time, do we need any
246 bfd_elf_mkcorefile (bfd
*abfd
)
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd
);
253 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
255 Elf_Internal_Shdr
**i_shdrp
;
256 char *shstrtab
= NULL
;
258 bfd_size_type shstrtabsize
;
260 i_shdrp
= elf_elfsections (abfd
);
261 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
264 shstrtab
= (char *) i_shdrp
[shindex
]->contents
;
265 if (shstrtab
== NULL
)
267 /* No cached one, attempt to read, and cache what we read. */
268 offset
= i_shdrp
[shindex
]->sh_offset
;
269 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
270 shstrtab
= elf_read (abfd
, offset
, shstrtabsize
);
271 i_shdrp
[shindex
]->contents
= shstrtab
;
277 bfd_elf_string_from_elf_section (bfd
*abfd
,
278 unsigned int shindex
,
279 unsigned int strindex
)
281 Elf_Internal_Shdr
*hdr
;
286 hdr
= elf_elfsections (abfd
)[shindex
];
288 if (hdr
->contents
== NULL
289 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
292 if (strindex
>= hdr
->sh_size
)
294 (*_bfd_error_handler
)
295 (_("%B: invalid string offset %u >= %lu for section `%s'"),
296 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
297 ((shindex
== elf_elfheader(abfd
)->e_shstrndx
298 && strindex
== hdr
->sh_name
)
300 : elf_string_from_elf_strtab (abfd
, hdr
->sh_name
)));
304 return ((char *) hdr
->contents
) + strindex
;
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
314 bfd_elf_get_elf_syms (bfd
*ibfd
,
315 Elf_Internal_Shdr
*symtab_hdr
,
318 Elf_Internal_Sym
*intsym_buf
,
320 Elf_External_Sym_Shndx
*extshndx_buf
)
322 Elf_Internal_Shdr
*shndx_hdr
;
324 const bfd_byte
*esym
;
325 Elf_External_Sym_Shndx
*alloc_extshndx
;
326 Elf_External_Sym_Shndx
*shndx
;
327 Elf_Internal_Sym
*isym
;
328 Elf_Internal_Sym
*isymend
;
329 const struct elf_backend_data
*bed
;
337 /* Normal syms might have section extension entries. */
339 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
340 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
342 /* Read the symbols. */
344 alloc_extshndx
= NULL
;
345 bed
= get_elf_backend_data (ibfd
);
346 extsym_size
= bed
->s
->sizeof_sym
;
347 amt
= symcount
* extsym_size
;
348 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
349 if (extsym_buf
== NULL
)
351 alloc_ext
= bfd_malloc (amt
);
352 extsym_buf
= alloc_ext
;
354 if (extsym_buf
== NULL
355 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
356 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
362 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
366 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
367 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
368 if (extshndx_buf
== NULL
)
370 alloc_extshndx
= bfd_malloc (amt
);
371 extshndx_buf
= alloc_extshndx
;
373 if (extshndx_buf
== NULL
374 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
375 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
382 if (intsym_buf
== NULL
)
384 bfd_size_type amt
= symcount
* sizeof (Elf_Internal_Sym
);
385 intsym_buf
= bfd_malloc (amt
);
386 if (intsym_buf
== NULL
)
390 /* Convert the symbols to internal form. */
391 isymend
= intsym_buf
+ symcount
;
392 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
394 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
395 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
398 if (alloc_ext
!= NULL
)
400 if (alloc_extshndx
!= NULL
)
401 free (alloc_extshndx
);
406 /* Look up a symbol name. */
408 bfd_elf_local_sym_name (bfd
*abfd
, Elf_Internal_Sym
*isym
)
410 unsigned int iname
= isym
->st_name
;
411 unsigned int shindex
= elf_tdata (abfd
)->symtab_hdr
.sh_link
;
412 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
414 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
415 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
418 return bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
425 typedef union elf_internal_group
{
426 Elf_Internal_Shdr
*shdr
;
428 } Elf_Internal_Group
;
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
434 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
436 Elf_Internal_Shdr
*hdr
;
437 unsigned char esym
[sizeof (Elf64_External_Sym
)];
438 Elf_External_Sym_Shndx eshndx
;
439 Elf_Internal_Sym isym
;
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
445 /* Go read the symbol. */
446 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
447 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
448 &isym
, esym
, &eshndx
) == NULL
)
451 return bfd_elf_local_sym_name (abfd
, &isym
);
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
457 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
459 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
465 unsigned int i
, shnum
;
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum
= elf_numsections (abfd
);
471 for (i
= 0; i
< shnum
; i
++)
473 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
474 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
479 num_group
= (unsigned) -1;
480 elf_tdata (abfd
)->num_group
= num_group
;
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt
= num_group
* sizeof (Elf_Internal_Shdr
*);
487 elf_tdata (abfd
)->group_sect_ptr
= bfd_alloc (abfd
, amt
);
488 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
492 for (i
= 0; i
< shnum
; i
++)
494 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
495 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
498 Elf_Internal_Group
*dest
;
500 /* Add to list of sections. */
501 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest
) >= 4);
506 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
507 shdr
->contents
= bfd_alloc (abfd
, amt
);
508 if (shdr
->contents
== NULL
509 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
510 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
518 src
= shdr
->contents
+ shdr
->sh_size
;
519 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
526 idx
= H_GET_32 (abfd
, src
);
527 if (src
== shdr
->contents
)
530 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
531 shdr
->bfd_section
->flags
532 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
537 ((*_bfd_error_handler
)
538 (_("%B: invalid SHT_GROUP entry"), abfd
));
541 dest
->shdr
= elf_elfsections (abfd
)[idx
];
548 if (num_group
!= (unsigned) -1)
552 for (i
= 0; i
< num_group
; i
++)
554 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
555 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
556 unsigned int n_elt
= shdr
->sh_size
/ 4;
558 /* Look through this group's sections to see if current
559 section is a member. */
561 if ((++idx
)->shdr
== hdr
)
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
568 idx
= (Elf_Internal_Group
*) shdr
->contents
;
569 n_elt
= shdr
->sh_size
/ 4;
571 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
572 && elf_next_in_group (s
) != NULL
)
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect
) = elf_group_name (s
);
579 elf_next_in_group (newsect
) = elf_next_in_group (s
);
580 elf_next_in_group (s
) = newsect
;
586 gname
= group_signature (abfd
, shdr
);
589 elf_group_name (newsect
) = gname
;
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect
) = newsect
;
595 /* If the group section has been created, point to the
597 if (shdr
->bfd_section
!= NULL
)
598 elf_next_in_group (shdr
->bfd_section
) = newsect
;
606 if (elf_group_name (newsect
) == NULL
)
608 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
615 _bfd_elf_setup_group_pointers (bfd
*abfd
)
618 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
619 bfd_boolean result
= TRUE
;
621 if (num_group
== (unsigned) -1)
624 for (i
= 0; i
< num_group
; i
++)
626 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
627 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
628 unsigned int n_elt
= shdr
->sh_size
/ 4;
631 if ((++idx
)->shdr
->bfd_section
)
632 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
633 else if (idx
->shdr
->sh_type
== SHT_RELA
634 || idx
->shdr
->sh_type
== SHT_REL
)
635 /* We won't include relocation sections in section groups in
636 output object files. We adjust the group section size here
637 so that relocatable link will work correctly when
638 relocation sections are in section group in input object
640 shdr
->bfd_section
->size
-= 4;
643 /* There are some unknown sections in the group. */
644 (*_bfd_error_handler
)
645 (_("%B: unknown [%d] section `%s' in group [%s]"),
647 (unsigned int) idx
->shdr
->sh_type
,
648 elf_string_from_elf_strtab (abfd
, idx
->shdr
->sh_name
),
649 shdr
->bfd_section
->name
);
657 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
659 return elf_next_in_group (sec
) != NULL
;
663 bfd_elf_discard_group (bfd
*abfd ATTRIBUTE_UNUSED
,
664 asection
*group ATTRIBUTE_UNUSED
)
667 asection
*first
= elf_next_in_group (group
);
672 s
->output_section
= bfd_abs_section_ptr
;
673 s
= elf_next_in_group (s
);
674 /* These lists are circular. */
679 /* FIXME: Never used. Remove it! */
685 /* Make a BFD section from an ELF section. We store a pointer to the
686 BFD section in the bfd_section field of the header. */
689 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
690 Elf_Internal_Shdr
*hdr
,
695 const struct elf_backend_data
*bed
;
697 if (hdr
->bfd_section
!= NULL
)
699 BFD_ASSERT (strcmp (name
,
700 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
704 newsect
= bfd_make_section_anyway (abfd
, name
);
708 hdr
->bfd_section
= newsect
;
709 elf_section_data (newsect
)->this_hdr
= *hdr
;
711 /* Always use the real type/flags. */
712 elf_section_type (newsect
) = hdr
->sh_type
;
713 elf_section_flags (newsect
) = hdr
->sh_flags
;
715 newsect
->filepos
= hdr
->sh_offset
;
717 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
718 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
719 || ! bfd_set_section_alignment (abfd
, newsect
,
720 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
723 flags
= SEC_NO_FLAGS
;
724 if (hdr
->sh_type
!= SHT_NOBITS
)
725 flags
|= SEC_HAS_CONTENTS
;
726 if (hdr
->sh_type
== SHT_GROUP
)
727 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
728 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
731 if (hdr
->sh_type
!= SHT_NOBITS
)
734 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
735 flags
|= SEC_READONLY
;
736 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
738 else if ((flags
& SEC_LOAD
) != 0)
740 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
743 newsect
->entsize
= hdr
->sh_entsize
;
744 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
745 flags
|= SEC_STRINGS
;
747 if (hdr
->sh_flags
& SHF_GROUP
)
748 if (!setup_group (abfd
, hdr
, newsect
))
750 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
751 flags
|= SEC_THREAD_LOCAL
;
753 /* The debugging sections appear to be recognized only by name, not
756 static const char *debug_sec_names
[] =
765 for (i
= ARRAY_SIZE (debug_sec_names
); i
--;)
766 if (strncmp (name
, debug_sec_names
[i
], strlen (debug_sec_names
[i
])) == 0)
770 flags
|= SEC_DEBUGGING
;
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect
) == NULL
)
781 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
783 bed
= get_elf_backend_data (abfd
);
784 if (bed
->elf_backend_section_flags
)
785 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
788 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
791 if ((flags
& SEC_ALLOC
) != 0)
793 Elf_Internal_Phdr
*phdr
;
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr
= elf_tdata (abfd
)->phdr
;
800 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
802 if (phdr
->p_paddr
!= 0)
805 if (i
< elf_elfheader (abfd
)->e_phnum
)
807 phdr
= elf_tdata (abfd
)->phdr
;
808 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr
->p_type
== PT_LOAD
823 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
824 && (hdr
->sh_offset
+ hdr
->sh_size
825 <= phdr
->p_offset
+ phdr
->p_memsz
)
826 && ((flags
& SEC_LOAD
) == 0
827 || (hdr
->sh_offset
+ hdr
->sh_size
828 <= phdr
->p_offset
+ phdr
->p_filesz
)))
830 if ((flags
& SEC_LOAD
) == 0)
831 newsect
->lma
= (phdr
->p_paddr
832 + hdr
->sh_addr
- phdr
->p_vaddr
);
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect
->lma
= (phdr
->p_paddr
842 + hdr
->sh_offset
- phdr
->p_offset
);
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr
->sh_addr
>= phdr
->p_vaddr
849 && (hdr
->sh_addr
+ hdr
->sh_size
850 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
875 struct elf_internal_shdr
*
876 bfd_elf_find_section (bfd
*abfd
, char *name
)
878 Elf_Internal_Shdr
**i_shdrp
;
883 i_shdrp
= elf_elfsections (abfd
);
886 shstrtab
= bfd_elf_get_str_section (abfd
,
887 elf_elfheader (abfd
)->e_shstrndx
);
888 if (shstrtab
!= NULL
)
890 max
= elf_numsections (abfd
);
891 for (i
= 1; i
< max
; i
++)
892 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
899 const char *const bfd_elf_section_type_names
[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
917 arelent
*reloc_entry
,
919 void *data ATTRIBUTE_UNUSED
,
920 asection
*input_section
,
922 char **error_message ATTRIBUTE_UNUSED
)
924 if (output_bfd
!= NULL
925 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
926 && (! reloc_entry
->howto
->partial_inplace
927 || reloc_entry
->addend
== 0))
929 reloc_entry
->address
+= input_section
->output_offset
;
933 return bfd_reloc_continue
;
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
939 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
942 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
943 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
946 /* Finish SHF_MERGE section merging. */
949 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
954 if (!is_elf_hash_table (info
->hash
))
957 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
958 if ((ibfd
->flags
& DYNAMIC
) == 0)
959 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
960 if ((sec
->flags
& SEC_MERGE
) != 0
961 && !bfd_is_abs_section (sec
->output_section
))
963 struct bfd_elf_section_data
*secdata
;
965 secdata
= elf_section_data (sec
);
966 if (! _bfd_add_merge_section (abfd
,
967 &elf_hash_table (info
)->merge_info
,
968 sec
, &secdata
->sec_info
))
970 else if (secdata
->sec_info
)
971 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
974 if (elf_hash_table (info
)->merge_info
!= NULL
)
975 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
976 merge_sections_remove_hook
);
981 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
983 sec
->output_section
= bfd_abs_section_ptr
;
984 sec
->output_offset
= sec
->vma
;
985 if (!is_elf_hash_table (info
->hash
))
988 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
991 /* Copy the program header and other data from one object module to
995 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
997 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1001 BFD_ASSERT (!elf_flags_init (obfd
)
1002 || (elf_elfheader (obfd
)->e_flags
1003 == elf_elfheader (ibfd
)->e_flags
));
1005 elf_gp (obfd
) = elf_gp (ibfd
);
1006 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1007 elf_flags_init (obfd
) = TRUE
;
1011 /* Print out the program headers. */
1014 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1017 Elf_Internal_Phdr
*p
;
1019 bfd_byte
*dynbuf
= NULL
;
1021 p
= elf_tdata (abfd
)->phdr
;
1026 fprintf (f
, _("\nProgram Header:\n"));
1027 c
= elf_elfheader (abfd
)->e_phnum
;
1028 for (i
= 0; i
< c
; i
++, p
++)
1035 case PT_NULL
: pt
= "NULL"; break;
1036 case PT_LOAD
: pt
= "LOAD"; break;
1037 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1038 case PT_INTERP
: pt
= "INTERP"; break;
1039 case PT_NOTE
: pt
= "NOTE"; break;
1040 case PT_SHLIB
: pt
= "SHLIB"; break;
1041 case PT_PHDR
: pt
= "PHDR"; break;
1042 case PT_TLS
: pt
= "TLS"; break;
1043 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1044 case PT_GNU_STACK
: pt
= "STACK"; break;
1045 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1046 default: sprintf (buf
, "0x%lx", p
->p_type
); pt
= buf
; break;
1048 fprintf (f
, "%8s off 0x", pt
);
1049 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1050 fprintf (f
, " vaddr 0x");
1051 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1052 fprintf (f
, " paddr 0x");
1053 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1054 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1055 fprintf (f
, " filesz 0x");
1056 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1057 fprintf (f
, " memsz 0x");
1058 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1059 fprintf (f
, " flags %c%c%c",
1060 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1061 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1062 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1063 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1064 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1069 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1073 unsigned long shlink
;
1074 bfd_byte
*extdyn
, *extdynend
;
1076 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1078 fprintf (f
, _("\nDynamic Section:\n"));
1080 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1083 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1086 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1088 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1089 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1092 extdynend
= extdyn
+ s
->size
;
1093 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1095 Elf_Internal_Dyn dyn
;
1098 bfd_boolean stringp
;
1100 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1102 if (dyn
.d_tag
== DT_NULL
)
1109 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1113 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1114 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1115 case DT_PLTGOT
: name
= "PLTGOT"; break;
1116 case DT_HASH
: name
= "HASH"; break;
1117 case DT_STRTAB
: name
= "STRTAB"; break;
1118 case DT_SYMTAB
: name
= "SYMTAB"; break;
1119 case DT_RELA
: name
= "RELA"; break;
1120 case DT_RELASZ
: name
= "RELASZ"; break;
1121 case DT_RELAENT
: name
= "RELAENT"; break;
1122 case DT_STRSZ
: name
= "STRSZ"; break;
1123 case DT_SYMENT
: name
= "SYMENT"; break;
1124 case DT_INIT
: name
= "INIT"; break;
1125 case DT_FINI
: name
= "FINI"; break;
1126 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1127 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1128 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1129 case DT_REL
: name
= "REL"; break;
1130 case DT_RELSZ
: name
= "RELSZ"; break;
1131 case DT_RELENT
: name
= "RELENT"; break;
1132 case DT_PLTREL
: name
= "PLTREL"; break;
1133 case DT_DEBUG
: name
= "DEBUG"; break;
1134 case DT_TEXTREL
: name
= "TEXTREL"; break;
1135 case DT_JMPREL
: name
= "JMPREL"; break;
1136 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1137 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1142 case DT_FLAGS
: name
= "FLAGS"; break;
1143 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1146 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1147 case DT_MOVEENT
: name
= "MOVEENT"; break;
1148 case DT_MOVESZ
: name
= "MOVESZ"; break;
1149 case DT_FEATURE
: name
= "FEATURE"; break;
1150 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1151 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1152 case DT_SYMINENT
: name
= "SYMINENT"; break;
1153 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1154 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1155 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1156 case DT_PLTPAD
: name
= "PLTPAD"; break;
1157 case DT_MOVETAB
: name
= "MOVETAB"; break;
1158 case DT_SYMINFO
: name
= "SYMINFO"; break;
1159 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1160 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1161 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1162 case DT_VERSYM
: name
= "VERSYM"; break;
1163 case DT_VERDEF
: name
= "VERDEF"; break;
1164 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1165 case DT_VERNEED
: name
= "VERNEED"; break;
1166 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1167 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1168 case DT_USED
: name
= "USED"; break;
1169 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1172 fprintf (f
, " %-11s ", name
);
1174 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1178 unsigned int tagv
= dyn
.d_un
.d_val
;
1180 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1183 fprintf (f
, "%s", string
);
1192 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1193 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1195 if (! _bfd_elf_slurp_version_tables (abfd
))
1199 if (elf_dynverdef (abfd
) != 0)
1201 Elf_Internal_Verdef
*t
;
1203 fprintf (f
, _("\nVersion definitions:\n"));
1204 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1206 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1207 t
->vd_flags
, t
->vd_hash
, t
->vd_nodename
);
1208 if (t
->vd_auxptr
->vda_nextptr
!= NULL
)
1210 Elf_Internal_Verdaux
*a
;
1213 for (a
= t
->vd_auxptr
->vda_nextptr
;
1216 fprintf (f
, "%s ", a
->vda_nodename
);
1222 if (elf_dynverref (abfd
) != 0)
1224 Elf_Internal_Verneed
*t
;
1226 fprintf (f
, _("\nVersion References:\n"));
1227 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1229 Elf_Internal_Vernaux
*a
;
1231 fprintf (f
, _(" required from %s:\n"), t
->vn_filename
);
1232 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1233 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1234 a
->vna_flags
, a
->vna_other
, a
->vna_nodename
);
1246 /* Display ELF-specific fields of a symbol. */
1249 bfd_elf_print_symbol (bfd
*abfd
,
1252 bfd_print_symbol_type how
)
1257 case bfd_print_symbol_name
:
1258 fprintf (file
, "%s", symbol
->name
);
1260 case bfd_print_symbol_more
:
1261 fprintf (file
, "elf ");
1262 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1263 fprintf (file
, " %lx", (long) symbol
->flags
);
1265 case bfd_print_symbol_all
:
1267 const char *section_name
;
1268 const char *name
= NULL
;
1269 const struct elf_backend_data
*bed
;
1270 unsigned char st_other
;
1273 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1275 bed
= get_elf_backend_data (abfd
);
1276 if (bed
->elf_backend_print_symbol_all
)
1277 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1281 name
= symbol
->name
;
1282 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1285 fprintf (file
, " %s\t", section_name
);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol
->section
))
1291 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1293 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1294 bfd_fprintf_vma (abfd
, file
, val
);
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd
)->dynversym_section
!= 0
1298 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1299 || elf_tdata (abfd
)->dynverref_section
!= 0))
1301 unsigned int vernum
;
1302 const char *version_string
;
1304 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1307 version_string
= "";
1308 else if (vernum
== 1)
1309 version_string
= "Base";
1310 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1312 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1315 Elf_Internal_Verneed
*t
;
1317 version_string
= "";
1318 for (t
= elf_tdata (abfd
)->verref
;
1322 Elf_Internal_Vernaux
*a
;
1324 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1326 if (a
->vna_other
== vernum
)
1328 version_string
= a
->vna_nodename
;
1335 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1336 fprintf (file
, " %-11s", version_string
);
1341 fprintf (file
, " (%s)", version_string
);
1342 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1347 /* If the st_other field is not zero, print it. */
1348 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1353 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1354 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1355 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1357 /* Some other non-defined flags are also present, so print
1359 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1362 fprintf (file
, " %s", name
);
1368 /* Create an entry in an ELF linker hash table. */
1370 struct bfd_hash_entry
*
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1372 struct bfd_hash_table
*table
,
1375 /* Allocate the structure if it has not already been allocated by a
1379 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1384 /* Call the allocation method of the superclass. */
1385 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1388 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1389 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1391 /* Set local fields. */
1394 ret
->got
= ret
->plt
= htab
->init_refcount
;
1395 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1396 - offsetof (struct elf_link_hash_entry
, size
)));
1397 /* Assume that we have been called by a non-ELF symbol reader.
1398 This flag is then reset by the code which reads an ELF input
1399 file. This ensures that a symbol created by a non-ELF symbol
1400 reader will have the flag set correctly. */
1407 /* Copy data from an indirect symbol to its direct symbol, hiding the
1408 old indirect symbol. Also used for copying flags to a weakdef. */
1411 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data
*bed
,
1412 struct elf_link_hash_entry
*dir
,
1413 struct elf_link_hash_entry
*ind
)
1416 bfd_signed_vma lowest_valid
= bed
->can_refcount
;
1418 /* Copy down any references that we may have already seen to the
1419 symbol which just became indirect. */
1421 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1422 dir
->ref_regular
|= ind
->ref_regular
;
1423 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1424 dir
->non_got_ref
|= ind
->non_got_ref
;
1425 dir
->needs_plt
|= ind
->needs_plt
;
1426 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1428 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1431 /* Copy over the global and procedure linkage table refcount entries.
1432 These may have been already set up by a check_relocs routine. */
1433 tmp
= dir
->got
.refcount
;
1434 if (tmp
< lowest_valid
)
1436 dir
->got
.refcount
= ind
->got
.refcount
;
1437 ind
->got
.refcount
= tmp
;
1440 BFD_ASSERT (ind
->got
.refcount
< lowest_valid
);
1442 tmp
= dir
->plt
.refcount
;
1443 if (tmp
< lowest_valid
)
1445 dir
->plt
.refcount
= ind
->plt
.refcount
;
1446 ind
->plt
.refcount
= tmp
;
1449 BFD_ASSERT (ind
->plt
.refcount
< lowest_valid
);
1451 if (dir
->dynindx
== -1)
1453 dir
->dynindx
= ind
->dynindx
;
1454 dir
->dynstr_index
= ind
->dynstr_index
;
1456 ind
->dynstr_index
= 0;
1459 BFD_ASSERT (ind
->dynindx
== -1);
1463 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1464 struct elf_link_hash_entry
*h
,
1465 bfd_boolean force_local
)
1467 h
->plt
= elf_hash_table (info
)->init_offset
;
1471 h
->forced_local
= 1;
1472 if (h
->dynindx
!= -1)
1475 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1481 /* Initialize an ELF linker hash table. */
1484 _bfd_elf_link_hash_table_init
1485 (struct elf_link_hash_table
*table
,
1487 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1488 struct bfd_hash_table
*,
1493 table
->dynamic_sections_created
= FALSE
;
1494 table
->dynobj
= NULL
;
1495 /* Make sure can_refcount is extended to the width and signedness of
1496 init_refcount before we subtract one from it. */
1497 table
->init_refcount
.refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1498 table
->init_refcount
.refcount
-= 1;
1499 table
->init_offset
.offset
= -(bfd_vma
) 1;
1500 /* The first dynamic symbol is a dummy. */
1501 table
->dynsymcount
= 1;
1502 table
->dynstr
= NULL
;
1503 table
->bucketcount
= 0;
1504 table
->needed
= NULL
;
1506 table
->merge_info
= NULL
;
1507 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1508 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1509 table
->dynlocal
= NULL
;
1510 table
->runpath
= NULL
;
1511 table
->tls_sec
= NULL
;
1512 table
->tls_size
= 0;
1513 table
->loaded
= NULL
;
1515 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
);
1516 table
->root
.type
= bfd_link_elf_hash_table
;
1521 /* Create an ELF linker hash table. */
1523 struct bfd_link_hash_table
*
1524 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1526 struct elf_link_hash_table
*ret
;
1527 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1529 ret
= bfd_malloc (amt
);
1533 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
))
1542 /* This is a hook for the ELF emulation code in the generic linker to
1543 tell the backend linker what file name to use for the DT_NEEDED
1544 entry for a dynamic object. */
1547 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1549 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1550 && bfd_get_format (abfd
) == bfd_object
)
1551 elf_dt_name (abfd
) = name
;
1555 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1558 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1559 && bfd_get_format (abfd
) == bfd_object
)
1560 lib_class
= elf_dyn_lib_class (abfd
);
1567 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1569 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1570 && bfd_get_format (abfd
) == bfd_object
)
1571 elf_dyn_lib_class (abfd
) = lib_class
;
1574 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1575 the linker ELF emulation code. */
1577 struct bfd_link_needed_list
*
1578 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1579 struct bfd_link_info
*info
)
1581 if (! is_elf_hash_table (info
->hash
))
1583 return elf_hash_table (info
)->needed
;
1586 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1587 hook for the linker ELF emulation code. */
1589 struct bfd_link_needed_list
*
1590 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1591 struct bfd_link_info
*info
)
1593 if (! is_elf_hash_table (info
->hash
))
1595 return elf_hash_table (info
)->runpath
;
1598 /* Get the name actually used for a dynamic object for a link. This
1599 is the SONAME entry if there is one. Otherwise, it is the string
1600 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1603 bfd_elf_get_dt_soname (bfd
*abfd
)
1605 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1606 && bfd_get_format (abfd
) == bfd_object
)
1607 return elf_dt_name (abfd
);
1611 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1612 the ELF linker emulation code. */
1615 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1616 struct bfd_link_needed_list
**pneeded
)
1619 bfd_byte
*dynbuf
= NULL
;
1621 unsigned long shlink
;
1622 bfd_byte
*extdyn
, *extdynend
;
1624 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1628 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1629 || bfd_get_format (abfd
) != bfd_object
)
1632 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1633 if (s
== NULL
|| s
->size
== 0)
1636 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1639 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1643 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1645 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1646 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1649 extdynend
= extdyn
+ s
->size
;
1650 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1652 Elf_Internal_Dyn dyn
;
1654 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1656 if (dyn
.d_tag
== DT_NULL
)
1659 if (dyn
.d_tag
== DT_NEEDED
)
1662 struct bfd_link_needed_list
*l
;
1663 unsigned int tagv
= dyn
.d_un
.d_val
;
1666 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1671 l
= bfd_alloc (abfd
, amt
);
1692 /* Allocate an ELF string table--force the first byte to be zero. */
1694 struct bfd_strtab_hash
*
1695 _bfd_elf_stringtab_init (void)
1697 struct bfd_strtab_hash
*ret
;
1699 ret
= _bfd_stringtab_init ();
1704 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1705 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1706 if (loc
== (bfd_size_type
) -1)
1708 _bfd_stringtab_free (ret
);
1715 /* ELF .o/exec file reading */
1717 /* Create a new bfd section from an ELF section header. */
1720 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1722 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1723 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1724 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1727 name
= elf_string_from_elf_strtab (abfd
, hdr
->sh_name
);
1729 switch (hdr
->sh_type
)
1732 /* Inactive section. Throw it away. */
1735 case SHT_PROGBITS
: /* Normal section with contents. */
1736 case SHT_NOBITS
: /* .bss section. */
1737 case SHT_HASH
: /* .hash section. */
1738 case SHT_NOTE
: /* .note section. */
1739 case SHT_INIT_ARRAY
: /* .init_array section. */
1740 case SHT_FINI_ARRAY
: /* .fini_array section. */
1741 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1742 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1744 case SHT_DYNAMIC
: /* Dynamic linking information. */
1745 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
1747 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1749 Elf_Internal_Shdr
*dynsymhdr
;
1751 /* The shared libraries distributed with hpux11 have a bogus
1752 sh_link field for the ".dynamic" section. Find the
1753 string table for the ".dynsym" section instead. */
1754 if (elf_dynsymtab (abfd
) != 0)
1756 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1757 hdr
->sh_link
= dynsymhdr
->sh_link
;
1761 unsigned int i
, num_sec
;
1763 num_sec
= elf_numsections (abfd
);
1764 for (i
= 1; i
< num_sec
; i
++)
1766 dynsymhdr
= elf_elfsections (abfd
)[i
];
1767 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1769 hdr
->sh_link
= dynsymhdr
->sh_link
;
1777 case SHT_SYMTAB
: /* A symbol table */
1778 if (elf_onesymtab (abfd
) == shindex
)
1781 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1782 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1783 elf_onesymtab (abfd
) = shindex
;
1784 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1785 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1786 abfd
->flags
|= HAS_SYMS
;
1788 /* Sometimes a shared object will map in the symbol table. If
1789 SHF_ALLOC is set, and this is a shared object, then we also
1790 treat this section as a BFD section. We can not base the
1791 decision purely on SHF_ALLOC, because that flag is sometimes
1792 set in a relocatable object file, which would confuse the
1794 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1795 && (abfd
->flags
& DYNAMIC
) != 0
1796 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
1801 case SHT_DYNSYM
: /* A dynamic symbol table */
1802 if (elf_dynsymtab (abfd
) == shindex
)
1805 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1806 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1807 elf_dynsymtab (abfd
) = shindex
;
1808 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1809 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1810 abfd
->flags
|= HAS_SYMS
;
1812 /* Besides being a symbol table, we also treat this as a regular
1813 section, so that objcopy can handle it. */
1814 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1816 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1817 if (elf_symtab_shndx (abfd
) == shindex
)
1820 /* Get the associated symbol table. */
1821 if (! bfd_section_from_shdr (abfd
, hdr
->sh_link
)
1822 || hdr
->sh_link
!= elf_onesymtab (abfd
))
1825 elf_symtab_shndx (abfd
) = shindex
;
1826 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1827 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1830 case SHT_STRTAB
: /* A string table */
1831 if (hdr
->bfd_section
!= NULL
)
1833 if (ehdr
->e_shstrndx
== shindex
)
1835 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1836 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1840 unsigned int i
, num_sec
;
1842 num_sec
= elf_numsections (abfd
);
1843 for (i
= 1; i
< num_sec
; i
++)
1845 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1846 if (hdr2
->sh_link
== shindex
)
1848 if (! bfd_section_from_shdr (abfd
, i
))
1850 if (elf_onesymtab (abfd
) == i
)
1852 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1853 elf_elfsections (abfd
)[shindex
] =
1854 &elf_tdata (abfd
)->strtab_hdr
;
1857 if (elf_dynsymtab (abfd
) == i
)
1859 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1860 elf_elfsections (abfd
)[shindex
] = hdr
=
1861 &elf_tdata (abfd
)->dynstrtab_hdr
;
1862 /* We also treat this as a regular section, so
1863 that objcopy can handle it. */
1866 #if 0 /* Not handling other string tables specially right now. */
1867 hdr2
= elf_elfsections (abfd
)[i
]; /* in case it moved */
1868 /* We have a strtab for some random other section. */
1869 newsect
= (asection
*) hdr2
->bfd_section
;
1872 hdr
->bfd_section
= newsect
;
1873 hdr2
= &elf_section_data (newsect
)->str_hdr
;
1875 elf_elfsections (abfd
)[shindex
] = hdr2
;
1881 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1885 /* *These* do a lot of work -- but build no sections! */
1887 asection
*target_sect
;
1888 Elf_Internal_Shdr
*hdr2
;
1889 unsigned int num_sec
= elf_numsections (abfd
);
1891 /* Check for a bogus link to avoid crashing. */
1892 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
1893 || hdr
->sh_link
>= num_sec
)
1895 ((*_bfd_error_handler
)
1896 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1897 abfd
, hdr
->sh_link
, name
, shindex
));
1898 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1901 /* For some incomprehensible reason Oracle distributes
1902 libraries for Solaris in which some of the objects have
1903 bogus sh_link fields. It would be nice if we could just
1904 reject them, but, unfortunately, some people need to use
1905 them. We scan through the section headers; if we find only
1906 one suitable symbol table, we clobber the sh_link to point
1907 to it. I hope this doesn't break anything. */
1908 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1909 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1915 for (scan
= 1; scan
< num_sec
; scan
++)
1917 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1918 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1929 hdr
->sh_link
= found
;
1932 /* Get the symbol table. */
1933 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1934 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1937 /* If this reloc section does not use the main symbol table we
1938 don't treat it as a reloc section. BFD can't adequately
1939 represent such a section, so at least for now, we don't
1940 try. We just present it as a normal section. We also
1941 can't use it as a reloc section if it points to the null
1943 if (hdr
->sh_link
!= elf_onesymtab (abfd
) || hdr
->sh_info
== SHN_UNDEF
)
1944 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1946 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1948 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1949 if (target_sect
== NULL
)
1952 if ((target_sect
->flags
& SEC_RELOC
) == 0
1953 || target_sect
->reloc_count
== 0)
1954 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1958 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1959 amt
= sizeof (*hdr2
);
1960 hdr2
= bfd_alloc (abfd
, amt
);
1961 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1964 elf_elfsections (abfd
)[shindex
] = hdr2
;
1965 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1966 target_sect
->flags
|= SEC_RELOC
;
1967 target_sect
->relocation
= NULL
;
1968 target_sect
->rel_filepos
= hdr
->sh_offset
;
1969 /* In the section to which the relocations apply, mark whether
1970 its relocations are of the REL or RELA variety. */
1971 if (hdr
->sh_size
!= 0)
1972 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1973 abfd
->flags
|= HAS_RELOC
;
1978 case SHT_GNU_verdef
:
1979 elf_dynverdef (abfd
) = shindex
;
1980 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1981 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1984 case SHT_GNU_versym
:
1985 elf_dynversym (abfd
) = shindex
;
1986 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1987 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1990 case SHT_GNU_verneed
:
1991 elf_dynverref (abfd
) = shindex
;
1992 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1993 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
2000 /* We need a BFD section for objcopy and relocatable linking,
2001 and it's handy to have the signature available as the section
2003 name
= group_signature (abfd
, hdr
);
2006 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
2008 if (hdr
->contents
!= NULL
)
2010 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2011 unsigned int n_elt
= hdr
->sh_size
/ 4;
2014 if (idx
->flags
& GRP_COMDAT
)
2015 hdr
->bfd_section
->flags
2016 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2018 /* We try to keep the same section order as it comes in. */
2020 while (--n_elt
!= 0)
2021 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2022 && elf_next_in_group (s
) != NULL
)
2024 elf_next_in_group (hdr
->bfd_section
) = s
;
2031 /* Check for any processor-specific section types. */
2033 if (bed
->elf_backend_section_from_shdr
)
2034 (*bed
->elf_backend_section_from_shdr
) (abfd
, hdr
, name
);
2042 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2043 Return SEC for sections that have no elf section, and NULL on error. */
2046 bfd_section_from_r_symndx (bfd
*abfd
,
2047 struct sym_sec_cache
*cache
,
2049 unsigned long r_symndx
)
2051 Elf_Internal_Shdr
*symtab_hdr
;
2052 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2053 Elf_External_Sym_Shndx eshndx
;
2054 Elf_Internal_Sym isym
;
2055 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2057 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2058 return cache
->sec
[ent
];
2060 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2061 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2062 &isym
, esym
, &eshndx
) == NULL
)
2065 if (cache
->abfd
!= abfd
)
2067 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2070 cache
->indx
[ent
] = r_symndx
;
2071 cache
->sec
[ent
] = sec
;
2072 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2073 || isym
.st_shndx
> SHN_HIRESERVE
)
2076 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2078 cache
->sec
[ent
] = s
;
2080 return cache
->sec
[ent
];
2083 /* Given an ELF section number, retrieve the corresponding BFD
2087 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2089 if (index
>= elf_numsections (abfd
))
2091 return elf_elfsections (abfd
)[index
]->bfd_section
;
2094 static struct bfd_elf_special_section
const special_sections
[] =
2096 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2097 { ".gnu.linkonce.b",15, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2098 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2099 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2100 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2101 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2102 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2103 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2104 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2105 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2106 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2107 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2108 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2109 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2110 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2111 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2112 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2113 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2114 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2115 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2116 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2117 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2118 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2119 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2120 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2121 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2122 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2123 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2124 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2125 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2126 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2127 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2128 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2129 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2130 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2131 { ".note", 5, -1, SHT_NOTE
, 0 },
2132 { ".rela", 5, -1, SHT_RELA
, 0 },
2133 { ".rel", 4, -1, SHT_REL
, 0 },
2134 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2135 { NULL
, 0, 0, 0, 0 }
2138 static const struct bfd_elf_special_section
*
2139 get_special_section (const char *name
,
2140 const struct bfd_elf_special_section
*special_sections
,
2144 int len
= strlen (name
);
2146 for (i
= 0; special_sections
[i
].prefix
!= NULL
; i
++)
2149 int prefix_len
= special_sections
[i
].prefix_length
;
2151 if (len
< prefix_len
)
2153 if (memcmp (name
, special_sections
[i
].prefix
, prefix_len
) != 0)
2156 suffix_len
= special_sections
[i
].suffix_length
;
2157 if (suffix_len
<= 0)
2159 if (name
[prefix_len
] != 0)
2161 if (suffix_len
== 0)
2163 if (name
[prefix_len
] != '.'
2164 && (suffix_len
== -2
2165 || (rela
&& special_sections
[i
].type
== SHT_REL
)))
2171 if (len
< prefix_len
+ suffix_len
)
2173 if (memcmp (name
+ len
- suffix_len
,
2174 special_sections
[i
].prefix
+ prefix_len
,
2178 return &special_sections
[i
];
2184 const struct bfd_elf_special_section
*
2185 _bfd_elf_get_sec_type_attr (bfd
*abfd
, const char *name
)
2187 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2188 const struct bfd_elf_special_section
*ssect
= NULL
;
2190 /* See if this is one of the special sections. */
2193 unsigned int rela
= bed
->default_use_rela_p
;
2195 if (bed
->special_sections
)
2196 ssect
= get_special_section (name
, bed
->special_sections
, rela
);
2199 ssect
= get_special_section (name
, special_sections
, rela
);
2206 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2208 struct bfd_elf_section_data
*sdata
;
2209 const struct bfd_elf_special_section
*ssect
;
2211 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2214 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2217 sec
->used_by_bfd
= sdata
;
2220 elf_section_type (sec
) = SHT_NULL
;
2221 ssect
= _bfd_elf_get_sec_type_attr (abfd
, sec
->name
);
2224 elf_section_type (sec
) = ssect
->type
;
2225 elf_section_flags (sec
) = ssect
->attr
;
2228 /* Indicate whether or not this section should use RELA relocations. */
2229 sec
->use_rela_p
= get_elf_backend_data (abfd
)->default_use_rela_p
;
2234 /* Create a new bfd section from an ELF program header.
2236 Since program segments have no names, we generate a synthetic name
2237 of the form segment<NUM>, where NUM is generally the index in the
2238 program header table. For segments that are split (see below) we
2239 generate the names segment<NUM>a and segment<NUM>b.
2241 Note that some program segments may have a file size that is different than
2242 (less than) the memory size. All this means is that at execution the
2243 system must allocate the amount of memory specified by the memory size,
2244 but only initialize it with the first "file size" bytes read from the
2245 file. This would occur for example, with program segments consisting
2246 of combined data+bss.
2248 To handle the above situation, this routine generates TWO bfd sections
2249 for the single program segment. The first has the length specified by
2250 the file size of the segment, and the second has the length specified
2251 by the difference between the two sizes. In effect, the segment is split
2252 into it's initialized and uninitialized parts.
2257 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2258 Elf_Internal_Phdr
*hdr
,
2260 const char *typename
)
2268 split
= ((hdr
->p_memsz
> 0)
2269 && (hdr
->p_filesz
> 0)
2270 && (hdr
->p_memsz
> hdr
->p_filesz
));
2271 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2272 len
= strlen (namebuf
) + 1;
2273 name
= bfd_alloc (abfd
, len
);
2276 memcpy (name
, namebuf
, len
);
2277 newsect
= bfd_make_section (abfd
, name
);
2278 if (newsect
== NULL
)
2280 newsect
->vma
= hdr
->p_vaddr
;
2281 newsect
->lma
= hdr
->p_paddr
;
2282 newsect
->size
= hdr
->p_filesz
;
2283 newsect
->filepos
= hdr
->p_offset
;
2284 newsect
->flags
|= SEC_HAS_CONTENTS
;
2285 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2286 if (hdr
->p_type
== PT_LOAD
)
2288 newsect
->flags
|= SEC_ALLOC
;
2289 newsect
->flags
|= SEC_LOAD
;
2290 if (hdr
->p_flags
& PF_X
)
2292 /* FIXME: all we known is that it has execute PERMISSION,
2294 newsect
->flags
|= SEC_CODE
;
2297 if (!(hdr
->p_flags
& PF_W
))
2299 newsect
->flags
|= SEC_READONLY
;
2304 sprintf (namebuf
, "%s%db", typename
, index
);
2305 len
= strlen (namebuf
) + 1;
2306 name
= bfd_alloc (abfd
, len
);
2309 memcpy (name
, namebuf
, len
);
2310 newsect
= bfd_make_section (abfd
, name
);
2311 if (newsect
== NULL
)
2313 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2314 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2315 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2316 if (hdr
->p_type
== PT_LOAD
)
2318 newsect
->flags
|= SEC_ALLOC
;
2319 if (hdr
->p_flags
& PF_X
)
2320 newsect
->flags
|= SEC_CODE
;
2322 if (!(hdr
->p_flags
& PF_W
))
2323 newsect
->flags
|= SEC_READONLY
;
2330 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2332 const struct elf_backend_data
*bed
;
2334 switch (hdr
->p_type
)
2337 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2340 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2343 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2346 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2349 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2351 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2356 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2359 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2361 case PT_GNU_EH_FRAME
:
2362 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2366 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2369 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2372 /* Check for any processor-specific program segment types.
2373 If no handler for them, default to making "segment" sections. */
2374 bed
= get_elf_backend_data (abfd
);
2375 if (bed
->elf_backend_section_from_phdr
)
2376 return (*bed
->elf_backend_section_from_phdr
) (abfd
, hdr
, index
);
2378 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "segment");
2382 /* Initialize REL_HDR, the section-header for new section, containing
2383 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2384 relocations; otherwise, we use REL relocations. */
2387 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2388 Elf_Internal_Shdr
*rel_hdr
,
2390 bfd_boolean use_rela_p
)
2393 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2394 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2396 name
= bfd_alloc (abfd
, amt
);
2399 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2401 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2403 if (rel_hdr
->sh_name
== (unsigned int) -1)
2405 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2406 rel_hdr
->sh_entsize
= (use_rela_p
2407 ? bed
->s
->sizeof_rela
2408 : bed
->s
->sizeof_rel
);
2409 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2410 rel_hdr
->sh_flags
= 0;
2411 rel_hdr
->sh_addr
= 0;
2412 rel_hdr
->sh_size
= 0;
2413 rel_hdr
->sh_offset
= 0;
2418 /* Set up an ELF internal section header for a section. */
2421 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2423 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2424 bfd_boolean
*failedptr
= failedptrarg
;
2425 Elf_Internal_Shdr
*this_hdr
;
2429 /* We already failed; just get out of the bfd_map_over_sections
2434 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2436 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2437 asect
->name
, FALSE
);
2438 if (this_hdr
->sh_name
== (unsigned int) -1)
2444 this_hdr
->sh_flags
= 0;
2446 if ((asect
->flags
& SEC_ALLOC
) != 0
2447 || asect
->user_set_vma
)
2448 this_hdr
->sh_addr
= asect
->vma
;
2450 this_hdr
->sh_addr
= 0;
2452 this_hdr
->sh_offset
= 0;
2453 this_hdr
->sh_size
= asect
->size
;
2454 this_hdr
->sh_link
= 0;
2455 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2456 /* The sh_entsize and sh_info fields may have been set already by
2457 copy_private_section_data. */
2459 this_hdr
->bfd_section
= asect
;
2460 this_hdr
->contents
= NULL
;
2462 /* If the section type is unspecified, we set it based on
2464 if (this_hdr
->sh_type
== SHT_NULL
)
2466 if ((asect
->flags
& SEC_GROUP
) != 0)
2468 /* We also need to mark SHF_GROUP here for relocatable
2470 struct bfd_link_order
*l
;
2473 for (l
= asect
->link_order_head
; l
!= NULL
; l
= l
->next
)
2474 if (l
->type
== bfd_indirect_link_order
2475 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2478 /* The name is not important. Anything will do. */
2479 elf_group_name (elt
->output_section
) = "G";
2480 elf_section_flags (elt
->output_section
) |= SHF_GROUP
;
2482 elt
= elf_next_in_group (elt
);
2483 /* During a relocatable link, the lists are
2486 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2488 this_hdr
->sh_type
= SHT_GROUP
;
2490 else if ((asect
->flags
& SEC_ALLOC
) != 0
2491 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2492 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2493 this_hdr
->sh_type
= SHT_NOBITS
;
2495 this_hdr
->sh_type
= SHT_PROGBITS
;
2498 switch (this_hdr
->sh_type
)
2504 case SHT_INIT_ARRAY
:
2505 case SHT_FINI_ARRAY
:
2506 case SHT_PREINIT_ARRAY
:
2513 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2517 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2521 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2525 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2526 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2530 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2531 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2534 case SHT_GNU_versym
:
2535 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2538 case SHT_GNU_verdef
:
2539 this_hdr
->sh_entsize
= 0;
2540 /* objcopy or strip will copy over sh_info, but may not set
2541 cverdefs. The linker will set cverdefs, but sh_info will be
2543 if (this_hdr
->sh_info
== 0)
2544 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2546 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2547 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2550 case SHT_GNU_verneed
:
2551 this_hdr
->sh_entsize
= 0;
2552 /* objcopy or strip will copy over sh_info, but may not set
2553 cverrefs. The linker will set cverrefs, but sh_info will be
2555 if (this_hdr
->sh_info
== 0)
2556 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2558 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2559 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2563 this_hdr
->sh_entsize
= 4;
2567 if ((asect
->flags
& SEC_ALLOC
) != 0)
2568 this_hdr
->sh_flags
|= SHF_ALLOC
;
2569 if ((asect
->flags
& SEC_READONLY
) == 0)
2570 this_hdr
->sh_flags
|= SHF_WRITE
;
2571 if ((asect
->flags
& SEC_CODE
) != 0)
2572 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2573 if ((asect
->flags
& SEC_MERGE
) != 0)
2575 this_hdr
->sh_flags
|= SHF_MERGE
;
2576 this_hdr
->sh_entsize
= asect
->entsize
;
2577 if ((asect
->flags
& SEC_STRINGS
) != 0)
2578 this_hdr
->sh_flags
|= SHF_STRINGS
;
2580 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2581 this_hdr
->sh_flags
|= SHF_GROUP
;
2582 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2584 this_hdr
->sh_flags
|= SHF_TLS
;
2585 if (asect
->size
== 0 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2587 struct bfd_link_order
*o
;
2589 this_hdr
->sh_size
= 0;
2590 for (o
= asect
->link_order_head
; o
!= NULL
; o
= o
->next
)
2591 if (this_hdr
->sh_size
< o
->offset
+ o
->size
)
2592 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2593 if (this_hdr
->sh_size
)
2594 this_hdr
->sh_type
= SHT_NOBITS
;
2598 /* Check for processor-specific section types. */
2599 if (bed
->elf_backend_fake_sections
2600 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2603 /* If the section has relocs, set up a section header for the
2604 SHT_REL[A] section. If two relocation sections are required for
2605 this section, it is up to the processor-specific back-end to
2606 create the other. */
2607 if ((asect
->flags
& SEC_RELOC
) != 0
2608 && !_bfd_elf_init_reloc_shdr (abfd
,
2609 &elf_section_data (asect
)->rel_hdr
,
2615 /* Fill in the contents of a SHT_GROUP section. */
2618 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2620 bfd_boolean
*failedptr
= failedptrarg
;
2621 unsigned long symindx
;
2622 asection
*elt
, *first
;
2624 struct bfd_link_order
*l
;
2627 if (elf_section_data (sec
)->this_hdr
.sh_type
!= SHT_GROUP
2632 if (elf_group_id (sec
) != NULL
)
2633 symindx
= elf_group_id (sec
)->udata
.i
;
2637 /* If called from the assembler, swap_out_syms will have set up
2638 elf_section_syms; If called for "ld -r", use target_index. */
2639 if (elf_section_syms (abfd
) != NULL
)
2640 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2642 symindx
= sec
->target_index
;
2644 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2646 /* The contents won't be allocated for "ld -r" or objcopy. */
2648 if (sec
->contents
== NULL
)
2651 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2653 /* Arrange for the section to be written out. */
2654 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2655 if (sec
->contents
== NULL
)
2662 loc
= sec
->contents
+ sec
->size
;
2664 /* Get the pointer to the first section in the group that gas
2665 squirreled away here. objcopy arranges for this to be set to the
2666 start of the input section group. */
2667 first
= elt
= elf_next_in_group (sec
);
2669 /* First element is a flag word. Rest of section is elf section
2670 indices for all the sections of the group. Write them backwards
2671 just to keep the group in the same order as given in .section
2672 directives, not that it matters. */
2681 s
= s
->output_section
;
2684 idx
= elf_section_data (s
)->this_idx
;
2685 H_PUT_32 (abfd
, idx
, loc
);
2686 elt
= elf_next_in_group (elt
);
2691 /* If this is a relocatable link, then the above did nothing because
2692 SEC is the output section. Look through the input sections
2694 for (l
= sec
->link_order_head
; l
!= NULL
; l
= l
->next
)
2695 if (l
->type
== bfd_indirect_link_order
2696 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2701 elf_section_data (elt
->output_section
)->this_idx
, loc
);
2702 elt
= elf_next_in_group (elt
);
2703 /* During a relocatable link, the lists are circular. */
2705 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2707 if ((loc
-= 4) != sec
->contents
)
2710 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2713 /* Assign all ELF section numbers. The dummy first section is handled here
2714 too. The link/info pointers for the standard section types are filled
2715 in here too, while we're at it. */
2718 assign_section_numbers (bfd
*abfd
)
2720 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2722 unsigned int section_number
, secn
;
2723 Elf_Internal_Shdr
**i_shdrp
;
2728 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2730 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2732 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2734 if (section_number
== SHN_LORESERVE
)
2735 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2736 d
->this_idx
= section_number
++;
2737 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2738 if ((sec
->flags
& SEC_RELOC
) == 0)
2742 if (section_number
== SHN_LORESERVE
)
2743 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2744 d
->rel_idx
= section_number
++;
2745 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2750 if (section_number
== SHN_LORESERVE
)
2751 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2752 d
->rel_idx2
= section_number
++;
2753 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2759 if (section_number
== SHN_LORESERVE
)
2760 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2761 t
->shstrtab_section
= section_number
++;
2762 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2763 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2765 if (bfd_get_symcount (abfd
) > 0)
2767 if (section_number
== SHN_LORESERVE
)
2768 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2769 t
->symtab_section
= section_number
++;
2770 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2771 if (section_number
> SHN_LORESERVE
- 2)
2773 if (section_number
== SHN_LORESERVE
)
2774 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2775 t
->symtab_shndx_section
= section_number
++;
2776 t
->symtab_shndx_hdr
.sh_name
2777 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2778 ".symtab_shndx", FALSE
);
2779 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2782 if (section_number
== SHN_LORESERVE
)
2783 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2784 t
->strtab_section
= section_number
++;
2785 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2788 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2789 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2791 elf_numsections (abfd
) = section_number
;
2792 elf_elfheader (abfd
)->e_shnum
= section_number
;
2793 if (section_number
> SHN_LORESERVE
)
2794 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2796 /* Set up the list of section header pointers, in agreement with the
2798 amt
= section_number
* sizeof (Elf_Internal_Shdr
*);
2799 i_shdrp
= bfd_zalloc (abfd
, amt
);
2800 if (i_shdrp
== NULL
)
2803 amt
= sizeof (Elf_Internal_Shdr
);
2804 i_shdrp
[0] = bfd_zalloc (abfd
, amt
);
2805 if (i_shdrp
[0] == NULL
)
2807 bfd_release (abfd
, i_shdrp
);
2811 elf_elfsections (abfd
) = i_shdrp
;
2813 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2814 if (bfd_get_symcount (abfd
) > 0)
2816 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2817 if (elf_numsections (abfd
) > SHN_LORESERVE
)
2819 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2820 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2822 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2823 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2826 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2828 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2832 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2833 if (d
->rel_idx
!= 0)
2834 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2835 if (d
->rel_idx2
!= 0)
2836 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2838 /* Fill in the sh_link and sh_info fields while we're at it. */
2840 /* sh_link of a reloc section is the section index of the symbol
2841 table. sh_info is the section index of the section to which
2842 the relocation entries apply. */
2843 if (d
->rel_idx
!= 0)
2845 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2846 d
->rel_hdr
.sh_info
= d
->this_idx
;
2848 if (d
->rel_idx2
!= 0)
2850 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2851 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2854 /* We need to set up sh_link for SHF_LINK_ORDER. */
2855 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2857 s
= elf_linked_to_section (sec
);
2859 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2862 struct bfd_link_order
*p
;
2864 /* Find out what the corresponding section in output
2866 for (p
= sec
->link_order_head
; p
!= NULL
; p
= p
->next
)
2868 s
= p
->u
.indirect
.section
;
2869 if (p
->type
== bfd_indirect_link_order
2870 && (bfd_get_flavour (s
->owner
)
2871 == bfd_target_elf_flavour
))
2873 Elf_Internal_Shdr
** const elf_shdrp
2874 = elf_elfsections (s
->owner
);
2876 = _bfd_elf_section_from_bfd_section (s
->owner
, s
);
2877 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
2879 The Intel C compiler generates SHT_IA_64_UNWIND with
2880 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2881 sh_info fields. Hence we could get the situation
2882 where elfsec is 0. */
2885 const struct elf_backend_data
*bed
2886 = get_elf_backend_data (abfd
);
2887 if (bed
->link_order_error_handler
)
2888 bed
->link_order_error_handler
2889 (_("%B: warning: sh_link not set for section `%S'"),
2894 s
= elf_shdrp
[elfsec
]->bfd_section
->output_section
;
2895 BFD_ASSERT (s
!= NULL
);
2896 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2904 switch (d
->this_hdr
.sh_type
)
2908 /* A reloc section which we are treating as a normal BFD
2909 section. sh_link is the section index of the symbol
2910 table. sh_info is the section index of the section to
2911 which the relocation entries apply. We assume that an
2912 allocated reloc section uses the dynamic symbol table.
2913 FIXME: How can we be sure? */
2914 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2916 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2918 /* We look up the section the relocs apply to by name. */
2920 if (d
->this_hdr
.sh_type
== SHT_REL
)
2924 s
= bfd_get_section_by_name (abfd
, name
);
2926 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
2930 /* We assume that a section named .stab*str is a stabs
2931 string section. We look for a section with the same name
2932 but without the trailing ``str'', and set its sh_link
2933 field to point to this section. */
2934 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
2935 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
2940 len
= strlen (sec
->name
);
2941 alc
= bfd_malloc (len
- 2);
2944 memcpy (alc
, sec
->name
, len
- 3);
2945 alc
[len
- 3] = '\0';
2946 s
= bfd_get_section_by_name (abfd
, alc
);
2950 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
2952 /* This is a .stab section. */
2953 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
2954 elf_section_data (s
)->this_hdr
.sh_entsize
2955 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
2962 case SHT_GNU_verneed
:
2963 case SHT_GNU_verdef
:
2964 /* sh_link is the section header index of the string table
2965 used for the dynamic entries, or the symbol table, or the
2967 s
= bfd_get_section_by_name (abfd
, ".dynstr");
2969 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2973 case SHT_GNU_versym
:
2974 /* sh_link is the section header index of the symbol table
2975 this hash table or version table is for. */
2976 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2978 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2982 d
->this_hdr
.sh_link
= t
->symtab_section
;
2986 for (secn
= 1; secn
< section_number
; ++secn
)
2987 if (i_shdrp
[secn
] == NULL
)
2988 i_shdrp
[secn
] = i_shdrp
[0];
2990 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
2991 i_shdrp
[secn
]->sh_name
);
2995 /* Map symbol from it's internal number to the external number, moving
2996 all local symbols to be at the head of the list. */
2999 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3001 /* If the backend has a special mapping, use it. */
3002 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3003 if (bed
->elf_backend_sym_is_global
)
3004 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3006 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3007 || bfd_is_und_section (bfd_get_section (sym
))
3008 || bfd_is_com_section (bfd_get_section (sym
)));
3012 elf_map_symbols (bfd
*abfd
)
3014 unsigned int symcount
= bfd_get_symcount (abfd
);
3015 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3016 asymbol
**sect_syms
;
3017 unsigned int num_locals
= 0;
3018 unsigned int num_globals
= 0;
3019 unsigned int num_locals2
= 0;
3020 unsigned int num_globals2
= 0;
3028 fprintf (stderr
, "elf_map_symbols\n");
3032 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3034 if (max_index
< asect
->index
)
3035 max_index
= asect
->index
;
3039 amt
= max_index
* sizeof (asymbol
*);
3040 sect_syms
= bfd_zalloc (abfd
, amt
);
3041 if (sect_syms
== NULL
)
3043 elf_section_syms (abfd
) = sect_syms
;
3044 elf_num_section_syms (abfd
) = max_index
;
3046 /* Init sect_syms entries for any section symbols we have already
3047 decided to output. */
3048 for (idx
= 0; idx
< symcount
; idx
++)
3050 asymbol
*sym
= syms
[idx
];
3052 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3059 if (sec
->owner
!= NULL
)
3061 if (sec
->owner
!= abfd
)
3063 if (sec
->output_offset
!= 0)
3066 sec
= sec
->output_section
;
3068 /* Empty sections in the input files may have had a
3069 section symbol created for them. (See the comment
3070 near the end of _bfd_generic_link_output_symbols in
3071 linker.c). If the linker script discards such
3072 sections then we will reach this point. Since we know
3073 that we cannot avoid this case, we detect it and skip
3074 the abort and the assignment to the sect_syms array.
3075 To reproduce this particular case try running the
3076 linker testsuite test ld-scripts/weak.exp for an ELF
3077 port that uses the generic linker. */
3078 if (sec
->owner
== NULL
)
3081 BFD_ASSERT (sec
->owner
== abfd
);
3083 sect_syms
[sec
->index
] = syms
[idx
];
3088 /* Classify all of the symbols. */
3089 for (idx
= 0; idx
< symcount
; idx
++)
3091 if (!sym_is_global (abfd
, syms
[idx
]))
3097 /* We will be adding a section symbol for each BFD section. Most normal
3098 sections will already have a section symbol in outsymbols, but
3099 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3100 at least in that case. */
3101 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3103 if (sect_syms
[asect
->index
] == NULL
)
3105 if (!sym_is_global (abfd
, asect
->symbol
))
3112 /* Now sort the symbols so the local symbols are first. */
3113 amt
= (num_locals
+ num_globals
) * sizeof (asymbol
*);
3114 new_syms
= bfd_alloc (abfd
, amt
);
3116 if (new_syms
== NULL
)
3119 for (idx
= 0; idx
< symcount
; idx
++)
3121 asymbol
*sym
= syms
[idx
];
3124 if (!sym_is_global (abfd
, sym
))
3127 i
= num_locals
+ num_globals2
++;
3129 sym
->udata
.i
= i
+ 1;
3131 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3133 if (sect_syms
[asect
->index
] == NULL
)
3135 asymbol
*sym
= asect
->symbol
;
3138 sect_syms
[asect
->index
] = sym
;
3139 if (!sym_is_global (abfd
, sym
))
3142 i
= num_locals
+ num_globals2
++;
3144 sym
->udata
.i
= i
+ 1;
3148 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3150 elf_num_locals (abfd
) = num_locals
;
3151 elf_num_globals (abfd
) = num_globals
;
3155 /* Align to the maximum file alignment that could be required for any
3156 ELF data structure. */
3158 static inline file_ptr
3159 align_file_position (file_ptr off
, int align
)
3161 return (off
+ align
- 1) & ~(align
- 1);
3164 /* Assign a file position to a section, optionally aligning to the
3165 required section alignment. */
3168 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3176 al
= i_shdrp
->sh_addralign
;
3178 offset
= BFD_ALIGN (offset
, al
);
3180 i_shdrp
->sh_offset
= offset
;
3181 if (i_shdrp
->bfd_section
!= NULL
)
3182 i_shdrp
->bfd_section
->filepos
= offset
;
3183 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3184 offset
+= i_shdrp
->sh_size
;
3188 /* Compute the file positions we are going to put the sections at, and
3189 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3190 is not NULL, this is being called by the ELF backend linker. */
3193 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3194 struct bfd_link_info
*link_info
)
3196 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3198 struct bfd_strtab_hash
*strtab
;
3199 Elf_Internal_Shdr
*shstrtab_hdr
;
3201 if (abfd
->output_has_begun
)
3204 /* Do any elf backend specific processing first. */
3205 if (bed
->elf_backend_begin_write_processing
)
3206 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3208 if (! prep_headers (abfd
))
3211 /* Post process the headers if necessary. */
3212 if (bed
->elf_backend_post_process_headers
)
3213 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3216 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3220 if (!assign_section_numbers (abfd
))
3223 /* The backend linker builds symbol table information itself. */
3224 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3226 /* Non-zero if doing a relocatable link. */
3227 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3229 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3233 if (link_info
== NULL
)
3235 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3240 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3241 /* sh_name was set in prep_headers. */
3242 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3243 shstrtab_hdr
->sh_flags
= 0;
3244 shstrtab_hdr
->sh_addr
= 0;
3245 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3246 shstrtab_hdr
->sh_entsize
= 0;
3247 shstrtab_hdr
->sh_link
= 0;
3248 shstrtab_hdr
->sh_info
= 0;
3249 /* sh_offset is set in assign_file_positions_except_relocs. */
3250 shstrtab_hdr
->sh_addralign
= 1;
3252 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3255 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3258 Elf_Internal_Shdr
*hdr
;
3260 off
= elf_tdata (abfd
)->next_file_pos
;
3262 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3263 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3265 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3266 if (hdr
->sh_size
!= 0)
3267 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3269 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3270 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3272 elf_tdata (abfd
)->next_file_pos
= off
;
3274 /* Now that we know where the .strtab section goes, write it
3276 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3277 || ! _bfd_stringtab_emit (abfd
, strtab
))
3279 _bfd_stringtab_free (strtab
);
3282 abfd
->output_has_begun
= TRUE
;
3287 /* Create a mapping from a set of sections to a program segment. */
3289 static struct elf_segment_map
*
3290 make_mapping (bfd
*abfd
,
3291 asection
**sections
,
3296 struct elf_segment_map
*m
;
3301 amt
= sizeof (struct elf_segment_map
);
3302 amt
+= (to
- from
- 1) * sizeof (asection
*);
3303 m
= bfd_zalloc (abfd
, amt
);
3307 m
->p_type
= PT_LOAD
;
3308 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3309 m
->sections
[i
- from
] = *hdrpp
;
3310 m
->count
= to
- from
;
3312 if (from
== 0 && phdr
)
3314 /* Include the headers in the first PT_LOAD segment. */
3315 m
->includes_filehdr
= 1;
3316 m
->includes_phdrs
= 1;
3322 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3325 struct elf_segment_map
*
3326 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3328 struct elf_segment_map
*m
;
3330 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3334 m
->p_type
= PT_DYNAMIC
;
3336 m
->sections
[0] = dynsec
;
3341 /* Set up a mapping from BFD sections to program segments. */
3344 map_sections_to_segments (bfd
*abfd
)
3346 asection
**sections
= NULL
;
3350 struct elf_segment_map
*mfirst
;
3351 struct elf_segment_map
**pm
;
3352 struct elf_segment_map
*m
;
3355 unsigned int phdr_index
;
3356 bfd_vma maxpagesize
;
3358 bfd_boolean phdr_in_segment
= TRUE
;
3359 bfd_boolean writable
;
3361 asection
*first_tls
= NULL
;
3362 asection
*dynsec
, *eh_frame_hdr
;
3365 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3368 if (bfd_count_sections (abfd
) == 0)
3371 /* Select the allocated sections, and sort them. */
3373 amt
= bfd_count_sections (abfd
) * sizeof (asection
*);
3374 sections
= bfd_malloc (amt
);
3375 if (sections
== NULL
)
3379 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3381 if ((s
->flags
& SEC_ALLOC
) != 0)
3387 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3390 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3392 /* Build the mapping. */
3397 /* If we have a .interp section, then create a PT_PHDR segment for
3398 the program headers and a PT_INTERP segment for the .interp
3400 s
= bfd_get_section_by_name (abfd
, ".interp");
3401 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3403 amt
= sizeof (struct elf_segment_map
);
3404 m
= bfd_zalloc (abfd
, amt
);
3408 m
->p_type
= PT_PHDR
;
3409 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3410 m
->p_flags
= PF_R
| PF_X
;
3411 m
->p_flags_valid
= 1;
3412 m
->includes_phdrs
= 1;
3417 amt
= sizeof (struct elf_segment_map
);
3418 m
= bfd_zalloc (abfd
, amt
);
3422 m
->p_type
= PT_INTERP
;
3430 /* Look through the sections. We put sections in the same program
3431 segment when the start of the second section can be placed within
3432 a few bytes of the end of the first section. */
3436 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3438 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3440 && (dynsec
->flags
& SEC_LOAD
) == 0)
3443 /* Deal with -Ttext or something similar such that the first section
3444 is not adjacent to the program headers. This is an
3445 approximation, since at this point we don't know exactly how many
3446 program headers we will need. */
3449 bfd_size_type phdr_size
;
3451 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3453 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3454 if ((abfd
->flags
& D_PAGED
) == 0
3455 || sections
[0]->lma
< phdr_size
3456 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3457 phdr_in_segment
= FALSE
;
3460 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3463 bfd_boolean new_segment
;
3467 /* See if this section and the last one will fit in the same
3470 if (last_hdr
== NULL
)
3472 /* If we don't have a segment yet, then we don't need a new
3473 one (we build the last one after this loop). */
3474 new_segment
= FALSE
;
3476 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3478 /* If this section has a different relation between the
3479 virtual address and the load address, then we need a new
3483 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3484 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3486 /* If putting this section in this segment would force us to
3487 skip a page in the segment, then we need a new segment. */
3490 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3491 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3493 /* We don't want to put a loadable section after a
3494 nonloadable section in the same segment.
3495 Consider .tbss sections as loadable for this purpose. */
3498 else if ((abfd
->flags
& D_PAGED
) == 0)
3500 /* If the file is not demand paged, which means that we
3501 don't require the sections to be correctly aligned in the
3502 file, then there is no other reason for a new segment. */
3503 new_segment
= FALSE
;
3506 && (hdr
->flags
& SEC_READONLY
) == 0
3507 && (((last_hdr
->lma
+ last_size
- 1)
3508 & ~(maxpagesize
- 1))
3509 != (hdr
->lma
& ~(maxpagesize
- 1))))
3511 /* We don't want to put a writable section in a read only
3512 segment, unless they are on the same page in memory
3513 anyhow. We already know that the last section does not
3514 bring us past the current section on the page, so the
3515 only case in which the new section is not on the same
3516 page as the previous section is when the previous section
3517 ends precisely on a page boundary. */
3522 /* Otherwise, we can use the same segment. */
3523 new_segment
= FALSE
;
3528 if ((hdr
->flags
& SEC_READONLY
) == 0)
3531 /* .tbss sections effectively have zero size. */
3532 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3533 last_size
= hdr
->size
;
3539 /* We need a new program segment. We must create a new program
3540 header holding all the sections from phdr_index until hdr. */
3542 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3549 if ((hdr
->flags
& SEC_READONLY
) == 0)
3555 /* .tbss sections effectively have zero size. */
3556 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3557 last_size
= hdr
->size
;
3561 phdr_in_segment
= FALSE
;
3564 /* Create a final PT_LOAD program segment. */
3565 if (last_hdr
!= NULL
)
3567 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3575 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3578 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3585 /* For each loadable .note section, add a PT_NOTE segment. We don't
3586 use bfd_get_section_by_name, because if we link together
3587 nonloadable .note sections and loadable .note sections, we will
3588 generate two .note sections in the output file. FIXME: Using
3589 names for section types is bogus anyhow. */
3590 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3592 if ((s
->flags
& SEC_LOAD
) != 0
3593 && strncmp (s
->name
, ".note", 5) == 0)
3595 amt
= sizeof (struct elf_segment_map
);
3596 m
= bfd_zalloc (abfd
, amt
);
3600 m
->p_type
= PT_NOTE
;
3607 if (s
->flags
& SEC_THREAD_LOCAL
)
3615 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3620 amt
= sizeof (struct elf_segment_map
);
3621 amt
+= (tls_count
- 1) * sizeof (asection
*);
3622 m
= bfd_zalloc (abfd
, amt
);
3627 m
->count
= tls_count
;
3628 /* Mandated PF_R. */
3630 m
->p_flags_valid
= 1;
3631 for (i
= 0; i
< tls_count
; ++i
)
3633 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3634 m
->sections
[i
] = first_tls
;
3635 first_tls
= first_tls
->next
;
3642 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3644 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3645 if (eh_frame_hdr
!= NULL
3646 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3648 amt
= sizeof (struct elf_segment_map
);
3649 m
= bfd_zalloc (abfd
, amt
);
3653 m
->p_type
= PT_GNU_EH_FRAME
;
3655 m
->sections
[0] = eh_frame_hdr
->output_section
;
3661 if (elf_tdata (abfd
)->stack_flags
)
3663 amt
= sizeof (struct elf_segment_map
);
3664 m
= bfd_zalloc (abfd
, amt
);
3668 m
->p_type
= PT_GNU_STACK
;
3669 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3670 m
->p_flags_valid
= 1;
3676 if (elf_tdata (abfd
)->relro
)
3678 amt
= sizeof (struct elf_segment_map
);
3679 m
= bfd_zalloc (abfd
, amt
);
3683 m
->p_type
= PT_GNU_RELRO
;
3685 m
->p_flags_valid
= 1;
3694 elf_tdata (abfd
)->segment_map
= mfirst
;
3698 if (sections
!= NULL
)
3703 /* Sort sections by address. */
3706 elf_sort_sections (const void *arg1
, const void *arg2
)
3708 const asection
*sec1
= *(const asection
**) arg1
;
3709 const asection
*sec2
= *(const asection
**) arg2
;
3710 bfd_size_type size1
, size2
;
3712 /* Sort by LMA first, since this is the address used to
3713 place the section into a segment. */
3714 if (sec1
->lma
< sec2
->lma
)
3716 else if (sec1
->lma
> sec2
->lma
)
3719 /* Then sort by VMA. Normally the LMA and the VMA will be
3720 the same, and this will do nothing. */
3721 if (sec1
->vma
< sec2
->vma
)
3723 else if (sec1
->vma
> sec2
->vma
)
3726 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3728 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3734 /* If the indicies are the same, do not return 0
3735 here, but continue to try the next comparison. */
3736 if (sec1
->target_index
- sec2
->target_index
!= 0)
3737 return sec1
->target_index
- sec2
->target_index
;
3742 else if (TOEND (sec2
))
3747 /* Sort by size, to put zero sized sections
3748 before others at the same address. */
3750 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
3751 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
3758 return sec1
->target_index
- sec2
->target_index
;
3761 /* Ian Lance Taylor writes:
3763 We shouldn't be using % with a negative signed number. That's just
3764 not good. We have to make sure either that the number is not
3765 negative, or that the number has an unsigned type. When the types
3766 are all the same size they wind up as unsigned. When file_ptr is a
3767 larger signed type, the arithmetic winds up as signed long long,
3770 What we're trying to say here is something like ``increase OFF by
3771 the least amount that will cause it to be equal to the VMA modulo
3773 /* In other words, something like:
3775 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3776 off_offset = off % bed->maxpagesize;
3777 if (vma_offset < off_offset)
3778 adjustment = vma_offset + bed->maxpagesize - off_offset;
3780 adjustment = vma_offset - off_offset;
3782 which can can be collapsed into the expression below. */
3785 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
3787 return ((vma
- off
) % maxpagesize
);
3790 /* Assign file positions to the sections based on the mapping from
3791 sections to segments. This function also sets up some fields in
3792 the file header, and writes out the program headers. */
3795 assign_file_positions_for_segments (bfd
*abfd
, struct bfd_link_info
*link_info
)
3797 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3799 struct elf_segment_map
*m
;
3801 Elf_Internal_Phdr
*phdrs
;
3803 bfd_vma filehdr_vaddr
, filehdr_paddr
;
3804 bfd_vma phdrs_vaddr
, phdrs_paddr
;
3805 Elf_Internal_Phdr
*p
;
3808 if (elf_tdata (abfd
)->segment_map
== NULL
)
3810 if (! map_sections_to_segments (abfd
))
3815 /* The placement algorithm assumes that non allocated sections are
3816 not in PT_LOAD segments. We ensure this here by removing such
3817 sections from the segment map. */
3818 for (m
= elf_tdata (abfd
)->segment_map
;
3822 unsigned int new_count
;
3825 if (m
->p_type
!= PT_LOAD
)
3829 for (i
= 0; i
< m
->count
; i
++)
3831 if ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0)
3834 m
->sections
[new_count
] = m
->sections
[i
];
3840 if (new_count
!= m
->count
)
3841 m
->count
= new_count
;
3845 if (bed
->elf_backend_modify_segment_map
)
3847 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
3852 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3855 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
3856 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
3857 elf_elfheader (abfd
)->e_phnum
= count
;
3862 /* If we already counted the number of program segments, make sure
3863 that we allocated enough space. This happens when SIZEOF_HEADERS
3864 is used in a linker script. */
3865 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
3866 if (alloc
!= 0 && count
> alloc
)
3868 ((*_bfd_error_handler
)
3869 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3870 abfd
, alloc
, count
));
3871 bfd_set_error (bfd_error_bad_value
);
3878 amt
= alloc
* sizeof (Elf_Internal_Phdr
);
3879 phdrs
= bfd_alloc (abfd
, amt
);
3883 off
= bed
->s
->sizeof_ehdr
;
3884 off
+= alloc
* bed
->s
->sizeof_phdr
;
3891 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
3898 /* If elf_segment_map is not from map_sections_to_segments, the
3899 sections may not be correctly ordered. NOTE: sorting should
3900 not be done to the PT_NOTE section of a corefile, which may
3901 contain several pseudo-sections artificially created by bfd.
3902 Sorting these pseudo-sections breaks things badly. */
3904 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
3905 && m
->p_type
== PT_NOTE
))
3906 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
3909 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
3910 number of sections with contents contributing to both p_filesz
3911 and p_memsz, followed by a number of sections with no contents
3912 that just contribute to p_memsz. In this loop, OFF tracks next
3913 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
3914 an adjustment we use for segments that have no file contents
3915 but need zero filled memory allocation. */
3917 p
->p_type
= m
->p_type
;
3918 p
->p_flags
= m
->p_flags
;
3920 if (p
->p_type
== PT_LOAD
3923 bfd_size_type align
;
3926 if ((abfd
->flags
& D_PAGED
) != 0)
3927 align
= bed
->maxpagesize
;
3930 unsigned int align_power
= 0;
3931 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
3933 unsigned int secalign
;
3935 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
3936 if (secalign
> align_power
)
3937 align_power
= secalign
;
3939 align
= (bfd_size_type
) 1 << align_power
;
3942 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
3945 && !m
->includes_filehdr
3946 && !m
->includes_phdrs
3947 && (ufile_ptr
) off
>= align
)
3949 /* If the first section isn't loadable, the same holds for
3950 any other sections. Since the segment won't need file
3951 space, we can make p_offset overlap some prior segment.
3952 However, .tbss is special. If a segment starts with
3953 .tbss, we need to look at the next section to decide
3954 whether the segment has any loadable sections. */
3956 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0)
3958 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
3962 voff
= adjust
- align
;
3968 /* Make sure the .dynamic section is the first section in the
3969 PT_DYNAMIC segment. */
3970 else if (p
->p_type
== PT_DYNAMIC
3972 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
3975 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
3977 bfd_set_error (bfd_error_bad_value
);
3984 p
->p_vaddr
= m
->sections
[0]->vma
;
3986 if (m
->p_paddr_valid
)
3987 p
->p_paddr
= m
->p_paddr
;
3988 else if (m
->count
== 0)
3991 p
->p_paddr
= m
->sections
[0]->lma
;
3993 if (p
->p_type
== PT_LOAD
3994 && (abfd
->flags
& D_PAGED
) != 0)
3995 p
->p_align
= bed
->maxpagesize
;
3996 else if (m
->count
== 0)
3997 p
->p_align
= 1 << bed
->s
->log_file_align
;
4005 if (m
->includes_filehdr
)
4007 if (! m
->p_flags_valid
)
4010 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4011 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4014 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4016 if (p
->p_vaddr
< (bfd_vma
) off
)
4018 (*_bfd_error_handler
)
4019 (_("%B: Not enough room for program headers, try linking with -N"),
4021 bfd_set_error (bfd_error_bad_value
);
4026 if (! m
->p_paddr_valid
)
4029 if (p
->p_type
== PT_LOAD
)
4031 filehdr_vaddr
= p
->p_vaddr
;
4032 filehdr_paddr
= p
->p_paddr
;
4036 if (m
->includes_phdrs
)
4038 if (! m
->p_flags_valid
)
4041 if (m
->includes_filehdr
)
4043 if (p
->p_type
== PT_LOAD
)
4045 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
4046 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
4051 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4055 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4056 p
->p_vaddr
-= off
- p
->p_offset
;
4057 if (! m
->p_paddr_valid
)
4058 p
->p_paddr
-= off
- p
->p_offset
;
4061 if (p
->p_type
== PT_LOAD
)
4063 phdrs_vaddr
= p
->p_vaddr
;
4064 phdrs_paddr
= p
->p_paddr
;
4067 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4070 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4071 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4074 if (p
->p_type
== PT_LOAD
4075 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4077 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4078 p
->p_offset
= off
+ voff
;
4083 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4084 p
->p_filesz
+= adjust
;
4085 p
->p_memsz
+= adjust
;
4089 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4093 bfd_size_type align
;
4097 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
4099 if (p
->p_type
== PT_LOAD
4100 || p
->p_type
== PT_TLS
)
4102 bfd_signed_vma adjust
;
4104 if ((flags
& SEC_LOAD
) != 0)
4106 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4109 (*_bfd_error_handler
)
4110 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4111 abfd
, sec
, (unsigned long) sec
->lma
);
4115 p
->p_filesz
+= adjust
;
4116 p
->p_memsz
+= adjust
;
4118 /* .tbss is special. It doesn't contribute to p_memsz of
4120 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4121 || p
->p_type
== PT_TLS
)
4123 /* The section VMA must equal the file position
4124 modulo the page size. */
4125 bfd_size_type page
= align
;
4126 if ((abfd
->flags
& D_PAGED
) != 0)
4127 page
= bed
->maxpagesize
;
4128 adjust
= vma_page_aligned_bias (sec
->vma
,
4129 p
->p_vaddr
+ p
->p_memsz
,
4131 p
->p_memsz
+= adjust
;
4135 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4137 /* The section at i == 0 is the one that actually contains
4143 p
->p_filesz
= sec
->size
;
4149 /* The rest are fake sections that shouldn't be written. */
4158 if (p
->p_type
== PT_LOAD
)
4161 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4162 1997, and the exact reason for it isn't clear. One
4163 plausible explanation is that it is to work around
4164 a problem we have with linker scripts using data
4165 statements in NOLOAD sections. I don't think it
4166 makes a great deal of sense to have such a section
4167 assigned to a PT_LOAD segment, but apparently
4168 people do this. The data statement results in a
4169 bfd_data_link_order being built, and these need
4170 section contents to write into. Eventually, we get
4171 to _bfd_elf_write_object_contents which writes any
4172 section with contents to the output. Make room
4173 here for the write, so that following segments are
4175 if ((flags
& SEC_LOAD
) != 0
4176 || (flags
& SEC_HAS_CONTENTS
) != 0)
4180 if ((flags
& SEC_LOAD
) != 0)
4182 p
->p_filesz
+= sec
->size
;
4183 p
->p_memsz
+= sec
->size
;
4185 /* .tbss is special. It doesn't contribute to p_memsz of
4187 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4188 || p
->p_type
== PT_TLS
)
4189 p
->p_memsz
+= sec
->size
;
4191 if (p
->p_type
== PT_TLS
4193 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4195 struct bfd_link_order
*o
;
4196 bfd_vma tbss_size
= 0;
4198 for (o
= sec
->link_order_head
; o
!= NULL
; o
= o
->next
)
4199 if (tbss_size
< o
->offset
+ o
->size
)
4200 tbss_size
= o
->offset
+ o
->size
;
4202 p
->p_memsz
+= tbss_size
;
4205 if (align
> p
->p_align
4206 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
4210 if (! m
->p_flags_valid
)
4213 if ((flags
& SEC_CODE
) != 0)
4215 if ((flags
& SEC_READONLY
) == 0)
4221 /* Now that we have set the section file positions, we can set up
4222 the file positions for the non PT_LOAD segments. */
4223 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4227 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
4229 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
4230 /* If the section has not yet been assigned a file position,
4231 do so now. The ARM BPABI requires that .dynamic section
4232 not be marked SEC_ALLOC because it is not part of any
4233 PT_LOAD segment, so it will not be processed above. */
4234 if (p
->p_type
== PT_DYNAMIC
&& m
->sections
[0]->filepos
== 0)
4237 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4240 while (i_shdrpp
[i
]->bfd_section
!= m
->sections
[0])
4242 off
= (_bfd_elf_assign_file_position_for_section
4243 (i_shdrpp
[i
], off
, TRUE
));
4244 p
->p_filesz
= m
->sections
[0]->size
;
4246 p
->p_offset
= m
->sections
[0]->filepos
;
4250 if (m
->includes_filehdr
)
4252 p
->p_vaddr
= filehdr_vaddr
;
4253 if (! m
->p_paddr_valid
)
4254 p
->p_paddr
= filehdr_paddr
;
4256 else if (m
->includes_phdrs
)
4258 p
->p_vaddr
= phdrs_vaddr
;
4259 if (! m
->p_paddr_valid
)
4260 p
->p_paddr
= phdrs_paddr
;
4262 else if (p
->p_type
== PT_GNU_RELRO
)
4264 Elf_Internal_Phdr
*lp
;
4266 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4268 if (lp
->p_type
== PT_LOAD
4269 && lp
->p_vaddr
<= link_info
->relro_end
4270 && lp
->p_vaddr
>= link_info
->relro_start
4271 && lp
->p_vaddr
+ lp
->p_filesz
4272 >= link_info
->relro_end
)
4276 if (lp
< phdrs
+ count
4277 && link_info
->relro_end
> lp
->p_vaddr
)
4279 p
->p_vaddr
= lp
->p_vaddr
;
4280 p
->p_paddr
= lp
->p_paddr
;
4281 p
->p_offset
= lp
->p_offset
;
4282 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4283 p
->p_memsz
= p
->p_filesz
;
4285 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4289 memset (p
, 0, sizeof *p
);
4290 p
->p_type
= PT_NULL
;
4296 /* Clear out any program headers we allocated but did not use. */
4297 for (; count
< alloc
; count
++, p
++)
4299 memset (p
, 0, sizeof *p
);
4300 p
->p_type
= PT_NULL
;
4303 elf_tdata (abfd
)->phdr
= phdrs
;
4305 elf_tdata (abfd
)->next_file_pos
= off
;
4307 /* Write out the program headers. */
4308 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4309 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4315 /* Get the size of the program header.
4317 If this is called by the linker before any of the section VMA's are set, it
4318 can't calculate the correct value for a strange memory layout. This only
4319 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4320 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4321 data segment (exclusive of .interp and .dynamic).
4323 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4324 will be two segments. */
4326 static bfd_size_type
4327 get_program_header_size (bfd
*abfd
)
4331 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4333 /* We can't return a different result each time we're called. */
4334 if (elf_tdata (abfd
)->program_header_size
!= 0)
4335 return elf_tdata (abfd
)->program_header_size
;
4337 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4339 struct elf_segment_map
*m
;
4342 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4344 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4345 return elf_tdata (abfd
)->program_header_size
;
4348 /* Assume we will need exactly two PT_LOAD segments: one for text
4349 and one for data. */
4352 s
= bfd_get_section_by_name (abfd
, ".interp");
4353 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4355 /* If we have a loadable interpreter section, we need a
4356 PT_INTERP segment. In this case, assume we also need a
4357 PT_PHDR segment, although that may not be true for all
4362 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4364 /* We need a PT_DYNAMIC segment. */
4368 if (elf_tdata (abfd
)->eh_frame_hdr
)
4370 /* We need a PT_GNU_EH_FRAME segment. */
4374 if (elf_tdata (abfd
)->stack_flags
)
4376 /* We need a PT_GNU_STACK segment. */
4380 if (elf_tdata (abfd
)->relro
)
4382 /* We need a PT_GNU_RELRO segment. */
4386 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4388 if ((s
->flags
& SEC_LOAD
) != 0
4389 && strncmp (s
->name
, ".note", 5) == 0)
4391 /* We need a PT_NOTE segment. */
4396 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4398 if (s
->flags
& SEC_THREAD_LOCAL
)
4400 /* We need a PT_TLS segment. */
4406 /* Let the backend count up any program headers it might need. */
4407 if (bed
->elf_backend_additional_program_headers
)
4411 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4417 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4418 return elf_tdata (abfd
)->program_header_size
;
4421 /* Work out the file positions of all the sections. This is called by
4422 _bfd_elf_compute_section_file_positions. All the section sizes and
4423 VMAs must be known before this is called.
4425 Reloc sections come in two flavours: Those processed specially as
4426 "side-channel" data attached to a section to which they apply, and
4427 those that bfd doesn't process as relocations. The latter sort are
4428 stored in a normal bfd section by bfd_section_from_shdr. We don't
4429 consider the former sort here, unless they form part of the loadable
4430 image. Reloc sections not assigned here will be handled later by
4431 assign_file_positions_for_relocs.
4433 We also don't set the positions of the .symtab and .strtab here. */
4436 assign_file_positions_except_relocs (bfd
*abfd
,
4437 struct bfd_link_info
*link_info
)
4439 struct elf_obj_tdata
* const tdata
= elf_tdata (abfd
);
4440 Elf_Internal_Ehdr
* const i_ehdrp
= elf_elfheader (abfd
);
4441 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4442 unsigned int num_sec
= elf_numsections (abfd
);
4444 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4446 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4447 && bfd_get_format (abfd
) != bfd_core
)
4449 Elf_Internal_Shdr
**hdrpp
;
4452 /* Start after the ELF header. */
4453 off
= i_ehdrp
->e_ehsize
;
4455 /* We are not creating an executable, which means that we are
4456 not creating a program header, and that the actual order of
4457 the sections in the file is unimportant. */
4458 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4460 Elf_Internal_Shdr
*hdr
;
4463 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4464 && hdr
->bfd_section
== NULL
)
4465 || i
== tdata
->symtab_section
4466 || i
== tdata
->symtab_shndx_section
4467 || i
== tdata
->strtab_section
)
4469 hdr
->sh_offset
= -1;
4472 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4474 if (i
== SHN_LORESERVE
- 1)
4476 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4477 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4484 Elf_Internal_Shdr
**hdrpp
;
4486 /* Assign file positions for the loaded sections based on the
4487 assignment of sections to segments. */
4488 if (! assign_file_positions_for_segments (abfd
, link_info
))
4491 /* Assign file positions for the other sections. */
4493 off
= elf_tdata (abfd
)->next_file_pos
;
4494 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4496 Elf_Internal_Shdr
*hdr
;
4499 if (hdr
->bfd_section
!= NULL
4500 && hdr
->bfd_section
->filepos
!= 0)
4501 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4502 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4504 ((*_bfd_error_handler
)
4505 (_("%B: warning: allocated section `%s' not in segment"),
4507 (hdr
->bfd_section
== NULL
4509 : hdr
->bfd_section
->name
)));
4510 if ((abfd
->flags
& D_PAGED
) != 0)
4511 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4514 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4516 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4519 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4520 && hdr
->bfd_section
== NULL
)
4521 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4522 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4523 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4524 hdr
->sh_offset
= -1;
4526 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4528 if (i
== SHN_LORESERVE
- 1)
4530 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4531 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4536 /* Place the section headers. */
4537 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4538 i_ehdrp
->e_shoff
= off
;
4539 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4541 elf_tdata (abfd
)->next_file_pos
= off
;
4547 prep_headers (bfd
*abfd
)
4549 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4550 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4551 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4552 struct elf_strtab_hash
*shstrtab
;
4553 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4555 i_ehdrp
= elf_elfheader (abfd
);
4556 i_shdrp
= elf_elfsections (abfd
);
4558 shstrtab
= _bfd_elf_strtab_init ();
4559 if (shstrtab
== NULL
)
4562 elf_shstrtab (abfd
) = shstrtab
;
4564 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4565 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4566 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4567 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4569 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4570 i_ehdrp
->e_ident
[EI_DATA
] =
4571 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4572 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4574 if ((abfd
->flags
& DYNAMIC
) != 0)
4575 i_ehdrp
->e_type
= ET_DYN
;
4576 else if ((abfd
->flags
& EXEC_P
) != 0)
4577 i_ehdrp
->e_type
= ET_EXEC
;
4578 else if (bfd_get_format (abfd
) == bfd_core
)
4579 i_ehdrp
->e_type
= ET_CORE
;
4581 i_ehdrp
->e_type
= ET_REL
;
4583 switch (bfd_get_arch (abfd
))
4585 case bfd_arch_unknown
:
4586 i_ehdrp
->e_machine
= EM_NONE
;
4589 /* There used to be a long list of cases here, each one setting
4590 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4591 in the corresponding bfd definition. To avoid duplication,
4592 the switch was removed. Machines that need special handling
4593 can generally do it in elf_backend_final_write_processing(),
4594 unless they need the information earlier than the final write.
4595 Such need can generally be supplied by replacing the tests for
4596 e_machine with the conditions used to determine it. */
4598 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4601 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4602 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4604 /* No program header, for now. */
4605 i_ehdrp
->e_phoff
= 0;
4606 i_ehdrp
->e_phentsize
= 0;
4607 i_ehdrp
->e_phnum
= 0;
4609 /* Each bfd section is section header entry. */
4610 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4611 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4613 /* If we're building an executable, we'll need a program header table. */
4614 if (abfd
->flags
& EXEC_P
)
4616 /* It all happens later. */
4618 i_ehdrp
->e_phentsize
= sizeof (Elf_External_Phdr
);
4620 /* elf_build_phdrs() returns a (NULL-terminated) array of
4621 Elf_Internal_Phdrs. */
4622 i_phdrp
= elf_build_phdrs (abfd
, i_ehdrp
, i_shdrp
, &i_ehdrp
->e_phnum
);
4623 i_ehdrp
->e_phoff
= outbase
;
4624 outbase
+= i_ehdrp
->e_phentsize
* i_ehdrp
->e_phnum
;
4629 i_ehdrp
->e_phentsize
= 0;
4631 i_ehdrp
->e_phoff
= 0;
4634 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4635 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4636 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4637 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4638 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4639 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4640 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4641 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4642 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4648 /* Assign file positions for all the reloc sections which are not part
4649 of the loadable file image. */
4652 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4655 unsigned int i
, num_sec
;
4656 Elf_Internal_Shdr
**shdrpp
;
4658 off
= elf_tdata (abfd
)->next_file_pos
;
4660 num_sec
= elf_numsections (abfd
);
4661 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4663 Elf_Internal_Shdr
*shdrp
;
4666 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4667 && shdrp
->sh_offset
== -1)
4668 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4671 elf_tdata (abfd
)->next_file_pos
= off
;
4675 _bfd_elf_write_object_contents (bfd
*abfd
)
4677 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4678 Elf_Internal_Ehdr
*i_ehdrp
;
4679 Elf_Internal_Shdr
**i_shdrp
;
4681 unsigned int count
, num_sec
;
4683 if (! abfd
->output_has_begun
4684 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4687 i_shdrp
= elf_elfsections (abfd
);
4688 i_ehdrp
= elf_elfheader (abfd
);
4691 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4695 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4697 /* After writing the headers, we need to write the sections too... */
4698 num_sec
= elf_numsections (abfd
);
4699 for (count
= 1; count
< num_sec
; count
++)
4701 if (bed
->elf_backend_section_processing
)
4702 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4703 if (i_shdrp
[count
]->contents
)
4705 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4707 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4708 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4711 if (count
== SHN_LORESERVE
- 1)
4712 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4715 /* Write out the section header names. */
4716 if (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4717 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
)))
4720 if (bed
->elf_backend_final_write_processing
)
4721 (*bed
->elf_backend_final_write_processing
) (abfd
,
4722 elf_tdata (abfd
)->linker
);
4724 return bed
->s
->write_shdrs_and_ehdr (abfd
);
4728 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4730 /* Hopefully this can be done just like an object file. */
4731 return _bfd_elf_write_object_contents (abfd
);
4734 /* Given a section, search the header to find them. */
4737 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
4739 const struct elf_backend_data
*bed
;
4742 if (elf_section_data (asect
) != NULL
4743 && elf_section_data (asect
)->this_idx
!= 0)
4744 return elf_section_data (asect
)->this_idx
;
4746 if (bfd_is_abs_section (asect
))
4748 else if (bfd_is_com_section (asect
))
4750 else if (bfd_is_und_section (asect
))
4754 Elf_Internal_Shdr
**i_shdrp
= elf_elfsections (abfd
);
4755 int maxindex
= elf_numsections (abfd
);
4757 for (index
= 1; index
< maxindex
; index
++)
4759 Elf_Internal_Shdr
*hdr
= i_shdrp
[index
];
4761 if (hdr
!= NULL
&& hdr
->bfd_section
== asect
)
4767 bed
= get_elf_backend_data (abfd
);
4768 if (bed
->elf_backend_section_from_bfd_section
)
4772 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
4777 bfd_set_error (bfd_error_nonrepresentable_section
);
4782 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4786 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
4788 asymbol
*asym_ptr
= *asym_ptr_ptr
;
4790 flagword flags
= asym_ptr
->flags
;
4792 /* When gas creates relocations against local labels, it creates its
4793 own symbol for the section, but does put the symbol into the
4794 symbol chain, so udata is 0. When the linker is generating
4795 relocatable output, this section symbol may be for one of the
4796 input sections rather than the output section. */
4797 if (asym_ptr
->udata
.i
== 0
4798 && (flags
& BSF_SECTION_SYM
)
4799 && asym_ptr
->section
)
4803 if (asym_ptr
->section
->output_section
!= NULL
)
4804 indx
= asym_ptr
->section
->output_section
->index
;
4806 indx
= asym_ptr
->section
->index
;
4807 if (indx
< elf_num_section_syms (abfd
)
4808 && elf_section_syms (abfd
)[indx
] != NULL
)
4809 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
4812 idx
= asym_ptr
->udata
.i
;
4816 /* This case can occur when using --strip-symbol on a symbol
4817 which is used in a relocation entry. */
4818 (*_bfd_error_handler
)
4819 (_("%B: symbol `%s' required but not present"),
4820 abfd
, bfd_asymbol_name (asym_ptr
));
4821 bfd_set_error (bfd_error_no_symbols
);
4828 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4829 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
4830 elf_symbol_flags (flags
));
4838 /* Copy private BFD data. This copies any program header information. */
4841 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
4843 Elf_Internal_Ehdr
*iehdr
;
4844 struct elf_segment_map
*map
;
4845 struct elf_segment_map
*map_first
;
4846 struct elf_segment_map
**pointer_to_map
;
4847 Elf_Internal_Phdr
*segment
;
4850 unsigned int num_segments
;
4851 bfd_boolean phdr_included
= FALSE
;
4852 bfd_vma maxpagesize
;
4853 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
4854 unsigned int phdr_adjust_num
= 0;
4855 const struct elf_backend_data
*bed
;
4857 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
4858 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
4861 if (elf_tdata (ibfd
)->phdr
== NULL
)
4864 bed
= get_elf_backend_data (ibfd
);
4865 iehdr
= elf_elfheader (ibfd
);
4868 pointer_to_map
= &map_first
;
4870 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
4871 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
4873 /* Returns the end address of the segment + 1. */
4874 #define SEGMENT_END(segment, start) \
4875 (start + (segment->p_memsz > segment->p_filesz \
4876 ? segment->p_memsz : segment->p_filesz))
4878 #define SECTION_SIZE(section, segment) \
4879 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4880 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4881 ? section->size : 0)
4883 /* Returns TRUE if the given section is contained within
4884 the given segment. VMA addresses are compared. */
4885 #define IS_CONTAINED_BY_VMA(section, segment) \
4886 (section->vma >= segment->p_vaddr \
4887 && (section->vma + SECTION_SIZE (section, segment) \
4888 <= (SEGMENT_END (segment, segment->p_vaddr))))
4890 /* Returns TRUE if the given section is contained within
4891 the given segment. LMA addresses are compared. */
4892 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4893 (section->lma >= base \
4894 && (section->lma + SECTION_SIZE (section, segment) \
4895 <= SEGMENT_END (segment, base)))
4897 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4898 #define IS_COREFILE_NOTE(p, s) \
4899 (p->p_type == PT_NOTE \
4900 && bfd_get_format (ibfd) == bfd_core \
4901 && s->vma == 0 && s->lma == 0 \
4902 && (bfd_vma) s->filepos >= p->p_offset \
4903 && ((bfd_vma) s->filepos + s->size \
4904 <= p->p_offset + p->p_filesz))
4906 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4907 linker, which generates a PT_INTERP section with p_vaddr and
4908 p_memsz set to 0. */
4909 #define IS_SOLARIS_PT_INTERP(p, s) \
4911 && p->p_paddr == 0 \
4912 && p->p_memsz == 0 \
4913 && p->p_filesz > 0 \
4914 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4916 && (bfd_vma) s->filepos >= p->p_offset \
4917 && ((bfd_vma) s->filepos + s->size \
4918 <= p->p_offset + p->p_filesz))
4920 /* Decide if the given section should be included in the given segment.
4921 A section will be included if:
4922 1. It is within the address space of the segment -- we use the LMA
4923 if that is set for the segment and the VMA otherwise,
4924 2. It is an allocated segment,
4925 3. There is an output section associated with it,
4926 4. The section has not already been allocated to a previous segment.
4927 5. PT_GNU_STACK segments do not include any sections.
4928 6. PT_TLS segment includes only SHF_TLS sections.
4929 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4930 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4931 ((((segment->p_paddr \
4932 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4933 : IS_CONTAINED_BY_VMA (section, segment)) \
4934 && (section->flags & SEC_ALLOC) != 0) \
4935 || IS_COREFILE_NOTE (segment, section)) \
4936 && section->output_section != NULL \
4937 && segment->p_type != PT_GNU_STACK \
4938 && (segment->p_type != PT_TLS \
4939 || (section->flags & SEC_THREAD_LOCAL)) \
4940 && (segment->p_type == PT_LOAD \
4941 || segment->p_type == PT_TLS \
4942 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4943 && ! section->segment_mark)
4945 /* Returns TRUE iff seg1 starts after the end of seg2. */
4946 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4947 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4949 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4950 their VMA address ranges and their LMA address ranges overlap.
4951 It is possible to have overlapping VMA ranges without overlapping LMA
4952 ranges. RedBoot images for example can have both .data and .bss mapped
4953 to the same VMA range, but with the .data section mapped to a different
4955 #define SEGMENT_OVERLAPS(seg1, seg2) \
4956 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4957 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4958 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4959 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4961 /* Initialise the segment mark field. */
4962 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
4963 section
->segment_mark
= FALSE
;
4965 /* Scan through the segments specified in the program header
4966 of the input BFD. For this first scan we look for overlaps
4967 in the loadable segments. These can be created by weird
4968 parameters to objcopy. Also, fix some solaris weirdness. */
4969 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
4974 Elf_Internal_Phdr
*segment2
;
4976 if (segment
->p_type
== PT_INTERP
)
4977 for (section
= ibfd
->sections
; section
; section
= section
->next
)
4978 if (IS_SOLARIS_PT_INTERP (segment
, section
))
4980 /* Mininal change so that the normal section to segment
4981 assignment code will work. */
4982 segment
->p_vaddr
= section
->vma
;
4986 if (segment
->p_type
!= PT_LOAD
)
4989 /* Determine if this segment overlaps any previous segments. */
4990 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
4992 bfd_signed_vma extra_length
;
4994 if (segment2
->p_type
!= PT_LOAD
4995 || ! SEGMENT_OVERLAPS (segment
, segment2
))
4998 /* Merge the two segments together. */
4999 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5001 /* Extend SEGMENT2 to include SEGMENT and then delete
5004 SEGMENT_END (segment
, segment
->p_vaddr
)
5005 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5007 if (extra_length
> 0)
5009 segment2
->p_memsz
+= extra_length
;
5010 segment2
->p_filesz
+= extra_length
;
5013 segment
->p_type
= PT_NULL
;
5015 /* Since we have deleted P we must restart the outer loop. */
5017 segment
= elf_tdata (ibfd
)->phdr
;
5022 /* Extend SEGMENT to include SEGMENT2 and then delete
5025 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5026 - SEGMENT_END (segment
, segment
->p_vaddr
);
5028 if (extra_length
> 0)
5030 segment
->p_memsz
+= extra_length
;
5031 segment
->p_filesz
+= extra_length
;
5034 segment2
->p_type
= PT_NULL
;
5039 /* The second scan attempts to assign sections to segments. */
5040 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5044 unsigned int section_count
;
5045 asection
** sections
;
5046 asection
* output_section
;
5048 bfd_vma matching_lma
;
5049 bfd_vma suggested_lma
;
5053 if (segment
->p_type
== PT_NULL
)
5056 /* Compute how many sections might be placed into this segment. */
5057 for (section
= ibfd
->sections
, section_count
= 0;
5059 section
= section
->next
)
5060 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5063 /* Allocate a segment map big enough to contain
5064 all of the sections we have selected. */
5065 amt
= sizeof (struct elf_segment_map
);
5066 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5067 map
= bfd_alloc (obfd
, amt
);
5071 /* Initialise the fields of the segment map. Default to
5072 using the physical address of the segment in the input BFD. */
5074 map
->p_type
= segment
->p_type
;
5075 map
->p_flags
= segment
->p_flags
;
5076 map
->p_flags_valid
= 1;
5077 map
->p_paddr
= segment
->p_paddr
;
5078 map
->p_paddr_valid
= 1;
5080 /* Determine if this segment contains the ELF file header
5081 and if it contains the program headers themselves. */
5082 map
->includes_filehdr
= (segment
->p_offset
== 0
5083 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5085 map
->includes_phdrs
= 0;
5087 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5089 map
->includes_phdrs
=
5090 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5091 && (segment
->p_offset
+ segment
->p_filesz
5092 >= ((bfd_vma
) iehdr
->e_phoff
5093 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5095 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5096 phdr_included
= TRUE
;
5099 if (section_count
== 0)
5101 /* Special segments, such as the PT_PHDR segment, may contain
5102 no sections, but ordinary, loadable segments should contain
5103 something. They are allowed by the ELF spec however, so only
5104 a warning is produced. */
5105 if (segment
->p_type
== PT_LOAD
)
5106 (*_bfd_error_handler
)
5107 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5111 *pointer_to_map
= map
;
5112 pointer_to_map
= &map
->next
;
5117 /* Now scan the sections in the input BFD again and attempt
5118 to add their corresponding output sections to the segment map.
5119 The problem here is how to handle an output section which has
5120 been moved (ie had its LMA changed). There are four possibilities:
5122 1. None of the sections have been moved.
5123 In this case we can continue to use the segment LMA from the
5126 2. All of the sections have been moved by the same amount.
5127 In this case we can change the segment's LMA to match the LMA
5128 of the first section.
5130 3. Some of the sections have been moved, others have not.
5131 In this case those sections which have not been moved can be
5132 placed in the current segment which will have to have its size,
5133 and possibly its LMA changed, and a new segment or segments will
5134 have to be created to contain the other sections.
5136 4. The sections have been moved, but not by the same amount.
5137 In this case we can change the segment's LMA to match the LMA
5138 of the first section and we will have to create a new segment
5139 or segments to contain the other sections.
5141 In order to save time, we allocate an array to hold the section
5142 pointers that we are interested in. As these sections get assigned
5143 to a segment, they are removed from this array. */
5145 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5146 to work around this long long bug. */
5147 amt
= section_count
* sizeof (asection
*);
5148 sections
= bfd_malloc (amt
);
5149 if (sections
== NULL
)
5152 /* Step One: Scan for segment vs section LMA conflicts.
5153 Also add the sections to the section array allocated above.
5154 Also add the sections to the current segment. In the common
5155 case, where the sections have not been moved, this means that
5156 we have completely filled the segment, and there is nothing
5162 for (j
= 0, section
= ibfd
->sections
;
5164 section
= section
->next
)
5166 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5168 output_section
= section
->output_section
;
5170 sections
[j
++] = section
;
5172 /* The Solaris native linker always sets p_paddr to 0.
5173 We try to catch that case here, and set it to the
5174 correct value. Note - some backends require that
5175 p_paddr be left as zero. */
5176 if (segment
->p_paddr
== 0
5177 && segment
->p_vaddr
!= 0
5178 && (! bed
->want_p_paddr_set_to_zero
)
5180 && output_section
->lma
!= 0
5181 && (output_section
->vma
== (segment
->p_vaddr
5182 + (map
->includes_filehdr
5185 + (map
->includes_phdrs
5187 * iehdr
->e_phentsize
)
5189 map
->p_paddr
= segment
->p_vaddr
;
5191 /* Match up the physical address of the segment with the
5192 LMA address of the output section. */
5193 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5194 || IS_COREFILE_NOTE (segment
, section
)
5195 || (bed
->want_p_paddr_set_to_zero
&&
5196 IS_CONTAINED_BY_VMA (output_section
, segment
))
5199 if (matching_lma
== 0)
5200 matching_lma
= output_section
->lma
;
5202 /* We assume that if the section fits within the segment
5203 then it does not overlap any other section within that
5205 map
->sections
[isec
++] = output_section
;
5207 else if (suggested_lma
== 0)
5208 suggested_lma
= output_section
->lma
;
5212 BFD_ASSERT (j
== section_count
);
5214 /* Step Two: Adjust the physical address of the current segment,
5216 if (isec
== section_count
)
5218 /* All of the sections fitted within the segment as currently
5219 specified. This is the default case. Add the segment to
5220 the list of built segments and carry on to process the next
5221 program header in the input BFD. */
5222 map
->count
= section_count
;
5223 *pointer_to_map
= map
;
5224 pointer_to_map
= &map
->next
;
5231 if (matching_lma
!= 0)
5233 /* At least one section fits inside the current segment.
5234 Keep it, but modify its physical address to match the
5235 LMA of the first section that fitted. */
5236 map
->p_paddr
= matching_lma
;
5240 /* None of the sections fitted inside the current segment.
5241 Change the current segment's physical address to match
5242 the LMA of the first section. */
5243 map
->p_paddr
= suggested_lma
;
5246 /* Offset the segment physical address from the lma
5247 to allow for space taken up by elf headers. */
5248 if (map
->includes_filehdr
)
5249 map
->p_paddr
-= iehdr
->e_ehsize
;
5251 if (map
->includes_phdrs
)
5253 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5255 /* iehdr->e_phnum is just an estimate of the number
5256 of program headers that we will need. Make a note
5257 here of the number we used and the segment we chose
5258 to hold these headers, so that we can adjust the
5259 offset when we know the correct value. */
5260 phdr_adjust_num
= iehdr
->e_phnum
;
5261 phdr_adjust_seg
= map
;
5265 /* Step Three: Loop over the sections again, this time assigning
5266 those that fit to the current segment and removing them from the
5267 sections array; but making sure not to leave large gaps. Once all
5268 possible sections have been assigned to the current segment it is
5269 added to the list of built segments and if sections still remain
5270 to be assigned, a new segment is constructed before repeating
5278 /* Fill the current segment with sections that fit. */
5279 for (j
= 0; j
< section_count
; j
++)
5281 section
= sections
[j
];
5283 if (section
== NULL
)
5286 output_section
= section
->output_section
;
5288 BFD_ASSERT (output_section
!= NULL
);
5290 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5291 || IS_COREFILE_NOTE (segment
, section
))
5293 if (map
->count
== 0)
5295 /* If the first section in a segment does not start at
5296 the beginning of the segment, then something is
5298 if (output_section
->lma
!=
5300 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5301 + (map
->includes_phdrs
5302 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5308 asection
* prev_sec
;
5310 prev_sec
= map
->sections
[map
->count
- 1];
5312 /* If the gap between the end of the previous section
5313 and the start of this section is more than
5314 maxpagesize then we need to start a new segment. */
5315 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5317 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5318 || ((prev_sec
->lma
+ prev_sec
->size
)
5319 > output_section
->lma
))
5321 if (suggested_lma
== 0)
5322 suggested_lma
= output_section
->lma
;
5328 map
->sections
[map
->count
++] = output_section
;
5331 section
->segment_mark
= TRUE
;
5333 else if (suggested_lma
== 0)
5334 suggested_lma
= output_section
->lma
;
5337 BFD_ASSERT (map
->count
> 0);
5339 /* Add the current segment to the list of built segments. */
5340 *pointer_to_map
= map
;
5341 pointer_to_map
= &map
->next
;
5343 if (isec
< section_count
)
5345 /* We still have not allocated all of the sections to
5346 segments. Create a new segment here, initialise it
5347 and carry on looping. */
5348 amt
= sizeof (struct elf_segment_map
);
5349 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5350 map
= bfd_alloc (obfd
, amt
);
5357 /* Initialise the fields of the segment map. Set the physical
5358 physical address to the LMA of the first section that has
5359 not yet been assigned. */
5361 map
->p_type
= segment
->p_type
;
5362 map
->p_flags
= segment
->p_flags
;
5363 map
->p_flags_valid
= 1;
5364 map
->p_paddr
= suggested_lma
;
5365 map
->p_paddr_valid
= 1;
5366 map
->includes_filehdr
= 0;
5367 map
->includes_phdrs
= 0;
5370 while (isec
< section_count
);
5375 /* The Solaris linker creates program headers in which all the
5376 p_paddr fields are zero. When we try to objcopy or strip such a
5377 file, we get confused. Check for this case, and if we find it
5378 reset the p_paddr_valid fields. */
5379 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5380 if (map
->p_paddr
!= 0)
5383 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5384 map
->p_paddr_valid
= 0;
5386 elf_tdata (obfd
)->segment_map
= map_first
;
5388 /* If we had to estimate the number of program headers that were
5389 going to be needed, then check our estimate now and adjust
5390 the offset if necessary. */
5391 if (phdr_adjust_seg
!= NULL
)
5395 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5398 if (count
> phdr_adjust_num
)
5399 phdr_adjust_seg
->p_paddr
5400 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5404 /* Final Step: Sort the segments into ascending order of physical
5406 if (map_first
!= NULL
)
5408 struct elf_segment_map
*prev
;
5411 for (map
= map_first
->next
; map
!= NULL
; prev
= map
, map
= map
->next
)
5413 /* Yes I know - its a bubble sort.... */
5414 if (map
->next
!= NULL
&& (map
->next
->p_paddr
< map
->p_paddr
))
5416 /* Swap map and map->next. */
5417 prev
->next
= map
->next
;
5418 map
->next
= map
->next
->next
;
5419 prev
->next
->next
= map
;
5430 #undef IS_CONTAINED_BY_VMA
5431 #undef IS_CONTAINED_BY_LMA
5432 #undef IS_COREFILE_NOTE
5433 #undef IS_SOLARIS_PT_INTERP
5434 #undef INCLUDE_SECTION_IN_SEGMENT
5435 #undef SEGMENT_AFTER_SEGMENT
5436 #undef SEGMENT_OVERLAPS
5440 /* Copy private section information. This copies over the entsize
5441 field, and sometimes the info field. */
5444 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5449 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5451 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5452 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5455 ihdr
= &elf_section_data (isec
)->this_hdr
;
5456 ohdr
= &elf_section_data (osec
)->this_hdr
;
5458 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5460 if (ihdr
->sh_type
== SHT_SYMTAB
5461 || ihdr
->sh_type
== SHT_DYNSYM
5462 || ihdr
->sh_type
== SHT_GNU_verneed
5463 || ihdr
->sh_type
== SHT_GNU_verdef
)
5464 ohdr
->sh_info
= ihdr
->sh_info
;
5466 /* Set things up for objcopy. The output SHT_GROUP section will
5467 have its elf_next_in_group pointing back to the input group
5469 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5470 elf_group_name (osec
) = elf_group_name (isec
);
5472 osec
->use_rela_p
= isec
->use_rela_p
;
5477 /* Copy private header information. */
5480 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
5482 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5483 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5486 /* Copy over private BFD data if it has not already been copied.
5487 This must be done here, rather than in the copy_private_bfd_data
5488 entry point, because the latter is called after the section
5489 contents have been set, which means that the program headers have
5490 already been worked out. */
5491 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5493 if (! copy_private_bfd_data (ibfd
, obfd
))
5500 /* Copy private symbol information. If this symbol is in a section
5501 which we did not map into a BFD section, try to map the section
5502 index correctly. We use special macro definitions for the mapped
5503 section indices; these definitions are interpreted by the
5504 swap_out_syms function. */
5506 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5507 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5508 #define MAP_STRTAB (SHN_HIOS + 3)
5509 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5510 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5513 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
5518 elf_symbol_type
*isym
, *osym
;
5520 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5521 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5524 isym
= elf_symbol_from (ibfd
, isymarg
);
5525 osym
= elf_symbol_from (obfd
, osymarg
);
5529 && bfd_is_abs_section (isym
->symbol
.section
))
5533 shndx
= isym
->internal_elf_sym
.st_shndx
;
5534 if (shndx
== elf_onesymtab (ibfd
))
5535 shndx
= MAP_ONESYMTAB
;
5536 else if (shndx
== elf_dynsymtab (ibfd
))
5537 shndx
= MAP_DYNSYMTAB
;
5538 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
5540 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
5541 shndx
= MAP_SHSTRTAB
;
5542 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
5543 shndx
= MAP_SYM_SHNDX
;
5544 osym
->internal_elf_sym
.st_shndx
= shndx
;
5550 /* Swap out the symbols. */
5553 swap_out_syms (bfd
*abfd
,
5554 struct bfd_strtab_hash
**sttp
,
5557 const struct elf_backend_data
*bed
;
5560 struct bfd_strtab_hash
*stt
;
5561 Elf_Internal_Shdr
*symtab_hdr
;
5562 Elf_Internal_Shdr
*symtab_shndx_hdr
;
5563 Elf_Internal_Shdr
*symstrtab_hdr
;
5564 char *outbound_syms
;
5565 char *outbound_shndx
;
5568 bfd_boolean name_local_sections
;
5570 if (!elf_map_symbols (abfd
))
5573 /* Dump out the symtabs. */
5574 stt
= _bfd_elf_stringtab_init ();
5578 bed
= get_elf_backend_data (abfd
);
5579 symcount
= bfd_get_symcount (abfd
);
5580 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5581 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5582 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
5583 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
5584 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
5585 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
5587 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5588 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5590 amt
= (bfd_size_type
) (1 + symcount
) * bed
->s
->sizeof_sym
;
5591 outbound_syms
= bfd_alloc (abfd
, amt
);
5592 if (outbound_syms
== NULL
)
5594 _bfd_stringtab_free (stt
);
5597 symtab_hdr
->contents
= outbound_syms
;
5599 outbound_shndx
= NULL
;
5600 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
5601 if (symtab_shndx_hdr
->sh_name
!= 0)
5603 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
5604 outbound_shndx
= bfd_zalloc (abfd
, amt
);
5605 if (outbound_shndx
== NULL
)
5607 _bfd_stringtab_free (stt
);
5611 symtab_shndx_hdr
->contents
= outbound_shndx
;
5612 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
5613 symtab_shndx_hdr
->sh_size
= amt
;
5614 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
5615 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
5618 /* Now generate the data (for "contents"). */
5620 /* Fill in zeroth symbol and swap it out. */
5621 Elf_Internal_Sym sym
;
5627 sym
.st_shndx
= SHN_UNDEF
;
5628 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5629 outbound_syms
+= bed
->s
->sizeof_sym
;
5630 if (outbound_shndx
!= NULL
)
5631 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5635 = (bed
->elf_backend_name_local_section_symbols
5636 && bed
->elf_backend_name_local_section_symbols (abfd
));
5638 syms
= bfd_get_outsymbols (abfd
);
5639 for (idx
= 0; idx
< symcount
; idx
++)
5641 Elf_Internal_Sym sym
;
5642 bfd_vma value
= syms
[idx
]->value
;
5643 elf_symbol_type
*type_ptr
;
5644 flagword flags
= syms
[idx
]->flags
;
5647 if (!name_local_sections
5648 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
5650 /* Local section symbols have no name. */
5655 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
5658 if (sym
.st_name
== (unsigned long) -1)
5660 _bfd_stringtab_free (stt
);
5665 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
5667 if ((flags
& BSF_SECTION_SYM
) == 0
5668 && bfd_is_com_section (syms
[idx
]->section
))
5670 /* ELF common symbols put the alignment into the `value' field,
5671 and the size into the `size' field. This is backwards from
5672 how BFD handles it, so reverse it here. */
5673 sym
.st_size
= value
;
5674 if (type_ptr
== NULL
5675 || type_ptr
->internal_elf_sym
.st_value
== 0)
5676 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
5678 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
5679 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
5680 (abfd
, syms
[idx
]->section
);
5684 asection
*sec
= syms
[idx
]->section
;
5687 if (sec
->output_section
)
5689 value
+= sec
->output_offset
;
5690 sec
= sec
->output_section
;
5693 /* Don't add in the section vma for relocatable output. */
5694 if (! relocatable_p
)
5696 sym
.st_value
= value
;
5697 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
5699 if (bfd_is_abs_section (sec
)
5701 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
5703 /* This symbol is in a real ELF section which we did
5704 not create as a BFD section. Undo the mapping done
5705 by copy_private_symbol_data. */
5706 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
5710 shndx
= elf_onesymtab (abfd
);
5713 shndx
= elf_dynsymtab (abfd
);
5716 shndx
= elf_tdata (abfd
)->strtab_section
;
5719 shndx
= elf_tdata (abfd
)->shstrtab_section
;
5722 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
5730 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
5736 /* Writing this would be a hell of a lot easier if
5737 we had some decent documentation on bfd, and
5738 knew what to expect of the library, and what to
5739 demand of applications. For example, it
5740 appears that `objcopy' might not set the
5741 section of a symbol to be a section that is
5742 actually in the output file. */
5743 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
5746 _bfd_error_handler (_("\
5747 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5748 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
5750 bfd_set_error (bfd_error_invalid_operation
);
5751 _bfd_stringtab_free (stt
);
5755 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
5756 BFD_ASSERT (shndx
!= -1);
5760 sym
.st_shndx
= shndx
;
5763 if ((flags
& BSF_THREAD_LOCAL
) != 0)
5765 else if ((flags
& BSF_FUNCTION
) != 0)
5767 else if ((flags
& BSF_OBJECT
) != 0)
5772 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
5775 /* Processor-specific types. */
5776 if (type_ptr
!= NULL
5777 && bed
->elf_backend_get_symbol_type
)
5778 type
= ((*bed
->elf_backend_get_symbol_type
)
5779 (&type_ptr
->internal_elf_sym
, type
));
5781 if (flags
& BSF_SECTION_SYM
)
5783 if (flags
& BSF_GLOBAL
)
5784 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5786 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5788 else if (bfd_is_com_section (syms
[idx
]->section
))
5789 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
5790 else if (bfd_is_und_section (syms
[idx
]->section
))
5791 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
5795 else if (flags
& BSF_FILE
)
5796 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
5799 int bind
= STB_LOCAL
;
5801 if (flags
& BSF_LOCAL
)
5803 else if (flags
& BSF_WEAK
)
5805 else if (flags
& BSF_GLOBAL
)
5808 sym
.st_info
= ELF_ST_INFO (bind
, type
);
5811 if (type_ptr
!= NULL
)
5812 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
5816 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5817 outbound_syms
+= bed
->s
->sizeof_sym
;
5818 if (outbound_shndx
!= NULL
)
5819 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5823 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
5824 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5826 symstrtab_hdr
->sh_flags
= 0;
5827 symstrtab_hdr
->sh_addr
= 0;
5828 symstrtab_hdr
->sh_entsize
= 0;
5829 symstrtab_hdr
->sh_link
= 0;
5830 symstrtab_hdr
->sh_info
= 0;
5831 symstrtab_hdr
->sh_addralign
= 1;
5836 /* Return the number of bytes required to hold the symtab vector.
5838 Note that we base it on the count plus 1, since we will null terminate
5839 the vector allocated based on this size. However, the ELF symbol table
5840 always has a dummy entry as symbol #0, so it ends up even. */
5843 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
5847 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5849 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5850 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5852 symtab_size
-= sizeof (asymbol
*);
5858 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
5862 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
5864 if (elf_dynsymtab (abfd
) == 0)
5866 bfd_set_error (bfd_error_invalid_operation
);
5870 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5871 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5873 symtab_size
-= sizeof (asymbol
*);
5879 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
5882 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
5885 /* Canonicalize the relocs. */
5888 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
5895 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5897 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
5900 tblptr
= section
->relocation
;
5901 for (i
= 0; i
< section
->reloc_count
; i
++)
5902 *relptr
++ = tblptr
++;
5906 return section
->reloc_count
;
5910 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
5912 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5913 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
5916 bfd_get_symcount (abfd
) = symcount
;
5921 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
5922 asymbol
**allocation
)
5924 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5925 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
5928 bfd_get_dynamic_symcount (abfd
) = symcount
;
5932 /* Return the size required for the dynamic reloc entries. Any
5933 section that was actually installed in the BFD, and has type
5934 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5935 considered to be a dynamic reloc section. */
5938 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
5943 if (elf_dynsymtab (abfd
) == 0)
5945 bfd_set_error (bfd_error_invalid_operation
);
5949 ret
= sizeof (arelent
*);
5950 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5951 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
5952 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
5953 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
5954 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
5955 * sizeof (arelent
*));
5960 /* Canonicalize the dynamic relocation entries. Note that we return
5961 the dynamic relocations as a single block, although they are
5962 actually associated with particular sections; the interface, which
5963 was designed for SunOS style shared libraries, expects that there
5964 is only one set of dynamic relocs. Any section that was actually
5965 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5966 the dynamic symbol table, is considered to be a dynamic reloc
5970 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
5974 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
5978 if (elf_dynsymtab (abfd
) == 0)
5980 bfd_set_error (bfd_error_invalid_operation
);
5984 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
5986 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5988 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
5989 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
5990 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
5995 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
5997 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
5999 for (i
= 0; i
< count
; i
++)
6010 /* Read in the version information. */
6013 _bfd_elf_slurp_version_tables (bfd
*abfd
)
6015 bfd_byte
*contents
= NULL
;
6018 if (elf_dynverdef (abfd
) != 0)
6020 Elf_Internal_Shdr
*hdr
;
6021 Elf_External_Verdef
*everdef
;
6022 Elf_Internal_Verdef
*iverdef
;
6023 Elf_Internal_Verdef
*iverdefarr
;
6024 Elf_Internal_Verdef iverdefmem
;
6026 unsigned int maxidx
;
6028 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6030 contents
= bfd_malloc (hdr
->sh_size
);
6031 if (contents
== NULL
)
6033 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6034 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6037 /* We know the number of entries in the section but not the maximum
6038 index. Therefore we have to run through all entries and find
6040 everdef
= (Elf_External_Verdef
*) contents
;
6042 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6044 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6046 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6047 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6049 everdef
= ((Elf_External_Verdef
*)
6050 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6053 amt
= (bfd_size_type
) maxidx
* sizeof (Elf_Internal_Verdef
);
6054 elf_tdata (abfd
)->verdef
= bfd_zalloc (abfd
, amt
);
6055 if (elf_tdata (abfd
)->verdef
== NULL
)
6058 elf_tdata (abfd
)->cverdefs
= maxidx
;
6060 everdef
= (Elf_External_Verdef
*) contents
;
6061 iverdefarr
= elf_tdata (abfd
)->verdef
;
6062 for (i
= 0; i
< hdr
->sh_info
; i
++)
6064 Elf_External_Verdaux
*everdaux
;
6065 Elf_Internal_Verdaux
*iverdaux
;
6068 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6070 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6071 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6073 iverdef
->vd_bfd
= abfd
;
6075 amt
= (bfd_size_type
) iverdef
->vd_cnt
* sizeof (Elf_Internal_Verdaux
);
6076 iverdef
->vd_auxptr
= bfd_alloc (abfd
, amt
);
6077 if (iverdef
->vd_auxptr
== NULL
)
6080 everdaux
= ((Elf_External_Verdaux
*)
6081 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6082 iverdaux
= iverdef
->vd_auxptr
;
6083 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6085 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6087 iverdaux
->vda_nodename
=
6088 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6089 iverdaux
->vda_name
);
6090 if (iverdaux
->vda_nodename
== NULL
)
6093 if (j
+ 1 < iverdef
->vd_cnt
)
6094 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6096 iverdaux
->vda_nextptr
= NULL
;
6098 everdaux
= ((Elf_External_Verdaux
*)
6099 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6102 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6104 if (i
+ 1 < hdr
->sh_info
)
6105 iverdef
->vd_nextdef
= iverdef
+ 1;
6107 iverdef
->vd_nextdef
= NULL
;
6109 everdef
= ((Elf_External_Verdef
*)
6110 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6117 if (elf_dynverref (abfd
) != 0)
6119 Elf_Internal_Shdr
*hdr
;
6120 Elf_External_Verneed
*everneed
;
6121 Elf_Internal_Verneed
*iverneed
;
6124 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6126 amt
= (bfd_size_type
) hdr
->sh_info
* sizeof (Elf_Internal_Verneed
);
6127 elf_tdata (abfd
)->verref
= bfd_zalloc (abfd
, amt
);
6128 if (elf_tdata (abfd
)->verref
== NULL
)
6131 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6133 contents
= bfd_malloc (hdr
->sh_size
);
6134 if (contents
== NULL
)
6136 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6137 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6140 everneed
= (Elf_External_Verneed
*) contents
;
6141 iverneed
= elf_tdata (abfd
)->verref
;
6142 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6144 Elf_External_Vernaux
*evernaux
;
6145 Elf_Internal_Vernaux
*ivernaux
;
6148 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6150 iverneed
->vn_bfd
= abfd
;
6152 iverneed
->vn_filename
=
6153 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6155 if (iverneed
->vn_filename
== NULL
)
6158 amt
= iverneed
->vn_cnt
;
6159 amt
*= sizeof (Elf_Internal_Vernaux
);
6160 iverneed
->vn_auxptr
= bfd_alloc (abfd
, amt
);
6162 evernaux
= ((Elf_External_Vernaux
*)
6163 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6164 ivernaux
= iverneed
->vn_auxptr
;
6165 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6167 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6169 ivernaux
->vna_nodename
=
6170 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6171 ivernaux
->vna_name
);
6172 if (ivernaux
->vna_nodename
== NULL
)
6175 if (j
+ 1 < iverneed
->vn_cnt
)
6176 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6178 ivernaux
->vna_nextptr
= NULL
;
6180 evernaux
= ((Elf_External_Vernaux
*)
6181 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6184 if (i
+ 1 < hdr
->sh_info
)
6185 iverneed
->vn_nextref
= iverneed
+ 1;
6187 iverneed
->vn_nextref
= NULL
;
6189 everneed
= ((Elf_External_Verneed
*)
6190 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6200 if (contents
!= NULL
)
6206 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6208 elf_symbol_type
*newsym
;
6209 bfd_size_type amt
= sizeof (elf_symbol_type
);
6211 newsym
= bfd_zalloc (abfd
, amt
);
6216 newsym
->symbol
.the_bfd
= abfd
;
6217 return &newsym
->symbol
;
6222 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6226 bfd_symbol_info (symbol
, ret
);
6229 /* Return whether a symbol name implies a local symbol. Most targets
6230 use this function for the is_local_label_name entry point, but some
6234 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6237 /* Normal local symbols start with ``.L''. */
6238 if (name
[0] == '.' && name
[1] == 'L')
6241 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6242 DWARF debugging symbols starting with ``..''. */
6243 if (name
[0] == '.' && name
[1] == '.')
6246 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6247 emitting DWARF debugging output. I suspect this is actually a
6248 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6249 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6250 underscore to be emitted on some ELF targets). For ease of use,
6251 we treat such symbols as local. */
6252 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6259 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6260 asymbol
*symbol ATTRIBUTE_UNUSED
)
6267 _bfd_elf_set_arch_mach (bfd
*abfd
,
6268 enum bfd_architecture arch
,
6269 unsigned long machine
)
6271 /* If this isn't the right architecture for this backend, and this
6272 isn't the generic backend, fail. */
6273 if (arch
!= get_elf_backend_data (abfd
)->arch
6274 && arch
!= bfd_arch_unknown
6275 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6278 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6281 /* Find the function to a particular section and offset,
6282 for error reporting. */
6285 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6289 const char **filename_ptr
,
6290 const char **functionname_ptr
)
6292 const char *filename
;
6301 for (p
= symbols
; *p
!= NULL
; p
++)
6305 q
= (elf_symbol_type
*) *p
;
6307 if (bfd_get_section (&q
->symbol
) != section
)
6310 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6315 filename
= bfd_asymbol_name (&q
->symbol
);
6319 if (q
->symbol
.section
== section
6320 && q
->symbol
.value
>= low_func
6321 && q
->symbol
.value
<= offset
)
6323 func
= (asymbol
*) q
;
6324 low_func
= q
->symbol
.value
;
6334 *filename_ptr
= filename
;
6335 if (functionname_ptr
)
6336 *functionname_ptr
= bfd_asymbol_name (func
);
6341 /* Find the nearest line to a particular section and offset,
6342 for error reporting. */
6345 _bfd_elf_find_nearest_line (bfd
*abfd
,
6349 const char **filename_ptr
,
6350 const char **functionname_ptr
,
6351 unsigned int *line_ptr
)
6355 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6356 filename_ptr
, functionname_ptr
,
6359 if (!*functionname_ptr
)
6360 elf_find_function (abfd
, section
, symbols
, offset
,
6361 *filename_ptr
? NULL
: filename_ptr
,
6367 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6368 filename_ptr
, functionname_ptr
,
6370 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6372 if (!*functionname_ptr
)
6373 elf_find_function (abfd
, section
, symbols
, offset
,
6374 *filename_ptr
? NULL
: filename_ptr
,
6380 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
6381 &found
, filename_ptr
,
6382 functionname_ptr
, line_ptr
,
6383 &elf_tdata (abfd
)->line_info
))
6385 if (found
&& (*functionname_ptr
|| *line_ptr
))
6388 if (symbols
== NULL
)
6391 if (! elf_find_function (abfd
, section
, symbols
, offset
,
6392 filename_ptr
, functionname_ptr
))
6400 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
6404 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
6406 ret
+= get_program_header_size (abfd
);
6411 _bfd_elf_set_section_contents (bfd
*abfd
,
6413 const void *location
,
6415 bfd_size_type count
)
6417 Elf_Internal_Shdr
*hdr
;
6420 if (! abfd
->output_has_begun
6421 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
6424 hdr
= &elf_section_data (section
)->this_hdr
;
6425 pos
= hdr
->sh_offset
+ offset
;
6426 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
6427 || bfd_bwrite (location
, count
, abfd
) != count
)
6434 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
6435 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
6436 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
6441 /* Try to convert a non-ELF reloc into an ELF one. */
6444 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
6446 /* Check whether we really have an ELF howto. */
6448 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
6450 bfd_reloc_code_real_type code
;
6451 reloc_howto_type
*howto
;
6453 /* Alien reloc: Try to determine its type to replace it with an
6454 equivalent ELF reloc. */
6456 if (areloc
->howto
->pc_relative
)
6458 switch (areloc
->howto
->bitsize
)
6461 code
= BFD_RELOC_8_PCREL
;
6464 code
= BFD_RELOC_12_PCREL
;
6467 code
= BFD_RELOC_16_PCREL
;
6470 code
= BFD_RELOC_24_PCREL
;
6473 code
= BFD_RELOC_32_PCREL
;
6476 code
= BFD_RELOC_64_PCREL
;
6482 howto
= bfd_reloc_type_lookup (abfd
, code
);
6484 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
6486 if (howto
->pcrel_offset
)
6487 areloc
->addend
+= areloc
->address
;
6489 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
6494 switch (areloc
->howto
->bitsize
)
6500 code
= BFD_RELOC_14
;
6503 code
= BFD_RELOC_16
;
6506 code
= BFD_RELOC_26
;
6509 code
= BFD_RELOC_32
;
6512 code
= BFD_RELOC_64
;
6518 howto
= bfd_reloc_type_lookup (abfd
, code
);
6522 areloc
->howto
= howto
;
6530 (*_bfd_error_handler
)
6531 (_("%B: unsupported relocation type %s"),
6532 abfd
, areloc
->howto
->name
);
6533 bfd_set_error (bfd_error_bad_value
);
6538 _bfd_elf_close_and_cleanup (bfd
*abfd
)
6540 if (bfd_get_format (abfd
) == bfd_object
)
6542 if (elf_shstrtab (abfd
) != NULL
)
6543 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
6546 return _bfd_generic_close_and_cleanup (abfd
);
6549 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6550 in the relocation's offset. Thus we cannot allow any sort of sanity
6551 range-checking to interfere. There is nothing else to do in processing
6554 bfd_reloc_status_type
6555 _bfd_elf_rel_vtable_reloc_fn
6556 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
6557 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
6558 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
6559 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
6561 return bfd_reloc_ok
;
6564 /* Elf core file support. Much of this only works on native
6565 toolchains, since we rely on knowing the
6566 machine-dependent procfs structure in order to pick
6567 out details about the corefile. */
6569 #ifdef HAVE_SYS_PROCFS_H
6570 # include <sys/procfs.h>
6573 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6576 elfcore_make_pid (bfd
*abfd
)
6578 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
6579 + (elf_tdata (abfd
)->core_pid
));
6582 /* If there isn't a section called NAME, make one, using
6583 data from SECT. Note, this function will generate a
6584 reference to NAME, so you shouldn't deallocate or
6588 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
6592 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
6595 sect2
= bfd_make_section (abfd
, name
);
6599 sect2
->size
= sect
->size
;
6600 sect2
->filepos
= sect
->filepos
;
6601 sect2
->flags
= sect
->flags
;
6602 sect2
->alignment_power
= sect
->alignment_power
;
6606 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6607 actually creates up to two pseudosections:
6608 - For the single-threaded case, a section named NAME, unless
6609 such a section already exists.
6610 - For the multi-threaded case, a section named "NAME/PID", where
6611 PID is elfcore_make_pid (abfd).
6612 Both pseudosections have identical contents. */
6614 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
6620 char *threaded_name
;
6624 /* Build the section name. */
6626 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
6627 len
= strlen (buf
) + 1;
6628 threaded_name
= bfd_alloc (abfd
, len
);
6629 if (threaded_name
== NULL
)
6631 memcpy (threaded_name
, buf
, len
);
6633 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
6637 sect
->filepos
= filepos
;
6638 sect
->flags
= SEC_HAS_CONTENTS
;
6639 sect
->alignment_power
= 2;
6641 return elfcore_maybe_make_sect (abfd
, name
, sect
);
6644 /* prstatus_t exists on:
6646 linux 2.[01] + glibc
6650 #if defined (HAVE_PRSTATUS_T)
6653 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6658 if (note
->descsz
== sizeof (prstatus_t
))
6662 size
= sizeof (prstat
.pr_reg
);
6663 offset
= offsetof (prstatus_t
, pr_reg
);
6664 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6666 /* Do not overwrite the core signal if it
6667 has already been set by another thread. */
6668 if (elf_tdata (abfd
)->core_signal
== 0)
6669 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6670 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6672 /* pr_who exists on:
6675 pr_who doesn't exist on:
6678 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6679 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6682 #if defined (HAVE_PRSTATUS32_T)
6683 else if (note
->descsz
== sizeof (prstatus32_t
))
6685 /* 64-bit host, 32-bit corefile */
6686 prstatus32_t prstat
;
6688 size
= sizeof (prstat
.pr_reg
);
6689 offset
= offsetof (prstatus32_t
, pr_reg
);
6690 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6692 /* Do not overwrite the core signal if it
6693 has already been set by another thread. */
6694 if (elf_tdata (abfd
)->core_signal
== 0)
6695 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6696 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6698 /* pr_who exists on:
6701 pr_who doesn't exist on:
6704 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6705 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6708 #endif /* HAVE_PRSTATUS32_T */
6711 /* Fail - we don't know how to handle any other
6712 note size (ie. data object type). */
6716 /* Make a ".reg/999" section and a ".reg" section. */
6717 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
6718 size
, note
->descpos
+ offset
);
6720 #endif /* defined (HAVE_PRSTATUS_T) */
6722 /* Create a pseudosection containing the exact contents of NOTE. */
6724 elfcore_make_note_pseudosection (bfd
*abfd
,
6726 Elf_Internal_Note
*note
)
6728 return _bfd_elfcore_make_pseudosection (abfd
, name
,
6729 note
->descsz
, note
->descpos
);
6732 /* There isn't a consistent prfpregset_t across platforms,
6733 but it doesn't matter, because we don't have to pick this
6734 data structure apart. */
6737 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6739 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
6742 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6743 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6747 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6749 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
6752 #if defined (HAVE_PRPSINFO_T)
6753 typedef prpsinfo_t elfcore_psinfo_t
;
6754 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6755 typedef prpsinfo32_t elfcore_psinfo32_t
;
6759 #if defined (HAVE_PSINFO_T)
6760 typedef psinfo_t elfcore_psinfo_t
;
6761 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6762 typedef psinfo32_t elfcore_psinfo32_t
;
6766 /* return a malloc'ed copy of a string at START which is at
6767 most MAX bytes long, possibly without a terminating '\0'.
6768 the copy will always have a terminating '\0'. */
6771 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
6774 char *end
= memchr (start
, '\0', max
);
6782 dups
= bfd_alloc (abfd
, len
+ 1);
6786 memcpy (dups
, start
, len
);
6792 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6794 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
6796 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
6798 elfcore_psinfo_t psinfo
;
6800 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6802 elf_tdata (abfd
)->core_program
6803 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6804 sizeof (psinfo
.pr_fname
));
6806 elf_tdata (abfd
)->core_command
6807 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6808 sizeof (psinfo
.pr_psargs
));
6810 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6811 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
6813 /* 64-bit host, 32-bit corefile */
6814 elfcore_psinfo32_t psinfo
;
6816 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6818 elf_tdata (abfd
)->core_program
6819 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6820 sizeof (psinfo
.pr_fname
));
6822 elf_tdata (abfd
)->core_command
6823 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6824 sizeof (psinfo
.pr_psargs
));
6830 /* Fail - we don't know how to handle any other
6831 note size (ie. data object type). */
6835 /* Note that for some reason, a spurious space is tacked
6836 onto the end of the args in some (at least one anyway)
6837 implementations, so strip it off if it exists. */
6840 char *command
= elf_tdata (abfd
)->core_command
;
6841 int n
= strlen (command
);
6843 if (0 < n
&& command
[n
- 1] == ' ')
6844 command
[n
- 1] = '\0';
6849 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6851 #if defined (HAVE_PSTATUS_T)
6853 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6855 if (note
->descsz
== sizeof (pstatus_t
)
6856 #if defined (HAVE_PXSTATUS_T)
6857 || note
->descsz
== sizeof (pxstatus_t
)
6863 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
6865 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
6867 #if defined (HAVE_PSTATUS32_T)
6868 else if (note
->descsz
== sizeof (pstatus32_t
))
6870 /* 64-bit host, 32-bit corefile */
6873 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
6875 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
6878 /* Could grab some more details from the "representative"
6879 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6880 NT_LWPSTATUS note, presumably. */
6884 #endif /* defined (HAVE_PSTATUS_T) */
6886 #if defined (HAVE_LWPSTATUS_T)
6888 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6890 lwpstatus_t lwpstat
;
6896 if (note
->descsz
!= sizeof (lwpstat
)
6897 #if defined (HAVE_LWPXSTATUS_T)
6898 && note
->descsz
!= sizeof (lwpxstatus_t
)
6903 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
6905 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
6906 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
6908 /* Make a ".reg/999" section. */
6910 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
6911 len
= strlen (buf
) + 1;
6912 name
= bfd_alloc (abfd
, len
);
6915 memcpy (name
, buf
, len
);
6917 sect
= bfd_make_section_anyway (abfd
, name
);
6921 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6922 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
6923 sect
->filepos
= note
->descpos
6924 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
6927 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6928 sect
->size
= sizeof (lwpstat
.pr_reg
);
6929 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
6932 sect
->flags
= SEC_HAS_CONTENTS
;
6933 sect
->alignment_power
= 2;
6935 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
6938 /* Make a ".reg2/999" section */
6940 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
6941 len
= strlen (buf
) + 1;
6942 name
= bfd_alloc (abfd
, len
);
6945 memcpy (name
, buf
, len
);
6947 sect
= bfd_make_section_anyway (abfd
, name
);
6951 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6952 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
6953 sect
->filepos
= note
->descpos
6954 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
6957 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6958 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
6959 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
6962 sect
->flags
= SEC_HAS_CONTENTS
;
6963 sect
->alignment_power
= 2;
6965 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
6967 #endif /* defined (HAVE_LWPSTATUS_T) */
6969 #if defined (HAVE_WIN32_PSTATUS_T)
6971 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6977 win32_pstatus_t pstatus
;
6979 if (note
->descsz
< sizeof (pstatus
))
6982 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
6984 switch (pstatus
.data_type
)
6986 case NOTE_INFO_PROCESS
:
6987 /* FIXME: need to add ->core_command. */
6988 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
6989 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
6992 case NOTE_INFO_THREAD
:
6993 /* Make a ".reg/999" section. */
6994 sprintf (buf
, ".reg/%d", pstatus
.data
.thread_info
.tid
);
6996 len
= strlen (buf
) + 1;
6997 name
= bfd_alloc (abfd
, len
);
7001 memcpy (name
, buf
, len
);
7003 sect
= bfd_make_section_anyway (abfd
, name
);
7007 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7008 sect
->filepos
= (note
->descpos
7009 + offsetof (struct win32_pstatus
,
7010 data
.thread_info
.thread_context
));
7011 sect
->flags
= SEC_HAS_CONTENTS
;
7012 sect
->alignment_power
= 2;
7014 if (pstatus
.data
.thread_info
.is_active_thread
)
7015 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7019 case NOTE_INFO_MODULE
:
7020 /* Make a ".module/xxxxxxxx" section. */
7021 sprintf (buf
, ".module/%08x", pstatus
.data
.module_info
.base_address
);
7023 len
= strlen (buf
) + 1;
7024 name
= bfd_alloc (abfd
, len
);
7028 memcpy (name
, buf
, len
);
7030 sect
= bfd_make_section_anyway (abfd
, name
);
7035 sect
->size
= note
->descsz
;
7036 sect
->filepos
= note
->descpos
;
7037 sect
->flags
= SEC_HAS_CONTENTS
;
7038 sect
->alignment_power
= 2;
7047 #endif /* HAVE_WIN32_PSTATUS_T */
7050 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7052 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7060 if (bed
->elf_backend_grok_prstatus
)
7061 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7063 #if defined (HAVE_PRSTATUS_T)
7064 return elfcore_grok_prstatus (abfd
, note
);
7069 #if defined (HAVE_PSTATUS_T)
7071 return elfcore_grok_pstatus (abfd
, note
);
7074 #if defined (HAVE_LWPSTATUS_T)
7076 return elfcore_grok_lwpstatus (abfd
, note
);
7079 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7080 return elfcore_grok_prfpreg (abfd
, note
);
7082 #if defined (HAVE_WIN32_PSTATUS_T)
7083 case NT_WIN32PSTATUS
:
7084 return elfcore_grok_win32pstatus (abfd
, note
);
7087 case NT_PRXFPREG
: /* Linux SSE extension */
7088 if (note
->namesz
== 6
7089 && strcmp (note
->namedata
, "LINUX") == 0)
7090 return elfcore_grok_prxfpreg (abfd
, note
);
7096 if (bed
->elf_backend_grok_psinfo
)
7097 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7099 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7100 return elfcore_grok_psinfo (abfd
, note
);
7107 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
7111 sect
->size
= note
->descsz
;
7112 sect
->filepos
= note
->descpos
;
7113 sect
->flags
= SEC_HAS_CONTENTS
;
7114 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7122 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7126 cp
= strchr (note
->namedata
, '@');
7129 *lwpidp
= atoi(cp
+ 1);
7136 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7139 /* Signal number at offset 0x08. */
7140 elf_tdata (abfd
)->core_signal
7141 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7143 /* Process ID at offset 0x50. */
7144 elf_tdata (abfd
)->core_pid
7145 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7147 /* Command name at 0x7c (max 32 bytes, including nul). */
7148 elf_tdata (abfd
)->core_command
7149 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7151 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7156 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7160 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7161 elf_tdata (abfd
)->core_lwpid
= lwp
;
7163 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7165 /* NetBSD-specific core "procinfo". Note that we expect to
7166 find this note before any of the others, which is fine,
7167 since the kernel writes this note out first when it
7168 creates a core file. */
7170 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7173 /* As of Jan 2002 there are no other machine-independent notes
7174 defined for NetBSD core files. If the note type is less
7175 than the start of the machine-dependent note types, we don't
7178 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7182 switch (bfd_get_arch (abfd
))
7184 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7185 PT_GETFPREGS == mach+2. */
7187 case bfd_arch_alpha
:
7188 case bfd_arch_sparc
:
7191 case NT_NETBSDCORE_FIRSTMACH
+0:
7192 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7194 case NT_NETBSDCORE_FIRSTMACH
+2:
7195 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7201 /* On all other arch's, PT_GETREGS == mach+1 and
7202 PT_GETFPREGS == mach+3. */
7207 case NT_NETBSDCORE_FIRSTMACH
+1:
7208 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7210 case NT_NETBSDCORE_FIRSTMACH
+3:
7211 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7221 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
7223 void *ddata
= note
->descdata
;
7230 /* nto_procfs_status 'pid' field is at offset 0. */
7231 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7233 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7234 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7236 /* nto_procfs_status 'flags' field is at offset 8. */
7237 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7239 /* nto_procfs_status 'what' field is at offset 14. */
7240 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7242 elf_tdata (abfd
)->core_signal
= sig
;
7243 elf_tdata (abfd
)->core_lwpid
= *tid
;
7246 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7247 do not come from signals so we make sure we set the current
7248 thread just in case. */
7249 if (flags
& 0x00000080)
7250 elf_tdata (abfd
)->core_lwpid
= *tid
;
7252 /* Make a ".qnx_core_status/%d" section. */
7253 sprintf (buf
, ".qnx_core_status/%d", *tid
);
7255 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7260 sect
= bfd_make_section_anyway (abfd
, name
);
7264 sect
->size
= note
->descsz
;
7265 sect
->filepos
= note
->descpos
;
7266 sect
->flags
= SEC_HAS_CONTENTS
;
7267 sect
->alignment_power
= 2;
7269 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7273 elfcore_grok_nto_gregs (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t tid
)
7279 /* Make a ".reg/%d" section. */
7280 sprintf (buf
, ".reg/%d", tid
);
7282 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7287 sect
= bfd_make_section_anyway (abfd
, name
);
7291 sect
->size
= note
->descsz
;
7292 sect
->filepos
= note
->descpos
;
7293 sect
->flags
= SEC_HAS_CONTENTS
;
7294 sect
->alignment_power
= 2;
7296 /* This is the current thread. */
7297 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7298 return elfcore_maybe_make_sect (abfd
, ".reg", sect
);
7303 #define BFD_QNT_CORE_INFO 7
7304 #define BFD_QNT_CORE_STATUS 8
7305 #define BFD_QNT_CORE_GREG 9
7306 #define BFD_QNT_CORE_FPREG 10
7309 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7311 /* Every GREG section has a STATUS section before it. Store the
7312 tid from the previous call to pass down to the next gregs
7314 static pid_t tid
= 1;
7318 case BFD_QNT_CORE_INFO
: return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7319 case BFD_QNT_CORE_STATUS
: return elfcore_grok_nto_status (abfd
, note
, &tid
);
7320 case BFD_QNT_CORE_GREG
: return elfcore_grok_nto_gregs (abfd
, note
, tid
);
7321 case BFD_QNT_CORE_FPREG
: return elfcore_grok_prfpreg (abfd
, note
);
7322 default: return TRUE
;
7326 /* Function: elfcore_write_note
7333 size of data for note
7336 End of buffer containing note. */
7339 elfcore_write_note (bfd
*abfd
,
7347 Elf_External_Note
*xnp
;
7357 const struct elf_backend_data
*bed
;
7359 namesz
= strlen (name
) + 1;
7360 bed
= get_elf_backend_data (abfd
);
7361 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
7364 newspace
= 12 + namesz
+ pad
+ size
;
7366 p
= realloc (buf
, *bufsiz
+ newspace
);
7368 *bufsiz
+= newspace
;
7369 xnp
= (Elf_External_Note
*) dest
;
7370 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
7371 H_PUT_32 (abfd
, size
, xnp
->descsz
);
7372 H_PUT_32 (abfd
, type
, xnp
->type
);
7376 memcpy (dest
, name
, namesz
);
7384 memcpy (dest
, input
, size
);
7388 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7390 elfcore_write_prpsinfo (bfd
*abfd
,
7397 char *note_name
= "CORE";
7399 #if defined (HAVE_PSINFO_T)
7401 note_type
= NT_PSINFO
;
7404 note_type
= NT_PRPSINFO
;
7407 memset (&data
, 0, sizeof (data
));
7408 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
7409 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
7410 return elfcore_write_note (abfd
, buf
, bufsiz
,
7411 note_name
, note_type
, &data
, sizeof (data
));
7413 #endif /* PSINFO_T or PRPSINFO_T */
7415 #if defined (HAVE_PRSTATUS_T)
7417 elfcore_write_prstatus (bfd
*abfd
,
7425 char *note_name
= "CORE";
7427 memset (&prstat
, 0, sizeof (prstat
));
7428 prstat
.pr_pid
= pid
;
7429 prstat
.pr_cursig
= cursig
;
7430 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
7431 return elfcore_write_note (abfd
, buf
, bufsiz
,
7432 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
7434 #endif /* HAVE_PRSTATUS_T */
7436 #if defined (HAVE_LWPSTATUS_T)
7438 elfcore_write_lwpstatus (bfd
*abfd
,
7445 lwpstatus_t lwpstat
;
7446 char *note_name
= "CORE";
7448 memset (&lwpstat
, 0, sizeof (lwpstat
));
7449 lwpstat
.pr_lwpid
= pid
>> 16;
7450 lwpstat
.pr_cursig
= cursig
;
7451 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7452 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
7453 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7455 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
7456 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
7458 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
7459 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
7462 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7463 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
7465 #endif /* HAVE_LWPSTATUS_T */
7467 #if defined (HAVE_PSTATUS_T)
7469 elfcore_write_pstatus (bfd
*abfd
,
7477 char *note_name
= "CORE";
7479 memset (&pstat
, 0, sizeof (pstat
));
7480 pstat
.pr_pid
= pid
& 0xffff;
7481 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7482 NT_PSTATUS
, &pstat
, sizeof (pstat
));
7485 #endif /* HAVE_PSTATUS_T */
7488 elfcore_write_prfpreg (bfd
*abfd
,
7494 char *note_name
= "CORE";
7495 return elfcore_write_note (abfd
, buf
, bufsiz
,
7496 note_name
, NT_FPREGSET
, fpregs
, size
);
7500 elfcore_write_prxfpreg (bfd
*abfd
,
7503 const void *xfpregs
,
7506 char *note_name
= "LINUX";
7507 return elfcore_write_note (abfd
, buf
, bufsiz
,
7508 note_name
, NT_PRXFPREG
, xfpregs
, size
);
7512 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
7520 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
7523 buf
= bfd_malloc (size
);
7527 if (bfd_bread (buf
, size
, abfd
) != size
)
7535 while (p
< buf
+ size
)
7537 /* FIXME: bad alignment assumption. */
7538 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
7539 Elf_Internal_Note in
;
7541 in
.type
= H_GET_32 (abfd
, xnp
->type
);
7543 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
7544 in
.namedata
= xnp
->name
;
7546 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
7547 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
7548 in
.descpos
= offset
+ (in
.descdata
- buf
);
7550 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
7552 if (! elfcore_grok_netbsd_note (abfd
, &in
))
7555 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
7557 if (! elfcore_grok_nto_note (abfd
, &in
))
7562 if (! elfcore_grok_note (abfd
, &in
))
7566 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
7573 /* Providing external access to the ELF program header table. */
7575 /* Return an upper bound on the number of bytes required to store a
7576 copy of ABFD's program header table entries. Return -1 if an error
7577 occurs; bfd_get_error will return an appropriate code. */
7580 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
7582 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7584 bfd_set_error (bfd_error_wrong_format
);
7588 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
7591 /* Copy ABFD's program header table entries to *PHDRS. The entries
7592 will be stored as an array of Elf_Internal_Phdr structures, as
7593 defined in include/elf/internal.h. To find out how large the
7594 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7596 Return the number of program header table entries read, or -1 if an
7597 error occurs; bfd_get_error will return an appropriate code. */
7600 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
7604 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7606 bfd_set_error (bfd_error_wrong_format
);
7610 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
7611 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
7612 num_phdrs
* sizeof (Elf_Internal_Phdr
));
7618 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
7621 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7623 i_ehdrp
= elf_elfheader (abfd
);
7624 if (i_ehdrp
== NULL
)
7625 sprintf_vma (buf
, value
);
7628 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7630 #if BFD_HOST_64BIT_LONG
7631 sprintf (buf
, "%016lx", value
);
7633 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
7634 _bfd_int64_low (value
));
7638 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
7641 sprintf_vma (buf
, value
);
7646 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
7649 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7651 i_ehdrp
= elf_elfheader (abfd
);
7652 if (i_ehdrp
== NULL
)
7653 fprintf_vma ((FILE *) stream
, value
);
7656 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7658 #if BFD_HOST_64BIT_LONG
7659 fprintf ((FILE *) stream
, "%016lx", value
);
7661 fprintf ((FILE *) stream
, "%08lx%08lx",
7662 _bfd_int64_high (value
), _bfd_int64_low (value
));
7666 fprintf ((FILE *) stream
, "%08lx",
7667 (unsigned long) (value
& 0xffffffff));
7670 fprintf_vma ((FILE *) stream
, value
);
7674 enum elf_reloc_type_class
7675 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
7677 return reloc_class_normal
;
7680 /* For RELA architectures, return the relocation value for a
7681 relocation against a local symbol. */
7684 _bfd_elf_rela_local_sym (bfd
*abfd
,
7685 Elf_Internal_Sym
*sym
,
7687 Elf_Internal_Rela
*rel
)
7689 asection
*sec
= *psec
;
7692 relocation
= (sec
->output_section
->vma
7693 + sec
->output_offset
7695 if ((sec
->flags
& SEC_MERGE
)
7696 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
7697 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
7700 _bfd_merged_section_offset (abfd
, psec
,
7701 elf_section_data (sec
)->sec_info
,
7702 sym
->st_value
+ rel
->r_addend
);
7705 /* If we have changed the section, and our original section is
7706 marked with SEC_EXCLUDE, it means that the original
7707 SEC_MERGE section has been completely subsumed in some
7708 other SEC_MERGE section. In this case, we need to leave
7709 some info around for --emit-relocs. */
7710 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
7711 sec
->kept_section
= *psec
;
7714 rel
->r_addend
-= relocation
;
7715 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
7721 _bfd_elf_rel_local_sym (bfd
*abfd
,
7722 Elf_Internal_Sym
*sym
,
7726 asection
*sec
= *psec
;
7728 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
7729 return sym
->st_value
+ addend
;
7731 return _bfd_merged_section_offset (abfd
, psec
,
7732 elf_section_data (sec
)->sec_info
,
7733 sym
->st_value
+ addend
);
7737 _bfd_elf_section_offset (bfd
*abfd
,
7738 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
7742 switch (sec
->sec_info_type
)
7744 case ELF_INFO_TYPE_STABS
:
7745 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
7747 case ELF_INFO_TYPE_EH_FRAME
:
7748 return _bfd_elf_eh_frame_section_offset (abfd
, sec
, offset
);
7754 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7755 reconstruct an ELF file by reading the segments out of remote memory
7756 based on the ELF file header at EHDR_VMA and the ELF program headers it
7757 points to. If not null, *LOADBASEP is filled in with the difference
7758 between the VMAs from which the segments were read, and the VMAs the
7759 file headers (and hence BFD's idea of each section's VMA) put them at.
7761 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7762 remote memory at target address VMA into the local buffer at MYADDR; it
7763 should return zero on success or an `errno' code on failure. TEMPL must
7764 be a BFD for an ELF target with the word size and byte order found in
7765 the remote memory. */
7768 bfd_elf_bfd_from_remote_memory
7772 int (*target_read_memory
) (bfd_vma
, char *, int))
7774 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
7775 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
7779 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
7780 long symcount ATTRIBUTE_UNUSED
,
7781 asymbol
**syms ATTRIBUTE_UNUSED
,
7782 long dynsymcount ATTRIBUTE_UNUSED
,
7786 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7789 const char *relplt_name
;
7790 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
7794 Elf_Internal_Shdr
*hdr
;
7798 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
7802 if (!bed
->plt_sym_val
)
7805 relplt_name
= bed
->relplt_name
;
7806 if (relplt_name
== NULL
)
7807 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
7808 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
7812 hdr
= &elf_section_data (relplt
)->this_hdr
;
7813 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
7814 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
7817 plt
= bfd_get_section_by_name (abfd
, ".plt");
7821 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
7822 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
7825 count
= relplt
->size
/ hdr
->sh_entsize
;
7826 size
= count
* sizeof (asymbol
);
7827 p
= relplt
->relocation
;
7828 for (i
= 0; i
< count
; i
++, s
++, p
++)
7829 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
7831 s
= *ret
= bfd_malloc (size
);
7835 names
= (char *) (s
+ count
);
7836 p
= relplt
->relocation
;
7838 for (i
= 0; i
< count
; i
++, s
++, p
++)
7843 addr
= bed
->plt_sym_val (i
, plt
, p
);
7844 if (addr
== (bfd_vma
) -1)
7847 *s
= **p
->sym_ptr_ptr
;
7849 s
->value
= addr
- plt
->vma
;
7851 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
7852 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
7854 memcpy (names
, "@plt", sizeof ("@plt"));
7855 names
+= sizeof ("@plt");
7862 /* Sort symbol by binding and section. We want to put definitions
7863 sorted by section at the beginning. */
7866 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
7868 const Elf_Internal_Sym
*s1
;
7869 const Elf_Internal_Sym
*s2
;
7872 /* Make sure that undefined symbols are at the end. */
7873 s1
= (const Elf_Internal_Sym
*) arg1
;
7874 if (s1
->st_shndx
== SHN_UNDEF
)
7876 s2
= (const Elf_Internal_Sym
*) arg2
;
7877 if (s2
->st_shndx
== SHN_UNDEF
)
7880 /* Sorted by section index. */
7881 shndx
= s1
->st_shndx
- s2
->st_shndx
;
7885 /* Sorted by binding. */
7886 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
7891 Elf_Internal_Sym
*sym
;
7896 elf_sym_name_compare (const void *arg1
, const void *arg2
)
7898 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
7899 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
7900 return strcmp (s1
->name
, s2
->name
);
7903 /* Check if 2 sections define the same set of local and global
7907 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
7910 const struct elf_backend_data
*bed1
, *bed2
;
7911 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7912 bfd_size_type symcount1
, symcount2
;
7913 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7914 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
7915 Elf_Internal_Sym
*isymend
;
7916 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
7917 bfd_size_type count1
, count2
, i
;
7924 /* If both are .gnu.linkonce sections, they have to have the same
7926 if (strncmp (sec1
->name
, ".gnu.linkonce",
7927 sizeof ".gnu.linkonce" - 1) == 0
7928 && strncmp (sec2
->name
, ".gnu.linkonce",
7929 sizeof ".gnu.linkonce" - 1) == 0)
7930 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
7931 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
7933 /* Both sections have to be in ELF. */
7934 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7935 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7938 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7941 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
7942 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
7944 /* If both are members of section groups, they have to have the
7946 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
7950 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7951 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7952 if (shndx1
== -1 || shndx2
== -1)
7955 bed1
= get_elf_backend_data (bfd1
);
7956 bed2
= get_elf_backend_data (bfd2
);
7957 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7958 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7959 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7960 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7962 if (symcount1
== 0 || symcount2
== 0)
7965 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7967 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7971 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
7974 /* Sort symbols by binding and section. Global definitions are at
7976 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
7977 elf_sort_elf_symbol
);
7978 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
7979 elf_sort_elf_symbol
);
7981 /* Count definitions in the section. */
7983 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
7984 isym
< isymend
; isym
++)
7986 if (isym
->st_shndx
== (unsigned int) shndx1
)
7993 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
7998 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
7999 isym
< isymend
; isym
++)
8001 if (isym
->st_shndx
== (unsigned int) shndx2
)
8008 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8012 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8015 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8016 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8018 if (symtable1
== NULL
|| symtable2
== NULL
)
8022 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8023 isym
< isymend
; isym
++)
8026 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8033 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8034 isym
< isymend
; isym
++)
8037 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8043 /* Sort symbol by name. */
8044 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8045 elf_sym_name_compare
);
8046 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8047 elf_sym_name_compare
);
8049 for (i
= 0; i
< count1
; i
++)
8050 /* Two symbols must have the same binding, type and name. */
8051 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8052 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8053 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)