1 // icf.cc -- Identical Code Folding.
3 // Copyright 2009 Free Software Foundation, Inc.
4 // Written by Sriraman Tallam <tmsriram@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 // Identical Code Folding Algorithm
24 // ----------------------------------
25 // Detecting identical functions is done here and the basic algorithm
26 // is as follows. A checksum is computed on each .text section using
27 // its contents and relocations. If the symbol name corresponding to
28 // a relocation is known it is used to compute the checksum. If the
29 // symbol name is not known the stringified name of the object and the
30 // section number pointed to by the relocation is used. The checksums
31 // are stored as keys in a hash map and a section is identical to some
32 // other section if its checksum is already present in the hash map.
33 // Checksum collisions are handled by using a multimap and explicitly
34 // checking the contents when two sections have the same checksum.
36 // However, two functions A and B with identical text but with
37 // relocations pointing to different .text sections can be identical if
38 // the corresponding .text sections to which their relocations point to
39 // turn out to be identical. Hence, this checksumming process must be
40 // done repeatedly until convergence is obtained. Here is an example for
41 // the following case :
43 // int funcA () int funcB ()
45 // return foo(); return goo();
48 // The functions funcA and funcB are identical if functions foo() and
49 // goo() are identical.
51 // Hence, as described above, we repeatedly do the checksumming,
52 // assigning identical functions to the same group, until convergence is
53 // obtained. Now, we have two different ways to do this depending on how
58 // We can start with marking all functions as different and repeatedly do
59 // the checksumming. This has the advantage that we do not need to wait
60 // for convergence. We can stop at any point and correctness will be
61 // guaranteed although not all cases would have been found. However, this
62 // has a problem that some cases can never be found even if it is run until
63 // convergence. Here is an example with mutually recursive functions :
65 // int funcA (int a) int funcB (int a)
67 // if (a == 1) if (a == 1)
68 // return 1; return 1;
69 // return 1 + funcB(a - 1); return 1 + funcA(a - 1);
72 // In this example funcA and funcB are identical and one of them could be
73 // folded into the other. However, if we start with assuming that funcA
74 // and funcB are not identical, the algorithm, even after it is run to
75 // convergence, cannot detect that they are identical. It should be noted
76 // that even if the functions were self-recursive, Algorithm I cannot catch
77 // that they are identical, at least as is.
81 // Here we start with marking all functions as identical and then repeat
82 // the checksumming until convergence. This can detect the above case
83 // mentioned above. It can detect all cases that Algorithm I can and more.
84 // However, the caveat is that it has to be run to convergence. It cannot
85 // be stopped arbitrarily like Algorithm I as correctness cannot be
86 // guaranteed. Algorithm II is not implemented.
88 // Algorithm I is used because experiments show that about three
89 // iterations are more than enough to achieve convergence. Algorithm I can
90 // handle recursive calls if it is changed to use a special common symbol
91 // for recursive relocs. This seems to be the most common case that
92 // Algorithm I could not catch as is. Mutually recursive calls are not
93 // frequent and Algorithm I wins because of its ability to be stopped
96 // Caveat with using function pointers :
97 // ------------------------------------
99 // Programs using function pointer comparisons/checks should use function
100 // folding with caution as the result of such comparisons could be different
101 // when folding takes place. This could lead to unexpected run-time
105 // How to run : --icf
106 // Optional parameters : --icf-iterations <num> --print-icf-sections
108 // Performance : Less than 20 % link-time overhead on industry strength
109 // applications. Up to 6 % text size reductions.
116 #include "libiberty.h"
117 #include "demangle.h"
122 // This function determines if a section or a group of identical
123 // sections has unique contents. Such unique sections or groups can be
124 // declared final and need not be processed any further.
126 // ID_SECTION : Vector mapping a section index to a Section_id pair.
127 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
128 // sections is already known to be unique.
129 // SECTION_CONTENTS : Contains the section's text and relocs to sections
130 // that cannot be folded. SECTION_CONTENTS are NULL
131 // implies that this function is being called for the
132 // first time before the first iteration of icf.
135 preprocess_for_unique_sections(const std::vector
<Section_id
>& id_section
,
136 std::vector
<bool>* is_secn_or_group_unique
,
137 std::vector
<std::string
>* section_contents
)
139 Unordered_map
<uint32_t, unsigned int> uniq_map
;
140 std::pair
<Unordered_map
<uint32_t, unsigned int>::iterator
, bool>
143 for (unsigned int i
= 0; i
< id_section
.size(); i
++)
145 if ((*is_secn_or_group_unique
)[i
])
149 Section_id secn
= id_section
[i
];
150 section_size_type plen
;
151 if (section_contents
== NULL
)
153 const unsigned char* contents
;
154 contents
= secn
.first
->section_contents(secn
.second
,
157 cksum
= xcrc32(contents
, plen
, 0xffffffff);
161 const unsigned char* contents_array
= reinterpret_cast
162 <const unsigned char*>((*section_contents
)[i
].c_str());
163 cksum
= xcrc32(contents_array
, (*section_contents
)[i
].length(),
166 uniq_map_insert
= uniq_map
.insert(std::make_pair(cksum
, i
));
167 if (uniq_map_insert
.second
)
169 (*is_secn_or_group_unique
)[i
] = true;
173 (*is_secn_or_group_unique
)[i
] = false;
174 (*is_secn_or_group_unique
)[uniq_map_insert
.first
->second
] = false;
179 // This returns the buffer containing the section's contents, both
180 // text and relocs. Relocs are differentiated as those pointing to
181 // sections that could be folded and those that cannot. Only relocs
182 // pointing to sections that could be folded are recomputed on
183 // subsequent invocations of this function.
185 // FIRST_ITERATION : true if it is the first invocation.
186 // SECN : Section for which contents are desired.
187 // SECTION_NUM : Unique section number of this section.
188 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
190 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
191 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
195 get_section_contents(bool first_iteration
,
196 const Section_id
& secn
,
197 unsigned int section_num
,
198 unsigned int* num_tracked_relocs
,
199 Symbol_table
* symtab
,
200 const std::vector
<unsigned int>& kept_section_id
,
201 std::vector
<std::string
>* section_contents
)
203 section_size_type plen
;
204 const unsigned char* contents
= NULL
;
208 contents
= secn
.first
->section_contents(secn
.second
,
213 // The buffer to hold all the contents including relocs. A checksum
214 // is then computed on this buffer.
216 std::string icf_reloc_buffer
;
218 if (num_tracked_relocs
)
219 *num_tracked_relocs
= 0;
221 Icf::Section_list
& seclist
= symtab
->icf()->section_reloc_list();
222 Icf::Symbol_list
& symlist
= symtab
->icf()->symbol_reloc_list();
223 Icf::Addend_list
& addendlist
= symtab
->icf()->addend_reloc_list();
225 Icf::Section_list::iterator it_seclist
= seclist
.find(secn
);
226 Icf::Symbol_list::iterator it_symlist
= symlist
.find(secn
);
227 Icf::Addend_list::iterator it_addendlist
= addendlist
.find(secn
);
230 icf_reloc_buffer
.clear();
232 // Process relocs and put them into the buffer.
234 if (it_seclist
!= seclist
.end())
236 gold_assert(it_symlist
!= symlist
.end());
237 gold_assert(it_addendlist
!= addendlist
.end());
238 Icf::Sections_reachable_list v
= it_seclist
->second
;
239 Icf::Symbol_info s
= it_symlist
->second
;
240 Icf::Addend_info a
= it_addendlist
->second
;
241 Icf::Sections_reachable_list::iterator it_v
= v
.begin();
242 Icf::Symbol_info::iterator it_s
= s
.begin();
243 Icf::Addend_info::iterator it_a
= a
.begin();
245 for (; it_v
!= v
.end(); ++it_v
, ++it_s
, ++it_a
)
247 // ADDEND_STR stores the symbol value and addend, each
248 // atmost 16 hex digits long. it_v points to a pair
249 // where first is the symbol value and second is the
252 snprintf(addend_str
, sizeof(addend_str
), "%llx %llx",
253 (*it_a
).first
, (*it_a
).second
);
254 Section_id
reloc_secn(it_v
->first
, it_v
->second
);
256 // If this reloc turns back and points to the same section,
257 // like a recursive call, use a special symbol to mark this.
258 if (reloc_secn
.first
== secn
.first
259 && reloc_secn
.second
== secn
.second
)
264 buffer
.append(addend_str
);
269 Icf::Uniq_secn_id_map
& section_id_map
=
270 symtab
->icf()->section_to_int_map();
271 Icf::Uniq_secn_id_map::iterator section_id_map_it
=
272 section_id_map
.find(reloc_secn
);
273 if (section_id_map_it
!= section_id_map
.end())
275 // This is a reloc to a section that might be folded.
276 if (num_tracked_relocs
)
277 (*num_tracked_relocs
)++;
279 char kept_section_str
[10];
280 unsigned int secn_id
= section_id_map_it
->second
;
281 snprintf(kept_section_str
, sizeof(kept_section_str
), "%u",
282 kept_section_id
[secn_id
]);
285 buffer
.append("ICF_R");
286 buffer
.append(addend_str
);
288 icf_reloc_buffer
.append(kept_section_str
);
289 // Append the addend.
290 icf_reloc_buffer
.append(addend_str
);
291 icf_reloc_buffer
.append("@");
295 // This is a reloc to a section that cannot be folded.
296 // Process it only in the first iteration.
297 if (!first_iteration
)
300 uint64_t secn_flags
= (it_v
->first
)->section_flags(it_v
->second
);
301 // This reloc points to a merge section. Hash the
302 // contents of this section.
303 if ((secn_flags
& elfcpp::SHF_MERGE
) != 0)
306 (it_v
->first
)->section_entsize(it_v
->second
);
307 long long offset
= it_a
->first
+ it_a
->second
;
308 section_size_type secn_len
;
309 const unsigned char* str_contents
=
310 (it_v
->first
)->section_contents(it_v
->second
,
313 if ((secn_flags
& elfcpp::SHF_STRINGS
) != 0)
315 // String merge section.
316 const char* str_char
=
317 reinterpret_cast<const char*>(str_contents
);
322 buffer
.append(str_char
);
327 const uint16_t* ptr_16
=
328 reinterpret_cast<const uint16_t*>(str_char
);
329 unsigned int strlen_16
= 0;
330 // Find the NULL character.
331 while(*(ptr_16
+ strlen_16
) != 0)
333 buffer
.append(str_char
, strlen_16
* 2);
338 const uint32_t* ptr_32
=
339 reinterpret_cast<const uint32_t*>(str_char
);
340 unsigned int strlen_32
= 0;
341 // Find the NULL character.
342 while(*(ptr_32
+ strlen_32
) != 0)
344 buffer
.append(str_char
, strlen_32
* 4);
353 // Use the entsize to determine the length.
354 buffer
.append(reinterpret_cast<const
355 char*>(str_contents
),
359 else if ((*it_s
) != NULL
)
361 // If symbol name is available use that.
362 const char *sym_name
= (*it_s
)->name();
363 buffer
.append(sym_name
);
364 // Append the addend.
365 buffer
.append(addend_str
);
370 // Symbol name is not available, like for a local symbol,
371 // use object and section id.
372 buffer
.append(it_v
->first
->name());
374 snprintf(secn_id
, sizeof(secn_id
), "%u",it_v
->second
);
375 buffer
.append(secn_id
);
376 // Append the addend.
377 buffer
.append(addend_str
);
386 buffer
.append("Contents = ");
387 buffer
.append(reinterpret_cast<const char*>(contents
), plen
);
388 // Store the section contents that dont change to avoid recomputing
389 // during the next call to this function.
390 (*section_contents
)[section_num
] = buffer
;
394 gold_assert(buffer
.empty());
395 // Reuse the contents computed in the previous iteration.
396 buffer
.append((*section_contents
)[section_num
]);
399 buffer
.append(icf_reloc_buffer
);
403 // This function computes a checksum on each section to detect and form
404 // groups of identical sections. The first iteration does this for all
406 // Further iterations do this only for the kept sections from each group to
407 // determine if larger groups of identical sections could be formed. The
408 // first section in each group is the kept section for that group.
410 // CRC32 is the checksumming algorithm and can have collisions. That is,
411 // two sections with different contents can have the same checksum. Hence,
412 // a multimap is used to maintain more than one group of checksum
413 // identical sections. A section is added to a group only after its
414 // contents are explicitly compared with the kept section of the group.
417 // ITERATION_NUM : Invocation instance of this function.
418 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
420 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
421 // ID_SECTION : Vector mapping a section to an unique integer.
422 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
423 // sectionsis already known to be unique.
424 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
428 match_sections(unsigned int iteration_num
,
429 Symbol_table
* symtab
,
430 std::vector
<unsigned int>* num_tracked_relocs
,
431 std::vector
<unsigned int>* kept_section_id
,
432 const std::vector
<Section_id
>& id_section
,
433 std::vector
<bool>* is_secn_or_group_unique
,
434 std::vector
<std::string
>* section_contents
)
436 Unordered_multimap
<uint32_t, unsigned int> section_cksum
;
437 std::pair
<Unordered_multimap
<uint32_t, unsigned int>::iterator
,
438 Unordered_multimap
<uint32_t, unsigned int>::iterator
> key_range
;
439 bool converged
= true;
441 if (iteration_num
== 1)
442 preprocess_for_unique_sections(id_section
,
443 is_secn_or_group_unique
,
446 preprocess_for_unique_sections(id_section
,
447 is_secn_or_group_unique
,
450 std::vector
<std::string
> full_section_contents
;
452 for (unsigned int i
= 0; i
< id_section
.size(); i
++)
454 full_section_contents
.push_back("");
455 if ((*is_secn_or_group_unique
)[i
])
458 Section_id secn
= id_section
[i
];
459 std::string this_secn_contents
;
461 if (iteration_num
== 1)
463 unsigned int num_relocs
= 0;
464 this_secn_contents
= get_section_contents(true, secn
, i
, &num_relocs
,
465 symtab
, (*kept_section_id
),
467 (*num_tracked_relocs
)[i
] = num_relocs
;
471 if ((*kept_section_id
)[i
] != i
)
473 // This section is already folded into something. See
474 // if it should point to a different kept section.
475 unsigned int kept_section
= (*kept_section_id
)[i
];
476 if (kept_section
!= (*kept_section_id
)[kept_section
])
478 (*kept_section_id
)[i
] = (*kept_section_id
)[kept_section
];
482 this_secn_contents
= get_section_contents(false, secn
, i
, NULL
,
483 symtab
, (*kept_section_id
),
487 const unsigned char* this_secn_contents_array
=
488 reinterpret_cast<const unsigned char*>(this_secn_contents
.c_str());
489 cksum
= xcrc32(this_secn_contents_array
, this_secn_contents
.length(),
491 size_t count
= section_cksum
.count(cksum
);
495 // Start a group with this cksum.
496 section_cksum
.insert(std::make_pair(cksum
, i
));
497 full_section_contents
[i
] = this_secn_contents
;
501 key_range
= section_cksum
.equal_range(cksum
);
502 Unordered_multimap
<uint32_t, unsigned int>::iterator it
;
503 // Search all the groups with this cksum for a match.
504 for (it
= key_range
.first
; it
!= key_range
.second
; ++it
)
506 unsigned int kept_section
= it
->second
;
507 if (full_section_contents
[kept_section
].length()
508 != this_secn_contents
.length())
510 if (memcmp(full_section_contents
[kept_section
].c_str(),
511 this_secn_contents
.c_str(),
512 this_secn_contents
.length()) != 0)
514 (*kept_section_id
)[i
] = kept_section
;
518 if (it
== key_range
.second
)
520 // Create a new group for this cksum.
521 section_cksum
.insert(std::make_pair(cksum
, i
));
522 full_section_contents
[i
] = this_secn_contents
;
525 // If there are no relocs to foldable sections do not process
526 // this section any further.
527 if (iteration_num
== 1 && (*num_tracked_relocs
)[i
] == 0)
528 (*is_secn_or_group_unique
)[i
] = true;
534 // During safe icf (--icf=safe), only fold functions that are ctors or dtors.
535 // This function returns true if the mangled function name is a ctor or a
539 is_function_ctor_or_dtor(const char* mangled_func_name
)
541 if ((is_prefix_of("_ZN", mangled_func_name
)
542 || is_prefix_of("_ZZ", mangled_func_name
))
543 && (is_gnu_v3_mangled_ctor(mangled_func_name
)
544 || is_gnu_v3_mangled_dtor(mangled_func_name
)))
551 // This is the main ICF function called in gold.cc. This does the
552 // initialization and calls match_sections repeatedly (twice by default)
553 // which computes the crc checksums and detects identical functions.
556 Icf::find_identical_sections(const Input_objects
* input_objects
,
557 Symbol_table
* symtab
)
559 unsigned int section_num
= 0;
560 std::vector
<unsigned int> num_tracked_relocs
;
561 std::vector
<bool> is_secn_or_group_unique
;
562 std::vector
<std::string
> section_contents
;
564 // Decide which sections are possible candidates first.
566 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
567 p
!= input_objects
->relobj_end();
570 for (unsigned int i
= 0;i
< (*p
)->shnum(); ++i
)
572 const char* section_name
= (*p
)->section_name(i
).c_str();
573 // Only looking to fold functions, so just look at .text sections.
574 if (!is_prefix_of(".text.", section_name
))
576 if (!(*p
)->is_section_included(i
))
578 if (parameters
->options().gc_sections()
579 && symtab
->gc()->is_section_garbage(*p
, i
))
581 // With --icf=safe, check if mangled name is a ctor or a dtor.
582 if (parameters
->options().icf_safe_folding()
583 && !is_function_ctor_or_dtor(section_name
+ 6))
585 this->id_section_
.push_back(Section_id(*p
, i
));
586 this->section_id_
[Section_id(*p
, i
)] = section_num
;
587 this->kept_section_id_
.push_back(section_num
);
588 num_tracked_relocs
.push_back(0);
589 is_secn_or_group_unique
.push_back(false);
590 section_contents
.push_back("");
595 unsigned int num_iterations
= 0;
597 // Default number of iterations to run ICF is 2.
598 unsigned int max_iterations
= (parameters
->options().icf_iterations() > 0)
599 ? parameters
->options().icf_iterations()
602 bool converged
= false;
604 while (!converged
&& (num_iterations
< max_iterations
))
607 converged
= match_sections(num_iterations
, symtab
,
608 &num_tracked_relocs
, &this->kept_section_id_
,
609 this->id_section_
, &is_secn_or_group_unique
,
613 if (parameters
->options().print_icf_sections())
616 gold_info(_("%s: ICF Converged after %u iteration(s)"),
617 program_name
, num_iterations
);
619 gold_info(_("%s: ICF stopped after %u iteration(s)"),
620 program_name
, num_iterations
);
623 // Unfold --keep-unique symbols.
624 for (options::String_set::const_iterator p
=
625 parameters
->options().keep_unique_begin();
626 p
!= parameters
->options().keep_unique_end();
629 const char* name
= p
->c_str();
630 Symbol
* sym
= symtab
->lookup(name
);
633 gold_warning(_("Could not find symbol %s to unfold\n"), name
);
635 else if (sym
->source() == Symbol::FROM_OBJECT
636 && !sym
->object()->is_dynamic())
638 Object
* obj
= sym
->object();
640 unsigned int shndx
= sym
->shndx(&is_ordinary
);
643 this->unfold_section(obj
, shndx
);
652 // Unfolds the section denoted by OBJ and SHNDX if folded.
655 Icf::unfold_section(Object
* obj
, unsigned int shndx
)
657 Section_id
secn(obj
, shndx
);
658 Uniq_secn_id_map::iterator it
= this->section_id_
.find(secn
);
659 if (it
== this->section_id_
.end())
661 unsigned int section_num
= it
->second
;
662 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
663 if (kept_section_id
!= section_num
)
664 this->kept_section_id_
[section_num
] = section_num
;
667 // This function determines if the section corresponding to the
668 // given object and index is folded based on if the kept section
669 // is different from this section.
672 Icf::is_section_folded(Object
* obj
, unsigned int shndx
)
674 Section_id
secn(obj
, shndx
);
675 Uniq_secn_id_map::iterator it
= this->section_id_
.find(secn
);
676 if (it
== this->section_id_
.end())
678 unsigned int section_num
= it
->second
;
679 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
680 return kept_section_id
!= section_num
;
683 // This function returns the folded section for the given section.
686 Icf::get_folded_section(Object
* dup_obj
, unsigned int dup_shndx
)
688 Section_id
dup_secn(dup_obj
, dup_shndx
);
689 Uniq_secn_id_map::iterator it
= this->section_id_
.find(dup_secn
);
690 gold_assert(it
!= this->section_id_
.end());
691 unsigned int section_num
= it
->second
;
692 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
693 Section_id folded_section
= this->id_section_
[kept_section_id
];
694 return folded_section
;
697 } // End of namespace gold.