* config/tc-mips.c (macro) <M_DEXT, M_DINS>: Correct types used
[binutils.git] / gas / config / tc-mips.c
blob045cf87de6a1b6da56046cf11ac5e009ecda019f
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
10 This file is part of GAS.
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
75 int mips_flag_mdebug = -1;
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
86 #include "ecoff.h"
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
92 #define ZERO 0
93 #define ATREG 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
103 #define ILLEGAL_REG (32)
105 #define AT mips_opts.at
107 /* Allow override of standard little-endian ECOFF format. */
109 #ifndef ECOFF_LITTLE_FORMAT
110 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
111 #endif
113 extern int target_big_endian;
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
121 ? ".rodata" \
122 : (abort (), ""))
124 /* Information about an instruction, including its format, operands
125 and fixups. */
126 struct mips_cl_insn
128 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
129 const struct mips_opcode *insn_mo;
131 /* True if this is a mips16 instruction and if we want the extended
132 form of INSN_MO. */
133 bfd_boolean use_extend;
135 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
136 unsigned short extend;
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. */
140 unsigned long insn_opcode;
142 /* The frag that contains the instruction. */
143 struct frag *frag;
145 /* The offset into FRAG of the first instruction byte. */
146 long where;
148 /* The relocs associated with the instruction, if any. */
149 fixS *fixp[3];
151 /* True if this entry cannot be moved from its current position. */
152 unsigned int fixed_p : 1;
154 /* True if this instruction occurred in a .set noreorder block. */
155 unsigned int noreorder_p : 1;
157 /* True for mips16 instructions that jump to an absolute address. */
158 unsigned int mips16_absolute_jump_p : 1;
161 /* The ABI to use. */
162 enum mips_abi_level
164 NO_ABI = 0,
165 O32_ABI,
166 O64_ABI,
167 N32_ABI,
168 N64_ABI,
169 EABI_ABI
172 /* MIPS ABI we are using for this output file. */
173 static enum mips_abi_level mips_abi = NO_ABI;
175 /* Whether or not we have code that can call pic code. */
176 int mips_abicalls = FALSE;
178 /* Whether or not we have code which can be put into a shared
179 library. */
180 static bfd_boolean mips_in_shared = TRUE;
182 /* This is the set of options which may be modified by the .set
183 pseudo-op. We use a struct so that .set push and .set pop are more
184 reliable. */
186 struct mips_set_options
188 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
189 if it has not been initialized. Changed by `.set mipsN', and the
190 -mipsN command line option, and the default CPU. */
191 int isa;
192 /* Enabled Application Specific Extensions (ASEs). These are set to -1
193 if they have not been initialized. Changed by `.set <asename>', by
194 command line options, and based on the default architecture. */
195 int ase_mips3d;
196 int ase_mdmx;
197 int ase_smartmips;
198 int ase_dsp;
199 int ase_dspr2;
200 int ase_mt;
201 /* Whether we are assembling for the mips16 processor. 0 if we are
202 not, 1 if we are, and -1 if the value has not been initialized.
203 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
204 -nomips16 command line options, and the default CPU. */
205 int mips16;
206 /* Non-zero if we should not reorder instructions. Changed by `.set
207 reorder' and `.set noreorder'. */
208 int noreorder;
209 /* Non-zero if we should not permit the register designated "assembler
210 temporary" to be used in instructions. The value is the register
211 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
212 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
213 unsigned int at;
214 /* Non-zero if we should warn when a macro instruction expands into
215 more than one machine instruction. Changed by `.set nomacro' and
216 `.set macro'. */
217 int warn_about_macros;
218 /* Non-zero if we should not move instructions. Changed by `.set
219 move', `.set volatile', `.set nomove', and `.set novolatile'. */
220 int nomove;
221 /* Non-zero if we should not optimize branches by moving the target
222 of the branch into the delay slot. Actually, we don't perform
223 this optimization anyhow. Changed by `.set bopt' and `.set
224 nobopt'. */
225 int nobopt;
226 /* Non-zero if we should not autoextend mips16 instructions.
227 Changed by `.set autoextend' and `.set noautoextend'. */
228 int noautoextend;
229 /* Restrict general purpose registers and floating point registers
230 to 32 bit. This is initially determined when -mgp32 or -mfp32
231 is passed but can changed if the assembler code uses .set mipsN. */
232 int gp32;
233 int fp32;
234 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
235 command line option, and the default CPU. */
236 int arch;
237 /* True if ".set sym32" is in effect. */
238 bfd_boolean sym32;
239 /* True if floating-point operations are not allowed. Changed by .set
240 softfloat or .set hardfloat, by command line options -msoft-float or
241 -mhard-float. The default is false. */
242 bfd_boolean soft_float;
244 /* True if only single-precision floating-point operations are allowed.
245 Changed by .set singlefloat or .set doublefloat, command-line options
246 -msingle-float or -mdouble-float. The default is false. */
247 bfd_boolean single_float;
250 /* This is the struct we use to hold the current set of options. Note
251 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
252 -1 to indicate that they have not been initialized. */
254 /* True if -mgp32 was passed. */
255 static int file_mips_gp32 = -1;
257 /* True if -mfp32 was passed. */
258 static int file_mips_fp32 = -1;
260 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
261 static int file_mips_soft_float = 0;
263 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
264 static int file_mips_single_float = 0;
266 static struct mips_set_options mips_opts =
268 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
269 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
270 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
271 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
272 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
273 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
276 /* These variables are filled in with the masks of registers used.
277 The object format code reads them and puts them in the appropriate
278 place. */
279 unsigned long mips_gprmask;
280 unsigned long mips_cprmask[4];
282 /* MIPS ISA we are using for this output file. */
283 static int file_mips_isa = ISA_UNKNOWN;
285 /* True if -mips16 was passed or implied by arguments passed on the
286 command line (e.g., by -march). */
287 static int file_ase_mips16;
289 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
290 || mips_opts.isa == ISA_MIPS32R2 \
291 || mips_opts.isa == ISA_MIPS64 \
292 || mips_opts.isa == ISA_MIPS64R2)
294 /* True if we want to create R_MIPS_JALR for jalr $25. */
295 #ifdef TE_IRIX
296 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
297 #else
298 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
299 because there's no place for any addend, the only acceptable
300 expression is a bare symbol. */
301 #define MIPS_JALR_HINT_P(EXPR) \
302 (!HAVE_IN_PLACE_ADDENDS \
303 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
304 #endif
306 /* True if -mips3d was passed or implied by arguments passed on the
307 command line (e.g., by -march). */
308 static int file_ase_mips3d;
310 /* True if -mdmx was passed or implied by arguments passed on the
311 command line (e.g., by -march). */
312 static int file_ase_mdmx;
314 /* True if -msmartmips was passed or implied by arguments passed on the
315 command line (e.g., by -march). */
316 static int file_ase_smartmips;
318 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
319 || mips_opts.isa == ISA_MIPS32R2)
321 /* True if -mdsp was passed or implied by arguments passed on the
322 command line (e.g., by -march). */
323 static int file_ase_dsp;
325 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
326 || mips_opts.isa == ISA_MIPS64R2)
328 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
330 /* True if -mdspr2 was passed or implied by arguments passed on the
331 command line (e.g., by -march). */
332 static int file_ase_dspr2;
334 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
335 || mips_opts.isa == ISA_MIPS64R2)
337 /* True if -mmt was passed or implied by arguments passed on the
338 command line (e.g., by -march). */
339 static int file_ase_mt;
341 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
342 || mips_opts.isa == ISA_MIPS64R2)
344 /* The argument of the -march= flag. The architecture we are assembling. */
345 static int file_mips_arch = CPU_UNKNOWN;
346 static const char *mips_arch_string;
348 /* The argument of the -mtune= flag. The architecture for which we
349 are optimizing. */
350 static int mips_tune = CPU_UNKNOWN;
351 static const char *mips_tune_string;
353 /* True when generating 32-bit code for a 64-bit processor. */
354 static int mips_32bitmode = 0;
356 /* True if the given ABI requires 32-bit registers. */
357 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
359 /* Likewise 64-bit registers. */
360 #define ABI_NEEDS_64BIT_REGS(ABI) \
361 ((ABI) == N32_ABI \
362 || (ABI) == N64_ABI \
363 || (ABI) == O64_ABI)
365 /* Return true if ISA supports 64 bit wide gp registers. */
366 #define ISA_HAS_64BIT_REGS(ISA) \
367 ((ISA) == ISA_MIPS3 \
368 || (ISA) == ISA_MIPS4 \
369 || (ISA) == ISA_MIPS5 \
370 || (ISA) == ISA_MIPS64 \
371 || (ISA) == ISA_MIPS64R2)
373 /* Return true if ISA supports 64 bit wide float registers. */
374 #define ISA_HAS_64BIT_FPRS(ISA) \
375 ((ISA) == ISA_MIPS3 \
376 || (ISA) == ISA_MIPS4 \
377 || (ISA) == ISA_MIPS5 \
378 || (ISA) == ISA_MIPS32R2 \
379 || (ISA) == ISA_MIPS64 \
380 || (ISA) == ISA_MIPS64R2)
382 /* Return true if ISA supports 64-bit right rotate (dror et al.)
383 instructions. */
384 #define ISA_HAS_DROR(ISA) \
385 ((ISA) == ISA_MIPS64R2)
387 /* Return true if ISA supports 32-bit right rotate (ror et al.)
388 instructions. */
389 #define ISA_HAS_ROR(ISA) \
390 ((ISA) == ISA_MIPS32R2 \
391 || (ISA) == ISA_MIPS64R2 \
392 || mips_opts.ase_smartmips)
394 /* Return true if ISA supports single-precision floats in odd registers. */
395 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
396 ((ISA) == ISA_MIPS32 \
397 || (ISA) == ISA_MIPS32R2 \
398 || (ISA) == ISA_MIPS64 \
399 || (ISA) == ISA_MIPS64R2)
401 /* Return true if ISA supports move to/from high part of a 64-bit
402 floating-point register. */
403 #define ISA_HAS_MXHC1(ISA) \
404 ((ISA) == ISA_MIPS32R2 \
405 || (ISA) == ISA_MIPS64R2)
407 #define HAVE_32BIT_GPRS \
408 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
410 #define HAVE_32BIT_FPRS \
411 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
413 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
414 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
416 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
418 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
420 /* True if relocations are stored in-place. */
421 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
423 /* The ABI-derived address size. */
424 #define HAVE_64BIT_ADDRESSES \
425 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
426 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
428 /* The size of symbolic constants (i.e., expressions of the form
429 "SYMBOL" or "SYMBOL + OFFSET"). */
430 #define HAVE_32BIT_SYMBOLS \
431 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
432 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
434 /* Addresses are loaded in different ways, depending on the address size
435 in use. The n32 ABI Documentation also mandates the use of additions
436 with overflow checking, but existing implementations don't follow it. */
437 #define ADDRESS_ADD_INSN \
438 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
440 #define ADDRESS_ADDI_INSN \
441 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
443 #define ADDRESS_LOAD_INSN \
444 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
446 #define ADDRESS_STORE_INSN \
447 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
449 /* Return true if the given CPU supports the MIPS16 ASE. */
450 #define CPU_HAS_MIPS16(cpu) \
451 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
452 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
454 /* True if CPU has a dror instruction. */
455 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
457 /* True if CPU has a ror instruction. */
458 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
460 /* True if CPU has seq/sne and seqi/snei instructions. */
461 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
463 /* True if CPU does not implement the all the coprocessor insns. For these
464 CPUs only those COP insns are accepted that are explicitly marked to be
465 available on the CPU. ISA membership for COP insns is ignored. */
466 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
468 /* True if mflo and mfhi can be immediately followed by instructions
469 which write to the HI and LO registers.
471 According to MIPS specifications, MIPS ISAs I, II, and III need
472 (at least) two instructions between the reads of HI/LO and
473 instructions which write them, and later ISAs do not. Contradicting
474 the MIPS specifications, some MIPS IV processor user manuals (e.g.
475 the UM for the NEC Vr5000) document needing the instructions between
476 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
477 MIPS64 and later ISAs to have the interlocks, plus any specific
478 earlier-ISA CPUs for which CPU documentation declares that the
479 instructions are really interlocked. */
480 #define hilo_interlocks \
481 (mips_opts.isa == ISA_MIPS32 \
482 || mips_opts.isa == ISA_MIPS32R2 \
483 || mips_opts.isa == ISA_MIPS64 \
484 || mips_opts.isa == ISA_MIPS64R2 \
485 || mips_opts.arch == CPU_R4010 \
486 || mips_opts.arch == CPU_R10000 \
487 || mips_opts.arch == CPU_R12000 \
488 || mips_opts.arch == CPU_R14000 \
489 || mips_opts.arch == CPU_R16000 \
490 || mips_opts.arch == CPU_RM7000 \
491 || mips_opts.arch == CPU_VR5500 \
494 /* Whether the processor uses hardware interlocks to protect reads
495 from the GPRs after they are loaded from memory, and thus does not
496 require nops to be inserted. This applies to instructions marked
497 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
498 level I. */
499 #define gpr_interlocks \
500 (mips_opts.isa != ISA_MIPS1 \
501 || mips_opts.arch == CPU_R3900)
503 /* Whether the processor uses hardware interlocks to avoid delays
504 required by coprocessor instructions, and thus does not require
505 nops to be inserted. This applies to instructions marked
506 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
507 between instructions marked INSN_WRITE_COND_CODE and ones marked
508 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
509 levels I, II, and III. */
510 /* Itbl support may require additional care here. */
511 #define cop_interlocks \
512 ((mips_opts.isa != ISA_MIPS1 \
513 && mips_opts.isa != ISA_MIPS2 \
514 && mips_opts.isa != ISA_MIPS3) \
515 || mips_opts.arch == CPU_R4300 \
518 /* Whether the processor uses hardware interlocks to protect reads
519 from coprocessor registers after they are loaded from memory, and
520 thus does not require nops to be inserted. This applies to
521 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
522 requires at MIPS ISA level I. */
523 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
525 /* Is this a mfhi or mflo instruction? */
526 #define MF_HILO_INSN(PINFO) \
527 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
529 /* Returns true for a (non floating-point) coprocessor instruction. Reading
530 or writing the condition code is only possible on the coprocessors and
531 these insns are not marked with INSN_COP. Thus for these insns use the
532 condition-code flags. */
533 #define COP_INSN(PINFO) \
534 (PINFO != INSN_MACRO \
535 && ((PINFO) & (FP_S | FP_D)) == 0 \
536 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
538 /* MIPS PIC level. */
540 enum mips_pic_level mips_pic;
542 /* 1 if we should generate 32 bit offsets from the $gp register in
543 SVR4_PIC mode. Currently has no meaning in other modes. */
544 static int mips_big_got = 0;
546 /* 1 if trap instructions should used for overflow rather than break
547 instructions. */
548 static int mips_trap = 0;
550 /* 1 if double width floating point constants should not be constructed
551 by assembling two single width halves into two single width floating
552 point registers which just happen to alias the double width destination
553 register. On some architectures this aliasing can be disabled by a bit
554 in the status register, and the setting of this bit cannot be determined
555 automatically at assemble time. */
556 static int mips_disable_float_construction;
558 /* Non-zero if any .set noreorder directives were used. */
560 static int mips_any_noreorder;
562 /* Non-zero if nops should be inserted when the register referenced in
563 an mfhi/mflo instruction is read in the next two instructions. */
564 static int mips_7000_hilo_fix;
566 /* The size of objects in the small data section. */
567 static unsigned int g_switch_value = 8;
568 /* Whether the -G option was used. */
569 static int g_switch_seen = 0;
571 #define N_RMASK 0xc4
572 #define N_VFP 0xd4
574 /* If we can determine in advance that GP optimization won't be
575 possible, we can skip the relaxation stuff that tries to produce
576 GP-relative references. This makes delay slot optimization work
577 better.
579 This function can only provide a guess, but it seems to work for
580 gcc output. It needs to guess right for gcc, otherwise gcc
581 will put what it thinks is a GP-relative instruction in a branch
582 delay slot.
584 I don't know if a fix is needed for the SVR4_PIC mode. I've only
585 fixed it for the non-PIC mode. KR 95/04/07 */
586 static int nopic_need_relax (symbolS *, int);
588 /* handle of the OPCODE hash table */
589 static struct hash_control *op_hash = NULL;
591 /* The opcode hash table we use for the mips16. */
592 static struct hash_control *mips16_op_hash = NULL;
594 /* This array holds the chars that always start a comment. If the
595 pre-processor is disabled, these aren't very useful */
596 const char comment_chars[] = "#";
598 /* This array holds the chars that only start a comment at the beginning of
599 a line. If the line seems to have the form '# 123 filename'
600 .line and .file directives will appear in the pre-processed output */
601 /* Note that input_file.c hand checks for '#' at the beginning of the
602 first line of the input file. This is because the compiler outputs
603 #NO_APP at the beginning of its output. */
604 /* Also note that C style comments are always supported. */
605 const char line_comment_chars[] = "#";
607 /* This array holds machine specific line separator characters. */
608 const char line_separator_chars[] = ";";
610 /* Chars that can be used to separate mant from exp in floating point nums */
611 const char EXP_CHARS[] = "eE";
613 /* Chars that mean this number is a floating point constant */
614 /* As in 0f12.456 */
615 /* or 0d1.2345e12 */
616 const char FLT_CHARS[] = "rRsSfFdDxXpP";
618 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
619 changed in read.c . Ideally it shouldn't have to know about it at all,
620 but nothing is ideal around here.
623 static char *insn_error;
625 static int auto_align = 1;
627 /* When outputting SVR4 PIC code, the assembler needs to know the
628 offset in the stack frame from which to restore the $gp register.
629 This is set by the .cprestore pseudo-op, and saved in this
630 variable. */
631 static offsetT mips_cprestore_offset = -1;
633 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
634 more optimizations, it can use a register value instead of a memory-saved
635 offset and even an other register than $gp as global pointer. */
636 static offsetT mips_cpreturn_offset = -1;
637 static int mips_cpreturn_register = -1;
638 static int mips_gp_register = GP;
639 static int mips_gprel_offset = 0;
641 /* Whether mips_cprestore_offset has been set in the current function
642 (or whether it has already been warned about, if not). */
643 static int mips_cprestore_valid = 0;
645 /* This is the register which holds the stack frame, as set by the
646 .frame pseudo-op. This is needed to implement .cprestore. */
647 static int mips_frame_reg = SP;
649 /* Whether mips_frame_reg has been set in the current function
650 (or whether it has already been warned about, if not). */
651 static int mips_frame_reg_valid = 0;
653 /* To output NOP instructions correctly, we need to keep information
654 about the previous two instructions. */
656 /* Whether we are optimizing. The default value of 2 means to remove
657 unneeded NOPs and swap branch instructions when possible. A value
658 of 1 means to not swap branches. A value of 0 means to always
659 insert NOPs. */
660 static int mips_optimize = 2;
662 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
663 equivalent to seeing no -g option at all. */
664 static int mips_debug = 0;
666 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
667 #define MAX_VR4130_NOPS 4
669 /* The maximum number of NOPs needed to fill delay slots. */
670 #define MAX_DELAY_NOPS 2
672 /* The maximum number of NOPs needed for any purpose. */
673 #define MAX_NOPS 4
675 /* A list of previous instructions, with index 0 being the most recent.
676 We need to look back MAX_NOPS instructions when filling delay slots
677 or working around processor errata. We need to look back one
678 instruction further if we're thinking about using history[0] to
679 fill a branch delay slot. */
680 static struct mips_cl_insn history[1 + MAX_NOPS];
682 /* Nop instructions used by emit_nop. */
683 static struct mips_cl_insn nop_insn, mips16_nop_insn;
685 /* The appropriate nop for the current mode. */
686 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
688 /* If this is set, it points to a frag holding nop instructions which
689 were inserted before the start of a noreorder section. If those
690 nops turn out to be unnecessary, the size of the frag can be
691 decreased. */
692 static fragS *prev_nop_frag;
694 /* The number of nop instructions we created in prev_nop_frag. */
695 static int prev_nop_frag_holds;
697 /* The number of nop instructions that we know we need in
698 prev_nop_frag. */
699 static int prev_nop_frag_required;
701 /* The number of instructions we've seen since prev_nop_frag. */
702 static int prev_nop_frag_since;
704 /* For ECOFF and ELF, relocations against symbols are done in two
705 parts, with a HI relocation and a LO relocation. Each relocation
706 has only 16 bits of space to store an addend. This means that in
707 order for the linker to handle carries correctly, it must be able
708 to locate both the HI and the LO relocation. This means that the
709 relocations must appear in order in the relocation table.
711 In order to implement this, we keep track of each unmatched HI
712 relocation. We then sort them so that they immediately precede the
713 corresponding LO relocation. */
715 struct mips_hi_fixup
717 /* Next HI fixup. */
718 struct mips_hi_fixup *next;
719 /* This fixup. */
720 fixS *fixp;
721 /* The section this fixup is in. */
722 segT seg;
725 /* The list of unmatched HI relocs. */
727 static struct mips_hi_fixup *mips_hi_fixup_list;
729 /* The frag containing the last explicit relocation operator.
730 Null if explicit relocations have not been used. */
732 static fragS *prev_reloc_op_frag;
734 /* Map normal MIPS register numbers to mips16 register numbers. */
736 #define X ILLEGAL_REG
737 static const int mips32_to_16_reg_map[] =
739 X, X, 2, 3, 4, 5, 6, 7,
740 X, X, X, X, X, X, X, X,
741 0, 1, X, X, X, X, X, X,
742 X, X, X, X, X, X, X, X
744 #undef X
746 /* Map mips16 register numbers to normal MIPS register numbers. */
748 static const unsigned int mips16_to_32_reg_map[] =
750 16, 17, 2, 3, 4, 5, 6, 7
753 /* Classifies the kind of instructions we're interested in when
754 implementing -mfix-vr4120. */
755 enum fix_vr4120_class
757 FIX_VR4120_MACC,
758 FIX_VR4120_DMACC,
759 FIX_VR4120_MULT,
760 FIX_VR4120_DMULT,
761 FIX_VR4120_DIV,
762 FIX_VR4120_MTHILO,
763 NUM_FIX_VR4120_CLASSES
766 /* ...likewise -mfix-loongson2f-jump. */
767 static bfd_boolean mips_fix_loongson2f_jump;
769 /* ...likewise -mfix-loongson2f-nop. */
770 static bfd_boolean mips_fix_loongson2f_nop;
772 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
773 static bfd_boolean mips_fix_loongson2f;
775 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
776 there must be at least one other instruction between an instruction
777 of type X and an instruction of type Y. */
778 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
780 /* True if -mfix-vr4120 is in force. */
781 static int mips_fix_vr4120;
783 /* ...likewise -mfix-vr4130. */
784 static int mips_fix_vr4130;
786 /* ...likewise -mfix-24k. */
787 static int mips_fix_24k;
789 /* ...likewise -mfix-cn63xxp1 */
790 static bfd_boolean mips_fix_cn63xxp1;
792 /* We don't relax branches by default, since this causes us to expand
793 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
794 fail to compute the offset before expanding the macro to the most
795 efficient expansion. */
797 static int mips_relax_branch;
799 /* The expansion of many macros depends on the type of symbol that
800 they refer to. For example, when generating position-dependent code,
801 a macro that refers to a symbol may have two different expansions,
802 one which uses GP-relative addresses and one which uses absolute
803 addresses. When generating SVR4-style PIC, a macro may have
804 different expansions for local and global symbols.
806 We handle these situations by generating both sequences and putting
807 them in variant frags. In position-dependent code, the first sequence
808 will be the GP-relative one and the second sequence will be the
809 absolute one. In SVR4 PIC, the first sequence will be for global
810 symbols and the second will be for local symbols.
812 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
813 SECOND are the lengths of the two sequences in bytes. These fields
814 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
815 the subtype has the following flags:
817 RELAX_USE_SECOND
818 Set if it has been decided that we should use the second
819 sequence instead of the first.
821 RELAX_SECOND_LONGER
822 Set in the first variant frag if the macro's second implementation
823 is longer than its first. This refers to the macro as a whole,
824 not an individual relaxation.
826 RELAX_NOMACRO
827 Set in the first variant frag if the macro appeared in a .set nomacro
828 block and if one alternative requires a warning but the other does not.
830 RELAX_DELAY_SLOT
831 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
832 delay slot.
834 The frag's "opcode" points to the first fixup for relaxable code.
836 Relaxable macros are generated using a sequence such as:
838 relax_start (SYMBOL);
839 ... generate first expansion ...
840 relax_switch ();
841 ... generate second expansion ...
842 relax_end ();
844 The code and fixups for the unwanted alternative are discarded
845 by md_convert_frag. */
846 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
848 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
849 #define RELAX_SECOND(X) ((X) & 0xff)
850 #define RELAX_USE_SECOND 0x10000
851 #define RELAX_SECOND_LONGER 0x20000
852 #define RELAX_NOMACRO 0x40000
853 #define RELAX_DELAY_SLOT 0x80000
855 /* Branch without likely bit. If label is out of range, we turn:
857 beq reg1, reg2, label
858 delay slot
860 into
862 bne reg1, reg2, 0f
864 j label
865 0: delay slot
867 with the following opcode replacements:
869 beq <-> bne
870 blez <-> bgtz
871 bltz <-> bgez
872 bc1f <-> bc1t
874 bltzal <-> bgezal (with jal label instead of j label)
876 Even though keeping the delay slot instruction in the delay slot of
877 the branch would be more efficient, it would be very tricky to do
878 correctly, because we'd have to introduce a variable frag *after*
879 the delay slot instruction, and expand that instead. Let's do it
880 the easy way for now, even if the branch-not-taken case now costs
881 one additional instruction. Out-of-range branches are not supposed
882 to be common, anyway.
884 Branch likely. If label is out of range, we turn:
886 beql reg1, reg2, label
887 delay slot (annulled if branch not taken)
889 into
891 beql reg1, reg2, 1f
893 beql $0, $0, 2f
895 1: j[al] label
896 delay slot (executed only if branch taken)
899 It would be possible to generate a shorter sequence by losing the
900 likely bit, generating something like:
902 bne reg1, reg2, 0f
904 j[al] label
905 delay slot (executed only if branch taken)
908 beql -> bne
909 bnel -> beq
910 blezl -> bgtz
911 bgtzl -> blez
912 bltzl -> bgez
913 bgezl -> bltz
914 bc1fl -> bc1t
915 bc1tl -> bc1f
917 bltzall -> bgezal (with jal label instead of j label)
918 bgezall -> bltzal (ditto)
921 but it's not clear that it would actually improve performance. */
922 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
923 ((relax_substateT) \
924 (0xc0000000 \
925 | ((toofar) ? 1 : 0) \
926 | ((link) ? 2 : 0) \
927 | ((likely) ? 4 : 0) \
928 | ((uncond) ? 8 : 0)))
929 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
930 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
931 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
932 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
933 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
935 /* For mips16 code, we use an entirely different form of relaxation.
936 mips16 supports two versions of most instructions which take
937 immediate values: a small one which takes some small value, and a
938 larger one which takes a 16 bit value. Since branches also follow
939 this pattern, relaxing these values is required.
941 We can assemble both mips16 and normal MIPS code in a single
942 object. Therefore, we need to support this type of relaxation at
943 the same time that we support the relaxation described above. We
944 use the high bit of the subtype field to distinguish these cases.
946 The information we store for this type of relaxation is the
947 argument code found in the opcode file for this relocation, whether
948 the user explicitly requested a small or extended form, and whether
949 the relocation is in a jump or jal delay slot. That tells us the
950 size of the value, and how it should be stored. We also store
951 whether the fragment is considered to be extended or not. We also
952 store whether this is known to be a branch to a different section,
953 whether we have tried to relax this frag yet, and whether we have
954 ever extended a PC relative fragment because of a shift count. */
955 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
956 (0x80000000 \
957 | ((type) & 0xff) \
958 | ((small) ? 0x100 : 0) \
959 | ((ext) ? 0x200 : 0) \
960 | ((dslot) ? 0x400 : 0) \
961 | ((jal_dslot) ? 0x800 : 0))
962 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
963 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
964 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
965 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
966 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
967 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
968 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
969 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
970 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
971 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
972 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
973 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
975 /* Is the given value a sign-extended 32-bit value? */
976 #define IS_SEXT_32BIT_NUM(x) \
977 (((x) &~ (offsetT) 0x7fffffff) == 0 \
978 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
980 /* Is the given value a sign-extended 16-bit value? */
981 #define IS_SEXT_16BIT_NUM(x) \
982 (((x) &~ (offsetT) 0x7fff) == 0 \
983 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
985 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
986 #define IS_ZEXT_32BIT_NUM(x) \
987 (((x) &~ (offsetT) 0xffffffff) == 0 \
988 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
990 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
991 VALUE << SHIFT. VALUE is evaluated exactly once. */
992 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
993 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
994 | (((VALUE) & (MASK)) << (SHIFT)))
996 /* Extract bits MASK << SHIFT from STRUCT and shift them right
997 SHIFT places. */
998 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
999 (((STRUCT) >> (SHIFT)) & (MASK))
1001 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1002 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1004 include/opcode/mips.h specifies operand fields using the macros
1005 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1006 with "MIPS16OP" instead of "OP". */
1007 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
1008 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
1009 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1010 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1011 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1013 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1014 #define EXTRACT_OPERAND(FIELD, INSN) \
1015 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1016 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1017 EXTRACT_BITS ((INSN).insn_opcode, \
1018 MIPS16OP_MASK_##FIELD, \
1019 MIPS16OP_SH_##FIELD)
1021 /* Global variables used when generating relaxable macros. See the
1022 comment above RELAX_ENCODE for more details about how relaxation
1023 is used. */
1024 static struct {
1025 /* 0 if we're not emitting a relaxable macro.
1026 1 if we're emitting the first of the two relaxation alternatives.
1027 2 if we're emitting the second alternative. */
1028 int sequence;
1030 /* The first relaxable fixup in the current frag. (In other words,
1031 the first fixup that refers to relaxable code.) */
1032 fixS *first_fixup;
1034 /* sizes[0] says how many bytes of the first alternative are stored in
1035 the current frag. Likewise sizes[1] for the second alternative. */
1036 unsigned int sizes[2];
1038 /* The symbol on which the choice of sequence depends. */
1039 symbolS *symbol;
1040 } mips_relax;
1042 /* Global variables used to decide whether a macro needs a warning. */
1043 static struct {
1044 /* True if the macro is in a branch delay slot. */
1045 bfd_boolean delay_slot_p;
1047 /* For relaxable macros, sizes[0] is the length of the first alternative
1048 in bytes and sizes[1] is the length of the second alternative.
1049 For non-relaxable macros, both elements give the length of the
1050 macro in bytes. */
1051 unsigned int sizes[2];
1053 /* The first variant frag for this macro. */
1054 fragS *first_frag;
1055 } mips_macro_warning;
1057 /* Prototypes for static functions. */
1059 #define internalError() \
1060 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1062 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1064 static void append_insn
1065 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *);
1066 static void mips_no_prev_insn (void);
1067 static void macro_build (expressionS *, const char *, const char *, ...);
1068 static void mips16_macro_build
1069 (expressionS *, const char *, const char *, va_list *);
1070 static void load_register (int, expressionS *, int);
1071 static void macro_start (void);
1072 static void macro_end (void);
1073 static void macro (struct mips_cl_insn * ip);
1074 static void mips16_macro (struct mips_cl_insn * ip);
1075 static void mips_ip (char *str, struct mips_cl_insn * ip);
1076 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1077 static void mips16_immed
1078 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1079 unsigned long *, bfd_boolean *, unsigned short *);
1080 static size_t my_getSmallExpression
1081 (expressionS *, bfd_reloc_code_real_type *, char *);
1082 static void my_getExpression (expressionS *, char *);
1083 static void s_align (int);
1084 static void s_change_sec (int);
1085 static void s_change_section (int);
1086 static void s_cons (int);
1087 static void s_float_cons (int);
1088 static void s_mips_globl (int);
1089 static void s_option (int);
1090 static void s_mipsset (int);
1091 static void s_abicalls (int);
1092 static void s_cpload (int);
1093 static void s_cpsetup (int);
1094 static void s_cplocal (int);
1095 static void s_cprestore (int);
1096 static void s_cpreturn (int);
1097 static void s_dtprelword (int);
1098 static void s_dtpreldword (int);
1099 static void s_gpvalue (int);
1100 static void s_gpword (int);
1101 static void s_gpdword (int);
1102 static void s_cpadd (int);
1103 static void s_insn (int);
1104 static void md_obj_begin (void);
1105 static void md_obj_end (void);
1106 static void s_mips_ent (int);
1107 static void s_mips_end (int);
1108 static void s_mips_frame (int);
1109 static void s_mips_mask (int reg_type);
1110 static void s_mips_stab (int);
1111 static void s_mips_weakext (int);
1112 static void s_mips_file (int);
1113 static void s_mips_loc (int);
1114 static bfd_boolean pic_need_relax (symbolS *, asection *);
1115 static int relaxed_branch_length (fragS *, asection *, int);
1116 static int validate_mips_insn (const struct mips_opcode *);
1118 /* Table and functions used to map between CPU/ISA names, and
1119 ISA levels, and CPU numbers. */
1121 struct mips_cpu_info
1123 const char *name; /* CPU or ISA name. */
1124 int flags; /* ASEs available, or ISA flag. */
1125 int isa; /* ISA level. */
1126 int cpu; /* CPU number (default CPU if ISA). */
1129 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1130 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1131 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1132 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1133 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1134 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1135 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1137 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1138 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1139 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1141 /* Pseudo-op table.
1143 The following pseudo-ops from the Kane and Heinrich MIPS book
1144 should be defined here, but are currently unsupported: .alias,
1145 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1147 The following pseudo-ops from the Kane and Heinrich MIPS book are
1148 specific to the type of debugging information being generated, and
1149 should be defined by the object format: .aent, .begin, .bend,
1150 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1151 .vreg.
1153 The following pseudo-ops from the Kane and Heinrich MIPS book are
1154 not MIPS CPU specific, but are also not specific to the object file
1155 format. This file is probably the best place to define them, but
1156 they are not currently supported: .asm0, .endr, .lab, .struct. */
1158 static const pseudo_typeS mips_pseudo_table[] =
1160 /* MIPS specific pseudo-ops. */
1161 {"option", s_option, 0},
1162 {"set", s_mipsset, 0},
1163 {"rdata", s_change_sec, 'r'},
1164 {"sdata", s_change_sec, 's'},
1165 {"livereg", s_ignore, 0},
1166 {"abicalls", s_abicalls, 0},
1167 {"cpload", s_cpload, 0},
1168 {"cpsetup", s_cpsetup, 0},
1169 {"cplocal", s_cplocal, 0},
1170 {"cprestore", s_cprestore, 0},
1171 {"cpreturn", s_cpreturn, 0},
1172 {"dtprelword", s_dtprelword, 0},
1173 {"dtpreldword", s_dtpreldword, 0},
1174 {"gpvalue", s_gpvalue, 0},
1175 {"gpword", s_gpword, 0},
1176 {"gpdword", s_gpdword, 0},
1177 {"cpadd", s_cpadd, 0},
1178 {"insn", s_insn, 0},
1180 /* Relatively generic pseudo-ops that happen to be used on MIPS
1181 chips. */
1182 {"asciiz", stringer, 8 + 1},
1183 {"bss", s_change_sec, 'b'},
1184 {"err", s_err, 0},
1185 {"half", s_cons, 1},
1186 {"dword", s_cons, 3},
1187 {"weakext", s_mips_weakext, 0},
1188 {"origin", s_org, 0},
1189 {"repeat", s_rept, 0},
1191 /* For MIPS this is non-standard, but we define it for consistency. */
1192 {"sbss", s_change_sec, 'B'},
1194 /* These pseudo-ops are defined in read.c, but must be overridden
1195 here for one reason or another. */
1196 {"align", s_align, 0},
1197 {"byte", s_cons, 0},
1198 {"data", s_change_sec, 'd'},
1199 {"double", s_float_cons, 'd'},
1200 {"float", s_float_cons, 'f'},
1201 {"globl", s_mips_globl, 0},
1202 {"global", s_mips_globl, 0},
1203 {"hword", s_cons, 1},
1204 {"int", s_cons, 2},
1205 {"long", s_cons, 2},
1206 {"octa", s_cons, 4},
1207 {"quad", s_cons, 3},
1208 {"section", s_change_section, 0},
1209 {"short", s_cons, 1},
1210 {"single", s_float_cons, 'f'},
1211 {"stabn", s_mips_stab, 'n'},
1212 {"text", s_change_sec, 't'},
1213 {"word", s_cons, 2},
1215 { "extern", ecoff_directive_extern, 0},
1217 { NULL, NULL, 0 },
1220 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1222 /* These pseudo-ops should be defined by the object file format.
1223 However, a.out doesn't support them, so we have versions here. */
1224 {"aent", s_mips_ent, 1},
1225 {"bgnb", s_ignore, 0},
1226 {"end", s_mips_end, 0},
1227 {"endb", s_ignore, 0},
1228 {"ent", s_mips_ent, 0},
1229 {"file", s_mips_file, 0},
1230 {"fmask", s_mips_mask, 'F'},
1231 {"frame", s_mips_frame, 0},
1232 {"loc", s_mips_loc, 0},
1233 {"mask", s_mips_mask, 'R'},
1234 {"verstamp", s_ignore, 0},
1235 { NULL, NULL, 0 },
1238 extern void pop_insert (const pseudo_typeS *);
1240 void
1241 mips_pop_insert (void)
1243 pop_insert (mips_pseudo_table);
1244 if (! ECOFF_DEBUGGING)
1245 pop_insert (mips_nonecoff_pseudo_table);
1248 /* Symbols labelling the current insn. */
1250 struct insn_label_list
1252 struct insn_label_list *next;
1253 symbolS *label;
1256 static struct insn_label_list *free_insn_labels;
1257 #define label_list tc_segment_info_data.labels
1259 static void mips_clear_insn_labels (void);
1261 static inline void
1262 mips_clear_insn_labels (void)
1264 register struct insn_label_list **pl;
1265 segment_info_type *si;
1267 if (now_seg)
1269 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1272 si = seg_info (now_seg);
1273 *pl = si->label_list;
1274 si->label_list = NULL;
1279 static char *expr_end;
1281 /* Expressions which appear in instructions. These are set by
1282 mips_ip. */
1284 static expressionS imm_expr;
1285 static expressionS imm2_expr;
1286 static expressionS offset_expr;
1288 /* Relocs associated with imm_expr and offset_expr. */
1290 static bfd_reloc_code_real_type imm_reloc[3]
1291 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1292 static bfd_reloc_code_real_type offset_reloc[3]
1293 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1295 /* These are set by mips16_ip if an explicit extension is used. */
1297 static bfd_boolean mips16_small, mips16_ext;
1299 #ifdef OBJ_ELF
1300 /* The pdr segment for per procedure frame/regmask info. Not used for
1301 ECOFF debugging. */
1303 static segT pdr_seg;
1304 #endif
1306 /* The default target format to use. */
1308 const char *
1309 mips_target_format (void)
1311 switch (OUTPUT_FLAVOR)
1313 case bfd_target_ecoff_flavour:
1314 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1315 case bfd_target_coff_flavour:
1316 return "pe-mips";
1317 case bfd_target_elf_flavour:
1318 #ifdef TE_VXWORKS
1319 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1320 return (target_big_endian
1321 ? "elf32-bigmips-vxworks"
1322 : "elf32-littlemips-vxworks");
1323 #endif
1324 #ifdef TE_TMIPS
1325 /* This is traditional mips. */
1326 return (target_big_endian
1327 ? (HAVE_64BIT_OBJECTS
1328 ? "elf64-tradbigmips"
1329 : (HAVE_NEWABI
1330 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1331 : (HAVE_64BIT_OBJECTS
1332 ? "elf64-tradlittlemips"
1333 : (HAVE_NEWABI
1334 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1335 #else
1336 return (target_big_endian
1337 ? (HAVE_64BIT_OBJECTS
1338 ? "elf64-bigmips"
1339 : (HAVE_NEWABI
1340 ? "elf32-nbigmips" : "elf32-bigmips"))
1341 : (HAVE_64BIT_OBJECTS
1342 ? "elf64-littlemips"
1343 : (HAVE_NEWABI
1344 ? "elf32-nlittlemips" : "elf32-littlemips")));
1345 #endif
1346 default:
1347 abort ();
1348 return NULL;
1352 /* Return the length of instruction INSN. */
1354 static inline unsigned int
1355 insn_length (const struct mips_cl_insn *insn)
1357 if (!mips_opts.mips16)
1358 return 4;
1359 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1362 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1364 static void
1365 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1367 size_t i;
1369 insn->insn_mo = mo;
1370 insn->use_extend = FALSE;
1371 insn->extend = 0;
1372 insn->insn_opcode = mo->match;
1373 insn->frag = NULL;
1374 insn->where = 0;
1375 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1376 insn->fixp[i] = NULL;
1377 insn->fixed_p = (mips_opts.noreorder > 0);
1378 insn->noreorder_p = (mips_opts.noreorder > 0);
1379 insn->mips16_absolute_jump_p = 0;
1382 /* Record the current MIPS16 mode in now_seg. */
1384 static void
1385 mips_record_mips16_mode (void)
1387 segment_info_type *si;
1389 si = seg_info (now_seg);
1390 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1391 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1394 /* Install INSN at the location specified by its "frag" and "where" fields. */
1396 static void
1397 install_insn (const struct mips_cl_insn *insn)
1399 char *f = insn->frag->fr_literal + insn->where;
1400 if (!mips_opts.mips16)
1401 md_number_to_chars (f, insn->insn_opcode, 4);
1402 else if (insn->mips16_absolute_jump_p)
1404 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1405 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1407 else
1409 if (insn->use_extend)
1411 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1412 f += 2;
1414 md_number_to_chars (f, insn->insn_opcode, 2);
1416 mips_record_mips16_mode ();
1419 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1420 and install the opcode in the new location. */
1422 static void
1423 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1425 size_t i;
1427 insn->frag = frag;
1428 insn->where = where;
1429 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1430 if (insn->fixp[i] != NULL)
1432 insn->fixp[i]->fx_frag = frag;
1433 insn->fixp[i]->fx_where = where;
1435 install_insn (insn);
1438 /* Add INSN to the end of the output. */
1440 static void
1441 add_fixed_insn (struct mips_cl_insn *insn)
1443 char *f = frag_more (insn_length (insn));
1444 move_insn (insn, frag_now, f - frag_now->fr_literal);
1447 /* Start a variant frag and move INSN to the start of the variant part,
1448 marking it as fixed. The other arguments are as for frag_var. */
1450 static void
1451 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1452 relax_substateT subtype, symbolS *symbol, offsetT offset)
1454 frag_grow (max_chars);
1455 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1456 insn->fixed_p = 1;
1457 frag_var (rs_machine_dependent, max_chars, var,
1458 subtype, symbol, offset, NULL);
1461 /* Insert N copies of INSN into the history buffer, starting at
1462 position FIRST. Neither FIRST nor N need to be clipped. */
1464 static void
1465 insert_into_history (unsigned int first, unsigned int n,
1466 const struct mips_cl_insn *insn)
1468 if (mips_relax.sequence != 2)
1470 unsigned int i;
1472 for (i = ARRAY_SIZE (history); i-- > first;)
1473 if (i >= first + n)
1474 history[i] = history[i - n];
1475 else
1476 history[i] = *insn;
1480 /* Emit a nop instruction, recording it in the history buffer. */
1482 static void
1483 emit_nop (void)
1485 add_fixed_insn (NOP_INSN);
1486 insert_into_history (0, 1, NOP_INSN);
1489 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1490 the idea is to make it obvious at a glance that each errata is
1491 included. */
1493 static void
1494 init_vr4120_conflicts (void)
1496 #define CONFLICT(FIRST, SECOND) \
1497 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1499 /* Errata 21 - [D]DIV[U] after [D]MACC */
1500 CONFLICT (MACC, DIV);
1501 CONFLICT (DMACC, DIV);
1503 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1504 CONFLICT (DMULT, DMULT);
1505 CONFLICT (DMULT, DMACC);
1506 CONFLICT (DMACC, DMULT);
1507 CONFLICT (DMACC, DMACC);
1509 /* Errata 24 - MT{LO,HI} after [D]MACC */
1510 CONFLICT (MACC, MTHILO);
1511 CONFLICT (DMACC, MTHILO);
1513 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1514 instruction is executed immediately after a MACC or DMACC
1515 instruction, the result of [either instruction] is incorrect." */
1516 CONFLICT (MACC, MULT);
1517 CONFLICT (MACC, DMULT);
1518 CONFLICT (DMACC, MULT);
1519 CONFLICT (DMACC, DMULT);
1521 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1522 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1523 DDIV or DDIVU instruction, the result of the MACC or
1524 DMACC instruction is incorrect.". */
1525 CONFLICT (DMULT, MACC);
1526 CONFLICT (DMULT, DMACC);
1527 CONFLICT (DIV, MACC);
1528 CONFLICT (DIV, DMACC);
1530 #undef CONFLICT
1533 struct regname {
1534 const char *name;
1535 unsigned int num;
1538 #define RTYPE_MASK 0x1ff00
1539 #define RTYPE_NUM 0x00100
1540 #define RTYPE_FPU 0x00200
1541 #define RTYPE_FCC 0x00400
1542 #define RTYPE_VEC 0x00800
1543 #define RTYPE_GP 0x01000
1544 #define RTYPE_CP0 0x02000
1545 #define RTYPE_PC 0x04000
1546 #define RTYPE_ACC 0x08000
1547 #define RTYPE_CCC 0x10000
1548 #define RNUM_MASK 0x000ff
1549 #define RWARN 0x80000
1551 #define GENERIC_REGISTER_NUMBERS \
1552 {"$0", RTYPE_NUM | 0}, \
1553 {"$1", RTYPE_NUM | 1}, \
1554 {"$2", RTYPE_NUM | 2}, \
1555 {"$3", RTYPE_NUM | 3}, \
1556 {"$4", RTYPE_NUM | 4}, \
1557 {"$5", RTYPE_NUM | 5}, \
1558 {"$6", RTYPE_NUM | 6}, \
1559 {"$7", RTYPE_NUM | 7}, \
1560 {"$8", RTYPE_NUM | 8}, \
1561 {"$9", RTYPE_NUM | 9}, \
1562 {"$10", RTYPE_NUM | 10}, \
1563 {"$11", RTYPE_NUM | 11}, \
1564 {"$12", RTYPE_NUM | 12}, \
1565 {"$13", RTYPE_NUM | 13}, \
1566 {"$14", RTYPE_NUM | 14}, \
1567 {"$15", RTYPE_NUM | 15}, \
1568 {"$16", RTYPE_NUM | 16}, \
1569 {"$17", RTYPE_NUM | 17}, \
1570 {"$18", RTYPE_NUM | 18}, \
1571 {"$19", RTYPE_NUM | 19}, \
1572 {"$20", RTYPE_NUM | 20}, \
1573 {"$21", RTYPE_NUM | 21}, \
1574 {"$22", RTYPE_NUM | 22}, \
1575 {"$23", RTYPE_NUM | 23}, \
1576 {"$24", RTYPE_NUM | 24}, \
1577 {"$25", RTYPE_NUM | 25}, \
1578 {"$26", RTYPE_NUM | 26}, \
1579 {"$27", RTYPE_NUM | 27}, \
1580 {"$28", RTYPE_NUM | 28}, \
1581 {"$29", RTYPE_NUM | 29}, \
1582 {"$30", RTYPE_NUM | 30}, \
1583 {"$31", RTYPE_NUM | 31}
1585 #define FPU_REGISTER_NAMES \
1586 {"$f0", RTYPE_FPU | 0}, \
1587 {"$f1", RTYPE_FPU | 1}, \
1588 {"$f2", RTYPE_FPU | 2}, \
1589 {"$f3", RTYPE_FPU | 3}, \
1590 {"$f4", RTYPE_FPU | 4}, \
1591 {"$f5", RTYPE_FPU | 5}, \
1592 {"$f6", RTYPE_FPU | 6}, \
1593 {"$f7", RTYPE_FPU | 7}, \
1594 {"$f8", RTYPE_FPU | 8}, \
1595 {"$f9", RTYPE_FPU | 9}, \
1596 {"$f10", RTYPE_FPU | 10}, \
1597 {"$f11", RTYPE_FPU | 11}, \
1598 {"$f12", RTYPE_FPU | 12}, \
1599 {"$f13", RTYPE_FPU | 13}, \
1600 {"$f14", RTYPE_FPU | 14}, \
1601 {"$f15", RTYPE_FPU | 15}, \
1602 {"$f16", RTYPE_FPU | 16}, \
1603 {"$f17", RTYPE_FPU | 17}, \
1604 {"$f18", RTYPE_FPU | 18}, \
1605 {"$f19", RTYPE_FPU | 19}, \
1606 {"$f20", RTYPE_FPU | 20}, \
1607 {"$f21", RTYPE_FPU | 21}, \
1608 {"$f22", RTYPE_FPU | 22}, \
1609 {"$f23", RTYPE_FPU | 23}, \
1610 {"$f24", RTYPE_FPU | 24}, \
1611 {"$f25", RTYPE_FPU | 25}, \
1612 {"$f26", RTYPE_FPU | 26}, \
1613 {"$f27", RTYPE_FPU | 27}, \
1614 {"$f28", RTYPE_FPU | 28}, \
1615 {"$f29", RTYPE_FPU | 29}, \
1616 {"$f30", RTYPE_FPU | 30}, \
1617 {"$f31", RTYPE_FPU | 31}
1619 #define FPU_CONDITION_CODE_NAMES \
1620 {"$fcc0", RTYPE_FCC | 0}, \
1621 {"$fcc1", RTYPE_FCC | 1}, \
1622 {"$fcc2", RTYPE_FCC | 2}, \
1623 {"$fcc3", RTYPE_FCC | 3}, \
1624 {"$fcc4", RTYPE_FCC | 4}, \
1625 {"$fcc5", RTYPE_FCC | 5}, \
1626 {"$fcc6", RTYPE_FCC | 6}, \
1627 {"$fcc7", RTYPE_FCC | 7}
1629 #define COPROC_CONDITION_CODE_NAMES \
1630 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1631 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1632 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1633 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1634 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1635 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1636 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1637 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1639 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1640 {"$a4", RTYPE_GP | 8}, \
1641 {"$a5", RTYPE_GP | 9}, \
1642 {"$a6", RTYPE_GP | 10}, \
1643 {"$a7", RTYPE_GP | 11}, \
1644 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1645 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1646 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1647 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1648 {"$t0", RTYPE_GP | 12}, \
1649 {"$t1", RTYPE_GP | 13}, \
1650 {"$t2", RTYPE_GP | 14}, \
1651 {"$t3", RTYPE_GP | 15}
1653 #define O32_SYMBOLIC_REGISTER_NAMES \
1654 {"$t0", RTYPE_GP | 8}, \
1655 {"$t1", RTYPE_GP | 9}, \
1656 {"$t2", RTYPE_GP | 10}, \
1657 {"$t3", RTYPE_GP | 11}, \
1658 {"$t4", RTYPE_GP | 12}, \
1659 {"$t5", RTYPE_GP | 13}, \
1660 {"$t6", RTYPE_GP | 14}, \
1661 {"$t7", RTYPE_GP | 15}, \
1662 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1663 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1664 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1665 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1667 /* Remaining symbolic register names */
1668 #define SYMBOLIC_REGISTER_NAMES \
1669 {"$zero", RTYPE_GP | 0}, \
1670 {"$at", RTYPE_GP | 1}, \
1671 {"$AT", RTYPE_GP | 1}, \
1672 {"$v0", RTYPE_GP | 2}, \
1673 {"$v1", RTYPE_GP | 3}, \
1674 {"$a0", RTYPE_GP | 4}, \
1675 {"$a1", RTYPE_GP | 5}, \
1676 {"$a2", RTYPE_GP | 6}, \
1677 {"$a3", RTYPE_GP | 7}, \
1678 {"$s0", RTYPE_GP | 16}, \
1679 {"$s1", RTYPE_GP | 17}, \
1680 {"$s2", RTYPE_GP | 18}, \
1681 {"$s3", RTYPE_GP | 19}, \
1682 {"$s4", RTYPE_GP | 20}, \
1683 {"$s5", RTYPE_GP | 21}, \
1684 {"$s6", RTYPE_GP | 22}, \
1685 {"$s7", RTYPE_GP | 23}, \
1686 {"$t8", RTYPE_GP | 24}, \
1687 {"$t9", RTYPE_GP | 25}, \
1688 {"$k0", RTYPE_GP | 26}, \
1689 {"$kt0", RTYPE_GP | 26}, \
1690 {"$k1", RTYPE_GP | 27}, \
1691 {"$kt1", RTYPE_GP | 27}, \
1692 {"$gp", RTYPE_GP | 28}, \
1693 {"$sp", RTYPE_GP | 29}, \
1694 {"$s8", RTYPE_GP | 30}, \
1695 {"$fp", RTYPE_GP | 30}, \
1696 {"$ra", RTYPE_GP | 31}
1698 #define MIPS16_SPECIAL_REGISTER_NAMES \
1699 {"$pc", RTYPE_PC | 0}
1701 #define MDMX_VECTOR_REGISTER_NAMES \
1702 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1703 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1704 {"$v2", RTYPE_VEC | 2}, \
1705 {"$v3", RTYPE_VEC | 3}, \
1706 {"$v4", RTYPE_VEC | 4}, \
1707 {"$v5", RTYPE_VEC | 5}, \
1708 {"$v6", RTYPE_VEC | 6}, \
1709 {"$v7", RTYPE_VEC | 7}, \
1710 {"$v8", RTYPE_VEC | 8}, \
1711 {"$v9", RTYPE_VEC | 9}, \
1712 {"$v10", RTYPE_VEC | 10}, \
1713 {"$v11", RTYPE_VEC | 11}, \
1714 {"$v12", RTYPE_VEC | 12}, \
1715 {"$v13", RTYPE_VEC | 13}, \
1716 {"$v14", RTYPE_VEC | 14}, \
1717 {"$v15", RTYPE_VEC | 15}, \
1718 {"$v16", RTYPE_VEC | 16}, \
1719 {"$v17", RTYPE_VEC | 17}, \
1720 {"$v18", RTYPE_VEC | 18}, \
1721 {"$v19", RTYPE_VEC | 19}, \
1722 {"$v20", RTYPE_VEC | 20}, \
1723 {"$v21", RTYPE_VEC | 21}, \
1724 {"$v22", RTYPE_VEC | 22}, \
1725 {"$v23", RTYPE_VEC | 23}, \
1726 {"$v24", RTYPE_VEC | 24}, \
1727 {"$v25", RTYPE_VEC | 25}, \
1728 {"$v26", RTYPE_VEC | 26}, \
1729 {"$v27", RTYPE_VEC | 27}, \
1730 {"$v28", RTYPE_VEC | 28}, \
1731 {"$v29", RTYPE_VEC | 29}, \
1732 {"$v30", RTYPE_VEC | 30}, \
1733 {"$v31", RTYPE_VEC | 31}
1735 #define MIPS_DSP_ACCUMULATOR_NAMES \
1736 {"$ac0", RTYPE_ACC | 0}, \
1737 {"$ac1", RTYPE_ACC | 1}, \
1738 {"$ac2", RTYPE_ACC | 2}, \
1739 {"$ac3", RTYPE_ACC | 3}
1741 static const struct regname reg_names[] = {
1742 GENERIC_REGISTER_NUMBERS,
1743 FPU_REGISTER_NAMES,
1744 FPU_CONDITION_CODE_NAMES,
1745 COPROC_CONDITION_CODE_NAMES,
1747 /* The $txx registers depends on the abi,
1748 these will be added later into the symbol table from
1749 one of the tables below once mips_abi is set after
1750 parsing of arguments from the command line. */
1751 SYMBOLIC_REGISTER_NAMES,
1753 MIPS16_SPECIAL_REGISTER_NAMES,
1754 MDMX_VECTOR_REGISTER_NAMES,
1755 MIPS_DSP_ACCUMULATOR_NAMES,
1756 {0, 0}
1759 static const struct regname reg_names_o32[] = {
1760 O32_SYMBOLIC_REGISTER_NAMES,
1761 {0, 0}
1764 static const struct regname reg_names_n32n64[] = {
1765 N32N64_SYMBOLIC_REGISTER_NAMES,
1766 {0, 0}
1769 static int
1770 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1772 symbolS *symbolP;
1773 char *e;
1774 char save_c;
1775 int reg = -1;
1777 /* Find end of name. */
1778 e = *s;
1779 if (is_name_beginner (*e))
1780 ++e;
1781 while (is_part_of_name (*e))
1782 ++e;
1784 /* Terminate name. */
1785 save_c = *e;
1786 *e = '\0';
1788 /* Look for a register symbol. */
1789 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1791 int r = S_GET_VALUE (symbolP);
1792 if (r & types)
1793 reg = r & RNUM_MASK;
1794 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1795 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1796 reg = (r & RNUM_MASK) - 2;
1798 /* Else see if this is a register defined in an itbl entry. */
1799 else if ((types & RTYPE_GP) && itbl_have_entries)
1801 char *n = *s;
1802 unsigned long r;
1804 if (*n == '$')
1805 ++n;
1806 if (itbl_get_reg_val (n, &r))
1807 reg = r & RNUM_MASK;
1810 /* Advance to next token if a register was recognised. */
1811 if (reg >= 0)
1812 *s = e;
1813 else if (types & RWARN)
1814 as_warn (_("Unrecognized register name `%s'"), *s);
1816 *e = save_c;
1817 if (regnop)
1818 *regnop = reg;
1819 return reg >= 0;
1822 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1823 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
1825 static bfd_boolean
1826 is_opcode_valid (const struct mips_opcode *mo)
1828 int isa = mips_opts.isa;
1829 int fp_s, fp_d;
1831 if (mips_opts.ase_mdmx)
1832 isa |= INSN_MDMX;
1833 if (mips_opts.ase_dsp)
1834 isa |= INSN_DSP;
1835 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1836 isa |= INSN_DSP64;
1837 if (mips_opts.ase_dspr2)
1838 isa |= INSN_DSPR2;
1839 if (mips_opts.ase_mt)
1840 isa |= INSN_MT;
1841 if (mips_opts.ase_mips3d)
1842 isa |= INSN_MIPS3D;
1843 if (mips_opts.ase_smartmips)
1844 isa |= INSN_SMARTMIPS;
1846 /* Don't accept instructions based on the ISA if the CPU does not implement
1847 all the coprocessor insns. */
1848 if (NO_ISA_COP (mips_opts.arch)
1849 && COP_INSN (mo->pinfo))
1850 isa = 0;
1852 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1853 return FALSE;
1855 /* Check whether the instruction or macro requires single-precision or
1856 double-precision floating-point support. Note that this information is
1857 stored differently in the opcode table for insns and macros. */
1858 if (mo->pinfo == INSN_MACRO)
1860 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1861 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1863 else
1865 fp_s = mo->pinfo & FP_S;
1866 fp_d = mo->pinfo & FP_D;
1869 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1870 return FALSE;
1872 if (fp_s && mips_opts.soft_float)
1873 return FALSE;
1875 return TRUE;
1878 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1879 selected ISA and architecture. */
1881 static bfd_boolean
1882 is_opcode_valid_16 (const struct mips_opcode *mo)
1884 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1887 /* This function is called once, at assembler startup time. It should set up
1888 all the tables, etc. that the MD part of the assembler will need. */
1890 void
1891 md_begin (void)
1893 const char *retval = NULL;
1894 int i = 0;
1895 int broken = 0;
1897 if (mips_pic != NO_PIC)
1899 if (g_switch_seen && g_switch_value != 0)
1900 as_bad (_("-G may not be used in position-independent code"));
1901 g_switch_value = 0;
1904 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1905 as_warn (_("Could not set architecture and machine"));
1907 op_hash = hash_new ();
1909 for (i = 0; i < NUMOPCODES;)
1911 const char *name = mips_opcodes[i].name;
1913 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1914 if (retval != NULL)
1916 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1917 mips_opcodes[i].name, retval);
1918 /* Probably a memory allocation problem? Give up now. */
1919 as_fatal (_("Broken assembler. No assembly attempted."));
1923 if (mips_opcodes[i].pinfo != INSN_MACRO)
1925 if (!validate_mips_insn (&mips_opcodes[i]))
1926 broken = 1;
1927 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1929 create_insn (&nop_insn, mips_opcodes + i);
1930 if (mips_fix_loongson2f_nop)
1931 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
1932 nop_insn.fixed_p = 1;
1935 ++i;
1937 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1940 mips16_op_hash = hash_new ();
1942 i = 0;
1943 while (i < bfd_mips16_num_opcodes)
1945 const char *name = mips16_opcodes[i].name;
1947 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1948 if (retval != NULL)
1949 as_fatal (_("internal: can't hash `%s': %s"),
1950 mips16_opcodes[i].name, retval);
1953 if (mips16_opcodes[i].pinfo != INSN_MACRO
1954 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1955 != mips16_opcodes[i].match))
1957 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1958 mips16_opcodes[i].name, mips16_opcodes[i].args);
1959 broken = 1;
1961 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1963 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1964 mips16_nop_insn.fixed_p = 1;
1966 ++i;
1968 while (i < bfd_mips16_num_opcodes
1969 && strcmp (mips16_opcodes[i].name, name) == 0);
1972 if (broken)
1973 as_fatal (_("Broken assembler. No assembly attempted."));
1975 /* We add all the general register names to the symbol table. This
1976 helps us detect invalid uses of them. */
1977 for (i = 0; reg_names[i].name; i++)
1978 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1979 reg_names[i].num, /* & RNUM_MASK, */
1980 &zero_address_frag));
1981 if (HAVE_NEWABI)
1982 for (i = 0; reg_names_n32n64[i].name; i++)
1983 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1984 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1985 &zero_address_frag));
1986 else
1987 for (i = 0; reg_names_o32[i].name; i++)
1988 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1989 reg_names_o32[i].num, /* & RNUM_MASK, */
1990 &zero_address_frag));
1992 mips_no_prev_insn ();
1994 mips_gprmask = 0;
1995 mips_cprmask[0] = 0;
1996 mips_cprmask[1] = 0;
1997 mips_cprmask[2] = 0;
1998 mips_cprmask[3] = 0;
2000 /* set the default alignment for the text section (2**2) */
2001 record_alignment (text_section, 2);
2003 bfd_set_gp_size (stdoutput, g_switch_value);
2005 #ifdef OBJ_ELF
2006 if (IS_ELF)
2008 /* On a native system other than VxWorks, sections must be aligned
2009 to 16 byte boundaries. When configured for an embedded ELF
2010 target, we don't bother. */
2011 if (strncmp (TARGET_OS, "elf", 3) != 0
2012 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2014 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2015 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2016 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2019 /* Create a .reginfo section for register masks and a .mdebug
2020 section for debugging information. */
2022 segT seg;
2023 subsegT subseg;
2024 flagword flags;
2025 segT sec;
2027 seg = now_seg;
2028 subseg = now_subseg;
2030 /* The ABI says this section should be loaded so that the
2031 running program can access it. However, we don't load it
2032 if we are configured for an embedded target */
2033 flags = SEC_READONLY | SEC_DATA;
2034 if (strncmp (TARGET_OS, "elf", 3) != 0)
2035 flags |= SEC_ALLOC | SEC_LOAD;
2037 if (mips_abi != N64_ABI)
2039 sec = subseg_new (".reginfo", (subsegT) 0);
2041 bfd_set_section_flags (stdoutput, sec, flags);
2042 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2044 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2046 else
2048 /* The 64-bit ABI uses a .MIPS.options section rather than
2049 .reginfo section. */
2050 sec = subseg_new (".MIPS.options", (subsegT) 0);
2051 bfd_set_section_flags (stdoutput, sec, flags);
2052 bfd_set_section_alignment (stdoutput, sec, 3);
2054 /* Set up the option header. */
2056 Elf_Internal_Options opthdr;
2057 char *f;
2059 opthdr.kind = ODK_REGINFO;
2060 opthdr.size = (sizeof (Elf_External_Options)
2061 + sizeof (Elf64_External_RegInfo));
2062 opthdr.section = 0;
2063 opthdr.info = 0;
2064 f = frag_more (sizeof (Elf_External_Options));
2065 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2066 (Elf_External_Options *) f);
2068 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2072 if (ECOFF_DEBUGGING)
2074 sec = subseg_new (".mdebug", (subsegT) 0);
2075 (void) bfd_set_section_flags (stdoutput, sec,
2076 SEC_HAS_CONTENTS | SEC_READONLY);
2077 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2079 else if (mips_flag_pdr)
2081 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2082 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2083 SEC_READONLY | SEC_RELOC
2084 | SEC_DEBUGGING);
2085 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2088 subseg_set (seg, subseg);
2091 #endif /* OBJ_ELF */
2093 if (! ECOFF_DEBUGGING)
2094 md_obj_begin ();
2096 if (mips_fix_vr4120)
2097 init_vr4120_conflicts ();
2100 void
2101 md_mips_end (void)
2103 if (! ECOFF_DEBUGGING)
2104 md_obj_end ();
2107 void
2108 md_assemble (char *str)
2110 struct mips_cl_insn insn;
2111 bfd_reloc_code_real_type unused_reloc[3]
2112 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2114 imm_expr.X_op = O_absent;
2115 imm2_expr.X_op = O_absent;
2116 offset_expr.X_op = O_absent;
2117 imm_reloc[0] = BFD_RELOC_UNUSED;
2118 imm_reloc[1] = BFD_RELOC_UNUSED;
2119 imm_reloc[2] = BFD_RELOC_UNUSED;
2120 offset_reloc[0] = BFD_RELOC_UNUSED;
2121 offset_reloc[1] = BFD_RELOC_UNUSED;
2122 offset_reloc[2] = BFD_RELOC_UNUSED;
2124 if (mips_opts.mips16)
2125 mips16_ip (str, &insn);
2126 else
2128 mips_ip (str, &insn);
2129 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2130 str, insn.insn_opcode));
2133 if (insn_error)
2135 as_bad ("%s `%s'", insn_error, str);
2136 return;
2139 if (insn.insn_mo->pinfo == INSN_MACRO)
2141 macro_start ();
2142 if (mips_opts.mips16)
2143 mips16_macro (&insn);
2144 else
2145 macro (&insn);
2146 macro_end ();
2148 else
2150 if (imm_expr.X_op != O_absent)
2151 append_insn (&insn, &imm_expr, imm_reloc);
2152 else if (offset_expr.X_op != O_absent)
2153 append_insn (&insn, &offset_expr, offset_reloc);
2154 else
2155 append_insn (&insn, NULL, unused_reloc);
2159 /* Convenience functions for abstracting away the differences between
2160 MIPS16 and non-MIPS16 relocations. */
2162 static inline bfd_boolean
2163 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2165 switch (reloc)
2167 case BFD_RELOC_MIPS16_JMP:
2168 case BFD_RELOC_MIPS16_GPREL:
2169 case BFD_RELOC_MIPS16_GOT16:
2170 case BFD_RELOC_MIPS16_CALL16:
2171 case BFD_RELOC_MIPS16_HI16_S:
2172 case BFD_RELOC_MIPS16_HI16:
2173 case BFD_RELOC_MIPS16_LO16:
2174 return TRUE;
2176 default:
2177 return FALSE;
2181 static inline bfd_boolean
2182 got16_reloc_p (bfd_reloc_code_real_type reloc)
2184 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2187 static inline bfd_boolean
2188 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2190 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2193 static inline bfd_boolean
2194 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2196 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2199 /* Return true if the given relocation might need a matching %lo().
2200 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2201 need a matching %lo() when applied to local symbols. */
2203 static inline bfd_boolean
2204 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2206 return (HAVE_IN_PLACE_ADDENDS
2207 && (hi16_reloc_p (reloc)
2208 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2209 all GOT16 relocations evaluate to "G". */
2210 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2213 /* Return the type of %lo() reloc needed by RELOC, given that
2214 reloc_needs_lo_p. */
2216 static inline bfd_reloc_code_real_type
2217 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2219 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2222 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2223 relocation. */
2225 static inline bfd_boolean
2226 fixup_has_matching_lo_p (fixS *fixp)
2228 return (fixp->fx_next != NULL
2229 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2230 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2231 && fixp->fx_offset == fixp->fx_next->fx_offset);
2234 /* See whether instruction IP reads register REG. CLASS is the type
2235 of register. */
2237 static int
2238 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2239 enum mips_regclass regclass)
2241 if (regclass == MIPS16_REG)
2243 gas_assert (mips_opts.mips16);
2244 reg = mips16_to_32_reg_map[reg];
2245 regclass = MIPS_GR_REG;
2248 /* Don't report on general register ZERO, since it never changes. */
2249 if (regclass == MIPS_GR_REG && reg == ZERO)
2250 return 0;
2252 if (regclass == MIPS_FP_REG)
2254 gas_assert (! mips_opts.mips16);
2255 /* If we are called with either $f0 or $f1, we must check $f0.
2256 This is not optimal, because it will introduce an unnecessary
2257 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2258 need to distinguish reading both $f0 and $f1 or just one of
2259 them. Note that we don't have to check the other way,
2260 because there is no instruction that sets both $f0 and $f1
2261 and requires a delay. */
2262 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2263 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2264 == (reg &~ (unsigned) 1)))
2265 return 1;
2266 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2267 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2268 == (reg &~ (unsigned) 1)))
2269 return 1;
2271 else if (! mips_opts.mips16)
2273 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2274 && EXTRACT_OPERAND (RS, *ip) == reg)
2275 return 1;
2276 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2277 && EXTRACT_OPERAND (RT, *ip) == reg)
2278 return 1;
2280 else
2282 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2283 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2284 return 1;
2285 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2286 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2287 return 1;
2288 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2289 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2290 == reg))
2291 return 1;
2292 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2293 return 1;
2294 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2295 return 1;
2296 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2297 return 1;
2298 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2299 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2300 return 1;
2303 return 0;
2306 /* This function returns true if modifying a register requires a
2307 delay. */
2309 static int
2310 reg_needs_delay (unsigned int reg)
2312 unsigned long prev_pinfo;
2314 prev_pinfo = history[0].insn_mo->pinfo;
2315 if (! mips_opts.noreorder
2316 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2317 && ! gpr_interlocks)
2318 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2319 && ! cop_interlocks)))
2321 /* A load from a coprocessor or from memory. All load delays
2322 delay the use of general register rt for one instruction. */
2323 /* Itbl support may require additional care here. */
2324 know (prev_pinfo & INSN_WRITE_GPR_T);
2325 if (reg == EXTRACT_OPERAND (RT, history[0]))
2326 return 1;
2329 return 0;
2332 /* Move all labels in insn_labels to the current insertion point. */
2334 static void
2335 mips_move_labels (void)
2337 segment_info_type *si = seg_info (now_seg);
2338 struct insn_label_list *l;
2339 valueT val;
2341 for (l = si->label_list; l != NULL; l = l->next)
2343 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2344 symbol_set_frag (l->label, frag_now);
2345 val = (valueT) frag_now_fix ();
2346 /* mips16 text labels are stored as odd. */
2347 if (mips_opts.mips16)
2348 ++val;
2349 S_SET_VALUE (l->label, val);
2353 static bfd_boolean
2354 s_is_linkonce (symbolS *sym, segT from_seg)
2356 bfd_boolean linkonce = FALSE;
2357 segT symseg = S_GET_SEGMENT (sym);
2359 if (symseg != from_seg && !S_IS_LOCAL (sym))
2361 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2362 linkonce = TRUE;
2363 #ifdef OBJ_ELF
2364 /* The GNU toolchain uses an extension for ELF: a section
2365 beginning with the magic string .gnu.linkonce is a
2366 linkonce section. */
2367 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2368 sizeof ".gnu.linkonce" - 1) == 0)
2369 linkonce = TRUE;
2370 #endif
2372 return linkonce;
2375 /* Mark instruction labels in mips16 mode. This permits the linker to
2376 handle them specially, such as generating jalx instructions when
2377 needed. We also make them odd for the duration of the assembly, in
2378 order to generate the right sort of code. We will make them even
2379 in the adjust_symtab routine, while leaving them marked. This is
2380 convenient for the debugger and the disassembler. The linker knows
2381 to make them odd again. */
2383 static void
2384 mips16_mark_labels (void)
2386 segment_info_type *si = seg_info (now_seg);
2387 struct insn_label_list *l;
2389 if (!mips_opts.mips16)
2390 return;
2392 for (l = si->label_list; l != NULL; l = l->next)
2394 symbolS *label = l->label;
2396 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2397 if (IS_ELF)
2398 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2399 #endif
2400 if ((S_GET_VALUE (label) & 1) == 0
2401 /* Don't adjust the address if the label is global or weak, or
2402 in a link-once section, since we'll be emitting symbol reloc
2403 references to it which will be patched up by the linker, and
2404 the final value of the symbol may or may not be MIPS16. */
2405 && ! S_IS_WEAK (label)
2406 && ! S_IS_EXTERNAL (label)
2407 && ! s_is_linkonce (label, now_seg))
2408 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2412 /* End the current frag. Make it a variant frag and record the
2413 relaxation info. */
2415 static void
2416 relax_close_frag (void)
2418 mips_macro_warning.first_frag = frag_now;
2419 frag_var (rs_machine_dependent, 0, 0,
2420 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2421 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2423 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2424 mips_relax.first_fixup = 0;
2427 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2428 See the comment above RELAX_ENCODE for more details. */
2430 static void
2431 relax_start (symbolS *symbol)
2433 gas_assert (mips_relax.sequence == 0);
2434 mips_relax.sequence = 1;
2435 mips_relax.symbol = symbol;
2438 /* Start generating the second version of a relaxable sequence.
2439 See the comment above RELAX_ENCODE for more details. */
2441 static void
2442 relax_switch (void)
2444 gas_assert (mips_relax.sequence == 1);
2445 mips_relax.sequence = 2;
2448 /* End the current relaxable sequence. */
2450 static void
2451 relax_end (void)
2453 gas_assert (mips_relax.sequence == 2);
2454 relax_close_frag ();
2455 mips_relax.sequence = 0;
2458 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2459 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2460 by VR4120 errata. */
2462 static unsigned int
2463 classify_vr4120_insn (const char *name)
2465 if (strncmp (name, "macc", 4) == 0)
2466 return FIX_VR4120_MACC;
2467 if (strncmp (name, "dmacc", 5) == 0)
2468 return FIX_VR4120_DMACC;
2469 if (strncmp (name, "mult", 4) == 0)
2470 return FIX_VR4120_MULT;
2471 if (strncmp (name, "dmult", 5) == 0)
2472 return FIX_VR4120_DMULT;
2473 if (strstr (name, "div"))
2474 return FIX_VR4120_DIV;
2475 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2476 return FIX_VR4120_MTHILO;
2477 return NUM_FIX_VR4120_CLASSES;
2480 #define INSN_ERET 0x42000018
2481 #define INSN_DERET 0x4200001f
2483 /* Return the number of instructions that must separate INSN1 and INSN2,
2484 where INSN1 is the earlier instruction. Return the worst-case value
2485 for any INSN2 if INSN2 is null. */
2487 static unsigned int
2488 insns_between (const struct mips_cl_insn *insn1,
2489 const struct mips_cl_insn *insn2)
2491 unsigned long pinfo1, pinfo2;
2493 /* This function needs to know which pinfo flags are set for INSN2
2494 and which registers INSN2 uses. The former is stored in PINFO2 and
2495 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2496 will have every flag set and INSN2_USES_REG will always return true. */
2497 pinfo1 = insn1->insn_mo->pinfo;
2498 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2500 #define INSN2_USES_REG(REG, CLASS) \
2501 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2503 /* For most targets, write-after-read dependencies on the HI and LO
2504 registers must be separated by at least two instructions. */
2505 if (!hilo_interlocks)
2507 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2508 return 2;
2509 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2510 return 2;
2513 /* If we're working around r7000 errata, there must be two instructions
2514 between an mfhi or mflo and any instruction that uses the result. */
2515 if (mips_7000_hilo_fix
2516 && MF_HILO_INSN (pinfo1)
2517 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2518 return 2;
2520 /* If we're working around 24K errata, one instruction is required
2521 if an ERET or DERET is followed by a branch instruction. */
2522 if (mips_fix_24k)
2524 if (insn1->insn_opcode == INSN_ERET
2525 || insn1->insn_opcode == INSN_DERET)
2527 if (insn2 == NULL
2528 || insn2->insn_opcode == INSN_ERET
2529 || insn2->insn_opcode == INSN_DERET
2530 || (insn2->insn_mo->pinfo
2531 & (INSN_UNCOND_BRANCH_DELAY
2532 | INSN_COND_BRANCH_DELAY
2533 | INSN_COND_BRANCH_LIKELY)) != 0)
2534 return 1;
2538 /* If working around VR4120 errata, check for combinations that need
2539 a single intervening instruction. */
2540 if (mips_fix_vr4120)
2542 unsigned int class1, class2;
2544 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2545 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2547 if (insn2 == NULL)
2548 return 1;
2549 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2550 if (vr4120_conflicts[class1] & (1 << class2))
2551 return 1;
2555 if (!mips_opts.mips16)
2557 /* Check for GPR or coprocessor load delays. All such delays
2558 are on the RT register. */
2559 /* Itbl support may require additional care here. */
2560 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2561 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2563 know (pinfo1 & INSN_WRITE_GPR_T);
2564 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2565 return 1;
2568 /* Check for generic coprocessor hazards.
2570 This case is not handled very well. There is no special
2571 knowledge of CP0 handling, and the coprocessors other than
2572 the floating point unit are not distinguished at all. */
2573 /* Itbl support may require additional care here. FIXME!
2574 Need to modify this to include knowledge about
2575 user specified delays! */
2576 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2577 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2579 /* Handle cases where INSN1 writes to a known general coprocessor
2580 register. There must be a one instruction delay before INSN2
2581 if INSN2 reads that register, otherwise no delay is needed. */
2582 if (pinfo1 & INSN_WRITE_FPR_T)
2584 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2585 return 1;
2587 else if (pinfo1 & INSN_WRITE_FPR_S)
2589 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2590 return 1;
2592 else
2594 /* Read-after-write dependencies on the control registers
2595 require a two-instruction gap. */
2596 if ((pinfo1 & INSN_WRITE_COND_CODE)
2597 && (pinfo2 & INSN_READ_COND_CODE))
2598 return 2;
2600 /* We don't know exactly what INSN1 does. If INSN2 is
2601 also a coprocessor instruction, assume there must be
2602 a one instruction gap. */
2603 if (pinfo2 & INSN_COP)
2604 return 1;
2608 /* Check for read-after-write dependencies on the coprocessor
2609 control registers in cases where INSN1 does not need a general
2610 coprocessor delay. This means that INSN1 is a floating point
2611 comparison instruction. */
2612 /* Itbl support may require additional care here. */
2613 else if (!cop_interlocks
2614 && (pinfo1 & INSN_WRITE_COND_CODE)
2615 && (pinfo2 & INSN_READ_COND_CODE))
2616 return 1;
2619 #undef INSN2_USES_REG
2621 return 0;
2624 /* Return the number of nops that would be needed to work around the
2625 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2626 the MAX_VR4130_NOPS instructions described by HIST. */
2628 static int
2629 nops_for_vr4130 (const struct mips_cl_insn *hist,
2630 const struct mips_cl_insn *insn)
2632 int i, j, reg;
2634 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2635 are not affected by the errata. */
2636 if (insn != 0
2637 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2638 || strcmp (insn->insn_mo->name, "mtlo") == 0
2639 || strcmp (insn->insn_mo->name, "mthi") == 0))
2640 return 0;
2642 /* Search for the first MFLO or MFHI. */
2643 for (i = 0; i < MAX_VR4130_NOPS; i++)
2644 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
2646 /* Extract the destination register. */
2647 if (mips_opts.mips16)
2648 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, hist[i])];
2649 else
2650 reg = EXTRACT_OPERAND (RD, hist[i]);
2652 /* No nops are needed if INSN reads that register. */
2653 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2654 return 0;
2656 /* ...or if any of the intervening instructions do. */
2657 for (j = 0; j < i; j++)
2658 if (insn_uses_reg (&hist[j], reg, MIPS_GR_REG))
2659 return 0;
2661 return MAX_VR4130_NOPS - i;
2663 return 0;
2666 /* Return the number of nops that would be needed if instruction INSN
2667 immediately followed the MAX_NOPS instructions given by HIST,
2668 where HIST[0] is the most recent instruction. If INSN is null,
2669 return the worse-case number of nops for any instruction. */
2671 static int
2672 nops_for_insn (const struct mips_cl_insn *hist,
2673 const struct mips_cl_insn *insn)
2675 int i, nops, tmp_nops;
2677 nops = 0;
2678 for (i = 0; i < MAX_DELAY_NOPS; i++)
2680 tmp_nops = insns_between (hist + i, insn) - i;
2681 if (tmp_nops > nops)
2682 nops = tmp_nops;
2685 if (mips_fix_vr4130)
2687 tmp_nops = nops_for_vr4130 (hist, insn);
2688 if (tmp_nops > nops)
2689 nops = tmp_nops;
2692 return nops;
2695 /* The variable arguments provide NUM_INSNS extra instructions that
2696 might be added to HIST. Return the largest number of nops that
2697 would be needed after the extended sequence. */
2699 static int
2700 nops_for_sequence (int num_insns, const struct mips_cl_insn *hist, ...)
2702 va_list args;
2703 struct mips_cl_insn buffer[MAX_NOPS];
2704 struct mips_cl_insn *cursor;
2705 int nops;
2707 va_start (args, hist);
2708 cursor = buffer + num_insns;
2709 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
2710 while (cursor > buffer)
2711 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2713 nops = nops_for_insn (buffer, NULL);
2714 va_end (args);
2715 return nops;
2718 /* Like nops_for_insn, but if INSN is a branch, take into account the
2719 worst-case delay for the branch target. */
2721 static int
2722 nops_for_insn_or_target (const struct mips_cl_insn *hist,
2723 const struct mips_cl_insn *insn)
2725 int nops, tmp_nops;
2727 nops = nops_for_insn (hist, insn);
2728 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2729 | INSN_COND_BRANCH_DELAY
2730 | INSN_COND_BRANCH_LIKELY))
2732 tmp_nops = nops_for_sequence (2, hist, insn, NOP_INSN);
2733 if (tmp_nops > nops)
2734 nops = tmp_nops;
2736 else if (mips_opts.mips16
2737 && (insn->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2738 | MIPS16_INSN_COND_BRANCH)))
2740 tmp_nops = nops_for_sequence (1, hist, insn);
2741 if (tmp_nops > nops)
2742 nops = tmp_nops;
2744 return nops;
2747 /* Fix NOP issue: Replace nops by "or at,at,zero". */
2749 static void
2750 fix_loongson2f_nop (struct mips_cl_insn * ip)
2752 if (strcmp (ip->insn_mo->name, "nop") == 0)
2753 ip->insn_opcode = LOONGSON2F_NOP_INSN;
2756 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
2757 jr target pc &= 'hffff_ffff_cfff_ffff. */
2759 static void
2760 fix_loongson2f_jump (struct mips_cl_insn * ip)
2762 if (strcmp (ip->insn_mo->name, "j") == 0
2763 || strcmp (ip->insn_mo->name, "jr") == 0
2764 || strcmp (ip->insn_mo->name, "jalr") == 0)
2766 int sreg;
2767 expressionS ep;
2769 if (! mips_opts.at)
2770 return;
2772 sreg = EXTRACT_OPERAND (RS, *ip);
2773 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
2774 return;
2776 ep.X_op = O_constant;
2777 ep.X_add_number = 0xcfff0000;
2778 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
2779 ep.X_add_number = 0xffff;
2780 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
2781 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
2785 static void
2786 fix_loongson2f (struct mips_cl_insn * ip)
2788 if (mips_fix_loongson2f_nop)
2789 fix_loongson2f_nop (ip);
2791 if (mips_fix_loongson2f_jump)
2792 fix_loongson2f_jump (ip);
2795 /* Output an instruction. IP is the instruction information.
2796 ADDRESS_EXPR is an operand of the instruction to be used with
2797 RELOC_TYPE. */
2799 static void
2800 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2801 bfd_reloc_code_real_type *reloc_type)
2803 unsigned long prev_pinfo, pinfo;
2804 relax_stateT prev_insn_frag_type = 0;
2805 bfd_boolean relaxed_branch = FALSE;
2806 segment_info_type *si = seg_info (now_seg);
2808 if (mips_fix_loongson2f)
2809 fix_loongson2f (ip);
2811 /* Mark instruction labels in mips16 mode. */
2812 mips16_mark_labels ();
2814 prev_pinfo = history[0].insn_mo->pinfo;
2815 pinfo = ip->insn_mo->pinfo;
2817 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2819 /* There are a lot of optimizations we could do that we don't.
2820 In particular, we do not, in general, reorder instructions.
2821 If you use gcc with optimization, it will reorder
2822 instructions and generally do much more optimization then we
2823 do here; repeating all that work in the assembler would only
2824 benefit hand written assembly code, and does not seem worth
2825 it. */
2826 int nops = (mips_optimize == 0
2827 ? nops_for_insn (history, NULL)
2828 : nops_for_insn_or_target (history, ip));
2829 if (nops > 0)
2831 fragS *old_frag;
2832 unsigned long old_frag_offset;
2833 int i;
2835 old_frag = frag_now;
2836 old_frag_offset = frag_now_fix ();
2838 for (i = 0; i < nops; i++)
2839 emit_nop ();
2841 if (listing)
2843 listing_prev_line ();
2844 /* We may be at the start of a variant frag. In case we
2845 are, make sure there is enough space for the frag
2846 after the frags created by listing_prev_line. The
2847 argument to frag_grow here must be at least as large
2848 as the argument to all other calls to frag_grow in
2849 this file. We don't have to worry about being in the
2850 middle of a variant frag, because the variants insert
2851 all needed nop instructions themselves. */
2852 frag_grow (40);
2855 mips_move_labels ();
2857 #ifndef NO_ECOFF_DEBUGGING
2858 if (ECOFF_DEBUGGING)
2859 ecoff_fix_loc (old_frag, old_frag_offset);
2860 #endif
2863 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2865 /* Work out how many nops in prev_nop_frag are needed by IP. */
2866 int nops = nops_for_insn_or_target (history, ip);
2867 gas_assert (nops <= prev_nop_frag_holds);
2869 /* Enforce NOPS as a minimum. */
2870 if (nops > prev_nop_frag_required)
2871 prev_nop_frag_required = nops;
2873 if (prev_nop_frag_holds == prev_nop_frag_required)
2875 /* Settle for the current number of nops. Update the history
2876 accordingly (for the benefit of any future .set reorder code). */
2877 prev_nop_frag = NULL;
2878 insert_into_history (prev_nop_frag_since,
2879 prev_nop_frag_holds, NOP_INSN);
2881 else
2883 /* Allow this instruction to replace one of the nops that was
2884 tentatively added to prev_nop_frag. */
2885 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2886 prev_nop_frag_holds--;
2887 prev_nop_frag_since++;
2891 #ifdef OBJ_ELF
2892 /* The value passed to dwarf2_emit_insn is the distance between
2893 the beginning of the current instruction and the address that
2894 should be recorded in the debug tables. For MIPS16 debug info
2895 we want to use ISA-encoded addresses, so we pass -1 for an
2896 address higher by one than the current. */
2897 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2898 #endif
2900 /* Record the frag type before frag_var. */
2901 if (history[0].frag)
2902 prev_insn_frag_type = history[0].frag->fr_type;
2904 if (address_expr
2905 && *reloc_type == BFD_RELOC_16_PCREL_S2
2906 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2907 || pinfo & INSN_COND_BRANCH_LIKELY)
2908 && mips_relax_branch
2909 /* Don't try branch relaxation within .set nomacro, or within
2910 .set noat if we use $at for PIC computations. If it turns
2911 out that the branch was out-of-range, we'll get an error. */
2912 && !mips_opts.warn_about_macros
2913 && (mips_opts.at || mips_pic == NO_PIC)
2914 && !mips_opts.mips16)
2916 relaxed_branch = TRUE;
2917 add_relaxed_insn (ip, (relaxed_branch_length
2918 (NULL, NULL,
2919 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2920 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2921 : 0)), 4,
2922 RELAX_BRANCH_ENCODE
2923 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2924 pinfo & INSN_COND_BRANCH_LIKELY,
2925 pinfo & INSN_WRITE_GPR_31,
2927 address_expr->X_add_symbol,
2928 address_expr->X_add_number);
2929 *reloc_type = BFD_RELOC_UNUSED;
2931 else if (*reloc_type > BFD_RELOC_UNUSED)
2933 /* We need to set up a variant frag. */
2934 gas_assert (mips_opts.mips16 && address_expr != NULL);
2935 add_relaxed_insn (ip, 4, 0,
2936 RELAX_MIPS16_ENCODE
2937 (*reloc_type - BFD_RELOC_UNUSED,
2938 mips16_small, mips16_ext,
2939 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2940 history[0].mips16_absolute_jump_p),
2941 make_expr_symbol (address_expr), 0);
2943 else if (mips_opts.mips16
2944 && ! ip->use_extend
2945 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2947 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2948 /* Make sure there is enough room to swap this instruction with
2949 a following jump instruction. */
2950 frag_grow (6);
2951 add_fixed_insn (ip);
2953 else
2955 if (mips_opts.mips16
2956 && mips_opts.noreorder
2957 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2958 as_warn (_("extended instruction in delay slot"));
2960 if (mips_relax.sequence)
2962 /* If we've reached the end of this frag, turn it into a variant
2963 frag and record the information for the instructions we've
2964 written so far. */
2965 if (frag_room () < 4)
2966 relax_close_frag ();
2967 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2970 if (mips_relax.sequence != 2)
2971 mips_macro_warning.sizes[0] += 4;
2972 if (mips_relax.sequence != 1)
2973 mips_macro_warning.sizes[1] += 4;
2975 if (mips_opts.mips16)
2977 ip->fixed_p = 1;
2978 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2980 add_fixed_insn (ip);
2983 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2985 if (address_expr->X_op == O_constant)
2987 unsigned int tmp;
2989 switch (*reloc_type)
2991 case BFD_RELOC_32:
2992 ip->insn_opcode |= address_expr->X_add_number;
2993 break;
2995 case BFD_RELOC_MIPS_HIGHEST:
2996 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2997 ip->insn_opcode |= tmp & 0xffff;
2998 break;
3000 case BFD_RELOC_MIPS_HIGHER:
3001 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
3002 ip->insn_opcode |= tmp & 0xffff;
3003 break;
3005 case BFD_RELOC_HI16_S:
3006 tmp = (address_expr->X_add_number + 0x8000) >> 16;
3007 ip->insn_opcode |= tmp & 0xffff;
3008 break;
3010 case BFD_RELOC_HI16:
3011 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
3012 break;
3014 case BFD_RELOC_UNUSED:
3015 case BFD_RELOC_LO16:
3016 case BFD_RELOC_MIPS_GOT_DISP:
3017 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3018 break;
3020 case BFD_RELOC_MIPS_JMP:
3021 if ((address_expr->X_add_number & 3) != 0)
3022 as_bad (_("jump to misaligned address (0x%lx)"),
3023 (unsigned long) address_expr->X_add_number);
3024 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3025 break;
3027 case BFD_RELOC_MIPS16_JMP:
3028 if ((address_expr->X_add_number & 3) != 0)
3029 as_bad (_("jump to misaligned address (0x%lx)"),
3030 (unsigned long) address_expr->X_add_number);
3031 ip->insn_opcode |=
3032 (((address_expr->X_add_number & 0x7c0000) << 3)
3033 | ((address_expr->X_add_number & 0xf800000) >> 7)
3034 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3035 break;
3037 case BFD_RELOC_16_PCREL_S2:
3038 if ((address_expr->X_add_number & 3) != 0)
3039 as_bad (_("branch to misaligned address (0x%lx)"),
3040 (unsigned long) address_expr->X_add_number);
3041 if (mips_relax_branch)
3042 goto need_reloc;
3043 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3044 as_bad (_("branch address range overflow (0x%lx)"),
3045 (unsigned long) address_expr->X_add_number);
3046 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3047 break;
3049 default:
3050 internalError ();
3053 else if (*reloc_type < BFD_RELOC_UNUSED)
3054 need_reloc:
3056 reloc_howto_type *howto;
3057 int i;
3059 /* In a compound relocation, it is the final (outermost)
3060 operator that determines the relocated field. */
3061 for (i = 1; i < 3; i++)
3062 if (reloc_type[i] == BFD_RELOC_UNUSED)
3063 break;
3065 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3066 if (howto == NULL)
3068 /* To reproduce this failure try assembling gas/testsuites/
3069 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3070 assembler. */
3071 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3072 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3075 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3076 bfd_get_reloc_size (howto),
3077 address_expr,
3078 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3079 reloc_type[0]);
3081 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3082 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3083 && ip->fixp[0]->fx_addsy)
3084 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3086 /* These relocations can have an addend that won't fit in
3087 4 octets for 64bit assembly. */
3088 if (HAVE_64BIT_GPRS
3089 && ! howto->partial_inplace
3090 && (reloc_type[0] == BFD_RELOC_16
3091 || reloc_type[0] == BFD_RELOC_32
3092 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3093 || reloc_type[0] == BFD_RELOC_GPREL16
3094 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3095 || reloc_type[0] == BFD_RELOC_GPREL32
3096 || reloc_type[0] == BFD_RELOC_64
3097 || reloc_type[0] == BFD_RELOC_CTOR
3098 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3099 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3100 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3101 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3102 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3103 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3104 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3105 || hi16_reloc_p (reloc_type[0])
3106 || lo16_reloc_p (reloc_type[0])))
3107 ip->fixp[0]->fx_no_overflow = 1;
3109 if (mips_relax.sequence)
3111 if (mips_relax.first_fixup == 0)
3112 mips_relax.first_fixup = ip->fixp[0];
3114 else if (reloc_needs_lo_p (*reloc_type))
3116 struct mips_hi_fixup *hi_fixup;
3118 /* Reuse the last entry if it already has a matching %lo. */
3119 hi_fixup = mips_hi_fixup_list;
3120 if (hi_fixup == 0
3121 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3123 hi_fixup = ((struct mips_hi_fixup *)
3124 xmalloc (sizeof (struct mips_hi_fixup)));
3125 hi_fixup->next = mips_hi_fixup_list;
3126 mips_hi_fixup_list = hi_fixup;
3128 hi_fixup->fixp = ip->fixp[0];
3129 hi_fixup->seg = now_seg;
3132 /* Add fixups for the second and third relocations, if given.
3133 Note that the ABI allows the second relocation to be
3134 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3135 moment we only use RSS_UNDEF, but we could add support
3136 for the others if it ever becomes necessary. */
3137 for (i = 1; i < 3; i++)
3138 if (reloc_type[i] != BFD_RELOC_UNUSED)
3140 ip->fixp[i] = fix_new (ip->frag, ip->where,
3141 ip->fixp[0]->fx_size, NULL, 0,
3142 FALSE, reloc_type[i]);
3144 /* Use fx_tcbit to mark compound relocs. */
3145 ip->fixp[0]->fx_tcbit = 1;
3146 ip->fixp[i]->fx_tcbit = 1;
3150 install_insn (ip);
3152 /* Update the register mask information. */
3153 if (! mips_opts.mips16)
3155 if (pinfo & INSN_WRITE_GPR_D)
3156 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3157 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3158 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3159 if (pinfo & INSN_READ_GPR_S)
3160 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3161 if (pinfo & INSN_WRITE_GPR_31)
3162 mips_gprmask |= 1 << RA;
3163 if (pinfo & INSN_WRITE_FPR_D)
3164 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3165 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3166 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3167 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3168 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3169 if ((pinfo & INSN_READ_FPR_R) != 0)
3170 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3171 if (pinfo & INSN_COP)
3173 /* We don't keep enough information to sort these cases out.
3174 The itbl support does keep this information however, although
3175 we currently don't support itbl fprmats as part of the cop
3176 instruction. May want to add this support in the future. */
3178 /* Never set the bit for $0, which is always zero. */
3179 mips_gprmask &= ~1 << 0;
3181 else
3183 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3184 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3185 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3186 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3187 if (pinfo & MIPS16_INSN_WRITE_Z)
3188 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3189 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3190 mips_gprmask |= 1 << TREG;
3191 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3192 mips_gprmask |= 1 << SP;
3193 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3194 mips_gprmask |= 1 << RA;
3195 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3196 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3197 if (pinfo & MIPS16_INSN_READ_Z)
3198 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3199 if (pinfo & MIPS16_INSN_READ_GPR_X)
3200 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3203 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3205 /* Filling the branch delay slot is more complex. We try to
3206 switch the branch with the previous instruction, which we can
3207 do if the previous instruction does not set up a condition
3208 that the branch tests and if the branch is not itself the
3209 target of any branch. */
3210 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3211 || (pinfo & INSN_COND_BRANCH_DELAY))
3213 if (mips_optimize < 2
3214 /* If we have seen .set volatile or .set nomove, don't
3215 optimize. */
3216 || mips_opts.nomove != 0
3217 /* We can't swap if the previous instruction's position
3218 is fixed. */
3219 || history[0].fixed_p
3220 /* If the previous previous insn was in a .set
3221 noreorder, we can't swap. Actually, the MIPS
3222 assembler will swap in this situation. However, gcc
3223 configured -with-gnu-as will generate code like
3224 .set noreorder
3225 lw $4,XXX
3226 .set reorder
3227 INSN
3228 bne $4,$0,foo
3229 in which we can not swap the bne and INSN. If gcc is
3230 not configured -with-gnu-as, it does not output the
3231 .set pseudo-ops. */
3232 || history[1].noreorder_p
3233 /* If the branch is itself the target of a branch, we
3234 can not swap. We cheat on this; all we check for is
3235 whether there is a label on this instruction. If
3236 there are any branches to anything other than a
3237 label, users must use .set noreorder. */
3238 || si->label_list != NULL
3239 /* If the previous instruction is in a variant frag
3240 other than this branch's one, we cannot do the swap.
3241 This does not apply to the mips16, which uses variant
3242 frags for different purposes. */
3243 || (! mips_opts.mips16
3244 && prev_insn_frag_type == rs_machine_dependent)
3245 /* Check for conflicts between the branch and the instructions
3246 before the candidate delay slot. */
3247 || nops_for_insn (history + 1, ip) > 0
3248 /* Check for conflicts between the swapped sequence and the
3249 target of the branch. */
3250 || nops_for_sequence (2, history + 1, ip, history) > 0
3251 /* We do not swap with a trap instruction, since it
3252 complicates trap handlers to have the trap
3253 instruction be in a delay slot. */
3254 || (prev_pinfo & INSN_TRAP)
3255 /* If the branch reads a register that the previous
3256 instruction sets, we can not swap. */
3257 || (! mips_opts.mips16
3258 && (prev_pinfo & INSN_WRITE_GPR_T)
3259 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3260 MIPS_GR_REG))
3261 || (! mips_opts.mips16
3262 && (prev_pinfo & INSN_WRITE_GPR_D)
3263 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3264 MIPS_GR_REG))
3265 || (mips_opts.mips16
3266 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3267 && (insn_uses_reg
3268 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3269 MIPS16_REG)))
3270 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3271 && (insn_uses_reg
3272 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3273 MIPS16_REG)))
3274 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3275 && (insn_uses_reg
3276 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3277 MIPS16_REG)))
3278 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3279 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3280 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3281 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3282 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3283 && insn_uses_reg (ip,
3284 MIPS16OP_EXTRACT_REG32R
3285 (history[0].insn_opcode),
3286 MIPS_GR_REG))))
3287 /* If the branch writes a register that the previous
3288 instruction sets, we can not swap (we know that
3289 branches write only to RD or to $31). */
3290 || (! mips_opts.mips16
3291 && (prev_pinfo & INSN_WRITE_GPR_T)
3292 && (((pinfo & INSN_WRITE_GPR_D)
3293 && (EXTRACT_OPERAND (RT, history[0])
3294 == EXTRACT_OPERAND (RD, *ip)))
3295 || ((pinfo & INSN_WRITE_GPR_31)
3296 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3297 || (! mips_opts.mips16
3298 && (prev_pinfo & INSN_WRITE_GPR_D)
3299 && (((pinfo & INSN_WRITE_GPR_D)
3300 && (EXTRACT_OPERAND (RD, history[0])
3301 == EXTRACT_OPERAND (RD, *ip)))
3302 || ((pinfo & INSN_WRITE_GPR_31)
3303 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3304 || (mips_opts.mips16
3305 && (pinfo & MIPS16_INSN_WRITE_31)
3306 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3307 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3308 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3309 == RA))))
3310 /* If the branch writes a register that the previous
3311 instruction reads, we can not swap (we know that
3312 branches only write to RD or to $31). */
3313 || (! mips_opts.mips16
3314 && (pinfo & INSN_WRITE_GPR_D)
3315 && insn_uses_reg (&history[0],
3316 EXTRACT_OPERAND (RD, *ip),
3317 MIPS_GR_REG))
3318 || (! mips_opts.mips16
3319 && (pinfo & INSN_WRITE_GPR_31)
3320 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3321 || (mips_opts.mips16
3322 && (pinfo & MIPS16_INSN_WRITE_31)
3323 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3324 /* If one instruction sets a condition code and the
3325 other one uses a condition code, we can not swap. */
3326 || ((pinfo & INSN_READ_COND_CODE)
3327 && (prev_pinfo & INSN_WRITE_COND_CODE))
3328 || ((pinfo & INSN_WRITE_COND_CODE)
3329 && (prev_pinfo & INSN_READ_COND_CODE))
3330 /* If the previous instruction uses the PC, we can not
3331 swap. */
3332 || (mips_opts.mips16
3333 && (prev_pinfo & MIPS16_INSN_READ_PC))
3334 /* If the previous instruction had a fixup in mips16
3335 mode, we can not swap. This normally means that the
3336 previous instruction was a 4 byte branch anyhow. */
3337 || (mips_opts.mips16 && history[0].fixp[0])
3338 /* If the previous instruction is a sync, sync.l, or
3339 sync.p, we can not swap. */
3340 || (prev_pinfo & INSN_SYNC)
3341 /* If the previous instruction is an ERET or
3342 DERET, avoid the swap. */
3343 || (history[0].insn_opcode == INSN_ERET)
3344 || (history[0].insn_opcode == INSN_DERET))
3346 if (mips_opts.mips16
3347 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3348 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3349 && ISA_SUPPORTS_MIPS16E)
3351 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3352 ip->insn_opcode |= 0x0080;
3353 install_insn (ip);
3354 insert_into_history (0, 1, ip);
3356 else
3358 /* We could do even better for unconditional branches to
3359 portions of this object file; we could pick up the
3360 instruction at the destination, put it in the delay
3361 slot, and bump the destination address. */
3362 insert_into_history (0, 1, ip);
3363 emit_nop ();
3366 if (mips_relax.sequence)
3367 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3369 else
3371 /* It looks like we can actually do the swap. */
3372 struct mips_cl_insn delay = history[0];
3373 if (mips_opts.mips16)
3375 know (delay.frag == ip->frag);
3376 move_insn (ip, delay.frag, delay.where);
3377 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3379 else if (relaxed_branch)
3381 /* Add the delay slot instruction to the end of the
3382 current frag and shrink the fixed part of the
3383 original frag. If the branch occupies the tail of
3384 the latter, move it backwards to cover the gap. */
3385 delay.frag->fr_fix -= 4;
3386 if (delay.frag == ip->frag)
3387 move_insn (ip, ip->frag, ip->where - 4);
3388 add_fixed_insn (&delay);
3390 else
3392 move_insn (&delay, ip->frag, ip->where);
3393 move_insn (ip, history[0].frag, history[0].where);
3395 history[0] = *ip;
3396 delay.fixed_p = 1;
3397 insert_into_history (0, 1, &delay);
3400 /* If that was an unconditional branch, forget the previous
3401 insn information. */
3402 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3404 mips_no_prev_insn ();
3407 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3409 /* We don't yet optimize a branch likely. What we should do
3410 is look at the target, copy the instruction found there
3411 into the delay slot, and increment the branch to jump to
3412 the next instruction. */
3413 insert_into_history (0, 1, ip);
3414 emit_nop ();
3416 else
3417 insert_into_history (0, 1, ip);
3419 else
3420 insert_into_history (0, 1, ip);
3422 /* We just output an insn, so the next one doesn't have a label. */
3423 mips_clear_insn_labels ();
3426 /* Forget that there was any previous instruction or label. */
3428 static void
3429 mips_no_prev_insn (void)
3431 prev_nop_frag = NULL;
3432 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3433 mips_clear_insn_labels ();
3436 /* This function must be called before we emit something other than
3437 instructions. It is like mips_no_prev_insn except that it inserts
3438 any NOPS that might be needed by previous instructions. */
3440 void
3441 mips_emit_delays (void)
3443 if (! mips_opts.noreorder)
3445 int nops = nops_for_insn (history, NULL);
3446 if (nops > 0)
3448 while (nops-- > 0)
3449 add_fixed_insn (NOP_INSN);
3450 mips_move_labels ();
3453 mips_no_prev_insn ();
3456 /* Start a (possibly nested) noreorder block. */
3458 static void
3459 start_noreorder (void)
3461 if (mips_opts.noreorder == 0)
3463 unsigned int i;
3464 int nops;
3466 /* None of the instructions before the .set noreorder can be moved. */
3467 for (i = 0; i < ARRAY_SIZE (history); i++)
3468 history[i].fixed_p = 1;
3470 /* Insert any nops that might be needed between the .set noreorder
3471 block and the previous instructions. We will later remove any
3472 nops that turn out not to be needed. */
3473 nops = nops_for_insn (history, NULL);
3474 if (nops > 0)
3476 if (mips_optimize != 0)
3478 /* Record the frag which holds the nop instructions, so
3479 that we can remove them if we don't need them. */
3480 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3481 prev_nop_frag = frag_now;
3482 prev_nop_frag_holds = nops;
3483 prev_nop_frag_required = 0;
3484 prev_nop_frag_since = 0;
3487 for (; nops > 0; --nops)
3488 add_fixed_insn (NOP_INSN);
3490 /* Move on to a new frag, so that it is safe to simply
3491 decrease the size of prev_nop_frag. */
3492 frag_wane (frag_now);
3493 frag_new (0);
3494 mips_move_labels ();
3496 mips16_mark_labels ();
3497 mips_clear_insn_labels ();
3499 mips_opts.noreorder++;
3500 mips_any_noreorder = 1;
3503 /* End a nested noreorder block. */
3505 static void
3506 end_noreorder (void)
3509 mips_opts.noreorder--;
3510 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3512 /* Commit to inserting prev_nop_frag_required nops and go back to
3513 handling nop insertion the .set reorder way. */
3514 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3515 * (mips_opts.mips16 ? 2 : 4));
3516 insert_into_history (prev_nop_frag_since,
3517 prev_nop_frag_required, NOP_INSN);
3518 prev_nop_frag = NULL;
3522 /* Set up global variables for the start of a new macro. */
3524 static void
3525 macro_start (void)
3527 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3528 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3529 && (history[0].insn_mo->pinfo
3530 & (INSN_UNCOND_BRANCH_DELAY
3531 | INSN_COND_BRANCH_DELAY
3532 | INSN_COND_BRANCH_LIKELY)) != 0);
3535 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3536 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3537 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3539 static const char *
3540 macro_warning (relax_substateT subtype)
3542 if (subtype & RELAX_DELAY_SLOT)
3543 return _("Macro instruction expanded into multiple instructions"
3544 " in a branch delay slot");
3545 else if (subtype & RELAX_NOMACRO)
3546 return _("Macro instruction expanded into multiple instructions");
3547 else
3548 return 0;
3551 /* Finish up a macro. Emit warnings as appropriate. */
3553 static void
3554 macro_end (void)
3556 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3558 relax_substateT subtype;
3560 /* Set up the relaxation warning flags. */
3561 subtype = 0;
3562 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3563 subtype |= RELAX_SECOND_LONGER;
3564 if (mips_opts.warn_about_macros)
3565 subtype |= RELAX_NOMACRO;
3566 if (mips_macro_warning.delay_slot_p)
3567 subtype |= RELAX_DELAY_SLOT;
3569 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3571 /* Either the macro has a single implementation or both
3572 implementations are longer than 4 bytes. Emit the
3573 warning now. */
3574 const char *msg = macro_warning (subtype);
3575 if (msg != 0)
3576 as_warn ("%s", msg);
3578 else
3580 /* One implementation might need a warning but the other
3581 definitely doesn't. */
3582 mips_macro_warning.first_frag->fr_subtype |= subtype;
3587 /* Read a macro's relocation codes from *ARGS and store them in *R.
3588 The first argument in *ARGS will be either the code for a single
3589 relocation or -1 followed by the three codes that make up a
3590 composite relocation. */
3592 static void
3593 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3595 int i, next;
3597 next = va_arg (*args, int);
3598 if (next >= 0)
3599 r[0] = (bfd_reloc_code_real_type) next;
3600 else
3601 for (i = 0; i < 3; i++)
3602 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3605 /* Build an instruction created by a macro expansion. This is passed
3606 a pointer to the count of instructions created so far, an
3607 expression, the name of the instruction to build, an operand format
3608 string, and corresponding arguments. */
3610 static void
3611 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3613 const struct mips_opcode *mo;
3614 struct mips_cl_insn insn;
3615 bfd_reloc_code_real_type r[3];
3616 va_list args;
3618 va_start (args, fmt);
3620 if (mips_opts.mips16)
3622 mips16_macro_build (ep, name, fmt, &args);
3623 va_end (args);
3624 return;
3627 r[0] = BFD_RELOC_UNUSED;
3628 r[1] = BFD_RELOC_UNUSED;
3629 r[2] = BFD_RELOC_UNUSED;
3630 mo = (struct mips_opcode *) hash_find (op_hash, name);
3631 gas_assert (mo);
3632 gas_assert (strcmp (name, mo->name) == 0);
3634 while (1)
3636 /* Search until we get a match for NAME. It is assumed here that
3637 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3638 if (strcmp (fmt, mo->args) == 0
3639 && mo->pinfo != INSN_MACRO
3640 && is_opcode_valid (mo))
3641 break;
3643 ++mo;
3644 gas_assert (mo->name);
3645 gas_assert (strcmp (name, mo->name) == 0);
3648 create_insn (&insn, mo);
3649 for (;;)
3651 switch (*fmt++)
3653 case '\0':
3654 break;
3656 case ',':
3657 case '(':
3658 case ')':
3659 continue;
3661 case '+':
3662 switch (*fmt++)
3664 case 'A':
3665 case 'E':
3666 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3667 continue;
3669 case 'B':
3670 case 'F':
3671 /* Note that in the macro case, these arguments are already
3672 in MSB form. (When handling the instruction in the
3673 non-macro case, these arguments are sizes from which
3674 MSB values must be calculated.) */
3675 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3676 continue;
3678 case 'C':
3679 case 'G':
3680 case 'H':
3681 /* Note that in the macro case, these arguments are already
3682 in MSBD form. (When handling the instruction in the
3683 non-macro case, these arguments are sizes from which
3684 MSBD values must be calculated.) */
3685 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3686 continue;
3688 case 'Q':
3689 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3690 continue;
3692 default:
3693 internalError ();
3695 continue;
3697 case '2':
3698 INSERT_OPERAND (BP, insn, va_arg (args, int));
3699 continue;
3701 case 't':
3702 case 'w':
3703 case 'E':
3704 INSERT_OPERAND (RT, insn, va_arg (args, int));
3705 continue;
3707 case 'c':
3708 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3709 continue;
3711 case 'T':
3712 case 'W':
3713 INSERT_OPERAND (FT, insn, va_arg (args, int));
3714 continue;
3716 case 'd':
3717 case 'G':
3718 case 'K':
3719 INSERT_OPERAND (RD, insn, va_arg (args, int));
3720 continue;
3722 case 'U':
3724 int tmp = va_arg (args, int);
3726 INSERT_OPERAND (RT, insn, tmp);
3727 INSERT_OPERAND (RD, insn, tmp);
3728 continue;
3731 case 'V':
3732 case 'S':
3733 INSERT_OPERAND (FS, insn, va_arg (args, int));
3734 continue;
3736 case 'z':
3737 continue;
3739 case '<':
3740 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3741 continue;
3743 case 'D':
3744 INSERT_OPERAND (FD, insn, va_arg (args, int));
3745 continue;
3747 case 'B':
3748 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3749 continue;
3751 case 'J':
3752 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3753 continue;
3755 case 'q':
3756 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3757 continue;
3759 case 'b':
3760 case 's':
3761 case 'r':
3762 case 'v':
3763 INSERT_OPERAND (RS, insn, va_arg (args, int));
3764 continue;
3766 case 'i':
3767 case 'j':
3768 macro_read_relocs (&args, r);
3769 gas_assert (*r == BFD_RELOC_GPREL16
3770 || *r == BFD_RELOC_MIPS_HIGHER
3771 || *r == BFD_RELOC_HI16_S
3772 || *r == BFD_RELOC_LO16
3773 || *r == BFD_RELOC_MIPS_GOT_OFST);
3774 continue;
3776 case 'o':
3777 macro_read_relocs (&args, r);
3778 continue;
3780 case 'u':
3781 macro_read_relocs (&args, r);
3782 gas_assert (ep != NULL
3783 && (ep->X_op == O_constant
3784 || (ep->X_op == O_symbol
3785 && (*r == BFD_RELOC_MIPS_HIGHEST
3786 || *r == BFD_RELOC_HI16_S
3787 || *r == BFD_RELOC_HI16
3788 || *r == BFD_RELOC_GPREL16
3789 || *r == BFD_RELOC_MIPS_GOT_HI16
3790 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3791 continue;
3793 case 'p':
3794 gas_assert (ep != NULL);
3797 * This allows macro() to pass an immediate expression for
3798 * creating short branches without creating a symbol.
3800 * We don't allow branch relaxation for these branches, as
3801 * they should only appear in ".set nomacro" anyway.
3803 if (ep->X_op == O_constant)
3805 if ((ep->X_add_number & 3) != 0)
3806 as_bad (_("branch to misaligned address (0x%lx)"),
3807 (unsigned long) ep->X_add_number);
3808 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3809 as_bad (_("branch address range overflow (0x%lx)"),
3810 (unsigned long) ep->X_add_number);
3811 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3812 ep = NULL;
3814 else
3815 *r = BFD_RELOC_16_PCREL_S2;
3816 continue;
3818 case 'a':
3819 gas_assert (ep != NULL);
3820 *r = BFD_RELOC_MIPS_JMP;
3821 continue;
3823 case 'C':
3824 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3825 continue;
3827 case 'k':
3828 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3829 continue;
3831 default:
3832 internalError ();
3834 break;
3836 va_end (args);
3837 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3839 append_insn (&insn, ep, r);
3842 static void
3843 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3844 va_list *args)
3846 struct mips_opcode *mo;
3847 struct mips_cl_insn insn;
3848 bfd_reloc_code_real_type r[3]
3849 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3851 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3852 gas_assert (mo);
3853 gas_assert (strcmp (name, mo->name) == 0);
3855 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3857 ++mo;
3858 gas_assert (mo->name);
3859 gas_assert (strcmp (name, mo->name) == 0);
3862 create_insn (&insn, mo);
3863 for (;;)
3865 int c;
3867 c = *fmt++;
3868 switch (c)
3870 case '\0':
3871 break;
3873 case ',':
3874 case '(':
3875 case ')':
3876 continue;
3878 case 'y':
3879 case 'w':
3880 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
3881 continue;
3883 case 'x':
3884 case 'v':
3885 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
3886 continue;
3888 case 'z':
3889 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
3890 continue;
3892 case 'Z':
3893 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
3894 continue;
3896 case '0':
3897 case 'S':
3898 case 'P':
3899 case 'R':
3900 continue;
3902 case 'X':
3903 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
3904 continue;
3906 case 'Y':
3908 int regno;
3910 regno = va_arg (*args, int);
3911 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3912 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3914 continue;
3916 case '<':
3917 case '>':
3918 case '4':
3919 case '5':
3920 case 'H':
3921 case 'W':
3922 case 'D':
3923 case 'j':
3924 case '8':
3925 case 'V':
3926 case 'C':
3927 case 'U':
3928 case 'k':
3929 case 'K':
3930 case 'p':
3931 case 'q':
3933 gas_assert (ep != NULL);
3935 if (ep->X_op != O_constant)
3936 *r = (int) BFD_RELOC_UNUSED + c;
3937 else
3939 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3940 FALSE, &insn.insn_opcode, &insn.use_extend,
3941 &insn.extend);
3942 ep = NULL;
3943 *r = BFD_RELOC_UNUSED;
3946 continue;
3948 case '6':
3949 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
3950 continue;
3953 break;
3956 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3958 append_insn (&insn, ep, r);
3962 * Sign-extend 32-bit mode constants that have bit 31 set and all
3963 * higher bits unset.
3965 static void
3966 normalize_constant_expr (expressionS *ex)
3968 if (ex->X_op == O_constant
3969 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3970 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3971 - 0x80000000);
3975 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3976 * all higher bits unset.
3978 static void
3979 normalize_address_expr (expressionS *ex)
3981 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3982 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3983 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3984 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3985 - 0x80000000);
3989 * Generate a "jalr" instruction with a relocation hint to the called
3990 * function. This occurs in NewABI PIC code.
3992 static void
3993 macro_build_jalr (expressionS *ep)
3995 char *f = NULL;
3997 if (MIPS_JALR_HINT_P (ep))
3999 frag_grow (8);
4000 f = frag_more (0);
4002 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4003 if (MIPS_JALR_HINT_P (ep))
4004 fix_new_exp (frag_now, f - frag_now->fr_literal,
4005 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4009 * Generate a "lui" instruction.
4011 static void
4012 macro_build_lui (expressionS *ep, int regnum)
4014 expressionS high_expr;
4015 const struct mips_opcode *mo;
4016 struct mips_cl_insn insn;
4017 bfd_reloc_code_real_type r[3]
4018 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4019 const char *name = "lui";
4020 const char *fmt = "t,u";
4022 gas_assert (! mips_opts.mips16);
4024 high_expr = *ep;
4026 if (high_expr.X_op == O_constant)
4028 /* We can compute the instruction now without a relocation entry. */
4029 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4030 >> 16) & 0xffff;
4031 *r = BFD_RELOC_UNUSED;
4033 else
4035 gas_assert (ep->X_op == O_symbol);
4036 /* _gp_disp is a special case, used from s_cpload.
4037 __gnu_local_gp is used if mips_no_shared. */
4038 gas_assert (mips_pic == NO_PIC
4039 || (! HAVE_NEWABI
4040 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4041 || (! mips_in_shared
4042 && strcmp (S_GET_NAME (ep->X_add_symbol),
4043 "__gnu_local_gp") == 0));
4044 *r = BFD_RELOC_HI16_S;
4047 mo = hash_find (op_hash, name);
4048 gas_assert (strcmp (name, mo->name) == 0);
4049 gas_assert (strcmp (fmt, mo->args) == 0);
4050 create_insn (&insn, mo);
4052 insn.insn_opcode = insn.insn_mo->match;
4053 INSERT_OPERAND (RT, insn, regnum);
4054 if (*r == BFD_RELOC_UNUSED)
4056 insn.insn_opcode |= high_expr.X_add_number;
4057 append_insn (&insn, NULL, r);
4059 else
4060 append_insn (&insn, &high_expr, r);
4063 /* Generate a sequence of instructions to do a load or store from a constant
4064 offset off of a base register (breg) into/from a target register (treg),
4065 using AT if necessary. */
4066 static void
4067 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4068 int treg, int breg, int dbl)
4070 gas_assert (ep->X_op == O_constant);
4072 /* Sign-extending 32-bit constants makes their handling easier. */
4073 if (!dbl)
4074 normalize_constant_expr (ep);
4076 /* Right now, this routine can only handle signed 32-bit constants. */
4077 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4078 as_warn (_("operand overflow"));
4080 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4082 /* Signed 16-bit offset will fit in the op. Easy! */
4083 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4085 else
4087 /* 32-bit offset, need multiple instructions and AT, like:
4088 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4089 addu $tempreg,$tempreg,$breg
4090 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4091 to handle the complete offset. */
4092 macro_build_lui (ep, AT);
4093 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4094 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4096 if (!mips_opts.at)
4097 as_bad (_("Macro used $at after \".set noat\""));
4101 /* set_at()
4102 * Generates code to set the $at register to true (one)
4103 * if reg is less than the immediate expression.
4105 static void
4106 set_at (int reg, int unsignedp)
4108 if (imm_expr.X_op == O_constant
4109 && imm_expr.X_add_number >= -0x8000
4110 && imm_expr.X_add_number < 0x8000)
4111 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4112 AT, reg, BFD_RELOC_LO16);
4113 else
4115 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4116 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4120 /* Warn if an expression is not a constant. */
4122 static void
4123 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4125 if (ex->X_op == O_big)
4126 as_bad (_("unsupported large constant"));
4127 else if (ex->X_op != O_constant)
4128 as_bad (_("Instruction %s requires absolute expression"),
4129 ip->insn_mo->name);
4131 if (HAVE_32BIT_GPRS)
4132 normalize_constant_expr (ex);
4135 /* Count the leading zeroes by performing a binary chop. This is a
4136 bulky bit of source, but performance is a LOT better for the
4137 majority of values than a simple loop to count the bits:
4138 for (lcnt = 0; (lcnt < 32); lcnt++)
4139 if ((v) & (1 << (31 - lcnt)))
4140 break;
4141 However it is not code size friendly, and the gain will drop a bit
4142 on certain cached systems.
4144 #define COUNT_TOP_ZEROES(v) \
4145 (((v) & ~0xffff) == 0 \
4146 ? ((v) & ~0xff) == 0 \
4147 ? ((v) & ~0xf) == 0 \
4148 ? ((v) & ~0x3) == 0 \
4149 ? ((v) & ~0x1) == 0 \
4150 ? !(v) \
4151 ? 32 \
4152 : 31 \
4153 : 30 \
4154 : ((v) & ~0x7) == 0 \
4155 ? 29 \
4156 : 28 \
4157 : ((v) & ~0x3f) == 0 \
4158 ? ((v) & ~0x1f) == 0 \
4159 ? 27 \
4160 : 26 \
4161 : ((v) & ~0x7f) == 0 \
4162 ? 25 \
4163 : 24 \
4164 : ((v) & ~0xfff) == 0 \
4165 ? ((v) & ~0x3ff) == 0 \
4166 ? ((v) & ~0x1ff) == 0 \
4167 ? 23 \
4168 : 22 \
4169 : ((v) & ~0x7ff) == 0 \
4170 ? 21 \
4171 : 20 \
4172 : ((v) & ~0x3fff) == 0 \
4173 ? ((v) & ~0x1fff) == 0 \
4174 ? 19 \
4175 : 18 \
4176 : ((v) & ~0x7fff) == 0 \
4177 ? 17 \
4178 : 16 \
4179 : ((v) & ~0xffffff) == 0 \
4180 ? ((v) & ~0xfffff) == 0 \
4181 ? ((v) & ~0x3ffff) == 0 \
4182 ? ((v) & ~0x1ffff) == 0 \
4183 ? 15 \
4184 : 14 \
4185 : ((v) & ~0x7ffff) == 0 \
4186 ? 13 \
4187 : 12 \
4188 : ((v) & ~0x3fffff) == 0 \
4189 ? ((v) & ~0x1fffff) == 0 \
4190 ? 11 \
4191 : 10 \
4192 : ((v) & ~0x7fffff) == 0 \
4193 ? 9 \
4194 : 8 \
4195 : ((v) & ~0xfffffff) == 0 \
4196 ? ((v) & ~0x3ffffff) == 0 \
4197 ? ((v) & ~0x1ffffff) == 0 \
4198 ? 7 \
4199 : 6 \
4200 : ((v) & ~0x7ffffff) == 0 \
4201 ? 5 \
4202 : 4 \
4203 : ((v) & ~0x3fffffff) == 0 \
4204 ? ((v) & ~0x1fffffff) == 0 \
4205 ? 3 \
4206 : 2 \
4207 : ((v) & ~0x7fffffff) == 0 \
4208 ? 1 \
4209 : 0)
4211 /* load_register()
4212 * This routine generates the least number of instructions necessary to load
4213 * an absolute expression value into a register.
4215 static void
4216 load_register (int reg, expressionS *ep, int dbl)
4218 int freg;
4219 expressionS hi32, lo32;
4221 if (ep->X_op != O_big)
4223 gas_assert (ep->X_op == O_constant);
4225 /* Sign-extending 32-bit constants makes their handling easier. */
4226 if (!dbl)
4227 normalize_constant_expr (ep);
4229 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4231 /* We can handle 16 bit signed values with an addiu to
4232 $zero. No need to ever use daddiu here, since $zero and
4233 the result are always correct in 32 bit mode. */
4234 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4235 return;
4237 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4239 /* We can handle 16 bit unsigned values with an ori to
4240 $zero. */
4241 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4242 return;
4244 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4246 /* 32 bit values require an lui. */
4247 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4248 if ((ep->X_add_number & 0xffff) != 0)
4249 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4250 return;
4254 /* The value is larger than 32 bits. */
4256 if (!dbl || HAVE_32BIT_GPRS)
4258 char value[32];
4260 sprintf_vma (value, ep->X_add_number);
4261 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4262 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4263 return;
4266 if (ep->X_op != O_big)
4268 hi32 = *ep;
4269 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4270 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4271 hi32.X_add_number &= 0xffffffff;
4272 lo32 = *ep;
4273 lo32.X_add_number &= 0xffffffff;
4275 else
4277 gas_assert (ep->X_add_number > 2);
4278 if (ep->X_add_number == 3)
4279 generic_bignum[3] = 0;
4280 else if (ep->X_add_number > 4)
4281 as_bad (_("Number larger than 64 bits"));
4282 lo32.X_op = O_constant;
4283 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4284 hi32.X_op = O_constant;
4285 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4288 if (hi32.X_add_number == 0)
4289 freg = 0;
4290 else
4292 int shift, bit;
4293 unsigned long hi, lo;
4295 if (hi32.X_add_number == (offsetT) 0xffffffff)
4297 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4299 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4300 return;
4302 if (lo32.X_add_number & 0x80000000)
4304 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4305 if (lo32.X_add_number & 0xffff)
4306 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4307 return;
4311 /* Check for 16bit shifted constant. We know that hi32 is
4312 non-zero, so start the mask on the first bit of the hi32
4313 value. */
4314 shift = 17;
4317 unsigned long himask, lomask;
4319 if (shift < 32)
4321 himask = 0xffff >> (32 - shift);
4322 lomask = (0xffff << shift) & 0xffffffff;
4324 else
4326 himask = 0xffff << (shift - 32);
4327 lomask = 0;
4329 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4330 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4332 expressionS tmp;
4334 tmp.X_op = O_constant;
4335 if (shift < 32)
4336 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4337 | (lo32.X_add_number >> shift));
4338 else
4339 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4340 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4341 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4342 reg, reg, (shift >= 32) ? shift - 32 : shift);
4343 return;
4345 ++shift;
4347 while (shift <= (64 - 16));
4349 /* Find the bit number of the lowest one bit, and store the
4350 shifted value in hi/lo. */
4351 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4352 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4353 if (lo != 0)
4355 bit = 0;
4356 while ((lo & 1) == 0)
4358 lo >>= 1;
4359 ++bit;
4361 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4362 hi >>= bit;
4364 else
4366 bit = 32;
4367 while ((hi & 1) == 0)
4369 hi >>= 1;
4370 ++bit;
4372 lo = hi;
4373 hi = 0;
4376 /* Optimize if the shifted value is a (power of 2) - 1. */
4377 if ((hi == 0 && ((lo + 1) & lo) == 0)
4378 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4380 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4381 if (shift != 0)
4383 expressionS tmp;
4385 /* This instruction will set the register to be all
4386 ones. */
4387 tmp.X_op = O_constant;
4388 tmp.X_add_number = (offsetT) -1;
4389 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4390 if (bit != 0)
4392 bit += shift;
4393 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4394 reg, reg, (bit >= 32) ? bit - 32 : bit);
4396 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4397 reg, reg, (shift >= 32) ? shift - 32 : shift);
4398 return;
4402 /* Sign extend hi32 before calling load_register, because we can
4403 generally get better code when we load a sign extended value. */
4404 if ((hi32.X_add_number & 0x80000000) != 0)
4405 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4406 load_register (reg, &hi32, 0);
4407 freg = reg;
4409 if ((lo32.X_add_number & 0xffff0000) == 0)
4411 if (freg != 0)
4413 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4414 freg = reg;
4417 else
4419 expressionS mid16;
4421 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4423 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4424 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4425 return;
4428 if (freg != 0)
4430 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4431 freg = reg;
4433 mid16 = lo32;
4434 mid16.X_add_number >>= 16;
4435 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4436 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4437 freg = reg;
4439 if ((lo32.X_add_number & 0xffff) != 0)
4440 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4443 static inline void
4444 load_delay_nop (void)
4446 if (!gpr_interlocks)
4447 macro_build (NULL, "nop", "");
4450 /* Load an address into a register. */
4452 static void
4453 load_address (int reg, expressionS *ep, int *used_at)
4455 if (ep->X_op != O_constant
4456 && ep->X_op != O_symbol)
4458 as_bad (_("expression too complex"));
4459 ep->X_op = O_constant;
4462 if (ep->X_op == O_constant)
4464 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4465 return;
4468 if (mips_pic == NO_PIC)
4470 /* If this is a reference to a GP relative symbol, we want
4471 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4472 Otherwise we want
4473 lui $reg,<sym> (BFD_RELOC_HI16_S)
4474 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4475 If we have an addend, we always use the latter form.
4477 With 64bit address space and a usable $at we want
4478 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4479 lui $at,<sym> (BFD_RELOC_HI16_S)
4480 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4481 daddiu $at,<sym> (BFD_RELOC_LO16)
4482 dsll32 $reg,0
4483 daddu $reg,$reg,$at
4485 If $at is already in use, we use a path which is suboptimal
4486 on superscalar processors.
4487 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4488 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4489 dsll $reg,16
4490 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4491 dsll $reg,16
4492 daddiu $reg,<sym> (BFD_RELOC_LO16)
4494 For GP relative symbols in 64bit address space we can use
4495 the same sequence as in 32bit address space. */
4496 if (HAVE_64BIT_SYMBOLS)
4498 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4499 && !nopic_need_relax (ep->X_add_symbol, 1))
4501 relax_start (ep->X_add_symbol);
4502 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4503 mips_gp_register, BFD_RELOC_GPREL16);
4504 relax_switch ();
4507 if (*used_at == 0 && mips_opts.at)
4509 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4510 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4511 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4512 BFD_RELOC_MIPS_HIGHER);
4513 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4514 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4515 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4516 *used_at = 1;
4518 else
4520 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4521 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4522 BFD_RELOC_MIPS_HIGHER);
4523 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4524 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4525 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4526 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4529 if (mips_relax.sequence)
4530 relax_end ();
4532 else
4534 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4535 && !nopic_need_relax (ep->X_add_symbol, 1))
4537 relax_start (ep->X_add_symbol);
4538 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4539 mips_gp_register, BFD_RELOC_GPREL16);
4540 relax_switch ();
4542 macro_build_lui (ep, reg);
4543 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4544 reg, reg, BFD_RELOC_LO16);
4545 if (mips_relax.sequence)
4546 relax_end ();
4549 else if (!mips_big_got)
4551 expressionS ex;
4553 /* If this is a reference to an external symbol, we want
4554 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4555 Otherwise we want
4556 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4558 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4559 If there is a constant, it must be added in after.
4561 If we have NewABI, we want
4562 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4563 unless we're referencing a global symbol with a non-zero
4564 offset, in which case cst must be added separately. */
4565 if (HAVE_NEWABI)
4567 if (ep->X_add_number)
4569 ex.X_add_number = ep->X_add_number;
4570 ep->X_add_number = 0;
4571 relax_start (ep->X_add_symbol);
4572 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4573 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4574 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4575 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4576 ex.X_op = O_constant;
4577 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4578 reg, reg, BFD_RELOC_LO16);
4579 ep->X_add_number = ex.X_add_number;
4580 relax_switch ();
4582 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4583 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4584 if (mips_relax.sequence)
4585 relax_end ();
4587 else
4589 ex.X_add_number = ep->X_add_number;
4590 ep->X_add_number = 0;
4591 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4592 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4593 load_delay_nop ();
4594 relax_start (ep->X_add_symbol);
4595 relax_switch ();
4596 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4597 BFD_RELOC_LO16);
4598 relax_end ();
4600 if (ex.X_add_number != 0)
4602 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4603 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4604 ex.X_op = O_constant;
4605 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4606 reg, reg, BFD_RELOC_LO16);
4610 else if (mips_big_got)
4612 expressionS ex;
4614 /* This is the large GOT case. If this is a reference to an
4615 external symbol, we want
4616 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4617 addu $reg,$reg,$gp
4618 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4620 Otherwise, for a reference to a local symbol in old ABI, we want
4621 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4623 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4624 If there is a constant, it must be added in after.
4626 In the NewABI, for local symbols, with or without offsets, we want:
4627 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4628 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4630 if (HAVE_NEWABI)
4632 ex.X_add_number = ep->X_add_number;
4633 ep->X_add_number = 0;
4634 relax_start (ep->X_add_symbol);
4635 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4636 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4637 reg, reg, mips_gp_register);
4638 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4639 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4640 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4641 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4642 else if (ex.X_add_number)
4644 ex.X_op = O_constant;
4645 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4646 BFD_RELOC_LO16);
4649 ep->X_add_number = ex.X_add_number;
4650 relax_switch ();
4651 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4652 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4653 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4654 BFD_RELOC_MIPS_GOT_OFST);
4655 relax_end ();
4657 else
4659 ex.X_add_number = ep->X_add_number;
4660 ep->X_add_number = 0;
4661 relax_start (ep->X_add_symbol);
4662 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4663 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4664 reg, reg, mips_gp_register);
4665 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4666 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4667 relax_switch ();
4668 if (reg_needs_delay (mips_gp_register))
4670 /* We need a nop before loading from $gp. This special
4671 check is required because the lui which starts the main
4672 instruction stream does not refer to $gp, and so will not
4673 insert the nop which may be required. */
4674 macro_build (NULL, "nop", "");
4676 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4677 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4678 load_delay_nop ();
4679 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4680 BFD_RELOC_LO16);
4681 relax_end ();
4683 if (ex.X_add_number != 0)
4685 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4686 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4687 ex.X_op = O_constant;
4688 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4689 BFD_RELOC_LO16);
4693 else
4694 abort ();
4696 if (!mips_opts.at && *used_at == 1)
4697 as_bad (_("Macro used $at after \".set noat\""));
4700 /* Move the contents of register SOURCE into register DEST. */
4702 static void
4703 move_register (int dest, int source)
4705 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4706 dest, source, 0);
4709 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4710 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4711 The two alternatives are:
4713 Global symbol Local sybmol
4714 ------------- ------------
4715 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4716 ... ...
4717 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4719 load_got_offset emits the first instruction and add_got_offset
4720 emits the second for a 16-bit offset or add_got_offset_hilo emits
4721 a sequence to add a 32-bit offset using a scratch register. */
4723 static void
4724 load_got_offset (int dest, expressionS *local)
4726 expressionS global;
4728 global = *local;
4729 global.X_add_number = 0;
4731 relax_start (local->X_add_symbol);
4732 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4733 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4734 relax_switch ();
4735 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4736 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4737 relax_end ();
4740 static void
4741 add_got_offset (int dest, expressionS *local)
4743 expressionS global;
4745 global.X_op = O_constant;
4746 global.X_op_symbol = NULL;
4747 global.X_add_symbol = NULL;
4748 global.X_add_number = local->X_add_number;
4750 relax_start (local->X_add_symbol);
4751 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4752 dest, dest, BFD_RELOC_LO16);
4753 relax_switch ();
4754 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4755 relax_end ();
4758 static void
4759 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4761 expressionS global;
4762 int hold_mips_optimize;
4764 global.X_op = O_constant;
4765 global.X_op_symbol = NULL;
4766 global.X_add_symbol = NULL;
4767 global.X_add_number = local->X_add_number;
4769 relax_start (local->X_add_symbol);
4770 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4771 relax_switch ();
4772 /* Set mips_optimize around the lui instruction to avoid
4773 inserting an unnecessary nop after the lw. */
4774 hold_mips_optimize = mips_optimize;
4775 mips_optimize = 2;
4776 macro_build_lui (&global, tmp);
4777 mips_optimize = hold_mips_optimize;
4778 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4779 relax_end ();
4781 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4785 * Build macros
4786 * This routine implements the seemingly endless macro or synthesized
4787 * instructions and addressing modes in the mips assembly language. Many
4788 * of these macros are simple and are similar to each other. These could
4789 * probably be handled by some kind of table or grammar approach instead of
4790 * this verbose method. Others are not simple macros but are more like
4791 * optimizing code generation.
4792 * One interesting optimization is when several store macros appear
4793 * consecutively that would load AT with the upper half of the same address.
4794 * The ensuing load upper instructions are ommited. This implies some kind
4795 * of global optimization. We currently only optimize within a single macro.
4796 * For many of the load and store macros if the address is specified as a
4797 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4798 * first load register 'at' with zero and use it as the base register. The
4799 * mips assembler simply uses register $zero. Just one tiny optimization
4800 * we're missing.
4802 static void
4803 macro (struct mips_cl_insn *ip)
4805 unsigned int treg, sreg, dreg, breg;
4806 unsigned int tempreg;
4807 int mask;
4808 int used_at = 0;
4809 expressionS expr1;
4810 const char *s;
4811 const char *s2;
4812 const char *fmt;
4813 int likely = 0;
4814 int dbl = 0;
4815 int coproc = 0;
4816 int lr = 0;
4817 int imm = 0;
4818 int call = 0;
4819 int off;
4820 offsetT maxnum;
4821 bfd_reloc_code_real_type r;
4822 int hold_mips_optimize;
4824 gas_assert (! mips_opts.mips16);
4826 treg = EXTRACT_OPERAND (RT, *ip);
4827 dreg = EXTRACT_OPERAND (RD, *ip);
4828 sreg = breg = EXTRACT_OPERAND (RS, *ip);
4829 mask = ip->insn_mo->mask;
4831 expr1.X_op = O_constant;
4832 expr1.X_op_symbol = NULL;
4833 expr1.X_add_symbol = NULL;
4834 expr1.X_add_number = 1;
4836 switch (mask)
4838 case M_DABS:
4839 dbl = 1;
4840 case M_ABS:
4841 /* bgez $a0,.+12
4842 move v0,$a0
4843 sub v0,$zero,$a0
4846 start_noreorder ();
4848 expr1.X_add_number = 8;
4849 macro_build (&expr1, "bgez", "s,p", sreg);
4850 if (dreg == sreg)
4851 macro_build (NULL, "nop", "");
4852 else
4853 move_register (dreg, sreg);
4854 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4856 end_noreorder ();
4857 break;
4859 case M_ADD_I:
4860 s = "addi";
4861 s2 = "add";
4862 goto do_addi;
4863 case M_ADDU_I:
4864 s = "addiu";
4865 s2 = "addu";
4866 goto do_addi;
4867 case M_DADD_I:
4868 dbl = 1;
4869 s = "daddi";
4870 s2 = "dadd";
4871 goto do_addi;
4872 case M_DADDU_I:
4873 dbl = 1;
4874 s = "daddiu";
4875 s2 = "daddu";
4876 do_addi:
4877 if (imm_expr.X_op == O_constant
4878 && imm_expr.X_add_number >= -0x8000
4879 && imm_expr.X_add_number < 0x8000)
4881 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4882 break;
4884 used_at = 1;
4885 load_register (AT, &imm_expr, dbl);
4886 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4887 break;
4889 case M_AND_I:
4890 s = "andi";
4891 s2 = "and";
4892 goto do_bit;
4893 case M_OR_I:
4894 s = "ori";
4895 s2 = "or";
4896 goto do_bit;
4897 case M_NOR_I:
4898 s = "";
4899 s2 = "nor";
4900 goto do_bit;
4901 case M_XOR_I:
4902 s = "xori";
4903 s2 = "xor";
4904 do_bit:
4905 if (imm_expr.X_op == O_constant
4906 && imm_expr.X_add_number >= 0
4907 && imm_expr.X_add_number < 0x10000)
4909 if (mask != M_NOR_I)
4910 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4911 else
4913 macro_build (&imm_expr, "ori", "t,r,i",
4914 treg, sreg, BFD_RELOC_LO16);
4915 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4917 break;
4920 used_at = 1;
4921 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4922 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4923 break;
4925 case M_BALIGN:
4926 switch (imm_expr.X_add_number)
4928 case 0:
4929 macro_build (NULL, "nop", "");
4930 break;
4931 case 2:
4932 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4933 break;
4934 default:
4935 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4936 (int) imm_expr.X_add_number);
4937 break;
4939 break;
4941 case M_BEQ_I:
4942 s = "beq";
4943 goto beq_i;
4944 case M_BEQL_I:
4945 s = "beql";
4946 likely = 1;
4947 goto beq_i;
4948 case M_BNE_I:
4949 s = "bne";
4950 goto beq_i;
4951 case M_BNEL_I:
4952 s = "bnel";
4953 likely = 1;
4954 beq_i:
4955 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4957 macro_build (&offset_expr, s, "s,t,p", sreg, ZERO);
4958 break;
4960 used_at = 1;
4961 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4962 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4963 break;
4965 case M_BGEL:
4966 likely = 1;
4967 case M_BGE:
4968 if (treg == 0)
4970 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4971 break;
4973 if (sreg == 0)
4975 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4976 break;
4978 used_at = 1;
4979 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4980 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
4981 break;
4983 case M_BGTL_I:
4984 likely = 1;
4985 case M_BGT_I:
4986 /* Check for > max integer. */
4987 maxnum = 0x7fffffff;
4988 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4990 maxnum <<= 16;
4991 maxnum |= 0xffff;
4992 maxnum <<= 16;
4993 maxnum |= 0xffff;
4995 if (imm_expr.X_op == O_constant
4996 && imm_expr.X_add_number >= maxnum
4997 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4999 do_false:
5000 /* Result is always false. */
5001 if (! likely)
5002 macro_build (NULL, "nop", "");
5003 else
5004 macro_build (&offset_expr, "bnel", "s,t,p", ZERO, ZERO);
5005 break;
5007 if (imm_expr.X_op != O_constant)
5008 as_bad (_("Unsupported large constant"));
5009 ++imm_expr.X_add_number;
5010 /* FALLTHROUGH */
5011 case M_BGE_I:
5012 case M_BGEL_I:
5013 if (mask == M_BGEL_I)
5014 likely = 1;
5015 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5017 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5018 break;
5020 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5022 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5023 break;
5025 maxnum = 0x7fffffff;
5026 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5028 maxnum <<= 16;
5029 maxnum |= 0xffff;
5030 maxnum <<= 16;
5031 maxnum |= 0xffff;
5033 maxnum = - maxnum - 1;
5034 if (imm_expr.X_op == O_constant
5035 && imm_expr.X_add_number <= maxnum
5036 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5038 do_true:
5039 /* result is always true */
5040 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5041 macro_build (&offset_expr, "b", "p");
5042 break;
5044 used_at = 1;
5045 set_at (sreg, 0);
5046 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5047 break;
5049 case M_BGEUL:
5050 likely = 1;
5051 case M_BGEU:
5052 if (treg == 0)
5053 goto do_true;
5054 if (sreg == 0)
5056 macro_build (&offset_expr, likely ? "beql" : "beq",
5057 "s,t,p", ZERO, treg);
5058 break;
5060 used_at = 1;
5061 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5062 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5063 break;
5065 case M_BGTUL_I:
5066 likely = 1;
5067 case M_BGTU_I:
5068 if (sreg == 0
5069 || (HAVE_32BIT_GPRS
5070 && imm_expr.X_op == O_constant
5071 && imm_expr.X_add_number == -1))
5072 goto do_false;
5073 if (imm_expr.X_op != O_constant)
5074 as_bad (_("Unsupported large constant"));
5075 ++imm_expr.X_add_number;
5076 /* FALLTHROUGH */
5077 case M_BGEU_I:
5078 case M_BGEUL_I:
5079 if (mask == M_BGEUL_I)
5080 likely = 1;
5081 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5082 goto do_true;
5083 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5085 macro_build (&offset_expr, likely ? "bnel" : "bne",
5086 "s,t,p", sreg, ZERO);
5087 break;
5089 used_at = 1;
5090 set_at (sreg, 1);
5091 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5092 break;
5094 case M_BGTL:
5095 likely = 1;
5096 case M_BGT:
5097 if (treg == 0)
5099 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5100 break;
5102 if (sreg == 0)
5104 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5105 break;
5107 used_at = 1;
5108 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5109 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5110 break;
5112 case M_BGTUL:
5113 likely = 1;
5114 case M_BGTU:
5115 if (treg == 0)
5117 macro_build (&offset_expr, likely ? "bnel" : "bne",
5118 "s,t,p", sreg, ZERO);
5119 break;
5121 if (sreg == 0)
5122 goto do_false;
5123 used_at = 1;
5124 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5125 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5126 break;
5128 case M_BLEL:
5129 likely = 1;
5130 case M_BLE:
5131 if (treg == 0)
5133 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5134 break;
5136 if (sreg == 0)
5138 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5139 break;
5141 used_at = 1;
5142 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5143 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5144 break;
5146 case M_BLEL_I:
5147 likely = 1;
5148 case M_BLE_I:
5149 maxnum = 0x7fffffff;
5150 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5152 maxnum <<= 16;
5153 maxnum |= 0xffff;
5154 maxnum <<= 16;
5155 maxnum |= 0xffff;
5157 if (imm_expr.X_op == O_constant
5158 && imm_expr.X_add_number >= maxnum
5159 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5160 goto do_true;
5161 if (imm_expr.X_op != O_constant)
5162 as_bad (_("Unsupported large constant"));
5163 ++imm_expr.X_add_number;
5164 /* FALLTHROUGH */
5165 case M_BLT_I:
5166 case M_BLTL_I:
5167 if (mask == M_BLTL_I)
5168 likely = 1;
5169 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5171 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5172 break;
5174 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5176 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5177 break;
5179 used_at = 1;
5180 set_at (sreg, 0);
5181 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5182 break;
5184 case M_BLEUL:
5185 likely = 1;
5186 case M_BLEU:
5187 if (treg == 0)
5189 macro_build (&offset_expr, likely ? "beql" : "beq",
5190 "s,t,p", sreg, ZERO);
5191 break;
5193 if (sreg == 0)
5194 goto do_true;
5195 used_at = 1;
5196 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5197 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5198 break;
5200 case M_BLEUL_I:
5201 likely = 1;
5202 case M_BLEU_I:
5203 if (sreg == 0
5204 || (HAVE_32BIT_GPRS
5205 && imm_expr.X_op == O_constant
5206 && imm_expr.X_add_number == -1))
5207 goto do_true;
5208 if (imm_expr.X_op != O_constant)
5209 as_bad (_("Unsupported large constant"));
5210 ++imm_expr.X_add_number;
5211 /* FALLTHROUGH */
5212 case M_BLTU_I:
5213 case M_BLTUL_I:
5214 if (mask == M_BLTUL_I)
5215 likely = 1;
5216 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5217 goto do_false;
5218 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5220 macro_build (&offset_expr, likely ? "beql" : "beq",
5221 "s,t,p", sreg, ZERO);
5222 break;
5224 used_at = 1;
5225 set_at (sreg, 1);
5226 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5227 break;
5229 case M_BLTL:
5230 likely = 1;
5231 case M_BLT:
5232 if (treg == 0)
5234 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5235 break;
5237 if (sreg == 0)
5239 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5240 break;
5242 used_at = 1;
5243 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5244 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5245 break;
5247 case M_BLTUL:
5248 likely = 1;
5249 case M_BLTU:
5250 if (treg == 0)
5251 goto do_false;
5252 if (sreg == 0)
5254 macro_build (&offset_expr, likely ? "bnel" : "bne",
5255 "s,t,p", ZERO, treg);
5256 break;
5258 used_at = 1;
5259 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5260 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5261 break;
5263 case M_DEXT:
5265 /* Use unsigned arithmetic. */
5266 addressT pos;
5267 addressT size;
5269 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5271 as_bad (_("Unsupported large constant"));
5272 pos = size = 1;
5274 else
5276 pos = imm_expr.X_add_number;
5277 size = imm2_expr.X_add_number;
5280 if (pos > 63)
5282 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
5283 pos = 1;
5285 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5287 as_bad (_("Improper extract size (%lu, position %lu)"),
5288 (unsigned long) size, (unsigned long) pos);
5289 size = 1;
5292 if (size <= 32 && pos < 32)
5294 s = "dext";
5295 fmt = "t,r,+A,+C";
5297 else if (size <= 32)
5299 s = "dextu";
5300 fmt = "t,r,+E,+H";
5302 else
5304 s = "dextm";
5305 fmt = "t,r,+A,+G";
5307 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5308 (int) (size - 1));
5310 break;
5312 case M_DINS:
5314 /* Use unsigned arithmetic. */
5315 addressT pos;
5316 addressT size;
5318 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5320 as_bad (_("Unsupported large constant"));
5321 pos = size = 1;
5323 else
5325 pos = imm_expr.X_add_number;
5326 size = imm2_expr.X_add_number;
5329 if (pos > 63)
5331 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
5332 pos = 1;
5334 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5336 as_bad (_("Improper insert size (%lu, position %lu)"),
5337 (unsigned long) size, (unsigned long) pos);
5338 size = 1;
5341 if (pos < 32 && (pos + size - 1) < 32)
5343 s = "dins";
5344 fmt = "t,r,+A,+B";
5346 else if (pos >= 32)
5348 s = "dinsu";
5349 fmt = "t,r,+E,+F";
5351 else
5353 s = "dinsm";
5354 fmt = "t,r,+A,+F";
5356 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5357 (int) (pos + size - 1));
5359 break;
5361 case M_DDIV_3:
5362 dbl = 1;
5363 case M_DIV_3:
5364 s = "mflo";
5365 goto do_div3;
5366 case M_DREM_3:
5367 dbl = 1;
5368 case M_REM_3:
5369 s = "mfhi";
5370 do_div3:
5371 if (treg == 0)
5373 as_warn (_("Divide by zero."));
5374 if (mips_trap)
5375 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5376 else
5377 macro_build (NULL, "break", "c", 7);
5378 break;
5381 start_noreorder ();
5382 if (mips_trap)
5384 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5385 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5387 else
5389 expr1.X_add_number = 8;
5390 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5391 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5392 macro_build (NULL, "break", "c", 7);
5394 expr1.X_add_number = -1;
5395 used_at = 1;
5396 load_register (AT, &expr1, dbl);
5397 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5398 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5399 if (dbl)
5401 expr1.X_add_number = 1;
5402 load_register (AT, &expr1, dbl);
5403 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5405 else
5407 expr1.X_add_number = 0x80000000;
5408 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5410 if (mips_trap)
5412 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5413 /* We want to close the noreorder block as soon as possible, so
5414 that later insns are available for delay slot filling. */
5415 end_noreorder ();
5417 else
5419 expr1.X_add_number = 8;
5420 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5421 macro_build (NULL, "nop", "");
5423 /* We want to close the noreorder block as soon as possible, so
5424 that later insns are available for delay slot filling. */
5425 end_noreorder ();
5427 macro_build (NULL, "break", "c", 6);
5429 macro_build (NULL, s, "d", dreg);
5430 break;
5432 case M_DIV_3I:
5433 s = "div";
5434 s2 = "mflo";
5435 goto do_divi;
5436 case M_DIVU_3I:
5437 s = "divu";
5438 s2 = "mflo";
5439 goto do_divi;
5440 case M_REM_3I:
5441 s = "div";
5442 s2 = "mfhi";
5443 goto do_divi;
5444 case M_REMU_3I:
5445 s = "divu";
5446 s2 = "mfhi";
5447 goto do_divi;
5448 case M_DDIV_3I:
5449 dbl = 1;
5450 s = "ddiv";
5451 s2 = "mflo";
5452 goto do_divi;
5453 case M_DDIVU_3I:
5454 dbl = 1;
5455 s = "ddivu";
5456 s2 = "mflo";
5457 goto do_divi;
5458 case M_DREM_3I:
5459 dbl = 1;
5460 s = "ddiv";
5461 s2 = "mfhi";
5462 goto do_divi;
5463 case M_DREMU_3I:
5464 dbl = 1;
5465 s = "ddivu";
5466 s2 = "mfhi";
5467 do_divi:
5468 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5470 as_warn (_("Divide by zero."));
5471 if (mips_trap)
5472 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5473 else
5474 macro_build (NULL, "break", "c", 7);
5475 break;
5477 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5479 if (strcmp (s2, "mflo") == 0)
5480 move_register (dreg, sreg);
5481 else
5482 move_register (dreg, ZERO);
5483 break;
5485 if (imm_expr.X_op == O_constant
5486 && imm_expr.X_add_number == -1
5487 && s[strlen (s) - 1] != 'u')
5489 if (strcmp (s2, "mflo") == 0)
5491 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5493 else
5494 move_register (dreg, ZERO);
5495 break;
5498 used_at = 1;
5499 load_register (AT, &imm_expr, dbl);
5500 macro_build (NULL, s, "z,s,t", sreg, AT);
5501 macro_build (NULL, s2, "d", dreg);
5502 break;
5504 case M_DIVU_3:
5505 s = "divu";
5506 s2 = "mflo";
5507 goto do_divu3;
5508 case M_REMU_3:
5509 s = "divu";
5510 s2 = "mfhi";
5511 goto do_divu3;
5512 case M_DDIVU_3:
5513 s = "ddivu";
5514 s2 = "mflo";
5515 goto do_divu3;
5516 case M_DREMU_3:
5517 s = "ddivu";
5518 s2 = "mfhi";
5519 do_divu3:
5520 start_noreorder ();
5521 if (mips_trap)
5523 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5524 macro_build (NULL, s, "z,s,t", sreg, treg);
5525 /* We want to close the noreorder block as soon as possible, so
5526 that later insns are available for delay slot filling. */
5527 end_noreorder ();
5529 else
5531 expr1.X_add_number = 8;
5532 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5533 macro_build (NULL, s, "z,s,t", sreg, treg);
5535 /* We want to close the noreorder block as soon as possible, so
5536 that later insns are available for delay slot filling. */
5537 end_noreorder ();
5538 macro_build (NULL, "break", "c", 7);
5540 macro_build (NULL, s2, "d", dreg);
5541 break;
5543 case M_DLCA_AB:
5544 dbl = 1;
5545 case M_LCA_AB:
5546 call = 1;
5547 goto do_la;
5548 case M_DLA_AB:
5549 dbl = 1;
5550 case M_LA_AB:
5551 do_la:
5552 /* Load the address of a symbol into a register. If breg is not
5553 zero, we then add a base register to it. */
5555 if (dbl && HAVE_32BIT_GPRS)
5556 as_warn (_("dla used to load 32-bit register"));
5558 if (!dbl && HAVE_64BIT_OBJECTS)
5559 as_warn (_("la used to load 64-bit address"));
5561 if (offset_expr.X_op == O_constant
5562 && offset_expr.X_add_number >= -0x8000
5563 && offset_expr.X_add_number < 0x8000)
5565 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5566 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5567 break;
5570 if (mips_opts.at && (treg == breg))
5572 tempreg = AT;
5573 used_at = 1;
5575 else
5577 tempreg = treg;
5580 if (offset_expr.X_op != O_symbol
5581 && offset_expr.X_op != O_constant)
5583 as_bad (_("Expression too complex"));
5584 offset_expr.X_op = O_constant;
5587 if (offset_expr.X_op == O_constant)
5588 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5589 else if (mips_pic == NO_PIC)
5591 /* If this is a reference to a GP relative symbol, we want
5592 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5593 Otherwise we want
5594 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5595 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5596 If we have a constant, we need two instructions anyhow,
5597 so we may as well always use the latter form.
5599 With 64bit address space and a usable $at we want
5600 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5601 lui $at,<sym> (BFD_RELOC_HI16_S)
5602 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5603 daddiu $at,<sym> (BFD_RELOC_LO16)
5604 dsll32 $tempreg,0
5605 daddu $tempreg,$tempreg,$at
5607 If $at is already in use, we use a path which is suboptimal
5608 on superscalar processors.
5609 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5610 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5611 dsll $tempreg,16
5612 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5613 dsll $tempreg,16
5614 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5616 For GP relative symbols in 64bit address space we can use
5617 the same sequence as in 32bit address space. */
5618 if (HAVE_64BIT_SYMBOLS)
5620 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5621 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5623 relax_start (offset_expr.X_add_symbol);
5624 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5625 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5626 relax_switch ();
5629 if (used_at == 0 && mips_opts.at)
5631 macro_build (&offset_expr, "lui", "t,u",
5632 tempreg, BFD_RELOC_MIPS_HIGHEST);
5633 macro_build (&offset_expr, "lui", "t,u",
5634 AT, BFD_RELOC_HI16_S);
5635 macro_build (&offset_expr, "daddiu", "t,r,j",
5636 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5637 macro_build (&offset_expr, "daddiu", "t,r,j",
5638 AT, AT, BFD_RELOC_LO16);
5639 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5640 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5641 used_at = 1;
5643 else
5645 macro_build (&offset_expr, "lui", "t,u",
5646 tempreg, BFD_RELOC_MIPS_HIGHEST);
5647 macro_build (&offset_expr, "daddiu", "t,r,j",
5648 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5649 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5650 macro_build (&offset_expr, "daddiu", "t,r,j",
5651 tempreg, tempreg, BFD_RELOC_HI16_S);
5652 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5653 macro_build (&offset_expr, "daddiu", "t,r,j",
5654 tempreg, tempreg, BFD_RELOC_LO16);
5657 if (mips_relax.sequence)
5658 relax_end ();
5660 else
5662 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5663 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5665 relax_start (offset_expr.X_add_symbol);
5666 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5667 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5668 relax_switch ();
5670 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5671 as_bad (_("Offset too large"));
5672 macro_build_lui (&offset_expr, tempreg);
5673 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5674 tempreg, tempreg, BFD_RELOC_LO16);
5675 if (mips_relax.sequence)
5676 relax_end ();
5679 else if (!mips_big_got && !HAVE_NEWABI)
5681 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5683 /* If this is a reference to an external symbol, and there
5684 is no constant, we want
5685 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5686 or for lca or if tempreg is PIC_CALL_REG
5687 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5688 For a local symbol, we want
5689 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5691 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5693 If we have a small constant, and this is a reference to
5694 an external symbol, we want
5695 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5697 addiu $tempreg,$tempreg,<constant>
5698 For a local symbol, we want the same instruction
5699 sequence, but we output a BFD_RELOC_LO16 reloc on the
5700 addiu instruction.
5702 If we have a large constant, and this is a reference to
5703 an external symbol, we want
5704 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5705 lui $at,<hiconstant>
5706 addiu $at,$at,<loconstant>
5707 addu $tempreg,$tempreg,$at
5708 For a local symbol, we want the same instruction
5709 sequence, but we output a BFD_RELOC_LO16 reloc on the
5710 addiu instruction.
5713 if (offset_expr.X_add_number == 0)
5715 if (mips_pic == SVR4_PIC
5716 && breg == 0
5717 && (call || tempreg == PIC_CALL_REG))
5718 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5720 relax_start (offset_expr.X_add_symbol);
5721 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5722 lw_reloc_type, mips_gp_register);
5723 if (breg != 0)
5725 /* We're going to put in an addu instruction using
5726 tempreg, so we may as well insert the nop right
5727 now. */
5728 load_delay_nop ();
5730 relax_switch ();
5731 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5732 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5733 load_delay_nop ();
5734 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5735 tempreg, tempreg, BFD_RELOC_LO16);
5736 relax_end ();
5737 /* FIXME: If breg == 0, and the next instruction uses
5738 $tempreg, then if this variant case is used an extra
5739 nop will be generated. */
5741 else if (offset_expr.X_add_number >= -0x8000
5742 && offset_expr.X_add_number < 0x8000)
5744 load_got_offset (tempreg, &offset_expr);
5745 load_delay_nop ();
5746 add_got_offset (tempreg, &offset_expr);
5748 else
5750 expr1.X_add_number = offset_expr.X_add_number;
5751 offset_expr.X_add_number =
5752 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5753 load_got_offset (tempreg, &offset_expr);
5754 offset_expr.X_add_number = expr1.X_add_number;
5755 /* If we are going to add in a base register, and the
5756 target register and the base register are the same,
5757 then we are using AT as a temporary register. Since
5758 we want to load the constant into AT, we add our
5759 current AT (from the global offset table) and the
5760 register into the register now, and pretend we were
5761 not using a base register. */
5762 if (breg == treg)
5764 load_delay_nop ();
5765 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5766 treg, AT, breg);
5767 breg = 0;
5768 tempreg = treg;
5770 add_got_offset_hilo (tempreg, &offset_expr, AT);
5771 used_at = 1;
5774 else if (!mips_big_got && HAVE_NEWABI)
5776 int add_breg_early = 0;
5778 /* If this is a reference to an external, and there is no
5779 constant, or local symbol (*), with or without a
5780 constant, we want
5781 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5782 or for lca or if tempreg is PIC_CALL_REG
5783 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5785 If we have a small constant, and this is a reference to
5786 an external symbol, we want
5787 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5788 addiu $tempreg,$tempreg,<constant>
5790 If we have a large constant, and this is a reference to
5791 an external symbol, we want
5792 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5793 lui $at,<hiconstant>
5794 addiu $at,$at,<loconstant>
5795 addu $tempreg,$tempreg,$at
5797 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5798 local symbols, even though it introduces an additional
5799 instruction. */
5801 if (offset_expr.X_add_number)
5803 expr1.X_add_number = offset_expr.X_add_number;
5804 offset_expr.X_add_number = 0;
5806 relax_start (offset_expr.X_add_symbol);
5807 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5808 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5810 if (expr1.X_add_number >= -0x8000
5811 && expr1.X_add_number < 0x8000)
5813 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5814 tempreg, tempreg, BFD_RELOC_LO16);
5816 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5818 /* If we are going to add in a base register, and the
5819 target register and the base register are the same,
5820 then we are using AT as a temporary register. Since
5821 we want to load the constant into AT, we add our
5822 current AT (from the global offset table) and the
5823 register into the register now, and pretend we were
5824 not using a base register. */
5825 if (breg != treg)
5826 dreg = tempreg;
5827 else
5829 gas_assert (tempreg == AT);
5830 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5831 treg, AT, breg);
5832 dreg = treg;
5833 add_breg_early = 1;
5836 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5837 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5838 dreg, dreg, AT);
5840 used_at = 1;
5842 else
5843 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5845 relax_switch ();
5846 offset_expr.X_add_number = expr1.X_add_number;
5848 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5849 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5850 if (add_breg_early)
5852 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5853 treg, tempreg, breg);
5854 breg = 0;
5855 tempreg = treg;
5857 relax_end ();
5859 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5861 relax_start (offset_expr.X_add_symbol);
5862 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5863 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5864 relax_switch ();
5865 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5866 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5867 relax_end ();
5869 else
5871 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5872 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5875 else if (mips_big_got && !HAVE_NEWABI)
5877 int gpdelay;
5878 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5879 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5880 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5882 /* This is the large GOT case. If this is a reference to an
5883 external symbol, and there is no constant, we want
5884 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5885 addu $tempreg,$tempreg,$gp
5886 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5887 or for lca or if tempreg is PIC_CALL_REG
5888 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5889 addu $tempreg,$tempreg,$gp
5890 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5891 For a local symbol, we want
5892 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5894 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5896 If we have a small constant, and this is a reference to
5897 an external symbol, we want
5898 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5899 addu $tempreg,$tempreg,$gp
5900 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5902 addiu $tempreg,$tempreg,<constant>
5903 For a local symbol, we want
5904 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5906 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5908 If we have a large constant, and this is a reference to
5909 an external symbol, we want
5910 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5911 addu $tempreg,$tempreg,$gp
5912 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5913 lui $at,<hiconstant>
5914 addiu $at,$at,<loconstant>
5915 addu $tempreg,$tempreg,$at
5916 For a local symbol, we want
5917 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5918 lui $at,<hiconstant>
5919 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5920 addu $tempreg,$tempreg,$at
5923 expr1.X_add_number = offset_expr.X_add_number;
5924 offset_expr.X_add_number = 0;
5925 relax_start (offset_expr.X_add_symbol);
5926 gpdelay = reg_needs_delay (mips_gp_register);
5927 if (expr1.X_add_number == 0 && breg == 0
5928 && (call || tempreg == PIC_CALL_REG))
5930 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5931 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5933 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5934 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5935 tempreg, tempreg, mips_gp_register);
5936 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5937 tempreg, lw_reloc_type, tempreg);
5938 if (expr1.X_add_number == 0)
5940 if (breg != 0)
5942 /* We're going to put in an addu instruction using
5943 tempreg, so we may as well insert the nop right
5944 now. */
5945 load_delay_nop ();
5948 else if (expr1.X_add_number >= -0x8000
5949 && expr1.X_add_number < 0x8000)
5951 load_delay_nop ();
5952 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5953 tempreg, tempreg, BFD_RELOC_LO16);
5955 else
5957 /* If we are going to add in a base register, and the
5958 target register and the base register are the same,
5959 then we are using AT as a temporary register. Since
5960 we want to load the constant into AT, we add our
5961 current AT (from the global offset table) and the
5962 register into the register now, and pretend we were
5963 not using a base register. */
5964 if (breg != treg)
5965 dreg = tempreg;
5966 else
5968 gas_assert (tempreg == AT);
5969 load_delay_nop ();
5970 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5971 treg, AT, breg);
5972 dreg = treg;
5975 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5976 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5978 used_at = 1;
5980 offset_expr.X_add_number =
5981 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5982 relax_switch ();
5984 if (gpdelay)
5986 /* This is needed because this instruction uses $gp, but
5987 the first instruction on the main stream does not. */
5988 macro_build (NULL, "nop", "");
5991 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5992 local_reloc_type, mips_gp_register);
5993 if (expr1.X_add_number >= -0x8000
5994 && expr1.X_add_number < 0x8000)
5996 load_delay_nop ();
5997 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5998 tempreg, tempreg, BFD_RELOC_LO16);
5999 /* FIXME: If add_number is 0, and there was no base
6000 register, the external symbol case ended with a load,
6001 so if the symbol turns out to not be external, and
6002 the next instruction uses tempreg, an unnecessary nop
6003 will be inserted. */
6005 else
6007 if (breg == treg)
6009 /* We must add in the base register now, as in the
6010 external symbol case. */
6011 gas_assert (tempreg == AT);
6012 load_delay_nop ();
6013 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6014 treg, AT, breg);
6015 tempreg = treg;
6016 /* We set breg to 0 because we have arranged to add
6017 it in in both cases. */
6018 breg = 0;
6021 macro_build_lui (&expr1, AT);
6022 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6023 AT, AT, BFD_RELOC_LO16);
6024 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6025 tempreg, tempreg, AT);
6026 used_at = 1;
6028 relax_end ();
6030 else if (mips_big_got && HAVE_NEWABI)
6032 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6033 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6034 int add_breg_early = 0;
6036 /* This is the large GOT case. If this is a reference to an
6037 external symbol, and there is no constant, we want
6038 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6039 add $tempreg,$tempreg,$gp
6040 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6041 or for lca or if tempreg is PIC_CALL_REG
6042 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6043 add $tempreg,$tempreg,$gp
6044 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6046 If we have a small constant, and this is a reference to
6047 an external symbol, we want
6048 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6049 add $tempreg,$tempreg,$gp
6050 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6051 addi $tempreg,$tempreg,<constant>
6053 If we have a large constant, and this is a reference to
6054 an external symbol, we want
6055 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6056 addu $tempreg,$tempreg,$gp
6057 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6058 lui $at,<hiconstant>
6059 addi $at,$at,<loconstant>
6060 add $tempreg,$tempreg,$at
6062 If we have NewABI, and we know it's a local symbol, we want
6063 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6064 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6065 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6067 relax_start (offset_expr.X_add_symbol);
6069 expr1.X_add_number = offset_expr.X_add_number;
6070 offset_expr.X_add_number = 0;
6072 if (expr1.X_add_number == 0 && breg == 0
6073 && (call || tempreg == PIC_CALL_REG))
6075 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6076 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6078 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6079 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6080 tempreg, tempreg, mips_gp_register);
6081 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6082 tempreg, lw_reloc_type, tempreg);
6084 if (expr1.X_add_number == 0)
6086 else if (expr1.X_add_number >= -0x8000
6087 && expr1.X_add_number < 0x8000)
6089 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6090 tempreg, tempreg, BFD_RELOC_LO16);
6092 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6094 /* If we are going to add in a base register, and the
6095 target register and the base register are the same,
6096 then we are using AT as a temporary register. Since
6097 we want to load the constant into AT, we add our
6098 current AT (from the global offset table) and the
6099 register into the register now, and pretend we were
6100 not using a base register. */
6101 if (breg != treg)
6102 dreg = tempreg;
6103 else
6105 gas_assert (tempreg == AT);
6106 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6107 treg, AT, breg);
6108 dreg = treg;
6109 add_breg_early = 1;
6112 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6113 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6115 used_at = 1;
6117 else
6118 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6120 relax_switch ();
6121 offset_expr.X_add_number = expr1.X_add_number;
6122 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6123 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6124 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6125 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6126 if (add_breg_early)
6128 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6129 treg, tempreg, breg);
6130 breg = 0;
6131 tempreg = treg;
6133 relax_end ();
6135 else
6136 abort ();
6138 if (breg != 0)
6139 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6140 break;
6142 case M_MSGSND:
6144 unsigned long temp = (treg << 16) | (0x01);
6145 macro_build (NULL, "c2", "C", temp);
6147 /* AT is not used, just return */
6148 return;
6150 case M_MSGLD:
6152 unsigned long temp = (0x02);
6153 macro_build (NULL, "c2", "C", temp);
6155 /* AT is not used, just return */
6156 return;
6158 case M_MSGLD_T:
6160 unsigned long temp = (treg << 16) | (0x02);
6161 macro_build (NULL, "c2", "C", temp);
6163 /* AT is not used, just return */
6164 return;
6166 case M_MSGWAIT:
6167 macro_build (NULL, "c2", "C", 3);
6168 /* AT is not used, just return */
6169 return;
6171 case M_MSGWAIT_T:
6173 unsigned long temp = (treg << 16) | 0x03;
6174 macro_build (NULL, "c2", "C", temp);
6176 /* AT is not used, just return */
6177 return;
6179 case M_J_A:
6180 /* The j instruction may not be used in PIC code, since it
6181 requires an absolute address. We convert it to a b
6182 instruction. */
6183 if (mips_pic == NO_PIC)
6184 macro_build (&offset_expr, "j", "a");
6185 else
6186 macro_build (&offset_expr, "b", "p");
6187 break;
6189 /* The jal instructions must be handled as macros because when
6190 generating PIC code they expand to multi-instruction
6191 sequences. Normally they are simple instructions. */
6192 case M_JAL_1:
6193 dreg = RA;
6194 /* Fall through. */
6195 case M_JAL_2:
6196 if (mips_pic == NO_PIC)
6197 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6198 else
6200 if (sreg != PIC_CALL_REG)
6201 as_warn (_("MIPS PIC call to register other than $25"));
6203 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6204 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6206 if (mips_cprestore_offset < 0)
6207 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6208 else
6210 if (!mips_frame_reg_valid)
6212 as_warn (_("No .frame pseudo-op used in PIC code"));
6213 /* Quiet this warning. */
6214 mips_frame_reg_valid = 1;
6216 if (!mips_cprestore_valid)
6218 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6219 /* Quiet this warning. */
6220 mips_cprestore_valid = 1;
6222 if (mips_opts.noreorder)
6223 macro_build (NULL, "nop", "");
6224 expr1.X_add_number = mips_cprestore_offset;
6225 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6226 mips_gp_register,
6227 mips_frame_reg,
6228 HAVE_64BIT_ADDRESSES);
6233 break;
6235 case M_JAL_A:
6236 if (mips_pic == NO_PIC)
6237 macro_build (&offset_expr, "jal", "a");
6238 else if (mips_pic == SVR4_PIC)
6240 /* If this is a reference to an external symbol, and we are
6241 using a small GOT, we want
6242 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6244 jalr $ra,$25
6246 lw $gp,cprestore($sp)
6247 The cprestore value is set using the .cprestore
6248 pseudo-op. If we are using a big GOT, we want
6249 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6250 addu $25,$25,$gp
6251 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6253 jalr $ra,$25
6255 lw $gp,cprestore($sp)
6256 If the symbol is not external, we want
6257 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6259 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6260 jalr $ra,$25
6262 lw $gp,cprestore($sp)
6264 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6265 sequences above, minus nops, unless the symbol is local,
6266 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6267 GOT_DISP. */
6268 if (HAVE_NEWABI)
6270 if (!mips_big_got)
6272 relax_start (offset_expr.X_add_symbol);
6273 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6274 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6275 mips_gp_register);
6276 relax_switch ();
6277 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6278 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6279 mips_gp_register);
6280 relax_end ();
6282 else
6284 relax_start (offset_expr.X_add_symbol);
6285 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6286 BFD_RELOC_MIPS_CALL_HI16);
6287 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6288 PIC_CALL_REG, mips_gp_register);
6289 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6290 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6291 PIC_CALL_REG);
6292 relax_switch ();
6293 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6294 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6295 mips_gp_register);
6296 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6297 PIC_CALL_REG, PIC_CALL_REG,
6298 BFD_RELOC_MIPS_GOT_OFST);
6299 relax_end ();
6302 macro_build_jalr (&offset_expr);
6304 else
6306 relax_start (offset_expr.X_add_symbol);
6307 if (!mips_big_got)
6309 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6310 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6311 mips_gp_register);
6312 load_delay_nop ();
6313 relax_switch ();
6315 else
6317 int gpdelay;
6319 gpdelay = reg_needs_delay (mips_gp_register);
6320 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6321 BFD_RELOC_MIPS_CALL_HI16);
6322 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6323 PIC_CALL_REG, mips_gp_register);
6324 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6325 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6326 PIC_CALL_REG);
6327 load_delay_nop ();
6328 relax_switch ();
6329 if (gpdelay)
6330 macro_build (NULL, "nop", "");
6332 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6333 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6334 mips_gp_register);
6335 load_delay_nop ();
6336 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6337 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6338 relax_end ();
6339 macro_build_jalr (&offset_expr);
6341 if (mips_cprestore_offset < 0)
6342 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6343 else
6345 if (!mips_frame_reg_valid)
6347 as_warn (_("No .frame pseudo-op used in PIC code"));
6348 /* Quiet this warning. */
6349 mips_frame_reg_valid = 1;
6351 if (!mips_cprestore_valid)
6353 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6354 /* Quiet this warning. */
6355 mips_cprestore_valid = 1;
6357 if (mips_opts.noreorder)
6358 macro_build (NULL, "nop", "");
6359 expr1.X_add_number = mips_cprestore_offset;
6360 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6361 mips_gp_register,
6362 mips_frame_reg,
6363 HAVE_64BIT_ADDRESSES);
6367 else if (mips_pic == VXWORKS_PIC)
6368 as_bad (_("Non-PIC jump used in PIC library"));
6369 else
6370 abort ();
6372 break;
6374 case M_LB_AB:
6375 s = "lb";
6376 goto ld;
6377 case M_LBU_AB:
6378 s = "lbu";
6379 goto ld;
6380 case M_LH_AB:
6381 s = "lh";
6382 goto ld;
6383 case M_LHU_AB:
6384 s = "lhu";
6385 goto ld;
6386 case M_LW_AB:
6387 s = "lw";
6388 goto ld;
6389 case M_LWC0_AB:
6390 s = "lwc0";
6391 /* Itbl support may require additional care here. */
6392 coproc = 1;
6393 goto ld;
6394 case M_LWC1_AB:
6395 s = "lwc1";
6396 /* Itbl support may require additional care here. */
6397 coproc = 1;
6398 goto ld;
6399 case M_LWC2_AB:
6400 s = "lwc2";
6401 /* Itbl support may require additional care here. */
6402 coproc = 1;
6403 goto ld;
6404 case M_LWC3_AB:
6405 s = "lwc3";
6406 /* Itbl support may require additional care here. */
6407 coproc = 1;
6408 goto ld;
6409 case M_LWL_AB:
6410 s = "lwl";
6411 lr = 1;
6412 goto ld;
6413 case M_LWR_AB:
6414 s = "lwr";
6415 lr = 1;
6416 goto ld;
6417 case M_LDC1_AB:
6418 s = "ldc1";
6419 /* Itbl support may require additional care here. */
6420 coproc = 1;
6421 goto ld;
6422 case M_LDC2_AB:
6423 s = "ldc2";
6424 /* Itbl support may require additional care here. */
6425 coproc = 1;
6426 goto ld;
6427 case M_LDC3_AB:
6428 s = "ldc3";
6429 /* Itbl support may require additional care here. */
6430 coproc = 1;
6431 goto ld;
6432 case M_LDL_AB:
6433 s = "ldl";
6434 lr = 1;
6435 goto ld;
6436 case M_LDR_AB:
6437 s = "ldr";
6438 lr = 1;
6439 goto ld;
6440 case M_LL_AB:
6441 s = "ll";
6442 goto ld;
6443 case M_LLD_AB:
6444 s = "lld";
6445 goto ld;
6446 case M_LWU_AB:
6447 s = "lwu";
6449 if (breg == treg || coproc || lr)
6451 tempreg = AT;
6452 used_at = 1;
6454 else
6456 tempreg = treg;
6458 goto ld_st;
6459 case M_SB_AB:
6460 s = "sb";
6461 goto st;
6462 case M_SH_AB:
6463 s = "sh";
6464 goto st;
6465 case M_SW_AB:
6466 s = "sw";
6467 goto st;
6468 case M_SWC0_AB:
6469 s = "swc0";
6470 /* Itbl support may require additional care here. */
6471 coproc = 1;
6472 goto st;
6473 case M_SWC1_AB:
6474 s = "swc1";
6475 /* Itbl support may require additional care here. */
6476 coproc = 1;
6477 goto st;
6478 case M_SWC2_AB:
6479 s = "swc2";
6480 /* Itbl support may require additional care here. */
6481 coproc = 1;
6482 goto st;
6483 case M_SWC3_AB:
6484 s = "swc3";
6485 /* Itbl support may require additional care here. */
6486 coproc = 1;
6487 goto st;
6488 case M_SWL_AB:
6489 s = "swl";
6490 goto st;
6491 case M_SWR_AB:
6492 s = "swr";
6493 goto st;
6494 case M_SC_AB:
6495 s = "sc";
6496 goto st;
6497 case M_SCD_AB:
6498 s = "scd";
6499 goto st;
6500 case M_CACHE_AB:
6501 s = "cache";
6502 goto st;
6503 case M_SDC1_AB:
6504 s = "sdc1";
6505 coproc = 1;
6506 /* Itbl support may require additional care here. */
6507 goto st;
6508 case M_SDC2_AB:
6509 s = "sdc2";
6510 /* Itbl support may require additional care here. */
6511 coproc = 1;
6512 goto st;
6513 case M_SDC3_AB:
6514 s = "sdc3";
6515 /* Itbl support may require additional care here. */
6516 coproc = 1;
6517 goto st;
6518 case M_SDL_AB:
6519 s = "sdl";
6520 goto st;
6521 case M_SDR_AB:
6522 s = "sdr";
6524 tempreg = AT;
6525 used_at = 1;
6526 ld_st:
6527 if (coproc
6528 && NO_ISA_COP (mips_opts.arch)
6529 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6531 as_bad (_("Opcode not supported on this processor: %s"),
6532 mips_cpu_info_from_arch (mips_opts.arch)->name);
6533 break;
6536 /* Itbl support may require additional care here. */
6537 if (mask == M_LWC1_AB
6538 || mask == M_SWC1_AB
6539 || mask == M_LDC1_AB
6540 || mask == M_SDC1_AB
6541 || mask == M_L_DAB
6542 || mask == M_S_DAB)
6543 fmt = "T,o(b)";
6544 else if (mask == M_CACHE_AB)
6545 fmt = "k,o(b)";
6546 else if (coproc)
6547 fmt = "E,o(b)";
6548 else
6549 fmt = "t,o(b)";
6551 if (offset_expr.X_op != O_constant
6552 && offset_expr.X_op != O_symbol)
6554 as_bad (_("Expression too complex"));
6555 offset_expr.X_op = O_constant;
6558 if (HAVE_32BIT_ADDRESSES
6559 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6561 char value [32];
6563 sprintf_vma (value, offset_expr.X_add_number);
6564 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6567 /* A constant expression in PIC code can be handled just as it
6568 is in non PIC code. */
6569 if (offset_expr.X_op == O_constant)
6571 expr1.X_add_number = offset_expr.X_add_number;
6572 normalize_address_expr (&expr1);
6573 if (!IS_SEXT_16BIT_NUM (expr1.X_add_number))
6575 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
6576 & ~(bfd_vma) 0xffff);
6577 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6578 if (breg != 0)
6579 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6580 tempreg, tempreg, breg);
6581 breg = tempreg;
6583 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
6585 else if (mips_pic == NO_PIC)
6587 /* If this is a reference to a GP relative symbol, and there
6588 is no base register, we want
6589 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6590 Otherwise, if there is no base register, we want
6591 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6592 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6593 If we have a constant, we need two instructions anyhow,
6594 so we always use the latter form.
6596 If we have a base register, and this is a reference to a
6597 GP relative symbol, we want
6598 addu $tempreg,$breg,$gp
6599 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6600 Otherwise we want
6601 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6602 addu $tempreg,$tempreg,$breg
6603 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6604 With a constant we always use the latter case.
6606 With 64bit address space and no base register and $at usable,
6607 we want
6608 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6609 lui $at,<sym> (BFD_RELOC_HI16_S)
6610 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6611 dsll32 $tempreg,0
6612 daddu $tempreg,$at
6613 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6614 If we have a base register, we want
6615 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6616 lui $at,<sym> (BFD_RELOC_HI16_S)
6617 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6618 daddu $at,$breg
6619 dsll32 $tempreg,0
6620 daddu $tempreg,$at
6621 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6623 Without $at we can't generate the optimal path for superscalar
6624 processors here since this would require two temporary registers.
6625 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6626 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6627 dsll $tempreg,16
6628 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6629 dsll $tempreg,16
6630 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6631 If we have a base register, we want
6632 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6633 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6634 dsll $tempreg,16
6635 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6636 dsll $tempreg,16
6637 daddu $tempreg,$tempreg,$breg
6638 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6640 For GP relative symbols in 64bit address space we can use
6641 the same sequence as in 32bit address space. */
6642 if (HAVE_64BIT_SYMBOLS)
6644 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6645 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6647 relax_start (offset_expr.X_add_symbol);
6648 if (breg == 0)
6650 macro_build (&offset_expr, s, fmt, treg,
6651 BFD_RELOC_GPREL16, mips_gp_register);
6653 else
6655 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6656 tempreg, breg, mips_gp_register);
6657 macro_build (&offset_expr, s, fmt, treg,
6658 BFD_RELOC_GPREL16, tempreg);
6660 relax_switch ();
6663 if (used_at == 0 && mips_opts.at)
6665 macro_build (&offset_expr, "lui", "t,u", tempreg,
6666 BFD_RELOC_MIPS_HIGHEST);
6667 macro_build (&offset_expr, "lui", "t,u", AT,
6668 BFD_RELOC_HI16_S);
6669 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6670 tempreg, BFD_RELOC_MIPS_HIGHER);
6671 if (breg != 0)
6672 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6673 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6674 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6675 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6676 tempreg);
6677 used_at = 1;
6679 else
6681 macro_build (&offset_expr, "lui", "t,u", tempreg,
6682 BFD_RELOC_MIPS_HIGHEST);
6683 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6684 tempreg, BFD_RELOC_MIPS_HIGHER);
6685 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6686 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6687 tempreg, BFD_RELOC_HI16_S);
6688 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6689 if (breg != 0)
6690 macro_build (NULL, "daddu", "d,v,t",
6691 tempreg, tempreg, breg);
6692 macro_build (&offset_expr, s, fmt, treg,
6693 BFD_RELOC_LO16, tempreg);
6696 if (mips_relax.sequence)
6697 relax_end ();
6698 break;
6701 if (breg == 0)
6703 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6704 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6706 relax_start (offset_expr.X_add_symbol);
6707 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6708 mips_gp_register);
6709 relax_switch ();
6711 macro_build_lui (&offset_expr, tempreg);
6712 macro_build (&offset_expr, s, fmt, treg,
6713 BFD_RELOC_LO16, tempreg);
6714 if (mips_relax.sequence)
6715 relax_end ();
6717 else
6719 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6720 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6722 relax_start (offset_expr.X_add_symbol);
6723 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6724 tempreg, breg, mips_gp_register);
6725 macro_build (&offset_expr, s, fmt, treg,
6726 BFD_RELOC_GPREL16, tempreg);
6727 relax_switch ();
6729 macro_build_lui (&offset_expr, tempreg);
6730 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6731 tempreg, tempreg, breg);
6732 macro_build (&offset_expr, s, fmt, treg,
6733 BFD_RELOC_LO16, tempreg);
6734 if (mips_relax.sequence)
6735 relax_end ();
6738 else if (!mips_big_got)
6740 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6742 /* If this is a reference to an external symbol, we want
6743 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6745 <op> $treg,0($tempreg)
6746 Otherwise we want
6747 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6749 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6750 <op> $treg,0($tempreg)
6752 For NewABI, we want
6753 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6754 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6756 If there is a base register, we add it to $tempreg before
6757 the <op>. If there is a constant, we stick it in the
6758 <op> instruction. We don't handle constants larger than
6759 16 bits, because we have no way to load the upper 16 bits
6760 (actually, we could handle them for the subset of cases
6761 in which we are not using $at). */
6762 gas_assert (offset_expr.X_op == O_symbol);
6763 if (HAVE_NEWABI)
6765 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6766 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6767 if (breg != 0)
6768 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6769 tempreg, tempreg, breg);
6770 macro_build (&offset_expr, s, fmt, treg,
6771 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6772 break;
6774 expr1.X_add_number = offset_expr.X_add_number;
6775 offset_expr.X_add_number = 0;
6776 if (expr1.X_add_number < -0x8000
6777 || expr1.X_add_number >= 0x8000)
6778 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6779 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6780 lw_reloc_type, mips_gp_register);
6781 load_delay_nop ();
6782 relax_start (offset_expr.X_add_symbol);
6783 relax_switch ();
6784 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6785 tempreg, BFD_RELOC_LO16);
6786 relax_end ();
6787 if (breg != 0)
6788 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6789 tempreg, tempreg, breg);
6790 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6792 else if (mips_big_got && !HAVE_NEWABI)
6794 int gpdelay;
6796 /* If this is a reference to an external symbol, we want
6797 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6798 addu $tempreg,$tempreg,$gp
6799 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6800 <op> $treg,0($tempreg)
6801 Otherwise we want
6802 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6804 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6805 <op> $treg,0($tempreg)
6806 If there is a base register, we add it to $tempreg before
6807 the <op>. If there is a constant, we stick it in the
6808 <op> instruction. We don't handle constants larger than
6809 16 bits, because we have no way to load the upper 16 bits
6810 (actually, we could handle them for the subset of cases
6811 in which we are not using $at). */
6812 gas_assert (offset_expr.X_op == O_symbol);
6813 expr1.X_add_number = offset_expr.X_add_number;
6814 offset_expr.X_add_number = 0;
6815 if (expr1.X_add_number < -0x8000
6816 || expr1.X_add_number >= 0x8000)
6817 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6818 gpdelay = reg_needs_delay (mips_gp_register);
6819 relax_start (offset_expr.X_add_symbol);
6820 macro_build (&offset_expr, "lui", "t,u", tempreg,
6821 BFD_RELOC_MIPS_GOT_HI16);
6822 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6823 mips_gp_register);
6824 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6825 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6826 relax_switch ();
6827 if (gpdelay)
6828 macro_build (NULL, "nop", "");
6829 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6830 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6831 load_delay_nop ();
6832 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6833 tempreg, BFD_RELOC_LO16);
6834 relax_end ();
6836 if (breg != 0)
6837 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6838 tempreg, tempreg, breg);
6839 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6841 else if (mips_big_got && HAVE_NEWABI)
6843 /* If this is a reference to an external symbol, we want
6844 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6845 add $tempreg,$tempreg,$gp
6846 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6847 <op> $treg,<ofst>($tempreg)
6848 Otherwise, for local symbols, we want:
6849 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6850 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6851 gas_assert (offset_expr.X_op == O_symbol);
6852 expr1.X_add_number = offset_expr.X_add_number;
6853 offset_expr.X_add_number = 0;
6854 if (expr1.X_add_number < -0x8000
6855 || expr1.X_add_number >= 0x8000)
6856 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6857 relax_start (offset_expr.X_add_symbol);
6858 macro_build (&offset_expr, "lui", "t,u", tempreg,
6859 BFD_RELOC_MIPS_GOT_HI16);
6860 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6861 mips_gp_register);
6862 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6863 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6864 if (breg != 0)
6865 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6866 tempreg, tempreg, breg);
6867 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6869 relax_switch ();
6870 offset_expr.X_add_number = expr1.X_add_number;
6871 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6872 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6873 if (breg != 0)
6874 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6875 tempreg, tempreg, breg);
6876 macro_build (&offset_expr, s, fmt, treg,
6877 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6878 relax_end ();
6880 else
6881 abort ();
6883 break;
6885 case M_LI:
6886 case M_LI_S:
6887 load_register (treg, &imm_expr, 0);
6888 break;
6890 case M_DLI:
6891 load_register (treg, &imm_expr, 1);
6892 break;
6894 case M_LI_SS:
6895 if (imm_expr.X_op == O_constant)
6897 used_at = 1;
6898 load_register (AT, &imm_expr, 0);
6899 macro_build (NULL, "mtc1", "t,G", AT, treg);
6900 break;
6902 else
6904 gas_assert (offset_expr.X_op == O_symbol
6905 && strcmp (segment_name (S_GET_SEGMENT
6906 (offset_expr.X_add_symbol)),
6907 ".lit4") == 0
6908 && offset_expr.X_add_number == 0);
6909 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6910 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6911 break;
6914 case M_LI_D:
6915 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6916 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6917 order 32 bits of the value and the low order 32 bits are either
6918 zero or in OFFSET_EXPR. */
6919 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6921 if (HAVE_64BIT_GPRS)
6922 load_register (treg, &imm_expr, 1);
6923 else
6925 int hreg, lreg;
6927 if (target_big_endian)
6929 hreg = treg;
6930 lreg = treg + 1;
6932 else
6934 hreg = treg + 1;
6935 lreg = treg;
6938 if (hreg <= 31)
6939 load_register (hreg, &imm_expr, 0);
6940 if (lreg <= 31)
6942 if (offset_expr.X_op == O_absent)
6943 move_register (lreg, 0);
6944 else
6946 gas_assert (offset_expr.X_op == O_constant);
6947 load_register (lreg, &offset_expr, 0);
6951 break;
6954 /* We know that sym is in the .rdata section. First we get the
6955 upper 16 bits of the address. */
6956 if (mips_pic == NO_PIC)
6958 macro_build_lui (&offset_expr, AT);
6959 used_at = 1;
6961 else
6963 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6964 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6965 used_at = 1;
6968 /* Now we load the register(s). */
6969 if (HAVE_64BIT_GPRS)
6971 used_at = 1;
6972 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6974 else
6976 used_at = 1;
6977 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6978 if (treg != RA)
6980 /* FIXME: How in the world do we deal with the possible
6981 overflow here? */
6982 offset_expr.X_add_number += 4;
6983 macro_build (&offset_expr, "lw", "t,o(b)",
6984 treg + 1, BFD_RELOC_LO16, AT);
6987 break;
6989 case M_LI_DD:
6990 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6991 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6992 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6993 the value and the low order 32 bits are either zero or in
6994 OFFSET_EXPR. */
6995 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6997 used_at = 1;
6998 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6999 if (HAVE_64BIT_FPRS)
7001 gas_assert (HAVE_64BIT_GPRS);
7002 macro_build (NULL, "dmtc1", "t,S", AT, treg);
7004 else
7006 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
7007 if (offset_expr.X_op == O_absent)
7008 macro_build (NULL, "mtc1", "t,G", 0, treg);
7009 else
7011 gas_assert (offset_expr.X_op == O_constant);
7012 load_register (AT, &offset_expr, 0);
7013 macro_build (NULL, "mtc1", "t,G", AT, treg);
7016 break;
7019 gas_assert (offset_expr.X_op == O_symbol
7020 && offset_expr.X_add_number == 0);
7021 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7022 if (strcmp (s, ".lit8") == 0)
7024 if (mips_opts.isa != ISA_MIPS1)
7026 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7027 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7028 break;
7030 breg = mips_gp_register;
7031 r = BFD_RELOC_MIPS_LITERAL;
7032 goto dob;
7034 else
7036 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7037 used_at = 1;
7038 if (mips_pic != NO_PIC)
7039 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7040 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7041 else
7043 /* FIXME: This won't work for a 64 bit address. */
7044 macro_build_lui (&offset_expr, AT);
7047 if (mips_opts.isa != ISA_MIPS1)
7049 macro_build (&offset_expr, "ldc1", "T,o(b)",
7050 treg, BFD_RELOC_LO16, AT);
7051 break;
7053 breg = AT;
7054 r = BFD_RELOC_LO16;
7055 goto dob;
7058 case M_L_DOB:
7059 /* Even on a big endian machine $fn comes before $fn+1. We have
7060 to adjust when loading from memory. */
7061 r = BFD_RELOC_LO16;
7062 dob:
7063 gas_assert (mips_opts.isa == ISA_MIPS1);
7064 macro_build (&offset_expr, "lwc1", "T,o(b)",
7065 target_big_endian ? treg + 1 : treg, r, breg);
7066 /* FIXME: A possible overflow which I don't know how to deal
7067 with. */
7068 offset_expr.X_add_number += 4;
7069 macro_build (&offset_expr, "lwc1", "T,o(b)",
7070 target_big_endian ? treg : treg + 1, r, breg);
7071 break;
7073 case M_S_DOB:
7074 gas_assert (mips_opts.isa == ISA_MIPS1);
7075 /* Even on a big endian machine $fn comes before $fn+1. We have
7076 to adjust when storing to memory. */
7077 macro_build (&offset_expr, "swc1", "T,o(b)",
7078 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7079 offset_expr.X_add_number += 4;
7080 macro_build (&offset_expr, "swc1", "T,o(b)",
7081 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7082 break;
7084 case M_L_DAB:
7086 * The MIPS assembler seems to check for X_add_number not
7087 * being double aligned and generating:
7088 * lui at,%hi(foo+1)
7089 * addu at,at,v1
7090 * addiu at,at,%lo(foo+1)
7091 * lwc1 f2,0(at)
7092 * lwc1 f3,4(at)
7093 * But, the resulting address is the same after relocation so why
7094 * generate the extra instruction?
7096 /* Itbl support may require additional care here. */
7097 coproc = 1;
7098 if (mips_opts.isa != ISA_MIPS1)
7100 s = "ldc1";
7101 goto ld;
7104 s = "lwc1";
7105 fmt = "T,o(b)";
7106 goto ldd_std;
7108 case M_S_DAB:
7109 if (mips_opts.isa != ISA_MIPS1)
7111 s = "sdc1";
7112 goto st;
7115 s = "swc1";
7116 fmt = "T,o(b)";
7117 /* Itbl support may require additional care here. */
7118 coproc = 1;
7119 goto ldd_std;
7121 case M_LD_AB:
7122 if (HAVE_64BIT_GPRS)
7124 s = "ld";
7125 goto ld;
7128 s = "lw";
7129 fmt = "t,o(b)";
7130 goto ldd_std;
7132 case M_SD_AB:
7133 if (HAVE_64BIT_GPRS)
7135 s = "sd";
7136 goto st;
7139 s = "sw";
7140 fmt = "t,o(b)";
7142 ldd_std:
7143 if (offset_expr.X_op != O_symbol
7144 && offset_expr.X_op != O_constant)
7146 as_bad (_("Expression too complex"));
7147 offset_expr.X_op = O_constant;
7150 if (HAVE_32BIT_ADDRESSES
7151 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7153 char value [32];
7155 sprintf_vma (value, offset_expr.X_add_number);
7156 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7159 /* Even on a big endian machine $fn comes before $fn+1. We have
7160 to adjust when loading from memory. We set coproc if we must
7161 load $fn+1 first. */
7162 /* Itbl support may require additional care here. */
7163 if (!target_big_endian)
7164 coproc = 0;
7166 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
7168 /* If this is a reference to a GP relative symbol, we want
7169 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7170 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7171 If we have a base register, we use this
7172 addu $at,$breg,$gp
7173 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7174 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7175 If this is not a GP relative symbol, we want
7176 lui $at,<sym> (BFD_RELOC_HI16_S)
7177 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7178 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7179 If there is a base register, we add it to $at after the
7180 lui instruction. If there is a constant, we always use
7181 the last case. */
7182 if (offset_expr.X_op == O_symbol
7183 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7184 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7186 relax_start (offset_expr.X_add_symbol);
7187 if (breg == 0)
7189 tempreg = mips_gp_register;
7191 else
7193 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7194 AT, breg, mips_gp_register);
7195 tempreg = AT;
7196 used_at = 1;
7199 /* Itbl support may require additional care here. */
7200 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7201 BFD_RELOC_GPREL16, tempreg);
7202 offset_expr.X_add_number += 4;
7204 /* Set mips_optimize to 2 to avoid inserting an
7205 undesired nop. */
7206 hold_mips_optimize = mips_optimize;
7207 mips_optimize = 2;
7208 /* Itbl support may require additional care here. */
7209 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7210 BFD_RELOC_GPREL16, tempreg);
7211 mips_optimize = hold_mips_optimize;
7213 relax_switch ();
7215 offset_expr.X_add_number -= 4;
7217 used_at = 1;
7218 macro_build_lui (&offset_expr, AT);
7219 if (breg != 0)
7220 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7221 /* Itbl support may require additional care here. */
7222 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7223 BFD_RELOC_LO16, AT);
7224 /* FIXME: How do we handle overflow here? */
7225 offset_expr.X_add_number += 4;
7226 /* Itbl support may require additional care here. */
7227 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7228 BFD_RELOC_LO16, AT);
7229 if (mips_relax.sequence)
7230 relax_end ();
7232 else if (!mips_big_got)
7234 /* If this is a reference to an external symbol, we want
7235 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7237 <op> $treg,0($at)
7238 <op> $treg+1,4($at)
7239 Otherwise we want
7240 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7242 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7243 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7244 If there is a base register we add it to $at before the
7245 lwc1 instructions. If there is a constant we include it
7246 in the lwc1 instructions. */
7247 used_at = 1;
7248 expr1.X_add_number = offset_expr.X_add_number;
7249 if (expr1.X_add_number < -0x8000
7250 || expr1.X_add_number >= 0x8000 - 4)
7251 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7252 load_got_offset (AT, &offset_expr);
7253 load_delay_nop ();
7254 if (breg != 0)
7255 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7257 /* Set mips_optimize to 2 to avoid inserting an undesired
7258 nop. */
7259 hold_mips_optimize = mips_optimize;
7260 mips_optimize = 2;
7262 /* Itbl support may require additional care here. */
7263 relax_start (offset_expr.X_add_symbol);
7264 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7265 BFD_RELOC_LO16, AT);
7266 expr1.X_add_number += 4;
7267 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7268 BFD_RELOC_LO16, AT);
7269 relax_switch ();
7270 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7271 BFD_RELOC_LO16, AT);
7272 offset_expr.X_add_number += 4;
7273 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7274 BFD_RELOC_LO16, AT);
7275 relax_end ();
7277 mips_optimize = hold_mips_optimize;
7279 else if (mips_big_got)
7281 int gpdelay;
7283 /* If this is a reference to an external symbol, we want
7284 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7285 addu $at,$at,$gp
7286 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7288 <op> $treg,0($at)
7289 <op> $treg+1,4($at)
7290 Otherwise we want
7291 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7293 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7294 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7295 If there is a base register we add it to $at before the
7296 lwc1 instructions. If there is a constant we include it
7297 in the lwc1 instructions. */
7298 used_at = 1;
7299 expr1.X_add_number = offset_expr.X_add_number;
7300 offset_expr.X_add_number = 0;
7301 if (expr1.X_add_number < -0x8000
7302 || expr1.X_add_number >= 0x8000 - 4)
7303 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7304 gpdelay = reg_needs_delay (mips_gp_register);
7305 relax_start (offset_expr.X_add_symbol);
7306 macro_build (&offset_expr, "lui", "t,u",
7307 AT, BFD_RELOC_MIPS_GOT_HI16);
7308 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7309 AT, AT, mips_gp_register);
7310 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7311 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7312 load_delay_nop ();
7313 if (breg != 0)
7314 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7315 /* Itbl support may require additional care here. */
7316 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7317 BFD_RELOC_LO16, AT);
7318 expr1.X_add_number += 4;
7320 /* Set mips_optimize to 2 to avoid inserting an undesired
7321 nop. */
7322 hold_mips_optimize = mips_optimize;
7323 mips_optimize = 2;
7324 /* Itbl support may require additional care here. */
7325 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7326 BFD_RELOC_LO16, AT);
7327 mips_optimize = hold_mips_optimize;
7328 expr1.X_add_number -= 4;
7330 relax_switch ();
7331 offset_expr.X_add_number = expr1.X_add_number;
7332 if (gpdelay)
7333 macro_build (NULL, "nop", "");
7334 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7335 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7336 load_delay_nop ();
7337 if (breg != 0)
7338 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7339 /* Itbl support may require additional care here. */
7340 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7341 BFD_RELOC_LO16, AT);
7342 offset_expr.X_add_number += 4;
7344 /* Set mips_optimize to 2 to avoid inserting an undesired
7345 nop. */
7346 hold_mips_optimize = mips_optimize;
7347 mips_optimize = 2;
7348 /* Itbl support may require additional care here. */
7349 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7350 BFD_RELOC_LO16, AT);
7351 mips_optimize = hold_mips_optimize;
7352 relax_end ();
7354 else
7355 abort ();
7357 break;
7359 case M_LD_OB:
7360 s = HAVE_64BIT_GPRS ? "ld" : "lw";
7361 goto sd_ob;
7362 case M_SD_OB:
7363 s = HAVE_64BIT_GPRS ? "sd" : "sw";
7364 sd_ob:
7365 macro_build (&offset_expr, s, "t,o(b)", treg,
7366 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7367 breg);
7368 if (!HAVE_64BIT_GPRS)
7370 offset_expr.X_add_number += 4;
7371 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
7372 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7373 breg);
7375 break;
7377 /* New code added to support COPZ instructions.
7378 This code builds table entries out of the macros in mip_opcodes.
7379 R4000 uses interlocks to handle coproc delays.
7380 Other chips (like the R3000) require nops to be inserted for delays.
7382 FIXME: Currently, we require that the user handle delays.
7383 In order to fill delay slots for non-interlocked chips,
7384 we must have a way to specify delays based on the coprocessor.
7385 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7386 What are the side-effects of the cop instruction?
7387 What cache support might we have and what are its effects?
7388 Both coprocessor & memory require delays. how long???
7389 What registers are read/set/modified?
7391 If an itbl is provided to interpret cop instructions,
7392 this knowledge can be encoded in the itbl spec. */
7394 case M_COP0:
7395 s = "c0";
7396 goto copz;
7397 case M_COP1:
7398 s = "c1";
7399 goto copz;
7400 case M_COP2:
7401 s = "c2";
7402 goto copz;
7403 case M_COP3:
7404 s = "c3";
7405 copz:
7406 if (NO_ISA_COP (mips_opts.arch)
7407 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7409 as_bad (_("opcode not supported on this processor: %s"),
7410 mips_cpu_info_from_arch (mips_opts.arch)->name);
7411 break;
7414 /* For now we just do C (same as Cz). The parameter will be
7415 stored in insn_opcode by mips_ip. */
7416 macro_build (NULL, s, "C", ip->insn_opcode);
7417 break;
7419 case M_MOVE:
7420 move_register (dreg, sreg);
7421 break;
7423 case M_DMUL:
7424 dbl = 1;
7425 case M_MUL:
7426 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7427 macro_build (NULL, "mflo", "d", dreg);
7428 break;
7430 case M_DMUL_I:
7431 dbl = 1;
7432 case M_MUL_I:
7433 /* The MIPS assembler some times generates shifts and adds. I'm
7434 not trying to be that fancy. GCC should do this for us
7435 anyway. */
7436 used_at = 1;
7437 load_register (AT, &imm_expr, dbl);
7438 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7439 macro_build (NULL, "mflo", "d", dreg);
7440 break;
7442 case M_DMULO_I:
7443 dbl = 1;
7444 case M_MULO_I:
7445 imm = 1;
7446 goto do_mulo;
7448 case M_DMULO:
7449 dbl = 1;
7450 case M_MULO:
7451 do_mulo:
7452 start_noreorder ();
7453 used_at = 1;
7454 if (imm)
7455 load_register (AT, &imm_expr, dbl);
7456 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7457 macro_build (NULL, "mflo", "d", dreg);
7458 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7459 macro_build (NULL, "mfhi", "d", AT);
7460 if (mips_trap)
7461 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7462 else
7464 expr1.X_add_number = 8;
7465 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7466 macro_build (NULL, "nop", "");
7467 macro_build (NULL, "break", "c", 6);
7469 end_noreorder ();
7470 macro_build (NULL, "mflo", "d", dreg);
7471 break;
7473 case M_DMULOU_I:
7474 dbl = 1;
7475 case M_MULOU_I:
7476 imm = 1;
7477 goto do_mulou;
7479 case M_DMULOU:
7480 dbl = 1;
7481 case M_MULOU:
7482 do_mulou:
7483 start_noreorder ();
7484 used_at = 1;
7485 if (imm)
7486 load_register (AT, &imm_expr, dbl);
7487 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7488 sreg, imm ? AT : treg);
7489 macro_build (NULL, "mfhi", "d", AT);
7490 macro_build (NULL, "mflo", "d", dreg);
7491 if (mips_trap)
7492 macro_build (NULL, "tne", "s,t,q", AT, ZERO, 6);
7493 else
7495 expr1.X_add_number = 8;
7496 macro_build (&expr1, "beq", "s,t,p", AT, ZERO);
7497 macro_build (NULL, "nop", "");
7498 macro_build (NULL, "break", "c", 6);
7500 end_noreorder ();
7501 break;
7503 case M_DROL:
7504 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7506 if (dreg == sreg)
7508 tempreg = AT;
7509 used_at = 1;
7511 else
7513 tempreg = dreg;
7515 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7516 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7517 break;
7519 used_at = 1;
7520 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7521 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7522 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7523 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7524 break;
7526 case M_ROL:
7527 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7529 if (dreg == sreg)
7531 tempreg = AT;
7532 used_at = 1;
7534 else
7536 tempreg = dreg;
7538 macro_build (NULL, "negu", "d,w", tempreg, treg);
7539 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7540 break;
7542 used_at = 1;
7543 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7544 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7545 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7546 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7547 break;
7549 case M_DROL_I:
7551 unsigned int rot;
7552 char *l;
7553 char *rr;
7555 if (imm_expr.X_op != O_constant)
7556 as_bad (_("Improper rotate count"));
7557 rot = imm_expr.X_add_number & 0x3f;
7558 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7560 rot = (64 - rot) & 0x3f;
7561 if (rot >= 32)
7562 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7563 else
7564 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7565 break;
7567 if (rot == 0)
7569 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7570 break;
7572 l = (rot < 0x20) ? "dsll" : "dsll32";
7573 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7574 rot &= 0x1f;
7575 used_at = 1;
7576 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7577 macro_build (NULL, rr, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7578 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7580 break;
7582 case M_ROL_I:
7584 unsigned int rot;
7586 if (imm_expr.X_op != O_constant)
7587 as_bad (_("Improper rotate count"));
7588 rot = imm_expr.X_add_number & 0x1f;
7589 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7591 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7592 break;
7594 if (rot == 0)
7596 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7597 break;
7599 used_at = 1;
7600 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7601 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7602 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7604 break;
7606 case M_DROR:
7607 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7609 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7610 break;
7612 used_at = 1;
7613 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7614 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7615 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7616 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7617 break;
7619 case M_ROR:
7620 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7622 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7623 break;
7625 used_at = 1;
7626 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7627 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7628 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7629 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7630 break;
7632 case M_DROR_I:
7634 unsigned int rot;
7635 char *l;
7636 char *rr;
7638 if (imm_expr.X_op != O_constant)
7639 as_bad (_("Improper rotate count"));
7640 rot = imm_expr.X_add_number & 0x3f;
7641 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7643 if (rot >= 32)
7644 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7645 else
7646 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7647 break;
7649 if (rot == 0)
7651 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7652 break;
7654 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
7655 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7656 rot &= 0x1f;
7657 used_at = 1;
7658 macro_build (NULL, rr, "d,w,<", AT, sreg, rot);
7659 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7660 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7662 break;
7664 case M_ROR_I:
7666 unsigned int rot;
7668 if (imm_expr.X_op != O_constant)
7669 as_bad (_("Improper rotate count"));
7670 rot = imm_expr.X_add_number & 0x1f;
7671 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7673 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7674 break;
7676 if (rot == 0)
7678 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7679 break;
7681 used_at = 1;
7682 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7683 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7684 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7686 break;
7688 case M_SEQ:
7689 if (sreg == 0)
7690 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7691 else if (treg == 0)
7692 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7693 else
7695 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7696 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7698 break;
7700 case M_SEQ_I:
7701 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7703 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7704 break;
7706 if (sreg == 0)
7708 as_warn (_("Instruction %s: result is always false"),
7709 ip->insn_mo->name);
7710 move_register (dreg, 0);
7711 break;
7713 if (CPU_HAS_SEQ (mips_opts.arch)
7714 && -512 <= imm_expr.X_add_number
7715 && imm_expr.X_add_number < 512)
7717 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7718 (int) imm_expr.X_add_number);
7719 break;
7721 if (imm_expr.X_op == O_constant
7722 && imm_expr.X_add_number >= 0
7723 && imm_expr.X_add_number < 0x10000)
7725 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7727 else if (imm_expr.X_op == O_constant
7728 && imm_expr.X_add_number > -0x8000
7729 && imm_expr.X_add_number < 0)
7731 imm_expr.X_add_number = -imm_expr.X_add_number;
7732 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7733 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7735 else if (CPU_HAS_SEQ (mips_opts.arch))
7737 used_at = 1;
7738 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7739 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7740 break;
7742 else
7744 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7745 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7746 used_at = 1;
7748 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7749 break;
7751 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7752 s = "slt";
7753 goto sge;
7754 case M_SGEU:
7755 s = "sltu";
7756 sge:
7757 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7758 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7759 break;
7761 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7762 case M_SGEU_I:
7763 if (imm_expr.X_op == O_constant
7764 && imm_expr.X_add_number >= -0x8000
7765 && imm_expr.X_add_number < 0x8000)
7767 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7768 dreg, sreg, BFD_RELOC_LO16);
7770 else
7772 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7773 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7774 dreg, sreg, AT);
7775 used_at = 1;
7777 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7778 break;
7780 case M_SGT: /* sreg > treg <==> treg < sreg */
7781 s = "slt";
7782 goto sgt;
7783 case M_SGTU:
7784 s = "sltu";
7785 sgt:
7786 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7787 break;
7789 case M_SGT_I: /* sreg > I <==> I < sreg */
7790 s = "slt";
7791 goto sgti;
7792 case M_SGTU_I:
7793 s = "sltu";
7794 sgti:
7795 used_at = 1;
7796 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7797 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7798 break;
7800 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7801 s = "slt";
7802 goto sle;
7803 case M_SLEU:
7804 s = "sltu";
7805 sle:
7806 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7807 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7808 break;
7810 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7811 s = "slt";
7812 goto slei;
7813 case M_SLEU_I:
7814 s = "sltu";
7815 slei:
7816 used_at = 1;
7817 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7818 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7819 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7820 break;
7822 case M_SLT_I:
7823 if (imm_expr.X_op == O_constant
7824 && imm_expr.X_add_number >= -0x8000
7825 && imm_expr.X_add_number < 0x8000)
7827 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7828 break;
7830 used_at = 1;
7831 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7832 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7833 break;
7835 case M_SLTU_I:
7836 if (imm_expr.X_op == O_constant
7837 && imm_expr.X_add_number >= -0x8000
7838 && imm_expr.X_add_number < 0x8000)
7840 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7841 BFD_RELOC_LO16);
7842 break;
7844 used_at = 1;
7845 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7846 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7847 break;
7849 case M_SNE:
7850 if (sreg == 0)
7851 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7852 else if (treg == 0)
7853 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7854 else
7856 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7857 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7859 break;
7861 case M_SNE_I:
7862 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7864 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7865 break;
7867 if (sreg == 0)
7869 as_warn (_("Instruction %s: result is always true"),
7870 ip->insn_mo->name);
7871 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7872 dreg, 0, BFD_RELOC_LO16);
7873 break;
7875 if (CPU_HAS_SEQ (mips_opts.arch)
7876 && -512 <= imm_expr.X_add_number
7877 && imm_expr.X_add_number < 512)
7879 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7880 (int) imm_expr.X_add_number);
7881 break;
7883 if (imm_expr.X_op == O_constant
7884 && imm_expr.X_add_number >= 0
7885 && imm_expr.X_add_number < 0x10000)
7887 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7889 else if (imm_expr.X_op == O_constant
7890 && imm_expr.X_add_number > -0x8000
7891 && imm_expr.X_add_number < 0)
7893 imm_expr.X_add_number = -imm_expr.X_add_number;
7894 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7895 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7897 else if (CPU_HAS_SEQ (mips_opts.arch))
7899 used_at = 1;
7900 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7901 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7902 break;
7904 else
7906 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7907 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7908 used_at = 1;
7910 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7911 break;
7913 case M_DSUB_I:
7914 dbl = 1;
7915 case M_SUB_I:
7916 if (imm_expr.X_op == O_constant
7917 && imm_expr.X_add_number > -0x8000
7918 && imm_expr.X_add_number <= 0x8000)
7920 imm_expr.X_add_number = -imm_expr.X_add_number;
7921 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7922 dreg, sreg, BFD_RELOC_LO16);
7923 break;
7925 used_at = 1;
7926 load_register (AT, &imm_expr, dbl);
7927 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7928 break;
7930 case M_DSUBU_I:
7931 dbl = 1;
7932 case M_SUBU_I:
7933 if (imm_expr.X_op == O_constant
7934 && imm_expr.X_add_number > -0x8000
7935 && imm_expr.X_add_number <= 0x8000)
7937 imm_expr.X_add_number = -imm_expr.X_add_number;
7938 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7939 dreg, sreg, BFD_RELOC_LO16);
7940 break;
7942 used_at = 1;
7943 load_register (AT, &imm_expr, dbl);
7944 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7945 break;
7947 case M_TEQ_I:
7948 s = "teq";
7949 goto trap;
7950 case M_TGE_I:
7951 s = "tge";
7952 goto trap;
7953 case M_TGEU_I:
7954 s = "tgeu";
7955 goto trap;
7956 case M_TLT_I:
7957 s = "tlt";
7958 goto trap;
7959 case M_TLTU_I:
7960 s = "tltu";
7961 goto trap;
7962 case M_TNE_I:
7963 s = "tne";
7964 trap:
7965 used_at = 1;
7966 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7967 macro_build (NULL, s, "s,t", sreg, AT);
7968 break;
7970 case M_TRUNCWS:
7971 case M_TRUNCWD:
7972 gas_assert (mips_opts.isa == ISA_MIPS1);
7973 used_at = 1;
7974 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7975 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7978 * Is the double cfc1 instruction a bug in the mips assembler;
7979 * or is there a reason for it?
7981 start_noreorder ();
7982 macro_build (NULL, "cfc1", "t,G", treg, RA);
7983 macro_build (NULL, "cfc1", "t,G", treg, RA);
7984 macro_build (NULL, "nop", "");
7985 expr1.X_add_number = 3;
7986 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7987 expr1.X_add_number = 2;
7988 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7989 macro_build (NULL, "ctc1", "t,G", AT, RA);
7990 macro_build (NULL, "nop", "");
7991 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7992 dreg, sreg);
7993 macro_build (NULL, "ctc1", "t,G", treg, RA);
7994 macro_build (NULL, "nop", "");
7995 end_noreorder ();
7996 break;
7998 case M_ULH:
7999 s = "lb";
8000 goto ulh;
8001 case M_ULHU:
8002 s = "lbu";
8003 ulh:
8004 used_at = 1;
8005 if (offset_expr.X_add_number >= 0x7fff)
8006 as_bad (_("Operand overflow"));
8007 if (!target_big_endian)
8008 ++offset_expr.X_add_number;
8009 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8010 if (!target_big_endian)
8011 --offset_expr.X_add_number;
8012 else
8013 ++offset_expr.X_add_number;
8014 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8015 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8016 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8017 break;
8019 case M_ULD:
8020 s = "ldl";
8021 s2 = "ldr";
8022 off = 7;
8023 goto ulw;
8024 case M_ULW:
8025 s = "lwl";
8026 s2 = "lwr";
8027 off = 3;
8028 ulw:
8029 if (offset_expr.X_add_number >= 0x8000 - off)
8030 as_bad (_("Operand overflow"));
8031 if (treg != breg)
8032 tempreg = treg;
8033 else
8035 used_at = 1;
8036 tempreg = AT;
8038 if (!target_big_endian)
8039 offset_expr.X_add_number += off;
8040 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8041 if (!target_big_endian)
8042 offset_expr.X_add_number -= off;
8043 else
8044 offset_expr.X_add_number += off;
8045 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8047 /* If necessary, move the result in tempreg to the final destination. */
8048 if (treg == tempreg)
8049 break;
8050 /* Protect second load's delay slot. */
8051 load_delay_nop ();
8052 move_register (treg, tempreg);
8053 break;
8055 case M_ULD_A:
8056 s = "ldl";
8057 s2 = "ldr";
8058 off = 7;
8059 goto ulwa;
8060 case M_ULW_A:
8061 s = "lwl";
8062 s2 = "lwr";
8063 off = 3;
8064 ulwa:
8065 used_at = 1;
8066 load_address (AT, &offset_expr, &used_at);
8067 if (breg != 0)
8068 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8069 if (!target_big_endian)
8070 expr1.X_add_number = off;
8071 else
8072 expr1.X_add_number = 0;
8073 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8074 if (!target_big_endian)
8075 expr1.X_add_number = 0;
8076 else
8077 expr1.X_add_number = off;
8078 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8079 break;
8081 case M_ULH_A:
8082 case M_ULHU_A:
8083 used_at = 1;
8084 load_address (AT, &offset_expr, &used_at);
8085 if (breg != 0)
8086 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8087 if (target_big_endian)
8088 expr1.X_add_number = 0;
8089 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8090 treg, BFD_RELOC_LO16, AT);
8091 if (target_big_endian)
8092 expr1.X_add_number = 1;
8093 else
8094 expr1.X_add_number = 0;
8095 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8096 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8097 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8098 break;
8100 case M_USH:
8101 used_at = 1;
8102 if (offset_expr.X_add_number >= 0x7fff)
8103 as_bad (_("Operand overflow"));
8104 if (target_big_endian)
8105 ++offset_expr.X_add_number;
8106 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8107 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8108 if (target_big_endian)
8109 --offset_expr.X_add_number;
8110 else
8111 ++offset_expr.X_add_number;
8112 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8113 break;
8115 case M_USD:
8116 s = "sdl";
8117 s2 = "sdr";
8118 off = 7;
8119 goto usw;
8120 case M_USW:
8121 s = "swl";
8122 s2 = "swr";
8123 off = 3;
8124 usw:
8125 if (offset_expr.X_add_number >= 0x8000 - off)
8126 as_bad (_("Operand overflow"));
8127 if (!target_big_endian)
8128 offset_expr.X_add_number += off;
8129 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8130 if (!target_big_endian)
8131 offset_expr.X_add_number -= off;
8132 else
8133 offset_expr.X_add_number += off;
8134 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8135 break;
8137 case M_USD_A:
8138 s = "sdl";
8139 s2 = "sdr";
8140 off = 7;
8141 goto uswa;
8142 case M_USW_A:
8143 s = "swl";
8144 s2 = "swr";
8145 off = 3;
8146 uswa:
8147 used_at = 1;
8148 load_address (AT, &offset_expr, &used_at);
8149 if (breg != 0)
8150 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8151 if (!target_big_endian)
8152 expr1.X_add_number = off;
8153 else
8154 expr1.X_add_number = 0;
8155 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8156 if (!target_big_endian)
8157 expr1.X_add_number = 0;
8158 else
8159 expr1.X_add_number = off;
8160 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8161 break;
8163 case M_USH_A:
8164 used_at = 1;
8165 load_address (AT, &offset_expr, &used_at);
8166 if (breg != 0)
8167 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8168 if (!target_big_endian)
8169 expr1.X_add_number = 0;
8170 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8171 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8172 if (!target_big_endian)
8173 expr1.X_add_number = 1;
8174 else
8175 expr1.X_add_number = 0;
8176 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8177 if (!target_big_endian)
8178 expr1.X_add_number = 0;
8179 else
8180 expr1.X_add_number = 1;
8181 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8182 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8183 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8184 break;
8186 default:
8187 /* FIXME: Check if this is one of the itbl macros, since they
8188 are added dynamically. */
8189 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8190 break;
8192 if (!mips_opts.at && used_at)
8193 as_bad (_("Macro used $at after \".set noat\""));
8196 /* Implement macros in mips16 mode. */
8198 static void
8199 mips16_macro (struct mips_cl_insn *ip)
8201 int mask;
8202 int xreg, yreg, zreg, tmp;
8203 expressionS expr1;
8204 int dbl;
8205 const char *s, *s2, *s3;
8207 mask = ip->insn_mo->mask;
8209 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8210 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8211 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8213 expr1.X_op = O_constant;
8214 expr1.X_op_symbol = NULL;
8215 expr1.X_add_symbol = NULL;
8216 expr1.X_add_number = 1;
8218 dbl = 0;
8220 switch (mask)
8222 default:
8223 internalError ();
8225 case M_DDIV_3:
8226 dbl = 1;
8227 case M_DIV_3:
8228 s = "mflo";
8229 goto do_div3;
8230 case M_DREM_3:
8231 dbl = 1;
8232 case M_REM_3:
8233 s = "mfhi";
8234 do_div3:
8235 start_noreorder ();
8236 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8237 expr1.X_add_number = 2;
8238 macro_build (&expr1, "bnez", "x,p", yreg);
8239 macro_build (NULL, "break", "6", 7);
8241 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8242 since that causes an overflow. We should do that as well,
8243 but I don't see how to do the comparisons without a temporary
8244 register. */
8245 end_noreorder ();
8246 macro_build (NULL, s, "x", zreg);
8247 break;
8249 case M_DIVU_3:
8250 s = "divu";
8251 s2 = "mflo";
8252 goto do_divu3;
8253 case M_REMU_3:
8254 s = "divu";
8255 s2 = "mfhi";
8256 goto do_divu3;
8257 case M_DDIVU_3:
8258 s = "ddivu";
8259 s2 = "mflo";
8260 goto do_divu3;
8261 case M_DREMU_3:
8262 s = "ddivu";
8263 s2 = "mfhi";
8264 do_divu3:
8265 start_noreorder ();
8266 macro_build (NULL, s, "0,x,y", xreg, yreg);
8267 expr1.X_add_number = 2;
8268 macro_build (&expr1, "bnez", "x,p", yreg);
8269 macro_build (NULL, "break", "6", 7);
8270 end_noreorder ();
8271 macro_build (NULL, s2, "x", zreg);
8272 break;
8274 case M_DMUL:
8275 dbl = 1;
8276 case M_MUL:
8277 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8278 macro_build (NULL, "mflo", "x", zreg);
8279 break;
8281 case M_DSUBU_I:
8282 dbl = 1;
8283 goto do_subu;
8284 case M_SUBU_I:
8285 do_subu:
8286 if (imm_expr.X_op != O_constant)
8287 as_bad (_("Unsupported large constant"));
8288 imm_expr.X_add_number = -imm_expr.X_add_number;
8289 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8290 break;
8292 case M_SUBU_I_2:
8293 if (imm_expr.X_op != O_constant)
8294 as_bad (_("Unsupported large constant"));
8295 imm_expr.X_add_number = -imm_expr.X_add_number;
8296 macro_build (&imm_expr, "addiu", "x,k", xreg);
8297 break;
8299 case M_DSUBU_I_2:
8300 if (imm_expr.X_op != O_constant)
8301 as_bad (_("Unsupported large constant"));
8302 imm_expr.X_add_number = -imm_expr.X_add_number;
8303 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8304 break;
8306 case M_BEQ:
8307 s = "cmp";
8308 s2 = "bteqz";
8309 goto do_branch;
8310 case M_BNE:
8311 s = "cmp";
8312 s2 = "btnez";
8313 goto do_branch;
8314 case M_BLT:
8315 s = "slt";
8316 s2 = "btnez";
8317 goto do_branch;
8318 case M_BLTU:
8319 s = "sltu";
8320 s2 = "btnez";
8321 goto do_branch;
8322 case M_BLE:
8323 s = "slt";
8324 s2 = "bteqz";
8325 goto do_reverse_branch;
8326 case M_BLEU:
8327 s = "sltu";
8328 s2 = "bteqz";
8329 goto do_reverse_branch;
8330 case M_BGE:
8331 s = "slt";
8332 s2 = "bteqz";
8333 goto do_branch;
8334 case M_BGEU:
8335 s = "sltu";
8336 s2 = "bteqz";
8337 goto do_branch;
8338 case M_BGT:
8339 s = "slt";
8340 s2 = "btnez";
8341 goto do_reverse_branch;
8342 case M_BGTU:
8343 s = "sltu";
8344 s2 = "btnez";
8346 do_reverse_branch:
8347 tmp = xreg;
8348 xreg = yreg;
8349 yreg = tmp;
8351 do_branch:
8352 macro_build (NULL, s, "x,y", xreg, yreg);
8353 macro_build (&offset_expr, s2, "p");
8354 break;
8356 case M_BEQ_I:
8357 s = "cmpi";
8358 s2 = "bteqz";
8359 s3 = "x,U";
8360 goto do_branch_i;
8361 case M_BNE_I:
8362 s = "cmpi";
8363 s2 = "btnez";
8364 s3 = "x,U";
8365 goto do_branch_i;
8366 case M_BLT_I:
8367 s = "slti";
8368 s2 = "btnez";
8369 s3 = "x,8";
8370 goto do_branch_i;
8371 case M_BLTU_I:
8372 s = "sltiu";
8373 s2 = "btnez";
8374 s3 = "x,8";
8375 goto do_branch_i;
8376 case M_BLE_I:
8377 s = "slti";
8378 s2 = "btnez";
8379 s3 = "x,8";
8380 goto do_addone_branch_i;
8381 case M_BLEU_I:
8382 s = "sltiu";
8383 s2 = "btnez";
8384 s3 = "x,8";
8385 goto do_addone_branch_i;
8386 case M_BGE_I:
8387 s = "slti";
8388 s2 = "bteqz";
8389 s3 = "x,8";
8390 goto do_branch_i;
8391 case M_BGEU_I:
8392 s = "sltiu";
8393 s2 = "bteqz";
8394 s3 = "x,8";
8395 goto do_branch_i;
8396 case M_BGT_I:
8397 s = "slti";
8398 s2 = "bteqz";
8399 s3 = "x,8";
8400 goto do_addone_branch_i;
8401 case M_BGTU_I:
8402 s = "sltiu";
8403 s2 = "bteqz";
8404 s3 = "x,8";
8406 do_addone_branch_i:
8407 if (imm_expr.X_op != O_constant)
8408 as_bad (_("Unsupported large constant"));
8409 ++imm_expr.X_add_number;
8411 do_branch_i:
8412 macro_build (&imm_expr, s, s3, xreg);
8413 macro_build (&offset_expr, s2, "p");
8414 break;
8416 case M_ABS:
8417 expr1.X_add_number = 0;
8418 macro_build (&expr1, "slti", "x,8", yreg);
8419 if (xreg != yreg)
8420 move_register (xreg, yreg);
8421 expr1.X_add_number = 2;
8422 macro_build (&expr1, "bteqz", "p");
8423 macro_build (NULL, "neg", "x,w", xreg, xreg);
8427 /* For consistency checking, verify that all bits are specified either
8428 by the match/mask part of the instruction definition, or by the
8429 operand list. */
8430 static int
8431 validate_mips_insn (const struct mips_opcode *opc)
8433 const char *p = opc->args;
8434 char c;
8435 unsigned long used_bits = opc->mask;
8437 if ((used_bits & opc->match) != opc->match)
8439 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8440 opc->name, opc->args);
8441 return 0;
8443 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8444 while (*p)
8445 switch (c = *p++)
8447 case ',': break;
8448 case '(': break;
8449 case ')': break;
8450 case '+':
8451 switch (c = *p++)
8453 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8454 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8455 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8456 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8457 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8458 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8459 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8460 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8461 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8462 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8463 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8464 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8465 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8466 case 'I': break;
8467 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8468 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8469 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8470 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8471 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8472 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8473 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8474 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8475 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8476 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8478 default:
8479 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8480 c, opc->name, opc->args);
8481 return 0;
8483 break;
8484 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8485 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8486 case 'A': break;
8487 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8488 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8489 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8490 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8491 case 'F': break;
8492 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8493 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8494 case 'I': break;
8495 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8496 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8497 case 'L': break;
8498 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8499 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8500 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8501 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8502 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8503 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8504 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8505 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8506 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8507 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8508 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8509 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8510 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8511 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8512 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8513 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8514 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8515 case 'f': break;
8516 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8517 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8518 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8519 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8520 case 'l': break;
8521 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8522 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8523 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8524 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8525 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8526 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8527 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8528 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8529 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8530 case 'x': break;
8531 case 'z': break;
8532 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8533 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8534 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8535 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8536 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8537 case '[': break;
8538 case ']': break;
8539 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8540 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8541 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8542 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8543 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8544 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8545 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8546 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8547 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8548 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8549 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8550 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8551 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8552 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8553 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8554 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8555 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8556 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8557 default:
8558 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8559 c, opc->name, opc->args);
8560 return 0;
8562 #undef USE_BITS
8563 if (used_bits != 0xffffffff)
8565 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8566 ~used_bits & 0xffffffff, opc->name, opc->args);
8567 return 0;
8569 return 1;
8572 /* UDI immediates. */
8573 struct mips_immed {
8574 char type;
8575 unsigned int shift;
8576 unsigned long mask;
8577 const char * desc;
8580 static const struct mips_immed mips_immed[] = {
8581 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8582 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8583 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8584 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8585 { 0,0,0,0 }
8588 /* Check whether an odd floating-point register is allowed. */
8589 static int
8590 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8592 const char *s = insn->name;
8594 if (insn->pinfo == INSN_MACRO)
8595 /* Let a macro pass, we'll catch it later when it is expanded. */
8596 return 1;
8598 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8600 /* Allow odd registers for single-precision ops. */
8601 switch (insn->pinfo & (FP_S | FP_D))
8603 case FP_S:
8604 case 0:
8605 return 1; /* both single precision - ok */
8606 case FP_D:
8607 return 0; /* both double precision - fail */
8608 default:
8609 break;
8612 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8613 s = strchr (insn->name, '.');
8614 if (argnum == 2)
8615 s = s != NULL ? strchr (s + 1, '.') : NULL;
8616 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8619 /* Single-precision coprocessor loads and moves are OK too. */
8620 if ((insn->pinfo & FP_S)
8621 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8622 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8623 return 1;
8625 return 0;
8628 /* This routine assembles an instruction into its binary format. As a
8629 side effect, it sets one of the global variables imm_reloc or
8630 offset_reloc to the type of relocation to do if one of the operands
8631 is an address expression. */
8633 static void
8634 mips_ip (char *str, struct mips_cl_insn *ip)
8636 char *s;
8637 const char *args;
8638 char c = 0;
8639 struct mips_opcode *insn;
8640 char *argsStart;
8641 unsigned int regno;
8642 unsigned int lastregno;
8643 unsigned int lastpos = 0;
8644 unsigned int limlo, limhi;
8645 char *s_reset;
8646 char save_c = 0;
8647 offsetT min_range, max_range;
8648 int argnum;
8649 unsigned int rtype;
8651 insn_error = NULL;
8653 /* If the instruction contains a '.', we first try to match an instruction
8654 including the '.'. Then we try again without the '.'. */
8655 insn = NULL;
8656 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8657 continue;
8659 /* If we stopped on whitespace, then replace the whitespace with null for
8660 the call to hash_find. Save the character we replaced just in case we
8661 have to re-parse the instruction. */
8662 if (ISSPACE (*s))
8664 save_c = *s;
8665 *s++ = '\0';
8668 insn = (struct mips_opcode *) hash_find (op_hash, str);
8670 /* If we didn't find the instruction in the opcode table, try again, but
8671 this time with just the instruction up to, but not including the
8672 first '.'. */
8673 if (insn == NULL)
8675 /* Restore the character we overwrite above (if any). */
8676 if (save_c)
8677 *(--s) = save_c;
8679 /* Scan up to the first '.' or whitespace. */
8680 for (s = str;
8681 *s != '\0' && *s != '.' && !ISSPACE (*s);
8682 ++s)
8683 continue;
8685 /* If we did not find a '.', then we can quit now. */
8686 if (*s != '.')
8688 insn_error = _("Unrecognized opcode");
8689 return;
8692 /* Lookup the instruction in the hash table. */
8693 *s++ = '\0';
8694 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8696 insn_error = _("Unrecognized opcode");
8697 return;
8701 argsStart = s;
8702 for (;;)
8704 bfd_boolean ok;
8706 gas_assert (strcmp (insn->name, str) == 0);
8708 ok = is_opcode_valid (insn);
8709 if (! ok)
8711 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8712 && strcmp (insn->name, insn[1].name) == 0)
8714 ++insn;
8715 continue;
8717 else
8719 if (!insn_error)
8721 static char buf[100];
8722 sprintf (buf,
8723 _("opcode not supported on this processor: %s (%s)"),
8724 mips_cpu_info_from_arch (mips_opts.arch)->name,
8725 mips_cpu_info_from_isa (mips_opts.isa)->name);
8726 insn_error = buf;
8728 if (save_c)
8729 *(--s) = save_c;
8730 return;
8734 create_insn (ip, insn);
8735 insn_error = NULL;
8736 argnum = 1;
8737 lastregno = 0xffffffff;
8738 for (args = insn->args;; ++args)
8740 int is_mdmx;
8742 s += strspn (s, " \t");
8743 is_mdmx = 0;
8744 switch (*args)
8746 case '\0': /* end of args */
8747 if (*s == '\0')
8748 return;
8749 break;
8751 case '2': /* DSP 2-bit unsigned immediate in bit 11. */
8752 my_getExpression (&imm_expr, s);
8753 check_absolute_expr (ip, &imm_expr);
8754 if ((unsigned long) imm_expr.X_add_number != 1
8755 && (unsigned long) imm_expr.X_add_number != 3)
8757 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8758 (unsigned long) imm_expr.X_add_number);
8760 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8761 imm_expr.X_op = O_absent;
8762 s = expr_end;
8763 continue;
8765 case '3': /* DSP 3-bit unsigned immediate in bit 21. */
8766 my_getExpression (&imm_expr, s);
8767 check_absolute_expr (ip, &imm_expr);
8768 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8770 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8771 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8773 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8774 imm_expr.X_op = O_absent;
8775 s = expr_end;
8776 continue;
8778 case '4': /* DSP 4-bit unsigned immediate in bit 21. */
8779 my_getExpression (&imm_expr, s);
8780 check_absolute_expr (ip, &imm_expr);
8781 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8783 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8784 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8786 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8787 imm_expr.X_op = O_absent;
8788 s = expr_end;
8789 continue;
8791 case '5': /* DSP 8-bit unsigned immediate in bit 16. */
8792 my_getExpression (&imm_expr, s);
8793 check_absolute_expr (ip, &imm_expr);
8794 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8796 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8797 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8799 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8800 imm_expr.X_op = O_absent;
8801 s = expr_end;
8802 continue;
8804 case '6': /* DSP 5-bit unsigned immediate in bit 21. */
8805 my_getExpression (&imm_expr, s);
8806 check_absolute_expr (ip, &imm_expr);
8807 if (imm_expr.X_add_number & ~OP_MASK_RS)
8809 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8810 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8812 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8813 imm_expr.X_op = O_absent;
8814 s = expr_end;
8815 continue;
8817 case '7': /* Four DSP accumulators in bits 11,12. */
8818 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8819 s[3] >= '0' && s[3] <= '3')
8821 regno = s[3] - '0';
8822 s += 4;
8823 INSERT_OPERAND (DSPACC, *ip, regno);
8824 continue;
8826 else
8827 as_bad (_("Invalid dsp acc register"));
8828 break;
8830 case '8': /* DSP 6-bit unsigned immediate in bit 11. */
8831 my_getExpression (&imm_expr, s);
8832 check_absolute_expr (ip, &imm_expr);
8833 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8835 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8836 OP_MASK_WRDSP,
8837 (unsigned long) imm_expr.X_add_number);
8839 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8840 imm_expr.X_op = O_absent;
8841 s = expr_end;
8842 continue;
8844 case '9': /* Four DSP accumulators in bits 21,22. */
8845 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8846 s[3] >= '0' && s[3] <= '3')
8848 regno = s[3] - '0';
8849 s += 4;
8850 INSERT_OPERAND (DSPACC_S, *ip, regno);
8851 continue;
8853 else
8854 as_bad (_("Invalid dsp acc register"));
8855 break;
8857 case '0': /* DSP 6-bit signed immediate in bit 20. */
8858 my_getExpression (&imm_expr, s);
8859 check_absolute_expr (ip, &imm_expr);
8860 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8861 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8862 if (imm_expr.X_add_number < min_range ||
8863 imm_expr.X_add_number > max_range)
8865 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8866 (long) min_range, (long) max_range,
8867 (long) imm_expr.X_add_number);
8869 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8870 imm_expr.X_op = O_absent;
8871 s = expr_end;
8872 continue;
8874 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
8875 my_getExpression (&imm_expr, s);
8876 check_absolute_expr (ip, &imm_expr);
8877 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8879 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8880 OP_MASK_RDDSP,
8881 (unsigned long) imm_expr.X_add_number);
8883 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8884 imm_expr.X_op = O_absent;
8885 s = expr_end;
8886 continue;
8888 case ':': /* DSP 7-bit signed immediate in bit 19. */
8889 my_getExpression (&imm_expr, s);
8890 check_absolute_expr (ip, &imm_expr);
8891 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8892 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8893 if (imm_expr.X_add_number < min_range ||
8894 imm_expr.X_add_number > max_range)
8896 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8897 (long) min_range, (long) max_range,
8898 (long) imm_expr.X_add_number);
8900 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8901 imm_expr.X_op = O_absent;
8902 s = expr_end;
8903 continue;
8905 case '@': /* DSP 10-bit signed immediate in bit 16. */
8906 my_getExpression (&imm_expr, s);
8907 check_absolute_expr (ip, &imm_expr);
8908 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8909 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8910 if (imm_expr.X_add_number < min_range ||
8911 imm_expr.X_add_number > max_range)
8913 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8914 (long) min_range, (long) max_range,
8915 (long) imm_expr.X_add_number);
8917 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8918 imm_expr.X_op = O_absent;
8919 s = expr_end;
8920 continue;
8922 case '!': /* MT usermode flag bit. */
8923 my_getExpression (&imm_expr, s);
8924 check_absolute_expr (ip, &imm_expr);
8925 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8926 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8927 (unsigned long) imm_expr.X_add_number);
8928 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8929 imm_expr.X_op = O_absent;
8930 s = expr_end;
8931 continue;
8933 case '$': /* MT load high flag bit. */
8934 my_getExpression (&imm_expr, s);
8935 check_absolute_expr (ip, &imm_expr);
8936 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8937 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8938 (unsigned long) imm_expr.X_add_number);
8939 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8940 imm_expr.X_op = O_absent;
8941 s = expr_end;
8942 continue;
8944 case '*': /* Four DSP accumulators in bits 18,19. */
8945 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8946 s[3] >= '0' && s[3] <= '3')
8948 regno = s[3] - '0';
8949 s += 4;
8950 INSERT_OPERAND (MTACC_T, *ip, regno);
8951 continue;
8953 else
8954 as_bad (_("Invalid dsp/smartmips acc register"));
8955 break;
8957 case '&': /* Four DSP accumulators in bits 13,14. */
8958 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8959 s[3] >= '0' && s[3] <= '3')
8961 regno = s[3] - '0';
8962 s += 4;
8963 INSERT_OPERAND (MTACC_D, *ip, regno);
8964 continue;
8966 else
8967 as_bad (_("Invalid dsp/smartmips acc register"));
8968 break;
8970 case ',':
8971 ++argnum;
8972 if (*s++ == *args)
8973 continue;
8974 s--;
8975 switch (*++args)
8977 case 'r':
8978 case 'v':
8979 INSERT_OPERAND (RS, *ip, lastregno);
8980 continue;
8982 case 'w':
8983 INSERT_OPERAND (RT, *ip, lastregno);
8984 continue;
8986 case 'W':
8987 INSERT_OPERAND (FT, *ip, lastregno);
8988 continue;
8990 case 'V':
8991 INSERT_OPERAND (FS, *ip, lastregno);
8992 continue;
8994 break;
8996 case '(':
8997 /* Handle optional base register.
8998 Either the base register is omitted or
8999 we must have a left paren. */
9000 /* This is dependent on the next operand specifier
9001 is a base register specification. */
9002 gas_assert (args[1] == 'b');
9003 if (*s == '\0')
9004 return;
9006 case ')': /* These must match exactly. */
9007 case '[':
9008 case ']':
9009 if (*s++ == *args)
9010 continue;
9011 break;
9013 case '+': /* Opcode extension character. */
9014 switch (*++args)
9016 case '1': /* UDI immediates. */
9017 case '2':
9018 case '3':
9019 case '4':
9021 const struct mips_immed *imm = mips_immed;
9023 while (imm->type && imm->type != *args)
9024 ++imm;
9025 if (! imm->type)
9026 internalError ();
9027 my_getExpression (&imm_expr, s);
9028 check_absolute_expr (ip, &imm_expr);
9029 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9031 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9032 imm->desc ? imm->desc : ip->insn_mo->name,
9033 (unsigned long) imm_expr.X_add_number,
9034 (unsigned long) imm_expr.X_add_number);
9035 imm_expr.X_add_number &= imm->mask;
9037 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9038 << imm->shift);
9039 imm_expr.X_op = O_absent;
9040 s = expr_end;
9042 continue;
9044 case 'A': /* ins/ext position, becomes LSB. */
9045 limlo = 0;
9046 limhi = 31;
9047 goto do_lsb;
9048 case 'E':
9049 limlo = 32;
9050 limhi = 63;
9051 goto do_lsb;
9052 do_lsb:
9053 my_getExpression (&imm_expr, s);
9054 check_absolute_expr (ip, &imm_expr);
9055 if ((unsigned long) imm_expr.X_add_number < limlo
9056 || (unsigned long) imm_expr.X_add_number > limhi)
9058 as_bad (_("Improper position (%lu)"),
9059 (unsigned long) imm_expr.X_add_number);
9060 imm_expr.X_add_number = limlo;
9062 lastpos = imm_expr.X_add_number;
9063 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9064 imm_expr.X_op = O_absent;
9065 s = expr_end;
9066 continue;
9068 case 'B': /* ins size, becomes MSB. */
9069 limlo = 1;
9070 limhi = 32;
9071 goto do_msb;
9072 case 'F':
9073 limlo = 33;
9074 limhi = 64;
9075 goto do_msb;
9076 do_msb:
9077 my_getExpression (&imm_expr, s);
9078 check_absolute_expr (ip, &imm_expr);
9079 /* Check for negative input so that small negative numbers
9080 will not succeed incorrectly. The checks against
9081 (pos+size) transitively check "size" itself,
9082 assuming that "pos" is reasonable. */
9083 if ((long) imm_expr.X_add_number < 0
9084 || ((unsigned long) imm_expr.X_add_number
9085 + lastpos) < limlo
9086 || ((unsigned long) imm_expr.X_add_number
9087 + lastpos) > limhi)
9089 as_bad (_("Improper insert size (%lu, position %lu)"),
9090 (unsigned long) imm_expr.X_add_number,
9091 (unsigned long) lastpos);
9092 imm_expr.X_add_number = limlo - lastpos;
9094 INSERT_OPERAND (INSMSB, *ip,
9095 lastpos + imm_expr.X_add_number - 1);
9096 imm_expr.X_op = O_absent;
9097 s = expr_end;
9098 continue;
9100 case 'C': /* ext size, becomes MSBD. */
9101 limlo = 1;
9102 limhi = 32;
9103 goto do_msbd;
9104 case 'G':
9105 limlo = 33;
9106 limhi = 64;
9107 goto do_msbd;
9108 case 'H':
9109 limlo = 33;
9110 limhi = 64;
9111 goto do_msbd;
9112 do_msbd:
9113 my_getExpression (&imm_expr, s);
9114 check_absolute_expr (ip, &imm_expr);
9115 /* Check for negative input so that small negative numbers
9116 will not succeed incorrectly. The checks against
9117 (pos+size) transitively check "size" itself,
9118 assuming that "pos" is reasonable. */
9119 if ((long) imm_expr.X_add_number < 0
9120 || ((unsigned long) imm_expr.X_add_number
9121 + lastpos) < limlo
9122 || ((unsigned long) imm_expr.X_add_number
9123 + lastpos) > limhi)
9125 as_bad (_("Improper extract size (%lu, position %lu)"),
9126 (unsigned long) imm_expr.X_add_number,
9127 (unsigned long) lastpos);
9128 imm_expr.X_add_number = limlo - lastpos;
9130 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9131 imm_expr.X_op = O_absent;
9132 s = expr_end;
9133 continue;
9135 case 'D':
9136 /* +D is for disassembly only; never match. */
9137 break;
9139 case 'I':
9140 /* "+I" is like "I", except that imm2_expr is used. */
9141 my_getExpression (&imm2_expr, s);
9142 if (imm2_expr.X_op != O_big
9143 && imm2_expr.X_op != O_constant)
9144 insn_error = _("absolute expression required");
9145 if (HAVE_32BIT_GPRS)
9146 normalize_constant_expr (&imm2_expr);
9147 s = expr_end;
9148 continue;
9150 case 'T': /* Coprocessor register. */
9151 /* +T is for disassembly only; never match. */
9152 break;
9154 case 't': /* Coprocessor register number. */
9155 if (s[0] == '$' && ISDIGIT (s[1]))
9157 ++s;
9158 regno = 0;
9161 regno *= 10;
9162 regno += *s - '0';
9163 ++s;
9165 while (ISDIGIT (*s));
9166 if (regno > 31)
9167 as_bad (_("Invalid register number (%d)"), regno);
9168 else
9170 INSERT_OPERAND (RT, *ip, regno);
9171 continue;
9174 else
9175 as_bad (_("Invalid coprocessor 0 register number"));
9176 break;
9178 case 'x':
9179 /* bbit[01] and bbit[01]32 bit index. Give error if index
9180 is not in the valid range. */
9181 my_getExpression (&imm_expr, s);
9182 check_absolute_expr (ip, &imm_expr);
9183 if ((unsigned) imm_expr.X_add_number > 31)
9185 as_bad (_("Improper bit index (%lu)"),
9186 (unsigned long) imm_expr.X_add_number);
9187 imm_expr.X_add_number = 0;
9189 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9190 imm_expr.X_op = O_absent;
9191 s = expr_end;
9192 continue;
9194 case 'X':
9195 /* bbit[01] bit index when bbit is used but we generate
9196 bbit[01]32 because the index is over 32. Move to the
9197 next candidate if index is not in the valid range. */
9198 my_getExpression (&imm_expr, s);
9199 check_absolute_expr (ip, &imm_expr);
9200 if ((unsigned) imm_expr.X_add_number < 32
9201 || (unsigned) imm_expr.X_add_number > 63)
9202 break;
9203 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9204 imm_expr.X_op = O_absent;
9205 s = expr_end;
9206 continue;
9208 case 'p':
9209 /* cins, cins32, exts and exts32 position field. Give error
9210 if it's not in the valid range. */
9211 my_getExpression (&imm_expr, s);
9212 check_absolute_expr (ip, &imm_expr);
9213 if ((unsigned) imm_expr.X_add_number > 31)
9215 as_bad (_("Improper position (%lu)"),
9216 (unsigned long) imm_expr.X_add_number);
9217 imm_expr.X_add_number = 0;
9219 /* Make the pos explicit to simplify +S. */
9220 lastpos = imm_expr.X_add_number + 32;
9221 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9222 imm_expr.X_op = O_absent;
9223 s = expr_end;
9224 continue;
9226 case 'P':
9227 /* cins, cins32, exts and exts32 position field. Move to
9228 the next candidate if it's not in the valid range. */
9229 my_getExpression (&imm_expr, s);
9230 check_absolute_expr (ip, &imm_expr);
9231 if ((unsigned) imm_expr.X_add_number < 32
9232 || (unsigned) imm_expr.X_add_number > 63)
9233 break;
9234 lastpos = imm_expr.X_add_number;
9235 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9236 imm_expr.X_op = O_absent;
9237 s = expr_end;
9238 continue;
9240 case 's':
9241 /* cins and exts length-minus-one field. */
9242 my_getExpression (&imm_expr, s);
9243 check_absolute_expr (ip, &imm_expr);
9244 if ((unsigned long) imm_expr.X_add_number > 31)
9246 as_bad (_("Improper size (%lu)"),
9247 (unsigned long) imm_expr.X_add_number);
9248 imm_expr.X_add_number = 0;
9250 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9251 imm_expr.X_op = O_absent;
9252 s = expr_end;
9253 continue;
9255 case 'S':
9256 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9257 length-minus-one field. */
9258 my_getExpression (&imm_expr, s);
9259 check_absolute_expr (ip, &imm_expr);
9260 if ((long) imm_expr.X_add_number < 0
9261 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9263 as_bad (_("Improper size (%lu)"),
9264 (unsigned long) imm_expr.X_add_number);
9265 imm_expr.X_add_number = 0;
9267 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9268 imm_expr.X_op = O_absent;
9269 s = expr_end;
9270 continue;
9272 case 'Q':
9273 /* seqi/snei immediate field. */
9274 my_getExpression (&imm_expr, s);
9275 check_absolute_expr (ip, &imm_expr);
9276 if ((long) imm_expr.X_add_number < -512
9277 || (long) imm_expr.X_add_number >= 512)
9279 as_bad (_("Improper immediate (%ld)"),
9280 (long) imm_expr.X_add_number);
9281 imm_expr.X_add_number = 0;
9283 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9284 imm_expr.X_op = O_absent;
9285 s = expr_end;
9286 continue;
9288 default:
9289 as_bad (_("Internal error: bad mips opcode "
9290 "(unknown extension operand type `+%c'): %s %s"),
9291 *args, insn->name, insn->args);
9292 /* Further processing is fruitless. */
9293 return;
9295 break;
9297 case '<': /* must be at least one digit */
9299 * According to the manual, if the shift amount is greater
9300 * than 31 or less than 0, then the shift amount should be
9301 * mod 32. In reality the mips assembler issues an error.
9302 * We issue a warning and mask out all but the low 5 bits.
9304 my_getExpression (&imm_expr, s);
9305 check_absolute_expr (ip, &imm_expr);
9306 if ((unsigned long) imm_expr.X_add_number > 31)
9307 as_warn (_("Improper shift amount (%lu)"),
9308 (unsigned long) imm_expr.X_add_number);
9309 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9310 imm_expr.X_op = O_absent;
9311 s = expr_end;
9312 continue;
9314 case '>': /* shift amount minus 32 */
9315 my_getExpression (&imm_expr, s);
9316 check_absolute_expr (ip, &imm_expr);
9317 if ((unsigned long) imm_expr.X_add_number < 32
9318 || (unsigned long) imm_expr.X_add_number > 63)
9319 break;
9320 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9321 imm_expr.X_op = O_absent;
9322 s = expr_end;
9323 continue;
9325 case 'k': /* CACHE code. */
9326 case 'h': /* PREFX code. */
9327 case '1': /* SYNC type. */
9328 my_getExpression (&imm_expr, s);
9329 check_absolute_expr (ip, &imm_expr);
9330 if ((unsigned long) imm_expr.X_add_number > 31)
9331 as_warn (_("Invalid value for `%s' (%lu)"),
9332 ip->insn_mo->name,
9333 (unsigned long) imm_expr.X_add_number);
9334 if (*args == 'k')
9336 if (mips_fix_cn63xxp1 && strcmp ("pref", insn->name) == 0)
9337 switch (imm_expr.X_add_number)
9339 case 5:
9340 case 25:
9341 case 26:
9342 case 27:
9343 case 28:
9344 case 29:
9345 case 30:
9346 case 31: /* These are ok. */
9347 break;
9349 default: /* The rest must be changed to 28. */
9350 imm_expr.X_add_number = 28;
9351 break;
9353 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9355 else if (*args == 'h')
9356 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9357 else
9358 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9359 imm_expr.X_op = O_absent;
9360 s = expr_end;
9361 continue;
9363 case 'c': /* BREAK code. */
9364 my_getExpression (&imm_expr, s);
9365 check_absolute_expr (ip, &imm_expr);
9366 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9367 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9368 ip->insn_mo->name,
9369 (unsigned long) imm_expr.X_add_number);
9370 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9371 imm_expr.X_op = O_absent;
9372 s = expr_end;
9373 continue;
9375 case 'q': /* Lower BREAK code. */
9376 my_getExpression (&imm_expr, s);
9377 check_absolute_expr (ip, &imm_expr);
9378 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9379 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9380 ip->insn_mo->name,
9381 (unsigned long) imm_expr.X_add_number);
9382 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9383 imm_expr.X_op = O_absent;
9384 s = expr_end;
9385 continue;
9387 case 'B': /* 20-bit SYSCALL/BREAK code. */
9388 my_getExpression (&imm_expr, s);
9389 check_absolute_expr (ip, &imm_expr);
9390 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9391 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9392 ip->insn_mo->name,
9393 (unsigned long) imm_expr.X_add_number);
9394 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9395 imm_expr.X_op = O_absent;
9396 s = expr_end;
9397 continue;
9399 case 'C': /* Coprocessor code. */
9400 my_getExpression (&imm_expr, s);
9401 check_absolute_expr (ip, &imm_expr);
9402 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9404 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9405 (unsigned long) imm_expr.X_add_number);
9406 imm_expr.X_add_number &= OP_MASK_COPZ;
9408 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9409 imm_expr.X_op = O_absent;
9410 s = expr_end;
9411 continue;
9413 case 'J': /* 19-bit WAIT code. */
9414 my_getExpression (&imm_expr, s);
9415 check_absolute_expr (ip, &imm_expr);
9416 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9418 as_warn (_("Illegal 19-bit code (%lu)"),
9419 (unsigned long) imm_expr.X_add_number);
9420 imm_expr.X_add_number &= OP_MASK_CODE19;
9422 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9423 imm_expr.X_op = O_absent;
9424 s = expr_end;
9425 continue;
9427 case 'P': /* Performance register. */
9428 my_getExpression (&imm_expr, s);
9429 check_absolute_expr (ip, &imm_expr);
9430 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9431 as_warn (_("Invalid performance register (%lu)"),
9432 (unsigned long) imm_expr.X_add_number);
9433 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9434 imm_expr.X_op = O_absent;
9435 s = expr_end;
9436 continue;
9438 case 'G': /* Coprocessor destination register. */
9439 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9440 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9441 else
9442 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9443 INSERT_OPERAND (RD, *ip, regno);
9444 if (ok)
9446 lastregno = regno;
9447 continue;
9449 else
9450 break;
9452 case 'b': /* Base register. */
9453 case 'd': /* Destination register. */
9454 case 's': /* Source register. */
9455 case 't': /* Target register. */
9456 case 'r': /* Both target and source. */
9457 case 'v': /* Both dest and source. */
9458 case 'w': /* Both dest and target. */
9459 case 'E': /* Coprocessor target register. */
9460 case 'K': /* RDHWR destination register. */
9461 case 'x': /* Ignore register name. */
9462 case 'z': /* Must be zero register. */
9463 case 'U': /* Destination register (CLO/CLZ). */
9464 case 'g': /* Coprocessor destination register. */
9465 s_reset = s;
9466 if (*args == 'E' || *args == 'K')
9467 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9468 else
9470 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9471 if (regno == AT && mips_opts.at)
9473 if (mips_opts.at == ATREG)
9474 as_warn (_("Used $at without \".set noat\""));
9475 else
9476 as_warn (_("Used $%u with \".set at=$%u\""),
9477 regno, mips_opts.at);
9480 if (ok)
9482 c = *args;
9483 if (*s == ' ')
9484 ++s;
9485 if (args[1] != *s)
9487 if (c == 'r' || c == 'v' || c == 'w')
9489 regno = lastregno;
9490 s = s_reset;
9491 ++args;
9494 /* 'z' only matches $0. */
9495 if (c == 'z' && regno != 0)
9496 break;
9498 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9500 if (regno == lastregno)
9502 insn_error
9503 = _("Source and destination must be different");
9504 continue;
9506 if (regno == 31 && lastregno == 0xffffffff)
9508 insn_error
9509 = _("A destination register must be supplied");
9510 continue;
9513 /* Now that we have assembled one operand, we use the args
9514 string to figure out where it goes in the instruction. */
9515 switch (c)
9517 case 'r':
9518 case 's':
9519 case 'v':
9520 case 'b':
9521 INSERT_OPERAND (RS, *ip, regno);
9522 break;
9523 case 'd':
9524 case 'G':
9525 case 'K':
9526 case 'g':
9527 INSERT_OPERAND (RD, *ip, regno);
9528 break;
9529 case 'U':
9530 INSERT_OPERAND (RD, *ip, regno);
9531 INSERT_OPERAND (RT, *ip, regno);
9532 break;
9533 case 'w':
9534 case 't':
9535 case 'E':
9536 INSERT_OPERAND (RT, *ip, regno);
9537 break;
9538 case 'x':
9539 /* This case exists because on the r3000 trunc
9540 expands into a macro which requires a gp
9541 register. On the r6000 or r4000 it is
9542 assembled into a single instruction which
9543 ignores the register. Thus the insn version
9544 is MIPS_ISA2 and uses 'x', and the macro
9545 version is MIPS_ISA1 and uses 't'. */
9546 break;
9547 case 'z':
9548 /* This case is for the div instruction, which
9549 acts differently if the destination argument
9550 is $0. This only matches $0, and is checked
9551 outside the switch. */
9552 break;
9553 case 'D':
9554 /* Itbl operand; not yet implemented. FIXME ?? */
9555 break;
9556 /* What about all other operands like 'i', which
9557 can be specified in the opcode table? */
9559 lastregno = regno;
9560 continue;
9562 switch (*args++)
9564 case 'r':
9565 case 'v':
9566 INSERT_OPERAND (RS, *ip, lastregno);
9567 continue;
9568 case 'w':
9569 INSERT_OPERAND (RT, *ip, lastregno);
9570 continue;
9572 break;
9574 case 'O': /* MDMX alignment immediate constant. */
9575 my_getExpression (&imm_expr, s);
9576 check_absolute_expr (ip, &imm_expr);
9577 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9578 as_warn (_("Improper align amount (%ld), using low bits"),
9579 (long) imm_expr.X_add_number);
9580 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9581 imm_expr.X_op = O_absent;
9582 s = expr_end;
9583 continue;
9585 case 'Q': /* MDMX vector, element sel, or const. */
9586 if (s[0] != '$')
9588 /* MDMX Immediate. */
9589 my_getExpression (&imm_expr, s);
9590 check_absolute_expr (ip, &imm_expr);
9591 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9592 as_warn (_("Invalid MDMX Immediate (%ld)"),
9593 (long) imm_expr.X_add_number);
9594 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9595 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9596 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9597 else
9598 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9599 imm_expr.X_op = O_absent;
9600 s = expr_end;
9601 continue;
9603 /* Not MDMX Immediate. Fall through. */
9604 case 'X': /* MDMX destination register. */
9605 case 'Y': /* MDMX source register. */
9606 case 'Z': /* MDMX target register. */
9607 is_mdmx = 1;
9608 case 'D': /* Floating point destination register. */
9609 case 'S': /* Floating point source register. */
9610 case 'T': /* Floating point target register. */
9611 case 'R': /* Floating point source register. */
9612 case 'V':
9613 case 'W':
9614 rtype = RTYPE_FPU;
9615 if (is_mdmx
9616 || (mips_opts.ase_mdmx
9617 && (ip->insn_mo->pinfo & FP_D)
9618 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9619 | INSN_COPROC_MEMORY_DELAY
9620 | INSN_LOAD_COPROC_DELAY
9621 | INSN_LOAD_MEMORY_DELAY
9622 | INSN_STORE_MEMORY))))
9623 rtype |= RTYPE_VEC;
9624 s_reset = s;
9625 if (reg_lookup (&s, rtype, &regno))
9627 if ((regno & 1) != 0
9628 && HAVE_32BIT_FPRS
9629 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
9630 as_warn (_("Float register should be even, was %d"),
9631 regno);
9633 c = *args;
9634 if (*s == ' ')
9635 ++s;
9636 if (args[1] != *s)
9638 if (c == 'V' || c == 'W')
9640 regno = lastregno;
9641 s = s_reset;
9642 ++args;
9645 switch (c)
9647 case 'D':
9648 case 'X':
9649 INSERT_OPERAND (FD, *ip, regno);
9650 break;
9651 case 'V':
9652 case 'S':
9653 case 'Y':
9654 INSERT_OPERAND (FS, *ip, regno);
9655 break;
9656 case 'Q':
9657 /* This is like 'Z', but also needs to fix the MDMX
9658 vector/scalar select bits. Note that the
9659 scalar immediate case is handled above. */
9660 if (*s == '[')
9662 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9663 int max_el = (is_qh ? 3 : 7);
9664 s++;
9665 my_getExpression(&imm_expr, s);
9666 check_absolute_expr (ip, &imm_expr);
9667 s = expr_end;
9668 if (imm_expr.X_add_number > max_el)
9669 as_bad (_("Bad element selector %ld"),
9670 (long) imm_expr.X_add_number);
9671 imm_expr.X_add_number &= max_el;
9672 ip->insn_opcode |= (imm_expr.X_add_number
9673 << (OP_SH_VSEL +
9674 (is_qh ? 2 : 1)));
9675 imm_expr.X_op = O_absent;
9676 if (*s != ']')
9677 as_warn (_("Expecting ']' found '%s'"), s);
9678 else
9679 s++;
9681 else
9683 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9684 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9685 << OP_SH_VSEL);
9686 else
9687 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9688 OP_SH_VSEL);
9690 /* Fall through. */
9691 case 'W':
9692 case 'T':
9693 case 'Z':
9694 INSERT_OPERAND (FT, *ip, regno);
9695 break;
9696 case 'R':
9697 INSERT_OPERAND (FR, *ip, regno);
9698 break;
9700 lastregno = regno;
9701 continue;
9704 switch (*args++)
9706 case 'V':
9707 INSERT_OPERAND (FS, *ip, lastregno);
9708 continue;
9709 case 'W':
9710 INSERT_OPERAND (FT, *ip, lastregno);
9711 continue;
9713 break;
9715 case 'I':
9716 my_getExpression (&imm_expr, s);
9717 if (imm_expr.X_op != O_big
9718 && imm_expr.X_op != O_constant)
9719 insn_error = _("absolute expression required");
9720 if (HAVE_32BIT_GPRS)
9721 normalize_constant_expr (&imm_expr);
9722 s = expr_end;
9723 continue;
9725 case 'A':
9726 my_getExpression (&offset_expr, s);
9727 normalize_address_expr (&offset_expr);
9728 *imm_reloc = BFD_RELOC_32;
9729 s = expr_end;
9730 continue;
9732 case 'F':
9733 case 'L':
9734 case 'f':
9735 case 'l':
9737 int f64;
9738 int using_gprs;
9739 char *save_in;
9740 char *err;
9741 unsigned char temp[8];
9742 int len;
9743 unsigned int length;
9744 segT seg;
9745 subsegT subseg;
9746 char *p;
9748 /* These only appear as the last operand in an
9749 instruction, and every instruction that accepts
9750 them in any variant accepts them in all variants.
9751 This means we don't have to worry about backing out
9752 any changes if the instruction does not match.
9754 The difference between them is the size of the
9755 floating point constant and where it goes. For 'F'
9756 and 'L' the constant is 64 bits; for 'f' and 'l' it
9757 is 32 bits. Where the constant is placed is based
9758 on how the MIPS assembler does things:
9759 F -- .rdata
9760 L -- .lit8
9761 f -- immediate value
9762 l -- .lit4
9764 The .lit4 and .lit8 sections are only used if
9765 permitted by the -G argument.
9767 The code below needs to know whether the target register
9768 is 32 or 64 bits wide. It relies on the fact 'f' and
9769 'F' are used with GPR-based instructions and 'l' and
9770 'L' are used with FPR-based instructions. */
9772 f64 = *args == 'F' || *args == 'L';
9773 using_gprs = *args == 'F' || *args == 'f';
9775 save_in = input_line_pointer;
9776 input_line_pointer = s;
9777 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9778 length = len;
9779 s = input_line_pointer;
9780 input_line_pointer = save_in;
9781 if (err != NULL && *err != '\0')
9783 as_bad (_("Bad floating point constant: %s"), err);
9784 memset (temp, '\0', sizeof temp);
9785 length = f64 ? 8 : 4;
9788 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9790 if (*args == 'f'
9791 || (*args == 'l'
9792 && (g_switch_value < 4
9793 || (temp[0] == 0 && temp[1] == 0)
9794 || (temp[2] == 0 && temp[3] == 0))))
9796 imm_expr.X_op = O_constant;
9797 if (!target_big_endian)
9798 imm_expr.X_add_number = bfd_getl32 (temp);
9799 else
9800 imm_expr.X_add_number = bfd_getb32 (temp);
9802 else if (length > 4
9803 && !mips_disable_float_construction
9804 /* Constants can only be constructed in GPRs and
9805 copied to FPRs if the GPRs are at least as wide
9806 as the FPRs. Force the constant into memory if
9807 we are using 64-bit FPRs but the GPRs are only
9808 32 bits wide. */
9809 && (using_gprs
9810 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9811 && ((temp[0] == 0 && temp[1] == 0)
9812 || (temp[2] == 0 && temp[3] == 0))
9813 && ((temp[4] == 0 && temp[5] == 0)
9814 || (temp[6] == 0 && temp[7] == 0)))
9816 /* The value is simple enough to load with a couple of
9817 instructions. If using 32-bit registers, set
9818 imm_expr to the high order 32 bits and offset_expr to
9819 the low order 32 bits. Otherwise, set imm_expr to
9820 the entire 64 bit constant. */
9821 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9823 imm_expr.X_op = O_constant;
9824 offset_expr.X_op = O_constant;
9825 if (!target_big_endian)
9827 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9828 offset_expr.X_add_number = bfd_getl32 (temp);
9830 else
9832 imm_expr.X_add_number = bfd_getb32 (temp);
9833 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9835 if (offset_expr.X_add_number == 0)
9836 offset_expr.X_op = O_absent;
9838 else if (sizeof (imm_expr.X_add_number) > 4)
9840 imm_expr.X_op = O_constant;
9841 if (!target_big_endian)
9842 imm_expr.X_add_number = bfd_getl64 (temp);
9843 else
9844 imm_expr.X_add_number = bfd_getb64 (temp);
9846 else
9848 imm_expr.X_op = O_big;
9849 imm_expr.X_add_number = 4;
9850 if (!target_big_endian)
9852 generic_bignum[0] = bfd_getl16 (temp);
9853 generic_bignum[1] = bfd_getl16 (temp + 2);
9854 generic_bignum[2] = bfd_getl16 (temp + 4);
9855 generic_bignum[3] = bfd_getl16 (temp + 6);
9857 else
9859 generic_bignum[0] = bfd_getb16 (temp + 6);
9860 generic_bignum[1] = bfd_getb16 (temp + 4);
9861 generic_bignum[2] = bfd_getb16 (temp + 2);
9862 generic_bignum[3] = bfd_getb16 (temp);
9866 else
9868 const char *newname;
9869 segT new_seg;
9871 /* Switch to the right section. */
9872 seg = now_seg;
9873 subseg = now_subseg;
9874 switch (*args)
9876 default: /* unused default case avoids warnings. */
9877 case 'L':
9878 newname = RDATA_SECTION_NAME;
9879 if (g_switch_value >= 8)
9880 newname = ".lit8";
9881 break;
9882 case 'F':
9883 newname = RDATA_SECTION_NAME;
9884 break;
9885 case 'l':
9886 gas_assert (g_switch_value >= 4);
9887 newname = ".lit4";
9888 break;
9890 new_seg = subseg_new (newname, (subsegT) 0);
9891 if (IS_ELF)
9892 bfd_set_section_flags (stdoutput, new_seg,
9893 (SEC_ALLOC
9894 | SEC_LOAD
9895 | SEC_READONLY
9896 | SEC_DATA));
9897 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9898 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9899 record_alignment (new_seg, 4);
9900 else
9901 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9902 if (seg == now_seg)
9903 as_bad (_("Can't use floating point insn in this section"));
9905 /* Set the argument to the current address in the
9906 section. */
9907 offset_expr.X_op = O_symbol;
9908 offset_expr.X_add_symbol = symbol_temp_new_now ();
9909 offset_expr.X_add_number = 0;
9911 /* Put the floating point number into the section. */
9912 p = frag_more ((int) length);
9913 memcpy (p, temp, length);
9915 /* Switch back to the original section. */
9916 subseg_set (seg, subseg);
9919 continue;
9921 case 'i': /* 16-bit unsigned immediate. */
9922 case 'j': /* 16-bit signed immediate. */
9923 *imm_reloc = BFD_RELOC_LO16;
9924 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9926 int more;
9927 offsetT minval, maxval;
9929 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9930 && strcmp (insn->name, insn[1].name) == 0);
9932 /* If the expression was written as an unsigned number,
9933 only treat it as signed if there are no more
9934 alternatives. */
9935 if (more
9936 && *args == 'j'
9937 && sizeof (imm_expr.X_add_number) <= 4
9938 && imm_expr.X_op == O_constant
9939 && imm_expr.X_add_number < 0
9940 && imm_expr.X_unsigned
9941 && HAVE_64BIT_GPRS)
9942 break;
9944 /* For compatibility with older assemblers, we accept
9945 0x8000-0xffff as signed 16-bit numbers when only
9946 signed numbers are allowed. */
9947 if (*args == 'i')
9948 minval = 0, maxval = 0xffff;
9949 else if (more)
9950 minval = -0x8000, maxval = 0x7fff;
9951 else
9952 minval = -0x8000, maxval = 0xffff;
9954 if (imm_expr.X_op != O_constant
9955 || imm_expr.X_add_number < minval
9956 || imm_expr.X_add_number > maxval)
9958 if (more)
9959 break;
9960 if (imm_expr.X_op == O_constant
9961 || imm_expr.X_op == O_big)
9962 as_bad (_("Expression out of range"));
9965 s = expr_end;
9966 continue;
9968 case 'o': /* 16-bit offset. */
9969 offset_reloc[0] = BFD_RELOC_LO16;
9970 offset_reloc[1] = BFD_RELOC_UNUSED;
9971 offset_reloc[2] = BFD_RELOC_UNUSED;
9973 /* Check whether there is only a single bracketed expression
9974 left. If so, it must be the base register and the
9975 constant must be zero. */
9976 offset_reloc[0] = BFD_RELOC_LO16;
9977 offset_reloc[1] = BFD_RELOC_UNUSED;
9978 offset_reloc[2] = BFD_RELOC_UNUSED;
9979 if (*s == '(' && strchr (s + 1, '(') == 0)
9981 offset_expr.X_op = O_constant;
9982 offset_expr.X_add_number = 0;
9983 continue;
9986 /* If this value won't fit into a 16 bit offset, then go
9987 find a macro that will generate the 32 bit offset
9988 code pattern. */
9989 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9990 && (offset_expr.X_op != O_constant
9991 || offset_expr.X_add_number >= 0x8000
9992 || offset_expr.X_add_number < -0x8000))
9993 break;
9995 s = expr_end;
9996 continue;
9998 case 'p': /* PC-relative offset. */
9999 *offset_reloc = BFD_RELOC_16_PCREL_S2;
10000 my_getExpression (&offset_expr, s);
10001 s = expr_end;
10002 continue;
10004 case 'u': /* Upper 16 bits. */
10005 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
10006 && imm_expr.X_op == O_constant
10007 && (imm_expr.X_add_number < 0
10008 || imm_expr.X_add_number >= 0x10000))
10009 as_bad (_("lui expression (%lu) not in range 0..65535"),
10010 (unsigned long) imm_expr.X_add_number);
10011 s = expr_end;
10012 continue;
10014 case 'a': /* 26-bit address. */
10015 my_getExpression (&offset_expr, s);
10016 s = expr_end;
10017 *offset_reloc = BFD_RELOC_MIPS_JMP;
10018 continue;
10020 case 'N': /* 3-bit branch condition code. */
10021 case 'M': /* 3-bit compare condition code. */
10022 rtype = RTYPE_CCC;
10023 if (ip->insn_mo->pinfo & (FP_D | FP_S))
10024 rtype |= RTYPE_FCC;
10025 if (!reg_lookup (&s, rtype, &regno))
10026 break;
10027 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
10028 || strcmp (str + strlen (str) - 5, "any2f") == 0
10029 || strcmp (str + strlen (str) - 5, "any2t") == 0)
10030 && (regno & 1) != 0)
10031 as_warn (_("Condition code register should be even for %s, "
10032 "was %d"),
10033 str, regno);
10034 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
10035 || strcmp (str + strlen (str) - 5, "any4t") == 0)
10036 && (regno & 3) != 0)
10037 as_warn (_("Condition code register should be 0 or 4 for %s, "
10038 "was %d"),
10039 str, regno);
10040 if (*args == 'N')
10041 INSERT_OPERAND (BCC, *ip, regno);
10042 else
10043 INSERT_OPERAND (CCC, *ip, regno);
10044 continue;
10046 case 'H':
10047 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10048 s += 2;
10049 if (ISDIGIT (*s))
10051 c = 0;
10054 c *= 10;
10055 c += *s - '0';
10056 ++s;
10058 while (ISDIGIT (*s));
10060 else
10061 c = 8; /* Invalid sel value. */
10063 if (c > 7)
10064 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
10065 ip->insn_opcode |= c;
10066 continue;
10068 case 'e':
10069 /* Must be at least one digit. */
10070 my_getExpression (&imm_expr, s);
10071 check_absolute_expr (ip, &imm_expr);
10073 if ((unsigned long) imm_expr.X_add_number
10074 > (unsigned long) OP_MASK_VECBYTE)
10076 as_bad (_("bad byte vector index (%ld)"),
10077 (long) imm_expr.X_add_number);
10078 imm_expr.X_add_number = 0;
10081 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10082 imm_expr.X_op = O_absent;
10083 s = expr_end;
10084 continue;
10086 case '%':
10087 my_getExpression (&imm_expr, s);
10088 check_absolute_expr (ip, &imm_expr);
10090 if ((unsigned long) imm_expr.X_add_number
10091 > (unsigned long) OP_MASK_VECALIGN)
10093 as_bad (_("bad byte vector index (%ld)"),
10094 (long) imm_expr.X_add_number);
10095 imm_expr.X_add_number = 0;
10098 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10099 imm_expr.X_op = O_absent;
10100 s = expr_end;
10101 continue;
10103 default:
10104 as_bad (_("Bad char = '%c'\n"), *args);
10105 internalError ();
10107 break;
10109 /* Args don't match. */
10110 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10111 !strcmp (insn->name, insn[1].name))
10113 ++insn;
10114 s = argsStart;
10115 insn_error = _("Illegal operands");
10116 continue;
10118 if (save_c)
10119 *(--argsStart) = save_c;
10120 insn_error = _("Illegal operands");
10121 return;
10125 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10127 /* This routine assembles an instruction into its binary format when
10128 assembling for the mips16. As a side effect, it sets one of the
10129 global variables imm_reloc or offset_reloc to the type of
10130 relocation to do if one of the operands is an address expression.
10131 It also sets mips16_small and mips16_ext if the user explicitly
10132 requested a small or extended instruction. */
10134 static void
10135 mips16_ip (char *str, struct mips_cl_insn *ip)
10137 char *s;
10138 const char *args;
10139 struct mips_opcode *insn;
10140 char *argsstart;
10141 unsigned int regno;
10142 unsigned int lastregno = 0;
10143 char *s_reset;
10144 size_t i;
10146 insn_error = NULL;
10148 mips16_small = FALSE;
10149 mips16_ext = FALSE;
10151 for (s = str; ISLOWER (*s); ++s)
10153 switch (*s)
10155 case '\0':
10156 break;
10158 case ' ':
10159 *s++ = '\0';
10160 break;
10162 case '.':
10163 if (s[1] == 't' && s[2] == ' ')
10165 *s = '\0';
10166 mips16_small = TRUE;
10167 s += 3;
10168 break;
10170 else if (s[1] == 'e' && s[2] == ' ')
10172 *s = '\0';
10173 mips16_ext = TRUE;
10174 s += 3;
10175 break;
10177 /* Fall through. */
10178 default:
10179 insn_error = _("unknown opcode");
10180 return;
10183 if (mips_opts.noautoextend && ! mips16_ext)
10184 mips16_small = TRUE;
10186 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10188 insn_error = _("unrecognized opcode");
10189 return;
10192 argsstart = s;
10193 for (;;)
10195 bfd_boolean ok;
10197 gas_assert (strcmp (insn->name, str) == 0);
10199 ok = is_opcode_valid_16 (insn);
10200 if (! ok)
10202 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10203 && strcmp (insn->name, insn[1].name) == 0)
10205 ++insn;
10206 continue;
10208 else
10210 if (!insn_error)
10212 static char buf[100];
10213 sprintf (buf,
10214 _("opcode not supported on this processor: %s (%s)"),
10215 mips_cpu_info_from_arch (mips_opts.arch)->name,
10216 mips_cpu_info_from_isa (mips_opts.isa)->name);
10217 insn_error = buf;
10219 return;
10223 create_insn (ip, insn);
10224 imm_expr.X_op = O_absent;
10225 imm_reloc[0] = BFD_RELOC_UNUSED;
10226 imm_reloc[1] = BFD_RELOC_UNUSED;
10227 imm_reloc[2] = BFD_RELOC_UNUSED;
10228 imm2_expr.X_op = O_absent;
10229 offset_expr.X_op = O_absent;
10230 offset_reloc[0] = BFD_RELOC_UNUSED;
10231 offset_reloc[1] = BFD_RELOC_UNUSED;
10232 offset_reloc[2] = BFD_RELOC_UNUSED;
10233 for (args = insn->args; 1; ++args)
10235 int c;
10237 if (*s == ' ')
10238 ++s;
10240 /* In this switch statement we call break if we did not find
10241 a match, continue if we did find a match, or return if we
10242 are done. */
10244 c = *args;
10245 switch (c)
10247 case '\0':
10248 if (*s == '\0')
10250 /* Stuff the immediate value in now, if we can. */
10251 if (imm_expr.X_op == O_constant
10252 && *imm_reloc > BFD_RELOC_UNUSED
10253 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10254 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10255 && insn->pinfo != INSN_MACRO)
10257 valueT tmp;
10259 switch (*offset_reloc)
10261 case BFD_RELOC_MIPS16_HI16_S:
10262 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10263 break;
10265 case BFD_RELOC_MIPS16_HI16:
10266 tmp = imm_expr.X_add_number >> 16;
10267 break;
10269 case BFD_RELOC_MIPS16_LO16:
10270 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10271 - 0x8000;
10272 break;
10274 case BFD_RELOC_UNUSED:
10275 tmp = imm_expr.X_add_number;
10276 break;
10278 default:
10279 internalError ();
10281 *offset_reloc = BFD_RELOC_UNUSED;
10283 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10284 tmp, TRUE, mips16_small,
10285 mips16_ext, &ip->insn_opcode,
10286 &ip->use_extend, &ip->extend);
10287 imm_expr.X_op = O_absent;
10288 *imm_reloc = BFD_RELOC_UNUSED;
10291 return;
10293 break;
10295 case ',':
10296 if (*s++ == c)
10297 continue;
10298 s--;
10299 switch (*++args)
10301 case 'v':
10302 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10303 continue;
10304 case 'w':
10305 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10306 continue;
10308 break;
10310 case '(':
10311 case ')':
10312 if (*s++ == c)
10313 continue;
10314 break;
10316 case 'v':
10317 case 'w':
10318 if (s[0] != '$')
10320 if (c == 'v')
10321 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10322 else
10323 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10324 ++args;
10325 continue;
10327 /* Fall through. */
10328 case 'x':
10329 case 'y':
10330 case 'z':
10331 case 'Z':
10332 case '0':
10333 case 'S':
10334 case 'R':
10335 case 'X':
10336 case 'Y':
10337 s_reset = s;
10338 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10340 if (c == 'v' || c == 'w')
10342 if (c == 'v')
10343 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10344 else
10345 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10346 ++args;
10347 continue;
10349 break;
10352 if (*s == ' ')
10353 ++s;
10354 if (args[1] != *s)
10356 if (c == 'v' || c == 'w')
10358 regno = mips16_to_32_reg_map[lastregno];
10359 s = s_reset;
10360 ++args;
10364 switch (c)
10366 case 'x':
10367 case 'y':
10368 case 'z':
10369 case 'v':
10370 case 'w':
10371 case 'Z':
10372 regno = mips32_to_16_reg_map[regno];
10373 break;
10375 case '0':
10376 if (regno != 0)
10377 regno = ILLEGAL_REG;
10378 break;
10380 case 'S':
10381 if (regno != SP)
10382 regno = ILLEGAL_REG;
10383 break;
10385 case 'R':
10386 if (regno != RA)
10387 regno = ILLEGAL_REG;
10388 break;
10390 case 'X':
10391 case 'Y':
10392 if (regno == AT && mips_opts.at)
10394 if (mips_opts.at == ATREG)
10395 as_warn (_("used $at without \".set noat\""));
10396 else
10397 as_warn (_("used $%u with \".set at=$%u\""),
10398 regno, mips_opts.at);
10400 break;
10402 default:
10403 internalError ();
10406 if (regno == ILLEGAL_REG)
10407 break;
10409 switch (c)
10411 case 'x':
10412 case 'v':
10413 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10414 break;
10415 case 'y':
10416 case 'w':
10417 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10418 break;
10419 case 'z':
10420 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10421 break;
10422 case 'Z':
10423 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10424 case '0':
10425 case 'S':
10426 case 'R':
10427 break;
10428 case 'X':
10429 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10430 break;
10431 case 'Y':
10432 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10433 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10434 break;
10435 default:
10436 internalError ();
10439 lastregno = regno;
10440 continue;
10442 case 'P':
10443 if (strncmp (s, "$pc", 3) == 0)
10445 s += 3;
10446 continue;
10448 break;
10450 case '5':
10451 case 'H':
10452 case 'W':
10453 case 'D':
10454 case 'j':
10455 case 'V':
10456 case 'C':
10457 case 'U':
10458 case 'k':
10459 case 'K':
10460 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10461 if (i > 0)
10463 if (imm_expr.X_op != O_constant)
10465 mips16_ext = TRUE;
10466 ip->use_extend = TRUE;
10467 ip->extend = 0;
10469 else
10471 /* We need to relax this instruction. */
10472 *offset_reloc = *imm_reloc;
10473 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10475 s = expr_end;
10476 continue;
10478 *imm_reloc = BFD_RELOC_UNUSED;
10479 /* Fall through. */
10480 case '<':
10481 case '>':
10482 case '[':
10483 case ']':
10484 case '4':
10485 case '8':
10486 my_getExpression (&imm_expr, s);
10487 if (imm_expr.X_op == O_register)
10489 /* What we thought was an expression turned out to
10490 be a register. */
10492 if (s[0] == '(' && args[1] == '(')
10494 /* It looks like the expression was omitted
10495 before a register indirection, which means
10496 that the expression is implicitly zero. We
10497 still set up imm_expr, so that we handle
10498 explicit extensions correctly. */
10499 imm_expr.X_op = O_constant;
10500 imm_expr.X_add_number = 0;
10501 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10502 continue;
10505 break;
10508 /* We need to relax this instruction. */
10509 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10510 s = expr_end;
10511 continue;
10513 case 'p':
10514 case 'q':
10515 case 'A':
10516 case 'B':
10517 case 'E':
10518 /* We use offset_reloc rather than imm_reloc for the PC
10519 relative operands. This lets macros with both
10520 immediate and address operands work correctly. */
10521 my_getExpression (&offset_expr, s);
10523 if (offset_expr.X_op == O_register)
10524 break;
10526 /* We need to relax this instruction. */
10527 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10528 s = expr_end;
10529 continue;
10531 case '6': /* break code */
10532 my_getExpression (&imm_expr, s);
10533 check_absolute_expr (ip, &imm_expr);
10534 if ((unsigned long) imm_expr.X_add_number > 63)
10535 as_warn (_("Invalid value for `%s' (%lu)"),
10536 ip->insn_mo->name,
10537 (unsigned long) imm_expr.X_add_number);
10538 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10539 imm_expr.X_op = O_absent;
10540 s = expr_end;
10541 continue;
10543 case 'a': /* 26 bit address */
10544 my_getExpression (&offset_expr, s);
10545 s = expr_end;
10546 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10547 ip->insn_opcode <<= 16;
10548 continue;
10550 case 'l': /* register list for entry macro */
10551 case 'L': /* register list for exit macro */
10553 int mask;
10555 if (c == 'l')
10556 mask = 0;
10557 else
10558 mask = 7 << 3;
10559 while (*s != '\0')
10561 unsigned int freg, reg1, reg2;
10563 while (*s == ' ' || *s == ',')
10564 ++s;
10565 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10566 freg = 0;
10567 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10568 freg = 1;
10569 else
10571 as_bad (_("can't parse register list"));
10572 break;
10574 if (*s == ' ')
10575 ++s;
10576 if (*s != '-')
10577 reg2 = reg1;
10578 else
10580 ++s;
10581 if (!reg_lookup (&s, freg ? RTYPE_FPU
10582 : (RTYPE_GP | RTYPE_NUM), &reg2))
10584 as_bad (_("invalid register list"));
10585 break;
10588 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10590 mask &= ~ (7 << 3);
10591 mask |= 5 << 3;
10593 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10595 mask &= ~ (7 << 3);
10596 mask |= 6 << 3;
10598 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10599 mask |= (reg2 - 3) << 3;
10600 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10601 mask |= (reg2 - 15) << 1;
10602 else if (reg1 == RA && reg2 == RA)
10603 mask |= 1;
10604 else
10606 as_bad (_("invalid register list"));
10607 break;
10610 /* The mask is filled in in the opcode table for the
10611 benefit of the disassembler. We remove it before
10612 applying the actual mask. */
10613 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10614 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10616 continue;
10618 case 'm': /* Register list for save insn. */
10619 case 'M': /* Register list for restore insn. */
10621 int opcode = 0;
10622 int framesz = 0, seen_framesz = 0;
10623 int nargs = 0, statics = 0, sregs = 0;
10625 while (*s != '\0')
10627 unsigned int reg1, reg2;
10629 SKIP_SPACE_TABS (s);
10630 while (*s == ',')
10631 ++s;
10632 SKIP_SPACE_TABS (s);
10634 my_getExpression (&imm_expr, s);
10635 if (imm_expr.X_op == O_constant)
10637 /* Handle the frame size. */
10638 if (seen_framesz)
10640 as_bad (_("more than one frame size in list"));
10641 break;
10643 seen_framesz = 1;
10644 framesz = imm_expr.X_add_number;
10645 imm_expr.X_op = O_absent;
10646 s = expr_end;
10647 continue;
10650 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10652 as_bad (_("can't parse register list"));
10653 break;
10656 while (*s == ' ')
10657 ++s;
10659 if (*s != '-')
10660 reg2 = reg1;
10661 else
10663 ++s;
10664 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10665 || reg2 < reg1)
10667 as_bad (_("can't parse register list"));
10668 break;
10672 while (reg1 <= reg2)
10674 if (reg1 >= 4 && reg1 <= 7)
10676 if (!seen_framesz)
10677 /* args $a0-$a3 */
10678 nargs |= 1 << (reg1 - 4);
10679 else
10680 /* statics $a0-$a3 */
10681 statics |= 1 << (reg1 - 4);
10683 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10685 /* $s0-$s8 */
10686 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10688 else if (reg1 == 31)
10690 /* Add $ra to insn. */
10691 opcode |= 0x40;
10693 else
10695 as_bad (_("unexpected register in list"));
10696 break;
10698 if (++reg1 == 24)
10699 reg1 = 30;
10703 /* Encode args/statics combination. */
10704 if (nargs & statics)
10705 as_bad (_("arg/static registers overlap"));
10706 else if (nargs == 0xf)
10707 /* All $a0-$a3 are args. */
10708 opcode |= MIPS16_ALL_ARGS << 16;
10709 else if (statics == 0xf)
10710 /* All $a0-$a3 are statics. */
10711 opcode |= MIPS16_ALL_STATICS << 16;
10712 else
10714 int narg = 0, nstat = 0;
10716 /* Count arg registers. */
10717 while (nargs & 0x1)
10719 nargs >>= 1;
10720 narg++;
10722 if (nargs != 0)
10723 as_bad (_("invalid arg register list"));
10725 /* Count static registers. */
10726 while (statics & 0x8)
10728 statics = (statics << 1) & 0xf;
10729 nstat++;
10731 if (statics != 0)
10732 as_bad (_("invalid static register list"));
10734 /* Encode args/statics. */
10735 opcode |= ((narg << 2) | nstat) << 16;
10738 /* Encode $s0/$s1. */
10739 if (sregs & (1 << 0)) /* $s0 */
10740 opcode |= 0x20;
10741 if (sregs & (1 << 1)) /* $s1 */
10742 opcode |= 0x10;
10743 sregs >>= 2;
10745 if (sregs != 0)
10747 /* Count regs $s2-$s8. */
10748 int nsreg = 0;
10749 while (sregs & 1)
10751 sregs >>= 1;
10752 nsreg++;
10754 if (sregs != 0)
10755 as_bad (_("invalid static register list"));
10756 /* Encode $s2-$s8. */
10757 opcode |= nsreg << 24;
10760 /* Encode frame size. */
10761 if (!seen_framesz)
10762 as_bad (_("missing frame size"));
10763 else if ((framesz & 7) != 0 || framesz < 0
10764 || framesz > 0xff * 8)
10765 as_bad (_("invalid frame size"));
10766 else if (framesz != 128 || (opcode >> 16) != 0)
10768 framesz /= 8;
10769 opcode |= (((framesz & 0xf0) << 16)
10770 | (framesz & 0x0f));
10773 /* Finally build the instruction. */
10774 if ((opcode >> 16) != 0 || framesz == 0)
10776 ip->use_extend = TRUE;
10777 ip->extend = opcode >> 16;
10779 ip->insn_opcode |= opcode & 0x7f;
10781 continue;
10783 case 'e': /* extend code */
10784 my_getExpression (&imm_expr, s);
10785 check_absolute_expr (ip, &imm_expr);
10786 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10788 as_warn (_("Invalid value for `%s' (%lu)"),
10789 ip->insn_mo->name,
10790 (unsigned long) imm_expr.X_add_number);
10791 imm_expr.X_add_number &= 0x7ff;
10793 ip->insn_opcode |= imm_expr.X_add_number;
10794 imm_expr.X_op = O_absent;
10795 s = expr_end;
10796 continue;
10798 default:
10799 internalError ();
10801 break;
10804 /* Args don't match. */
10805 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10806 strcmp (insn->name, insn[1].name) == 0)
10808 ++insn;
10809 s = argsstart;
10810 continue;
10813 insn_error = _("illegal operands");
10815 return;
10819 /* This structure holds information we know about a mips16 immediate
10820 argument type. */
10822 struct mips16_immed_operand
10824 /* The type code used in the argument string in the opcode table. */
10825 int type;
10826 /* The number of bits in the short form of the opcode. */
10827 int nbits;
10828 /* The number of bits in the extended form of the opcode. */
10829 int extbits;
10830 /* The amount by which the short form is shifted when it is used;
10831 for example, the sw instruction has a shift count of 2. */
10832 int shift;
10833 /* The amount by which the short form is shifted when it is stored
10834 into the instruction code. */
10835 int op_shift;
10836 /* Non-zero if the short form is unsigned. */
10837 int unsp;
10838 /* Non-zero if the extended form is unsigned. */
10839 int extu;
10840 /* Non-zero if the value is PC relative. */
10841 int pcrel;
10844 /* The mips16 immediate operand types. */
10846 static const struct mips16_immed_operand mips16_immed_operands[] =
10848 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10849 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10850 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10851 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10852 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10853 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10854 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10855 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10856 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10857 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10858 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10859 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10860 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10861 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10862 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10863 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10864 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10865 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10866 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10867 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10868 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10871 #define MIPS16_NUM_IMMED \
10872 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10874 /* Handle a mips16 instruction with an immediate value. This or's the
10875 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10876 whether an extended value is needed; if one is needed, it sets
10877 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10878 If SMALL is true, an unextended opcode was explicitly requested.
10879 If EXT is true, an extended opcode was explicitly requested. If
10880 WARN is true, warn if EXT does not match reality. */
10882 static void
10883 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10884 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10885 unsigned long *insn, bfd_boolean *use_extend,
10886 unsigned short *extend)
10888 const struct mips16_immed_operand *op;
10889 int mintiny, maxtiny;
10890 bfd_boolean needext;
10892 op = mips16_immed_operands;
10893 while (op->type != type)
10895 ++op;
10896 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10899 if (op->unsp)
10901 if (type == '<' || type == '>' || type == '[' || type == ']')
10903 mintiny = 1;
10904 maxtiny = 1 << op->nbits;
10906 else
10908 mintiny = 0;
10909 maxtiny = (1 << op->nbits) - 1;
10912 else
10914 mintiny = - (1 << (op->nbits - 1));
10915 maxtiny = (1 << (op->nbits - 1)) - 1;
10918 /* Branch offsets have an implicit 0 in the lowest bit. */
10919 if (type == 'p' || type == 'q')
10920 val /= 2;
10922 if ((val & ((1 << op->shift) - 1)) != 0
10923 || val < (mintiny << op->shift)
10924 || val > (maxtiny << op->shift))
10925 needext = TRUE;
10926 else
10927 needext = FALSE;
10929 if (warn && ext && ! needext)
10930 as_warn_where (file, line,
10931 _("extended operand requested but not required"));
10932 if (small && needext)
10933 as_bad_where (file, line, _("invalid unextended operand value"));
10935 if (small || (! ext && ! needext))
10937 int insnval;
10939 *use_extend = FALSE;
10940 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10941 insnval <<= op->op_shift;
10942 *insn |= insnval;
10944 else
10946 long minext, maxext;
10947 int extval;
10949 if (op->extu)
10951 minext = 0;
10952 maxext = (1 << op->extbits) - 1;
10954 else
10956 minext = - (1 << (op->extbits - 1));
10957 maxext = (1 << (op->extbits - 1)) - 1;
10959 if (val < minext || val > maxext)
10960 as_bad_where (file, line,
10961 _("operand value out of range for instruction"));
10963 *use_extend = TRUE;
10964 if (op->extbits == 16)
10966 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
10967 val &= 0x1f;
10969 else if (op->extbits == 15)
10971 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
10972 val &= 0xf;
10974 else
10976 extval = ((val & 0x1f) << 6) | (val & 0x20);
10977 val = 0;
10980 *extend = (unsigned short) extval;
10981 *insn |= val;
10985 struct percent_op_match
10987 const char *str;
10988 bfd_reloc_code_real_type reloc;
10991 static const struct percent_op_match mips_percent_op[] =
10993 {"%lo", BFD_RELOC_LO16},
10994 #ifdef OBJ_ELF
10995 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
10996 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
10997 {"%call16", BFD_RELOC_MIPS_CALL16},
10998 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
10999 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
11000 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
11001 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
11002 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
11003 {"%got", BFD_RELOC_MIPS_GOT16},
11004 {"%gp_rel", BFD_RELOC_GPREL16},
11005 {"%half", BFD_RELOC_16},
11006 {"%highest", BFD_RELOC_MIPS_HIGHEST},
11007 {"%higher", BFD_RELOC_MIPS_HIGHER},
11008 {"%neg", BFD_RELOC_MIPS_SUB},
11009 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11010 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11011 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11012 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11013 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11014 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11015 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11016 #endif
11017 {"%hi", BFD_RELOC_HI16_S}
11020 static const struct percent_op_match mips16_percent_op[] =
11022 {"%lo", BFD_RELOC_MIPS16_LO16},
11023 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11024 {"%got", BFD_RELOC_MIPS16_GOT16},
11025 {"%call16", BFD_RELOC_MIPS16_CALL16},
11026 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11030 /* Return true if *STR points to a relocation operator. When returning true,
11031 move *STR over the operator and store its relocation code in *RELOC.
11032 Leave both *STR and *RELOC alone when returning false. */
11034 static bfd_boolean
11035 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11037 const struct percent_op_match *percent_op;
11038 size_t limit, i;
11040 if (mips_opts.mips16)
11042 percent_op = mips16_percent_op;
11043 limit = ARRAY_SIZE (mips16_percent_op);
11045 else
11047 percent_op = mips_percent_op;
11048 limit = ARRAY_SIZE (mips_percent_op);
11051 for (i = 0; i < limit; i++)
11052 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11054 int len = strlen (percent_op[i].str);
11056 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11057 continue;
11059 *str += strlen (percent_op[i].str);
11060 *reloc = percent_op[i].reloc;
11062 /* Check whether the output BFD supports this relocation.
11063 If not, issue an error and fall back on something safe. */
11064 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11066 as_bad (_("relocation %s isn't supported by the current ABI"),
11067 percent_op[i].str);
11068 *reloc = BFD_RELOC_UNUSED;
11070 return TRUE;
11072 return FALSE;
11076 /* Parse string STR as a 16-bit relocatable operand. Store the
11077 expression in *EP and the relocations in the array starting
11078 at RELOC. Return the number of relocation operators used.
11080 On exit, EXPR_END points to the first character after the expression. */
11082 static size_t
11083 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11084 char *str)
11086 bfd_reloc_code_real_type reversed_reloc[3];
11087 size_t reloc_index, i;
11088 int crux_depth, str_depth;
11089 char *crux;
11091 /* Search for the start of the main expression, recoding relocations
11092 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11093 of the main expression and with CRUX_DEPTH containing the number
11094 of open brackets at that point. */
11095 reloc_index = -1;
11096 str_depth = 0;
11099 reloc_index++;
11100 crux = str;
11101 crux_depth = str_depth;
11103 /* Skip over whitespace and brackets, keeping count of the number
11104 of brackets. */
11105 while (*str == ' ' || *str == '\t' || *str == '(')
11106 if (*str++ == '(')
11107 str_depth++;
11109 while (*str == '%'
11110 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11111 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11113 my_getExpression (ep, crux);
11114 str = expr_end;
11116 /* Match every open bracket. */
11117 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11118 if (*str++ == ')')
11119 crux_depth--;
11121 if (crux_depth > 0)
11122 as_bad (_("unclosed '('"));
11124 expr_end = str;
11126 if (reloc_index != 0)
11128 prev_reloc_op_frag = frag_now;
11129 for (i = 0; i < reloc_index; i++)
11130 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11133 return reloc_index;
11136 static void
11137 my_getExpression (expressionS *ep, char *str)
11139 char *save_in;
11140 valueT val;
11142 save_in = input_line_pointer;
11143 input_line_pointer = str;
11144 expression (ep);
11145 expr_end = input_line_pointer;
11146 input_line_pointer = save_in;
11148 /* If we are in mips16 mode, and this is an expression based on `.',
11149 then we bump the value of the symbol by 1 since that is how other
11150 text symbols are handled. We don't bother to handle complex
11151 expressions, just `.' plus or minus a constant. */
11152 if (mips_opts.mips16
11153 && ep->X_op == O_symbol
11154 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11155 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11156 && symbol_get_frag (ep->X_add_symbol) == frag_now
11157 && symbol_constant_p (ep->X_add_symbol)
11158 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11159 S_SET_VALUE (ep->X_add_symbol, val + 1);
11162 char *
11163 md_atof (int type, char *litP, int *sizeP)
11165 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11168 void
11169 md_number_to_chars (char *buf, valueT val, int n)
11171 if (target_big_endian)
11172 number_to_chars_bigendian (buf, val, n);
11173 else
11174 number_to_chars_littleendian (buf, val, n);
11177 #ifdef OBJ_ELF
11178 static int support_64bit_objects(void)
11180 const char **list, **l;
11181 int yes;
11183 list = bfd_target_list ();
11184 for (l = list; *l != NULL; l++)
11185 #ifdef TE_TMIPS
11186 /* This is traditional mips */
11187 if (strcmp (*l, "elf64-tradbigmips") == 0
11188 || strcmp (*l, "elf64-tradlittlemips") == 0)
11189 #else
11190 if (strcmp (*l, "elf64-bigmips") == 0
11191 || strcmp (*l, "elf64-littlemips") == 0)
11192 #endif
11193 break;
11194 yes = (*l != NULL);
11195 free (list);
11196 return yes;
11198 #endif /* OBJ_ELF */
11200 const char *md_shortopts = "O::g::G:";
11202 enum options
11204 OPTION_MARCH = OPTION_MD_BASE,
11205 OPTION_MTUNE,
11206 OPTION_MIPS1,
11207 OPTION_MIPS2,
11208 OPTION_MIPS3,
11209 OPTION_MIPS4,
11210 OPTION_MIPS5,
11211 OPTION_MIPS32,
11212 OPTION_MIPS64,
11213 OPTION_MIPS32R2,
11214 OPTION_MIPS64R2,
11215 OPTION_MIPS16,
11216 OPTION_NO_MIPS16,
11217 OPTION_MIPS3D,
11218 OPTION_NO_MIPS3D,
11219 OPTION_MDMX,
11220 OPTION_NO_MDMX,
11221 OPTION_DSP,
11222 OPTION_NO_DSP,
11223 OPTION_MT,
11224 OPTION_NO_MT,
11225 OPTION_SMARTMIPS,
11226 OPTION_NO_SMARTMIPS,
11227 OPTION_DSPR2,
11228 OPTION_NO_DSPR2,
11229 OPTION_COMPAT_ARCH_BASE,
11230 OPTION_M4650,
11231 OPTION_NO_M4650,
11232 OPTION_M4010,
11233 OPTION_NO_M4010,
11234 OPTION_M4100,
11235 OPTION_NO_M4100,
11236 OPTION_M3900,
11237 OPTION_NO_M3900,
11238 OPTION_M7000_HILO_FIX,
11239 OPTION_MNO_7000_HILO_FIX,
11240 OPTION_FIX_24K,
11241 OPTION_NO_FIX_24K,
11242 OPTION_FIX_LOONGSON2F_JUMP,
11243 OPTION_NO_FIX_LOONGSON2F_JUMP,
11244 OPTION_FIX_LOONGSON2F_NOP,
11245 OPTION_NO_FIX_LOONGSON2F_NOP,
11246 OPTION_FIX_VR4120,
11247 OPTION_NO_FIX_VR4120,
11248 OPTION_FIX_VR4130,
11249 OPTION_NO_FIX_VR4130,
11250 OPTION_FIX_CN63XXP1,
11251 OPTION_NO_FIX_CN63XXP1,
11252 OPTION_TRAP,
11253 OPTION_BREAK,
11254 OPTION_EB,
11255 OPTION_EL,
11256 OPTION_FP32,
11257 OPTION_GP32,
11258 OPTION_CONSTRUCT_FLOATS,
11259 OPTION_NO_CONSTRUCT_FLOATS,
11260 OPTION_FP64,
11261 OPTION_GP64,
11262 OPTION_RELAX_BRANCH,
11263 OPTION_NO_RELAX_BRANCH,
11264 OPTION_MSHARED,
11265 OPTION_MNO_SHARED,
11266 OPTION_MSYM32,
11267 OPTION_MNO_SYM32,
11268 OPTION_SOFT_FLOAT,
11269 OPTION_HARD_FLOAT,
11270 OPTION_SINGLE_FLOAT,
11271 OPTION_DOUBLE_FLOAT,
11272 OPTION_32,
11273 #ifdef OBJ_ELF
11274 OPTION_CALL_SHARED,
11275 OPTION_CALL_NONPIC,
11276 OPTION_NON_SHARED,
11277 OPTION_XGOT,
11278 OPTION_MABI,
11279 OPTION_N32,
11280 OPTION_64,
11281 OPTION_MDEBUG,
11282 OPTION_NO_MDEBUG,
11283 OPTION_PDR,
11284 OPTION_NO_PDR,
11285 OPTION_MVXWORKS_PIC,
11286 #endif /* OBJ_ELF */
11287 OPTION_END_OF_ENUM
11290 struct option md_longopts[] =
11292 /* Options which specify architecture. */
11293 {"march", required_argument, NULL, OPTION_MARCH},
11294 {"mtune", required_argument, NULL, OPTION_MTUNE},
11295 {"mips0", no_argument, NULL, OPTION_MIPS1},
11296 {"mips1", no_argument, NULL, OPTION_MIPS1},
11297 {"mips2", no_argument, NULL, OPTION_MIPS2},
11298 {"mips3", no_argument, NULL, OPTION_MIPS3},
11299 {"mips4", no_argument, NULL, OPTION_MIPS4},
11300 {"mips5", no_argument, NULL, OPTION_MIPS5},
11301 {"mips32", no_argument, NULL, OPTION_MIPS32},
11302 {"mips64", no_argument, NULL, OPTION_MIPS64},
11303 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11304 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11306 /* Options which specify Application Specific Extensions (ASEs). */
11307 {"mips16", no_argument, NULL, OPTION_MIPS16},
11308 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11309 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11310 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11311 {"mdmx", no_argument, NULL, OPTION_MDMX},
11312 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11313 {"mdsp", no_argument, NULL, OPTION_DSP},
11314 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11315 {"mmt", no_argument, NULL, OPTION_MT},
11316 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11317 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11318 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11319 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11320 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11322 /* Old-style architecture options. Don't add more of these. */
11323 {"m4650", no_argument, NULL, OPTION_M4650},
11324 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11325 {"m4010", no_argument, NULL, OPTION_M4010},
11326 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11327 {"m4100", no_argument, NULL, OPTION_M4100},
11328 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11329 {"m3900", no_argument, NULL, OPTION_M3900},
11330 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11332 /* Options which enable bug fixes. */
11333 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11334 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11335 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11336 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
11337 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
11338 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
11339 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
11340 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11341 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11342 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11343 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11344 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11345 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11346 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
11347 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
11349 /* Miscellaneous options. */
11350 {"trap", no_argument, NULL, OPTION_TRAP},
11351 {"no-break", no_argument, NULL, OPTION_TRAP},
11352 {"break", no_argument, NULL, OPTION_BREAK},
11353 {"no-trap", no_argument, NULL, OPTION_BREAK},
11354 {"EB", no_argument, NULL, OPTION_EB},
11355 {"EL", no_argument, NULL, OPTION_EL},
11356 {"mfp32", no_argument, NULL, OPTION_FP32},
11357 {"mgp32", no_argument, NULL, OPTION_GP32},
11358 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11359 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11360 {"mfp64", no_argument, NULL, OPTION_FP64},
11361 {"mgp64", no_argument, NULL, OPTION_GP64},
11362 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11363 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11364 {"mshared", no_argument, NULL, OPTION_MSHARED},
11365 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11366 {"msym32", no_argument, NULL, OPTION_MSYM32},
11367 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11368 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11369 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11370 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11371 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11373 /* Strictly speaking this next option is ELF specific,
11374 but we allow it for other ports as well in order to
11375 make testing easier. */
11376 {"32", no_argument, NULL, OPTION_32},
11378 /* ELF-specific options. */
11379 #ifdef OBJ_ELF
11380 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11381 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11382 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11383 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11384 {"xgot", no_argument, NULL, OPTION_XGOT},
11385 {"mabi", required_argument, NULL, OPTION_MABI},
11386 {"n32", no_argument, NULL, OPTION_N32},
11387 {"64", no_argument, NULL, OPTION_64},
11388 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11389 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11390 {"mpdr", no_argument, NULL, OPTION_PDR},
11391 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11392 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11393 #endif /* OBJ_ELF */
11395 {NULL, no_argument, NULL, 0}
11397 size_t md_longopts_size = sizeof (md_longopts);
11399 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11400 NEW_VALUE. Warn if another value was already specified. Note:
11401 we have to defer parsing the -march and -mtune arguments in order
11402 to handle 'from-abi' correctly, since the ABI might be specified
11403 in a later argument. */
11405 static void
11406 mips_set_option_string (const char **string_ptr, const char *new_value)
11408 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11409 as_warn (_("A different %s was already specified, is now %s"),
11410 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11411 new_value);
11413 *string_ptr = new_value;
11417 md_parse_option (int c, char *arg)
11419 switch (c)
11421 case OPTION_CONSTRUCT_FLOATS:
11422 mips_disable_float_construction = 0;
11423 break;
11425 case OPTION_NO_CONSTRUCT_FLOATS:
11426 mips_disable_float_construction = 1;
11427 break;
11429 case OPTION_TRAP:
11430 mips_trap = 1;
11431 break;
11433 case OPTION_BREAK:
11434 mips_trap = 0;
11435 break;
11437 case OPTION_EB:
11438 target_big_endian = 1;
11439 break;
11441 case OPTION_EL:
11442 target_big_endian = 0;
11443 break;
11445 case 'O':
11446 if (arg == NULL)
11447 mips_optimize = 1;
11448 else if (arg[0] == '0')
11449 mips_optimize = 0;
11450 else if (arg[0] == '1')
11451 mips_optimize = 1;
11452 else
11453 mips_optimize = 2;
11454 break;
11456 case 'g':
11457 if (arg == NULL)
11458 mips_debug = 2;
11459 else
11460 mips_debug = atoi (arg);
11461 break;
11463 case OPTION_MIPS1:
11464 file_mips_isa = ISA_MIPS1;
11465 break;
11467 case OPTION_MIPS2:
11468 file_mips_isa = ISA_MIPS2;
11469 break;
11471 case OPTION_MIPS3:
11472 file_mips_isa = ISA_MIPS3;
11473 break;
11475 case OPTION_MIPS4:
11476 file_mips_isa = ISA_MIPS4;
11477 break;
11479 case OPTION_MIPS5:
11480 file_mips_isa = ISA_MIPS5;
11481 break;
11483 case OPTION_MIPS32:
11484 file_mips_isa = ISA_MIPS32;
11485 break;
11487 case OPTION_MIPS32R2:
11488 file_mips_isa = ISA_MIPS32R2;
11489 break;
11491 case OPTION_MIPS64R2:
11492 file_mips_isa = ISA_MIPS64R2;
11493 break;
11495 case OPTION_MIPS64:
11496 file_mips_isa = ISA_MIPS64;
11497 break;
11499 case OPTION_MTUNE:
11500 mips_set_option_string (&mips_tune_string, arg);
11501 break;
11503 case OPTION_MARCH:
11504 mips_set_option_string (&mips_arch_string, arg);
11505 break;
11507 case OPTION_M4650:
11508 mips_set_option_string (&mips_arch_string, "4650");
11509 mips_set_option_string (&mips_tune_string, "4650");
11510 break;
11512 case OPTION_NO_M4650:
11513 break;
11515 case OPTION_M4010:
11516 mips_set_option_string (&mips_arch_string, "4010");
11517 mips_set_option_string (&mips_tune_string, "4010");
11518 break;
11520 case OPTION_NO_M4010:
11521 break;
11523 case OPTION_M4100:
11524 mips_set_option_string (&mips_arch_string, "4100");
11525 mips_set_option_string (&mips_tune_string, "4100");
11526 break;
11528 case OPTION_NO_M4100:
11529 break;
11531 case OPTION_M3900:
11532 mips_set_option_string (&mips_arch_string, "3900");
11533 mips_set_option_string (&mips_tune_string, "3900");
11534 break;
11536 case OPTION_NO_M3900:
11537 break;
11539 case OPTION_MDMX:
11540 mips_opts.ase_mdmx = 1;
11541 break;
11543 case OPTION_NO_MDMX:
11544 mips_opts.ase_mdmx = 0;
11545 break;
11547 case OPTION_DSP:
11548 mips_opts.ase_dsp = 1;
11549 mips_opts.ase_dspr2 = 0;
11550 break;
11552 case OPTION_NO_DSP:
11553 mips_opts.ase_dsp = 0;
11554 mips_opts.ase_dspr2 = 0;
11555 break;
11557 case OPTION_DSPR2:
11558 mips_opts.ase_dspr2 = 1;
11559 mips_opts.ase_dsp = 1;
11560 break;
11562 case OPTION_NO_DSPR2:
11563 mips_opts.ase_dspr2 = 0;
11564 mips_opts.ase_dsp = 0;
11565 break;
11567 case OPTION_MT:
11568 mips_opts.ase_mt = 1;
11569 break;
11571 case OPTION_NO_MT:
11572 mips_opts.ase_mt = 0;
11573 break;
11575 case OPTION_MIPS16:
11576 mips_opts.mips16 = 1;
11577 mips_no_prev_insn ();
11578 break;
11580 case OPTION_NO_MIPS16:
11581 mips_opts.mips16 = 0;
11582 mips_no_prev_insn ();
11583 break;
11585 case OPTION_MIPS3D:
11586 mips_opts.ase_mips3d = 1;
11587 break;
11589 case OPTION_NO_MIPS3D:
11590 mips_opts.ase_mips3d = 0;
11591 break;
11593 case OPTION_SMARTMIPS:
11594 mips_opts.ase_smartmips = 1;
11595 break;
11597 case OPTION_NO_SMARTMIPS:
11598 mips_opts.ase_smartmips = 0;
11599 break;
11601 case OPTION_FIX_24K:
11602 mips_fix_24k = 1;
11603 break;
11605 case OPTION_NO_FIX_24K:
11606 mips_fix_24k = 0;
11607 break;
11609 case OPTION_FIX_LOONGSON2F_JUMP:
11610 mips_fix_loongson2f_jump = TRUE;
11611 break;
11613 case OPTION_NO_FIX_LOONGSON2F_JUMP:
11614 mips_fix_loongson2f_jump = FALSE;
11615 break;
11617 case OPTION_FIX_LOONGSON2F_NOP:
11618 mips_fix_loongson2f_nop = TRUE;
11619 break;
11621 case OPTION_NO_FIX_LOONGSON2F_NOP:
11622 mips_fix_loongson2f_nop = FALSE;
11623 break;
11625 case OPTION_FIX_VR4120:
11626 mips_fix_vr4120 = 1;
11627 break;
11629 case OPTION_NO_FIX_VR4120:
11630 mips_fix_vr4120 = 0;
11631 break;
11633 case OPTION_FIX_VR4130:
11634 mips_fix_vr4130 = 1;
11635 break;
11637 case OPTION_NO_FIX_VR4130:
11638 mips_fix_vr4130 = 0;
11639 break;
11641 case OPTION_FIX_CN63XXP1:
11642 mips_fix_cn63xxp1 = TRUE;
11643 break;
11645 case OPTION_NO_FIX_CN63XXP1:
11646 mips_fix_cn63xxp1 = FALSE;
11647 break;
11649 case OPTION_RELAX_BRANCH:
11650 mips_relax_branch = 1;
11651 break;
11653 case OPTION_NO_RELAX_BRANCH:
11654 mips_relax_branch = 0;
11655 break;
11657 case OPTION_MSHARED:
11658 mips_in_shared = TRUE;
11659 break;
11661 case OPTION_MNO_SHARED:
11662 mips_in_shared = FALSE;
11663 break;
11665 case OPTION_MSYM32:
11666 mips_opts.sym32 = TRUE;
11667 break;
11669 case OPTION_MNO_SYM32:
11670 mips_opts.sym32 = FALSE;
11671 break;
11673 #ifdef OBJ_ELF
11674 /* When generating ELF code, we permit -KPIC and -call_shared to
11675 select SVR4_PIC, and -non_shared to select no PIC. This is
11676 intended to be compatible with Irix 5. */
11677 case OPTION_CALL_SHARED:
11678 if (!IS_ELF)
11680 as_bad (_("-call_shared is supported only for ELF format"));
11681 return 0;
11683 mips_pic = SVR4_PIC;
11684 mips_abicalls = TRUE;
11685 break;
11687 case OPTION_CALL_NONPIC:
11688 if (!IS_ELF)
11690 as_bad (_("-call_nonpic is supported only for ELF format"));
11691 return 0;
11693 mips_pic = NO_PIC;
11694 mips_abicalls = TRUE;
11695 break;
11697 case OPTION_NON_SHARED:
11698 if (!IS_ELF)
11700 as_bad (_("-non_shared is supported only for ELF format"));
11701 return 0;
11703 mips_pic = NO_PIC;
11704 mips_abicalls = FALSE;
11705 break;
11707 /* The -xgot option tells the assembler to use 32 bit offsets
11708 when accessing the got in SVR4_PIC mode. It is for Irix
11709 compatibility. */
11710 case OPTION_XGOT:
11711 mips_big_got = 1;
11712 break;
11713 #endif /* OBJ_ELF */
11715 case 'G':
11716 g_switch_value = atoi (arg);
11717 g_switch_seen = 1;
11718 break;
11720 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11721 and -mabi=64. */
11722 case OPTION_32:
11723 if (IS_ELF)
11724 mips_abi = O32_ABI;
11725 /* We silently ignore -32 for non-ELF targets. This greatly
11726 simplifies the construction of the MIPS GAS test cases. */
11727 break;
11729 #ifdef OBJ_ELF
11730 case OPTION_N32:
11731 if (!IS_ELF)
11733 as_bad (_("-n32 is supported for ELF format only"));
11734 return 0;
11736 mips_abi = N32_ABI;
11737 break;
11739 case OPTION_64:
11740 if (!IS_ELF)
11742 as_bad (_("-64 is supported for ELF format only"));
11743 return 0;
11745 mips_abi = N64_ABI;
11746 if (!support_64bit_objects())
11747 as_fatal (_("No compiled in support for 64 bit object file format"));
11748 break;
11749 #endif /* OBJ_ELF */
11751 case OPTION_GP32:
11752 file_mips_gp32 = 1;
11753 break;
11755 case OPTION_GP64:
11756 file_mips_gp32 = 0;
11757 break;
11759 case OPTION_FP32:
11760 file_mips_fp32 = 1;
11761 break;
11763 case OPTION_FP64:
11764 file_mips_fp32 = 0;
11765 break;
11767 case OPTION_SINGLE_FLOAT:
11768 file_mips_single_float = 1;
11769 break;
11771 case OPTION_DOUBLE_FLOAT:
11772 file_mips_single_float = 0;
11773 break;
11775 case OPTION_SOFT_FLOAT:
11776 file_mips_soft_float = 1;
11777 break;
11779 case OPTION_HARD_FLOAT:
11780 file_mips_soft_float = 0;
11781 break;
11783 #ifdef OBJ_ELF
11784 case OPTION_MABI:
11785 if (!IS_ELF)
11787 as_bad (_("-mabi is supported for ELF format only"));
11788 return 0;
11790 if (strcmp (arg, "32") == 0)
11791 mips_abi = O32_ABI;
11792 else if (strcmp (arg, "o64") == 0)
11793 mips_abi = O64_ABI;
11794 else if (strcmp (arg, "n32") == 0)
11795 mips_abi = N32_ABI;
11796 else if (strcmp (arg, "64") == 0)
11798 mips_abi = N64_ABI;
11799 if (! support_64bit_objects())
11800 as_fatal (_("No compiled in support for 64 bit object file "
11801 "format"));
11803 else if (strcmp (arg, "eabi") == 0)
11804 mips_abi = EABI_ABI;
11805 else
11807 as_fatal (_("invalid abi -mabi=%s"), arg);
11808 return 0;
11810 break;
11811 #endif /* OBJ_ELF */
11813 case OPTION_M7000_HILO_FIX:
11814 mips_7000_hilo_fix = TRUE;
11815 break;
11817 case OPTION_MNO_7000_HILO_FIX:
11818 mips_7000_hilo_fix = FALSE;
11819 break;
11821 #ifdef OBJ_ELF
11822 case OPTION_MDEBUG:
11823 mips_flag_mdebug = TRUE;
11824 break;
11826 case OPTION_NO_MDEBUG:
11827 mips_flag_mdebug = FALSE;
11828 break;
11830 case OPTION_PDR:
11831 mips_flag_pdr = TRUE;
11832 break;
11834 case OPTION_NO_PDR:
11835 mips_flag_pdr = FALSE;
11836 break;
11838 case OPTION_MVXWORKS_PIC:
11839 mips_pic = VXWORKS_PIC;
11840 break;
11841 #endif /* OBJ_ELF */
11843 default:
11844 return 0;
11847 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
11849 return 1;
11852 /* Set up globals to generate code for the ISA or processor
11853 described by INFO. */
11855 static void
11856 mips_set_architecture (const struct mips_cpu_info *info)
11858 if (info != 0)
11860 file_mips_arch = info->cpu;
11861 mips_opts.arch = info->cpu;
11862 mips_opts.isa = info->isa;
11867 /* Likewise for tuning. */
11869 static void
11870 mips_set_tune (const struct mips_cpu_info *info)
11872 if (info != 0)
11873 mips_tune = info->cpu;
11877 void
11878 mips_after_parse_args (void)
11880 const struct mips_cpu_info *arch_info = 0;
11881 const struct mips_cpu_info *tune_info = 0;
11883 /* GP relative stuff not working for PE */
11884 if (strncmp (TARGET_OS, "pe", 2) == 0)
11886 if (g_switch_seen && g_switch_value != 0)
11887 as_bad (_("-G not supported in this configuration."));
11888 g_switch_value = 0;
11891 if (mips_abi == NO_ABI)
11892 mips_abi = MIPS_DEFAULT_ABI;
11894 /* The following code determines the architecture and register size.
11895 Similar code was added to GCC 3.3 (see override_options() in
11896 config/mips/mips.c). The GAS and GCC code should be kept in sync
11897 as much as possible. */
11899 if (mips_arch_string != 0)
11900 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11902 if (file_mips_isa != ISA_UNKNOWN)
11904 /* Handle -mipsN. At this point, file_mips_isa contains the
11905 ISA level specified by -mipsN, while arch_info->isa contains
11906 the -march selection (if any). */
11907 if (arch_info != 0)
11909 /* -march takes precedence over -mipsN, since it is more descriptive.
11910 There's no harm in specifying both as long as the ISA levels
11911 are the same. */
11912 if (file_mips_isa != arch_info->isa)
11913 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11914 mips_cpu_info_from_isa (file_mips_isa)->name,
11915 mips_cpu_info_from_isa (arch_info->isa)->name);
11917 else
11918 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11921 if (arch_info == 0)
11922 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11924 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11925 as_bad (_("-march=%s is not compatible with the selected ABI"),
11926 arch_info->name);
11928 mips_set_architecture (arch_info);
11930 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11931 if (mips_tune_string != 0)
11932 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11934 if (tune_info == 0)
11935 mips_set_tune (arch_info);
11936 else
11937 mips_set_tune (tune_info);
11939 if (file_mips_gp32 >= 0)
11941 /* The user specified the size of the integer registers. Make sure
11942 it agrees with the ABI and ISA. */
11943 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11944 as_bad (_("-mgp64 used with a 32-bit processor"));
11945 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11946 as_bad (_("-mgp32 used with a 64-bit ABI"));
11947 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11948 as_bad (_("-mgp64 used with a 32-bit ABI"));
11950 else
11952 /* Infer the integer register size from the ABI and processor.
11953 Restrict ourselves to 32-bit registers if that's all the
11954 processor has, or if the ABI cannot handle 64-bit registers. */
11955 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
11956 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
11959 switch (file_mips_fp32)
11961 default:
11962 case -1:
11963 /* No user specified float register size.
11964 ??? GAS treats single-float processors as though they had 64-bit
11965 float registers (although it complains when double-precision
11966 instructions are used). As things stand, saying they have 32-bit
11967 registers would lead to spurious "register must be even" messages.
11968 So here we assume float registers are never smaller than the
11969 integer ones. */
11970 if (file_mips_gp32 == 0)
11971 /* 64-bit integer registers implies 64-bit float registers. */
11972 file_mips_fp32 = 0;
11973 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
11974 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
11975 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
11976 file_mips_fp32 = 0;
11977 else
11978 /* 32-bit float registers. */
11979 file_mips_fp32 = 1;
11980 break;
11982 /* The user specified the size of the float registers. Check if it
11983 agrees with the ABI and ISA. */
11984 case 0:
11985 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
11986 as_bad (_("-mfp64 used with a 32-bit fpu"));
11987 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
11988 && !ISA_HAS_MXHC1 (mips_opts.isa))
11989 as_warn (_("-mfp64 used with a 32-bit ABI"));
11990 break;
11991 case 1:
11992 if (ABI_NEEDS_64BIT_REGS (mips_abi))
11993 as_warn (_("-mfp32 used with a 64-bit ABI"));
11994 break;
11997 /* End of GCC-shared inference code. */
11999 /* This flag is set when we have a 64-bit capable CPU but use only
12000 32-bit wide registers. Note that EABI does not use it. */
12001 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
12002 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
12003 || mips_abi == O32_ABI))
12004 mips_32bitmode = 1;
12006 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
12007 as_bad (_("trap exception not supported at ISA 1"));
12009 /* If the selected architecture includes support for ASEs, enable
12010 generation of code for them. */
12011 if (mips_opts.mips16 == -1)
12012 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12013 if (mips_opts.ase_mips3d == -1)
12014 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12015 && file_mips_fp32 == 0) ? 1 : 0;
12016 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12017 as_bad (_("-mfp32 used with -mips3d"));
12019 if (mips_opts.ase_mdmx == -1)
12020 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12021 && file_mips_fp32 == 0) ? 1 : 0;
12022 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12023 as_bad (_("-mfp32 used with -mdmx"));
12025 if (mips_opts.ase_smartmips == -1)
12026 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12027 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12028 as_warn (_("%s ISA does not support SmartMIPS"),
12029 mips_cpu_info_from_isa (mips_opts.isa)->name);
12031 if (mips_opts.ase_dsp == -1)
12032 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12033 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12034 as_warn (_("%s ISA does not support DSP ASE"),
12035 mips_cpu_info_from_isa (mips_opts.isa)->name);
12037 if (mips_opts.ase_dspr2 == -1)
12039 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12040 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12042 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12043 as_warn (_("%s ISA does not support DSP R2 ASE"),
12044 mips_cpu_info_from_isa (mips_opts.isa)->name);
12046 if (mips_opts.ase_mt == -1)
12047 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12048 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12049 as_warn (_("%s ISA does not support MT ASE"),
12050 mips_cpu_info_from_isa (mips_opts.isa)->name);
12052 file_mips_isa = mips_opts.isa;
12053 file_ase_mips16 = mips_opts.mips16;
12054 file_ase_mips3d = mips_opts.ase_mips3d;
12055 file_ase_mdmx = mips_opts.ase_mdmx;
12056 file_ase_smartmips = mips_opts.ase_smartmips;
12057 file_ase_dsp = mips_opts.ase_dsp;
12058 file_ase_dspr2 = mips_opts.ase_dspr2;
12059 file_ase_mt = mips_opts.ase_mt;
12060 mips_opts.gp32 = file_mips_gp32;
12061 mips_opts.fp32 = file_mips_fp32;
12062 mips_opts.soft_float = file_mips_soft_float;
12063 mips_opts.single_float = file_mips_single_float;
12065 if (mips_flag_mdebug < 0)
12067 #ifdef OBJ_MAYBE_ECOFF
12068 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12069 mips_flag_mdebug = 1;
12070 else
12071 #endif /* OBJ_MAYBE_ECOFF */
12072 mips_flag_mdebug = 0;
12076 void
12077 mips_init_after_args (void)
12079 /* initialize opcodes */
12080 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12081 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12084 long
12085 md_pcrel_from (fixS *fixP)
12087 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12088 switch (fixP->fx_r_type)
12090 case BFD_RELOC_16_PCREL_S2:
12091 case BFD_RELOC_MIPS_JMP:
12092 /* Return the address of the delay slot. */
12093 return addr + 4;
12094 default:
12095 /* We have no relocation type for PC relative MIPS16 instructions. */
12096 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12097 as_bad_where (fixP->fx_file, fixP->fx_line,
12098 _("PC relative MIPS16 instruction references a different section"));
12099 return addr;
12103 /* This is called before the symbol table is processed. In order to
12104 work with gcc when using mips-tfile, we must keep all local labels.
12105 However, in other cases, we want to discard them. If we were
12106 called with -g, but we didn't see any debugging information, it may
12107 mean that gcc is smuggling debugging information through to
12108 mips-tfile, in which case we must generate all local labels. */
12110 void
12111 mips_frob_file_before_adjust (void)
12113 #ifndef NO_ECOFF_DEBUGGING
12114 if (ECOFF_DEBUGGING
12115 && mips_debug != 0
12116 && ! ecoff_debugging_seen)
12117 flag_keep_locals = 1;
12118 #endif
12121 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12122 the corresponding LO16 reloc. This is called before md_apply_fix and
12123 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12124 relocation operators.
12126 For our purposes, a %lo() expression matches a %got() or %hi()
12127 expression if:
12129 (a) it refers to the same symbol; and
12130 (b) the offset applied in the %lo() expression is no lower than
12131 the offset applied in the %got() or %hi().
12133 (b) allows us to cope with code like:
12135 lui $4,%hi(foo)
12136 lh $4,%lo(foo+2)($4)
12138 ...which is legal on RELA targets, and has a well-defined behaviour
12139 if the user knows that adding 2 to "foo" will not induce a carry to
12140 the high 16 bits.
12142 When several %lo()s match a particular %got() or %hi(), we use the
12143 following rules to distinguish them:
12145 (1) %lo()s with smaller offsets are a better match than %lo()s with
12146 higher offsets.
12148 (2) %lo()s with no matching %got() or %hi() are better than those
12149 that already have a matching %got() or %hi().
12151 (3) later %lo()s are better than earlier %lo()s.
12153 These rules are applied in order.
12155 (1) means, among other things, that %lo()s with identical offsets are
12156 chosen if they exist.
12158 (2) means that we won't associate several high-part relocations with
12159 the same low-part relocation unless there's no alternative. Having
12160 several high parts for the same low part is a GNU extension; this rule
12161 allows careful users to avoid it.
12163 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12164 with the last high-part relocation being at the front of the list.
12165 It therefore makes sense to choose the last matching low-part
12166 relocation, all other things being equal. It's also easier
12167 to code that way. */
12169 void
12170 mips_frob_file (void)
12172 struct mips_hi_fixup *l;
12173 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12175 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12177 segment_info_type *seginfo;
12178 bfd_boolean matched_lo_p;
12179 fixS **hi_pos, **lo_pos, **pos;
12181 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12183 /* If a GOT16 relocation turns out to be against a global symbol,
12184 there isn't supposed to be a matching LO. */
12185 if (got16_reloc_p (l->fixp->fx_r_type)
12186 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12187 continue;
12189 /* Check quickly whether the next fixup happens to be a matching %lo. */
12190 if (fixup_has_matching_lo_p (l->fixp))
12191 continue;
12193 seginfo = seg_info (l->seg);
12195 /* Set HI_POS to the position of this relocation in the chain.
12196 Set LO_POS to the position of the chosen low-part relocation.
12197 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12198 relocation that matches an immediately-preceding high-part
12199 relocation. */
12200 hi_pos = NULL;
12201 lo_pos = NULL;
12202 matched_lo_p = FALSE;
12203 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12205 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12207 if (*pos == l->fixp)
12208 hi_pos = pos;
12210 if ((*pos)->fx_r_type == looking_for_rtype
12211 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
12212 && (*pos)->fx_offset >= l->fixp->fx_offset
12213 && (lo_pos == NULL
12214 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12215 || (!matched_lo_p
12216 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12217 lo_pos = pos;
12219 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12220 && fixup_has_matching_lo_p (*pos));
12223 /* If we found a match, remove the high-part relocation from its
12224 current position and insert it before the low-part relocation.
12225 Make the offsets match so that fixup_has_matching_lo_p()
12226 will return true.
12228 We don't warn about unmatched high-part relocations since some
12229 versions of gcc have been known to emit dead "lui ...%hi(...)"
12230 instructions. */
12231 if (lo_pos != NULL)
12233 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12234 if (l->fixp->fx_next != *lo_pos)
12236 *hi_pos = l->fixp->fx_next;
12237 l->fixp->fx_next = *lo_pos;
12238 *lo_pos = l->fixp;
12244 /* We may have combined relocations without symbols in the N32/N64 ABI.
12245 We have to prevent gas from dropping them. */
12248 mips_force_relocation (fixS *fixp)
12250 if (generic_force_reloc (fixp))
12251 return 1;
12253 if (HAVE_NEWABI
12254 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12255 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12256 || hi16_reloc_p (fixp->fx_r_type)
12257 || lo16_reloc_p (fixp->fx_r_type)))
12258 return 1;
12260 return 0;
12263 /* Apply a fixup to the object file. */
12265 void
12266 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12268 bfd_byte *buf;
12269 long insn;
12270 reloc_howto_type *howto;
12272 /* We ignore generic BFD relocations we don't know about. */
12273 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12274 if (! howto)
12275 return;
12277 gas_assert (fixP->fx_size == 4
12278 || fixP->fx_r_type == BFD_RELOC_16
12279 || fixP->fx_r_type == BFD_RELOC_64
12280 || fixP->fx_r_type == BFD_RELOC_CTOR
12281 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12282 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12283 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12284 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12286 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12288 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12290 /* Don't treat parts of a composite relocation as done. There are two
12291 reasons for this:
12293 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12294 should nevertheless be emitted if the first part is.
12296 (2) In normal usage, composite relocations are never assembly-time
12297 constants. The easiest way of dealing with the pathological
12298 exceptions is to generate a relocation against STN_UNDEF and
12299 leave everything up to the linker. */
12300 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12301 fixP->fx_done = 1;
12303 switch (fixP->fx_r_type)
12305 case BFD_RELOC_MIPS_TLS_GD:
12306 case BFD_RELOC_MIPS_TLS_LDM:
12307 case BFD_RELOC_MIPS_TLS_DTPREL32:
12308 case BFD_RELOC_MIPS_TLS_DTPREL64:
12309 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12310 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12311 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12312 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12313 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12314 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12315 /* fall through */
12317 case BFD_RELOC_MIPS_JMP:
12318 case BFD_RELOC_MIPS_SHIFT5:
12319 case BFD_RELOC_MIPS_SHIFT6:
12320 case BFD_RELOC_MIPS_GOT_DISP:
12321 case BFD_RELOC_MIPS_GOT_PAGE:
12322 case BFD_RELOC_MIPS_GOT_OFST:
12323 case BFD_RELOC_MIPS_SUB:
12324 case BFD_RELOC_MIPS_INSERT_A:
12325 case BFD_RELOC_MIPS_INSERT_B:
12326 case BFD_RELOC_MIPS_DELETE:
12327 case BFD_RELOC_MIPS_HIGHEST:
12328 case BFD_RELOC_MIPS_HIGHER:
12329 case BFD_RELOC_MIPS_SCN_DISP:
12330 case BFD_RELOC_MIPS_REL16:
12331 case BFD_RELOC_MIPS_RELGOT:
12332 case BFD_RELOC_MIPS_JALR:
12333 case BFD_RELOC_HI16:
12334 case BFD_RELOC_HI16_S:
12335 case BFD_RELOC_GPREL16:
12336 case BFD_RELOC_MIPS_LITERAL:
12337 case BFD_RELOC_MIPS_CALL16:
12338 case BFD_RELOC_MIPS_GOT16:
12339 case BFD_RELOC_GPREL32:
12340 case BFD_RELOC_MIPS_GOT_HI16:
12341 case BFD_RELOC_MIPS_GOT_LO16:
12342 case BFD_RELOC_MIPS_CALL_HI16:
12343 case BFD_RELOC_MIPS_CALL_LO16:
12344 case BFD_RELOC_MIPS16_GPREL:
12345 case BFD_RELOC_MIPS16_GOT16:
12346 case BFD_RELOC_MIPS16_CALL16:
12347 case BFD_RELOC_MIPS16_HI16:
12348 case BFD_RELOC_MIPS16_HI16_S:
12349 case BFD_RELOC_MIPS16_JMP:
12350 /* Nothing needed to do. The value comes from the reloc entry. */
12351 break;
12353 case BFD_RELOC_64:
12354 /* This is handled like BFD_RELOC_32, but we output a sign
12355 extended value if we are only 32 bits. */
12356 if (fixP->fx_done)
12358 if (8 <= sizeof (valueT))
12359 md_number_to_chars ((char *) buf, *valP, 8);
12360 else
12362 valueT hiv;
12364 if ((*valP & 0x80000000) != 0)
12365 hiv = 0xffffffff;
12366 else
12367 hiv = 0;
12368 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12369 *valP, 4);
12370 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12371 hiv, 4);
12374 break;
12376 case BFD_RELOC_RVA:
12377 case BFD_RELOC_32:
12378 case BFD_RELOC_16:
12379 /* If we are deleting this reloc entry, we must fill in the
12380 value now. This can happen if we have a .word which is not
12381 resolved when it appears but is later defined. */
12382 if (fixP->fx_done)
12383 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12384 break;
12386 case BFD_RELOC_LO16:
12387 case BFD_RELOC_MIPS16_LO16:
12388 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12389 may be safe to remove, but if so it's not obvious. */
12390 /* When handling an embedded PIC switch statement, we can wind
12391 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12392 if (fixP->fx_done)
12394 if (*valP + 0x8000 > 0xffff)
12395 as_bad_where (fixP->fx_file, fixP->fx_line,
12396 _("relocation overflow"));
12397 if (target_big_endian)
12398 buf += 2;
12399 md_number_to_chars ((char *) buf, *valP, 2);
12401 break;
12403 case BFD_RELOC_16_PCREL_S2:
12404 if ((*valP & 0x3) != 0)
12405 as_bad_where (fixP->fx_file, fixP->fx_line,
12406 _("Branch to misaligned address (%lx)"), (long) *valP);
12408 /* We need to save the bits in the instruction since fixup_segment()
12409 might be deleting the relocation entry (i.e., a branch within
12410 the current segment). */
12411 if (! fixP->fx_done)
12412 break;
12414 /* Update old instruction data. */
12415 if (target_big_endian)
12416 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12417 else
12418 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12420 if (*valP + 0x20000 <= 0x3ffff)
12422 insn |= (*valP >> 2) & 0xffff;
12423 md_number_to_chars ((char *) buf, insn, 4);
12425 else if (mips_pic == NO_PIC
12426 && fixP->fx_done
12427 && fixP->fx_frag->fr_address >= text_section->vma
12428 && (fixP->fx_frag->fr_address
12429 < text_section->vma + bfd_get_section_size (text_section))
12430 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12431 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12432 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12434 /* The branch offset is too large. If this is an
12435 unconditional branch, and we are not generating PIC code,
12436 we can convert it to an absolute jump instruction. */
12437 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12438 insn = 0x0c000000; /* jal */
12439 else
12440 insn = 0x08000000; /* j */
12441 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12442 fixP->fx_done = 0;
12443 fixP->fx_addsy = section_symbol (text_section);
12444 *valP += md_pcrel_from (fixP);
12445 md_number_to_chars ((char *) buf, insn, 4);
12447 else
12449 /* If we got here, we have branch-relaxation disabled,
12450 and there's nothing we can do to fix this instruction
12451 without turning it into a longer sequence. */
12452 as_bad_where (fixP->fx_file, fixP->fx_line,
12453 _("Branch out of range"));
12455 break;
12457 case BFD_RELOC_VTABLE_INHERIT:
12458 fixP->fx_done = 0;
12459 if (fixP->fx_addsy
12460 && !S_IS_DEFINED (fixP->fx_addsy)
12461 && !S_IS_WEAK (fixP->fx_addsy))
12462 S_SET_WEAK (fixP->fx_addsy);
12463 break;
12465 case BFD_RELOC_VTABLE_ENTRY:
12466 fixP->fx_done = 0;
12467 break;
12469 default:
12470 internalError ();
12473 /* Remember value for tc_gen_reloc. */
12474 fixP->fx_addnumber = *valP;
12477 static symbolS *
12478 get_symbol (void)
12480 int c;
12481 char *name;
12482 symbolS *p;
12484 name = input_line_pointer;
12485 c = get_symbol_end ();
12486 p = (symbolS *) symbol_find_or_make (name);
12487 *input_line_pointer = c;
12488 return p;
12491 /* Align the current frag to a given power of two. If a particular
12492 fill byte should be used, FILL points to an integer that contains
12493 that byte, otherwise FILL is null.
12495 The MIPS assembler also automatically adjusts any preceding
12496 label. */
12498 static void
12499 mips_align (int to, int *fill, symbolS *label)
12501 mips_emit_delays ();
12502 mips_record_mips16_mode ();
12503 if (fill == NULL && subseg_text_p (now_seg))
12504 frag_align_code (to, 0);
12505 else
12506 frag_align (to, fill ? *fill : 0, 0);
12507 record_alignment (now_seg, to);
12508 if (label != NULL)
12510 gas_assert (S_GET_SEGMENT (label) == now_seg);
12511 symbol_set_frag (label, frag_now);
12512 S_SET_VALUE (label, (valueT) frag_now_fix ());
12516 /* Align to a given power of two. .align 0 turns off the automatic
12517 alignment used by the data creating pseudo-ops. */
12519 static void
12520 s_align (int x ATTRIBUTE_UNUSED)
12522 int temp, fill_value, *fill_ptr;
12523 long max_alignment = 28;
12525 /* o Note that the assembler pulls down any immediately preceding label
12526 to the aligned address.
12527 o It's not documented but auto alignment is reinstated by
12528 a .align pseudo instruction.
12529 o Note also that after auto alignment is turned off the mips assembler
12530 issues an error on attempt to assemble an improperly aligned data item.
12531 We don't. */
12533 temp = get_absolute_expression ();
12534 if (temp > max_alignment)
12535 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12536 else if (temp < 0)
12538 as_warn (_("Alignment negative: 0 assumed."));
12539 temp = 0;
12541 if (*input_line_pointer == ',')
12543 ++input_line_pointer;
12544 fill_value = get_absolute_expression ();
12545 fill_ptr = &fill_value;
12547 else
12548 fill_ptr = 0;
12549 if (temp)
12551 segment_info_type *si = seg_info (now_seg);
12552 struct insn_label_list *l = si->label_list;
12553 /* Auto alignment should be switched on by next section change. */
12554 auto_align = 1;
12555 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12557 else
12559 auto_align = 0;
12562 demand_empty_rest_of_line ();
12565 static void
12566 s_change_sec (int sec)
12568 segT seg;
12570 #ifdef OBJ_ELF
12571 /* The ELF backend needs to know that we are changing sections, so
12572 that .previous works correctly. We could do something like check
12573 for an obj_section_change_hook macro, but that might be confusing
12574 as it would not be appropriate to use it in the section changing
12575 functions in read.c, since obj-elf.c intercepts those. FIXME:
12576 This should be cleaner, somehow. */
12577 if (IS_ELF)
12578 obj_elf_section_change_hook ();
12579 #endif
12581 mips_emit_delays ();
12583 switch (sec)
12585 case 't':
12586 s_text (0);
12587 break;
12588 case 'd':
12589 s_data (0);
12590 break;
12591 case 'b':
12592 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12593 demand_empty_rest_of_line ();
12594 break;
12596 case 'r':
12597 seg = subseg_new (RDATA_SECTION_NAME,
12598 (subsegT) get_absolute_expression ());
12599 if (IS_ELF)
12601 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12602 | SEC_READONLY | SEC_RELOC
12603 | SEC_DATA));
12604 if (strncmp (TARGET_OS, "elf", 3) != 0)
12605 record_alignment (seg, 4);
12607 demand_empty_rest_of_line ();
12608 break;
12610 case 's':
12611 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12612 if (IS_ELF)
12614 bfd_set_section_flags (stdoutput, seg,
12615 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12616 if (strncmp (TARGET_OS, "elf", 3) != 0)
12617 record_alignment (seg, 4);
12619 demand_empty_rest_of_line ();
12620 break;
12622 case 'B':
12623 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
12624 if (IS_ELF)
12626 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
12627 if (strncmp (TARGET_OS, "elf", 3) != 0)
12628 record_alignment (seg, 4);
12630 demand_empty_rest_of_line ();
12631 break;
12634 auto_align = 1;
12637 void
12638 s_change_section (int ignore ATTRIBUTE_UNUSED)
12640 #ifdef OBJ_ELF
12641 char *section_name;
12642 char c;
12643 char next_c = 0;
12644 int section_type;
12645 int section_flag;
12646 int section_entry_size;
12647 int section_alignment;
12649 if (!IS_ELF)
12650 return;
12652 section_name = input_line_pointer;
12653 c = get_symbol_end ();
12654 if (c)
12655 next_c = *(input_line_pointer + 1);
12657 /* Do we have .section Name<,"flags">? */
12658 if (c != ',' || (c == ',' && next_c == '"'))
12660 /* just after name is now '\0'. */
12661 *input_line_pointer = c;
12662 input_line_pointer = section_name;
12663 obj_elf_section (ignore);
12664 return;
12666 input_line_pointer++;
12668 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12669 if (c == ',')
12670 section_type = get_absolute_expression ();
12671 else
12672 section_type = 0;
12673 if (*input_line_pointer++ == ',')
12674 section_flag = get_absolute_expression ();
12675 else
12676 section_flag = 0;
12677 if (*input_line_pointer++ == ',')
12678 section_entry_size = get_absolute_expression ();
12679 else
12680 section_entry_size = 0;
12681 if (*input_line_pointer++ == ',')
12682 section_alignment = get_absolute_expression ();
12683 else
12684 section_alignment = 0;
12685 /* FIXME: really ignore? */
12686 (void) section_alignment;
12688 section_name = xstrdup (section_name);
12690 /* When using the generic form of .section (as implemented by obj-elf.c),
12691 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12692 traditionally had to fall back on the more common @progbits instead.
12694 There's nothing really harmful in this, since bfd will correct
12695 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12696 means that, for backwards compatibility, the special_section entries
12697 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12699 Even so, we shouldn't force users of the MIPS .section syntax to
12700 incorrectly label the sections as SHT_PROGBITS. The best compromise
12701 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12702 generic type-checking code. */
12703 if (section_type == SHT_MIPS_DWARF)
12704 section_type = SHT_PROGBITS;
12706 obj_elf_change_section (section_name, section_type, section_flag,
12707 section_entry_size, 0, 0, 0);
12709 if (now_seg->name != section_name)
12710 free (section_name);
12711 #endif /* OBJ_ELF */
12714 void
12715 mips_enable_auto_align (void)
12717 auto_align = 1;
12720 static void
12721 s_cons (int log_size)
12723 segment_info_type *si = seg_info (now_seg);
12724 struct insn_label_list *l = si->label_list;
12725 symbolS *label;
12727 label = l != NULL ? l->label : NULL;
12728 mips_emit_delays ();
12729 if (log_size > 0 && auto_align)
12730 mips_align (log_size, 0, label);
12731 mips_clear_insn_labels ();
12732 cons (1 << log_size);
12735 static void
12736 s_float_cons (int type)
12738 segment_info_type *si = seg_info (now_seg);
12739 struct insn_label_list *l = si->label_list;
12740 symbolS *label;
12742 label = l != NULL ? l->label : NULL;
12744 mips_emit_delays ();
12746 if (auto_align)
12748 if (type == 'd')
12749 mips_align (3, 0, label);
12750 else
12751 mips_align (2, 0, label);
12754 mips_clear_insn_labels ();
12756 float_cons (type);
12759 /* Handle .globl. We need to override it because on Irix 5 you are
12760 permitted to say
12761 .globl foo .text
12762 where foo is an undefined symbol, to mean that foo should be
12763 considered to be the address of a function. */
12765 static void
12766 s_mips_globl (int x ATTRIBUTE_UNUSED)
12768 char *name;
12769 int c;
12770 symbolS *symbolP;
12771 flagword flag;
12775 name = input_line_pointer;
12776 c = get_symbol_end ();
12777 symbolP = symbol_find_or_make (name);
12778 S_SET_EXTERNAL (symbolP);
12780 *input_line_pointer = c;
12781 SKIP_WHITESPACE ();
12783 /* On Irix 5, every global symbol that is not explicitly labelled as
12784 being a function is apparently labelled as being an object. */
12785 flag = BSF_OBJECT;
12787 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12788 && (*input_line_pointer != ','))
12790 char *secname;
12791 asection *sec;
12793 secname = input_line_pointer;
12794 c = get_symbol_end ();
12795 sec = bfd_get_section_by_name (stdoutput, secname);
12796 if (sec == NULL)
12797 as_bad (_("%s: no such section"), secname);
12798 *input_line_pointer = c;
12800 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12801 flag = BSF_FUNCTION;
12804 symbol_get_bfdsym (symbolP)->flags |= flag;
12806 c = *input_line_pointer;
12807 if (c == ',')
12809 input_line_pointer++;
12810 SKIP_WHITESPACE ();
12811 if (is_end_of_line[(unsigned char) *input_line_pointer])
12812 c = '\n';
12815 while (c == ',');
12817 demand_empty_rest_of_line ();
12820 static void
12821 s_option (int x ATTRIBUTE_UNUSED)
12823 char *opt;
12824 char c;
12826 opt = input_line_pointer;
12827 c = get_symbol_end ();
12829 if (*opt == 'O')
12831 /* FIXME: What does this mean? */
12833 else if (strncmp (opt, "pic", 3) == 0)
12835 int i;
12837 i = atoi (opt + 3);
12838 if (i == 0)
12839 mips_pic = NO_PIC;
12840 else if (i == 2)
12842 mips_pic = SVR4_PIC;
12843 mips_abicalls = TRUE;
12845 else
12846 as_bad (_(".option pic%d not supported"), i);
12848 if (mips_pic == SVR4_PIC)
12850 if (g_switch_seen && g_switch_value != 0)
12851 as_warn (_("-G may not be used with SVR4 PIC code"));
12852 g_switch_value = 0;
12853 bfd_set_gp_size (stdoutput, 0);
12856 else
12857 as_warn (_("Unrecognized option \"%s\""), opt);
12859 *input_line_pointer = c;
12860 demand_empty_rest_of_line ();
12863 /* This structure is used to hold a stack of .set values. */
12865 struct mips_option_stack
12867 struct mips_option_stack *next;
12868 struct mips_set_options options;
12871 static struct mips_option_stack *mips_opts_stack;
12873 /* Handle the .set pseudo-op. */
12875 static void
12876 s_mipsset (int x ATTRIBUTE_UNUSED)
12878 char *name = input_line_pointer, ch;
12880 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12881 ++input_line_pointer;
12882 ch = *input_line_pointer;
12883 *input_line_pointer = '\0';
12885 if (strcmp (name, "reorder") == 0)
12887 if (mips_opts.noreorder)
12888 end_noreorder ();
12890 else if (strcmp (name, "noreorder") == 0)
12892 if (!mips_opts.noreorder)
12893 start_noreorder ();
12895 else if (strncmp (name, "at=", 3) == 0)
12897 char *s = name + 3;
12899 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12900 as_bad (_("Unrecognized register name `%s'"), s);
12902 else if (strcmp (name, "at") == 0)
12904 mips_opts.at = ATREG;
12906 else if (strcmp (name, "noat") == 0)
12908 mips_opts.at = ZERO;
12910 else if (strcmp (name, "macro") == 0)
12912 mips_opts.warn_about_macros = 0;
12914 else if (strcmp (name, "nomacro") == 0)
12916 if (mips_opts.noreorder == 0)
12917 as_bad (_("`noreorder' must be set before `nomacro'"));
12918 mips_opts.warn_about_macros = 1;
12920 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12922 mips_opts.nomove = 0;
12924 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12926 mips_opts.nomove = 1;
12928 else if (strcmp (name, "bopt") == 0)
12930 mips_opts.nobopt = 0;
12932 else if (strcmp (name, "nobopt") == 0)
12934 mips_opts.nobopt = 1;
12936 else if (strcmp (name, "gp=default") == 0)
12937 mips_opts.gp32 = file_mips_gp32;
12938 else if (strcmp (name, "gp=32") == 0)
12939 mips_opts.gp32 = 1;
12940 else if (strcmp (name, "gp=64") == 0)
12942 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
12943 as_warn (_("%s isa does not support 64-bit registers"),
12944 mips_cpu_info_from_isa (mips_opts.isa)->name);
12945 mips_opts.gp32 = 0;
12947 else if (strcmp (name, "fp=default") == 0)
12948 mips_opts.fp32 = file_mips_fp32;
12949 else if (strcmp (name, "fp=32") == 0)
12950 mips_opts.fp32 = 1;
12951 else if (strcmp (name, "fp=64") == 0)
12953 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12954 as_warn (_("%s isa does not support 64-bit floating point registers"),
12955 mips_cpu_info_from_isa (mips_opts.isa)->name);
12956 mips_opts.fp32 = 0;
12958 else if (strcmp (name, "softfloat") == 0)
12959 mips_opts.soft_float = 1;
12960 else if (strcmp (name, "hardfloat") == 0)
12961 mips_opts.soft_float = 0;
12962 else if (strcmp (name, "singlefloat") == 0)
12963 mips_opts.single_float = 1;
12964 else if (strcmp (name, "doublefloat") == 0)
12965 mips_opts.single_float = 0;
12966 else if (strcmp (name, "mips16") == 0
12967 || strcmp (name, "MIPS-16") == 0)
12968 mips_opts.mips16 = 1;
12969 else if (strcmp (name, "nomips16") == 0
12970 || strcmp (name, "noMIPS-16") == 0)
12971 mips_opts.mips16 = 0;
12972 else if (strcmp (name, "smartmips") == 0)
12974 if (!ISA_SUPPORTS_SMARTMIPS)
12975 as_warn (_("%s ISA does not support SmartMIPS ASE"),
12976 mips_cpu_info_from_isa (mips_opts.isa)->name);
12977 mips_opts.ase_smartmips = 1;
12979 else if (strcmp (name, "nosmartmips") == 0)
12980 mips_opts.ase_smartmips = 0;
12981 else if (strcmp (name, "mips3d") == 0)
12982 mips_opts.ase_mips3d = 1;
12983 else if (strcmp (name, "nomips3d") == 0)
12984 mips_opts.ase_mips3d = 0;
12985 else if (strcmp (name, "mdmx") == 0)
12986 mips_opts.ase_mdmx = 1;
12987 else if (strcmp (name, "nomdmx") == 0)
12988 mips_opts.ase_mdmx = 0;
12989 else if (strcmp (name, "dsp") == 0)
12991 if (!ISA_SUPPORTS_DSP_ASE)
12992 as_warn (_("%s ISA does not support DSP ASE"),
12993 mips_cpu_info_from_isa (mips_opts.isa)->name);
12994 mips_opts.ase_dsp = 1;
12995 mips_opts.ase_dspr2 = 0;
12997 else if (strcmp (name, "nodsp") == 0)
12999 mips_opts.ase_dsp = 0;
13000 mips_opts.ase_dspr2 = 0;
13002 else if (strcmp (name, "dspr2") == 0)
13004 if (!ISA_SUPPORTS_DSPR2_ASE)
13005 as_warn (_("%s ISA does not support DSP R2 ASE"),
13006 mips_cpu_info_from_isa (mips_opts.isa)->name);
13007 mips_opts.ase_dspr2 = 1;
13008 mips_opts.ase_dsp = 1;
13010 else if (strcmp (name, "nodspr2") == 0)
13012 mips_opts.ase_dspr2 = 0;
13013 mips_opts.ase_dsp = 0;
13015 else if (strcmp (name, "mt") == 0)
13017 if (!ISA_SUPPORTS_MT_ASE)
13018 as_warn (_("%s ISA does not support MT ASE"),
13019 mips_cpu_info_from_isa (mips_opts.isa)->name);
13020 mips_opts.ase_mt = 1;
13022 else if (strcmp (name, "nomt") == 0)
13023 mips_opts.ase_mt = 0;
13024 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13026 int reset = 0;
13028 /* Permit the user to change the ISA and architecture on the fly.
13029 Needless to say, misuse can cause serious problems. */
13030 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13032 reset = 1;
13033 mips_opts.isa = file_mips_isa;
13034 mips_opts.arch = file_mips_arch;
13036 else if (strncmp (name, "arch=", 5) == 0)
13038 const struct mips_cpu_info *p;
13040 p = mips_parse_cpu("internal use", name + 5);
13041 if (!p)
13042 as_bad (_("unknown architecture %s"), name + 5);
13043 else
13045 mips_opts.arch = p->cpu;
13046 mips_opts.isa = p->isa;
13049 else if (strncmp (name, "mips", 4) == 0)
13051 const struct mips_cpu_info *p;
13053 p = mips_parse_cpu("internal use", name);
13054 if (!p)
13055 as_bad (_("unknown ISA level %s"), name + 4);
13056 else
13058 mips_opts.arch = p->cpu;
13059 mips_opts.isa = p->isa;
13062 else
13063 as_bad (_("unknown ISA or architecture %s"), name);
13065 switch (mips_opts.isa)
13067 case 0:
13068 break;
13069 case ISA_MIPS1:
13070 case ISA_MIPS2:
13071 case ISA_MIPS32:
13072 case ISA_MIPS32R2:
13073 mips_opts.gp32 = 1;
13074 mips_opts.fp32 = 1;
13075 break;
13076 case ISA_MIPS3:
13077 case ISA_MIPS4:
13078 case ISA_MIPS5:
13079 case ISA_MIPS64:
13080 case ISA_MIPS64R2:
13081 mips_opts.gp32 = 0;
13082 mips_opts.fp32 = 0;
13083 break;
13084 default:
13085 as_bad (_("unknown ISA level %s"), name + 4);
13086 break;
13088 if (reset)
13090 mips_opts.gp32 = file_mips_gp32;
13091 mips_opts.fp32 = file_mips_fp32;
13094 else if (strcmp (name, "autoextend") == 0)
13095 mips_opts.noautoextend = 0;
13096 else if (strcmp (name, "noautoextend") == 0)
13097 mips_opts.noautoextend = 1;
13098 else if (strcmp (name, "push") == 0)
13100 struct mips_option_stack *s;
13102 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13103 s->next = mips_opts_stack;
13104 s->options = mips_opts;
13105 mips_opts_stack = s;
13107 else if (strcmp (name, "pop") == 0)
13109 struct mips_option_stack *s;
13111 s = mips_opts_stack;
13112 if (s == NULL)
13113 as_bad (_(".set pop with no .set push"));
13114 else
13116 /* If we're changing the reorder mode we need to handle
13117 delay slots correctly. */
13118 if (s->options.noreorder && ! mips_opts.noreorder)
13119 start_noreorder ();
13120 else if (! s->options.noreorder && mips_opts.noreorder)
13121 end_noreorder ();
13123 mips_opts = s->options;
13124 mips_opts_stack = s->next;
13125 free (s);
13128 else if (strcmp (name, "sym32") == 0)
13129 mips_opts.sym32 = TRUE;
13130 else if (strcmp (name, "nosym32") == 0)
13131 mips_opts.sym32 = FALSE;
13132 else if (strchr (name, ','))
13134 /* Generic ".set" directive; use the generic handler. */
13135 *input_line_pointer = ch;
13136 input_line_pointer = name;
13137 s_set (0);
13138 return;
13140 else
13142 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13144 *input_line_pointer = ch;
13145 demand_empty_rest_of_line ();
13148 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13149 .option pic2. It means to generate SVR4 PIC calls. */
13151 static void
13152 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13154 mips_pic = SVR4_PIC;
13155 mips_abicalls = TRUE;
13157 if (g_switch_seen && g_switch_value != 0)
13158 as_warn (_("-G may not be used with SVR4 PIC code"));
13159 g_switch_value = 0;
13161 bfd_set_gp_size (stdoutput, 0);
13162 demand_empty_rest_of_line ();
13165 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13166 PIC code. It sets the $gp register for the function based on the
13167 function address, which is in the register named in the argument.
13168 This uses a relocation against _gp_disp, which is handled specially
13169 by the linker. The result is:
13170 lui $gp,%hi(_gp_disp)
13171 addiu $gp,$gp,%lo(_gp_disp)
13172 addu $gp,$gp,.cpload argument
13173 The .cpload argument is normally $25 == $t9.
13175 The -mno-shared option changes this to:
13176 lui $gp,%hi(__gnu_local_gp)
13177 addiu $gp,$gp,%lo(__gnu_local_gp)
13178 and the argument is ignored. This saves an instruction, but the
13179 resulting code is not position independent; it uses an absolute
13180 address for __gnu_local_gp. Thus code assembled with -mno-shared
13181 can go into an ordinary executable, but not into a shared library. */
13183 static void
13184 s_cpload (int ignore ATTRIBUTE_UNUSED)
13186 expressionS ex;
13187 int reg;
13188 int in_shared;
13190 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13191 .cpload is ignored. */
13192 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13194 s_ignore (0);
13195 return;
13198 /* .cpload should be in a .set noreorder section. */
13199 if (mips_opts.noreorder == 0)
13200 as_warn (_(".cpload not in noreorder section"));
13202 reg = tc_get_register (0);
13204 /* If we need to produce a 64-bit address, we are better off using
13205 the default instruction sequence. */
13206 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13208 ex.X_op = O_symbol;
13209 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13210 "__gnu_local_gp");
13211 ex.X_op_symbol = NULL;
13212 ex.X_add_number = 0;
13214 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13215 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13217 macro_start ();
13218 macro_build_lui (&ex, mips_gp_register);
13219 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13220 mips_gp_register, BFD_RELOC_LO16);
13221 if (in_shared)
13222 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13223 mips_gp_register, reg);
13224 macro_end ();
13226 demand_empty_rest_of_line ();
13229 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13230 .cpsetup $reg1, offset|$reg2, label
13232 If offset is given, this results in:
13233 sd $gp, offset($sp)
13234 lui $gp, %hi(%neg(%gp_rel(label)))
13235 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13236 daddu $gp, $gp, $reg1
13238 If $reg2 is given, this results in:
13239 daddu $reg2, $gp, $0
13240 lui $gp, %hi(%neg(%gp_rel(label)))
13241 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13242 daddu $gp, $gp, $reg1
13243 $reg1 is normally $25 == $t9.
13245 The -mno-shared option replaces the last three instructions with
13246 lui $gp,%hi(_gp)
13247 addiu $gp,$gp,%lo(_gp) */
13249 static void
13250 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13252 expressionS ex_off;
13253 expressionS ex_sym;
13254 int reg1;
13256 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13257 We also need NewABI support. */
13258 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13260 s_ignore (0);
13261 return;
13264 reg1 = tc_get_register (0);
13265 SKIP_WHITESPACE ();
13266 if (*input_line_pointer != ',')
13268 as_bad (_("missing argument separator ',' for .cpsetup"));
13269 return;
13271 else
13272 ++input_line_pointer;
13273 SKIP_WHITESPACE ();
13274 if (*input_line_pointer == '$')
13276 mips_cpreturn_register = tc_get_register (0);
13277 mips_cpreturn_offset = -1;
13279 else
13281 mips_cpreturn_offset = get_absolute_expression ();
13282 mips_cpreturn_register = -1;
13284 SKIP_WHITESPACE ();
13285 if (*input_line_pointer != ',')
13287 as_bad (_("missing argument separator ',' for .cpsetup"));
13288 return;
13290 else
13291 ++input_line_pointer;
13292 SKIP_WHITESPACE ();
13293 expression (&ex_sym);
13295 macro_start ();
13296 if (mips_cpreturn_register == -1)
13298 ex_off.X_op = O_constant;
13299 ex_off.X_add_symbol = NULL;
13300 ex_off.X_op_symbol = NULL;
13301 ex_off.X_add_number = mips_cpreturn_offset;
13303 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13304 BFD_RELOC_LO16, SP);
13306 else
13307 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13308 mips_gp_register, 0);
13310 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13312 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13313 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13314 BFD_RELOC_HI16_S);
13316 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13317 mips_gp_register, -1, BFD_RELOC_GPREL16,
13318 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13320 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13321 mips_gp_register, reg1);
13323 else
13325 expressionS ex;
13327 ex.X_op = O_symbol;
13328 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13329 ex.X_op_symbol = NULL;
13330 ex.X_add_number = 0;
13332 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13333 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13335 macro_build_lui (&ex, mips_gp_register);
13336 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13337 mips_gp_register, BFD_RELOC_LO16);
13340 macro_end ();
13342 demand_empty_rest_of_line ();
13345 static void
13346 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13348 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13349 .cplocal is ignored. */
13350 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13352 s_ignore (0);
13353 return;
13356 mips_gp_register = tc_get_register (0);
13357 demand_empty_rest_of_line ();
13360 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13361 offset from $sp. The offset is remembered, and after making a PIC
13362 call $gp is restored from that location. */
13364 static void
13365 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13367 expressionS ex;
13369 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13370 .cprestore is ignored. */
13371 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13373 s_ignore (0);
13374 return;
13377 mips_cprestore_offset = get_absolute_expression ();
13378 mips_cprestore_valid = 1;
13380 ex.X_op = O_constant;
13381 ex.X_add_symbol = NULL;
13382 ex.X_op_symbol = NULL;
13383 ex.X_add_number = mips_cprestore_offset;
13385 macro_start ();
13386 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13387 SP, HAVE_64BIT_ADDRESSES);
13388 macro_end ();
13390 demand_empty_rest_of_line ();
13393 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13394 was given in the preceding .cpsetup, it results in:
13395 ld $gp, offset($sp)
13397 If a register $reg2 was given there, it results in:
13398 daddu $gp, $reg2, $0 */
13400 static void
13401 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13403 expressionS ex;
13405 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13406 We also need NewABI support. */
13407 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13409 s_ignore (0);
13410 return;
13413 macro_start ();
13414 if (mips_cpreturn_register == -1)
13416 ex.X_op = O_constant;
13417 ex.X_add_symbol = NULL;
13418 ex.X_op_symbol = NULL;
13419 ex.X_add_number = mips_cpreturn_offset;
13421 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13423 else
13424 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13425 mips_cpreturn_register, 0);
13426 macro_end ();
13428 demand_empty_rest_of_line ();
13431 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13432 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13433 use in DWARF debug information. */
13435 static void
13436 s_dtprel_internal (size_t bytes)
13438 expressionS ex;
13439 char *p;
13441 expression (&ex);
13443 if (ex.X_op != O_symbol)
13445 as_bad (_("Unsupported use of %s"), (bytes == 8
13446 ? ".dtpreldword"
13447 : ".dtprelword"));
13448 ignore_rest_of_line ();
13451 p = frag_more (bytes);
13452 md_number_to_chars (p, 0, bytes);
13453 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13454 (bytes == 8
13455 ? BFD_RELOC_MIPS_TLS_DTPREL64
13456 : BFD_RELOC_MIPS_TLS_DTPREL32));
13458 demand_empty_rest_of_line ();
13461 /* Handle .dtprelword. */
13463 static void
13464 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13466 s_dtprel_internal (4);
13469 /* Handle .dtpreldword. */
13471 static void
13472 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13474 s_dtprel_internal (8);
13477 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13478 code. It sets the offset to use in gp_rel relocations. */
13480 static void
13481 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13483 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13484 We also need NewABI support. */
13485 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13487 s_ignore (0);
13488 return;
13491 mips_gprel_offset = get_absolute_expression ();
13493 demand_empty_rest_of_line ();
13496 /* Handle the .gpword pseudo-op. This is used when generating PIC
13497 code. It generates a 32 bit GP relative reloc. */
13499 static void
13500 s_gpword (int ignore ATTRIBUTE_UNUSED)
13502 segment_info_type *si;
13503 struct insn_label_list *l;
13504 symbolS *label;
13505 expressionS ex;
13506 char *p;
13508 /* When not generating PIC code, this is treated as .word. */
13509 if (mips_pic != SVR4_PIC)
13511 s_cons (2);
13512 return;
13515 si = seg_info (now_seg);
13516 l = si->label_list;
13517 label = l != NULL ? l->label : NULL;
13518 mips_emit_delays ();
13519 if (auto_align)
13520 mips_align (2, 0, label);
13521 mips_clear_insn_labels ();
13523 expression (&ex);
13525 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13527 as_bad (_("Unsupported use of .gpword"));
13528 ignore_rest_of_line ();
13531 p = frag_more (4);
13532 md_number_to_chars (p, 0, 4);
13533 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13534 BFD_RELOC_GPREL32);
13536 demand_empty_rest_of_line ();
13539 static void
13540 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13542 segment_info_type *si;
13543 struct insn_label_list *l;
13544 symbolS *label;
13545 expressionS ex;
13546 char *p;
13548 /* When not generating PIC code, this is treated as .dword. */
13549 if (mips_pic != SVR4_PIC)
13551 s_cons (3);
13552 return;
13555 si = seg_info (now_seg);
13556 l = si->label_list;
13557 label = l != NULL ? l->label : NULL;
13558 mips_emit_delays ();
13559 if (auto_align)
13560 mips_align (3, 0, label);
13561 mips_clear_insn_labels ();
13563 expression (&ex);
13565 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13567 as_bad (_("Unsupported use of .gpdword"));
13568 ignore_rest_of_line ();
13571 p = frag_more (8);
13572 md_number_to_chars (p, 0, 8);
13573 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13574 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13576 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13577 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13578 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13580 demand_empty_rest_of_line ();
13583 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13584 tables in SVR4 PIC code. */
13586 static void
13587 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13589 int reg;
13591 /* This is ignored when not generating SVR4 PIC code. */
13592 if (mips_pic != SVR4_PIC)
13594 s_ignore (0);
13595 return;
13598 /* Add $gp to the register named as an argument. */
13599 macro_start ();
13600 reg = tc_get_register (0);
13601 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13602 macro_end ();
13604 demand_empty_rest_of_line ();
13607 /* Handle the .insn pseudo-op. This marks instruction labels in
13608 mips16 mode. This permits the linker to handle them specially,
13609 such as generating jalx instructions when needed. We also make
13610 them odd for the duration of the assembly, in order to generate the
13611 right sort of code. We will make them even in the adjust_symtab
13612 routine, while leaving them marked. This is convenient for the
13613 debugger and the disassembler. The linker knows to make them odd
13614 again. */
13616 static void
13617 s_insn (int ignore ATTRIBUTE_UNUSED)
13619 mips16_mark_labels ();
13621 demand_empty_rest_of_line ();
13624 /* Handle a .stabn directive. We need these in order to mark a label
13625 as being a mips16 text label correctly. Sometimes the compiler
13626 will emit a label, followed by a .stabn, and then switch sections.
13627 If the label and .stabn are in mips16 mode, then the label is
13628 really a mips16 text label. */
13630 static void
13631 s_mips_stab (int type)
13633 if (type == 'n')
13634 mips16_mark_labels ();
13636 s_stab (type);
13639 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13641 static void
13642 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13644 char *name;
13645 int c;
13646 symbolS *symbolP;
13647 expressionS exp;
13649 name = input_line_pointer;
13650 c = get_symbol_end ();
13651 symbolP = symbol_find_or_make (name);
13652 S_SET_WEAK (symbolP);
13653 *input_line_pointer = c;
13655 SKIP_WHITESPACE ();
13657 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13659 if (S_IS_DEFINED (symbolP))
13661 as_bad (_("ignoring attempt to redefine symbol %s"),
13662 S_GET_NAME (symbolP));
13663 ignore_rest_of_line ();
13664 return;
13667 if (*input_line_pointer == ',')
13669 ++input_line_pointer;
13670 SKIP_WHITESPACE ();
13673 expression (&exp);
13674 if (exp.X_op != O_symbol)
13676 as_bad (_("bad .weakext directive"));
13677 ignore_rest_of_line ();
13678 return;
13680 symbol_set_value_expression (symbolP, &exp);
13683 demand_empty_rest_of_line ();
13686 /* Parse a register string into a number. Called from the ECOFF code
13687 to parse .frame. The argument is non-zero if this is the frame
13688 register, so that we can record it in mips_frame_reg. */
13691 tc_get_register (int frame)
13693 unsigned int reg;
13695 SKIP_WHITESPACE ();
13696 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13697 reg = 0;
13698 if (frame)
13700 mips_frame_reg = reg != 0 ? reg : SP;
13701 mips_frame_reg_valid = 1;
13702 mips_cprestore_valid = 0;
13704 return reg;
13707 valueT
13708 md_section_align (asection *seg, valueT addr)
13710 int align = bfd_get_section_alignment (stdoutput, seg);
13712 if (IS_ELF)
13714 /* We don't need to align ELF sections to the full alignment.
13715 However, Irix 5 may prefer that we align them at least to a 16
13716 byte boundary. We don't bother to align the sections if we
13717 are targeted for an embedded system. */
13718 if (strncmp (TARGET_OS, "elf", 3) == 0)
13719 return addr;
13720 if (align > 4)
13721 align = 4;
13724 return ((addr + (1 << align) - 1) & (-1 << align));
13727 /* Utility routine, called from above as well. If called while the
13728 input file is still being read, it's only an approximation. (For
13729 example, a symbol may later become defined which appeared to be
13730 undefined earlier.) */
13732 static int
13733 nopic_need_relax (symbolS *sym, int before_relaxing)
13735 if (sym == 0)
13736 return 0;
13738 if (g_switch_value > 0)
13740 const char *symname;
13741 int change;
13743 /* Find out whether this symbol can be referenced off the $gp
13744 register. It can be if it is smaller than the -G size or if
13745 it is in the .sdata or .sbss section. Certain symbols can
13746 not be referenced off the $gp, although it appears as though
13747 they can. */
13748 symname = S_GET_NAME (sym);
13749 if (symname != (const char *) NULL
13750 && (strcmp (symname, "eprol") == 0
13751 || strcmp (symname, "etext") == 0
13752 || strcmp (symname, "_gp") == 0
13753 || strcmp (symname, "edata") == 0
13754 || strcmp (symname, "_fbss") == 0
13755 || strcmp (symname, "_fdata") == 0
13756 || strcmp (symname, "_ftext") == 0
13757 || strcmp (symname, "end") == 0
13758 || strcmp (symname, "_gp_disp") == 0))
13759 change = 1;
13760 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13761 && (0
13762 #ifndef NO_ECOFF_DEBUGGING
13763 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13764 && (symbol_get_obj (sym)->ecoff_extern_size
13765 <= g_switch_value))
13766 #endif
13767 /* We must defer this decision until after the whole
13768 file has been read, since there might be a .extern
13769 after the first use of this symbol. */
13770 || (before_relaxing
13771 #ifndef NO_ECOFF_DEBUGGING
13772 && symbol_get_obj (sym)->ecoff_extern_size == 0
13773 #endif
13774 && S_GET_VALUE (sym) == 0)
13775 || (S_GET_VALUE (sym) != 0
13776 && S_GET_VALUE (sym) <= g_switch_value)))
13777 change = 0;
13778 else
13780 const char *segname;
13782 segname = segment_name (S_GET_SEGMENT (sym));
13783 gas_assert (strcmp (segname, ".lit8") != 0
13784 && strcmp (segname, ".lit4") != 0);
13785 change = (strcmp (segname, ".sdata") != 0
13786 && strcmp (segname, ".sbss") != 0
13787 && strncmp (segname, ".sdata.", 7) != 0
13788 && strncmp (segname, ".sbss.", 6) != 0
13789 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13790 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13792 return change;
13794 else
13795 /* We are not optimizing for the $gp register. */
13796 return 1;
13800 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13802 static bfd_boolean
13803 pic_need_relax (symbolS *sym, asection *segtype)
13805 asection *symsec;
13807 /* Handle the case of a symbol equated to another symbol. */
13808 while (symbol_equated_reloc_p (sym))
13810 symbolS *n;
13812 /* It's possible to get a loop here in a badly written program. */
13813 n = symbol_get_value_expression (sym)->X_add_symbol;
13814 if (n == sym)
13815 break;
13816 sym = n;
13819 if (symbol_section_p (sym))
13820 return TRUE;
13822 symsec = S_GET_SEGMENT (sym);
13824 /* This must duplicate the test in adjust_reloc_syms. */
13825 return (symsec != &bfd_und_section
13826 && symsec != &bfd_abs_section
13827 && !bfd_is_com_section (symsec)
13828 && !s_is_linkonce (sym, segtype)
13829 #ifdef OBJ_ELF
13830 /* A global or weak symbol is treated as external. */
13831 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13832 #endif
13837 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13838 extended opcode. SEC is the section the frag is in. */
13840 static int
13841 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13843 int type;
13844 const struct mips16_immed_operand *op;
13845 offsetT val;
13846 int mintiny, maxtiny;
13847 segT symsec;
13848 fragS *sym_frag;
13850 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13851 return 0;
13852 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13853 return 1;
13855 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13856 op = mips16_immed_operands;
13857 while (op->type != type)
13859 ++op;
13860 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13863 if (op->unsp)
13865 if (type == '<' || type == '>' || type == '[' || type == ']')
13867 mintiny = 1;
13868 maxtiny = 1 << op->nbits;
13870 else
13872 mintiny = 0;
13873 maxtiny = (1 << op->nbits) - 1;
13876 else
13878 mintiny = - (1 << (op->nbits - 1));
13879 maxtiny = (1 << (op->nbits - 1)) - 1;
13882 sym_frag = symbol_get_frag (fragp->fr_symbol);
13883 val = S_GET_VALUE (fragp->fr_symbol);
13884 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13886 if (op->pcrel)
13888 addressT addr;
13890 /* We won't have the section when we are called from
13891 mips_relax_frag. However, we will always have been called
13892 from md_estimate_size_before_relax first. If this is a
13893 branch to a different section, we mark it as such. If SEC is
13894 NULL, and the frag is not marked, then it must be a branch to
13895 the same section. */
13896 if (sec == NULL)
13898 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13899 return 1;
13901 else
13903 /* Must have been called from md_estimate_size_before_relax. */
13904 if (symsec != sec)
13906 fragp->fr_subtype =
13907 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13909 /* FIXME: We should support this, and let the linker
13910 catch branches and loads that are out of range. */
13911 as_bad_where (fragp->fr_file, fragp->fr_line,
13912 _("unsupported PC relative reference to different section"));
13914 return 1;
13916 if (fragp != sym_frag && sym_frag->fr_address == 0)
13917 /* Assume non-extended on the first relaxation pass.
13918 The address we have calculated will be bogus if this is
13919 a forward branch to another frag, as the forward frag
13920 will have fr_address == 0. */
13921 return 0;
13924 /* In this case, we know for sure that the symbol fragment is in
13925 the same section. If the relax_marker of the symbol fragment
13926 differs from the relax_marker of this fragment, we have not
13927 yet adjusted the symbol fragment fr_address. We want to add
13928 in STRETCH in order to get a better estimate of the address.
13929 This particularly matters because of the shift bits. */
13930 if (stretch != 0
13931 && sym_frag->relax_marker != fragp->relax_marker)
13933 fragS *f;
13935 /* Adjust stretch for any alignment frag. Note that if have
13936 been expanding the earlier code, the symbol may be
13937 defined in what appears to be an earlier frag. FIXME:
13938 This doesn't handle the fr_subtype field, which specifies
13939 a maximum number of bytes to skip when doing an
13940 alignment. */
13941 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13943 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13945 if (stretch < 0)
13946 stretch = - ((- stretch)
13947 & ~ ((1 << (int) f->fr_offset) - 1));
13948 else
13949 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13950 if (stretch == 0)
13951 break;
13954 if (f != NULL)
13955 val += stretch;
13958 addr = fragp->fr_address + fragp->fr_fix;
13960 /* The base address rules are complicated. The base address of
13961 a branch is the following instruction. The base address of a
13962 PC relative load or add is the instruction itself, but if it
13963 is in a delay slot (in which case it can not be extended) use
13964 the address of the instruction whose delay slot it is in. */
13965 if (type == 'p' || type == 'q')
13967 addr += 2;
13969 /* If we are currently assuming that this frag should be
13970 extended, then, the current address is two bytes
13971 higher. */
13972 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13973 addr += 2;
13975 /* Ignore the low bit in the target, since it will be set
13976 for a text label. */
13977 if ((val & 1) != 0)
13978 --val;
13980 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13981 addr -= 4;
13982 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13983 addr -= 2;
13985 val -= addr & ~ ((1 << op->shift) - 1);
13987 /* Branch offsets have an implicit 0 in the lowest bit. */
13988 if (type == 'p' || type == 'q')
13989 val /= 2;
13991 /* If any of the shifted bits are set, we must use an extended
13992 opcode. If the address depends on the size of this
13993 instruction, this can lead to a loop, so we arrange to always
13994 use an extended opcode. We only check this when we are in
13995 the main relaxation loop, when SEC is NULL. */
13996 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
13998 fragp->fr_subtype =
13999 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14000 return 1;
14003 /* If we are about to mark a frag as extended because the value
14004 is precisely maxtiny + 1, then there is a chance of an
14005 infinite loop as in the following code:
14006 la $4,foo
14007 .skip 1020
14008 .align 2
14009 foo:
14010 In this case when the la is extended, foo is 0x3fc bytes
14011 away, so the la can be shrunk, but then foo is 0x400 away, so
14012 the la must be extended. To avoid this loop, we mark the
14013 frag as extended if it was small, and is about to become
14014 extended with a value of maxtiny + 1. */
14015 if (val == ((maxtiny + 1) << op->shift)
14016 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14017 && sec == NULL)
14019 fragp->fr_subtype =
14020 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14021 return 1;
14024 else if (symsec != absolute_section && sec != NULL)
14025 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14027 if ((val & ((1 << op->shift) - 1)) != 0
14028 || val < (mintiny << op->shift)
14029 || val > (maxtiny << op->shift))
14030 return 1;
14031 else
14032 return 0;
14035 /* Compute the length of a branch sequence, and adjust the
14036 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14037 worst-case length is computed, with UPDATE being used to indicate
14038 whether an unconditional (-1), branch-likely (+1) or regular (0)
14039 branch is to be computed. */
14040 static int
14041 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14043 bfd_boolean toofar;
14044 int length;
14046 if (fragp
14047 && S_IS_DEFINED (fragp->fr_symbol)
14048 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14050 addressT addr;
14051 offsetT val;
14053 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14055 addr = fragp->fr_address + fragp->fr_fix + 4;
14057 val -= addr;
14059 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14061 else if (fragp)
14062 /* If the symbol is not defined or it's in a different segment,
14063 assume the user knows what's going on and emit a short
14064 branch. */
14065 toofar = FALSE;
14066 else
14067 toofar = TRUE;
14069 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14070 fragp->fr_subtype
14071 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14072 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14073 RELAX_BRANCH_LINK (fragp->fr_subtype),
14074 toofar);
14076 length = 4;
14077 if (toofar)
14079 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14080 length += 8;
14082 if (mips_pic != NO_PIC)
14084 /* Additional space for PIC loading of target address. */
14085 length += 8;
14086 if (mips_opts.isa == ISA_MIPS1)
14087 /* Additional space for $at-stabilizing nop. */
14088 length += 4;
14091 /* If branch is conditional. */
14092 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14093 length += 8;
14096 return length;
14099 /* Estimate the size of a frag before relaxing. Unless this is the
14100 mips16, we are not really relaxing here, and the final size is
14101 encoded in the subtype information. For the mips16, we have to
14102 decide whether we are using an extended opcode or not. */
14105 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14107 int change;
14109 if (RELAX_BRANCH_P (fragp->fr_subtype))
14112 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14114 return fragp->fr_var;
14117 if (RELAX_MIPS16_P (fragp->fr_subtype))
14118 /* We don't want to modify the EXTENDED bit here; it might get us
14119 into infinite loops. We change it only in mips_relax_frag(). */
14120 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14122 if (mips_pic == NO_PIC)
14123 change = nopic_need_relax (fragp->fr_symbol, 0);
14124 else if (mips_pic == SVR4_PIC)
14125 change = pic_need_relax (fragp->fr_symbol, segtype);
14126 else if (mips_pic == VXWORKS_PIC)
14127 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14128 change = 0;
14129 else
14130 abort ();
14132 if (change)
14134 fragp->fr_subtype |= RELAX_USE_SECOND;
14135 return -RELAX_FIRST (fragp->fr_subtype);
14137 else
14138 return -RELAX_SECOND (fragp->fr_subtype);
14141 /* This is called to see whether a reloc against a defined symbol
14142 should be converted into a reloc against a section. */
14145 mips_fix_adjustable (fixS *fixp)
14147 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14148 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14149 return 0;
14151 if (fixp->fx_addsy == NULL)
14152 return 1;
14154 /* If symbol SYM is in a mergeable section, relocations of the form
14155 SYM + 0 can usually be made section-relative. The mergeable data
14156 is then identified by the section offset rather than by the symbol.
14158 However, if we're generating REL LO16 relocations, the offset is split
14159 between the LO16 and parterning high part relocation. The linker will
14160 need to recalculate the complete offset in order to correctly identify
14161 the merge data.
14163 The linker has traditionally not looked for the parterning high part
14164 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14165 placed anywhere. Rather than break backwards compatibility by changing
14166 this, it seems better not to force the issue, and instead keep the
14167 original symbol. This will work with either linker behavior. */
14168 if ((lo16_reloc_p (fixp->fx_r_type)
14169 || reloc_needs_lo_p (fixp->fx_r_type))
14170 && HAVE_IN_PLACE_ADDENDS
14171 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14172 return 0;
14174 /* There is no place to store an in-place offset for JALR relocations. */
14175 if (fixp->fx_r_type == BFD_RELOC_MIPS_JALR && HAVE_IN_PLACE_ADDENDS)
14176 return 0;
14178 #ifdef OBJ_ELF
14179 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14180 to a floating-point stub. The same is true for non-R_MIPS16_26
14181 relocations against MIPS16 functions; in this case, the stub becomes
14182 the function's canonical address.
14184 Floating-point stubs are stored in unique .mips16.call.* or
14185 .mips16.fn.* sections. If a stub T for function F is in section S,
14186 the first relocation in section S must be against F; this is how the
14187 linker determines the target function. All relocations that might
14188 resolve to T must also be against F. We therefore have the following
14189 restrictions, which are given in an intentionally-redundant way:
14191 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14192 symbols.
14194 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14195 if that stub might be used.
14197 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14198 symbols.
14200 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14201 that stub might be used.
14203 There is a further restriction:
14205 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14206 on targets with in-place addends; the relocation field cannot
14207 encode the low bit.
14209 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14210 against a MIPS16 symbol.
14212 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14213 relocation against some symbol R, no relocation against R may be
14214 reduced. (Note that this deals with (2) as well as (1) because
14215 relocations against global symbols will never be reduced on ELF
14216 targets.) This approach is a little simpler than trying to detect
14217 stub sections, and gives the "all or nothing" per-symbol consistency
14218 that we have for MIPS16 symbols. */
14219 if (IS_ELF
14220 && fixp->fx_subsy == NULL
14221 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14222 || *symbol_get_tc (fixp->fx_addsy)))
14223 return 0;
14224 #endif
14226 return 1;
14229 /* Translate internal representation of relocation info to BFD target
14230 format. */
14232 arelent **
14233 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14235 static arelent *retval[4];
14236 arelent *reloc;
14237 bfd_reloc_code_real_type code;
14239 memset (retval, 0, sizeof(retval));
14240 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14241 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14242 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14243 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14245 if (fixp->fx_pcrel)
14247 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14249 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14250 Relocations want only the symbol offset. */
14251 reloc->addend = fixp->fx_addnumber + reloc->address;
14252 if (!IS_ELF)
14254 /* A gruesome hack which is a result of the gruesome gas
14255 reloc handling. What's worse, for COFF (as opposed to
14256 ECOFF), we might need yet another copy of reloc->address.
14257 See bfd_install_relocation. */
14258 reloc->addend += reloc->address;
14261 else
14262 reloc->addend = fixp->fx_addnumber;
14264 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14265 entry to be used in the relocation's section offset. */
14266 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14268 reloc->address = reloc->addend;
14269 reloc->addend = 0;
14272 code = fixp->fx_r_type;
14274 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14275 if (reloc->howto == NULL)
14277 as_bad_where (fixp->fx_file, fixp->fx_line,
14278 _("Can not represent %s relocation in this object file format"),
14279 bfd_get_reloc_code_name (code));
14280 retval[0] = NULL;
14283 return retval;
14286 /* Relax a machine dependent frag. This returns the amount by which
14287 the current size of the frag should change. */
14290 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14292 if (RELAX_BRANCH_P (fragp->fr_subtype))
14294 offsetT old_var = fragp->fr_var;
14296 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14298 return fragp->fr_var - old_var;
14301 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14302 return 0;
14304 if (mips16_extended_frag (fragp, NULL, stretch))
14306 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14307 return 0;
14308 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14309 return 2;
14311 else
14313 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14314 return 0;
14315 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14316 return -2;
14319 return 0;
14322 /* Convert a machine dependent frag. */
14324 void
14325 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14327 if (RELAX_BRANCH_P (fragp->fr_subtype))
14329 bfd_byte *buf;
14330 unsigned long insn;
14331 expressionS exp;
14332 fixS *fixp;
14334 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14336 if (target_big_endian)
14337 insn = bfd_getb32 (buf);
14338 else
14339 insn = bfd_getl32 (buf);
14341 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14343 /* We generate a fixup instead of applying it right now
14344 because, if there are linker relaxations, we're going to
14345 need the relocations. */
14346 exp.X_op = O_symbol;
14347 exp.X_add_symbol = fragp->fr_symbol;
14348 exp.X_add_number = fragp->fr_offset;
14350 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14351 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14352 fixp->fx_file = fragp->fr_file;
14353 fixp->fx_line = fragp->fr_line;
14355 md_number_to_chars ((char *) buf, insn, 4);
14356 buf += 4;
14358 else
14360 int i;
14362 as_warn_where (fragp->fr_file, fragp->fr_line,
14363 _("relaxed out-of-range branch into a jump"));
14365 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14366 goto uncond;
14368 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14370 /* Reverse the branch. */
14371 switch ((insn >> 28) & 0xf)
14373 case 4:
14374 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14375 have the condition reversed by tweaking a single
14376 bit, and their opcodes all have 0x4???????. */
14377 gas_assert ((insn & 0xf1000000) == 0x41000000);
14378 insn ^= 0x00010000;
14379 break;
14381 case 0:
14382 /* bltz 0x04000000 bgez 0x04010000
14383 bltzal 0x04100000 bgezal 0x04110000 */
14384 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14385 insn ^= 0x00010000;
14386 break;
14388 case 1:
14389 /* beq 0x10000000 bne 0x14000000
14390 blez 0x18000000 bgtz 0x1c000000 */
14391 insn ^= 0x04000000;
14392 break;
14394 default:
14395 abort ();
14399 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14401 /* Clear the and-link bit. */
14402 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14404 /* bltzal 0x04100000 bgezal 0x04110000
14405 bltzall 0x04120000 bgezall 0x04130000 */
14406 insn &= ~0x00100000;
14409 /* Branch over the branch (if the branch was likely) or the
14410 full jump (not likely case). Compute the offset from the
14411 current instruction to branch to. */
14412 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14413 i = 16;
14414 else
14416 /* How many bytes in instructions we've already emitted? */
14417 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14418 /* How many bytes in instructions from here to the end? */
14419 i = fragp->fr_var - i;
14421 /* Convert to instruction count. */
14422 i >>= 2;
14423 /* Branch counts from the next instruction. */
14424 i--;
14425 insn |= i;
14426 /* Branch over the jump. */
14427 md_number_to_chars ((char *) buf, insn, 4);
14428 buf += 4;
14430 /* nop */
14431 md_number_to_chars ((char *) buf, 0, 4);
14432 buf += 4;
14434 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14436 /* beql $0, $0, 2f */
14437 insn = 0x50000000;
14438 /* Compute the PC offset from the current instruction to
14439 the end of the variable frag. */
14440 /* How many bytes in instructions we've already emitted? */
14441 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14442 /* How many bytes in instructions from here to the end? */
14443 i = fragp->fr_var - i;
14444 /* Convert to instruction count. */
14445 i >>= 2;
14446 /* Don't decrement i, because we want to branch over the
14447 delay slot. */
14449 insn |= i;
14450 md_number_to_chars ((char *) buf, insn, 4);
14451 buf += 4;
14453 md_number_to_chars ((char *) buf, 0, 4);
14454 buf += 4;
14457 uncond:
14458 if (mips_pic == NO_PIC)
14460 /* j or jal. */
14461 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14462 ? 0x0c000000 : 0x08000000);
14463 exp.X_op = O_symbol;
14464 exp.X_add_symbol = fragp->fr_symbol;
14465 exp.X_add_number = fragp->fr_offset;
14467 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14468 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14469 fixp->fx_file = fragp->fr_file;
14470 fixp->fx_line = fragp->fr_line;
14472 md_number_to_chars ((char *) buf, insn, 4);
14473 buf += 4;
14475 else
14477 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14478 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14479 exp.X_op = O_symbol;
14480 exp.X_add_symbol = fragp->fr_symbol;
14481 exp.X_add_number = fragp->fr_offset;
14483 if (fragp->fr_offset)
14485 exp.X_add_symbol = make_expr_symbol (&exp);
14486 exp.X_add_number = 0;
14489 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14490 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14491 fixp->fx_file = fragp->fr_file;
14492 fixp->fx_line = fragp->fr_line;
14494 md_number_to_chars ((char *) buf, insn, 4);
14495 buf += 4;
14497 if (mips_opts.isa == ISA_MIPS1)
14499 /* nop */
14500 md_number_to_chars ((char *) buf, 0, 4);
14501 buf += 4;
14504 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14505 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14507 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14508 4, &exp, FALSE, BFD_RELOC_LO16);
14509 fixp->fx_file = fragp->fr_file;
14510 fixp->fx_line = fragp->fr_line;
14512 md_number_to_chars ((char *) buf, insn, 4);
14513 buf += 4;
14515 /* j(al)r $at. */
14516 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14517 insn = 0x0020f809;
14518 else
14519 insn = 0x00200008;
14521 md_number_to_chars ((char *) buf, insn, 4);
14522 buf += 4;
14526 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14527 + fragp->fr_fix + fragp->fr_var);
14529 fragp->fr_fix += fragp->fr_var;
14531 return;
14534 if (RELAX_MIPS16_P (fragp->fr_subtype))
14536 int type;
14537 const struct mips16_immed_operand *op;
14538 bfd_boolean small, ext;
14539 offsetT val;
14540 bfd_byte *buf;
14541 unsigned long insn;
14542 bfd_boolean use_extend;
14543 unsigned short extend;
14545 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14546 op = mips16_immed_operands;
14547 while (op->type != type)
14548 ++op;
14550 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14552 small = FALSE;
14553 ext = TRUE;
14555 else
14557 small = TRUE;
14558 ext = FALSE;
14561 val = resolve_symbol_value (fragp->fr_symbol);
14562 if (op->pcrel)
14564 addressT addr;
14566 addr = fragp->fr_address + fragp->fr_fix;
14568 /* The rules for the base address of a PC relative reloc are
14569 complicated; see mips16_extended_frag. */
14570 if (type == 'p' || type == 'q')
14572 addr += 2;
14573 if (ext)
14574 addr += 2;
14575 /* Ignore the low bit in the target, since it will be
14576 set for a text label. */
14577 if ((val & 1) != 0)
14578 --val;
14580 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14581 addr -= 4;
14582 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14583 addr -= 2;
14585 addr &= ~ (addressT) ((1 << op->shift) - 1);
14586 val -= addr;
14588 /* Make sure the section winds up with the alignment we have
14589 assumed. */
14590 if (op->shift > 0)
14591 record_alignment (asec, op->shift);
14594 if (ext
14595 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14596 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14597 as_warn_where (fragp->fr_file, fragp->fr_line,
14598 _("extended instruction in delay slot"));
14600 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14602 if (target_big_endian)
14603 insn = bfd_getb16 (buf);
14604 else
14605 insn = bfd_getl16 (buf);
14607 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14608 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14609 small, ext, &insn, &use_extend, &extend);
14611 if (use_extend)
14613 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14614 fragp->fr_fix += 2;
14615 buf += 2;
14618 md_number_to_chars ((char *) buf, insn, 2);
14619 fragp->fr_fix += 2;
14620 buf += 2;
14622 else
14624 int first, second;
14625 fixS *fixp;
14627 first = RELAX_FIRST (fragp->fr_subtype);
14628 second = RELAX_SECOND (fragp->fr_subtype);
14629 fixp = (fixS *) fragp->fr_opcode;
14631 /* Possibly emit a warning if we've chosen the longer option. */
14632 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14633 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14635 const char *msg = macro_warning (fragp->fr_subtype);
14636 if (msg != 0)
14637 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14640 /* Go through all the fixups for the first sequence. Disable them
14641 (by marking them as done) if we're going to use the second
14642 sequence instead. */
14643 while (fixp
14644 && fixp->fx_frag == fragp
14645 && fixp->fx_where < fragp->fr_fix - second)
14647 if (fragp->fr_subtype & RELAX_USE_SECOND)
14648 fixp->fx_done = 1;
14649 fixp = fixp->fx_next;
14652 /* Go through the fixups for the second sequence. Disable them if
14653 we're going to use the first sequence, otherwise adjust their
14654 addresses to account for the relaxation. */
14655 while (fixp && fixp->fx_frag == fragp)
14657 if (fragp->fr_subtype & RELAX_USE_SECOND)
14658 fixp->fx_where -= first;
14659 else
14660 fixp->fx_done = 1;
14661 fixp = fixp->fx_next;
14664 /* Now modify the frag contents. */
14665 if (fragp->fr_subtype & RELAX_USE_SECOND)
14667 char *start;
14669 start = fragp->fr_literal + fragp->fr_fix - first - second;
14670 memmove (start, start + first, second);
14671 fragp->fr_fix -= first;
14673 else
14674 fragp->fr_fix -= second;
14678 #ifdef OBJ_ELF
14680 /* This function is called after the relocs have been generated.
14681 We've been storing mips16 text labels as odd. Here we convert them
14682 back to even for the convenience of the debugger. */
14684 void
14685 mips_frob_file_after_relocs (void)
14687 asymbol **syms;
14688 unsigned int count, i;
14690 if (!IS_ELF)
14691 return;
14693 syms = bfd_get_outsymbols (stdoutput);
14694 count = bfd_get_symcount (stdoutput);
14695 for (i = 0; i < count; i++, syms++)
14697 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14698 && ((*syms)->value & 1) != 0)
14700 (*syms)->value &= ~1;
14701 /* If the symbol has an odd size, it was probably computed
14702 incorrectly, so adjust that as well. */
14703 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14704 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14709 #endif
14711 /* This function is called whenever a label is defined. It is used
14712 when handling branch delays; if a branch has a label, we assume we
14713 can not move it. */
14715 void
14716 mips_define_label (symbolS *sym)
14718 segment_info_type *si = seg_info (now_seg);
14719 struct insn_label_list *l;
14721 if (free_insn_labels == NULL)
14722 l = (struct insn_label_list *) xmalloc (sizeof *l);
14723 else
14725 l = free_insn_labels;
14726 free_insn_labels = l->next;
14729 l->label = sym;
14730 l->next = si->label_list;
14731 si->label_list = l;
14733 #ifdef OBJ_ELF
14734 dwarf2_emit_label (sym);
14735 #endif
14738 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14740 /* Some special processing for a MIPS ELF file. */
14742 void
14743 mips_elf_final_processing (void)
14745 /* Write out the register information. */
14746 if (mips_abi != N64_ABI)
14748 Elf32_RegInfo s;
14750 s.ri_gprmask = mips_gprmask;
14751 s.ri_cprmask[0] = mips_cprmask[0];
14752 s.ri_cprmask[1] = mips_cprmask[1];
14753 s.ri_cprmask[2] = mips_cprmask[2];
14754 s.ri_cprmask[3] = mips_cprmask[3];
14755 /* The gp_value field is set by the MIPS ELF backend. */
14757 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14758 ((Elf32_External_RegInfo *)
14759 mips_regmask_frag));
14761 else
14763 Elf64_Internal_RegInfo s;
14765 s.ri_gprmask = mips_gprmask;
14766 s.ri_pad = 0;
14767 s.ri_cprmask[0] = mips_cprmask[0];
14768 s.ri_cprmask[1] = mips_cprmask[1];
14769 s.ri_cprmask[2] = mips_cprmask[2];
14770 s.ri_cprmask[3] = mips_cprmask[3];
14771 /* The gp_value field is set by the MIPS ELF backend. */
14773 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14774 ((Elf64_External_RegInfo *)
14775 mips_regmask_frag));
14778 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14779 sort of BFD interface for this. */
14780 if (mips_any_noreorder)
14781 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14782 if (mips_pic != NO_PIC)
14784 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14785 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14787 if (mips_abicalls)
14788 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14790 /* Set MIPS ELF flags for ASEs. */
14791 /* We may need to define a new flag for DSP ASE, and set this flag when
14792 file_ase_dsp is true. */
14793 /* Same for DSP R2. */
14794 /* We may need to define a new flag for MT ASE, and set this flag when
14795 file_ase_mt is true. */
14796 if (file_ase_mips16)
14797 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14798 #if 0 /* XXX FIXME */
14799 if (file_ase_mips3d)
14800 elf_elfheader (stdoutput)->e_flags |= ???;
14801 #endif
14802 if (file_ase_mdmx)
14803 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14805 /* Set the MIPS ELF ABI flags. */
14806 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14807 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14808 else if (mips_abi == O64_ABI)
14809 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14810 else if (mips_abi == EABI_ABI)
14812 if (!file_mips_gp32)
14813 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14814 else
14815 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14817 else if (mips_abi == N32_ABI)
14818 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14820 /* Nothing to do for N64_ABI. */
14822 if (mips_32bitmode)
14823 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14825 #if 0 /* XXX FIXME */
14826 /* 32 bit code with 64 bit FP registers. */
14827 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14828 elf_elfheader (stdoutput)->e_flags |= ???;
14829 #endif
14832 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14834 typedef struct proc {
14835 symbolS *func_sym;
14836 symbolS *func_end_sym;
14837 unsigned long reg_mask;
14838 unsigned long reg_offset;
14839 unsigned long fpreg_mask;
14840 unsigned long fpreg_offset;
14841 unsigned long frame_offset;
14842 unsigned long frame_reg;
14843 unsigned long pc_reg;
14844 } procS;
14846 static procS cur_proc;
14847 static procS *cur_proc_ptr;
14848 static int numprocs;
14850 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14851 nop as "0". */
14853 char
14854 mips_nop_opcode (void)
14856 return seg_info (now_seg)->tc_segment_info_data.mips16;
14859 /* Fill in an rs_align_code fragment. This only needs to do something
14860 for MIPS16 code, where 0 is not a nop. */
14862 void
14863 mips_handle_align (fragS *fragp)
14865 char *p;
14866 int bytes, size, excess;
14867 valueT opcode;
14869 if (fragp->fr_type != rs_align_code)
14870 return;
14872 p = fragp->fr_literal + fragp->fr_fix;
14873 if (*p)
14875 opcode = mips16_nop_insn.insn_opcode;
14876 size = 2;
14878 else
14880 opcode = nop_insn.insn_opcode;
14881 size = 4;
14884 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14885 excess = bytes % size;
14886 if (excess != 0)
14888 /* If we're not inserting a whole number of instructions,
14889 pad the end of the fixed part of the frag with zeros. */
14890 memset (p, 0, excess);
14891 p += excess;
14892 fragp->fr_fix += excess;
14895 md_number_to_chars (p, opcode, size);
14896 fragp->fr_var = size;
14899 static void
14900 md_obj_begin (void)
14904 static void
14905 md_obj_end (void)
14907 /* Check for premature end, nesting errors, etc. */
14908 if (cur_proc_ptr)
14909 as_warn (_("missing .end at end of assembly"));
14912 static long
14913 get_number (void)
14915 int negative = 0;
14916 long val = 0;
14918 if (*input_line_pointer == '-')
14920 ++input_line_pointer;
14921 negative = 1;
14923 if (!ISDIGIT (*input_line_pointer))
14924 as_bad (_("expected simple number"));
14925 if (input_line_pointer[0] == '0')
14927 if (input_line_pointer[1] == 'x')
14929 input_line_pointer += 2;
14930 while (ISXDIGIT (*input_line_pointer))
14932 val <<= 4;
14933 val |= hex_value (*input_line_pointer++);
14935 return negative ? -val : val;
14937 else
14939 ++input_line_pointer;
14940 while (ISDIGIT (*input_line_pointer))
14942 val <<= 3;
14943 val |= *input_line_pointer++ - '0';
14945 return negative ? -val : val;
14948 if (!ISDIGIT (*input_line_pointer))
14950 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
14951 *input_line_pointer, *input_line_pointer);
14952 as_warn (_("invalid number"));
14953 return -1;
14955 while (ISDIGIT (*input_line_pointer))
14957 val *= 10;
14958 val += *input_line_pointer++ - '0';
14960 return negative ? -val : val;
14963 /* The .file directive; just like the usual .file directive, but there
14964 is an initial number which is the ECOFF file index. In the non-ECOFF
14965 case .file implies DWARF-2. */
14967 static void
14968 s_mips_file (int x ATTRIBUTE_UNUSED)
14970 static int first_file_directive = 0;
14972 if (ECOFF_DEBUGGING)
14974 get_number ();
14975 s_app_file (0);
14977 else
14979 char *filename;
14981 filename = dwarf2_directive_file (0);
14983 /* Versions of GCC up to 3.1 start files with a ".file"
14984 directive even for stabs output. Make sure that this
14985 ".file" is handled. Note that you need a version of GCC
14986 after 3.1 in order to support DWARF-2 on MIPS. */
14987 if (filename != NULL && ! first_file_directive)
14989 (void) new_logical_line (filename, -1);
14990 s_app_file_string (filename, 0);
14992 first_file_directive = 1;
14996 /* The .loc directive, implying DWARF-2. */
14998 static void
14999 s_mips_loc (int x ATTRIBUTE_UNUSED)
15001 if (!ECOFF_DEBUGGING)
15002 dwarf2_directive_loc (0);
15005 /* The .end directive. */
15007 static void
15008 s_mips_end (int x ATTRIBUTE_UNUSED)
15010 symbolS *p;
15012 /* Following functions need their own .frame and .cprestore directives. */
15013 mips_frame_reg_valid = 0;
15014 mips_cprestore_valid = 0;
15016 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15018 p = get_symbol ();
15019 demand_empty_rest_of_line ();
15021 else
15022 p = NULL;
15024 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15025 as_warn (_(".end not in text section"));
15027 if (!cur_proc_ptr)
15029 as_warn (_(".end directive without a preceding .ent directive."));
15030 demand_empty_rest_of_line ();
15031 return;
15034 if (p != NULL)
15036 gas_assert (S_GET_NAME (p));
15037 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15038 as_warn (_(".end symbol does not match .ent symbol."));
15040 if (debug_type == DEBUG_STABS)
15041 stabs_generate_asm_endfunc (S_GET_NAME (p),
15042 S_GET_NAME (p));
15044 else
15045 as_warn (_(".end directive missing or unknown symbol"));
15047 #ifdef OBJ_ELF
15048 /* Create an expression to calculate the size of the function. */
15049 if (p && cur_proc_ptr)
15051 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15052 expressionS *exp = xmalloc (sizeof (expressionS));
15054 obj->size = exp;
15055 exp->X_op = O_subtract;
15056 exp->X_add_symbol = symbol_temp_new_now ();
15057 exp->X_op_symbol = p;
15058 exp->X_add_number = 0;
15060 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15063 /* Generate a .pdr section. */
15064 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15066 segT saved_seg = now_seg;
15067 subsegT saved_subseg = now_subseg;
15068 expressionS exp;
15069 char *fragp;
15071 #ifdef md_flush_pending_output
15072 md_flush_pending_output ();
15073 #endif
15075 gas_assert (pdr_seg);
15076 subseg_set (pdr_seg, 0);
15078 /* Write the symbol. */
15079 exp.X_op = O_symbol;
15080 exp.X_add_symbol = p;
15081 exp.X_add_number = 0;
15082 emit_expr (&exp, 4);
15084 fragp = frag_more (7 * 4);
15086 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15087 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15088 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15089 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15090 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15091 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15092 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15094 subseg_set (saved_seg, saved_subseg);
15096 #endif /* OBJ_ELF */
15098 cur_proc_ptr = NULL;
15101 /* The .aent and .ent directives. */
15103 static void
15104 s_mips_ent (int aent)
15106 symbolS *symbolP;
15108 symbolP = get_symbol ();
15109 if (*input_line_pointer == ',')
15110 ++input_line_pointer;
15111 SKIP_WHITESPACE ();
15112 if (ISDIGIT (*input_line_pointer)
15113 || *input_line_pointer == '-')
15114 get_number ();
15116 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15117 as_warn (_(".ent or .aent not in text section."));
15119 if (!aent && cur_proc_ptr)
15120 as_warn (_("missing .end"));
15122 if (!aent)
15124 /* This function needs its own .frame and .cprestore directives. */
15125 mips_frame_reg_valid = 0;
15126 mips_cprestore_valid = 0;
15128 cur_proc_ptr = &cur_proc;
15129 memset (cur_proc_ptr, '\0', sizeof (procS));
15131 cur_proc_ptr->func_sym = symbolP;
15133 ++numprocs;
15135 if (debug_type == DEBUG_STABS)
15136 stabs_generate_asm_func (S_GET_NAME (symbolP),
15137 S_GET_NAME (symbolP));
15140 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15142 demand_empty_rest_of_line ();
15145 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15146 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15147 s_mips_frame is used so that we can set the PDR information correctly.
15148 We can't use the ecoff routines because they make reference to the ecoff
15149 symbol table (in the mdebug section). */
15151 static void
15152 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15154 #ifdef OBJ_ELF
15155 if (IS_ELF && !ECOFF_DEBUGGING)
15157 long val;
15159 if (cur_proc_ptr == (procS *) NULL)
15161 as_warn (_(".frame outside of .ent"));
15162 demand_empty_rest_of_line ();
15163 return;
15166 cur_proc_ptr->frame_reg = tc_get_register (1);
15168 SKIP_WHITESPACE ();
15169 if (*input_line_pointer++ != ','
15170 || get_absolute_expression_and_terminator (&val) != ',')
15172 as_warn (_("Bad .frame directive"));
15173 --input_line_pointer;
15174 demand_empty_rest_of_line ();
15175 return;
15178 cur_proc_ptr->frame_offset = val;
15179 cur_proc_ptr->pc_reg = tc_get_register (0);
15181 demand_empty_rest_of_line ();
15183 else
15184 #endif /* OBJ_ELF */
15185 s_ignore (ignore);
15188 /* The .fmask and .mask directives. If the mdebug section is present
15189 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15190 embedded targets, s_mips_mask is used so that we can set the PDR
15191 information correctly. We can't use the ecoff routines because they
15192 make reference to the ecoff symbol table (in the mdebug section). */
15194 static void
15195 s_mips_mask (int reg_type)
15197 #ifdef OBJ_ELF
15198 if (IS_ELF && !ECOFF_DEBUGGING)
15200 long mask, off;
15202 if (cur_proc_ptr == (procS *) NULL)
15204 as_warn (_(".mask/.fmask outside of .ent"));
15205 demand_empty_rest_of_line ();
15206 return;
15209 if (get_absolute_expression_and_terminator (&mask) != ',')
15211 as_warn (_("Bad .mask/.fmask directive"));
15212 --input_line_pointer;
15213 demand_empty_rest_of_line ();
15214 return;
15217 off = get_absolute_expression ();
15219 if (reg_type == 'F')
15221 cur_proc_ptr->fpreg_mask = mask;
15222 cur_proc_ptr->fpreg_offset = off;
15224 else
15226 cur_proc_ptr->reg_mask = mask;
15227 cur_proc_ptr->reg_offset = off;
15230 demand_empty_rest_of_line ();
15232 else
15233 #endif /* OBJ_ELF */
15234 s_ignore (reg_type);
15237 /* A table describing all the processors gas knows about. Names are
15238 matched in the order listed.
15240 To ease comparison, please keep this table in the same order as
15241 gcc's mips_cpu_info_table[]. */
15242 static const struct mips_cpu_info mips_cpu_info_table[] =
15244 /* Entries for generic ISAs */
15245 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15246 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15247 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15248 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15249 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15250 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15251 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15252 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15253 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15255 /* MIPS I */
15256 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15257 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15258 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15260 /* MIPS II */
15261 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15263 /* MIPS III */
15264 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15265 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15266 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15267 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15268 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15269 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15270 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15271 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15272 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15273 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15274 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15275 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15276 /* ST Microelectronics Loongson 2E and 2F cores */
15277 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15278 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15280 /* MIPS IV */
15281 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15282 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15283 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15284 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15285 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15286 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15287 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15288 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15289 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15290 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15291 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15292 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15293 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15294 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15295 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15297 /* MIPS 32 */
15298 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15299 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15300 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15301 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15303 /* MIPS 32 Release 2 */
15304 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15305 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15306 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15307 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15308 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15309 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15310 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15311 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15312 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15313 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15314 /* Deprecated forms of the above. */
15315 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15316 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15317 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15318 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15319 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15320 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15321 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15322 /* Deprecated forms of the above. */
15323 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15324 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15325 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15326 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15327 ISA_MIPS32R2, CPU_MIPS32R2 },
15328 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15329 ISA_MIPS32R2, CPU_MIPS32R2 },
15330 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15331 ISA_MIPS32R2, CPU_MIPS32R2 },
15332 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15333 ISA_MIPS32R2, CPU_MIPS32R2 },
15334 /* Deprecated forms of the above. */
15335 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15336 ISA_MIPS32R2, CPU_MIPS32R2 },
15337 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15338 ISA_MIPS32R2, CPU_MIPS32R2 },
15339 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15340 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15341 ISA_MIPS32R2, CPU_MIPS32R2 },
15342 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15343 ISA_MIPS32R2, CPU_MIPS32R2 },
15344 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15345 ISA_MIPS32R2, CPU_MIPS32R2 },
15346 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15347 ISA_MIPS32R2, CPU_MIPS32R2 },
15348 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15349 ISA_MIPS32R2, CPU_MIPS32R2 },
15350 /* Deprecated forms of the above. */
15351 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15352 ISA_MIPS32R2, CPU_MIPS32R2 },
15353 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15354 ISA_MIPS32R2, CPU_MIPS32R2 },
15355 /* 1004K cores are multiprocessor versions of the 34K. */
15356 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15357 ISA_MIPS32R2, CPU_MIPS32R2 },
15358 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15359 ISA_MIPS32R2, CPU_MIPS32R2 },
15360 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15361 ISA_MIPS32R2, CPU_MIPS32R2 },
15362 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15363 ISA_MIPS32R2, CPU_MIPS32R2 },
15365 /* MIPS 64 */
15366 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15367 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15368 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15369 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15371 /* Broadcom SB-1 CPU core */
15372 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15373 ISA_MIPS64, CPU_SB1 },
15374 /* Broadcom SB-1A CPU core */
15375 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15376 ISA_MIPS64, CPU_SB1 },
15378 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
15380 /* MIPS 64 Release 2 */
15382 /* Cavium Networks Octeon CPU core */
15383 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15385 /* RMI Xlr */
15386 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15388 /* End marker */
15389 { NULL, 0, 0, 0 }
15393 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15394 with a final "000" replaced by "k". Ignore case.
15396 Note: this function is shared between GCC and GAS. */
15398 static bfd_boolean
15399 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15401 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15402 given++, canonical++;
15404 return ((*given == 0 && *canonical == 0)
15405 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15409 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15410 CPU name. We've traditionally allowed a lot of variation here.
15412 Note: this function is shared between GCC and GAS. */
15414 static bfd_boolean
15415 mips_matching_cpu_name_p (const char *canonical, const char *given)
15417 /* First see if the name matches exactly, or with a final "000"
15418 turned into "k". */
15419 if (mips_strict_matching_cpu_name_p (canonical, given))
15420 return TRUE;
15422 /* If not, try comparing based on numerical designation alone.
15423 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15424 if (TOLOWER (*given) == 'r')
15425 given++;
15426 if (!ISDIGIT (*given))
15427 return FALSE;
15429 /* Skip over some well-known prefixes in the canonical name,
15430 hoping to find a number there too. */
15431 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15432 canonical += 2;
15433 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15434 canonical += 2;
15435 else if (TOLOWER (canonical[0]) == 'r')
15436 canonical += 1;
15438 return mips_strict_matching_cpu_name_p (canonical, given);
15442 /* Parse an option that takes the name of a processor as its argument.
15443 OPTION is the name of the option and CPU_STRING is the argument.
15444 Return the corresponding processor enumeration if the CPU_STRING is
15445 recognized, otherwise report an error and return null.
15447 A similar function exists in GCC. */
15449 static const struct mips_cpu_info *
15450 mips_parse_cpu (const char *option, const char *cpu_string)
15452 const struct mips_cpu_info *p;
15454 /* 'from-abi' selects the most compatible architecture for the given
15455 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15456 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15457 version. Look first at the -mgp options, if given, otherwise base
15458 the choice on MIPS_DEFAULT_64BIT.
15460 Treat NO_ABI like the EABIs. One reason to do this is that the
15461 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15462 architecture. This code picks MIPS I for 'mips' and MIPS III for
15463 'mips64', just as we did in the days before 'from-abi'. */
15464 if (strcasecmp (cpu_string, "from-abi") == 0)
15466 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15467 return mips_cpu_info_from_isa (ISA_MIPS1);
15469 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15470 return mips_cpu_info_from_isa (ISA_MIPS3);
15472 if (file_mips_gp32 >= 0)
15473 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15475 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15476 ? ISA_MIPS3
15477 : ISA_MIPS1);
15480 /* 'default' has traditionally been a no-op. Probably not very useful. */
15481 if (strcasecmp (cpu_string, "default") == 0)
15482 return 0;
15484 for (p = mips_cpu_info_table; p->name != 0; p++)
15485 if (mips_matching_cpu_name_p (p->name, cpu_string))
15486 return p;
15488 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15489 return 0;
15492 /* Return the canonical processor information for ISA (a member of the
15493 ISA_MIPS* enumeration). */
15495 static const struct mips_cpu_info *
15496 mips_cpu_info_from_isa (int isa)
15498 int i;
15500 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15501 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15502 && isa == mips_cpu_info_table[i].isa)
15503 return (&mips_cpu_info_table[i]);
15505 return NULL;
15508 static const struct mips_cpu_info *
15509 mips_cpu_info_from_arch (int arch)
15511 int i;
15513 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15514 if (arch == mips_cpu_info_table[i].cpu)
15515 return (&mips_cpu_info_table[i]);
15517 return NULL;
15520 static void
15521 show (FILE *stream, const char *string, int *col_p, int *first_p)
15523 if (*first_p)
15525 fprintf (stream, "%24s", "");
15526 *col_p = 24;
15528 else
15530 fprintf (stream, ", ");
15531 *col_p += 2;
15534 if (*col_p + strlen (string) > 72)
15536 fprintf (stream, "\n%24s", "");
15537 *col_p = 24;
15540 fprintf (stream, "%s", string);
15541 *col_p += strlen (string);
15543 *first_p = 0;
15546 void
15547 md_show_usage (FILE *stream)
15549 int column, first;
15550 size_t i;
15552 fprintf (stream, _("\
15553 MIPS options:\n\
15554 -EB generate big endian output\n\
15555 -EL generate little endian output\n\
15556 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15557 -G NUM allow referencing objects up to NUM bytes\n\
15558 implicitly with the gp register [default 8]\n"));
15559 fprintf (stream, _("\
15560 -mips1 generate MIPS ISA I instructions\n\
15561 -mips2 generate MIPS ISA II instructions\n\
15562 -mips3 generate MIPS ISA III instructions\n\
15563 -mips4 generate MIPS ISA IV instructions\n\
15564 -mips5 generate MIPS ISA V instructions\n\
15565 -mips32 generate MIPS32 ISA instructions\n\
15566 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15567 -mips64 generate MIPS64 ISA instructions\n\
15568 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15569 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15571 first = 1;
15573 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15574 show (stream, mips_cpu_info_table[i].name, &column, &first);
15575 show (stream, "from-abi", &column, &first);
15576 fputc ('\n', stream);
15578 fprintf (stream, _("\
15579 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15580 -no-mCPU don't generate code specific to CPU.\n\
15581 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15583 first = 1;
15585 show (stream, "3900", &column, &first);
15586 show (stream, "4010", &column, &first);
15587 show (stream, "4100", &column, &first);
15588 show (stream, "4650", &column, &first);
15589 fputc ('\n', stream);
15591 fprintf (stream, _("\
15592 -mips16 generate mips16 instructions\n\
15593 -no-mips16 do not generate mips16 instructions\n"));
15594 fprintf (stream, _("\
15595 -msmartmips generate smartmips instructions\n\
15596 -mno-smartmips do not generate smartmips instructions\n"));
15597 fprintf (stream, _("\
15598 -mdsp generate DSP instructions\n\
15599 -mno-dsp do not generate DSP instructions\n"));
15600 fprintf (stream, _("\
15601 -mdspr2 generate DSP R2 instructions\n\
15602 -mno-dspr2 do not generate DSP R2 instructions\n"));
15603 fprintf (stream, _("\
15604 -mmt generate MT instructions\n\
15605 -mno-mt do not generate MT instructions\n"));
15606 fprintf (stream, _("\
15607 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
15608 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
15609 -mfix-vr4120 work around certain VR4120 errata\n\
15610 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15611 -mfix-24k insert a nop after ERET and DERET instructions\n\
15612 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
15613 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15614 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15615 -msym32 assume all symbols have 32-bit values\n\
15616 -O0 remove unneeded NOPs, do not swap branches\n\
15617 -O remove unneeded NOPs and swap branches\n\
15618 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15619 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15620 fprintf (stream, _("\
15621 -mhard-float allow floating-point instructions\n\
15622 -msoft-float do not allow floating-point instructions\n\
15623 -msingle-float only allow 32-bit floating-point operations\n\
15624 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15625 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15627 #ifdef OBJ_ELF
15628 fprintf (stream, _("\
15629 -KPIC, -call_shared generate SVR4 position independent code\n\
15630 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15631 -mvxworks-pic generate VxWorks position independent code\n\
15632 -non_shared do not generate code that can operate with DSOs\n\
15633 -xgot assume a 32 bit GOT\n\
15634 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15635 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15636 position dependent (non shared) code\n\
15637 -mabi=ABI create ABI conformant object file for:\n"));
15639 first = 1;
15641 show (stream, "32", &column, &first);
15642 show (stream, "o64", &column, &first);
15643 show (stream, "n32", &column, &first);
15644 show (stream, "64", &column, &first);
15645 show (stream, "eabi", &column, &first);
15647 fputc ('\n', stream);
15649 fprintf (stream, _("\
15650 -32 create o32 ABI object file (default)\n\
15651 -n32 create n32 ABI object file\n\
15652 -64 create 64 ABI object file\n"));
15653 #endif
15656 #ifdef TE_IRIX
15657 enum dwarf2_format
15658 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15660 if (HAVE_64BIT_SYMBOLS)
15661 return dwarf2_format_64bit_irix;
15662 else
15663 return dwarf2_format_32bit;
15665 #endif
15668 mips_dwarf2_addr_size (void)
15670 if (HAVE_64BIT_OBJECTS)
15671 return 8;
15672 else
15673 return 4;
15676 /* Standard calling conventions leave the CFA at SP on entry. */
15677 void
15678 mips_cfi_frame_initial_instructions (void)
15680 cfi_add_CFA_def_cfa_register (SP);
15684 tc_mips_regname_to_dw2regnum (char *regname)
15686 unsigned int regnum = -1;
15687 unsigned int reg;
15689 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15690 regnum = reg;
15692 return regnum;