* ld-elf/note-1.s: Increase .foo size.
[binutils.git] / bfd / elf.c
blob37778388aeede88fccd7334162ff93fed8210df7
1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23 SECTION
24 ELF backends
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
70 /* Swap out a Verdef structure. */
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
86 /* Swap in a Verdaux structure. */
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
97 /* Swap out a Verdaux structure. */
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
108 /* Swap in a Verneed structure. */
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
122 /* Swap out a Verneed structure. */
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
136 /* Swap in a Vernaux structure. */
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
150 /* Swap out a Vernaux structure. */
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
164 /* Swap in a Versym structure. */
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
174 /* Swap out a Versym structure. */
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
187 unsigned long
188 bfd_elf_hash (const char *namearg)
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
195 while ((ch = *name++) != '\0')
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
206 return h & 0xffffffff;
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
212 unsigned long
213 bfd_elf_gnu_hash (const char *namearg)
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
224 bfd_boolean
225 bfd_elf_mkobject (bfd *abfd)
227 if (abfd->tdata.any == NULL)
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
236 return TRUE;
239 bfd_boolean
240 bfd_elf_mkcorefile (bfd *abfd)
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
246 char *
247 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
281 return (char *) shstrtab;
284 char *
285 bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
289 Elf_Internal_Shdr *hdr;
291 if (strindex == 0)
292 return "";
294 hdr = elf_elfsections (abfd)[shindex];
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
300 if (strindex >= hdr->sh_size)
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
312 return ((char *) hdr->contents) + strindex;
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
321 Elf_Internal_Sym *
322 bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
342 if (symcount == 0)
343 return intsym_buf;
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
366 intsym_buf = NULL;
367 goto out;
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
386 intsym_buf = NULL;
387 goto out;
391 if (intsym_buf == NULL)
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
405 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
406 (*_bfd_error_handler) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd, (unsigned long) symoffset);
409 intsym_buf = NULL;
410 goto out;
413 out:
414 if (alloc_ext != NULL)
415 free (alloc_ext);
416 if (alloc_extshndx != NULL)
417 free (alloc_extshndx);
419 return intsym_buf;
422 /* Look up a symbol name. */
423 const char *
424 bfd_elf_sym_name (bfd *abfd,
425 Elf_Internal_Shdr *symtab_hdr,
426 Elf_Internal_Sym *isym,
427 asection *sym_sec)
429 const char *name;
430 unsigned int iname = isym->st_name;
431 unsigned int shindex = symtab_hdr->sh_link;
433 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym->st_shndx < elf_numsections (abfd)
436 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
438 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
439 shindex = elf_elfheader (abfd)->e_shstrndx;
442 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
443 if (name == NULL)
444 name = "(null)";
445 else if (sym_sec && *name == '\0')
446 name = bfd_section_name (abfd, sym_sec);
448 return name;
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
453 pointers. */
455 typedef union elf_internal_group {
456 Elf_Internal_Shdr *shdr;
457 unsigned int flags;
458 } Elf_Internal_Group;
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
463 static const char *
464 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
466 Elf_Internal_Shdr *hdr;
467 unsigned char esym[sizeof (Elf64_External_Sym)];
468 Elf_External_Sym_Shndx eshndx;
469 Elf_Internal_Sym isym;
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr = elf_elfsections (abfd) [ghdr->sh_link];
474 if (hdr->sh_type != SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
476 return NULL;
478 /* Go read the symbol. */
479 hdr = &elf_tdata (abfd)->symtab_hdr;
480 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
481 &isym, esym, &eshndx) == NULL)
482 return NULL;
484 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
489 static bfd_boolean
490 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
492 unsigned int num_group = elf_tdata (abfd)->num_group;
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
496 if (num_group == 0)
498 unsigned int i, shnum;
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum = elf_numsections (abfd);
503 num_group = 0;
504 for (i = 0; i < shnum; i++)
506 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
507 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
508 num_group += 1;
511 if (num_group == 0)
513 num_group = (unsigned) -1;
514 elf_tdata (abfd)->num_group = num_group;
516 else
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
520 bfd_size_type amt;
522 elf_tdata (abfd)->num_group = num_group;
523 elf_tdata (abfd)->group_sect_ptr
524 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
525 if (elf_tdata (abfd)->group_sect_ptr == NULL)
526 return FALSE;
528 num_group = 0;
529 for (i = 0; i < shnum; i++)
531 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
532 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
534 unsigned char *src;
535 Elf_Internal_Group *dest;
537 /* Add to list of sections. */
538 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
539 num_group += 1;
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest) >= 4);
543 amt = shdr->sh_size * sizeof (*dest) / 4;
544 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
545 sizeof (*dest) / 4);
546 if (shdr->contents == NULL
547 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
548 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
549 != shdr->sh_size))
550 return FALSE;
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
555 pointers. */
556 src = shdr->contents + shdr->sh_size;
557 dest = (Elf_Internal_Group *) (shdr->contents + amt);
558 while (1)
560 unsigned int idx;
562 src -= 4;
563 --dest;
564 idx = H_GET_32 (abfd, src);
565 if (src == shdr->contents)
567 dest->flags = idx;
568 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
569 shdr->bfd_section->flags
570 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
571 break;
573 if (idx >= shnum)
575 ((*_bfd_error_handler)
576 (_("%B: invalid SHT_GROUP entry"), abfd));
577 idx = 0;
579 dest->shdr = elf_elfsections (abfd)[idx];
586 if (num_group != (unsigned) -1)
588 unsigned int i;
590 for (i = 0; i < num_group; i++)
592 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
593 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
594 unsigned int n_elt = shdr->sh_size / 4;
596 /* Look through this group's sections to see if current
597 section is a member. */
598 while (--n_elt != 0)
599 if ((++idx)->shdr == hdr)
601 asection *s = NULL;
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
605 next_in_group. */
606 idx = (Elf_Internal_Group *) shdr->contents;
607 n_elt = shdr->sh_size / 4;
608 while (--n_elt != 0)
609 if ((s = (++idx)->shdr->bfd_section) != NULL
610 && elf_next_in_group (s) != NULL)
611 break;
612 if (n_elt != 0)
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect) = elf_group_name (s);
617 elf_next_in_group (newsect) = elf_next_in_group (s);
618 elf_next_in_group (s) = newsect;
620 else
622 const char *gname;
624 gname = group_signature (abfd, shdr);
625 if (gname == NULL)
626 return FALSE;
627 elf_group_name (newsect) = gname;
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect) = newsect;
633 /* If the group section has been created, point to the
634 new member. */
635 if (shdr->bfd_section != NULL)
636 elf_next_in_group (shdr->bfd_section) = newsect;
638 i = num_group - 1;
639 break;
644 if (elf_group_name (newsect) == NULL)
646 (*_bfd_error_handler) (_("%B: no group info for section %A"),
647 abfd, newsect);
649 return TRUE;
652 bfd_boolean
653 _bfd_elf_setup_sections (bfd *abfd)
655 unsigned int i;
656 unsigned int num_group = elf_tdata (abfd)->num_group;
657 bfd_boolean result = TRUE;
658 asection *s;
660 /* Process SHF_LINK_ORDER. */
661 for (s = abfd->sections; s != NULL; s = s->next)
663 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
664 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
666 unsigned int elfsec = this_hdr->sh_link;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
670 if (elfsec == 0)
672 const struct elf_backend_data *bed
673 = get_elf_backend_data (abfd);
674 if (bed->link_order_error_handler)
675 bed->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
677 abfd, s);
679 else
681 asection *link;
683 this_hdr = elf_elfsections (abfd)[elfsec];
685 /* PR 1991, 2008:
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link = this_hdr->bfd_section;
689 if (link == NULL)
691 (*_bfd_error_handler)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s->owner, s, elfsec);
694 result = FALSE;
697 elf_linked_to_section (s) = link;
702 /* Process section groups. */
703 if (num_group == (unsigned) -1)
704 return result;
706 for (i = 0; i < num_group; i++)
708 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
709 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
710 unsigned int n_elt = shdr->sh_size / 4;
712 while (--n_elt != 0)
713 if ((++idx)->shdr->bfd_section)
714 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
715 else if (idx->shdr->sh_type == SHT_RELA
716 || idx->shdr->sh_type == SHT_REL)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
721 files. */
722 shdr->bfd_section->size -= 4;
723 else
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
728 abfd,
729 (unsigned int) idx->shdr->sh_type,
730 bfd_elf_string_from_elf_section (abfd,
731 (elf_elfheader (abfd)
732 ->e_shstrndx),
733 idx->shdr->sh_name),
734 shdr->bfd_section->name);
735 result = FALSE;
738 return result;
741 bfd_boolean
742 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
744 return elf_next_in_group (sec) != NULL;
747 /* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
750 bfd_boolean
751 _bfd_elf_make_section_from_shdr (bfd *abfd,
752 Elf_Internal_Shdr *hdr,
753 const char *name,
754 int shindex)
756 asection *newsect;
757 flagword flags;
758 const struct elf_backend_data *bed;
760 if (hdr->bfd_section != NULL)
762 BFD_ASSERT (strcmp (name,
763 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
764 return TRUE;
767 newsect = bfd_make_section_anyway (abfd, name);
768 if (newsect == NULL)
769 return FALSE;
771 hdr->bfd_section = newsect;
772 elf_section_data (newsect)->this_hdr = *hdr;
773 elf_section_data (newsect)->this_idx = shindex;
775 /* Always use the real type/flags. */
776 elf_section_type (newsect) = hdr->sh_type;
777 elf_section_flags (newsect) = hdr->sh_flags;
779 newsect->filepos = hdr->sh_offset;
781 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
782 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
783 || ! bfd_set_section_alignment (abfd, newsect,
784 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
785 return FALSE;
787 flags = SEC_NO_FLAGS;
788 if (hdr->sh_type != SHT_NOBITS)
789 flags |= SEC_HAS_CONTENTS;
790 if (hdr->sh_type == SHT_GROUP)
791 flags |= SEC_GROUP | SEC_EXCLUDE;
792 if ((hdr->sh_flags & SHF_ALLOC) != 0)
794 flags |= SEC_ALLOC;
795 if (hdr->sh_type != SHT_NOBITS)
796 flags |= SEC_LOAD;
798 if ((hdr->sh_flags & SHF_WRITE) == 0)
799 flags |= SEC_READONLY;
800 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
801 flags |= SEC_CODE;
802 else if ((flags & SEC_LOAD) != 0)
803 flags |= SEC_DATA;
804 if ((hdr->sh_flags & SHF_MERGE) != 0)
806 flags |= SEC_MERGE;
807 newsect->entsize = hdr->sh_entsize;
808 if ((hdr->sh_flags & SHF_STRINGS) != 0)
809 flags |= SEC_STRINGS;
811 if (hdr->sh_flags & SHF_GROUP)
812 if (!setup_group (abfd, hdr, newsect))
813 return FALSE;
814 if ((hdr->sh_flags & SHF_TLS) != 0)
815 flags |= SEC_THREAD_LOCAL;
817 if ((flags & SEC_ALLOC) == 0)
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
821 static const struct
823 const char *name;
824 int len;
825 } debug_sections [] =
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL, 0 }, /* 'e' */
829 { NULL, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL, 0 }, /* 'h' */
832 { NULL, 0 }, /* 'i' */
833 { NULL, 0 }, /* 'j' */
834 { NULL, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL, 0 }, /* 'm' */
837 { NULL, 0 }, /* 'n' */
838 { NULL, 0 }, /* 'o' */
839 { NULL, 0 }, /* 'p' */
840 { NULL, 0 }, /* 'q' */
841 { NULL, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
845 if (name [0] == '.')
847 int i = name [1] - 'd';
848 if (i >= 0
849 && i < (int) ARRAY_SIZE (debug_sections)
850 && debug_sections [i].name != NULL
851 && strncmp (&name [1], debug_sections [i].name,
852 debug_sections [i].len) == 0)
853 flags |= SEC_DEBUGGING;
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name, ".gnu.linkonce")
864 && elf_next_in_group (newsect) == NULL)
865 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
867 bed = get_elf_backend_data (abfd);
868 if (bed->elf_backend_section_flags)
869 if (! bed->elf_backend_section_flags (&flags, hdr))
870 return FALSE;
872 if (! bfd_set_section_flags (abfd, newsect, flags))
873 return FALSE;
875 if ((flags & SEC_ALLOC) != 0)
877 Elf_Internal_Phdr *phdr;
878 unsigned int i;
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr = elf_tdata (abfd)->phdr;
884 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
886 if (phdr->p_paddr != 0)
887 break;
889 if (i < elf_elfheader (abfd)->e_phnum)
891 phdr = elf_tdata (abfd)->phdr;
892 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr->p_type == PT_LOAD
907 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
908 && (hdr->sh_offset + hdr->sh_size
909 <= phdr->p_offset + phdr->p_memsz)
910 && ((flags & SEC_LOAD) == 0
911 || (hdr->sh_offset + hdr->sh_size
912 <= phdr->p_offset + phdr->p_filesz)))
914 if ((flags & SEC_LOAD) == 0)
915 newsect->lma = (phdr->p_paddr
916 + hdr->sh_addr - phdr->p_vaddr);
917 else
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect->lma = (phdr->p_paddr
926 + hdr->sh_offset - phdr->p_offset);
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr->sh_addr >= phdr->p_vaddr
933 && (hdr->sh_addr + hdr->sh_size
934 <= phdr->p_vaddr + phdr->p_memsz))
935 break;
941 return TRUE;
945 INTERNAL_FUNCTION
946 bfd_elf_find_section
948 SYNOPSIS
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
951 DESCRIPTION
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
959 struct elf_internal_shdr *
960 bfd_elf_find_section (bfd *abfd, char *name)
962 Elf_Internal_Shdr **i_shdrp;
963 char *shstrtab;
964 unsigned int max;
965 unsigned int i;
967 i_shdrp = elf_elfsections (abfd);
968 if (i_shdrp != NULL)
970 shstrtab = bfd_elf_get_str_section (abfd,
971 elf_elfheader (abfd)->e_shstrndx);
972 if (shstrtab != NULL)
974 max = elf_numsections (abfd);
975 for (i = 1; i < max; i++)
976 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
977 return i_shdrp[i];
980 return 0;
983 const char *const bfd_elf_section_type_names[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
989 /* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
999 bfd_reloc_status_type
1000 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1001 arelent *reloc_entry,
1002 asymbol *symbol,
1003 void *data ATTRIBUTE_UNUSED,
1004 asection *input_section,
1005 bfd *output_bfd,
1006 char **error_message ATTRIBUTE_UNUSED)
1008 if (output_bfd != NULL
1009 && (symbol->flags & BSF_SECTION_SYM) == 0
1010 && (! reloc_entry->howto->partial_inplace
1011 || reloc_entry->addend == 0))
1013 reloc_entry->address += input_section->output_offset;
1014 return bfd_reloc_ok;
1017 return bfd_reloc_continue;
1020 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1022 static void
1023 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1024 asection *sec)
1026 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1027 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1030 /* Finish SHF_MERGE section merging. */
1032 bfd_boolean
1033 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1035 bfd *ibfd;
1036 asection *sec;
1038 if (!is_elf_hash_table (info->hash))
1039 return FALSE;
1041 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1042 if ((ibfd->flags & DYNAMIC) == 0)
1043 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1044 if ((sec->flags & SEC_MERGE) != 0
1045 && !bfd_is_abs_section (sec->output_section))
1047 struct bfd_elf_section_data *secdata;
1049 secdata = elf_section_data (sec);
1050 if (! _bfd_add_merge_section (abfd,
1051 &elf_hash_table (info)->merge_info,
1052 sec, &secdata->sec_info))
1053 return FALSE;
1054 else if (secdata->sec_info)
1055 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1058 if (elf_hash_table (info)->merge_info != NULL)
1059 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1060 merge_sections_remove_hook);
1061 return TRUE;
1064 void
1065 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1067 sec->output_section = bfd_abs_section_ptr;
1068 sec->output_offset = sec->vma;
1069 if (!is_elf_hash_table (info->hash))
1070 return;
1072 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1075 /* Copy the program header and other data from one object module to
1076 another. */
1078 bfd_boolean
1079 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1081 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1083 return TRUE;
1085 BFD_ASSERT (!elf_flags_init (obfd)
1086 || (elf_elfheader (obfd)->e_flags
1087 == elf_elfheader (ibfd)->e_flags));
1089 elf_gp (obfd) = elf_gp (ibfd);
1090 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1091 elf_flags_init (obfd) = TRUE;
1092 return TRUE;
1095 static const char *
1096 get_segment_type (unsigned int p_type)
1098 const char *pt;
1099 switch (p_type)
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1114 return pt;
1117 /* Print out the program headers. */
1119 bfd_boolean
1120 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1130 unsigned int i, c;
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1139 if (pt == NULL)
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1174 fprintf (f, _("\nDynamic Section:\n"));
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1282 fprintf (f, "\n");
1285 free (dynbuf);
1286 dynbuf = NULL;
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1296 if (elf_dynverdef (abfd) != 0)
1298 Elf_Internal_Verdef *t;
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1308 Elf_Internal_Verdaux *a;
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1321 if (elf_dynverref (abfd) != 0)
1323 Elf_Internal_Verneed *t;
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1328 Elf_Internal_Vernaux *a;
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1339 return TRUE;
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1347 /* Display ELF-specific fields of a symbol. */
1349 void
1350 bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1355 FILE *file = filep;
1356 switch (how)
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1380 if (name == NULL)
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1402 unsigned int vernum;
1403 const char *version_string;
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1416 Elf_Internal_Verneed *t;
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1423 Elf_Internal_Vernaux *a;
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1427 if (a->vna_other == vernum)
1429 version_string = a->vna_nodename;
1430 break;
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1440 int i;
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1451 switch (st_other)
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1463 fprintf (file, " %s", name);
1465 break;
1469 /* Create an entry in an ELF linker hash table. */
1471 struct bfd_hash_entry *
1472 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1473 struct bfd_hash_table *table,
1474 const char *string)
1476 /* Allocate the structure if it has not already been allocated by a
1477 subclass. */
1478 if (entry == NULL)
1480 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1481 if (entry == NULL)
1482 return entry;
1485 /* Call the allocation method of the superclass. */
1486 entry = _bfd_link_hash_newfunc (entry, table, string);
1487 if (entry != NULL)
1489 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1490 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1492 /* Set local fields. */
1493 ret->indx = -1;
1494 ret->dynindx = -1;
1495 ret->got = htab->init_got_refcount;
1496 ret->plt = htab->init_plt_refcount;
1497 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1498 - offsetof (struct elf_link_hash_entry, size)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1503 ret->non_elf = 1;
1506 return entry;
1509 /* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1512 void
1513 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1514 struct elf_link_hash_entry *dir,
1515 struct elf_link_hash_entry *ind)
1517 struct elf_link_hash_table *htab;
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1522 dir->ref_dynamic |= ind->ref_dynamic;
1523 dir->ref_regular |= ind->ref_regular;
1524 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1525 dir->non_got_ref |= ind->non_got_ref;
1526 dir->needs_plt |= ind->needs_plt;
1527 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1529 if (ind->root.type != bfd_link_hash_indirect)
1530 return;
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab = elf_hash_table (info);
1535 if (ind->got.refcount > htab->init_got_refcount.refcount)
1537 if (dir->got.refcount < 0)
1538 dir->got.refcount = 0;
1539 dir->got.refcount += ind->got.refcount;
1540 ind->got.refcount = htab->init_got_refcount.refcount;
1543 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1545 if (dir->plt.refcount < 0)
1546 dir->plt.refcount = 0;
1547 dir->plt.refcount += ind->plt.refcount;
1548 ind->plt.refcount = htab->init_plt_refcount.refcount;
1551 if (ind->dynindx != -1)
1553 if (dir->dynindx != -1)
1554 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1555 dir->dynindx = ind->dynindx;
1556 dir->dynstr_index = ind->dynstr_index;
1557 ind->dynindx = -1;
1558 ind->dynstr_index = 0;
1562 void
1563 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1564 struct elf_link_hash_entry *h,
1565 bfd_boolean force_local)
1567 h->plt = elf_hash_table (info)->init_plt_offset;
1568 h->needs_plt = 0;
1569 if (force_local)
1571 h->forced_local = 1;
1572 if (h->dynindx != -1)
1574 h->dynindx = -1;
1575 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1576 h->dynstr_index);
1581 /* Initialize an ELF linker hash table. */
1583 bfd_boolean
1584 _bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table *table,
1586 bfd *abfd,
1587 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1588 struct bfd_hash_table *,
1589 const char *),
1590 unsigned int entsize)
1592 bfd_boolean ret;
1593 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1595 memset (table, 0, sizeof * table);
1596 table->init_got_refcount.refcount = can_refcount - 1;
1597 table->init_plt_refcount.refcount = can_refcount - 1;
1598 table->init_got_offset.offset = -(bfd_vma) 1;
1599 table->init_plt_offset.offset = -(bfd_vma) 1;
1600 /* The first dynamic symbol is a dummy. */
1601 table->dynsymcount = 1;
1603 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1604 table->root.type = bfd_link_elf_hash_table;
1606 return ret;
1609 /* Create an ELF linker hash table. */
1611 struct bfd_link_hash_table *
1612 _bfd_elf_link_hash_table_create (bfd *abfd)
1614 struct elf_link_hash_table *ret;
1615 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1617 ret = bfd_malloc (amt);
1618 if (ret == NULL)
1619 return NULL;
1621 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1622 sizeof (struct elf_link_hash_entry)))
1624 free (ret);
1625 return NULL;
1628 return &ret->root;
1631 /* This is a hook for the ELF emulation code in the generic linker to
1632 tell the backend linker what file name to use for the DT_NEEDED
1633 entry for a dynamic object. */
1635 void
1636 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1638 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1639 && bfd_get_format (abfd) == bfd_object)
1640 elf_dt_name (abfd) = name;
1644 bfd_elf_get_dyn_lib_class (bfd *abfd)
1646 int lib_class;
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 lib_class = elf_dyn_lib_class (abfd);
1650 else
1651 lib_class = 0;
1652 return lib_class;
1655 void
1656 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
1658 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1659 && bfd_get_format (abfd) == bfd_object)
1660 elf_dyn_lib_class (abfd) = lib_class;
1663 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1664 the linker ELF emulation code. */
1666 struct bfd_link_needed_list *
1667 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1668 struct bfd_link_info *info)
1670 if (! is_elf_hash_table (info->hash))
1671 return NULL;
1672 return elf_hash_table (info)->needed;
1675 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1676 hook for the linker ELF emulation code. */
1678 struct bfd_link_needed_list *
1679 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1680 struct bfd_link_info *info)
1682 if (! is_elf_hash_table (info->hash))
1683 return NULL;
1684 return elf_hash_table (info)->runpath;
1687 /* Get the name actually used for a dynamic object for a link. This
1688 is the SONAME entry if there is one. Otherwise, it is the string
1689 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1691 const char *
1692 bfd_elf_get_dt_soname (bfd *abfd)
1694 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1695 && bfd_get_format (abfd) == bfd_object)
1696 return elf_dt_name (abfd);
1697 return NULL;
1700 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1701 the ELF linker emulation code. */
1703 bfd_boolean
1704 bfd_elf_get_bfd_needed_list (bfd *abfd,
1705 struct bfd_link_needed_list **pneeded)
1707 asection *s;
1708 bfd_byte *dynbuf = NULL;
1709 int elfsec;
1710 unsigned long shlink;
1711 bfd_byte *extdyn, *extdynend;
1712 size_t extdynsize;
1713 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1715 *pneeded = NULL;
1717 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1718 || bfd_get_format (abfd) != bfd_object)
1719 return TRUE;
1721 s = bfd_get_section_by_name (abfd, ".dynamic");
1722 if (s == NULL || s->size == 0)
1723 return TRUE;
1725 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1726 goto error_return;
1728 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1729 if (elfsec == -1)
1730 goto error_return;
1732 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1734 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1735 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1737 extdyn = dynbuf;
1738 extdynend = extdyn + s->size;
1739 for (; extdyn < extdynend; extdyn += extdynsize)
1741 Elf_Internal_Dyn dyn;
1743 (*swap_dyn_in) (abfd, extdyn, &dyn);
1745 if (dyn.d_tag == DT_NULL)
1746 break;
1748 if (dyn.d_tag == DT_NEEDED)
1750 const char *string;
1751 struct bfd_link_needed_list *l;
1752 unsigned int tagv = dyn.d_un.d_val;
1753 bfd_size_type amt;
1755 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1756 if (string == NULL)
1757 goto error_return;
1759 amt = sizeof *l;
1760 l = bfd_alloc (abfd, amt);
1761 if (l == NULL)
1762 goto error_return;
1764 l->by = abfd;
1765 l->name = string;
1766 l->next = *pneeded;
1767 *pneeded = l;
1771 free (dynbuf);
1773 return TRUE;
1775 error_return:
1776 if (dynbuf != NULL)
1777 free (dynbuf);
1778 return FALSE;
1781 /* Allocate an ELF string table--force the first byte to be zero. */
1783 struct bfd_strtab_hash *
1784 _bfd_elf_stringtab_init (void)
1786 struct bfd_strtab_hash *ret;
1788 ret = _bfd_stringtab_init ();
1789 if (ret != NULL)
1791 bfd_size_type loc;
1793 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1794 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1795 if (loc == (bfd_size_type) -1)
1797 _bfd_stringtab_free (ret);
1798 ret = NULL;
1801 return ret;
1804 /* ELF .o/exec file reading */
1806 /* Create a new bfd section from an ELF section header. */
1808 bfd_boolean
1809 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1811 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1812 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1813 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1814 const char *name;
1816 name = bfd_elf_string_from_elf_section (abfd,
1817 elf_elfheader (abfd)->e_shstrndx,
1818 hdr->sh_name);
1819 if (name == NULL)
1820 return FALSE;
1822 switch (hdr->sh_type)
1824 case SHT_NULL:
1825 /* Inactive section. Throw it away. */
1826 return TRUE;
1828 case SHT_PROGBITS: /* Normal section with contents. */
1829 case SHT_NOBITS: /* .bss section. */
1830 case SHT_HASH: /* .hash section. */
1831 case SHT_NOTE: /* .note section. */
1832 case SHT_INIT_ARRAY: /* .init_array section. */
1833 case SHT_FINI_ARRAY: /* .fini_array section. */
1834 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1835 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1836 case SHT_GNU_HASH: /* .gnu.hash section. */
1837 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1839 case SHT_DYNAMIC: /* Dynamic linking information. */
1840 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1841 return FALSE;
1842 if (hdr->sh_link > elf_numsections (abfd)
1843 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1844 return FALSE;
1845 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1847 Elf_Internal_Shdr *dynsymhdr;
1849 /* The shared libraries distributed with hpux11 have a bogus
1850 sh_link field for the ".dynamic" section. Find the
1851 string table for the ".dynsym" section instead. */
1852 if (elf_dynsymtab (abfd) != 0)
1854 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1855 hdr->sh_link = dynsymhdr->sh_link;
1857 else
1859 unsigned int i, num_sec;
1861 num_sec = elf_numsections (abfd);
1862 for (i = 1; i < num_sec; i++)
1864 dynsymhdr = elf_elfsections (abfd)[i];
1865 if (dynsymhdr->sh_type == SHT_DYNSYM)
1867 hdr->sh_link = dynsymhdr->sh_link;
1868 break;
1873 break;
1875 case SHT_SYMTAB: /* A symbol table */
1876 if (elf_onesymtab (abfd) == shindex)
1877 return TRUE;
1879 if (hdr->sh_entsize != bed->s->sizeof_sym)
1880 return FALSE;
1881 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1882 elf_onesymtab (abfd) = shindex;
1883 elf_tdata (abfd)->symtab_hdr = *hdr;
1884 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1885 abfd->flags |= HAS_SYMS;
1887 /* Sometimes a shared object will map in the symbol table. If
1888 SHF_ALLOC is set, and this is a shared object, then we also
1889 treat this section as a BFD section. We can not base the
1890 decision purely on SHF_ALLOC, because that flag is sometimes
1891 set in a relocatable object file, which would confuse the
1892 linker. */
1893 if ((hdr->sh_flags & SHF_ALLOC) != 0
1894 && (abfd->flags & DYNAMIC) != 0
1895 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1896 shindex))
1897 return FALSE;
1899 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1900 can't read symbols without that section loaded as well. It
1901 is most likely specified by the next section header. */
1902 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1904 unsigned int i, num_sec;
1906 num_sec = elf_numsections (abfd);
1907 for (i = shindex + 1; i < num_sec; i++)
1909 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1910 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1911 && hdr2->sh_link == shindex)
1912 break;
1914 if (i == num_sec)
1915 for (i = 1; i < shindex; i++)
1917 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1918 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1919 && hdr2->sh_link == shindex)
1920 break;
1922 if (i != shindex)
1923 return bfd_section_from_shdr (abfd, i);
1925 return TRUE;
1927 case SHT_DYNSYM: /* A dynamic symbol table */
1928 if (elf_dynsymtab (abfd) == shindex)
1929 return TRUE;
1931 if (hdr->sh_entsize != bed->s->sizeof_sym)
1932 return FALSE;
1933 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1934 elf_dynsymtab (abfd) = shindex;
1935 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1936 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1937 abfd->flags |= HAS_SYMS;
1939 /* Besides being a symbol table, we also treat this as a regular
1940 section, so that objcopy can handle it. */
1941 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1943 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1944 if (elf_symtab_shndx (abfd) == shindex)
1945 return TRUE;
1947 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1948 elf_symtab_shndx (abfd) = shindex;
1949 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1950 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1951 return TRUE;
1953 case SHT_STRTAB: /* A string table */
1954 if (hdr->bfd_section != NULL)
1955 return TRUE;
1956 if (ehdr->e_shstrndx == shindex)
1958 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1959 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1960 return TRUE;
1962 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1964 symtab_strtab:
1965 elf_tdata (abfd)->strtab_hdr = *hdr;
1966 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1967 return TRUE;
1969 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1971 dynsymtab_strtab:
1972 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1973 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1974 elf_elfsections (abfd)[shindex] = hdr;
1975 /* We also treat this as a regular section, so that objcopy
1976 can handle it. */
1977 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1978 shindex);
1981 /* If the string table isn't one of the above, then treat it as a
1982 regular section. We need to scan all the headers to be sure,
1983 just in case this strtab section appeared before the above. */
1984 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1986 unsigned int i, num_sec;
1988 num_sec = elf_numsections (abfd);
1989 for (i = 1; i < num_sec; i++)
1991 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1992 if (hdr2->sh_link == shindex)
1994 /* Prevent endless recursion on broken objects. */
1995 if (i == shindex)
1996 return FALSE;
1997 if (! bfd_section_from_shdr (abfd, i))
1998 return FALSE;
1999 if (elf_onesymtab (abfd) == i)
2000 goto symtab_strtab;
2001 if (elf_dynsymtab (abfd) == i)
2002 goto dynsymtab_strtab;
2006 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2008 case SHT_REL:
2009 case SHT_RELA:
2010 /* *These* do a lot of work -- but build no sections! */
2012 asection *target_sect;
2013 Elf_Internal_Shdr *hdr2;
2014 unsigned int num_sec = elf_numsections (abfd);
2016 if (hdr->sh_entsize
2017 != (bfd_size_type) (hdr->sh_type == SHT_REL
2018 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2019 return FALSE;
2021 /* Check for a bogus link to avoid crashing. */
2022 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2023 || hdr->sh_link >= num_sec)
2025 ((*_bfd_error_handler)
2026 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2027 abfd, hdr->sh_link, name, shindex));
2028 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2029 shindex);
2032 /* For some incomprehensible reason Oracle distributes
2033 libraries for Solaris in which some of the objects have
2034 bogus sh_link fields. It would be nice if we could just
2035 reject them, but, unfortunately, some people need to use
2036 them. We scan through the section headers; if we find only
2037 one suitable symbol table, we clobber the sh_link to point
2038 to it. I hope this doesn't break anything. */
2039 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2040 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2042 unsigned int scan;
2043 int found;
2045 found = 0;
2046 for (scan = 1; scan < num_sec; scan++)
2048 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2049 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2051 if (found != 0)
2053 found = 0;
2054 break;
2056 found = scan;
2059 if (found != 0)
2060 hdr->sh_link = found;
2063 /* Get the symbol table. */
2064 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2065 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2066 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2067 return FALSE;
2069 /* If this reloc section does not use the main symbol table we
2070 don't treat it as a reloc section. BFD can't adequately
2071 represent such a section, so at least for now, we don't
2072 try. We just present it as a normal section. We also
2073 can't use it as a reloc section if it points to the null
2074 section, an invalid section, or another reloc section. */
2075 if (hdr->sh_link != elf_onesymtab (abfd)
2076 || hdr->sh_info == SHN_UNDEF
2077 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2078 || hdr->sh_info >= num_sec
2079 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2080 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2081 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2082 shindex);
2084 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2085 return FALSE;
2086 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2087 if (target_sect == NULL)
2088 return FALSE;
2090 if ((target_sect->flags & SEC_RELOC) == 0
2091 || target_sect->reloc_count == 0)
2092 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2093 else
2095 bfd_size_type amt;
2096 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2097 amt = sizeof (*hdr2);
2098 hdr2 = bfd_alloc (abfd, amt);
2099 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2101 *hdr2 = *hdr;
2102 elf_elfsections (abfd)[shindex] = hdr2;
2103 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2104 target_sect->flags |= SEC_RELOC;
2105 target_sect->relocation = NULL;
2106 target_sect->rel_filepos = hdr->sh_offset;
2107 /* In the section to which the relocations apply, mark whether
2108 its relocations are of the REL or RELA variety. */
2109 if (hdr->sh_size != 0)
2110 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2111 abfd->flags |= HAS_RELOC;
2112 return TRUE;
2115 case SHT_GNU_verdef:
2116 elf_dynverdef (abfd) = shindex;
2117 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2118 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2120 case SHT_GNU_versym:
2121 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2122 return FALSE;
2123 elf_dynversym (abfd) = shindex;
2124 elf_tdata (abfd)->dynversym_hdr = *hdr;
2125 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2127 case SHT_GNU_verneed:
2128 elf_dynverref (abfd) = shindex;
2129 elf_tdata (abfd)->dynverref_hdr = *hdr;
2130 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2132 case SHT_SHLIB:
2133 return TRUE;
2135 case SHT_GROUP:
2136 /* We need a BFD section for objcopy and relocatable linking,
2137 and it's handy to have the signature available as the section
2138 name. */
2139 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2140 return FALSE;
2141 name = group_signature (abfd, hdr);
2142 if (name == NULL)
2143 return FALSE;
2144 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2145 return FALSE;
2146 if (hdr->contents != NULL)
2148 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2149 unsigned int n_elt = hdr->sh_size / 4;
2150 asection *s;
2152 if (idx->flags & GRP_COMDAT)
2153 hdr->bfd_section->flags
2154 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2156 /* We try to keep the same section order as it comes in. */
2157 idx += n_elt;
2158 while (--n_elt != 0)
2159 if ((s = (--idx)->shdr->bfd_section) != NULL
2160 && elf_next_in_group (s) != NULL)
2162 elf_next_in_group (hdr->bfd_section) = s;
2163 break;
2166 break;
2168 default:
2169 /* Check for any processor-specific section types. */
2170 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2171 return TRUE;
2173 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2175 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2176 /* FIXME: How to properly handle allocated section reserved
2177 for applications? */
2178 (*_bfd_error_handler)
2179 (_("%B: don't know how to handle allocated, application "
2180 "specific section `%s' [0x%8x]"),
2181 abfd, name, hdr->sh_type);
2182 else
2183 /* Allow sections reserved for applications. */
2184 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2185 shindex);
2187 else if (hdr->sh_type >= SHT_LOPROC
2188 && hdr->sh_type <= SHT_HIPROC)
2189 /* FIXME: We should handle this section. */
2190 (*_bfd_error_handler)
2191 (_("%B: don't know how to handle processor specific section "
2192 "`%s' [0x%8x]"),
2193 abfd, name, hdr->sh_type);
2194 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2196 /* Unrecognised OS-specific sections. */
2197 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2198 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2199 required to correctly process the section and the file should
2200 be rejected with an error message. */
2201 (*_bfd_error_handler)
2202 (_("%B: don't know how to handle OS specific section "
2203 "`%s' [0x%8x]"),
2204 abfd, name, hdr->sh_type);
2205 else
2206 /* Otherwise it should be processed. */
2207 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2209 else
2210 /* FIXME: We should handle this section. */
2211 (*_bfd_error_handler)
2212 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2213 abfd, name, hdr->sh_type);
2215 return FALSE;
2218 return TRUE;
2221 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2222 Return SEC for sections that have no elf section, and NULL on error. */
2224 asection *
2225 bfd_section_from_r_symndx (bfd *abfd,
2226 struct sym_sec_cache *cache,
2227 asection *sec,
2228 unsigned long r_symndx)
2230 Elf_Internal_Shdr *symtab_hdr;
2231 unsigned char esym[sizeof (Elf64_External_Sym)];
2232 Elf_External_Sym_Shndx eshndx;
2233 Elf_Internal_Sym isym;
2234 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2236 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2237 return cache->sec[ent];
2239 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2240 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2241 &isym, esym, &eshndx) == NULL)
2242 return NULL;
2244 if (cache->abfd != abfd)
2246 memset (cache->indx, -1, sizeof (cache->indx));
2247 cache->abfd = abfd;
2249 cache->indx[ent] = r_symndx;
2250 cache->sec[ent] = sec;
2251 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2252 || isym.st_shndx > SHN_HIRESERVE)
2254 asection *s;
2255 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2256 if (s != NULL)
2257 cache->sec[ent] = s;
2259 return cache->sec[ent];
2262 /* Given an ELF section number, retrieve the corresponding BFD
2263 section. */
2265 asection *
2266 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2268 if (index >= elf_numsections (abfd))
2269 return NULL;
2270 return elf_elfsections (abfd)[index]->bfd_section;
2273 static const struct bfd_elf_special_section special_sections_b[] =
2275 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2276 { NULL, 0, 0, 0, 0 }
2279 static const struct bfd_elf_special_section special_sections_c[] =
2281 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2282 { NULL, 0, 0, 0, 0 }
2285 static const struct bfd_elf_special_section special_sections_d[] =
2287 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2288 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2289 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2290 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2291 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2292 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2293 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2294 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2295 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2296 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2297 { NULL, 0, 0, 0, 0 }
2300 static const struct bfd_elf_special_section special_sections_f[] =
2302 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2303 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2304 { NULL, 0, 0, 0, 0 }
2307 static const struct bfd_elf_special_section special_sections_g[] =
2309 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2310 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2311 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2312 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2313 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2314 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2315 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2316 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2317 { NULL, 0, 0, 0, 0 }
2320 static const struct bfd_elf_special_section special_sections_h[] =
2322 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2323 { NULL, 0, 0, 0, 0 }
2326 static const struct bfd_elf_special_section special_sections_i[] =
2328 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2329 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2330 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2331 { NULL, 0, 0, 0, 0 }
2334 static const struct bfd_elf_special_section special_sections_l[] =
2336 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2337 { NULL, 0, 0, 0, 0 }
2340 static const struct bfd_elf_special_section special_sections_n[] =
2342 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2343 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2344 { NULL, 0, 0, 0, 0 }
2347 static const struct bfd_elf_special_section special_sections_p[] =
2349 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2350 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2351 { NULL, 0, 0, 0, 0 }
2354 static const struct bfd_elf_special_section special_sections_r[] =
2356 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2357 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2358 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2359 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2360 { NULL, 0, 0, 0, 0 }
2363 static const struct bfd_elf_special_section special_sections_s[] =
2365 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2366 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2367 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2368 /* See struct bfd_elf_special_section declaration for the semantics of
2369 this special case where .prefix_length != strlen (.prefix). */
2370 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2371 { NULL, 0, 0, 0, 0 }
2374 static const struct bfd_elf_special_section special_sections_t[] =
2376 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2377 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2378 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2379 { NULL, 0, 0, 0, 0 }
2382 static const struct bfd_elf_special_section *special_sections[] =
2384 special_sections_b, /* 'b' */
2385 special_sections_c, /* 'b' */
2386 special_sections_d, /* 'd' */
2387 NULL, /* 'e' */
2388 special_sections_f, /* 'f' */
2389 special_sections_g, /* 'g' */
2390 special_sections_h, /* 'h' */
2391 special_sections_i, /* 'i' */
2392 NULL, /* 'j' */
2393 NULL, /* 'k' */
2394 special_sections_l, /* 'l' */
2395 NULL, /* 'm' */
2396 special_sections_n, /* 'n' */
2397 NULL, /* 'o' */
2398 special_sections_p, /* 'p' */
2399 NULL, /* 'q' */
2400 special_sections_r, /* 'r' */
2401 special_sections_s, /* 's' */
2402 special_sections_t, /* 't' */
2405 const struct bfd_elf_special_section *
2406 _bfd_elf_get_special_section (const char *name,
2407 const struct bfd_elf_special_section *spec,
2408 unsigned int rela)
2410 int i;
2411 int len;
2413 len = strlen (name);
2415 for (i = 0; spec[i].prefix != NULL; i++)
2417 int suffix_len;
2418 int prefix_len = spec[i].prefix_length;
2420 if (len < prefix_len)
2421 continue;
2422 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2423 continue;
2425 suffix_len = spec[i].suffix_length;
2426 if (suffix_len <= 0)
2428 if (name[prefix_len] != 0)
2430 if (suffix_len == 0)
2431 continue;
2432 if (name[prefix_len] != '.'
2433 && (suffix_len == -2
2434 || (rela && spec[i].type == SHT_REL)))
2435 continue;
2438 else
2440 if (len < prefix_len + suffix_len)
2441 continue;
2442 if (memcmp (name + len - suffix_len,
2443 spec[i].prefix + prefix_len,
2444 suffix_len) != 0)
2445 continue;
2447 return &spec[i];
2450 return NULL;
2453 const struct bfd_elf_special_section *
2454 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2456 int i;
2457 const struct bfd_elf_special_section *spec;
2458 const struct elf_backend_data *bed;
2460 /* See if this is one of the special sections. */
2461 if (sec->name == NULL)
2462 return NULL;
2464 bed = get_elf_backend_data (abfd);
2465 spec = bed->special_sections;
2466 if (spec)
2468 spec = _bfd_elf_get_special_section (sec->name,
2469 bed->special_sections,
2470 sec->use_rela_p);
2471 if (spec != NULL)
2472 return spec;
2475 if (sec->name[0] != '.')
2476 return NULL;
2478 i = sec->name[1] - 'b';
2479 if (i < 0 || i > 't' - 'b')
2480 return NULL;
2482 spec = special_sections[i];
2484 if (spec == NULL)
2485 return NULL;
2487 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2490 bfd_boolean
2491 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2493 struct bfd_elf_section_data *sdata;
2494 const struct elf_backend_data *bed;
2495 const struct bfd_elf_special_section *ssect;
2497 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2498 if (sdata == NULL)
2500 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2501 if (sdata == NULL)
2502 return FALSE;
2503 sec->used_by_bfd = sdata;
2506 /* Indicate whether or not this section should use RELA relocations. */
2507 bed = get_elf_backend_data (abfd);
2508 sec->use_rela_p = bed->default_use_rela_p;
2510 /* When we read a file, we don't need to set ELF section type and
2511 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2512 anyway. We will set ELF section type and flags for all linker
2513 created sections. If user specifies BFD section flags, we will
2514 set ELF section type and flags based on BFD section flags in
2515 elf_fake_sections. */
2516 if ((!sec->flags && abfd->direction != read_direction)
2517 || (sec->flags & SEC_LINKER_CREATED) != 0)
2519 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2520 if (ssect != NULL)
2522 elf_section_type (sec) = ssect->type;
2523 elf_section_flags (sec) = ssect->attr;
2527 return _bfd_generic_new_section_hook (abfd, sec);
2530 /* Create a new bfd section from an ELF program header.
2532 Since program segments have no names, we generate a synthetic name
2533 of the form segment<NUM>, where NUM is generally the index in the
2534 program header table. For segments that are split (see below) we
2535 generate the names segment<NUM>a and segment<NUM>b.
2537 Note that some program segments may have a file size that is different than
2538 (less than) the memory size. All this means is that at execution the
2539 system must allocate the amount of memory specified by the memory size,
2540 but only initialize it with the first "file size" bytes read from the
2541 file. This would occur for example, with program segments consisting
2542 of combined data+bss.
2544 To handle the above situation, this routine generates TWO bfd sections
2545 for the single program segment. The first has the length specified by
2546 the file size of the segment, and the second has the length specified
2547 by the difference between the two sizes. In effect, the segment is split
2548 into it's initialized and uninitialized parts.
2552 bfd_boolean
2553 _bfd_elf_make_section_from_phdr (bfd *abfd,
2554 Elf_Internal_Phdr *hdr,
2555 int index,
2556 const char *typename)
2558 asection *newsect;
2559 char *name;
2560 char namebuf[64];
2561 size_t len;
2562 int split;
2564 split = ((hdr->p_memsz > 0)
2565 && (hdr->p_filesz > 0)
2566 && (hdr->p_memsz > hdr->p_filesz));
2567 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2568 len = strlen (namebuf) + 1;
2569 name = bfd_alloc (abfd, len);
2570 if (!name)
2571 return FALSE;
2572 memcpy (name, namebuf, len);
2573 newsect = bfd_make_section (abfd, name);
2574 if (newsect == NULL)
2575 return FALSE;
2576 newsect->vma = hdr->p_vaddr;
2577 newsect->lma = hdr->p_paddr;
2578 newsect->size = hdr->p_filesz;
2579 newsect->filepos = hdr->p_offset;
2580 newsect->flags |= SEC_HAS_CONTENTS;
2581 newsect->alignment_power = bfd_log2 (hdr->p_align);
2582 if (hdr->p_type == PT_LOAD)
2584 newsect->flags |= SEC_ALLOC;
2585 newsect->flags |= SEC_LOAD;
2586 if (hdr->p_flags & PF_X)
2588 /* FIXME: all we known is that it has execute PERMISSION,
2589 may be data. */
2590 newsect->flags |= SEC_CODE;
2593 if (!(hdr->p_flags & PF_W))
2595 newsect->flags |= SEC_READONLY;
2598 if (split)
2600 sprintf (namebuf, "%s%db", typename, index);
2601 len = strlen (namebuf) + 1;
2602 name = bfd_alloc (abfd, len);
2603 if (!name)
2604 return FALSE;
2605 memcpy (name, namebuf, len);
2606 newsect = bfd_make_section (abfd, name);
2607 if (newsect == NULL)
2608 return FALSE;
2609 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2610 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2611 newsect->size = hdr->p_memsz - hdr->p_filesz;
2612 if (hdr->p_type == PT_LOAD)
2614 newsect->flags |= SEC_ALLOC;
2615 if (hdr->p_flags & PF_X)
2616 newsect->flags |= SEC_CODE;
2618 if (!(hdr->p_flags & PF_W))
2619 newsect->flags |= SEC_READONLY;
2622 return TRUE;
2625 bfd_boolean
2626 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2628 const struct elf_backend_data *bed;
2630 switch (hdr->p_type)
2632 case PT_NULL:
2633 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2635 case PT_LOAD:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2638 case PT_DYNAMIC:
2639 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2641 case PT_INTERP:
2642 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2644 case PT_NOTE:
2645 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2646 return FALSE;
2647 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2648 return FALSE;
2649 return TRUE;
2651 case PT_SHLIB:
2652 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2654 case PT_PHDR:
2655 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2657 case PT_GNU_EH_FRAME:
2658 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2659 "eh_frame_hdr");
2661 case PT_GNU_STACK:
2662 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2664 case PT_GNU_RELRO:
2665 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2667 default:
2668 /* Check for any processor-specific program segment types. */
2669 bed = get_elf_backend_data (abfd);
2670 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2674 /* Initialize REL_HDR, the section-header for new section, containing
2675 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2676 relocations; otherwise, we use REL relocations. */
2678 bfd_boolean
2679 _bfd_elf_init_reloc_shdr (bfd *abfd,
2680 Elf_Internal_Shdr *rel_hdr,
2681 asection *asect,
2682 bfd_boolean use_rela_p)
2684 char *name;
2685 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2686 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2688 name = bfd_alloc (abfd, amt);
2689 if (name == NULL)
2690 return FALSE;
2691 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2692 rel_hdr->sh_name =
2693 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2694 FALSE);
2695 if (rel_hdr->sh_name == (unsigned int) -1)
2696 return FALSE;
2697 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2698 rel_hdr->sh_entsize = (use_rela_p
2699 ? bed->s->sizeof_rela
2700 : bed->s->sizeof_rel);
2701 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2702 rel_hdr->sh_flags = 0;
2703 rel_hdr->sh_addr = 0;
2704 rel_hdr->sh_size = 0;
2705 rel_hdr->sh_offset = 0;
2707 return TRUE;
2710 /* Set up an ELF internal section header for a section. */
2712 static void
2713 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2715 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2716 bfd_boolean *failedptr = failedptrarg;
2717 Elf_Internal_Shdr *this_hdr;
2719 if (*failedptr)
2721 /* We already failed; just get out of the bfd_map_over_sections
2722 loop. */
2723 return;
2726 this_hdr = &elf_section_data (asect)->this_hdr;
2728 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2729 asect->name, FALSE);
2730 if (this_hdr->sh_name == (unsigned int) -1)
2732 *failedptr = TRUE;
2733 return;
2736 /* Don't clear sh_flags. Assembler may set additional bits. */
2738 if ((asect->flags & SEC_ALLOC) != 0
2739 || asect->user_set_vma)
2740 this_hdr->sh_addr = asect->vma;
2741 else
2742 this_hdr->sh_addr = 0;
2744 this_hdr->sh_offset = 0;
2745 this_hdr->sh_size = asect->size;
2746 this_hdr->sh_link = 0;
2747 this_hdr->sh_addralign = 1 << asect->alignment_power;
2748 /* The sh_entsize and sh_info fields may have been set already by
2749 copy_private_section_data. */
2751 this_hdr->bfd_section = asect;
2752 this_hdr->contents = NULL;
2754 /* If the section type is unspecified, we set it based on
2755 asect->flags. */
2756 if (this_hdr->sh_type == SHT_NULL)
2758 if ((asect->flags & SEC_GROUP) != 0)
2759 this_hdr->sh_type = SHT_GROUP;
2760 else if ((asect->flags & SEC_ALLOC) != 0
2761 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2762 || (asect->flags & SEC_NEVER_LOAD) != 0))
2763 this_hdr->sh_type = SHT_NOBITS;
2764 else
2765 this_hdr->sh_type = SHT_PROGBITS;
2768 switch (this_hdr->sh_type)
2770 default:
2771 break;
2773 case SHT_STRTAB:
2774 case SHT_INIT_ARRAY:
2775 case SHT_FINI_ARRAY:
2776 case SHT_PREINIT_ARRAY:
2777 case SHT_NOTE:
2778 case SHT_NOBITS:
2779 case SHT_PROGBITS:
2780 break;
2782 case SHT_HASH:
2783 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2784 break;
2786 case SHT_DYNSYM:
2787 this_hdr->sh_entsize = bed->s->sizeof_sym;
2788 break;
2790 case SHT_DYNAMIC:
2791 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2792 break;
2794 case SHT_RELA:
2795 if (get_elf_backend_data (abfd)->may_use_rela_p)
2796 this_hdr->sh_entsize = bed->s->sizeof_rela;
2797 break;
2799 case SHT_REL:
2800 if (get_elf_backend_data (abfd)->may_use_rel_p)
2801 this_hdr->sh_entsize = bed->s->sizeof_rel;
2802 break;
2804 case SHT_GNU_versym:
2805 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2806 break;
2808 case SHT_GNU_verdef:
2809 this_hdr->sh_entsize = 0;
2810 /* objcopy or strip will copy over sh_info, but may not set
2811 cverdefs. The linker will set cverdefs, but sh_info will be
2812 zero. */
2813 if (this_hdr->sh_info == 0)
2814 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2815 else
2816 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2817 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2818 break;
2820 case SHT_GNU_verneed:
2821 this_hdr->sh_entsize = 0;
2822 /* objcopy or strip will copy over sh_info, but may not set
2823 cverrefs. The linker will set cverrefs, but sh_info will be
2824 zero. */
2825 if (this_hdr->sh_info == 0)
2826 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2827 else
2828 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2829 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2830 break;
2832 case SHT_GROUP:
2833 this_hdr->sh_entsize = 4;
2834 break;
2836 case SHT_GNU_HASH:
2837 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2838 break;
2841 if ((asect->flags & SEC_ALLOC) != 0)
2842 this_hdr->sh_flags |= SHF_ALLOC;
2843 if ((asect->flags & SEC_READONLY) == 0)
2844 this_hdr->sh_flags |= SHF_WRITE;
2845 if ((asect->flags & SEC_CODE) != 0)
2846 this_hdr->sh_flags |= SHF_EXECINSTR;
2847 if ((asect->flags & SEC_MERGE) != 0)
2849 this_hdr->sh_flags |= SHF_MERGE;
2850 this_hdr->sh_entsize = asect->entsize;
2851 if ((asect->flags & SEC_STRINGS) != 0)
2852 this_hdr->sh_flags |= SHF_STRINGS;
2854 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2855 this_hdr->sh_flags |= SHF_GROUP;
2856 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2858 this_hdr->sh_flags |= SHF_TLS;
2859 if (asect->size == 0
2860 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2862 struct bfd_link_order *o = asect->map_tail.link_order;
2864 this_hdr->sh_size = 0;
2865 if (o != NULL)
2867 this_hdr->sh_size = o->offset + o->size;
2868 if (this_hdr->sh_size != 0)
2869 this_hdr->sh_type = SHT_NOBITS;
2874 /* Check for processor-specific section types. */
2875 if (bed->elf_backend_fake_sections
2876 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2877 *failedptr = TRUE;
2879 /* If the section has relocs, set up a section header for the
2880 SHT_REL[A] section. If two relocation sections are required for
2881 this section, it is up to the processor-specific back-end to
2882 create the other. */
2883 if ((asect->flags & SEC_RELOC) != 0
2884 && !_bfd_elf_init_reloc_shdr (abfd,
2885 &elf_section_data (asect)->rel_hdr,
2886 asect,
2887 asect->use_rela_p))
2888 *failedptr = TRUE;
2891 /* Fill in the contents of a SHT_GROUP section. */
2893 void
2894 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2896 bfd_boolean *failedptr = failedptrarg;
2897 unsigned long symindx;
2898 asection *elt, *first;
2899 unsigned char *loc;
2900 bfd_boolean gas;
2902 /* Ignore linker created group section. See elfNN_ia64_object_p in
2903 elfxx-ia64.c. */
2904 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2905 || *failedptr)
2906 return;
2908 symindx = 0;
2909 if (elf_group_id (sec) != NULL)
2910 symindx = elf_group_id (sec)->udata.i;
2912 if (symindx == 0)
2914 /* If called from the assembler, swap_out_syms will have set up
2915 elf_section_syms; If called for "ld -r", use target_index. */
2916 if (elf_section_syms (abfd) != NULL)
2917 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2918 else
2919 symindx = sec->target_index;
2921 elf_section_data (sec)->this_hdr.sh_info = symindx;
2923 /* The contents won't be allocated for "ld -r" or objcopy. */
2924 gas = TRUE;
2925 if (sec->contents == NULL)
2927 gas = FALSE;
2928 sec->contents = bfd_alloc (abfd, sec->size);
2930 /* Arrange for the section to be written out. */
2931 elf_section_data (sec)->this_hdr.contents = sec->contents;
2932 if (sec->contents == NULL)
2934 *failedptr = TRUE;
2935 return;
2939 loc = sec->contents + sec->size;
2941 /* Get the pointer to the first section in the group that gas
2942 squirreled away here. objcopy arranges for this to be set to the
2943 start of the input section group. */
2944 first = elt = elf_next_in_group (sec);
2946 /* First element is a flag word. Rest of section is elf section
2947 indices for all the sections of the group. Write them backwards
2948 just to keep the group in the same order as given in .section
2949 directives, not that it matters. */
2950 while (elt != NULL)
2952 asection *s;
2953 unsigned int idx;
2955 loc -= 4;
2956 s = elt;
2957 if (!gas)
2958 s = s->output_section;
2959 idx = 0;
2960 if (s != NULL)
2961 idx = elf_section_data (s)->this_idx;
2962 H_PUT_32 (abfd, idx, loc);
2963 elt = elf_next_in_group (elt);
2964 if (elt == first)
2965 break;
2968 if ((loc -= 4) != sec->contents)
2969 abort ();
2971 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2974 /* Assign all ELF section numbers. The dummy first section is handled here
2975 too. The link/info pointers for the standard section types are filled
2976 in here too, while we're at it. */
2978 static bfd_boolean
2979 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2981 struct elf_obj_tdata *t = elf_tdata (abfd);
2982 asection *sec;
2983 unsigned int section_number, secn;
2984 Elf_Internal_Shdr **i_shdrp;
2985 struct bfd_elf_section_data *d;
2987 section_number = 1;
2989 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2991 /* SHT_GROUP sections are in relocatable files only. */
2992 if (link_info == NULL || link_info->relocatable)
2994 /* Put SHT_GROUP sections first. */
2995 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2997 d = elf_section_data (sec);
2999 if (d->this_hdr.sh_type == SHT_GROUP)
3001 if (sec->flags & SEC_LINKER_CREATED)
3003 /* Remove the linker created SHT_GROUP sections. */
3004 bfd_section_list_remove (abfd, sec);
3005 abfd->section_count--;
3007 else
3009 if (section_number == SHN_LORESERVE)
3010 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3011 d->this_idx = section_number++;
3017 for (sec = abfd->sections; sec; sec = sec->next)
3019 d = elf_section_data (sec);
3021 if (d->this_hdr.sh_type != SHT_GROUP)
3023 if (section_number == SHN_LORESERVE)
3024 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3025 d->this_idx = section_number++;
3027 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3028 if ((sec->flags & SEC_RELOC) == 0)
3029 d->rel_idx = 0;
3030 else
3032 if (section_number == SHN_LORESERVE)
3033 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3034 d->rel_idx = section_number++;
3035 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3038 if (d->rel_hdr2)
3040 if (section_number == SHN_LORESERVE)
3041 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3042 d->rel_idx2 = section_number++;
3043 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3045 else
3046 d->rel_idx2 = 0;
3049 if (section_number == SHN_LORESERVE)
3050 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3051 t->shstrtab_section = section_number++;
3052 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3053 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3055 if (bfd_get_symcount (abfd) > 0)
3057 if (section_number == SHN_LORESERVE)
3058 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3059 t->symtab_section = section_number++;
3060 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3061 if (section_number > SHN_LORESERVE - 2)
3063 if (section_number == SHN_LORESERVE)
3064 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3065 t->symtab_shndx_section = section_number++;
3066 t->symtab_shndx_hdr.sh_name
3067 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3068 ".symtab_shndx", FALSE);
3069 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3070 return FALSE;
3072 if (section_number == SHN_LORESERVE)
3073 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3074 t->strtab_section = section_number++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3078 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3079 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3081 elf_numsections (abfd) = section_number;
3082 elf_elfheader (abfd)->e_shnum = section_number;
3083 if (section_number > SHN_LORESERVE)
3084 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3086 /* Set up the list of section header pointers, in agreement with the
3087 indices. */
3088 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3089 if (i_shdrp == NULL)
3090 return FALSE;
3092 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3093 if (i_shdrp[0] == NULL)
3095 bfd_release (abfd, i_shdrp);
3096 return FALSE;
3099 elf_elfsections (abfd) = i_shdrp;
3101 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3102 if (bfd_get_symcount (abfd) > 0)
3104 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3105 if (elf_numsections (abfd) > SHN_LORESERVE)
3107 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3108 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3110 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3111 t->symtab_hdr.sh_link = t->strtab_section;
3114 for (sec = abfd->sections; sec; sec = sec->next)
3116 struct bfd_elf_section_data *d = elf_section_data (sec);
3117 asection *s;
3118 const char *name;
3120 i_shdrp[d->this_idx] = &d->this_hdr;
3121 if (d->rel_idx != 0)
3122 i_shdrp[d->rel_idx] = &d->rel_hdr;
3123 if (d->rel_idx2 != 0)
3124 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3126 /* Fill in the sh_link and sh_info fields while we're at it. */
3128 /* sh_link of a reloc section is the section index of the symbol
3129 table. sh_info is the section index of the section to which
3130 the relocation entries apply. */
3131 if (d->rel_idx != 0)
3133 d->rel_hdr.sh_link = t->symtab_section;
3134 d->rel_hdr.sh_info = d->this_idx;
3136 if (d->rel_idx2 != 0)
3138 d->rel_hdr2->sh_link = t->symtab_section;
3139 d->rel_hdr2->sh_info = d->this_idx;
3142 /* We need to set up sh_link for SHF_LINK_ORDER. */
3143 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3145 s = elf_linked_to_section (sec);
3146 if (s)
3148 /* elf_linked_to_section points to the input section. */
3149 if (link_info != NULL)
3151 /* Check discarded linkonce section. */
3152 if (elf_discarded_section (s))
3154 asection *kept;
3155 (*_bfd_error_handler)
3156 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3157 abfd, d->this_hdr.bfd_section,
3158 s, s->owner);
3159 /* Point to the kept section if it has the same
3160 size as the discarded one. */
3161 kept = _bfd_elf_check_kept_section (s, link_info);
3162 if (kept == NULL)
3164 bfd_set_error (bfd_error_bad_value);
3165 return FALSE;
3167 s = kept;
3170 s = s->output_section;
3171 BFD_ASSERT (s != NULL);
3173 else
3175 /* Handle objcopy. */
3176 if (s->output_section == NULL)
3178 (*_bfd_error_handler)
3179 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3180 abfd, d->this_hdr.bfd_section, s, s->owner);
3181 bfd_set_error (bfd_error_bad_value);
3182 return FALSE;
3184 s = s->output_section;
3186 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3188 else
3190 /* PR 290:
3191 The Intel C compiler generates SHT_IA_64_UNWIND with
3192 SHF_LINK_ORDER. But it doesn't set the sh_link or
3193 sh_info fields. Hence we could get the situation
3194 where s is NULL. */
3195 const struct elf_backend_data *bed
3196 = get_elf_backend_data (abfd);
3197 if (bed->link_order_error_handler)
3198 bed->link_order_error_handler
3199 (_("%B: warning: sh_link not set for section `%A'"),
3200 abfd, sec);
3204 switch (d->this_hdr.sh_type)
3206 case SHT_REL:
3207 case SHT_RELA:
3208 /* A reloc section which we are treating as a normal BFD
3209 section. sh_link is the section index of the symbol
3210 table. sh_info is the section index of the section to
3211 which the relocation entries apply. We assume that an
3212 allocated reloc section uses the dynamic symbol table.
3213 FIXME: How can we be sure? */
3214 s = bfd_get_section_by_name (abfd, ".dynsym");
3215 if (s != NULL)
3216 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3218 /* We look up the section the relocs apply to by name. */
3219 name = sec->name;
3220 if (d->this_hdr.sh_type == SHT_REL)
3221 name += 4;
3222 else
3223 name += 5;
3224 s = bfd_get_section_by_name (abfd, name);
3225 if (s != NULL)
3226 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3227 break;
3229 case SHT_STRTAB:
3230 /* We assume that a section named .stab*str is a stabs
3231 string section. We look for a section with the same name
3232 but without the trailing ``str'', and set its sh_link
3233 field to point to this section. */
3234 if (CONST_STRNEQ (sec->name, ".stab")
3235 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3237 size_t len;
3238 char *alc;
3240 len = strlen (sec->name);
3241 alc = bfd_malloc (len - 2);
3242 if (alc == NULL)
3243 return FALSE;
3244 memcpy (alc, sec->name, len - 3);
3245 alc[len - 3] = '\0';
3246 s = bfd_get_section_by_name (abfd, alc);
3247 free (alc);
3248 if (s != NULL)
3250 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3252 /* This is a .stab section. */
3253 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3254 elf_section_data (s)->this_hdr.sh_entsize
3255 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3258 break;
3260 case SHT_DYNAMIC:
3261 case SHT_DYNSYM:
3262 case SHT_GNU_verneed:
3263 case SHT_GNU_verdef:
3264 /* sh_link is the section header index of the string table
3265 used for the dynamic entries, or the symbol table, or the
3266 version strings. */
3267 s = bfd_get_section_by_name (abfd, ".dynstr");
3268 if (s != NULL)
3269 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3270 break;
3272 case SHT_GNU_LIBLIST:
3273 /* sh_link is the section header index of the prelink library
3274 list
3275 used for the dynamic entries, or the symbol table, or the
3276 version strings. */
3277 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3278 ? ".dynstr" : ".gnu.libstr");
3279 if (s != NULL)
3280 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3281 break;
3283 case SHT_HASH:
3284 case SHT_GNU_HASH:
3285 case SHT_GNU_versym:
3286 /* sh_link is the section header index of the symbol table
3287 this hash table or version table is for. */
3288 s = bfd_get_section_by_name (abfd, ".dynsym");
3289 if (s != NULL)
3290 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3291 break;
3293 case SHT_GROUP:
3294 d->this_hdr.sh_link = t->symtab_section;
3298 for (secn = 1; secn < section_number; ++secn)
3299 if (i_shdrp[secn] == NULL)
3300 i_shdrp[secn] = i_shdrp[0];
3301 else
3302 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3303 i_shdrp[secn]->sh_name);
3304 return TRUE;
3307 /* Map symbol from it's internal number to the external number, moving
3308 all local symbols to be at the head of the list. */
3310 static bfd_boolean
3311 sym_is_global (bfd *abfd, asymbol *sym)
3313 /* If the backend has a special mapping, use it. */
3314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3315 if (bed->elf_backend_sym_is_global)
3316 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3318 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3319 || bfd_is_und_section (bfd_get_section (sym))
3320 || bfd_is_com_section (bfd_get_section (sym)));
3323 /* Don't output section symbols for sections that are not going to be
3324 output. Also, don't output section symbols for reloc and other
3325 special sections. */
3327 static bfd_boolean
3328 ignore_section_sym (bfd *abfd, asymbol *sym)
3330 return ((sym->flags & BSF_SECTION_SYM) != 0
3331 && (sym->value != 0
3332 || (sym->section->owner != abfd
3333 && (sym->section->output_section->owner != abfd
3334 || sym->section->output_offset != 0))));
3337 static bfd_boolean
3338 elf_map_symbols (bfd *abfd)
3340 unsigned int symcount = bfd_get_symcount (abfd);
3341 asymbol **syms = bfd_get_outsymbols (abfd);
3342 asymbol **sect_syms;
3343 unsigned int num_locals = 0;
3344 unsigned int num_globals = 0;
3345 unsigned int num_locals2 = 0;
3346 unsigned int num_globals2 = 0;
3347 int max_index = 0;
3348 unsigned int idx;
3349 asection *asect;
3350 asymbol **new_syms;
3352 #ifdef DEBUG
3353 fprintf (stderr, "elf_map_symbols\n");
3354 fflush (stderr);
3355 #endif
3357 for (asect = abfd->sections; asect; asect = asect->next)
3359 if (max_index < asect->index)
3360 max_index = asect->index;
3363 max_index++;
3364 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3365 if (sect_syms == NULL)
3366 return FALSE;
3367 elf_section_syms (abfd) = sect_syms;
3368 elf_num_section_syms (abfd) = max_index;
3370 /* Init sect_syms entries for any section symbols we have already
3371 decided to output. */
3372 for (idx = 0; idx < symcount; idx++)
3374 asymbol *sym = syms[idx];
3376 if ((sym->flags & BSF_SECTION_SYM) != 0
3377 && !ignore_section_sym (abfd, sym))
3379 asection *sec = sym->section;
3381 if (sec->owner != abfd)
3382 sec = sec->output_section;
3384 sect_syms[sec->index] = syms[idx];
3388 /* Classify all of the symbols. */
3389 for (idx = 0; idx < symcount; idx++)
3391 if (ignore_section_sym (abfd, syms[idx]))
3392 continue;
3393 if (!sym_is_global (abfd, syms[idx]))
3394 num_locals++;
3395 else
3396 num_globals++;
3399 /* We will be adding a section symbol for each normal BFD section. Most
3400 sections will already have a section symbol in outsymbols, but
3401 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3402 at least in that case. */
3403 for (asect = abfd->sections; asect; asect = asect->next)
3405 if (sect_syms[asect->index] == NULL)
3407 if (!sym_is_global (abfd, asect->symbol))
3408 num_locals++;
3409 else
3410 num_globals++;
3414 /* Now sort the symbols so the local symbols are first. */
3415 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3417 if (new_syms == NULL)
3418 return FALSE;
3420 for (idx = 0; idx < symcount; idx++)
3422 asymbol *sym = syms[idx];
3423 unsigned int i;
3425 if (ignore_section_sym (abfd, sym))
3426 continue;
3427 if (!sym_is_global (abfd, sym))
3428 i = num_locals2++;
3429 else
3430 i = num_locals + num_globals2++;
3431 new_syms[i] = sym;
3432 sym->udata.i = i + 1;
3434 for (asect = abfd->sections; asect; asect = asect->next)
3436 if (sect_syms[asect->index] == NULL)
3438 asymbol *sym = asect->symbol;
3439 unsigned int i;
3441 sect_syms[asect->index] = sym;
3442 if (!sym_is_global (abfd, sym))
3443 i = num_locals2++;
3444 else
3445 i = num_locals + num_globals2++;
3446 new_syms[i] = sym;
3447 sym->udata.i = i + 1;
3451 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3453 elf_num_locals (abfd) = num_locals;
3454 elf_num_globals (abfd) = num_globals;
3455 return TRUE;
3458 /* Align to the maximum file alignment that could be required for any
3459 ELF data structure. */
3461 static inline file_ptr
3462 align_file_position (file_ptr off, int align)
3464 return (off + align - 1) & ~(align - 1);
3467 /* Assign a file position to a section, optionally aligning to the
3468 required section alignment. */
3470 file_ptr
3471 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3472 file_ptr offset,
3473 bfd_boolean align)
3475 if (align)
3477 unsigned int al;
3479 al = i_shdrp->sh_addralign;
3480 if (al > 1)
3481 offset = BFD_ALIGN (offset, al);
3483 i_shdrp->sh_offset = offset;
3484 if (i_shdrp->bfd_section != NULL)
3485 i_shdrp->bfd_section->filepos = offset;
3486 if (i_shdrp->sh_type != SHT_NOBITS)
3487 offset += i_shdrp->sh_size;
3488 return offset;
3491 /* Compute the file positions we are going to put the sections at, and
3492 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3493 is not NULL, this is being called by the ELF backend linker. */
3495 bfd_boolean
3496 _bfd_elf_compute_section_file_positions (bfd *abfd,
3497 struct bfd_link_info *link_info)
3499 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3500 bfd_boolean failed;
3501 struct bfd_strtab_hash *strtab = NULL;
3502 Elf_Internal_Shdr *shstrtab_hdr;
3504 if (abfd->output_has_begun)
3505 return TRUE;
3507 /* Do any elf backend specific processing first. */
3508 if (bed->elf_backend_begin_write_processing)
3509 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3511 if (! prep_headers (abfd))
3512 return FALSE;
3514 /* Post process the headers if necessary. */
3515 if (bed->elf_backend_post_process_headers)
3516 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3518 failed = FALSE;
3519 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3520 if (failed)
3521 return FALSE;
3523 if (!assign_section_numbers (abfd, link_info))
3524 return FALSE;
3526 /* The backend linker builds symbol table information itself. */
3527 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3529 /* Non-zero if doing a relocatable link. */
3530 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3532 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3533 return FALSE;
3536 if (link_info == NULL)
3538 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3539 if (failed)
3540 return FALSE;
3543 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3544 /* sh_name was set in prep_headers. */
3545 shstrtab_hdr->sh_type = SHT_STRTAB;
3546 shstrtab_hdr->sh_flags = 0;
3547 shstrtab_hdr->sh_addr = 0;
3548 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3549 shstrtab_hdr->sh_entsize = 0;
3550 shstrtab_hdr->sh_link = 0;
3551 shstrtab_hdr->sh_info = 0;
3552 /* sh_offset is set in assign_file_positions_except_relocs. */
3553 shstrtab_hdr->sh_addralign = 1;
3555 if (!assign_file_positions_except_relocs (abfd, link_info))
3556 return FALSE;
3558 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3560 file_ptr off;
3561 Elf_Internal_Shdr *hdr;
3563 off = elf_tdata (abfd)->next_file_pos;
3565 hdr = &elf_tdata (abfd)->symtab_hdr;
3566 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3568 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3569 if (hdr->sh_size != 0)
3570 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3572 hdr = &elf_tdata (abfd)->strtab_hdr;
3573 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3575 elf_tdata (abfd)->next_file_pos = off;
3577 /* Now that we know where the .strtab section goes, write it
3578 out. */
3579 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3580 || ! _bfd_stringtab_emit (abfd, strtab))
3581 return FALSE;
3582 _bfd_stringtab_free (strtab);
3585 abfd->output_has_begun = TRUE;
3587 return TRUE;
3590 /* Make an initial estimate of the size of the program header. If we
3591 get the number wrong here, we'll redo section placement. */
3593 static bfd_size_type
3594 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3596 size_t segs;
3597 asection *s;
3598 const struct elf_backend_data *bed;
3600 /* Assume we will need exactly two PT_LOAD segments: one for text
3601 and one for data. */
3602 segs = 2;
3604 s = bfd_get_section_by_name (abfd, ".interp");
3605 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3607 /* If we have a loadable interpreter section, we need a
3608 PT_INTERP segment. In this case, assume we also need a
3609 PT_PHDR segment, although that may not be true for all
3610 targets. */
3611 segs += 2;
3614 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3616 /* We need a PT_DYNAMIC segment. */
3617 ++segs;
3619 if (elf_tdata (abfd)->relro)
3621 /* We need a PT_GNU_RELRO segment only when there is a
3622 PT_DYNAMIC segment. */
3623 ++segs;
3627 if (elf_tdata (abfd)->eh_frame_hdr)
3629 /* We need a PT_GNU_EH_FRAME segment. */
3630 ++segs;
3633 if (elf_tdata (abfd)->stack_flags)
3635 /* We need a PT_GNU_STACK segment. */
3636 ++segs;
3639 for (s = abfd->sections; s != NULL; s = s->next)
3641 if ((s->flags & SEC_LOAD) != 0
3642 && CONST_STRNEQ (s->name, ".note"))
3644 /* We need a PT_NOTE segment. */
3645 ++segs;
3649 for (s = abfd->sections; s != NULL; s = s->next)
3651 if (s->flags & SEC_THREAD_LOCAL)
3653 /* We need a PT_TLS segment. */
3654 ++segs;
3655 break;
3659 /* Let the backend count up any program headers it might need. */
3660 bed = get_elf_backend_data (abfd);
3661 if (bed->elf_backend_additional_program_headers)
3663 int a;
3665 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3666 if (a == -1)
3667 abort ();
3668 segs += a;
3671 return segs * bed->s->sizeof_phdr;
3674 /* Create a mapping from a set of sections to a program segment. */
3676 static struct elf_segment_map *
3677 make_mapping (bfd *abfd,
3678 asection **sections,
3679 unsigned int from,
3680 unsigned int to,
3681 bfd_boolean phdr)
3683 struct elf_segment_map *m;
3684 unsigned int i;
3685 asection **hdrpp;
3686 bfd_size_type amt;
3688 amt = sizeof (struct elf_segment_map);
3689 amt += (to - from - 1) * sizeof (asection *);
3690 m = bfd_zalloc (abfd, amt);
3691 if (m == NULL)
3692 return NULL;
3693 m->next = NULL;
3694 m->p_type = PT_LOAD;
3695 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3696 m->sections[i - from] = *hdrpp;
3697 m->count = to - from;
3699 if (from == 0 && phdr)
3701 /* Include the headers in the first PT_LOAD segment. */
3702 m->includes_filehdr = 1;
3703 m->includes_phdrs = 1;
3706 return m;
3709 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3710 on failure. */
3712 struct elf_segment_map *
3713 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3715 struct elf_segment_map *m;
3717 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3718 if (m == NULL)
3719 return NULL;
3720 m->next = NULL;
3721 m->p_type = PT_DYNAMIC;
3722 m->count = 1;
3723 m->sections[0] = dynsec;
3725 return m;
3728 /* Possibly add or remove segments from the segment map. */
3730 static bfd_boolean
3731 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3733 struct elf_segment_map **m;
3734 const struct elf_backend_data *bed;
3736 /* The placement algorithm assumes that non allocated sections are
3737 not in PT_LOAD segments. We ensure this here by removing such
3738 sections from the segment map. We also remove excluded
3739 sections. Finally, any PT_LOAD segment without sections is
3740 removed. */
3741 m = &elf_tdata (abfd)->segment_map;
3742 while (*m)
3744 unsigned int i, new_count;
3746 for (new_count = 0, i = 0; i < (*m)->count; i++)
3748 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3749 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3750 || (*m)->p_type != PT_LOAD))
3752 (*m)->sections[new_count] = (*m)->sections[i];
3753 new_count++;
3756 (*m)->count = new_count;
3758 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3759 *m = (*m)->next;
3760 else
3761 m = &(*m)->next;
3764 bed = get_elf_backend_data (abfd);
3765 if (bed->elf_backend_modify_segment_map != NULL)
3767 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3768 return FALSE;
3771 return TRUE;
3774 /* Set up a mapping from BFD sections to program segments. */
3776 bfd_boolean
3777 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3779 unsigned int count;
3780 struct elf_segment_map *m;
3781 asection **sections = NULL;
3782 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3784 if (elf_tdata (abfd)->segment_map == NULL
3785 && bfd_count_sections (abfd) != 0)
3787 asection *s;
3788 unsigned int i;
3789 struct elf_segment_map *mfirst;
3790 struct elf_segment_map **pm;
3791 asection *last_hdr;
3792 bfd_vma last_size;
3793 unsigned int phdr_index;
3794 bfd_vma maxpagesize;
3795 asection **hdrpp;
3796 bfd_boolean phdr_in_segment = TRUE;
3797 bfd_boolean writable;
3798 int tls_count = 0;
3799 asection *first_tls = NULL;
3800 asection *dynsec, *eh_frame_hdr;
3801 bfd_size_type amt;
3803 /* Select the allocated sections, and sort them. */
3805 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3806 if (sections == NULL)
3807 goto error_return;
3809 i = 0;
3810 for (s = abfd->sections; s != NULL; s = s->next)
3812 if ((s->flags & SEC_ALLOC) != 0)
3814 sections[i] = s;
3815 ++i;
3818 BFD_ASSERT (i <= bfd_count_sections (abfd));
3819 count = i;
3821 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3823 /* Build the mapping. */
3825 mfirst = NULL;
3826 pm = &mfirst;
3828 /* If we have a .interp section, then create a PT_PHDR segment for
3829 the program headers and a PT_INTERP segment for the .interp
3830 section. */
3831 s = bfd_get_section_by_name (abfd, ".interp");
3832 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3834 amt = sizeof (struct elf_segment_map);
3835 m = bfd_zalloc (abfd, amt);
3836 if (m == NULL)
3837 goto error_return;
3838 m->next = NULL;
3839 m->p_type = PT_PHDR;
3840 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3841 m->p_flags = PF_R | PF_X;
3842 m->p_flags_valid = 1;
3843 m->includes_phdrs = 1;
3845 *pm = m;
3846 pm = &m->next;
3848 amt = sizeof (struct elf_segment_map);
3849 m = bfd_zalloc (abfd, amt);
3850 if (m == NULL)
3851 goto error_return;
3852 m->next = NULL;
3853 m->p_type = PT_INTERP;
3854 m->count = 1;
3855 m->sections[0] = s;
3857 *pm = m;
3858 pm = &m->next;
3861 /* Look through the sections. We put sections in the same program
3862 segment when the start of the second section can be placed within
3863 a few bytes of the end of the first section. */
3864 last_hdr = NULL;
3865 last_size = 0;
3866 phdr_index = 0;
3867 maxpagesize = bed->maxpagesize;
3868 writable = FALSE;
3869 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3870 if (dynsec != NULL
3871 && (dynsec->flags & SEC_LOAD) == 0)
3872 dynsec = NULL;
3874 /* Deal with -Ttext or something similar such that the first section
3875 is not adjacent to the program headers. This is an
3876 approximation, since at this point we don't know exactly how many
3877 program headers we will need. */
3878 if (count > 0)
3880 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3882 if (phdr_size == (bfd_size_type) -1)
3883 phdr_size = get_program_header_size (abfd, info);
3884 if ((abfd->flags & D_PAGED) == 0
3885 || sections[0]->lma < phdr_size
3886 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3887 phdr_in_segment = FALSE;
3890 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3892 asection *hdr;
3893 bfd_boolean new_segment;
3895 hdr = *hdrpp;
3897 /* See if this section and the last one will fit in the same
3898 segment. */
3900 if (last_hdr == NULL)
3902 /* If we don't have a segment yet, then we don't need a new
3903 one (we build the last one after this loop). */
3904 new_segment = FALSE;
3906 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3908 /* If this section has a different relation between the
3909 virtual address and the load address, then we need a new
3910 segment. */
3911 new_segment = TRUE;
3913 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3914 < BFD_ALIGN (hdr->lma, maxpagesize))
3916 /* If putting this section in this segment would force us to
3917 skip a page in the segment, then we need a new segment. */
3918 new_segment = TRUE;
3920 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3921 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3923 /* We don't want to put a loadable section after a
3924 nonloadable section in the same segment.
3925 Consider .tbss sections as loadable for this purpose. */
3926 new_segment = TRUE;
3928 else if ((abfd->flags & D_PAGED) == 0)
3930 /* If the file is not demand paged, which means that we
3931 don't require the sections to be correctly aligned in the
3932 file, then there is no other reason for a new segment. */
3933 new_segment = FALSE;
3935 else if (! writable
3936 && (hdr->flags & SEC_READONLY) == 0
3937 && (((last_hdr->lma + last_size - 1)
3938 & ~(maxpagesize - 1))
3939 != (hdr->lma & ~(maxpagesize - 1))))
3941 /* We don't want to put a writable section in a read only
3942 segment, unless they are on the same page in memory
3943 anyhow. We already know that the last section does not
3944 bring us past the current section on the page, so the
3945 only case in which the new section is not on the same
3946 page as the previous section is when the previous section
3947 ends precisely on a page boundary. */
3948 new_segment = TRUE;
3950 else
3952 /* Otherwise, we can use the same segment. */
3953 new_segment = FALSE;
3956 /* Allow interested parties a chance to override our decision. */
3957 if (last_hdr && info->callbacks->override_segment_assignment)
3958 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3960 if (! new_segment)
3962 if ((hdr->flags & SEC_READONLY) == 0)
3963 writable = TRUE;
3964 last_hdr = hdr;
3965 /* .tbss sections effectively have zero size. */
3966 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3967 != SEC_THREAD_LOCAL)
3968 last_size = hdr->size;
3969 else
3970 last_size = 0;
3971 continue;
3974 /* We need a new program segment. We must create a new program
3975 header holding all the sections from phdr_index until hdr. */
3977 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3978 if (m == NULL)
3979 goto error_return;
3981 *pm = m;
3982 pm = &m->next;
3984 if ((hdr->flags & SEC_READONLY) == 0)
3985 writable = TRUE;
3986 else
3987 writable = FALSE;
3989 last_hdr = hdr;
3990 /* .tbss sections effectively have zero size. */
3991 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3992 last_size = hdr->size;
3993 else
3994 last_size = 0;
3995 phdr_index = i;
3996 phdr_in_segment = FALSE;
3999 /* Create a final PT_LOAD program segment. */
4000 if (last_hdr != NULL)
4002 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4003 if (m == NULL)
4004 goto error_return;
4006 *pm = m;
4007 pm = &m->next;
4010 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4011 if (dynsec != NULL)
4013 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4014 if (m == NULL)
4015 goto error_return;
4016 *pm = m;
4017 pm = &m->next;
4020 /* For each loadable .note section, add a PT_NOTE segment. We don't
4021 use bfd_get_section_by_name, because if we link together
4022 nonloadable .note sections and loadable .note sections, we will
4023 generate two .note sections in the output file. FIXME: Using
4024 names for section types is bogus anyhow. */
4025 for (s = abfd->sections; s != NULL; s = s->next)
4027 if ((s->flags & SEC_LOAD) != 0
4028 && CONST_STRNEQ (s->name, ".note"))
4030 amt = sizeof (struct elf_segment_map);
4031 m = bfd_zalloc (abfd, amt);
4032 if (m == NULL)
4033 goto error_return;
4034 m->next = NULL;
4035 m->p_type = PT_NOTE;
4036 m->count = 1;
4037 m->sections[0] = s;
4039 *pm = m;
4040 pm = &m->next;
4042 if (s->flags & SEC_THREAD_LOCAL)
4044 if (! tls_count)
4045 first_tls = s;
4046 tls_count++;
4050 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4051 if (tls_count > 0)
4053 int i;
4055 amt = sizeof (struct elf_segment_map);
4056 amt += (tls_count - 1) * sizeof (asection *);
4057 m = bfd_zalloc (abfd, amt);
4058 if (m == NULL)
4059 goto error_return;
4060 m->next = NULL;
4061 m->p_type = PT_TLS;
4062 m->count = tls_count;
4063 /* Mandated PF_R. */
4064 m->p_flags = PF_R;
4065 m->p_flags_valid = 1;
4066 for (i = 0; i < tls_count; ++i)
4068 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4069 m->sections[i] = first_tls;
4070 first_tls = first_tls->next;
4073 *pm = m;
4074 pm = &m->next;
4077 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4078 segment. */
4079 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4080 if (eh_frame_hdr != NULL
4081 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4083 amt = sizeof (struct elf_segment_map);
4084 m = bfd_zalloc (abfd, amt);
4085 if (m == NULL)
4086 goto error_return;
4087 m->next = NULL;
4088 m->p_type = PT_GNU_EH_FRAME;
4089 m->count = 1;
4090 m->sections[0] = eh_frame_hdr->output_section;
4092 *pm = m;
4093 pm = &m->next;
4096 if (elf_tdata (abfd)->stack_flags)
4098 amt = sizeof (struct elf_segment_map);
4099 m = bfd_zalloc (abfd, amt);
4100 if (m == NULL)
4101 goto error_return;
4102 m->next = NULL;
4103 m->p_type = PT_GNU_STACK;
4104 m->p_flags = elf_tdata (abfd)->stack_flags;
4105 m->p_flags_valid = 1;
4107 *pm = m;
4108 pm = &m->next;
4111 if (dynsec != NULL && elf_tdata (abfd)->relro)
4113 /* We make a PT_GNU_RELRO segment only when there is a
4114 PT_DYNAMIC segment. */
4115 amt = sizeof (struct elf_segment_map);
4116 m = bfd_zalloc (abfd, amt);
4117 if (m == NULL)
4118 goto error_return;
4119 m->next = NULL;
4120 m->p_type = PT_GNU_RELRO;
4121 m->p_flags = PF_R;
4122 m->p_flags_valid = 1;
4124 *pm = m;
4125 pm = &m->next;
4128 free (sections);
4129 elf_tdata (abfd)->segment_map = mfirst;
4132 if (!elf_modify_segment_map (abfd, info))
4133 return FALSE;
4135 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4136 ++count;
4137 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4139 return TRUE;
4141 error_return:
4142 if (sections != NULL)
4143 free (sections);
4144 return FALSE;
4147 /* Sort sections by address. */
4149 static int
4150 elf_sort_sections (const void *arg1, const void *arg2)
4152 const asection *sec1 = *(const asection **) arg1;
4153 const asection *sec2 = *(const asection **) arg2;
4154 bfd_size_type size1, size2;
4156 /* Sort by LMA first, since this is the address used to
4157 place the section into a segment. */
4158 if (sec1->lma < sec2->lma)
4159 return -1;
4160 else if (sec1->lma > sec2->lma)
4161 return 1;
4163 /* Then sort by VMA. Normally the LMA and the VMA will be
4164 the same, and this will do nothing. */
4165 if (sec1->vma < sec2->vma)
4166 return -1;
4167 else if (sec1->vma > sec2->vma)
4168 return 1;
4170 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4172 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4174 if (TOEND (sec1))
4176 if (TOEND (sec2))
4178 /* If the indicies are the same, do not return 0
4179 here, but continue to try the next comparison. */
4180 if (sec1->target_index - sec2->target_index != 0)
4181 return sec1->target_index - sec2->target_index;
4183 else
4184 return 1;
4186 else if (TOEND (sec2))
4187 return -1;
4189 #undef TOEND
4191 /* Sort by size, to put zero sized sections
4192 before others at the same address. */
4194 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4195 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4197 if (size1 < size2)
4198 return -1;
4199 if (size1 > size2)
4200 return 1;
4202 return sec1->target_index - sec2->target_index;
4205 /* Ian Lance Taylor writes:
4207 We shouldn't be using % with a negative signed number. That's just
4208 not good. We have to make sure either that the number is not
4209 negative, or that the number has an unsigned type. When the types
4210 are all the same size they wind up as unsigned. When file_ptr is a
4211 larger signed type, the arithmetic winds up as signed long long,
4212 which is wrong.
4214 What we're trying to say here is something like ``increase OFF by
4215 the least amount that will cause it to be equal to the VMA modulo
4216 the page size.'' */
4217 /* In other words, something like:
4219 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4220 off_offset = off % bed->maxpagesize;
4221 if (vma_offset < off_offset)
4222 adjustment = vma_offset + bed->maxpagesize - off_offset;
4223 else
4224 adjustment = vma_offset - off_offset;
4226 which can can be collapsed into the expression below. */
4228 static file_ptr
4229 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4231 return ((vma - off) % maxpagesize);
4234 /* Assign file positions to the sections based on the mapping from
4235 sections to segments. This function also sets up some fields in
4236 the file header. */
4238 static bfd_boolean
4239 assign_file_positions_for_load_sections (bfd *abfd,
4240 struct bfd_link_info *link_info)
4242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4243 struct elf_segment_map *m;
4244 Elf_Internal_Phdr *phdrs;
4245 Elf_Internal_Phdr *p;
4246 file_ptr off, voff;
4247 bfd_size_type maxpagesize;
4248 unsigned int alloc;
4249 unsigned int i, j;
4251 if (link_info == NULL
4252 && !elf_modify_segment_map (abfd, link_info))
4253 return FALSE;
4255 alloc = 0;
4256 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4257 ++alloc;
4259 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4260 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4261 elf_elfheader (abfd)->e_phnum = alloc;
4263 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4264 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4265 else
4266 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4267 >= alloc * bed->s->sizeof_phdr);
4269 if (alloc == 0)
4271 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4272 return TRUE;
4275 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4276 elf_tdata (abfd)->phdr = phdrs;
4277 if (phdrs == NULL)
4278 return FALSE;
4280 maxpagesize = 1;
4281 if ((abfd->flags & D_PAGED) != 0)
4282 maxpagesize = bed->maxpagesize;
4284 off = bed->s->sizeof_ehdr;
4285 off += alloc * bed->s->sizeof_phdr;
4287 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4288 m != NULL;
4289 m = m->next, p++, j++)
4291 asection **secpp;
4293 /* If elf_segment_map is not from map_sections_to_segments, the
4294 sections may not be correctly ordered. NOTE: sorting should
4295 not be done to the PT_NOTE section of a corefile, which may
4296 contain several pseudo-sections artificially created by bfd.
4297 Sorting these pseudo-sections breaks things badly. */
4298 if (m->count > 1
4299 && !(elf_elfheader (abfd)->e_type == ET_CORE
4300 && m->p_type == PT_NOTE))
4301 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4302 elf_sort_sections);
4304 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4305 number of sections with contents contributing to both p_filesz
4306 and p_memsz, followed by a number of sections with no contents
4307 that just contribute to p_memsz. In this loop, OFF tracks next
4308 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4309 an adjustment we use for segments that have no file contents
4310 but need zero filled memory allocation. */
4311 voff = 0;
4312 p->p_type = m->p_type;
4313 p->p_flags = m->p_flags;
4315 if (m->count == 0)
4316 p->p_vaddr = 0;
4317 else
4318 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4320 if (m->p_paddr_valid)
4321 p->p_paddr = m->p_paddr;
4322 else if (m->count == 0)
4323 p->p_paddr = 0;
4324 else
4325 p->p_paddr = m->sections[0]->lma;
4327 if (p->p_type == PT_LOAD
4328 && (abfd->flags & D_PAGED) != 0)
4330 /* p_align in demand paged PT_LOAD segments effectively stores
4331 the maximum page size. When copying an executable with
4332 objcopy, we set m->p_align from the input file. Use this
4333 value for maxpagesize rather than bed->maxpagesize, which
4334 may be different. Note that we use maxpagesize for PT_TLS
4335 segment alignment later in this function, so we are relying
4336 on at least one PT_LOAD segment appearing before a PT_TLS
4337 segment. */
4338 if (m->p_align_valid)
4339 maxpagesize = m->p_align;
4341 p->p_align = maxpagesize;
4343 else if (m->count == 0)
4344 p->p_align = 1 << bed->s->log_file_align;
4345 else if (m->p_align_valid)
4346 p->p_align = m->p_align;
4347 else
4348 p->p_align = 0;
4350 if (p->p_type == PT_LOAD
4351 && m->count > 0)
4353 bfd_size_type align;
4354 bfd_vma adjust;
4355 unsigned int align_power = 0;
4357 if (m->p_align_valid)
4358 align = p->p_align;
4359 else
4361 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4363 unsigned int secalign;
4365 secalign = bfd_get_section_alignment (abfd, *secpp);
4366 if (secalign > align_power)
4367 align_power = secalign;
4369 align = (bfd_size_type) 1 << align_power;
4370 if (align < maxpagesize)
4371 align = maxpagesize;
4374 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4375 off += adjust;
4376 if (adjust != 0
4377 && !m->includes_filehdr
4378 && !m->includes_phdrs
4379 && (ufile_ptr) off >= align)
4381 /* If the first section isn't loadable, the same holds for
4382 any other sections. Since the segment won't need file
4383 space, we can make p_offset overlap some prior segment.
4384 However, .tbss is special. If a segment starts with
4385 .tbss, we need to look at the next section to decide
4386 whether the segment has any loadable sections. */
4387 i = 0;
4388 while ((m->sections[i]->flags & SEC_LOAD) == 0
4389 && (m->sections[i]->flags & SEC_HAS_CONTENTS) == 0)
4391 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4392 || ++i >= m->count)
4394 off -= adjust;
4395 voff = adjust - align;
4396 break;
4401 /* Make sure the .dynamic section is the first section in the
4402 PT_DYNAMIC segment. */
4403 else if (p->p_type == PT_DYNAMIC
4404 && m->count > 1
4405 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4407 _bfd_error_handler
4408 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4409 abfd);
4410 bfd_set_error (bfd_error_bad_value);
4411 return FALSE;
4414 p->p_offset = 0;
4415 p->p_filesz = 0;
4416 p->p_memsz = 0;
4418 if (m->includes_filehdr)
4420 if (! m->p_flags_valid)
4421 p->p_flags |= PF_R;
4422 p->p_filesz = bed->s->sizeof_ehdr;
4423 p->p_memsz = bed->s->sizeof_ehdr;
4424 if (m->count > 0)
4426 BFD_ASSERT (p->p_type == PT_LOAD);
4428 if (p->p_vaddr < (bfd_vma) off)
4430 (*_bfd_error_handler)
4431 (_("%B: Not enough room for program headers, try linking with -N"),
4432 abfd);
4433 bfd_set_error (bfd_error_bad_value);
4434 return FALSE;
4437 p->p_vaddr -= off;
4438 if (! m->p_paddr_valid)
4439 p->p_paddr -= off;
4443 if (m->includes_phdrs)
4445 if (! m->p_flags_valid)
4446 p->p_flags |= PF_R;
4448 if (!m->includes_filehdr)
4450 p->p_offset = bed->s->sizeof_ehdr;
4452 if (m->count > 0)
4454 BFD_ASSERT (p->p_type == PT_LOAD);
4455 p->p_vaddr -= off - p->p_offset;
4456 if (! m->p_paddr_valid)
4457 p->p_paddr -= off - p->p_offset;
4461 p->p_filesz += alloc * bed->s->sizeof_phdr;
4462 p->p_memsz += alloc * bed->s->sizeof_phdr;
4465 if (p->p_type == PT_LOAD
4466 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4468 if (! m->includes_filehdr && ! m->includes_phdrs)
4469 p->p_offset = off + voff;
4470 else
4472 file_ptr adjust;
4474 adjust = off - (p->p_offset + p->p_filesz);
4475 p->p_filesz += adjust;
4476 p->p_memsz += adjust;
4480 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4481 maps. Set filepos for sections in PT_LOAD segments, and in
4482 core files, for sections in PT_NOTE segments.
4483 assign_file_positions_for_non_load_sections will set filepos
4484 for other sections and update p_filesz for other segments. */
4485 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4487 asection *sec;
4488 flagword flags;
4489 bfd_size_type align;
4491 sec = *secpp;
4492 flags = sec->flags;
4493 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4495 if (p->p_type == PT_LOAD
4496 || p->p_type == PT_TLS)
4498 bfd_signed_vma adjust = sec->lma - (p->p_paddr + p->p_filesz);
4500 if ((flags & SEC_LOAD) != 0
4501 || ((flags & SEC_ALLOC) != 0
4502 && ((flags & SEC_THREAD_LOCAL) == 0
4503 || p->p_type == PT_TLS)))
4505 if (adjust < 0)
4507 (*_bfd_error_handler)
4508 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4509 abfd, sec, (unsigned long) sec->lma);
4510 adjust = 0;
4512 p->p_memsz += adjust;
4514 if ((flags & SEC_LOAD) != 0)
4516 off += adjust;
4517 p->p_filesz += adjust;
4522 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4524 /* The section at i == 0 is the one that actually contains
4525 everything. */
4526 if (i == 0)
4528 sec->filepos = off;
4529 off += sec->size;
4530 p->p_filesz = sec->size;
4531 p->p_memsz = 0;
4532 p->p_align = 1;
4534 else
4536 /* The rest are fake sections that shouldn't be written. */
4537 sec->filepos = 0;
4538 sec->size = 0;
4539 sec->flags = 0;
4540 continue;
4543 else
4545 if (p->p_type == PT_LOAD)
4547 sec->filepos = off + voff;
4548 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4549 1997, and the exact reason for it isn't clear. One
4550 plausible explanation is that it is to work around
4551 a problem we have with linker scripts using data
4552 statements in NOLOAD sections. I don't think it
4553 makes a great deal of sense to have such a section
4554 assigned to a PT_LOAD segment, but apparently
4555 people do this. The data statement results in a
4556 bfd_data_link_order being built, and these need
4557 section contents to write into. Eventually, we get
4558 to _bfd_elf_write_object_contents which writes any
4559 section with contents to the output. Make room
4560 here for the write, so that following segments are
4561 not trashed. */
4562 if ((flags & SEC_LOAD) != 0
4563 || (flags & SEC_HAS_CONTENTS) != 0)
4564 off += sec->size;
4567 if ((flags & SEC_LOAD) != 0)
4569 p->p_filesz += sec->size;
4570 p->p_memsz += sec->size;
4573 /* .tbss is special. It doesn't contribute to p_memsz of
4574 normal segments. */
4575 else if ((flags & SEC_ALLOC) != 0
4576 && ((flags & SEC_THREAD_LOCAL) == 0
4577 || p->p_type == PT_TLS))
4578 p->p_memsz += sec->size;
4580 if (p->p_type == PT_TLS
4581 && sec->size == 0
4582 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4584 struct bfd_link_order *o = sec->map_tail.link_order;
4585 if (o != NULL)
4586 p->p_memsz += o->offset + o->size;
4589 if (p->p_type == PT_GNU_RELRO)
4590 p->p_align = 1;
4591 else if (align > p->p_align
4592 && !m->p_align_valid
4593 && (p->p_type != PT_LOAD
4594 || (abfd->flags & D_PAGED) == 0))
4595 p->p_align = align;
4598 if (! m->p_flags_valid)
4600 p->p_flags |= PF_R;
4601 if ((flags & SEC_CODE) != 0)
4602 p->p_flags |= PF_X;
4603 if ((flags & SEC_READONLY) == 0)
4604 p->p_flags |= PF_W;
4608 /* Check if all sections are in the segment. Skip PT_GNU_RELRO
4609 and PT_NOTE segments since they will be processed by
4610 assign_file_positions_for_non_load_sections later. */
4611 if (p->p_type != PT_GNU_RELRO
4612 && p->p_type != PT_NOTE)
4613 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4615 Elf_Internal_Shdr *this_hdr;
4616 asection *sec;
4618 sec = *secpp;
4619 this_hdr = &(elf_section_data(sec)->this_hdr);
4620 if (this_hdr->sh_size != 0
4621 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4623 (*_bfd_error_handler)
4624 (_("%B: section `%A' can't be allocated in segment %d"),
4625 abfd, sec, j);
4626 bfd_set_error (bfd_error_bad_value);
4627 return FALSE;
4632 elf_tdata (abfd)->next_file_pos = off;
4633 return TRUE;
4636 /* Assign file positions for the other sections. */
4638 static bfd_boolean
4639 assign_file_positions_for_non_load_sections (bfd *abfd,
4640 struct bfd_link_info *link_info)
4642 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4643 Elf_Internal_Shdr **i_shdrpp;
4644 Elf_Internal_Shdr **hdrpp;
4645 Elf_Internal_Phdr *phdrs;
4646 Elf_Internal_Phdr *p;
4647 struct elf_segment_map *m;
4648 bfd_vma filehdr_vaddr, filehdr_paddr;
4649 bfd_vma phdrs_vaddr, phdrs_paddr;
4650 file_ptr off;
4651 unsigned int num_sec;
4652 unsigned int i;
4653 unsigned int count;
4655 i_shdrpp = elf_elfsections (abfd);
4656 num_sec = elf_numsections (abfd);
4657 off = elf_tdata (abfd)->next_file_pos;
4658 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4660 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4661 Elf_Internal_Shdr *hdr;
4663 hdr = *hdrpp;
4664 if (hdr->bfd_section != NULL
4665 && (hdr->bfd_section->filepos != 0
4666 || (hdr->sh_type == SHT_NOBITS
4667 && hdr->contents == NULL)))
4668 hdr->sh_offset = hdr->bfd_section->filepos;
4669 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4671 if (hdr->sh_size != 0)
4672 ((*_bfd_error_handler)
4673 (_("%B: warning: allocated section `%s' not in segment"),
4674 abfd,
4675 (hdr->bfd_section == NULL
4676 ? "*unknown*"
4677 : hdr->bfd_section->name)));
4678 /* We don't need to page align empty sections. */
4679 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4680 off += vma_page_aligned_bias (hdr->sh_addr, off,
4681 bed->maxpagesize);
4682 else
4683 off += vma_page_aligned_bias (hdr->sh_addr, off,
4684 hdr->sh_addralign);
4685 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4686 FALSE);
4688 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4689 && hdr->bfd_section == NULL)
4690 || hdr == i_shdrpp[tdata->symtab_section]
4691 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4692 || hdr == i_shdrpp[tdata->strtab_section])
4693 hdr->sh_offset = -1;
4694 else
4695 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4697 if (i == SHN_LORESERVE - 1)
4699 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4700 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4704 /* Now that we have set the section file positions, we can set up
4705 the file positions for the non PT_LOAD segments. */
4706 count = 0;
4707 filehdr_vaddr = 0;
4708 filehdr_paddr = 0;
4709 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4710 phdrs_paddr = 0;
4711 phdrs = elf_tdata (abfd)->phdr;
4712 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4713 m != NULL;
4714 m = m->next, p++)
4716 ++count;
4717 if (p->p_type != PT_LOAD)
4718 continue;
4720 if (m->includes_filehdr)
4722 filehdr_vaddr = p->p_vaddr;
4723 filehdr_paddr = p->p_paddr;
4725 if (m->includes_phdrs)
4727 phdrs_vaddr = p->p_vaddr;
4728 phdrs_paddr = p->p_paddr;
4729 if (m->includes_filehdr)
4731 phdrs_vaddr += bed->s->sizeof_ehdr;
4732 phdrs_paddr += bed->s->sizeof_ehdr;
4737 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4738 m != NULL;
4739 m = m->next, p++)
4741 if (m->count != 0)
4743 if (p->p_type != PT_LOAD
4744 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4746 Elf_Internal_Shdr *hdr;
4747 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4749 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4750 p->p_filesz = (m->sections[m->count - 1]->filepos
4751 - m->sections[0]->filepos);
4752 if (hdr->sh_type != SHT_NOBITS)
4753 p->p_filesz += hdr->sh_size;
4755 p->p_offset = m->sections[0]->filepos;
4758 else
4760 if (m->includes_filehdr)
4762 p->p_vaddr = filehdr_vaddr;
4763 if (! m->p_paddr_valid)
4764 p->p_paddr = filehdr_paddr;
4766 else if (m->includes_phdrs)
4768 p->p_vaddr = phdrs_vaddr;
4769 if (! m->p_paddr_valid)
4770 p->p_paddr = phdrs_paddr;
4772 else if (p->p_type == PT_GNU_RELRO)
4774 Elf_Internal_Phdr *lp;
4776 for (lp = phdrs; lp < phdrs + count; ++lp)
4778 if (lp->p_type == PT_LOAD
4779 && lp->p_vaddr <= link_info->relro_end
4780 && lp->p_vaddr >= link_info->relro_start
4781 && (lp->p_vaddr + lp->p_filesz
4782 >= link_info->relro_end))
4783 break;
4786 if (lp < phdrs + count
4787 && link_info->relro_end > lp->p_vaddr)
4789 p->p_vaddr = lp->p_vaddr;
4790 p->p_paddr = lp->p_paddr;
4791 p->p_offset = lp->p_offset;
4792 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4793 p->p_memsz = p->p_filesz;
4794 p->p_align = 1;
4795 p->p_flags = (lp->p_flags & ~PF_W);
4797 else
4799 memset (p, 0, sizeof *p);
4800 p->p_type = PT_NULL;
4806 elf_tdata (abfd)->next_file_pos = off;
4808 return TRUE;
4811 /* Work out the file positions of all the sections. This is called by
4812 _bfd_elf_compute_section_file_positions. All the section sizes and
4813 VMAs must be known before this is called.
4815 Reloc sections come in two flavours: Those processed specially as
4816 "side-channel" data attached to a section to which they apply, and
4817 those that bfd doesn't process as relocations. The latter sort are
4818 stored in a normal bfd section by bfd_section_from_shdr. We don't
4819 consider the former sort here, unless they form part of the loadable
4820 image. Reloc sections not assigned here will be handled later by
4821 assign_file_positions_for_relocs.
4823 We also don't set the positions of the .symtab and .strtab here. */
4825 static bfd_boolean
4826 assign_file_positions_except_relocs (bfd *abfd,
4827 struct bfd_link_info *link_info)
4829 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4830 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4831 file_ptr off;
4832 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4834 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4835 && bfd_get_format (abfd) != bfd_core)
4837 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4838 unsigned int num_sec = elf_numsections (abfd);
4839 Elf_Internal_Shdr **hdrpp;
4840 unsigned int i;
4842 /* Start after the ELF header. */
4843 off = i_ehdrp->e_ehsize;
4845 /* We are not creating an executable, which means that we are
4846 not creating a program header, and that the actual order of
4847 the sections in the file is unimportant. */
4848 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4850 Elf_Internal_Shdr *hdr;
4852 hdr = *hdrpp;
4853 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4854 && hdr->bfd_section == NULL)
4855 || i == tdata->symtab_section
4856 || i == tdata->symtab_shndx_section
4857 || i == tdata->strtab_section)
4859 hdr->sh_offset = -1;
4861 else
4862 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4864 if (i == SHN_LORESERVE - 1)
4866 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4867 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4871 else
4873 unsigned int alloc;
4875 /* Assign file positions for the loaded sections based on the
4876 assignment of sections to segments. */
4877 if (!assign_file_positions_for_load_sections (abfd, link_info))
4878 return FALSE;
4880 /* And for non-load sections. */
4881 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4882 return FALSE;
4884 if (bed->elf_backend_modify_program_headers != NULL)
4886 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4887 return FALSE;
4890 /* Write out the program headers. */
4891 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4892 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4893 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4894 return FALSE;
4896 off = tdata->next_file_pos;
4899 /* Place the section headers. */
4900 off = align_file_position (off, 1 << bed->s->log_file_align);
4901 i_ehdrp->e_shoff = off;
4902 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4904 tdata->next_file_pos = off;
4906 return TRUE;
4909 static bfd_boolean
4910 prep_headers (bfd *abfd)
4912 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4913 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4914 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4915 struct elf_strtab_hash *shstrtab;
4916 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4918 i_ehdrp = elf_elfheader (abfd);
4919 i_shdrp = elf_elfsections (abfd);
4921 shstrtab = _bfd_elf_strtab_init ();
4922 if (shstrtab == NULL)
4923 return FALSE;
4925 elf_shstrtab (abfd) = shstrtab;
4927 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4928 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4929 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4930 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4932 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4933 i_ehdrp->e_ident[EI_DATA] =
4934 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4935 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4937 if ((abfd->flags & DYNAMIC) != 0)
4938 i_ehdrp->e_type = ET_DYN;
4939 else if ((abfd->flags & EXEC_P) != 0)
4940 i_ehdrp->e_type = ET_EXEC;
4941 else if (bfd_get_format (abfd) == bfd_core)
4942 i_ehdrp->e_type = ET_CORE;
4943 else
4944 i_ehdrp->e_type = ET_REL;
4946 switch (bfd_get_arch (abfd))
4948 case bfd_arch_unknown:
4949 i_ehdrp->e_machine = EM_NONE;
4950 break;
4952 /* There used to be a long list of cases here, each one setting
4953 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4954 in the corresponding bfd definition. To avoid duplication,
4955 the switch was removed. Machines that need special handling
4956 can generally do it in elf_backend_final_write_processing(),
4957 unless they need the information earlier than the final write.
4958 Such need can generally be supplied by replacing the tests for
4959 e_machine with the conditions used to determine it. */
4960 default:
4961 i_ehdrp->e_machine = bed->elf_machine_code;
4964 i_ehdrp->e_version = bed->s->ev_current;
4965 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4967 /* No program header, for now. */
4968 i_ehdrp->e_phoff = 0;
4969 i_ehdrp->e_phentsize = 0;
4970 i_ehdrp->e_phnum = 0;
4972 /* Each bfd section is section header entry. */
4973 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4974 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4976 /* If we're building an executable, we'll need a program header table. */
4977 if (abfd->flags & EXEC_P)
4978 /* It all happens later. */
4980 else
4982 i_ehdrp->e_phentsize = 0;
4983 i_phdrp = 0;
4984 i_ehdrp->e_phoff = 0;
4987 elf_tdata (abfd)->symtab_hdr.sh_name =
4988 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4989 elf_tdata (abfd)->strtab_hdr.sh_name =
4990 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4991 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4992 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4993 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4994 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4995 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4996 return FALSE;
4998 return TRUE;
5001 /* Assign file positions for all the reloc sections which are not part
5002 of the loadable file image. */
5004 void
5005 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5007 file_ptr off;
5008 unsigned int i, num_sec;
5009 Elf_Internal_Shdr **shdrpp;
5011 off = elf_tdata (abfd)->next_file_pos;
5013 num_sec = elf_numsections (abfd);
5014 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5016 Elf_Internal_Shdr *shdrp;
5018 shdrp = *shdrpp;
5019 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5020 && shdrp->sh_offset == -1)
5021 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5024 elf_tdata (abfd)->next_file_pos = off;
5027 bfd_boolean
5028 _bfd_elf_write_object_contents (bfd *abfd)
5030 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5031 Elf_Internal_Ehdr *i_ehdrp;
5032 Elf_Internal_Shdr **i_shdrp;
5033 bfd_boolean failed;
5034 unsigned int count, num_sec;
5036 if (! abfd->output_has_begun
5037 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5038 return FALSE;
5040 i_shdrp = elf_elfsections (abfd);
5041 i_ehdrp = elf_elfheader (abfd);
5043 failed = FALSE;
5044 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5045 if (failed)
5046 return FALSE;
5048 _bfd_elf_assign_file_positions_for_relocs (abfd);
5050 /* After writing the headers, we need to write the sections too... */
5051 num_sec = elf_numsections (abfd);
5052 for (count = 1; count < num_sec; count++)
5054 if (bed->elf_backend_section_processing)
5055 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5056 if (i_shdrp[count]->contents)
5058 bfd_size_type amt = i_shdrp[count]->sh_size;
5060 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5061 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5062 return FALSE;
5064 if (count == SHN_LORESERVE - 1)
5065 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5068 /* Write out the section header names. */
5069 if (elf_shstrtab (abfd) != NULL
5070 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5071 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5072 return FALSE;
5074 if (bed->elf_backend_final_write_processing)
5075 (*bed->elf_backend_final_write_processing) (abfd,
5076 elf_tdata (abfd)->linker);
5078 return bed->s->write_shdrs_and_ehdr (abfd);
5081 bfd_boolean
5082 _bfd_elf_write_corefile_contents (bfd *abfd)
5084 /* Hopefully this can be done just like an object file. */
5085 return _bfd_elf_write_object_contents (abfd);
5088 /* Given a section, search the header to find them. */
5091 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5093 const struct elf_backend_data *bed;
5094 int index;
5096 if (elf_section_data (asect) != NULL
5097 && elf_section_data (asect)->this_idx != 0)
5098 return elf_section_data (asect)->this_idx;
5100 if (bfd_is_abs_section (asect))
5101 index = SHN_ABS;
5102 else if (bfd_is_com_section (asect))
5103 index = SHN_COMMON;
5104 else if (bfd_is_und_section (asect))
5105 index = SHN_UNDEF;
5106 else
5107 index = -1;
5109 bed = get_elf_backend_data (abfd);
5110 if (bed->elf_backend_section_from_bfd_section)
5112 int retval = index;
5114 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5115 return retval;
5118 if (index == -1)
5119 bfd_set_error (bfd_error_nonrepresentable_section);
5121 return index;
5124 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5125 on error. */
5128 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5130 asymbol *asym_ptr = *asym_ptr_ptr;
5131 int idx;
5132 flagword flags = asym_ptr->flags;
5134 /* When gas creates relocations against local labels, it creates its
5135 own symbol for the section, but does put the symbol into the
5136 symbol chain, so udata is 0. When the linker is generating
5137 relocatable output, this section symbol may be for one of the
5138 input sections rather than the output section. */
5139 if (asym_ptr->udata.i == 0
5140 && (flags & BSF_SECTION_SYM)
5141 && asym_ptr->section)
5143 asection *sec;
5144 int indx;
5146 sec = asym_ptr->section;
5147 if (sec->owner != abfd && sec->output_section != NULL)
5148 sec = sec->output_section;
5149 if (sec->owner == abfd
5150 && (indx = sec->index) < elf_num_section_syms (abfd)
5151 && elf_section_syms (abfd)[indx] != NULL)
5152 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5155 idx = asym_ptr->udata.i;
5157 if (idx == 0)
5159 /* This case can occur when using --strip-symbol on a symbol
5160 which is used in a relocation entry. */
5161 (*_bfd_error_handler)
5162 (_("%B: symbol `%s' required but not present"),
5163 abfd, bfd_asymbol_name (asym_ptr));
5164 bfd_set_error (bfd_error_no_symbols);
5165 return -1;
5168 #if DEBUG & 4
5170 fprintf (stderr,
5171 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5172 (long) asym_ptr, asym_ptr->name, idx, flags,
5173 elf_symbol_flags (flags));
5174 fflush (stderr);
5176 #endif
5178 return idx;
5181 /* Rewrite program header information. */
5183 static bfd_boolean
5184 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5186 Elf_Internal_Ehdr *iehdr;
5187 struct elf_segment_map *map;
5188 struct elf_segment_map *map_first;
5189 struct elf_segment_map **pointer_to_map;
5190 Elf_Internal_Phdr *segment;
5191 asection *section;
5192 unsigned int i;
5193 unsigned int num_segments;
5194 bfd_boolean phdr_included = FALSE;
5195 bfd_vma maxpagesize;
5196 struct elf_segment_map *phdr_adjust_seg = NULL;
5197 unsigned int phdr_adjust_num = 0;
5198 const struct elf_backend_data *bed;
5200 bed = get_elf_backend_data (ibfd);
5201 iehdr = elf_elfheader (ibfd);
5203 map_first = NULL;
5204 pointer_to_map = &map_first;
5206 num_segments = elf_elfheader (ibfd)->e_phnum;
5207 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5209 /* Returns the end address of the segment + 1. */
5210 #define SEGMENT_END(segment, start) \
5211 (start + (segment->p_memsz > segment->p_filesz \
5212 ? segment->p_memsz : segment->p_filesz))
5214 #define SECTION_SIZE(section, segment) \
5215 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5216 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5217 ? section->size : 0)
5219 /* Returns TRUE if the given section is contained within
5220 the given segment. VMA addresses are compared. */
5221 #define IS_CONTAINED_BY_VMA(section, segment) \
5222 (section->vma >= segment->p_vaddr \
5223 && (section->vma + SECTION_SIZE (section, segment) \
5224 <= (SEGMENT_END (segment, segment->p_vaddr))))
5226 /* Returns TRUE if the given section is contained within
5227 the given segment. LMA addresses are compared. */
5228 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5229 (section->lma >= base \
5230 && (section->lma + SECTION_SIZE (section, segment) \
5231 <= SEGMENT_END (segment, base)))
5233 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5234 #define IS_COREFILE_NOTE(p, s) \
5235 (p->p_type == PT_NOTE \
5236 && bfd_get_format (ibfd) == bfd_core \
5237 && s->vma == 0 && s->lma == 0 \
5238 && (bfd_vma) s->filepos >= p->p_offset \
5239 && ((bfd_vma) s->filepos + s->size \
5240 <= p->p_offset + p->p_filesz))
5242 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5243 linker, which generates a PT_INTERP section with p_vaddr and
5244 p_memsz set to 0. */
5245 #define IS_SOLARIS_PT_INTERP(p, s) \
5246 (p->p_vaddr == 0 \
5247 && p->p_paddr == 0 \
5248 && p->p_memsz == 0 \
5249 && p->p_filesz > 0 \
5250 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5251 && s->size > 0 \
5252 && (bfd_vma) s->filepos >= p->p_offset \
5253 && ((bfd_vma) s->filepos + s->size \
5254 <= p->p_offset + p->p_filesz))
5256 /* Decide if the given section should be included in the given segment.
5257 A section will be included if:
5258 1. It is within the address space of the segment -- we use the LMA
5259 if that is set for the segment and the VMA otherwise,
5260 2. It is an allocated segment,
5261 3. There is an output section associated with it,
5262 4. The section has not already been allocated to a previous segment.
5263 5. PT_GNU_STACK segments do not include any sections.
5264 6. PT_TLS segment includes only SHF_TLS sections.
5265 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5266 8. PT_DYNAMIC should not contain empty sections at the beginning
5267 (with the possible exception of .dynamic). */
5268 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5269 ((((segment->p_paddr \
5270 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5271 : IS_CONTAINED_BY_VMA (section, segment)) \
5272 && (section->flags & SEC_ALLOC) != 0) \
5273 || IS_COREFILE_NOTE (segment, section)) \
5274 && segment->p_type != PT_GNU_STACK \
5275 && (segment->p_type != PT_TLS \
5276 || (section->flags & SEC_THREAD_LOCAL)) \
5277 && (segment->p_type == PT_LOAD \
5278 || segment->p_type == PT_TLS \
5279 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5280 && (segment->p_type != PT_DYNAMIC \
5281 || SECTION_SIZE (section, segment) > 0 \
5282 || (segment->p_paddr \
5283 ? segment->p_paddr != section->lma \
5284 : segment->p_vaddr != section->vma) \
5285 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5286 == 0)) \
5287 && ! section->segment_mark)
5289 /* If the output section of a section in the input segment is NULL,
5290 it is removed from the corresponding output segment. */
5291 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5292 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5293 && section->output_section != NULL)
5295 /* Returns TRUE iff seg1 starts after the end of seg2. */
5296 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5297 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5299 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5300 their VMA address ranges and their LMA address ranges overlap.
5301 It is possible to have overlapping VMA ranges without overlapping LMA
5302 ranges. RedBoot images for example can have both .data and .bss mapped
5303 to the same VMA range, but with the .data section mapped to a different
5304 LMA. */
5305 #define SEGMENT_OVERLAPS(seg1, seg2) \
5306 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5307 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5308 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5309 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5311 /* Initialise the segment mark field. */
5312 for (section = ibfd->sections; section != NULL; section = section->next)
5313 section->segment_mark = FALSE;
5315 /* Scan through the segments specified in the program header
5316 of the input BFD. For this first scan we look for overlaps
5317 in the loadable segments. These can be created by weird
5318 parameters to objcopy. Also, fix some solaris weirdness. */
5319 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5320 i < num_segments;
5321 i++, segment++)
5323 unsigned int j;
5324 Elf_Internal_Phdr *segment2;
5326 if (segment->p_type == PT_INTERP)
5327 for (section = ibfd->sections; section; section = section->next)
5328 if (IS_SOLARIS_PT_INTERP (segment, section))
5330 /* Mininal change so that the normal section to segment
5331 assignment code will work. */
5332 segment->p_vaddr = section->vma;
5333 break;
5336 if (segment->p_type != PT_LOAD)
5337 continue;
5339 /* Determine if this segment overlaps any previous segments. */
5340 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5342 bfd_signed_vma extra_length;
5344 if (segment2->p_type != PT_LOAD
5345 || ! SEGMENT_OVERLAPS (segment, segment2))
5346 continue;
5348 /* Merge the two segments together. */
5349 if (segment2->p_vaddr < segment->p_vaddr)
5351 /* Extend SEGMENT2 to include SEGMENT and then delete
5352 SEGMENT. */
5353 extra_length =
5354 SEGMENT_END (segment, segment->p_vaddr)
5355 - SEGMENT_END (segment2, segment2->p_vaddr);
5357 if (extra_length > 0)
5359 segment2->p_memsz += extra_length;
5360 segment2->p_filesz += extra_length;
5363 segment->p_type = PT_NULL;
5365 /* Since we have deleted P we must restart the outer loop. */
5366 i = 0;
5367 segment = elf_tdata (ibfd)->phdr;
5368 break;
5370 else
5372 /* Extend SEGMENT to include SEGMENT2 and then delete
5373 SEGMENT2. */
5374 extra_length =
5375 SEGMENT_END (segment2, segment2->p_vaddr)
5376 - SEGMENT_END (segment, segment->p_vaddr);
5378 if (extra_length > 0)
5380 segment->p_memsz += extra_length;
5381 segment->p_filesz += extra_length;
5384 segment2->p_type = PT_NULL;
5389 /* The second scan attempts to assign sections to segments. */
5390 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5391 i < num_segments;
5392 i ++, segment ++)
5394 unsigned int section_count;
5395 asection ** sections;
5396 asection * output_section;
5397 unsigned int isec;
5398 bfd_vma matching_lma;
5399 bfd_vma suggested_lma;
5400 unsigned int j;
5401 bfd_size_type amt;
5402 asection * first_section;
5404 if (segment->p_type == PT_NULL)
5405 continue;
5407 first_section = NULL;
5408 /* Compute how many sections might be placed into this segment. */
5409 for (section = ibfd->sections, section_count = 0;
5410 section != NULL;
5411 section = section->next)
5413 /* Find the first section in the input segment, which may be
5414 removed from the corresponding output segment. */
5415 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5417 if (first_section == NULL)
5418 first_section = section;
5419 if (section->output_section != NULL)
5420 ++section_count;
5424 /* Allocate a segment map big enough to contain
5425 all of the sections we have selected. */
5426 amt = sizeof (struct elf_segment_map);
5427 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5428 map = bfd_zalloc (obfd, amt);
5429 if (map == NULL)
5430 return FALSE;
5432 /* Initialise the fields of the segment map. Default to
5433 using the physical address of the segment in the input BFD. */
5434 map->next = NULL;
5435 map->p_type = segment->p_type;
5436 map->p_flags = segment->p_flags;
5437 map->p_flags_valid = 1;
5439 /* If the first section in the input segment is removed, there is
5440 no need to preserve segment physical address in the corresponding
5441 output segment. */
5442 if (!first_section || first_section->output_section != NULL)
5444 map->p_paddr = segment->p_paddr;
5445 map->p_paddr_valid = 1;
5448 /* Determine if this segment contains the ELF file header
5449 and if it contains the program headers themselves. */
5450 map->includes_filehdr = (segment->p_offset == 0
5451 && segment->p_filesz >= iehdr->e_ehsize);
5453 map->includes_phdrs = 0;
5455 if (! phdr_included || segment->p_type != PT_LOAD)
5457 map->includes_phdrs =
5458 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5459 && (segment->p_offset + segment->p_filesz
5460 >= ((bfd_vma) iehdr->e_phoff
5461 + iehdr->e_phnum * iehdr->e_phentsize)));
5463 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5464 phdr_included = TRUE;
5467 if (section_count == 0)
5469 /* Special segments, such as the PT_PHDR segment, may contain
5470 no sections, but ordinary, loadable segments should contain
5471 something. They are allowed by the ELF spec however, so only
5472 a warning is produced. */
5473 if (segment->p_type == PT_LOAD)
5474 (*_bfd_error_handler)
5475 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5476 ibfd);
5478 map->count = 0;
5479 *pointer_to_map = map;
5480 pointer_to_map = &map->next;
5482 continue;
5485 /* Now scan the sections in the input BFD again and attempt
5486 to add their corresponding output sections to the segment map.
5487 The problem here is how to handle an output section which has
5488 been moved (ie had its LMA changed). There are four possibilities:
5490 1. None of the sections have been moved.
5491 In this case we can continue to use the segment LMA from the
5492 input BFD.
5494 2. All of the sections have been moved by the same amount.
5495 In this case we can change the segment's LMA to match the LMA
5496 of the first section.
5498 3. Some of the sections have been moved, others have not.
5499 In this case those sections which have not been moved can be
5500 placed in the current segment which will have to have its size,
5501 and possibly its LMA changed, and a new segment or segments will
5502 have to be created to contain the other sections.
5504 4. The sections have been moved, but not by the same amount.
5505 In this case we can change the segment's LMA to match the LMA
5506 of the first section and we will have to create a new segment
5507 or segments to contain the other sections.
5509 In order to save time, we allocate an array to hold the section
5510 pointers that we are interested in. As these sections get assigned
5511 to a segment, they are removed from this array. */
5513 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5514 to work around this long long bug. */
5515 sections = bfd_malloc2 (section_count, sizeof (asection *));
5516 if (sections == NULL)
5517 return FALSE;
5519 /* Step One: Scan for segment vs section LMA conflicts.
5520 Also add the sections to the section array allocated above.
5521 Also add the sections to the current segment. In the common
5522 case, where the sections have not been moved, this means that
5523 we have completely filled the segment, and there is nothing
5524 more to do. */
5525 isec = 0;
5526 matching_lma = 0;
5527 suggested_lma = 0;
5529 for (j = 0, section = ibfd->sections;
5530 section != NULL;
5531 section = section->next)
5533 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5535 output_section = section->output_section;
5537 sections[j ++] = section;
5539 /* The Solaris native linker always sets p_paddr to 0.
5540 We try to catch that case here, and set it to the
5541 correct value. Note - some backends require that
5542 p_paddr be left as zero. */
5543 if (segment->p_paddr == 0
5544 && segment->p_vaddr != 0
5545 && (! bed->want_p_paddr_set_to_zero)
5546 && isec == 0
5547 && output_section->lma != 0
5548 && (output_section->vma == (segment->p_vaddr
5549 + (map->includes_filehdr
5550 ? iehdr->e_ehsize
5551 : 0)
5552 + (map->includes_phdrs
5553 ? (iehdr->e_phnum
5554 * iehdr->e_phentsize)
5555 : 0))))
5556 map->p_paddr = segment->p_vaddr;
5558 /* Match up the physical address of the segment with the
5559 LMA address of the output section. */
5560 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5561 || IS_COREFILE_NOTE (segment, section)
5562 || (bed->want_p_paddr_set_to_zero &&
5563 IS_CONTAINED_BY_VMA (output_section, segment))
5566 if (matching_lma == 0)
5567 matching_lma = output_section->lma;
5569 /* We assume that if the section fits within the segment
5570 then it does not overlap any other section within that
5571 segment. */
5572 map->sections[isec ++] = output_section;
5574 else if (suggested_lma == 0)
5575 suggested_lma = output_section->lma;
5579 BFD_ASSERT (j == section_count);
5581 /* Step Two: Adjust the physical address of the current segment,
5582 if necessary. */
5583 if (isec == section_count)
5585 /* All of the sections fitted within the segment as currently
5586 specified. This is the default case. Add the segment to
5587 the list of built segments and carry on to process the next
5588 program header in the input BFD. */
5589 map->count = section_count;
5590 *pointer_to_map = map;
5591 pointer_to_map = &map->next;
5593 if (matching_lma != map->p_paddr
5594 && !map->includes_filehdr && !map->includes_phdrs)
5595 /* There is some padding before the first section in the
5596 segment. So, we must account for that in the output
5597 segment's vma. */
5598 map->p_vaddr_offset = matching_lma - map->p_paddr;
5600 free (sections);
5601 continue;
5603 else
5605 if (matching_lma != 0)
5607 /* At least one section fits inside the current segment.
5608 Keep it, but modify its physical address to match the
5609 LMA of the first section that fitted. */
5610 map->p_paddr = matching_lma;
5612 else
5614 /* None of the sections fitted inside the current segment.
5615 Change the current segment's physical address to match
5616 the LMA of the first section. */
5617 map->p_paddr = suggested_lma;
5620 /* Offset the segment physical address from the lma
5621 to allow for space taken up by elf headers. */
5622 if (map->includes_filehdr)
5623 map->p_paddr -= iehdr->e_ehsize;
5625 if (map->includes_phdrs)
5627 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5629 /* iehdr->e_phnum is just an estimate of the number
5630 of program headers that we will need. Make a note
5631 here of the number we used and the segment we chose
5632 to hold these headers, so that we can adjust the
5633 offset when we know the correct value. */
5634 phdr_adjust_num = iehdr->e_phnum;
5635 phdr_adjust_seg = map;
5639 /* Step Three: Loop over the sections again, this time assigning
5640 those that fit to the current segment and removing them from the
5641 sections array; but making sure not to leave large gaps. Once all
5642 possible sections have been assigned to the current segment it is
5643 added to the list of built segments and if sections still remain
5644 to be assigned, a new segment is constructed before repeating
5645 the loop. */
5646 isec = 0;
5649 map->count = 0;
5650 suggested_lma = 0;
5652 /* Fill the current segment with sections that fit. */
5653 for (j = 0; j < section_count; j++)
5655 section = sections[j];
5657 if (section == NULL)
5658 continue;
5660 output_section = section->output_section;
5662 BFD_ASSERT (output_section != NULL);
5664 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5665 || IS_COREFILE_NOTE (segment, section))
5667 if (map->count == 0)
5669 /* If the first section in a segment does not start at
5670 the beginning of the segment, then something is
5671 wrong. */
5672 if (output_section->lma !=
5673 (map->p_paddr
5674 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5675 + (map->includes_phdrs
5676 ? iehdr->e_phnum * iehdr->e_phentsize
5677 : 0)))
5678 abort ();
5680 else
5682 asection * prev_sec;
5684 prev_sec = map->sections[map->count - 1];
5686 /* If the gap between the end of the previous section
5687 and the start of this section is more than
5688 maxpagesize then we need to start a new segment. */
5689 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5690 maxpagesize)
5691 < BFD_ALIGN (output_section->lma, maxpagesize))
5692 || ((prev_sec->lma + prev_sec->size)
5693 > output_section->lma))
5695 if (suggested_lma == 0)
5696 suggested_lma = output_section->lma;
5698 continue;
5702 map->sections[map->count++] = output_section;
5703 ++isec;
5704 sections[j] = NULL;
5705 section->segment_mark = TRUE;
5707 else if (suggested_lma == 0)
5708 suggested_lma = output_section->lma;
5711 BFD_ASSERT (map->count > 0);
5713 /* Add the current segment to the list of built segments. */
5714 *pointer_to_map = map;
5715 pointer_to_map = &map->next;
5717 if (isec < section_count)
5719 /* We still have not allocated all of the sections to
5720 segments. Create a new segment here, initialise it
5721 and carry on looping. */
5722 amt = sizeof (struct elf_segment_map);
5723 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5724 map = bfd_alloc (obfd, amt);
5725 if (map == NULL)
5727 free (sections);
5728 return FALSE;
5731 /* Initialise the fields of the segment map. Set the physical
5732 physical address to the LMA of the first section that has
5733 not yet been assigned. */
5734 map->next = NULL;
5735 map->p_type = segment->p_type;
5736 map->p_flags = segment->p_flags;
5737 map->p_flags_valid = 1;
5738 map->p_paddr = suggested_lma;
5739 map->p_paddr_valid = 1;
5740 map->includes_filehdr = 0;
5741 map->includes_phdrs = 0;
5744 while (isec < section_count);
5746 free (sections);
5749 /* The Solaris linker creates program headers in which all the
5750 p_paddr fields are zero. When we try to objcopy or strip such a
5751 file, we get confused. Check for this case, and if we find it
5752 reset the p_paddr_valid fields. */
5753 for (map = map_first; map != NULL; map = map->next)
5754 if (map->p_paddr != 0)
5755 break;
5756 if (map == NULL)
5757 for (map = map_first; map != NULL; map = map->next)
5758 map->p_paddr_valid = 0;
5760 elf_tdata (obfd)->segment_map = map_first;
5762 /* If we had to estimate the number of program headers that were
5763 going to be needed, then check our estimate now and adjust
5764 the offset if necessary. */
5765 if (phdr_adjust_seg != NULL)
5767 unsigned int count;
5769 for (count = 0, map = map_first; map != NULL; map = map->next)
5770 count++;
5772 if (count > phdr_adjust_num)
5773 phdr_adjust_seg->p_paddr
5774 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5777 #undef SEGMENT_END
5778 #undef SECTION_SIZE
5779 #undef IS_CONTAINED_BY_VMA
5780 #undef IS_CONTAINED_BY_LMA
5781 #undef IS_COREFILE_NOTE
5782 #undef IS_SOLARIS_PT_INTERP
5783 #undef IS_SECTION_IN_INPUT_SEGMENT
5784 #undef INCLUDE_SECTION_IN_SEGMENT
5785 #undef SEGMENT_AFTER_SEGMENT
5786 #undef SEGMENT_OVERLAPS
5787 return TRUE;
5790 /* Copy ELF program header information. */
5792 static bfd_boolean
5793 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5795 Elf_Internal_Ehdr *iehdr;
5796 struct elf_segment_map *map;
5797 struct elf_segment_map *map_first;
5798 struct elf_segment_map **pointer_to_map;
5799 Elf_Internal_Phdr *segment;
5800 unsigned int i;
5801 unsigned int num_segments;
5802 bfd_boolean phdr_included = FALSE;
5804 iehdr = elf_elfheader (ibfd);
5806 map_first = NULL;
5807 pointer_to_map = &map_first;
5809 num_segments = elf_elfheader (ibfd)->e_phnum;
5810 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5811 i < num_segments;
5812 i++, segment++)
5814 asection *section;
5815 unsigned int section_count;
5816 bfd_size_type amt;
5817 Elf_Internal_Shdr *this_hdr;
5818 asection *first_section = NULL;
5820 /* FIXME: Do we need to copy PT_NULL segment? */
5821 if (segment->p_type == PT_NULL)
5822 continue;
5824 /* Compute how many sections are in this segment. */
5825 for (section = ibfd->sections, section_count = 0;
5826 section != NULL;
5827 section = section->next)
5829 this_hdr = &(elf_section_data(section)->this_hdr);
5830 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5832 if (!first_section)
5833 first_section = section;
5834 section_count++;
5838 /* Allocate a segment map big enough to contain
5839 all of the sections we have selected. */
5840 amt = sizeof (struct elf_segment_map);
5841 if (section_count != 0)
5842 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5843 map = bfd_zalloc (obfd, amt);
5844 if (map == NULL)
5845 return FALSE;
5847 /* Initialize the fields of the output segment map with the
5848 input segment. */
5849 map->next = NULL;
5850 map->p_type = segment->p_type;
5851 map->p_flags = segment->p_flags;
5852 map->p_flags_valid = 1;
5853 map->p_paddr = segment->p_paddr;
5854 map->p_paddr_valid = 1;
5855 map->p_align = segment->p_align;
5856 map->p_align_valid = 1;
5857 map->p_vaddr_offset = 0;
5859 /* Determine if this segment contains the ELF file header
5860 and if it contains the program headers themselves. */
5861 map->includes_filehdr = (segment->p_offset == 0
5862 && segment->p_filesz >= iehdr->e_ehsize);
5864 map->includes_phdrs = 0;
5865 if (! phdr_included || segment->p_type != PT_LOAD)
5867 map->includes_phdrs =
5868 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5869 && (segment->p_offset + segment->p_filesz
5870 >= ((bfd_vma) iehdr->e_phoff
5871 + iehdr->e_phnum * iehdr->e_phentsize)));
5873 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5874 phdr_included = TRUE;
5877 if (!map->includes_phdrs && !map->includes_filehdr)
5878 /* There is some other padding before the first section. */
5879 map->p_vaddr_offset = ((first_section ? first_section->lma : 0)
5880 - segment->p_paddr);
5882 if (section_count != 0)
5884 unsigned int isec = 0;
5886 for (section = first_section;
5887 section != NULL;
5888 section = section->next)
5890 this_hdr = &(elf_section_data(section)->this_hdr);
5891 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5893 map->sections[isec++] = section->output_section;
5894 if (isec == section_count)
5895 break;
5900 map->count = section_count;
5901 *pointer_to_map = map;
5902 pointer_to_map = &map->next;
5905 elf_tdata (obfd)->segment_map = map_first;
5906 return TRUE;
5909 /* Copy private BFD data. This copies or rewrites ELF program header
5910 information. */
5912 static bfd_boolean
5913 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5915 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5916 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5917 return TRUE;
5919 if (elf_tdata (ibfd)->phdr == NULL)
5920 return TRUE;
5922 if (ibfd->xvec == obfd->xvec)
5924 /* Check to see if any sections in the input BFD
5925 covered by ELF program header have changed. */
5926 Elf_Internal_Phdr *segment;
5927 asection *section, *osec;
5928 unsigned int i, num_segments;
5929 Elf_Internal_Shdr *this_hdr;
5931 /* Initialize the segment mark field. */
5932 for (section = obfd->sections; section != NULL;
5933 section = section->next)
5934 section->segment_mark = FALSE;
5936 num_segments = elf_elfheader (ibfd)->e_phnum;
5937 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5938 i < num_segments;
5939 i++, segment++)
5941 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5942 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5943 which severly confuses things, so always regenerate the segment
5944 map in this case. */
5945 if (segment->p_paddr == 0
5946 && segment->p_memsz == 0
5947 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5948 goto rewrite;
5950 for (section = ibfd->sections;
5951 section != NULL; section = section->next)
5953 /* We mark the output section so that we know it comes
5954 from the input BFD. */
5955 osec = section->output_section;
5956 if (osec)
5957 osec->segment_mark = TRUE;
5959 /* Check if this section is covered by the segment. */
5960 this_hdr = &(elf_section_data(section)->this_hdr);
5961 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5963 /* FIXME: Check if its output section is changed or
5964 removed. What else do we need to check? */
5965 if (osec == NULL
5966 || section->flags != osec->flags
5967 || section->lma != osec->lma
5968 || section->vma != osec->vma
5969 || section->size != osec->size
5970 || section->rawsize != osec->rawsize
5971 || section->alignment_power != osec->alignment_power)
5972 goto rewrite;
5977 /* Check to see if any output section do not come from the
5978 input BFD. */
5979 for (section = obfd->sections; section != NULL;
5980 section = section->next)
5982 if (section->segment_mark == FALSE)
5983 goto rewrite;
5984 else
5985 section->segment_mark = FALSE;
5988 return copy_elf_program_header (ibfd, obfd);
5991 rewrite:
5992 return rewrite_elf_program_header (ibfd, obfd);
5995 /* Initialize private output section information from input section. */
5997 bfd_boolean
5998 _bfd_elf_init_private_section_data (bfd *ibfd,
5999 asection *isec,
6000 bfd *obfd,
6001 asection *osec,
6002 struct bfd_link_info *link_info)
6005 Elf_Internal_Shdr *ihdr, *ohdr;
6006 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
6008 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6009 || obfd->xvec->flavour != bfd_target_elf_flavour)
6010 return TRUE;
6012 /* Don't copy the output ELF section type from input if the
6013 output BFD section flags have been set to something different.
6014 elf_fake_sections will set ELF section type based on BFD
6015 section flags. */
6016 if (osec->flags == isec->flags || !osec->flags)
6018 BFD_ASSERT (osec->flags == isec->flags
6019 || (!osec->flags
6020 && elf_section_type (osec) == SHT_NULL));
6021 elf_section_type (osec) = elf_section_type (isec);
6024 /* FIXME: Is this correct for all OS/PROC specific flags? */
6025 elf_section_flags (osec) |= (elf_section_flags (isec)
6026 & (SHF_MASKOS | SHF_MASKPROC));
6028 /* Set things up for objcopy and relocatable link. The output
6029 SHT_GROUP section will have its elf_next_in_group pointing back
6030 to the input group members. Ignore linker created group section.
6031 See elfNN_ia64_object_p in elfxx-ia64.c. */
6032 if (need_group)
6034 if (elf_sec_group (isec) == NULL
6035 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6037 if (elf_section_flags (isec) & SHF_GROUP)
6038 elf_section_flags (osec) |= SHF_GROUP;
6039 elf_next_in_group (osec) = elf_next_in_group (isec);
6040 elf_group_name (osec) = elf_group_name (isec);
6044 ihdr = &elf_section_data (isec)->this_hdr;
6046 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6047 don't use the output section of the linked-to section since it
6048 may be NULL at this point. */
6049 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6051 ohdr = &elf_section_data (osec)->this_hdr;
6052 ohdr->sh_flags |= SHF_LINK_ORDER;
6053 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6056 osec->use_rela_p = isec->use_rela_p;
6058 return TRUE;
6061 /* Copy private section information. This copies over the entsize
6062 field, and sometimes the info field. */
6064 bfd_boolean
6065 _bfd_elf_copy_private_section_data (bfd *ibfd,
6066 asection *isec,
6067 bfd *obfd,
6068 asection *osec)
6070 Elf_Internal_Shdr *ihdr, *ohdr;
6072 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6073 || obfd->xvec->flavour != bfd_target_elf_flavour)
6074 return TRUE;
6076 ihdr = &elf_section_data (isec)->this_hdr;
6077 ohdr = &elf_section_data (osec)->this_hdr;
6079 ohdr->sh_entsize = ihdr->sh_entsize;
6081 if (ihdr->sh_type == SHT_SYMTAB
6082 || ihdr->sh_type == SHT_DYNSYM
6083 || ihdr->sh_type == SHT_GNU_verneed
6084 || ihdr->sh_type == SHT_GNU_verdef)
6085 ohdr->sh_info = ihdr->sh_info;
6087 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6088 NULL);
6091 /* Copy private header information. */
6093 bfd_boolean
6094 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6096 asection *isec;
6098 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6099 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6100 return TRUE;
6102 /* Copy over private BFD data if it has not already been copied.
6103 This must be done here, rather than in the copy_private_bfd_data
6104 entry point, because the latter is called after the section
6105 contents have been set, which means that the program headers have
6106 already been worked out. */
6107 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6109 if (! copy_private_bfd_data (ibfd, obfd))
6110 return FALSE;
6113 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6114 but this might be wrong if we deleted the group section. */
6115 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6116 if (elf_section_type (isec) == SHT_GROUP
6117 && isec->output_section == NULL)
6119 asection *first = elf_next_in_group (isec);
6120 asection *s = first;
6121 while (s != NULL)
6123 if (s->output_section != NULL)
6125 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6126 elf_group_name (s->output_section) = NULL;
6128 s = elf_next_in_group (s);
6129 if (s == first)
6130 break;
6134 return TRUE;
6137 /* Copy private symbol information. If this symbol is in a section
6138 which we did not map into a BFD section, try to map the section
6139 index correctly. We use special macro definitions for the mapped
6140 section indices; these definitions are interpreted by the
6141 swap_out_syms function. */
6143 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6144 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6145 #define MAP_STRTAB (SHN_HIOS + 3)
6146 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6147 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6149 bfd_boolean
6150 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6151 asymbol *isymarg,
6152 bfd *obfd,
6153 asymbol *osymarg)
6155 elf_symbol_type *isym, *osym;
6157 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6158 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6159 return TRUE;
6161 isym = elf_symbol_from (ibfd, isymarg);
6162 osym = elf_symbol_from (obfd, osymarg);
6164 if (isym != NULL
6165 && osym != NULL
6166 && bfd_is_abs_section (isym->symbol.section))
6168 unsigned int shndx;
6170 shndx = isym->internal_elf_sym.st_shndx;
6171 if (shndx == elf_onesymtab (ibfd))
6172 shndx = MAP_ONESYMTAB;
6173 else if (shndx == elf_dynsymtab (ibfd))
6174 shndx = MAP_DYNSYMTAB;
6175 else if (shndx == elf_tdata (ibfd)->strtab_section)
6176 shndx = MAP_STRTAB;
6177 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6178 shndx = MAP_SHSTRTAB;
6179 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6180 shndx = MAP_SYM_SHNDX;
6181 osym->internal_elf_sym.st_shndx = shndx;
6184 return TRUE;
6187 /* Swap out the symbols. */
6189 static bfd_boolean
6190 swap_out_syms (bfd *abfd,
6191 struct bfd_strtab_hash **sttp,
6192 int relocatable_p)
6194 const struct elf_backend_data *bed;
6195 int symcount;
6196 asymbol **syms;
6197 struct bfd_strtab_hash *stt;
6198 Elf_Internal_Shdr *symtab_hdr;
6199 Elf_Internal_Shdr *symtab_shndx_hdr;
6200 Elf_Internal_Shdr *symstrtab_hdr;
6201 bfd_byte *outbound_syms;
6202 bfd_byte *outbound_shndx;
6203 int idx;
6204 bfd_size_type amt;
6205 bfd_boolean name_local_sections;
6207 if (!elf_map_symbols (abfd))
6208 return FALSE;
6210 /* Dump out the symtabs. */
6211 stt = _bfd_elf_stringtab_init ();
6212 if (stt == NULL)
6213 return FALSE;
6215 bed = get_elf_backend_data (abfd);
6216 symcount = bfd_get_symcount (abfd);
6217 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6218 symtab_hdr->sh_type = SHT_SYMTAB;
6219 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6220 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6221 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6222 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6224 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6225 symstrtab_hdr->sh_type = SHT_STRTAB;
6227 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6228 if (outbound_syms == NULL)
6230 _bfd_stringtab_free (stt);
6231 return FALSE;
6233 symtab_hdr->contents = outbound_syms;
6235 outbound_shndx = NULL;
6236 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6237 if (symtab_shndx_hdr->sh_name != 0)
6239 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6240 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6241 sizeof (Elf_External_Sym_Shndx));
6242 if (outbound_shndx == NULL)
6244 _bfd_stringtab_free (stt);
6245 return FALSE;
6248 symtab_shndx_hdr->contents = outbound_shndx;
6249 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6250 symtab_shndx_hdr->sh_size = amt;
6251 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6252 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6255 /* Now generate the data (for "contents"). */
6257 /* Fill in zeroth symbol and swap it out. */
6258 Elf_Internal_Sym sym;
6259 sym.st_name = 0;
6260 sym.st_value = 0;
6261 sym.st_size = 0;
6262 sym.st_info = 0;
6263 sym.st_other = 0;
6264 sym.st_shndx = SHN_UNDEF;
6265 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6266 outbound_syms += bed->s->sizeof_sym;
6267 if (outbound_shndx != NULL)
6268 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6271 name_local_sections
6272 = (bed->elf_backend_name_local_section_symbols
6273 && bed->elf_backend_name_local_section_symbols (abfd));
6275 syms = bfd_get_outsymbols (abfd);
6276 for (idx = 0; idx < symcount; idx++)
6278 Elf_Internal_Sym sym;
6279 bfd_vma value = syms[idx]->value;
6280 elf_symbol_type *type_ptr;
6281 flagword flags = syms[idx]->flags;
6282 int type;
6284 if (!name_local_sections
6285 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6287 /* Local section symbols have no name. */
6288 sym.st_name = 0;
6290 else
6292 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6293 syms[idx]->name,
6294 TRUE, FALSE);
6295 if (sym.st_name == (unsigned long) -1)
6297 _bfd_stringtab_free (stt);
6298 return FALSE;
6302 type_ptr = elf_symbol_from (abfd, syms[idx]);
6304 if ((flags & BSF_SECTION_SYM) == 0
6305 && bfd_is_com_section (syms[idx]->section))
6307 /* ELF common symbols put the alignment into the `value' field,
6308 and the size into the `size' field. This is backwards from
6309 how BFD handles it, so reverse it here. */
6310 sym.st_size = value;
6311 if (type_ptr == NULL
6312 || type_ptr->internal_elf_sym.st_value == 0)
6313 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6314 else
6315 sym.st_value = type_ptr->internal_elf_sym.st_value;
6316 sym.st_shndx = _bfd_elf_section_from_bfd_section
6317 (abfd, syms[idx]->section);
6319 else
6321 asection *sec = syms[idx]->section;
6322 int shndx;
6324 if (sec->output_section)
6326 value += sec->output_offset;
6327 sec = sec->output_section;
6330 /* Don't add in the section vma for relocatable output. */
6331 if (! relocatable_p)
6332 value += sec->vma;
6333 sym.st_value = value;
6334 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6336 if (bfd_is_abs_section (sec)
6337 && type_ptr != NULL
6338 && type_ptr->internal_elf_sym.st_shndx != 0)
6340 /* This symbol is in a real ELF section which we did
6341 not create as a BFD section. Undo the mapping done
6342 by copy_private_symbol_data. */
6343 shndx = type_ptr->internal_elf_sym.st_shndx;
6344 switch (shndx)
6346 case MAP_ONESYMTAB:
6347 shndx = elf_onesymtab (abfd);
6348 break;
6349 case MAP_DYNSYMTAB:
6350 shndx = elf_dynsymtab (abfd);
6351 break;
6352 case MAP_STRTAB:
6353 shndx = elf_tdata (abfd)->strtab_section;
6354 break;
6355 case MAP_SHSTRTAB:
6356 shndx = elf_tdata (abfd)->shstrtab_section;
6357 break;
6358 case MAP_SYM_SHNDX:
6359 shndx = elf_tdata (abfd)->symtab_shndx_section;
6360 break;
6361 default:
6362 break;
6365 else
6367 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6369 if (shndx == -1)
6371 asection *sec2;
6373 /* Writing this would be a hell of a lot easier if
6374 we had some decent documentation on bfd, and
6375 knew what to expect of the library, and what to
6376 demand of applications. For example, it
6377 appears that `objcopy' might not set the
6378 section of a symbol to be a section that is
6379 actually in the output file. */
6380 sec2 = bfd_get_section_by_name (abfd, sec->name);
6381 if (sec2 == NULL)
6383 _bfd_error_handler (_("\
6384 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6385 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6386 sec->name);
6387 bfd_set_error (bfd_error_invalid_operation);
6388 _bfd_stringtab_free (stt);
6389 return FALSE;
6392 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6393 BFD_ASSERT (shndx != -1);
6397 sym.st_shndx = shndx;
6400 if ((flags & BSF_THREAD_LOCAL) != 0)
6401 type = STT_TLS;
6402 else if ((flags & BSF_FUNCTION) != 0)
6403 type = STT_FUNC;
6404 else if ((flags & BSF_OBJECT) != 0)
6405 type = STT_OBJECT;
6406 else if ((flags & BSF_RELC) != 0)
6407 type = STT_RELC;
6408 else if ((flags & BSF_SRELC) != 0)
6409 type = STT_SRELC;
6410 else
6411 type = STT_NOTYPE;
6413 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6414 type = STT_TLS;
6416 /* Processor-specific types. */
6417 if (type_ptr != NULL
6418 && bed->elf_backend_get_symbol_type)
6419 type = ((*bed->elf_backend_get_symbol_type)
6420 (&type_ptr->internal_elf_sym, type));
6422 if (flags & BSF_SECTION_SYM)
6424 if (flags & BSF_GLOBAL)
6425 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6426 else
6427 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6429 else if (bfd_is_com_section (syms[idx]->section))
6430 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6431 else if (bfd_is_und_section (syms[idx]->section))
6432 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6433 ? STB_WEAK
6434 : STB_GLOBAL),
6435 type);
6436 else if (flags & BSF_FILE)
6437 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6438 else
6440 int bind = STB_LOCAL;
6442 if (flags & BSF_LOCAL)
6443 bind = STB_LOCAL;
6444 else if (flags & BSF_WEAK)
6445 bind = STB_WEAK;
6446 else if (flags & BSF_GLOBAL)
6447 bind = STB_GLOBAL;
6449 sym.st_info = ELF_ST_INFO (bind, type);
6452 if (type_ptr != NULL)
6453 sym.st_other = type_ptr->internal_elf_sym.st_other;
6454 else
6455 sym.st_other = 0;
6457 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6458 outbound_syms += bed->s->sizeof_sym;
6459 if (outbound_shndx != NULL)
6460 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6463 *sttp = stt;
6464 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6465 symstrtab_hdr->sh_type = SHT_STRTAB;
6467 symstrtab_hdr->sh_flags = 0;
6468 symstrtab_hdr->sh_addr = 0;
6469 symstrtab_hdr->sh_entsize = 0;
6470 symstrtab_hdr->sh_link = 0;
6471 symstrtab_hdr->sh_info = 0;
6472 symstrtab_hdr->sh_addralign = 1;
6474 return TRUE;
6477 /* Return the number of bytes required to hold the symtab vector.
6479 Note that we base it on the count plus 1, since we will null terminate
6480 the vector allocated based on this size. However, the ELF symbol table
6481 always has a dummy entry as symbol #0, so it ends up even. */
6483 long
6484 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6486 long symcount;
6487 long symtab_size;
6488 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6490 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6491 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6492 if (symcount > 0)
6493 symtab_size -= sizeof (asymbol *);
6495 return symtab_size;
6498 long
6499 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6501 long symcount;
6502 long symtab_size;
6503 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6505 if (elf_dynsymtab (abfd) == 0)
6507 bfd_set_error (bfd_error_invalid_operation);
6508 return -1;
6511 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6512 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6513 if (symcount > 0)
6514 symtab_size -= sizeof (asymbol *);
6516 return symtab_size;
6519 long
6520 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6521 sec_ptr asect)
6523 return (asect->reloc_count + 1) * sizeof (arelent *);
6526 /* Canonicalize the relocs. */
6528 long
6529 _bfd_elf_canonicalize_reloc (bfd *abfd,
6530 sec_ptr section,
6531 arelent **relptr,
6532 asymbol **symbols)
6534 arelent *tblptr;
6535 unsigned int i;
6536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6538 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6539 return -1;
6541 tblptr = section->relocation;
6542 for (i = 0; i < section->reloc_count; i++)
6543 *relptr++ = tblptr++;
6545 *relptr = NULL;
6547 return section->reloc_count;
6550 long
6551 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6553 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6554 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6556 if (symcount >= 0)
6557 bfd_get_symcount (abfd) = symcount;
6558 return symcount;
6561 long
6562 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6563 asymbol **allocation)
6565 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6566 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6568 if (symcount >= 0)
6569 bfd_get_dynamic_symcount (abfd) = symcount;
6570 return symcount;
6573 /* Return the size required for the dynamic reloc entries. Any loadable
6574 section that was actually installed in the BFD, and has type SHT_REL
6575 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6576 dynamic reloc section. */
6578 long
6579 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6581 long ret;
6582 asection *s;
6584 if (elf_dynsymtab (abfd) == 0)
6586 bfd_set_error (bfd_error_invalid_operation);
6587 return -1;
6590 ret = sizeof (arelent *);
6591 for (s = abfd->sections; s != NULL; s = s->next)
6592 if ((s->flags & SEC_LOAD) != 0
6593 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6594 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6595 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6596 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6597 * sizeof (arelent *));
6599 return ret;
6602 /* Canonicalize the dynamic relocation entries. Note that we return the
6603 dynamic relocations as a single block, although they are actually
6604 associated with particular sections; the interface, which was
6605 designed for SunOS style shared libraries, expects that there is only
6606 one set of dynamic relocs. Any loadable section that was actually
6607 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6608 dynamic symbol table, is considered to be a dynamic reloc section. */
6610 long
6611 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6612 arelent **storage,
6613 asymbol **syms)
6615 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6616 asection *s;
6617 long ret;
6619 if (elf_dynsymtab (abfd) == 0)
6621 bfd_set_error (bfd_error_invalid_operation);
6622 return -1;
6625 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6626 ret = 0;
6627 for (s = abfd->sections; s != NULL; s = s->next)
6629 if ((s->flags & SEC_LOAD) != 0
6630 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6631 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6632 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6634 arelent *p;
6635 long count, i;
6637 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6638 return -1;
6639 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6640 p = s->relocation;
6641 for (i = 0; i < count; i++)
6642 *storage++ = p++;
6643 ret += count;
6647 *storage = NULL;
6649 return ret;
6652 /* Read in the version information. */
6654 bfd_boolean
6655 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6657 bfd_byte *contents = NULL;
6658 unsigned int freeidx = 0;
6660 if (elf_dynverref (abfd) != 0)
6662 Elf_Internal_Shdr *hdr;
6663 Elf_External_Verneed *everneed;
6664 Elf_Internal_Verneed *iverneed;
6665 unsigned int i;
6666 bfd_byte *contents_end;
6668 hdr = &elf_tdata (abfd)->dynverref_hdr;
6670 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6671 sizeof (Elf_Internal_Verneed));
6672 if (elf_tdata (abfd)->verref == NULL)
6673 goto error_return;
6675 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6677 contents = bfd_malloc (hdr->sh_size);
6678 if (contents == NULL)
6680 error_return_verref:
6681 elf_tdata (abfd)->verref = NULL;
6682 elf_tdata (abfd)->cverrefs = 0;
6683 goto error_return;
6685 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6686 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6687 goto error_return_verref;
6689 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6690 goto error_return_verref;
6692 BFD_ASSERT (sizeof (Elf_External_Verneed)
6693 == sizeof (Elf_External_Vernaux));
6694 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6695 everneed = (Elf_External_Verneed *) contents;
6696 iverneed = elf_tdata (abfd)->verref;
6697 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6699 Elf_External_Vernaux *evernaux;
6700 Elf_Internal_Vernaux *ivernaux;
6701 unsigned int j;
6703 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6705 iverneed->vn_bfd = abfd;
6707 iverneed->vn_filename =
6708 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6709 iverneed->vn_file);
6710 if (iverneed->vn_filename == NULL)
6711 goto error_return_verref;
6713 if (iverneed->vn_cnt == 0)
6714 iverneed->vn_auxptr = NULL;
6715 else
6717 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6718 sizeof (Elf_Internal_Vernaux));
6719 if (iverneed->vn_auxptr == NULL)
6720 goto error_return_verref;
6723 if (iverneed->vn_aux
6724 > (size_t) (contents_end - (bfd_byte *) everneed))
6725 goto error_return_verref;
6727 evernaux = ((Elf_External_Vernaux *)
6728 ((bfd_byte *) everneed + iverneed->vn_aux));
6729 ivernaux = iverneed->vn_auxptr;
6730 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6732 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6734 ivernaux->vna_nodename =
6735 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6736 ivernaux->vna_name);
6737 if (ivernaux->vna_nodename == NULL)
6738 goto error_return_verref;
6740 if (j + 1 < iverneed->vn_cnt)
6741 ivernaux->vna_nextptr = ivernaux + 1;
6742 else
6743 ivernaux->vna_nextptr = NULL;
6745 if (ivernaux->vna_next
6746 > (size_t) (contents_end - (bfd_byte *) evernaux))
6747 goto error_return_verref;
6749 evernaux = ((Elf_External_Vernaux *)
6750 ((bfd_byte *) evernaux + ivernaux->vna_next));
6752 if (ivernaux->vna_other > freeidx)
6753 freeidx = ivernaux->vna_other;
6756 if (i + 1 < hdr->sh_info)
6757 iverneed->vn_nextref = iverneed + 1;
6758 else
6759 iverneed->vn_nextref = NULL;
6761 if (iverneed->vn_next
6762 > (size_t) (contents_end - (bfd_byte *) everneed))
6763 goto error_return_verref;
6765 everneed = ((Elf_External_Verneed *)
6766 ((bfd_byte *) everneed + iverneed->vn_next));
6769 free (contents);
6770 contents = NULL;
6773 if (elf_dynverdef (abfd) != 0)
6775 Elf_Internal_Shdr *hdr;
6776 Elf_External_Verdef *everdef;
6777 Elf_Internal_Verdef *iverdef;
6778 Elf_Internal_Verdef *iverdefarr;
6779 Elf_Internal_Verdef iverdefmem;
6780 unsigned int i;
6781 unsigned int maxidx;
6782 bfd_byte *contents_end_def, *contents_end_aux;
6784 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6786 contents = bfd_malloc (hdr->sh_size);
6787 if (contents == NULL)
6788 goto error_return;
6789 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6790 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6791 goto error_return;
6793 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6794 goto error_return;
6796 BFD_ASSERT (sizeof (Elf_External_Verdef)
6797 >= sizeof (Elf_External_Verdaux));
6798 contents_end_def = contents + hdr->sh_size
6799 - sizeof (Elf_External_Verdef);
6800 contents_end_aux = contents + hdr->sh_size
6801 - sizeof (Elf_External_Verdaux);
6803 /* We know the number of entries in the section but not the maximum
6804 index. Therefore we have to run through all entries and find
6805 the maximum. */
6806 everdef = (Elf_External_Verdef *) contents;
6807 maxidx = 0;
6808 for (i = 0; i < hdr->sh_info; ++i)
6810 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6812 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6813 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6815 if (iverdefmem.vd_next
6816 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6817 goto error_return;
6819 everdef = ((Elf_External_Verdef *)
6820 ((bfd_byte *) everdef + iverdefmem.vd_next));
6823 if (default_imported_symver)
6825 if (freeidx > maxidx)
6826 maxidx = ++freeidx;
6827 else
6828 freeidx = ++maxidx;
6830 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6831 sizeof (Elf_Internal_Verdef));
6832 if (elf_tdata (abfd)->verdef == NULL)
6833 goto error_return;
6835 elf_tdata (abfd)->cverdefs = maxidx;
6837 everdef = (Elf_External_Verdef *) contents;
6838 iverdefarr = elf_tdata (abfd)->verdef;
6839 for (i = 0; i < hdr->sh_info; i++)
6841 Elf_External_Verdaux *everdaux;
6842 Elf_Internal_Verdaux *iverdaux;
6843 unsigned int j;
6845 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6847 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6849 error_return_verdef:
6850 elf_tdata (abfd)->verdef = NULL;
6851 elf_tdata (abfd)->cverdefs = 0;
6852 goto error_return;
6855 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6856 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6858 iverdef->vd_bfd = abfd;
6860 if (iverdef->vd_cnt == 0)
6861 iverdef->vd_auxptr = NULL;
6862 else
6864 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6865 sizeof (Elf_Internal_Verdaux));
6866 if (iverdef->vd_auxptr == NULL)
6867 goto error_return_verdef;
6870 if (iverdef->vd_aux
6871 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6872 goto error_return_verdef;
6874 everdaux = ((Elf_External_Verdaux *)
6875 ((bfd_byte *) everdef + iverdef->vd_aux));
6876 iverdaux = iverdef->vd_auxptr;
6877 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6879 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6881 iverdaux->vda_nodename =
6882 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6883 iverdaux->vda_name);
6884 if (iverdaux->vda_nodename == NULL)
6885 goto error_return_verdef;
6887 if (j + 1 < iverdef->vd_cnt)
6888 iverdaux->vda_nextptr = iverdaux + 1;
6889 else
6890 iverdaux->vda_nextptr = NULL;
6892 if (iverdaux->vda_next
6893 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6894 goto error_return_verdef;
6896 everdaux = ((Elf_External_Verdaux *)
6897 ((bfd_byte *) everdaux + iverdaux->vda_next));
6900 if (iverdef->vd_cnt)
6901 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6903 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6904 iverdef->vd_nextdef = iverdef + 1;
6905 else
6906 iverdef->vd_nextdef = NULL;
6908 everdef = ((Elf_External_Verdef *)
6909 ((bfd_byte *) everdef + iverdef->vd_next));
6912 free (contents);
6913 contents = NULL;
6915 else if (default_imported_symver)
6917 if (freeidx < 3)
6918 freeidx = 3;
6919 else
6920 freeidx++;
6922 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6923 sizeof (Elf_Internal_Verdef));
6924 if (elf_tdata (abfd)->verdef == NULL)
6925 goto error_return;
6927 elf_tdata (abfd)->cverdefs = freeidx;
6930 /* Create a default version based on the soname. */
6931 if (default_imported_symver)
6933 Elf_Internal_Verdef *iverdef;
6934 Elf_Internal_Verdaux *iverdaux;
6936 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6938 iverdef->vd_version = VER_DEF_CURRENT;
6939 iverdef->vd_flags = 0;
6940 iverdef->vd_ndx = freeidx;
6941 iverdef->vd_cnt = 1;
6943 iverdef->vd_bfd = abfd;
6945 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6946 if (iverdef->vd_nodename == NULL)
6947 goto error_return_verdef;
6948 iverdef->vd_nextdef = NULL;
6949 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6950 if (iverdef->vd_auxptr == NULL)
6951 goto error_return_verdef;
6953 iverdaux = iverdef->vd_auxptr;
6954 iverdaux->vda_nodename = iverdef->vd_nodename;
6955 iverdaux->vda_nextptr = NULL;
6958 return TRUE;
6960 error_return:
6961 if (contents != NULL)
6962 free (contents);
6963 return FALSE;
6966 asymbol *
6967 _bfd_elf_make_empty_symbol (bfd *abfd)
6969 elf_symbol_type *newsym;
6970 bfd_size_type amt = sizeof (elf_symbol_type);
6972 newsym = bfd_zalloc (abfd, amt);
6973 if (!newsym)
6974 return NULL;
6975 else
6977 newsym->symbol.the_bfd = abfd;
6978 return &newsym->symbol;
6982 void
6983 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6984 asymbol *symbol,
6985 symbol_info *ret)
6987 bfd_symbol_info (symbol, ret);
6990 /* Return whether a symbol name implies a local symbol. Most targets
6991 use this function for the is_local_label_name entry point, but some
6992 override it. */
6994 bfd_boolean
6995 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6996 const char *name)
6998 /* Normal local symbols start with ``.L''. */
6999 if (name[0] == '.' && name[1] == 'L')
7000 return TRUE;
7002 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7003 DWARF debugging symbols starting with ``..''. */
7004 if (name[0] == '.' && name[1] == '.')
7005 return TRUE;
7007 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7008 emitting DWARF debugging output. I suspect this is actually a
7009 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7010 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7011 underscore to be emitted on some ELF targets). For ease of use,
7012 we treat such symbols as local. */
7013 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7014 return TRUE;
7016 return FALSE;
7019 alent *
7020 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7021 asymbol *symbol ATTRIBUTE_UNUSED)
7023 abort ();
7024 return NULL;
7027 bfd_boolean
7028 _bfd_elf_set_arch_mach (bfd *abfd,
7029 enum bfd_architecture arch,
7030 unsigned long machine)
7032 /* If this isn't the right architecture for this backend, and this
7033 isn't the generic backend, fail. */
7034 if (arch != get_elf_backend_data (abfd)->arch
7035 && arch != bfd_arch_unknown
7036 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7037 return FALSE;
7039 return bfd_default_set_arch_mach (abfd, arch, machine);
7042 /* Find the function to a particular section and offset,
7043 for error reporting. */
7045 static bfd_boolean
7046 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7047 asection *section,
7048 asymbol **symbols,
7049 bfd_vma offset,
7050 const char **filename_ptr,
7051 const char **functionname_ptr)
7053 const char *filename;
7054 asymbol *func, *file;
7055 bfd_vma low_func;
7056 asymbol **p;
7057 /* ??? Given multiple file symbols, it is impossible to reliably
7058 choose the right file name for global symbols. File symbols are
7059 local symbols, and thus all file symbols must sort before any
7060 global symbols. The ELF spec may be interpreted to say that a
7061 file symbol must sort before other local symbols, but currently
7062 ld -r doesn't do this. So, for ld -r output, it is possible to
7063 make a better choice of file name for local symbols by ignoring
7064 file symbols appearing after a given local symbol. */
7065 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7067 filename = NULL;
7068 func = NULL;
7069 file = NULL;
7070 low_func = 0;
7071 state = nothing_seen;
7073 for (p = symbols; *p != NULL; p++)
7075 elf_symbol_type *q;
7077 q = (elf_symbol_type *) *p;
7079 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7081 default:
7082 break;
7083 case STT_FILE:
7084 file = &q->symbol;
7085 if (state == symbol_seen)
7086 state = file_after_symbol_seen;
7087 continue;
7088 case STT_NOTYPE:
7089 case STT_FUNC:
7090 if (bfd_get_section (&q->symbol) == section
7091 && q->symbol.value >= low_func
7092 && q->symbol.value <= offset)
7094 func = (asymbol *) q;
7095 low_func = q->symbol.value;
7096 filename = NULL;
7097 if (file != NULL
7098 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7099 || state != file_after_symbol_seen))
7100 filename = bfd_asymbol_name (file);
7102 break;
7104 if (state == nothing_seen)
7105 state = symbol_seen;
7108 if (func == NULL)
7109 return FALSE;
7111 if (filename_ptr)
7112 *filename_ptr = filename;
7113 if (functionname_ptr)
7114 *functionname_ptr = bfd_asymbol_name (func);
7116 return TRUE;
7119 /* Find the nearest line to a particular section and offset,
7120 for error reporting. */
7122 bfd_boolean
7123 _bfd_elf_find_nearest_line (bfd *abfd,
7124 asection *section,
7125 asymbol **symbols,
7126 bfd_vma offset,
7127 const char **filename_ptr,
7128 const char **functionname_ptr,
7129 unsigned int *line_ptr)
7131 bfd_boolean found;
7133 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7134 filename_ptr, functionname_ptr,
7135 line_ptr))
7137 if (!*functionname_ptr)
7138 elf_find_function (abfd, section, symbols, offset,
7139 *filename_ptr ? NULL : filename_ptr,
7140 functionname_ptr);
7142 return TRUE;
7145 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7146 filename_ptr, functionname_ptr,
7147 line_ptr, 0,
7148 &elf_tdata (abfd)->dwarf2_find_line_info))
7150 if (!*functionname_ptr)
7151 elf_find_function (abfd, section, symbols, offset,
7152 *filename_ptr ? NULL : filename_ptr,
7153 functionname_ptr);
7155 return TRUE;
7158 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7159 &found, filename_ptr,
7160 functionname_ptr, line_ptr,
7161 &elf_tdata (abfd)->line_info))
7162 return FALSE;
7163 if (found && (*functionname_ptr || *line_ptr))
7164 return TRUE;
7166 if (symbols == NULL)
7167 return FALSE;
7169 if (! elf_find_function (abfd, section, symbols, offset,
7170 filename_ptr, functionname_ptr))
7171 return FALSE;
7173 *line_ptr = 0;
7174 return TRUE;
7177 /* Find the line for a symbol. */
7179 bfd_boolean
7180 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7181 const char **filename_ptr, unsigned int *line_ptr)
7183 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7184 filename_ptr, line_ptr, 0,
7185 &elf_tdata (abfd)->dwarf2_find_line_info);
7188 /* After a call to bfd_find_nearest_line, successive calls to
7189 bfd_find_inliner_info can be used to get source information about
7190 each level of function inlining that terminated at the address
7191 passed to bfd_find_nearest_line. Currently this is only supported
7192 for DWARF2 with appropriate DWARF3 extensions. */
7194 bfd_boolean
7195 _bfd_elf_find_inliner_info (bfd *abfd,
7196 const char **filename_ptr,
7197 const char **functionname_ptr,
7198 unsigned int *line_ptr)
7200 bfd_boolean found;
7201 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7202 functionname_ptr, line_ptr,
7203 & elf_tdata (abfd)->dwarf2_find_line_info);
7204 return found;
7208 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7211 int ret = bed->s->sizeof_ehdr;
7213 if (!info->relocatable)
7215 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7217 if (phdr_size == (bfd_size_type) -1)
7219 struct elf_segment_map *m;
7221 phdr_size = 0;
7222 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7223 phdr_size += bed->s->sizeof_phdr;
7225 if (phdr_size == 0)
7226 phdr_size = get_program_header_size (abfd, info);
7229 elf_tdata (abfd)->program_header_size = phdr_size;
7230 ret += phdr_size;
7233 return ret;
7236 bfd_boolean
7237 _bfd_elf_set_section_contents (bfd *abfd,
7238 sec_ptr section,
7239 const void *location,
7240 file_ptr offset,
7241 bfd_size_type count)
7243 Elf_Internal_Shdr *hdr;
7244 bfd_signed_vma pos;
7246 if (! abfd->output_has_begun
7247 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7248 return FALSE;
7250 hdr = &elf_section_data (section)->this_hdr;
7251 pos = hdr->sh_offset + offset;
7252 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7253 || bfd_bwrite (location, count, abfd) != count)
7254 return FALSE;
7256 return TRUE;
7259 void
7260 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7261 arelent *cache_ptr ATTRIBUTE_UNUSED,
7262 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7264 abort ();
7267 /* Try to convert a non-ELF reloc into an ELF one. */
7269 bfd_boolean
7270 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7272 /* Check whether we really have an ELF howto. */
7274 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7276 bfd_reloc_code_real_type code;
7277 reloc_howto_type *howto;
7279 /* Alien reloc: Try to determine its type to replace it with an
7280 equivalent ELF reloc. */
7282 if (areloc->howto->pc_relative)
7284 switch (areloc->howto->bitsize)
7286 case 8:
7287 code = BFD_RELOC_8_PCREL;
7288 break;
7289 case 12:
7290 code = BFD_RELOC_12_PCREL;
7291 break;
7292 case 16:
7293 code = BFD_RELOC_16_PCREL;
7294 break;
7295 case 24:
7296 code = BFD_RELOC_24_PCREL;
7297 break;
7298 case 32:
7299 code = BFD_RELOC_32_PCREL;
7300 break;
7301 case 64:
7302 code = BFD_RELOC_64_PCREL;
7303 break;
7304 default:
7305 goto fail;
7308 howto = bfd_reloc_type_lookup (abfd, code);
7310 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7312 if (howto->pcrel_offset)
7313 areloc->addend += areloc->address;
7314 else
7315 areloc->addend -= areloc->address; /* addend is unsigned!! */
7318 else
7320 switch (areloc->howto->bitsize)
7322 case 8:
7323 code = BFD_RELOC_8;
7324 break;
7325 case 14:
7326 code = BFD_RELOC_14;
7327 break;
7328 case 16:
7329 code = BFD_RELOC_16;
7330 break;
7331 case 26:
7332 code = BFD_RELOC_26;
7333 break;
7334 case 32:
7335 code = BFD_RELOC_32;
7336 break;
7337 case 64:
7338 code = BFD_RELOC_64;
7339 break;
7340 default:
7341 goto fail;
7344 howto = bfd_reloc_type_lookup (abfd, code);
7347 if (howto)
7348 areloc->howto = howto;
7349 else
7350 goto fail;
7353 return TRUE;
7355 fail:
7356 (*_bfd_error_handler)
7357 (_("%B: unsupported relocation type %s"),
7358 abfd, areloc->howto->name);
7359 bfd_set_error (bfd_error_bad_value);
7360 return FALSE;
7363 bfd_boolean
7364 _bfd_elf_close_and_cleanup (bfd *abfd)
7366 if (bfd_get_format (abfd) == bfd_object)
7368 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7369 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7370 _bfd_dwarf2_cleanup_debug_info (abfd);
7373 return _bfd_generic_close_and_cleanup (abfd);
7376 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7377 in the relocation's offset. Thus we cannot allow any sort of sanity
7378 range-checking to interfere. There is nothing else to do in processing
7379 this reloc. */
7381 bfd_reloc_status_type
7382 _bfd_elf_rel_vtable_reloc_fn
7383 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7384 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7385 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7386 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7388 return bfd_reloc_ok;
7391 /* Elf core file support. Much of this only works on native
7392 toolchains, since we rely on knowing the
7393 machine-dependent procfs structure in order to pick
7394 out details about the corefile. */
7396 #ifdef HAVE_SYS_PROCFS_H
7397 # include <sys/procfs.h>
7398 #endif
7400 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7402 static int
7403 elfcore_make_pid (bfd *abfd)
7405 return ((elf_tdata (abfd)->core_lwpid << 16)
7406 + (elf_tdata (abfd)->core_pid));
7409 /* If there isn't a section called NAME, make one, using
7410 data from SECT. Note, this function will generate a
7411 reference to NAME, so you shouldn't deallocate or
7412 overwrite it. */
7414 static bfd_boolean
7415 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7417 asection *sect2;
7419 if (bfd_get_section_by_name (abfd, name) != NULL)
7420 return TRUE;
7422 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7423 if (sect2 == NULL)
7424 return FALSE;
7426 sect2->size = sect->size;
7427 sect2->filepos = sect->filepos;
7428 sect2->alignment_power = sect->alignment_power;
7429 return TRUE;
7432 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7433 actually creates up to two pseudosections:
7434 - For the single-threaded case, a section named NAME, unless
7435 such a section already exists.
7436 - For the multi-threaded case, a section named "NAME/PID", where
7437 PID is elfcore_make_pid (abfd).
7438 Both pseudosections have identical contents. */
7439 bfd_boolean
7440 _bfd_elfcore_make_pseudosection (bfd *abfd,
7441 char *name,
7442 size_t size,
7443 ufile_ptr filepos)
7445 char buf[100];
7446 char *threaded_name;
7447 size_t len;
7448 asection *sect;
7450 /* Build the section name. */
7452 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7453 len = strlen (buf) + 1;
7454 threaded_name = bfd_alloc (abfd, len);
7455 if (threaded_name == NULL)
7456 return FALSE;
7457 memcpy (threaded_name, buf, len);
7459 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7460 SEC_HAS_CONTENTS);
7461 if (sect == NULL)
7462 return FALSE;
7463 sect->size = size;
7464 sect->filepos = filepos;
7465 sect->alignment_power = 2;
7467 return elfcore_maybe_make_sect (abfd, name, sect);
7470 /* prstatus_t exists on:
7471 solaris 2.5+
7472 linux 2.[01] + glibc
7473 unixware 4.2
7476 #if defined (HAVE_PRSTATUS_T)
7478 static bfd_boolean
7479 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7481 size_t size;
7482 int offset;
7484 if (note->descsz == sizeof (prstatus_t))
7486 prstatus_t prstat;
7488 size = sizeof (prstat.pr_reg);
7489 offset = offsetof (prstatus_t, pr_reg);
7490 memcpy (&prstat, note->descdata, sizeof (prstat));
7492 /* Do not overwrite the core signal if it
7493 has already been set by another thread. */
7494 if (elf_tdata (abfd)->core_signal == 0)
7495 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7496 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7498 /* pr_who exists on:
7499 solaris 2.5+
7500 unixware 4.2
7501 pr_who doesn't exist on:
7502 linux 2.[01]
7504 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7505 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7506 #endif
7508 #if defined (HAVE_PRSTATUS32_T)
7509 else if (note->descsz == sizeof (prstatus32_t))
7511 /* 64-bit host, 32-bit corefile */
7512 prstatus32_t prstat;
7514 size = sizeof (prstat.pr_reg);
7515 offset = offsetof (prstatus32_t, pr_reg);
7516 memcpy (&prstat, note->descdata, sizeof (prstat));
7518 /* Do not overwrite the core signal if it
7519 has already been set by another thread. */
7520 if (elf_tdata (abfd)->core_signal == 0)
7521 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7522 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7524 /* pr_who exists on:
7525 solaris 2.5+
7526 unixware 4.2
7527 pr_who doesn't exist on:
7528 linux 2.[01]
7530 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7531 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7532 #endif
7534 #endif /* HAVE_PRSTATUS32_T */
7535 else
7537 /* Fail - we don't know how to handle any other
7538 note size (ie. data object type). */
7539 return TRUE;
7542 /* Make a ".reg/999" section and a ".reg" section. */
7543 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7544 size, note->descpos + offset);
7546 #endif /* defined (HAVE_PRSTATUS_T) */
7548 /* Create a pseudosection containing the exact contents of NOTE. */
7549 static bfd_boolean
7550 elfcore_make_note_pseudosection (bfd *abfd,
7551 char *name,
7552 Elf_Internal_Note *note)
7554 return _bfd_elfcore_make_pseudosection (abfd, name,
7555 note->descsz, note->descpos);
7558 /* There isn't a consistent prfpregset_t across platforms,
7559 but it doesn't matter, because we don't have to pick this
7560 data structure apart. */
7562 static bfd_boolean
7563 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7565 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7568 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7569 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7570 literally. */
7572 static bfd_boolean
7573 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7575 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7578 #if defined (HAVE_PRPSINFO_T)
7579 typedef prpsinfo_t elfcore_psinfo_t;
7580 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7581 typedef prpsinfo32_t elfcore_psinfo32_t;
7582 #endif
7583 #endif
7585 #if defined (HAVE_PSINFO_T)
7586 typedef psinfo_t elfcore_psinfo_t;
7587 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7588 typedef psinfo32_t elfcore_psinfo32_t;
7589 #endif
7590 #endif
7592 /* return a malloc'ed copy of a string at START which is at
7593 most MAX bytes long, possibly without a terminating '\0'.
7594 the copy will always have a terminating '\0'. */
7596 char *
7597 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7599 char *dups;
7600 char *end = memchr (start, '\0', max);
7601 size_t len;
7603 if (end == NULL)
7604 len = max;
7605 else
7606 len = end - start;
7608 dups = bfd_alloc (abfd, len + 1);
7609 if (dups == NULL)
7610 return NULL;
7612 memcpy (dups, start, len);
7613 dups[len] = '\0';
7615 return dups;
7618 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7619 static bfd_boolean
7620 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7622 if (note->descsz == sizeof (elfcore_psinfo_t))
7624 elfcore_psinfo_t psinfo;
7626 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7628 elf_tdata (abfd)->core_program
7629 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7630 sizeof (psinfo.pr_fname));
7632 elf_tdata (abfd)->core_command
7633 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7634 sizeof (psinfo.pr_psargs));
7636 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7637 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7639 /* 64-bit host, 32-bit corefile */
7640 elfcore_psinfo32_t psinfo;
7642 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7644 elf_tdata (abfd)->core_program
7645 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7646 sizeof (psinfo.pr_fname));
7648 elf_tdata (abfd)->core_command
7649 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7650 sizeof (psinfo.pr_psargs));
7652 #endif
7654 else
7656 /* Fail - we don't know how to handle any other
7657 note size (ie. data object type). */
7658 return TRUE;
7661 /* Note that for some reason, a spurious space is tacked
7662 onto the end of the args in some (at least one anyway)
7663 implementations, so strip it off if it exists. */
7666 char *command = elf_tdata (abfd)->core_command;
7667 int n = strlen (command);
7669 if (0 < n && command[n - 1] == ' ')
7670 command[n - 1] = '\0';
7673 return TRUE;
7675 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7677 #if defined (HAVE_PSTATUS_T)
7678 static bfd_boolean
7679 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7681 if (note->descsz == sizeof (pstatus_t)
7682 #if defined (HAVE_PXSTATUS_T)
7683 || note->descsz == sizeof (pxstatus_t)
7684 #endif
7687 pstatus_t pstat;
7689 memcpy (&pstat, note->descdata, sizeof (pstat));
7691 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7693 #if defined (HAVE_PSTATUS32_T)
7694 else if (note->descsz == sizeof (pstatus32_t))
7696 /* 64-bit host, 32-bit corefile */
7697 pstatus32_t pstat;
7699 memcpy (&pstat, note->descdata, sizeof (pstat));
7701 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7703 #endif
7704 /* Could grab some more details from the "representative"
7705 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7706 NT_LWPSTATUS note, presumably. */
7708 return TRUE;
7710 #endif /* defined (HAVE_PSTATUS_T) */
7712 #if defined (HAVE_LWPSTATUS_T)
7713 static bfd_boolean
7714 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7716 lwpstatus_t lwpstat;
7717 char buf[100];
7718 char *name;
7719 size_t len;
7720 asection *sect;
7722 if (note->descsz != sizeof (lwpstat)
7723 #if defined (HAVE_LWPXSTATUS_T)
7724 && note->descsz != sizeof (lwpxstatus_t)
7725 #endif
7727 return TRUE;
7729 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7731 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7732 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7734 /* Make a ".reg/999" section. */
7736 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7737 len = strlen (buf) + 1;
7738 name = bfd_alloc (abfd, len);
7739 if (name == NULL)
7740 return FALSE;
7741 memcpy (name, buf, len);
7743 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7744 if (sect == NULL)
7745 return FALSE;
7747 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7748 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7749 sect->filepos = note->descpos
7750 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7751 #endif
7753 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7754 sect->size = sizeof (lwpstat.pr_reg);
7755 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7756 #endif
7758 sect->alignment_power = 2;
7760 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7761 return FALSE;
7763 /* Make a ".reg2/999" section */
7765 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7766 len = strlen (buf) + 1;
7767 name = bfd_alloc (abfd, len);
7768 if (name == NULL)
7769 return FALSE;
7770 memcpy (name, buf, len);
7772 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7773 if (sect == NULL)
7774 return FALSE;
7776 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7777 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7778 sect->filepos = note->descpos
7779 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7780 #endif
7782 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7783 sect->size = sizeof (lwpstat.pr_fpreg);
7784 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7785 #endif
7787 sect->alignment_power = 2;
7789 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7791 #endif /* defined (HAVE_LWPSTATUS_T) */
7793 #if defined (HAVE_WIN32_PSTATUS_T)
7794 static bfd_boolean
7795 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7797 char buf[30];
7798 char *name;
7799 size_t len;
7800 asection *sect;
7801 win32_pstatus_t pstatus;
7803 if (note->descsz < sizeof (pstatus))
7804 return TRUE;
7806 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7808 switch (pstatus.data_type)
7810 case NOTE_INFO_PROCESS:
7811 /* FIXME: need to add ->core_command. */
7812 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7813 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7814 break;
7816 case NOTE_INFO_THREAD:
7817 /* Make a ".reg/999" section. */
7818 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7820 len = strlen (buf) + 1;
7821 name = bfd_alloc (abfd, len);
7822 if (name == NULL)
7823 return FALSE;
7825 memcpy (name, buf, len);
7827 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7828 if (sect == NULL)
7829 return FALSE;
7831 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7832 sect->filepos = (note->descpos
7833 + offsetof (struct win32_pstatus,
7834 data.thread_info.thread_context));
7835 sect->alignment_power = 2;
7837 if (pstatus.data.thread_info.is_active_thread)
7838 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7839 return FALSE;
7840 break;
7842 case NOTE_INFO_MODULE:
7843 /* Make a ".module/xxxxxxxx" section. */
7844 sprintf (buf, ".module/%08lx",
7845 (long) pstatus.data.module_info.base_address);
7847 len = strlen (buf) + 1;
7848 name = bfd_alloc (abfd, len);
7849 if (name == NULL)
7850 return FALSE;
7852 memcpy (name, buf, len);
7854 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7856 if (sect == NULL)
7857 return FALSE;
7859 sect->size = note->descsz;
7860 sect->filepos = note->descpos;
7861 sect->alignment_power = 2;
7862 break;
7864 default:
7865 return TRUE;
7868 return TRUE;
7870 #endif /* HAVE_WIN32_PSTATUS_T */
7872 static bfd_boolean
7873 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7875 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7877 switch (note->type)
7879 default:
7880 return TRUE;
7882 case NT_PRSTATUS:
7883 if (bed->elf_backend_grok_prstatus)
7884 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7885 return TRUE;
7886 #if defined (HAVE_PRSTATUS_T)
7887 return elfcore_grok_prstatus (abfd, note);
7888 #else
7889 return TRUE;
7890 #endif
7892 #if defined (HAVE_PSTATUS_T)
7893 case NT_PSTATUS:
7894 return elfcore_grok_pstatus (abfd, note);
7895 #endif
7897 #if defined (HAVE_LWPSTATUS_T)
7898 case NT_LWPSTATUS:
7899 return elfcore_grok_lwpstatus (abfd, note);
7900 #endif
7902 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7903 return elfcore_grok_prfpreg (abfd, note);
7905 #if defined (HAVE_WIN32_PSTATUS_T)
7906 case NT_WIN32PSTATUS:
7907 return elfcore_grok_win32pstatus (abfd, note);
7908 #endif
7910 case NT_PRXFPREG: /* Linux SSE extension */
7911 if (note->namesz == 6
7912 && strcmp (note->namedata, "LINUX") == 0)
7913 return elfcore_grok_prxfpreg (abfd, note);
7914 else
7915 return TRUE;
7917 case NT_PRPSINFO:
7918 case NT_PSINFO:
7919 if (bed->elf_backend_grok_psinfo)
7920 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7921 return TRUE;
7922 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7923 return elfcore_grok_psinfo (abfd, note);
7924 #else
7925 return TRUE;
7926 #endif
7928 case NT_AUXV:
7930 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7931 SEC_HAS_CONTENTS);
7933 if (sect == NULL)
7934 return FALSE;
7935 sect->size = note->descsz;
7936 sect->filepos = note->descpos;
7937 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7939 return TRUE;
7944 static bfd_boolean
7945 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7947 char *cp;
7949 cp = strchr (note->namedata, '@');
7950 if (cp != NULL)
7952 *lwpidp = atoi(cp + 1);
7953 return TRUE;
7955 return FALSE;
7958 static bfd_boolean
7959 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7962 /* Signal number at offset 0x08. */
7963 elf_tdata (abfd)->core_signal
7964 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7966 /* Process ID at offset 0x50. */
7967 elf_tdata (abfd)->core_pid
7968 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7970 /* Command name at 0x7c (max 32 bytes, including nul). */
7971 elf_tdata (abfd)->core_command
7972 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7974 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7975 note);
7978 static bfd_boolean
7979 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7981 int lwp;
7983 if (elfcore_netbsd_get_lwpid (note, &lwp))
7984 elf_tdata (abfd)->core_lwpid = lwp;
7986 if (note->type == NT_NETBSDCORE_PROCINFO)
7988 /* NetBSD-specific core "procinfo". Note that we expect to
7989 find this note before any of the others, which is fine,
7990 since the kernel writes this note out first when it
7991 creates a core file. */
7993 return elfcore_grok_netbsd_procinfo (abfd, note);
7996 /* As of Jan 2002 there are no other machine-independent notes
7997 defined for NetBSD core files. If the note type is less
7998 than the start of the machine-dependent note types, we don't
7999 understand it. */
8001 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8002 return TRUE;
8005 switch (bfd_get_arch (abfd))
8007 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8008 PT_GETFPREGS == mach+2. */
8010 case bfd_arch_alpha:
8011 case bfd_arch_sparc:
8012 switch (note->type)
8014 case NT_NETBSDCORE_FIRSTMACH+0:
8015 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8017 case NT_NETBSDCORE_FIRSTMACH+2:
8018 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8020 default:
8021 return TRUE;
8024 /* On all other arch's, PT_GETREGS == mach+1 and
8025 PT_GETFPREGS == mach+3. */
8027 default:
8028 switch (note->type)
8030 case NT_NETBSDCORE_FIRSTMACH+1:
8031 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8033 case NT_NETBSDCORE_FIRSTMACH+3:
8034 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8036 default:
8037 return TRUE;
8040 /* NOTREACHED */
8043 static bfd_boolean
8044 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8046 void *ddata = note->descdata;
8047 char buf[100];
8048 char *name;
8049 asection *sect;
8050 short sig;
8051 unsigned flags;
8053 /* nto_procfs_status 'pid' field is at offset 0. */
8054 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8056 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8057 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8059 /* nto_procfs_status 'flags' field is at offset 8. */
8060 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8062 /* nto_procfs_status 'what' field is at offset 14. */
8063 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8065 elf_tdata (abfd)->core_signal = sig;
8066 elf_tdata (abfd)->core_lwpid = *tid;
8069 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8070 do not come from signals so we make sure we set the current
8071 thread just in case. */
8072 if (flags & 0x00000080)
8073 elf_tdata (abfd)->core_lwpid = *tid;
8075 /* Make a ".qnx_core_status/%d" section. */
8076 sprintf (buf, ".qnx_core_status/%ld", *tid);
8078 name = bfd_alloc (abfd, strlen (buf) + 1);
8079 if (name == NULL)
8080 return FALSE;
8081 strcpy (name, buf);
8083 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8084 if (sect == NULL)
8085 return FALSE;
8087 sect->size = note->descsz;
8088 sect->filepos = note->descpos;
8089 sect->alignment_power = 2;
8091 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8094 static bfd_boolean
8095 elfcore_grok_nto_regs (bfd *abfd,
8096 Elf_Internal_Note *note,
8097 long tid,
8098 char *base)
8100 char buf[100];
8101 char *name;
8102 asection *sect;
8104 /* Make a "(base)/%d" section. */
8105 sprintf (buf, "%s/%ld", base, tid);
8107 name = bfd_alloc (abfd, strlen (buf) + 1);
8108 if (name == NULL)
8109 return FALSE;
8110 strcpy (name, buf);
8112 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8113 if (sect == NULL)
8114 return FALSE;
8116 sect->size = note->descsz;
8117 sect->filepos = note->descpos;
8118 sect->alignment_power = 2;
8120 /* This is the current thread. */
8121 if (elf_tdata (abfd)->core_lwpid == tid)
8122 return elfcore_maybe_make_sect (abfd, base, sect);
8124 return TRUE;
8127 #define BFD_QNT_CORE_INFO 7
8128 #define BFD_QNT_CORE_STATUS 8
8129 #define BFD_QNT_CORE_GREG 9
8130 #define BFD_QNT_CORE_FPREG 10
8132 static bfd_boolean
8133 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8135 /* Every GREG section has a STATUS section before it. Store the
8136 tid from the previous call to pass down to the next gregs
8137 function. */
8138 static long tid = 1;
8140 switch (note->type)
8142 case BFD_QNT_CORE_INFO:
8143 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8144 case BFD_QNT_CORE_STATUS:
8145 return elfcore_grok_nto_status (abfd, note, &tid);
8146 case BFD_QNT_CORE_GREG:
8147 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8148 case BFD_QNT_CORE_FPREG:
8149 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8150 default:
8151 return TRUE;
8155 /* Function: elfcore_write_note
8157 Inputs:
8158 buffer to hold note, and current size of buffer
8159 name of note
8160 type of note
8161 data for note
8162 size of data for note
8164 Writes note to end of buffer. ELF64 notes are written exactly as
8165 for ELF32, despite the current (as of 2006) ELF gabi specifying
8166 that they ought to have 8-byte namesz and descsz field, and have
8167 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8169 Return:
8170 Pointer to realloc'd buffer, *BUFSIZ updated. */
8172 char *
8173 elfcore_write_note (bfd *abfd,
8174 char *buf,
8175 int *bufsiz,
8176 const char *name,
8177 int type,
8178 const void *input,
8179 int size)
8181 Elf_External_Note *xnp;
8182 size_t namesz;
8183 size_t newspace;
8184 char *dest;
8186 namesz = 0;
8187 if (name != NULL)
8188 namesz = strlen (name) + 1;
8190 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8192 buf = realloc (buf, *bufsiz + newspace);
8193 dest = buf + *bufsiz;
8194 *bufsiz += newspace;
8195 xnp = (Elf_External_Note *) dest;
8196 H_PUT_32 (abfd, namesz, xnp->namesz);
8197 H_PUT_32 (abfd, size, xnp->descsz);
8198 H_PUT_32 (abfd, type, xnp->type);
8199 dest = xnp->name;
8200 if (name != NULL)
8202 memcpy (dest, name, namesz);
8203 dest += namesz;
8204 while (namesz & 3)
8206 *dest++ = '\0';
8207 ++namesz;
8210 memcpy (dest, input, size);
8211 dest += size;
8212 while (size & 3)
8214 *dest++ = '\0';
8215 ++size;
8217 return buf;
8220 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8221 char *
8222 elfcore_write_prpsinfo (bfd *abfd,
8223 char *buf,
8224 int *bufsiz,
8225 const char *fname,
8226 const char *psargs)
8228 const char *note_name = "CORE";
8229 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8231 if (bed->elf_backend_write_core_note != NULL)
8233 char *ret;
8234 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8235 NT_PRPSINFO, fname, psargs);
8236 if (ret != NULL)
8237 return ret;
8240 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8241 if (bed->s->elfclass == ELFCLASS32)
8243 #if defined (HAVE_PSINFO32_T)
8244 psinfo32_t data;
8245 int note_type = NT_PSINFO;
8246 #else
8247 prpsinfo32_t data;
8248 int note_type = NT_PRPSINFO;
8249 #endif
8251 memset (&data, 0, sizeof (data));
8252 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8253 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8254 return elfcore_write_note (abfd, buf, bufsiz,
8255 note_name, note_type, &data, sizeof (data));
8257 else
8258 #endif
8260 #if defined (HAVE_PSINFO_T)
8261 psinfo_t data;
8262 int note_type = NT_PSINFO;
8263 #else
8264 prpsinfo_t data;
8265 int note_type = NT_PRPSINFO;
8266 #endif
8268 memset (&data, 0, sizeof (data));
8269 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8270 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8271 return elfcore_write_note (abfd, buf, bufsiz,
8272 note_name, note_type, &data, sizeof (data));
8275 #endif /* PSINFO_T or PRPSINFO_T */
8277 #if defined (HAVE_PRSTATUS_T)
8278 char *
8279 elfcore_write_prstatus (bfd *abfd,
8280 char *buf,
8281 int *bufsiz,
8282 long pid,
8283 int cursig,
8284 const void *gregs)
8286 const char *note_name = "CORE";
8287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8289 if (bed->elf_backend_write_core_note != NULL)
8291 char *ret;
8292 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8293 NT_PRSTATUS,
8294 pid, cursig, gregs);
8295 if (ret != NULL)
8296 return ret;
8299 #if defined (HAVE_PRSTATUS32_T)
8300 if (bed->s->elfclass == ELFCLASS32)
8302 prstatus32_t prstat;
8304 memset (&prstat, 0, sizeof (prstat));
8305 prstat.pr_pid = pid;
8306 prstat.pr_cursig = cursig;
8307 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8308 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8309 NT_PRSTATUS, &prstat, sizeof (prstat));
8311 else
8312 #endif
8314 prstatus_t prstat;
8316 memset (&prstat, 0, sizeof (prstat));
8317 prstat.pr_pid = pid;
8318 prstat.pr_cursig = cursig;
8319 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8320 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8321 NT_PRSTATUS, &prstat, sizeof (prstat));
8324 #endif /* HAVE_PRSTATUS_T */
8326 #if defined (HAVE_LWPSTATUS_T)
8327 char *
8328 elfcore_write_lwpstatus (bfd *abfd,
8329 char *buf,
8330 int *bufsiz,
8331 long pid,
8332 int cursig,
8333 const void *gregs)
8335 lwpstatus_t lwpstat;
8336 const char *note_name = "CORE";
8338 memset (&lwpstat, 0, sizeof (lwpstat));
8339 lwpstat.pr_lwpid = pid >> 16;
8340 lwpstat.pr_cursig = cursig;
8341 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8342 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8343 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8344 #if !defined(gregs)
8345 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8346 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8347 #else
8348 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8349 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8350 #endif
8351 #endif
8352 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8353 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8355 #endif /* HAVE_LWPSTATUS_T */
8357 #if defined (HAVE_PSTATUS_T)
8358 char *
8359 elfcore_write_pstatus (bfd *abfd,
8360 char *buf,
8361 int *bufsiz,
8362 long pid,
8363 int cursig ATTRIBUTE_UNUSED,
8364 const void *gregs ATTRIBUTE_UNUSED)
8366 const char *note_name = "CORE";
8367 #if defined (HAVE_PSTATUS32_T)
8368 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8370 if (bed->s->elfclass == ELFCLASS32)
8372 pstatus32_t pstat;
8374 memset (&pstat, 0, sizeof (pstat));
8375 pstat.pr_pid = pid & 0xffff;
8376 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8377 NT_PSTATUS, &pstat, sizeof (pstat));
8378 return buf;
8380 else
8381 #endif
8383 pstatus_t pstat;
8385 memset (&pstat, 0, sizeof (pstat));
8386 pstat.pr_pid = pid & 0xffff;
8387 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8388 NT_PSTATUS, &pstat, sizeof (pstat));
8389 return buf;
8392 #endif /* HAVE_PSTATUS_T */
8394 char *
8395 elfcore_write_prfpreg (bfd *abfd,
8396 char *buf,
8397 int *bufsiz,
8398 const void *fpregs,
8399 int size)
8401 const char *note_name = "CORE";
8402 return elfcore_write_note (abfd, buf, bufsiz,
8403 note_name, NT_FPREGSET, fpregs, size);
8406 char *
8407 elfcore_write_prxfpreg (bfd *abfd,
8408 char *buf,
8409 int *bufsiz,
8410 const void *xfpregs,
8411 int size)
8413 char *note_name = "LINUX";
8414 return elfcore_write_note (abfd, buf, bufsiz,
8415 note_name, NT_PRXFPREG, xfpregs, size);
8418 static bfd_boolean
8419 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8421 char *buf;
8422 char *p;
8424 if (size <= 0)
8425 return TRUE;
8427 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8428 return FALSE;
8430 buf = bfd_malloc (size);
8431 if (buf == NULL)
8432 return FALSE;
8434 if (bfd_bread (buf, size, abfd) != size)
8436 error:
8437 free (buf);
8438 return FALSE;
8441 p = buf;
8442 while (p < buf + size)
8444 /* FIXME: bad alignment assumption. */
8445 Elf_External_Note *xnp = (Elf_External_Note *) p;
8446 Elf_Internal_Note in;
8448 in.type = H_GET_32 (abfd, xnp->type);
8450 in.namesz = H_GET_32 (abfd, xnp->namesz);
8451 in.namedata = xnp->name;
8453 in.descsz = H_GET_32 (abfd, xnp->descsz);
8454 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8455 in.descpos = offset + (in.descdata - buf);
8457 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8459 if (! elfcore_grok_netbsd_note (abfd, &in))
8460 goto error;
8462 else if (CONST_STRNEQ (in.namedata, "QNX"))
8464 if (! elfcore_grok_nto_note (abfd, &in))
8465 goto error;
8467 else
8469 if (! elfcore_grok_note (abfd, &in))
8470 goto error;
8473 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8476 free (buf);
8477 return TRUE;
8480 /* Providing external access to the ELF program header table. */
8482 /* Return an upper bound on the number of bytes required to store a
8483 copy of ABFD's program header table entries. Return -1 if an error
8484 occurs; bfd_get_error will return an appropriate code. */
8486 long
8487 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8489 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8491 bfd_set_error (bfd_error_wrong_format);
8492 return -1;
8495 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8498 /* Copy ABFD's program header table entries to *PHDRS. The entries
8499 will be stored as an array of Elf_Internal_Phdr structures, as
8500 defined in include/elf/internal.h. To find out how large the
8501 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8503 Return the number of program header table entries read, or -1 if an
8504 error occurs; bfd_get_error will return an appropriate code. */
8507 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8509 int num_phdrs;
8511 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8513 bfd_set_error (bfd_error_wrong_format);
8514 return -1;
8517 num_phdrs = elf_elfheader (abfd)->e_phnum;
8518 memcpy (phdrs, elf_tdata (abfd)->phdr,
8519 num_phdrs * sizeof (Elf_Internal_Phdr));
8521 return num_phdrs;
8524 void
8525 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8527 #ifdef BFD64
8528 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8530 i_ehdrp = elf_elfheader (abfd);
8531 if (i_ehdrp == NULL)
8532 sprintf_vma (buf, value);
8533 else
8535 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8537 #if BFD_HOST_64BIT_LONG
8538 sprintf (buf, "%016lx", value);
8539 #else
8540 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8541 _bfd_int64_low (value));
8542 #endif
8544 else
8545 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8547 #else
8548 sprintf_vma (buf, value);
8549 #endif
8552 void
8553 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8555 #ifdef BFD64
8556 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8558 i_ehdrp = elf_elfheader (abfd);
8559 if (i_ehdrp == NULL)
8560 fprintf_vma ((FILE *) stream, value);
8561 else
8563 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8565 #if BFD_HOST_64BIT_LONG
8566 fprintf ((FILE *) stream, "%016lx", value);
8567 #else
8568 fprintf ((FILE *) stream, "%08lx%08lx",
8569 _bfd_int64_high (value), _bfd_int64_low (value));
8570 #endif
8572 else
8573 fprintf ((FILE *) stream, "%08lx",
8574 (unsigned long) (value & 0xffffffff));
8576 #else
8577 fprintf_vma ((FILE *) stream, value);
8578 #endif
8581 enum elf_reloc_type_class
8582 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8584 return reloc_class_normal;
8587 /* For RELA architectures, return the relocation value for a
8588 relocation against a local symbol. */
8590 bfd_vma
8591 _bfd_elf_rela_local_sym (bfd *abfd,
8592 Elf_Internal_Sym *sym,
8593 asection **psec,
8594 Elf_Internal_Rela *rel)
8596 asection *sec = *psec;
8597 bfd_vma relocation;
8599 relocation = (sec->output_section->vma
8600 + sec->output_offset
8601 + sym->st_value);
8602 if ((sec->flags & SEC_MERGE)
8603 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8604 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8606 rel->r_addend =
8607 _bfd_merged_section_offset (abfd, psec,
8608 elf_section_data (sec)->sec_info,
8609 sym->st_value + rel->r_addend);
8610 if (sec != *psec)
8612 /* If we have changed the section, and our original section is
8613 marked with SEC_EXCLUDE, it means that the original
8614 SEC_MERGE section has been completely subsumed in some
8615 other SEC_MERGE section. In this case, we need to leave
8616 some info around for --emit-relocs. */
8617 if ((sec->flags & SEC_EXCLUDE) != 0)
8618 sec->kept_section = *psec;
8619 sec = *psec;
8621 rel->r_addend -= relocation;
8622 rel->r_addend += sec->output_section->vma + sec->output_offset;
8624 return relocation;
8627 bfd_vma
8628 _bfd_elf_rel_local_sym (bfd *abfd,
8629 Elf_Internal_Sym *sym,
8630 asection **psec,
8631 bfd_vma addend)
8633 asection *sec = *psec;
8635 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8636 return sym->st_value + addend;
8638 return _bfd_merged_section_offset (abfd, psec,
8639 elf_section_data (sec)->sec_info,
8640 sym->st_value + addend);
8643 bfd_vma
8644 _bfd_elf_section_offset (bfd *abfd,
8645 struct bfd_link_info *info,
8646 asection *sec,
8647 bfd_vma offset)
8649 switch (sec->sec_info_type)
8651 case ELF_INFO_TYPE_STABS:
8652 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8653 offset);
8654 case ELF_INFO_TYPE_EH_FRAME:
8655 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8656 default:
8657 return offset;
8661 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8662 reconstruct an ELF file by reading the segments out of remote memory
8663 based on the ELF file header at EHDR_VMA and the ELF program headers it
8664 points to. If not null, *LOADBASEP is filled in with the difference
8665 between the VMAs from which the segments were read, and the VMAs the
8666 file headers (and hence BFD's idea of each section's VMA) put them at.
8668 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8669 remote memory at target address VMA into the local buffer at MYADDR; it
8670 should return zero on success or an `errno' code on failure. TEMPL must
8671 be a BFD for an ELF target with the word size and byte order found in
8672 the remote memory. */
8674 bfd *
8675 bfd_elf_bfd_from_remote_memory
8676 (bfd *templ,
8677 bfd_vma ehdr_vma,
8678 bfd_vma *loadbasep,
8679 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8681 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8682 (templ, ehdr_vma, loadbasep, target_read_memory);
8685 long
8686 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8687 long symcount ATTRIBUTE_UNUSED,
8688 asymbol **syms ATTRIBUTE_UNUSED,
8689 long dynsymcount,
8690 asymbol **dynsyms,
8691 asymbol **ret)
8693 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8694 asection *relplt;
8695 asymbol *s;
8696 const char *relplt_name;
8697 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8698 arelent *p;
8699 long count, i, n;
8700 size_t size;
8701 Elf_Internal_Shdr *hdr;
8702 char *names;
8703 asection *plt;
8705 *ret = NULL;
8707 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8708 return 0;
8710 if (dynsymcount <= 0)
8711 return 0;
8713 if (!bed->plt_sym_val)
8714 return 0;
8716 relplt_name = bed->relplt_name;
8717 if (relplt_name == NULL)
8718 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8719 relplt = bfd_get_section_by_name (abfd, relplt_name);
8720 if (relplt == NULL)
8721 return 0;
8723 hdr = &elf_section_data (relplt)->this_hdr;
8724 if (hdr->sh_link != elf_dynsymtab (abfd)
8725 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8726 return 0;
8728 plt = bfd_get_section_by_name (abfd, ".plt");
8729 if (plt == NULL)
8730 return 0;
8732 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8733 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8734 return -1;
8736 count = relplt->size / hdr->sh_entsize;
8737 size = count * sizeof (asymbol);
8738 p = relplt->relocation;
8739 for (i = 0; i < count; i++, s++, p++)
8740 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8742 s = *ret = bfd_malloc (size);
8743 if (s == NULL)
8744 return -1;
8746 names = (char *) (s + count);
8747 p = relplt->relocation;
8748 n = 0;
8749 for (i = 0; i < count; i++, s++, p++)
8751 size_t len;
8752 bfd_vma addr;
8754 addr = bed->plt_sym_val (i, plt, p);
8755 if (addr == (bfd_vma) -1)
8756 continue;
8758 *s = **p->sym_ptr_ptr;
8759 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8760 we are defining a symbol, ensure one of them is set. */
8761 if ((s->flags & BSF_LOCAL) == 0)
8762 s->flags |= BSF_GLOBAL;
8763 s->section = plt;
8764 s->value = addr - plt->vma;
8765 s->name = names;
8766 len = strlen ((*p->sym_ptr_ptr)->name);
8767 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8768 names += len;
8769 memcpy (names, "@plt", sizeof ("@plt"));
8770 names += sizeof ("@plt");
8771 ++n;
8774 return n;
8777 struct elf_symbuf_symbol
8779 unsigned long st_name; /* Symbol name, index in string tbl */
8780 unsigned char st_info; /* Type and binding attributes */
8781 unsigned char st_other; /* Visibilty, and target specific */
8784 struct elf_symbuf_head
8786 struct elf_symbuf_symbol *ssym;
8787 bfd_size_type count;
8788 unsigned int st_shndx;
8791 struct elf_symbol
8793 union
8795 Elf_Internal_Sym *isym;
8796 struct elf_symbuf_symbol *ssym;
8797 } u;
8798 const char *name;
8801 /* Sort references to symbols by ascending section number. */
8803 static int
8804 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8806 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8807 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8809 return s1->st_shndx - s2->st_shndx;
8812 static int
8813 elf_sym_name_compare (const void *arg1, const void *arg2)
8815 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8816 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8817 return strcmp (s1->name, s2->name);
8820 static struct elf_symbuf_head *
8821 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
8823 Elf_Internal_Sym **ind, **indbufend, **indbuf
8824 = bfd_malloc2 (symcount, sizeof (*indbuf));
8825 struct elf_symbuf_symbol *ssym;
8826 struct elf_symbuf_head *ssymbuf, *ssymhead;
8827 bfd_size_type i, shndx_count;
8829 if (indbuf == NULL)
8830 return NULL;
8832 for (ind = indbuf, i = 0; i < symcount; i++)
8833 if (isymbuf[i].st_shndx != SHN_UNDEF)
8834 *ind++ = &isymbuf[i];
8835 indbufend = ind;
8837 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8838 elf_sort_elf_symbol);
8840 shndx_count = 0;
8841 if (indbufend > indbuf)
8842 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8843 if (ind[0]->st_shndx != ind[1]->st_shndx)
8844 shndx_count++;
8846 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
8847 + (indbufend - indbuf) * sizeof (*ssymbuf));
8848 if (ssymbuf == NULL)
8850 free (indbuf);
8851 return NULL;
8854 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
8855 ssymbuf->ssym = NULL;
8856 ssymbuf->count = shndx_count;
8857 ssymbuf->st_shndx = 0;
8858 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8860 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8862 ssymhead++;
8863 ssymhead->ssym = ssym;
8864 ssymhead->count = 0;
8865 ssymhead->st_shndx = (*ind)->st_shndx;
8867 ssym->st_name = (*ind)->st_name;
8868 ssym->st_info = (*ind)->st_info;
8869 ssym->st_other = (*ind)->st_other;
8870 ssymhead->count++;
8872 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
8874 free (indbuf);
8875 return ssymbuf;
8878 /* Check if 2 sections define the same set of local and global
8879 symbols. */
8881 bfd_boolean
8882 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8883 struct bfd_link_info *info)
8885 bfd *bfd1, *bfd2;
8886 const struct elf_backend_data *bed1, *bed2;
8887 Elf_Internal_Shdr *hdr1, *hdr2;
8888 bfd_size_type symcount1, symcount2;
8889 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8890 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8891 Elf_Internal_Sym *isym, *isymend;
8892 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8893 bfd_size_type count1, count2, i;
8894 int shndx1, shndx2;
8895 bfd_boolean result;
8897 bfd1 = sec1->owner;
8898 bfd2 = sec2->owner;
8900 /* If both are .gnu.linkonce sections, they have to have the same
8901 section name. */
8902 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
8903 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
8904 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8905 sec2->name + sizeof ".gnu.linkonce") == 0;
8907 /* Both sections have to be in ELF. */
8908 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8909 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8910 return FALSE;
8912 if (elf_section_type (sec1) != elf_section_type (sec2))
8913 return FALSE;
8915 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8916 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8918 /* If both are members of section groups, they have to have the
8919 same group name. */
8920 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8921 return FALSE;
8924 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8925 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8926 if (shndx1 == -1 || shndx2 == -1)
8927 return FALSE;
8929 bed1 = get_elf_backend_data (bfd1);
8930 bed2 = get_elf_backend_data (bfd2);
8931 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8932 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8933 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8934 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8936 if (symcount1 == 0 || symcount2 == 0)
8937 return FALSE;
8939 result = FALSE;
8940 isymbuf1 = NULL;
8941 isymbuf2 = NULL;
8942 ssymbuf1 = elf_tdata (bfd1)->symbuf;
8943 ssymbuf2 = elf_tdata (bfd2)->symbuf;
8945 if (ssymbuf1 == NULL)
8947 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8948 NULL, NULL, NULL);
8949 if (isymbuf1 == NULL)
8950 goto done;
8952 if (!info->reduce_memory_overheads)
8953 elf_tdata (bfd1)->symbuf = ssymbuf1
8954 = elf_create_symbuf (symcount1, isymbuf1);
8957 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8959 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8960 NULL, NULL, NULL);
8961 if (isymbuf2 == NULL)
8962 goto done;
8964 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8965 elf_tdata (bfd2)->symbuf = ssymbuf2
8966 = elf_create_symbuf (symcount2, isymbuf2);
8969 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8971 /* Optimized faster version. */
8972 bfd_size_type lo, hi, mid;
8973 struct elf_symbol *symp;
8974 struct elf_symbuf_symbol *ssym, *ssymend;
8976 lo = 0;
8977 hi = ssymbuf1->count;
8978 ssymbuf1++;
8979 count1 = 0;
8980 while (lo < hi)
8982 mid = (lo + hi) / 2;
8983 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
8984 hi = mid;
8985 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
8986 lo = mid + 1;
8987 else
8989 count1 = ssymbuf1[mid].count;
8990 ssymbuf1 += mid;
8991 break;
8995 lo = 0;
8996 hi = ssymbuf2->count;
8997 ssymbuf2++;
8998 count2 = 0;
8999 while (lo < hi)
9001 mid = (lo + hi) / 2;
9002 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
9003 hi = mid;
9004 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
9005 lo = mid + 1;
9006 else
9008 count2 = ssymbuf2[mid].count;
9009 ssymbuf2 += mid;
9010 break;
9014 if (count1 == 0 || count2 == 0 || count1 != count2)
9015 goto done;
9017 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
9018 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
9019 if (symtable1 == NULL || symtable2 == NULL)
9020 goto done;
9022 symp = symtable1;
9023 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
9024 ssym < ssymend; ssym++, symp++)
9026 symp->u.ssym = ssym;
9027 symp->name = bfd_elf_string_from_elf_section (bfd1,
9028 hdr1->sh_link,
9029 ssym->st_name);
9032 symp = symtable2;
9033 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
9034 ssym < ssymend; ssym++, symp++)
9036 symp->u.ssym = ssym;
9037 symp->name = bfd_elf_string_from_elf_section (bfd2,
9038 hdr2->sh_link,
9039 ssym->st_name);
9042 /* Sort symbol by name. */
9043 qsort (symtable1, count1, sizeof (struct elf_symbol),
9044 elf_sym_name_compare);
9045 qsort (symtable2, count1, sizeof (struct elf_symbol),
9046 elf_sym_name_compare);
9048 for (i = 0; i < count1; i++)
9049 /* Two symbols must have the same binding, type and name. */
9050 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
9051 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
9052 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
9053 goto done;
9055 result = TRUE;
9056 goto done;
9059 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
9060 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
9061 if (symtable1 == NULL || symtable2 == NULL)
9062 goto done;
9064 /* Count definitions in the section. */
9065 count1 = 0;
9066 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
9067 if (isym->st_shndx == (unsigned int) shndx1)
9068 symtable1[count1++].u.isym = isym;
9070 count2 = 0;
9071 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
9072 if (isym->st_shndx == (unsigned int) shndx2)
9073 symtable2[count2++].u.isym = isym;
9075 if (count1 == 0 || count2 == 0 || count1 != count2)
9076 goto done;
9078 for (i = 0; i < count1; i++)
9079 symtable1[i].name
9080 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
9081 symtable1[i].u.isym->st_name);
9083 for (i = 0; i < count2; i++)
9084 symtable2[i].name
9085 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
9086 symtable2[i].u.isym->st_name);
9088 /* Sort symbol by name. */
9089 qsort (symtable1, count1, sizeof (struct elf_symbol),
9090 elf_sym_name_compare);
9091 qsort (symtable2, count1, sizeof (struct elf_symbol),
9092 elf_sym_name_compare);
9094 for (i = 0; i < count1; i++)
9095 /* Two symbols must have the same binding, type and name. */
9096 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
9097 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
9098 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
9099 goto done;
9101 result = TRUE;
9103 done:
9104 if (symtable1)
9105 free (symtable1);
9106 if (symtable2)
9107 free (symtable2);
9108 if (isymbuf1)
9109 free (isymbuf1);
9110 if (isymbuf2)
9111 free (isymbuf2);
9113 return result;
9116 /* It is only used by x86-64 so far. */
9117 asection _bfd_elf_large_com_section
9118 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9119 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9121 /* Return TRUE if 2 section types are compatible. */
9123 bfd_boolean
9124 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
9125 bfd *bbfd, const asection *bsec)
9127 if (asec == NULL
9128 || bsec == NULL
9129 || abfd->xvec->flavour != bfd_target_elf_flavour
9130 || bbfd->xvec->flavour != bfd_target_elf_flavour)
9131 return TRUE;
9133 return elf_section_type (asec) == elf_section_type (bsec);
9136 void
9137 _bfd_elf_set_osabi (bfd * abfd,
9138 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9140 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9142 i_ehdrp = elf_elfheader (abfd);
9144 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;