1 /* BFD back-end for Hitachi Super-H COFF binaries.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support.
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
8 This file is part of BFD, the Binary File Descriptor library.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 #include "libiberty.h"
30 #include "coff/internal.h"
35 #ifndef COFF_IMAGE_WITH_PE
36 static boolean sh_align_load_span
37 PARAMS ((bfd
*, asection
*, bfd_byte
*,
38 boolean (*) (bfd
*, asection
*, PTR
, bfd_byte
*, bfd_vma
),
39 PTR
, bfd_vma
**, bfd_vma
*, bfd_vma
, bfd_vma
, boolean
*));
41 #define _bfd_sh_align_load_span sh_align_load_span
47 /* Internal functions. */
48 static bfd_reloc_status_type sh_reloc
49 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
50 static long get_symbol_value
PARAMS ((asymbol
*));
51 static boolean sh_relax_section
52 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, boolean
*));
53 static boolean sh_relax_delete_bytes
54 PARAMS ((bfd
*, asection
*, bfd_vma
, int));
55 #ifndef COFF_IMAGE_WITH_PE
56 static const struct sh_opcode
*sh_insn_info
PARAMS ((unsigned int));
58 static boolean sh_align_loads
59 PARAMS ((bfd
*, asection
*, struct internal_reloc
*, bfd_byte
*, boolean
*));
60 static boolean sh_swap_insns
61 PARAMS ((bfd
*, asection
*, PTR
, bfd_byte
*, bfd_vma
));
62 static boolean sh_relocate_section
63 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
64 struct internal_reloc
*, struct internal_syment
*, asection
**));
65 static bfd_byte
*sh_coff_get_relocated_section_contents
66 PARAMS ((bfd
*, struct bfd_link_info
*, struct bfd_link_order
*,
67 bfd_byte
*, boolean
, asymbol
**));
68 static reloc_howto_type
* sh_coff_reloc_type_lookup
PARAMS ((bfd
*, bfd_reloc_code_real_type
));
71 /* Can't build import tables with 2**4 alignment. */
72 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
74 /* Default section alignment to 2**4. */
75 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
78 #ifdef COFF_IMAGE_WITH_PE
79 /* Align PE executables. */
80 #define COFF_PAGE_SIZE 0x1000
83 /* Generate long file names. */
84 #define COFF_LONG_FILENAMES
87 static boolean in_reloc_p
PARAMS ((bfd
*, reloc_howto_type
*));
88 /* Return true if this relocation should
89 appear in the output .reloc section. */
90 static boolean
in_reloc_p (abfd
, howto
)
91 bfd
* abfd ATTRIBUTE_UNUSED
;
92 reloc_howto_type
* howto
;
94 return ! howto
->pc_relative
&& howto
->type
!= R_SH_IMAGEBASE
;
98 /* The supported relocations. There are a lot of relocations defined
99 in coff/internal.h which we do not expect to ever see. */
100 static reloc_howto_type sh_coff_howtos
[] =
106 HOWTO (R_SH_IMM32CE
, /* type */
108 2, /* size (0 = byte, 1 = short, 2 = long) */
110 false, /* pc_relative */
112 complain_overflow_bitfield
, /* complain_on_overflow */
113 sh_reloc
, /* special_function */
114 "r_imm32ce", /* name */
115 true, /* partial_inplace */
116 0xffffffff, /* src_mask */
117 0xffffffff, /* dst_mask */
118 false), /* pcrel_offset */
122 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
123 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
124 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
125 EMPTY_HOWTO (6), /* R_SH_IMM24 */
126 EMPTY_HOWTO (7), /* R_SH_LOW16 */
128 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
130 HOWTO (R_SH_PCDISP8BY2
, /* type */
132 1, /* size (0 = byte, 1 = short, 2 = long) */
134 true, /* pc_relative */
136 complain_overflow_signed
, /* complain_on_overflow */
137 sh_reloc
, /* special_function */
138 "r_pcdisp8by2", /* name */
139 true, /* partial_inplace */
142 true), /* pcrel_offset */
144 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
146 HOWTO (R_SH_PCDISP
, /* type */
148 1, /* size (0 = byte, 1 = short, 2 = long) */
150 true, /* pc_relative */
152 complain_overflow_signed
, /* complain_on_overflow */
153 sh_reloc
, /* special_function */
154 "r_pcdisp12by2", /* name */
155 true, /* partial_inplace */
156 0xfff, /* src_mask */
157 0xfff, /* dst_mask */
158 true), /* pcrel_offset */
162 HOWTO (R_SH_IMM32
, /* type */
164 2, /* size (0 = byte, 1 = short, 2 = long) */
166 false, /* pc_relative */
168 complain_overflow_bitfield
, /* complain_on_overflow */
169 sh_reloc
, /* special_function */
170 "r_imm32", /* name */
171 true, /* partial_inplace */
172 0xffffffff, /* src_mask */
173 0xffffffff, /* dst_mask */
174 false), /* pcrel_offset */
178 HOWTO (R_SH_IMAGEBASE
, /* type */
180 2, /* size (0 = byte, 1 = short, 2 = long) */
182 false, /* pc_relative */
184 complain_overflow_bitfield
, /* complain_on_overflow */
185 sh_reloc
, /* special_function */
187 true, /* partial_inplace */
188 0xffffffff, /* src_mask */
189 0xffffffff, /* dst_mask */
190 false), /* pcrel_offset */
192 EMPTY_HOWTO (16), /* R_SH_IMM8 */
194 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
195 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
196 EMPTY_HOWTO (19), /* R_SH_IMM4 */
197 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
198 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
200 HOWTO (R_SH_PCRELIMM8BY2
, /* type */
202 1, /* size (0 = byte, 1 = short, 2 = long) */
204 true, /* pc_relative */
206 complain_overflow_unsigned
, /* complain_on_overflow */
207 sh_reloc
, /* special_function */
208 "r_pcrelimm8by2", /* name */
209 true, /* partial_inplace */
212 true), /* pcrel_offset */
214 HOWTO (R_SH_PCRELIMM8BY4
, /* type */
216 1, /* size (0 = byte, 1 = short, 2 = long) */
218 true, /* pc_relative */
220 complain_overflow_unsigned
, /* complain_on_overflow */
221 sh_reloc
, /* special_function */
222 "r_pcrelimm8by4", /* name */
223 true, /* partial_inplace */
226 true), /* pcrel_offset */
228 HOWTO (R_SH_IMM16
, /* type */
230 1, /* size (0 = byte, 1 = short, 2 = long) */
232 false, /* pc_relative */
234 complain_overflow_bitfield
, /* complain_on_overflow */
235 sh_reloc
, /* special_function */
236 "r_imm16", /* name */
237 true, /* partial_inplace */
238 0xffff, /* src_mask */
239 0xffff, /* dst_mask */
240 false), /* pcrel_offset */
242 HOWTO (R_SH_SWITCH16
, /* type */
244 1, /* size (0 = byte, 1 = short, 2 = long) */
246 false, /* pc_relative */
248 complain_overflow_bitfield
, /* complain_on_overflow */
249 sh_reloc
, /* special_function */
250 "r_switch16", /* name */
251 true, /* partial_inplace */
252 0xffff, /* src_mask */
253 0xffff, /* dst_mask */
254 false), /* pcrel_offset */
256 HOWTO (R_SH_SWITCH32
, /* type */
258 2, /* size (0 = byte, 1 = short, 2 = long) */
260 false, /* pc_relative */
262 complain_overflow_bitfield
, /* complain_on_overflow */
263 sh_reloc
, /* special_function */
264 "r_switch32", /* name */
265 true, /* partial_inplace */
266 0xffffffff, /* src_mask */
267 0xffffffff, /* dst_mask */
268 false), /* pcrel_offset */
270 HOWTO (R_SH_USES
, /* type */
272 1, /* size (0 = byte, 1 = short, 2 = long) */
274 false, /* pc_relative */
276 complain_overflow_bitfield
, /* complain_on_overflow */
277 sh_reloc
, /* special_function */
279 true, /* partial_inplace */
280 0xffff, /* src_mask */
281 0xffff, /* dst_mask */
282 false), /* pcrel_offset */
284 HOWTO (R_SH_COUNT
, /* type */
286 2, /* size (0 = byte, 1 = short, 2 = long) */
288 false, /* pc_relative */
290 complain_overflow_bitfield
, /* complain_on_overflow */
291 sh_reloc
, /* special_function */
292 "r_count", /* name */
293 true, /* partial_inplace */
294 0xffffffff, /* src_mask */
295 0xffffffff, /* dst_mask */
296 false), /* pcrel_offset */
298 HOWTO (R_SH_ALIGN
, /* type */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
302 false, /* pc_relative */
304 complain_overflow_bitfield
, /* complain_on_overflow */
305 sh_reloc
, /* special_function */
306 "r_align", /* name */
307 true, /* partial_inplace */
308 0xffffffff, /* src_mask */
309 0xffffffff, /* dst_mask */
310 false), /* pcrel_offset */
312 HOWTO (R_SH_CODE
, /* type */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
316 false, /* pc_relative */
318 complain_overflow_bitfield
, /* complain_on_overflow */
319 sh_reloc
, /* special_function */
321 true, /* partial_inplace */
322 0xffffffff, /* src_mask */
323 0xffffffff, /* dst_mask */
324 false), /* pcrel_offset */
326 HOWTO (R_SH_DATA
, /* type */
328 2, /* size (0 = byte, 1 = short, 2 = long) */
330 false, /* pc_relative */
332 complain_overflow_bitfield
, /* complain_on_overflow */
333 sh_reloc
, /* special_function */
335 true, /* partial_inplace */
336 0xffffffff, /* src_mask */
337 0xffffffff, /* dst_mask */
338 false), /* pcrel_offset */
340 HOWTO (R_SH_LABEL
, /* type */
342 2, /* size (0 = byte, 1 = short, 2 = long) */
344 false, /* pc_relative */
346 complain_overflow_bitfield
, /* complain_on_overflow */
347 sh_reloc
, /* special_function */
348 "r_label", /* name */
349 true, /* partial_inplace */
350 0xffffffff, /* src_mask */
351 0xffffffff, /* dst_mask */
352 false), /* pcrel_offset */
354 HOWTO (R_SH_SWITCH8
, /* type */
356 0, /* size (0 = byte, 1 = short, 2 = long) */
358 false, /* pc_relative */
360 complain_overflow_bitfield
, /* complain_on_overflow */
361 sh_reloc
, /* special_function */
362 "r_switch8", /* name */
363 true, /* partial_inplace */
366 false) /* pcrel_offset */
369 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
371 /* Check for a bad magic number. */
372 #define BADMAG(x) SHBADMAG(x)
374 /* Customize coffcode.h (this is not currently used). */
377 /* FIXME: This should not be set here. */
378 #define __A_MAGIC_SET__
381 /* Swap the r_offset field in and out. */
382 #define SWAP_IN_RELOC_OFFSET H_GET_32
383 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
385 /* Swap out extra information in the reloc structure. */
386 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
389 dst->r_stuff[0] = 'S'; \
390 dst->r_stuff[1] = 'C'; \
395 /* Get the value of a symbol, when performing a relocation. */
398 get_symbol_value (symbol
)
403 if (bfd_is_com_section (symbol
->section
))
406 relocation
= (symbol
->value
+
407 symbol
->section
->output_section
->vma
+
408 symbol
->section
->output_offset
);
414 /* Convert an rtype to howto for the COFF backend linker.
415 Copied from coff-i386. */
416 #define coff_rtype_to_howto coff_sh_rtype_to_howto
417 static reloc_howto_type
* coff_sh_rtype_to_howto
PARAMS ((bfd
*, asection
*, struct internal_reloc
*, struct coff_link_hash_entry
*, struct internal_syment
*, bfd_vma
*));
419 static reloc_howto_type
*
420 coff_sh_rtype_to_howto (abfd
, sec
, rel
, h
, sym
, addendp
)
421 bfd
* abfd ATTRIBUTE_UNUSED
;
423 struct internal_reloc
* rel
;
424 struct coff_link_hash_entry
* h
;
425 struct internal_syment
* sym
;
428 reloc_howto_type
* howto
;
430 howto
= sh_coff_howtos
+ rel
->r_type
;
434 if (howto
->pc_relative
)
435 *addendp
+= sec
->vma
;
437 if (sym
!= NULL
&& sym
->n_scnum
== 0 && sym
->n_value
!= 0)
439 /* This is a common symbol. The section contents include the
440 size (sym->n_value) as an addend. The relocate_section
441 function will be adding in the final value of the symbol. We
442 need to subtract out the current size in order to get the
444 BFD_ASSERT (h
!= NULL
);
447 if (howto
->pc_relative
)
451 /* If the symbol is defined, then the generic code is going to
452 add back the symbol value in order to cancel out an
453 adjustment it made to the addend. However, we set the addend
454 to 0 at the start of this function. We need to adjust here,
455 to avoid the adjustment the generic code will make. FIXME:
456 This is getting a bit hackish. */
457 if (sym
!= NULL
&& sym
->n_scnum
!= 0)
458 *addendp
-= sym
->n_value
;
461 if (rel
->r_type
== R_SH_IMAGEBASE
)
462 *addendp
-= pe_data (sec
->output_section
->owner
)->pe_opthdr
.ImageBase
;
467 #endif /* COFF_WITH_PE */
469 /* This structure is used to map BFD reloc codes to SH PE relocs. */
470 struct shcoff_reloc_map
472 bfd_reloc_code_real_type bfd_reloc_val
;
473 unsigned char shcoff_reloc_val
;
477 /* An array mapping BFD reloc codes to SH PE relocs. */
478 static const struct shcoff_reloc_map sh_reloc_map
[] =
480 { BFD_RELOC_32
, R_SH_IMM32CE
},
481 { BFD_RELOC_RVA
, R_SH_IMAGEBASE
},
482 { BFD_RELOC_CTOR
, R_SH_IMM32CE
},
485 /* An array mapping BFD reloc codes to SH PE relocs. */
486 static const struct shcoff_reloc_map sh_reloc_map
[] =
488 { BFD_RELOC_32
, R_SH_IMM32
},
489 { BFD_RELOC_CTOR
, R_SH_IMM32
},
493 /* Given a BFD reloc code, return the howto structure for the
494 corresponding SH PE reloc. */
495 #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
497 static reloc_howto_type
*
498 sh_coff_reloc_type_lookup (abfd
, code
)
499 bfd
* abfd ATTRIBUTE_UNUSED
;
500 bfd_reloc_code_real_type code
;
504 for (i
= ARRAY_SIZE (sh_reloc_map
); i
--;)
505 if (sh_reloc_map
[i
].bfd_reloc_val
== code
)
506 return &sh_coff_howtos
[(int) sh_reloc_map
[i
].shcoff_reloc_val
];
508 fprintf (stderr
, "SH Error: unknown reloc type %d\n", code
);
512 /* This macro is used in coffcode.h to get the howto corresponding to
513 an internal reloc. */
515 #define RTYPE2HOWTO(relent, internal) \
517 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
518 ? &sh_coff_howtos[(internal)->r_type] \
519 : (reloc_howto_type *) NULL))
521 /* This is the same as the macro in coffcode.h, except that it copies
522 r_offset into reloc_entry->addend for some relocs. */
523 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
525 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
526 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
527 coffsym = (obj_symbols (abfd) \
528 + (cache_ptr->sym_ptr_ptr - symbols)); \
530 coffsym = coff_symbol_from (abfd, ptr); \
531 if (coffsym != (coff_symbol_type *) NULL \
532 && coffsym->native->u.syment.n_scnum == 0) \
533 cache_ptr->addend = 0; \
534 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
535 && ptr->section != (asection *) NULL) \
536 cache_ptr->addend = - (ptr->section->vma + ptr->value); \
538 cache_ptr->addend = 0; \
539 if ((reloc).r_type == R_SH_SWITCH8 \
540 || (reloc).r_type == R_SH_SWITCH16 \
541 || (reloc).r_type == R_SH_SWITCH32 \
542 || (reloc).r_type == R_SH_USES \
543 || (reloc).r_type == R_SH_COUNT \
544 || (reloc).r_type == R_SH_ALIGN) \
545 cache_ptr->addend = (reloc).r_offset; \
548 /* This is the howto function for the SH relocations. */
550 static bfd_reloc_status_type
551 sh_reloc (abfd
, reloc_entry
, symbol_in
, data
, input_section
, output_bfd
,
554 arelent
*reloc_entry
;
557 asection
*input_section
;
559 char **error_message ATTRIBUTE_UNUSED
;
563 unsigned short r_type
;
564 bfd_vma addr
= reloc_entry
->address
;
565 bfd_byte
*hit_data
= addr
+ (bfd_byte
*) data
;
567 r_type
= reloc_entry
->howto
->type
;
569 if (output_bfd
!= NULL
)
571 /* Partial linking--do nothing. */
572 reloc_entry
->address
+= input_section
->output_offset
;
576 /* Almost all relocs have to do with relaxing. If any work must be
577 done for them, it has been done in sh_relax_section. */
578 if (r_type
!= R_SH_IMM32
580 && r_type
!= R_SH_IMM32CE
581 && r_type
!= R_SH_IMAGEBASE
583 && (r_type
!= R_SH_PCDISP
584 || (symbol_in
->flags
& BSF_LOCAL
) != 0))
587 if (symbol_in
!= NULL
588 && bfd_is_und_section (symbol_in
->section
))
589 return bfd_reloc_undefined
;
591 sym_value
= get_symbol_value (symbol_in
);
599 insn
= bfd_get_32 (abfd
, hit_data
);
600 insn
+= sym_value
+ reloc_entry
->addend
;
601 bfd_put_32 (abfd
, (bfd_vma
) insn
, hit_data
);
605 insn
= bfd_get_32 (abfd
, hit_data
);
606 insn
+= sym_value
+ reloc_entry
->addend
;
607 insn
-= pe_data (input_section
->output_section
->owner
)->pe_opthdr
.ImageBase
;
608 bfd_put_32 (abfd
, (bfd_vma
) insn
, hit_data
);
612 insn
= bfd_get_16 (abfd
, hit_data
);
613 sym_value
+= reloc_entry
->addend
;
614 sym_value
-= (input_section
->output_section
->vma
615 + input_section
->output_offset
618 sym_value
+= (insn
& 0xfff) << 1;
621 insn
= (insn
& 0xf000) | (sym_value
& 0xfff);
622 bfd_put_16 (abfd
, (bfd_vma
) insn
, hit_data
);
623 if (sym_value
< (bfd_vma
) -0x1000 || sym_value
>= 0x1000)
624 return bfd_reloc_overflow
;
634 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
636 /* We can do relaxing. */
637 #define coff_bfd_relax_section sh_relax_section
639 /* We use the special COFF backend linker. */
640 #define coff_relocate_section sh_relocate_section
642 /* When relaxing, we need to use special code to get the relocated
644 #define coff_bfd_get_relocated_section_contents \
645 sh_coff_get_relocated_section_contents
647 #include "coffcode.h"
649 /* This function handles relaxing on the SH.
651 Function calls on the SH look like this:
660 The compiler and assembler will cooperate to create R_SH_USES
661 relocs on the jsr instructions. The r_offset field of the
662 R_SH_USES reloc is the PC relative offset to the instruction which
663 loads the register (the r_offset field is computed as though it
664 were a jump instruction, so the offset value is actually from four
665 bytes past the instruction). The linker can use this reloc to
666 determine just which function is being called, and thus decide
667 whether it is possible to replace the jsr with a bsr.
669 If multiple function calls are all based on a single register load
670 (i.e., the same function is called multiple times), the compiler
671 guarantees that each function call will have an R_SH_USES reloc.
672 Therefore, if the linker is able to convert each R_SH_USES reloc
673 which refers to that address, it can safely eliminate the register
676 When the assembler creates an R_SH_USES reloc, it examines it to
677 determine which address is being loaded (L1 in the above example).
678 It then counts the number of references to that address, and
679 creates an R_SH_COUNT reloc at that address. The r_offset field of
680 the R_SH_COUNT reloc will be the number of references. If the
681 linker is able to eliminate a register load, it can use the
682 R_SH_COUNT reloc to see whether it can also eliminate the function
685 SH relaxing also handles another, unrelated, matter. On the SH, if
686 a load or store instruction is not aligned on a four byte boundary,
687 the memory cycle interferes with the 32 bit instruction fetch,
688 causing a one cycle bubble in the pipeline. Therefore, we try to
689 align load and store instructions on four byte boundaries if we
690 can, by swapping them with one of the adjacent instructions. */
693 sh_relax_section (abfd
, sec
, link_info
, again
)
696 struct bfd_link_info
*link_info
;
699 struct internal_reloc
*internal_relocs
;
700 struct internal_reloc
*free_relocs
= NULL
;
702 struct internal_reloc
*irel
, *irelend
;
703 bfd_byte
*contents
= NULL
;
704 bfd_byte
*free_contents
= NULL
;
708 if (link_info
->relocateable
709 || (sec
->flags
& SEC_RELOC
) == 0
710 || sec
->reloc_count
== 0)
713 /* If this is the first time we have been called for this section,
714 initialize the cooked size. */
715 if (sec
->_cooked_size
== 0)
716 sec
->_cooked_size
= sec
->_raw_size
;
718 internal_relocs
= (_bfd_coff_read_internal_relocs
719 (abfd
, sec
, link_info
->keep_memory
,
720 (bfd_byte
*) NULL
, false,
721 (struct internal_reloc
*) NULL
));
722 if (internal_relocs
== NULL
)
724 if (! link_info
->keep_memory
)
725 free_relocs
= internal_relocs
;
729 irelend
= internal_relocs
+ sec
->reloc_count
;
730 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
732 bfd_vma laddr
, paddr
, symval
;
734 struct internal_reloc
*irelfn
, *irelscan
, *irelcount
;
735 struct internal_syment sym
;
738 if (irel
->r_type
== R_SH_CODE
)
741 if (irel
->r_type
!= R_SH_USES
)
744 /* Get the section contents. */
745 if (contents
== NULL
)
747 if (coff_section_data (abfd
, sec
) != NULL
748 && coff_section_data (abfd
, sec
)->contents
!= NULL
)
749 contents
= coff_section_data (abfd
, sec
)->contents
;
752 contents
= (bfd_byte
*) bfd_malloc (sec
->_raw_size
);
753 if (contents
== NULL
)
755 free_contents
= contents
;
757 if (! bfd_get_section_contents (abfd
, sec
, contents
,
758 (file_ptr
) 0, sec
->_raw_size
))
763 /* The r_offset field of the R_SH_USES reloc will point us to
764 the register load. The 4 is because the r_offset field is
765 computed as though it were a jump offset, which are based
766 from 4 bytes after the jump instruction. */
767 laddr
= irel
->r_vaddr
- sec
->vma
+ 4;
768 /* Careful to sign extend the 32-bit offset. */
769 laddr
+= ((irel
->r_offset
& 0xffffffff) ^ 0x80000000) - 0x80000000;
770 if (laddr
>= sec
->_raw_size
)
772 (*_bfd_error_handler
) ("%s: 0x%lx: warning: bad R_SH_USES offset",
773 bfd_archive_filename (abfd
),
774 (unsigned long) irel
->r_vaddr
);
777 insn
= bfd_get_16 (abfd
, contents
+ laddr
);
779 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
780 if ((insn
& 0xf000) != 0xd000)
782 ((*_bfd_error_handler
)
783 ("%s: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
784 bfd_archive_filename (abfd
), (unsigned long) irel
->r_vaddr
, insn
));
788 /* Get the address from which the register is being loaded. The
789 displacement in the mov.l instruction is quadrupled. It is a
790 displacement from four bytes after the movl instruction, but,
791 before adding in the PC address, two least significant bits
792 of the PC are cleared. We assume that the section is aligned
793 on a four byte boundary. */
796 paddr
+= (laddr
+ 4) &~ (bfd_vma
) 3;
797 if (paddr
>= sec
->_raw_size
)
799 ((*_bfd_error_handler
)
800 ("%s: 0x%lx: warning: bad R_SH_USES load offset",
801 bfd_archive_filename (abfd
), (unsigned long) irel
->r_vaddr
));
805 /* Get the reloc for the address from which the register is
806 being loaded. This reloc will tell us which function is
807 actually being called. */
809 for (irelfn
= internal_relocs
; irelfn
< irelend
; irelfn
++)
810 if (irelfn
->r_vaddr
== paddr
812 && (irelfn
->r_type
== R_SH_IMM32
813 || irelfn
->r_type
== R_SH_IMM32CE
814 || irelfn
->r_type
== R_SH_IMAGEBASE
))
817 && irelfn
->r_type
== R_SH_IMM32
)
820 if (irelfn
>= irelend
)
822 ((*_bfd_error_handler
)
823 ("%s: 0x%lx: warning: could not find expected reloc",
824 bfd_archive_filename (abfd
), (unsigned long) paddr
));
828 /* Get the value of the symbol referred to by the reloc. */
829 if (! _bfd_coff_get_external_symbols (abfd
))
831 bfd_coff_swap_sym_in (abfd
,
832 ((bfd_byte
*) obj_coff_external_syms (abfd
)
834 * bfd_coff_symesz (abfd
))),
836 if (sym
.n_scnum
!= 0 && sym
.n_scnum
!= sec
->target_index
)
838 ((*_bfd_error_handler
)
839 ("%s: 0x%lx: warning: symbol in unexpected section",
840 bfd_archive_filename (abfd
), (unsigned long) paddr
));
844 if (sym
.n_sclass
!= C_EXT
)
846 symval
= (sym
.n_value
848 + sec
->output_section
->vma
849 + sec
->output_offset
);
853 struct coff_link_hash_entry
*h
;
855 h
= obj_coff_sym_hashes (abfd
)[irelfn
->r_symndx
];
856 BFD_ASSERT (h
!= NULL
);
857 if (h
->root
.type
!= bfd_link_hash_defined
858 && h
->root
.type
!= bfd_link_hash_defweak
)
860 /* This appears to be a reference to an undefined
861 symbol. Just ignore it--it will be caught by the
862 regular reloc processing. */
866 symval
= (h
->root
.u
.def
.value
867 + h
->root
.u
.def
.section
->output_section
->vma
868 + h
->root
.u
.def
.section
->output_offset
);
871 symval
+= bfd_get_32 (abfd
, contents
+ paddr
- sec
->vma
);
873 /* See if this function call can be shortened. */
877 + sec
->output_section
->vma
880 if (foff
< -0x1000 || foff
>= 0x1000)
882 /* After all that work, we can't shorten this function call. */
886 /* Shorten the function call. */
888 /* For simplicity of coding, we are going to modify the section
889 contents, the section relocs, and the BFD symbol table. We
890 must tell the rest of the code not to free up this
891 information. It would be possible to instead create a table
892 of changes which have to be made, as is done in coff-mips.c;
893 that would be more work, but would require less memory when
894 the linker is run. */
896 if (coff_section_data (abfd
, sec
) == NULL
)
898 bfd_size_type amt
= sizeof (struct coff_section_tdata
);
899 sec
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
900 if (sec
->used_by_bfd
== NULL
)
904 coff_section_data (abfd
, sec
)->relocs
= internal_relocs
;
905 coff_section_data (abfd
, sec
)->keep_relocs
= true;
908 coff_section_data (abfd
, sec
)->contents
= contents
;
909 coff_section_data (abfd
, sec
)->keep_contents
= true;
910 free_contents
= NULL
;
912 obj_coff_keep_syms (abfd
) = true;
914 /* Replace the jsr with a bsr. */
916 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
917 replace the jsr with a bsr. */
918 irel
->r_type
= R_SH_PCDISP
;
919 irel
->r_symndx
= irelfn
->r_symndx
;
920 if (sym
.n_sclass
!= C_EXT
)
922 /* If this needs to be changed because of future relaxing,
923 it will be handled here like other internal PCDISP
926 (bfd_vma
) 0xb000 | ((foff
>> 1) & 0xfff),
927 contents
+ irel
->r_vaddr
- sec
->vma
);
931 /* We can't fully resolve this yet, because the external
932 symbol value may be changed by future relaxing. We let
933 the final link phase handle it. */
934 bfd_put_16 (abfd
, (bfd_vma
) 0xb000,
935 contents
+ irel
->r_vaddr
- sec
->vma
);
938 /* See if there is another R_SH_USES reloc referring to the same
940 for (irelscan
= internal_relocs
; irelscan
< irelend
; irelscan
++)
941 if (irelscan
->r_type
== R_SH_USES
942 && laddr
== irelscan
->r_vaddr
- sec
->vma
+ 4 + irelscan
->r_offset
)
944 if (irelscan
< irelend
)
946 /* Some other function call depends upon this register load,
947 and we have not yet converted that function call.
948 Indeed, we may never be able to convert it. There is
949 nothing else we can do at this point. */
953 /* Look for a R_SH_COUNT reloc on the location where the
954 function address is stored. Do this before deleting any
955 bytes, to avoid confusion about the address. */
956 for (irelcount
= internal_relocs
; irelcount
< irelend
; irelcount
++)
957 if (irelcount
->r_vaddr
== paddr
958 && irelcount
->r_type
== R_SH_COUNT
)
961 /* Delete the register load. */
962 if (! sh_relax_delete_bytes (abfd
, sec
, laddr
, 2))
965 /* That will change things, so, just in case it permits some
966 other function call to come within range, we should relax
967 again. Note that this is not required, and it may be slow. */
970 /* Now check whether we got a COUNT reloc. */
971 if (irelcount
>= irelend
)
973 ((*_bfd_error_handler
)
974 ("%s: 0x%lx: warning: could not find expected COUNT reloc",
975 bfd_archive_filename (abfd
), (unsigned long) paddr
));
979 /* The number of uses is stored in the r_offset field. We've
981 if (irelcount
->r_offset
== 0)
983 ((*_bfd_error_handler
) ("%s: 0x%lx: warning: bad count",
984 bfd_archive_filename (abfd
),
985 (unsigned long) paddr
));
989 --irelcount
->r_offset
;
991 /* If there are no more uses, we can delete the address. Reload
992 the address from irelfn, in case it was changed by the
993 previous call to sh_relax_delete_bytes. */
994 if (irelcount
->r_offset
== 0)
996 if (! sh_relax_delete_bytes (abfd
, sec
,
997 irelfn
->r_vaddr
- sec
->vma
, 4))
1001 /* We've done all we can with that function call. */
1004 /* Look for load and store instructions that we can align on four
1010 /* Get the section contents. */
1011 if (contents
== NULL
)
1013 if (coff_section_data (abfd
, sec
) != NULL
1014 && coff_section_data (abfd
, sec
)->contents
!= NULL
)
1015 contents
= coff_section_data (abfd
, sec
)->contents
;
1018 contents
= (bfd_byte
*) bfd_malloc (sec
->_raw_size
);
1019 if (contents
== NULL
)
1021 free_contents
= contents
;
1023 if (! bfd_get_section_contents (abfd
, sec
, contents
,
1024 (file_ptr
) 0, sec
->_raw_size
))
1029 if (! sh_align_loads (abfd
, sec
, internal_relocs
, contents
, &swapped
))
1034 if (coff_section_data (abfd
, sec
) == NULL
)
1036 bfd_size_type amt
= sizeof (struct coff_section_tdata
);
1037 sec
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
1038 if (sec
->used_by_bfd
== NULL
)
1042 coff_section_data (abfd
, sec
)->relocs
= internal_relocs
;
1043 coff_section_data (abfd
, sec
)->keep_relocs
= true;
1046 coff_section_data (abfd
, sec
)->contents
= contents
;
1047 coff_section_data (abfd
, sec
)->keep_contents
= true;
1048 free_contents
= NULL
;
1050 obj_coff_keep_syms (abfd
) = true;
1054 if (free_relocs
!= NULL
)
1060 if (free_contents
!= NULL
)
1062 if (! link_info
->keep_memory
)
1063 free (free_contents
);
1066 /* Cache the section contents for coff_link_input_bfd. */
1067 if (coff_section_data (abfd
, sec
) == NULL
)
1069 bfd_size_type amt
= sizeof (struct coff_section_tdata
);
1070 sec
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
1071 if (sec
->used_by_bfd
== NULL
)
1073 coff_section_data (abfd
, sec
)->relocs
= NULL
;
1075 coff_section_data (abfd
, sec
)->contents
= contents
;
1082 if (free_relocs
!= NULL
)
1084 if (free_contents
!= NULL
)
1085 free (free_contents
);
1089 /* Delete some bytes from a section while relaxing. */
1092 sh_relax_delete_bytes (abfd
, sec
, addr
, count
)
1099 struct internal_reloc
*irel
, *irelend
;
1100 struct internal_reloc
*irelalign
;
1102 bfd_byte
*esym
, *esymend
;
1103 bfd_size_type symesz
;
1104 struct coff_link_hash_entry
**sym_hash
;
1107 contents
= coff_section_data (abfd
, sec
)->contents
;
1109 /* The deletion must stop at the next ALIGN reloc for an aligment
1110 power larger than the number of bytes we are deleting. */
1113 toaddr
= sec
->_cooked_size
;
1115 irel
= coff_section_data (abfd
, sec
)->relocs
;
1116 irelend
= irel
+ sec
->reloc_count
;
1117 for (; irel
< irelend
; irel
++)
1119 if (irel
->r_type
== R_SH_ALIGN
1120 && irel
->r_vaddr
- sec
->vma
> addr
1121 && count
< (1 << irel
->r_offset
))
1124 toaddr
= irel
->r_vaddr
- sec
->vma
;
1129 /* Actually delete the bytes. */
1130 memmove (contents
+ addr
, contents
+ addr
+ count
,
1131 (size_t) (toaddr
- addr
- count
));
1132 if (irelalign
== NULL
)
1133 sec
->_cooked_size
-= count
;
1138 #define NOP_OPCODE (0x0009)
1140 BFD_ASSERT ((count
& 1) == 0);
1141 for (i
= 0; i
< count
; i
+= 2)
1142 bfd_put_16 (abfd
, (bfd_vma
) NOP_OPCODE
, contents
+ toaddr
- count
+ i
);
1145 /* Adjust all the relocs. */
1146 for (irel
= coff_section_data (abfd
, sec
)->relocs
; irel
< irelend
; irel
++)
1148 bfd_vma nraddr
, stop
;
1151 struct internal_syment sym
;
1152 int off
, adjust
, oinsn
;
1153 bfd_signed_vma voff
= 0;
1156 /* Get the new reloc address. */
1157 nraddr
= irel
->r_vaddr
- sec
->vma
;
1158 if ((irel
->r_vaddr
- sec
->vma
> addr
1159 && irel
->r_vaddr
- sec
->vma
< toaddr
)
1160 || (irel
->r_type
== R_SH_ALIGN
1161 && irel
->r_vaddr
- sec
->vma
== toaddr
))
1164 /* See if this reloc was for the bytes we have deleted, in which
1165 case we no longer care about it. Don't delete relocs which
1166 represent addresses, though. */
1167 if (irel
->r_vaddr
- sec
->vma
>= addr
1168 && irel
->r_vaddr
- sec
->vma
< addr
+ count
1169 && irel
->r_type
!= R_SH_ALIGN
1170 && irel
->r_type
!= R_SH_CODE
1171 && irel
->r_type
!= R_SH_DATA
1172 && irel
->r_type
!= R_SH_LABEL
)
1173 irel
->r_type
= R_SH_UNUSED
;
1175 /* If this is a PC relative reloc, see if the range it covers
1176 includes the bytes we have deleted. */
1177 switch (irel
->r_type
)
1182 case R_SH_PCDISP8BY2
:
1184 case R_SH_PCRELIMM8BY2
:
1185 case R_SH_PCRELIMM8BY4
:
1186 start
= irel
->r_vaddr
- sec
->vma
;
1187 insn
= bfd_get_16 (abfd
, contents
+ nraddr
);
1191 switch (irel
->r_type
)
1194 start
= stop
= addr
;
1200 case R_SH_IMAGEBASE
:
1202 /* If this reloc is against a symbol defined in this
1203 section, and the symbol will not be adjusted below, we
1204 must check the addend to see it will put the value in
1205 range to be adjusted, and hence must be changed. */
1206 bfd_coff_swap_sym_in (abfd
,
1207 ((bfd_byte
*) obj_coff_external_syms (abfd
)
1209 * bfd_coff_symesz (abfd
))),
1211 if (sym
.n_sclass
!= C_EXT
1212 && sym
.n_scnum
== sec
->target_index
1213 && ((bfd_vma
) sym
.n_value
<= addr
1214 || (bfd_vma
) sym
.n_value
>= toaddr
))
1218 val
= bfd_get_32 (abfd
, contents
+ nraddr
);
1220 if (val
> addr
&& val
< toaddr
)
1221 bfd_put_32 (abfd
, val
- count
, contents
+ nraddr
);
1223 start
= stop
= addr
;
1226 case R_SH_PCDISP8BY2
:
1230 stop
= (bfd_vma
) ((bfd_signed_vma
) start
+ 4 + off
* 2);
1234 bfd_coff_swap_sym_in (abfd
,
1235 ((bfd_byte
*) obj_coff_external_syms (abfd
)
1237 * bfd_coff_symesz (abfd
))),
1239 if (sym
.n_sclass
== C_EXT
)
1240 start
= stop
= addr
;
1246 stop
= (bfd_vma
) ((bfd_signed_vma
) start
+ 4 + off
* 2);
1250 case R_SH_PCRELIMM8BY2
:
1252 stop
= start
+ 4 + off
* 2;
1255 case R_SH_PCRELIMM8BY4
:
1257 stop
= (start
&~ (bfd_vma
) 3) + 4 + off
* 4;
1263 /* These relocs types represent
1265 The r_offset field holds the difference between the reloc
1266 address and L1. That is the start of the reloc, and
1267 adding in the contents gives us the top. We must adjust
1268 both the r_offset field and the section contents. */
1270 start
= irel
->r_vaddr
- sec
->vma
;
1271 stop
= (bfd_vma
) ((bfd_signed_vma
) start
- (long) irel
->r_offset
);
1275 && (stop
<= addr
|| stop
>= toaddr
))
1276 irel
->r_offset
+= count
;
1277 else if (stop
> addr
1279 && (start
<= addr
|| start
>= toaddr
))
1280 irel
->r_offset
-= count
;
1284 if (irel
->r_type
== R_SH_SWITCH16
)
1285 voff
= bfd_get_signed_16 (abfd
, contents
+ nraddr
);
1286 else if (irel
->r_type
== R_SH_SWITCH8
)
1287 voff
= bfd_get_8 (abfd
, contents
+ nraddr
);
1289 voff
= bfd_get_signed_32 (abfd
, contents
+ nraddr
);
1290 stop
= (bfd_vma
) ((bfd_signed_vma
) start
+ voff
);
1295 start
= irel
->r_vaddr
- sec
->vma
;
1296 stop
= (bfd_vma
) ((bfd_signed_vma
) start
1297 + (long) irel
->r_offset
1304 && (stop
<= addr
|| stop
>= toaddr
))
1306 else if (stop
> addr
1308 && (start
<= addr
|| start
>= toaddr
))
1317 switch (irel
->r_type
)
1323 case R_SH_PCDISP8BY2
:
1324 case R_SH_PCRELIMM8BY2
:
1326 if ((oinsn
& 0xff00) != (insn
& 0xff00))
1328 bfd_put_16 (abfd
, (bfd_vma
) insn
, contents
+ nraddr
);
1333 if ((oinsn
& 0xf000) != (insn
& 0xf000))
1335 bfd_put_16 (abfd
, (bfd_vma
) insn
, contents
+ nraddr
);
1338 case R_SH_PCRELIMM8BY4
:
1339 BFD_ASSERT (adjust
== count
|| count
>= 4);
1344 if ((irel
->r_vaddr
& 3) == 0)
1347 if ((oinsn
& 0xff00) != (insn
& 0xff00))
1349 bfd_put_16 (abfd
, (bfd_vma
) insn
, contents
+ nraddr
);
1354 if (voff
< 0 || voff
>= 0xff)
1356 bfd_put_8 (abfd
, (bfd_vma
) voff
, contents
+ nraddr
);
1361 if (voff
< - 0x8000 || voff
>= 0x8000)
1363 bfd_put_signed_16 (abfd
, (bfd_vma
) voff
, contents
+ nraddr
);
1368 bfd_put_signed_32 (abfd
, (bfd_vma
) voff
, contents
+ nraddr
);
1372 irel
->r_offset
+= adjust
;
1378 ((*_bfd_error_handler
)
1379 ("%s: 0x%lx: fatal: reloc overflow while relaxing",
1380 bfd_archive_filename (abfd
), (unsigned long) irel
->r_vaddr
));
1381 bfd_set_error (bfd_error_bad_value
);
1386 irel
->r_vaddr
= nraddr
+ sec
->vma
;
1389 /* Look through all the other sections. If there contain any IMM32
1390 relocs against internal symbols which we are not going to adjust
1391 below, we may need to adjust the addends. */
1392 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
1394 struct internal_reloc
*internal_relocs
;
1395 struct internal_reloc
*irelscan
, *irelscanend
;
1396 bfd_byte
*ocontents
;
1399 || (o
->flags
& SEC_RELOC
) == 0
1400 || o
->reloc_count
== 0)
1403 /* We always cache the relocs. Perhaps, if info->keep_memory is
1404 false, we should free them, if we are permitted to, when we
1405 leave sh_coff_relax_section. */
1406 internal_relocs
= (_bfd_coff_read_internal_relocs
1407 (abfd
, o
, true, (bfd_byte
*) NULL
, false,
1408 (struct internal_reloc
*) NULL
));
1409 if (internal_relocs
== NULL
)
1413 irelscanend
= internal_relocs
+ o
->reloc_count
;
1414 for (irelscan
= internal_relocs
; irelscan
< irelscanend
; irelscan
++)
1416 struct internal_syment sym
;
1419 if (irelscan
->r_type
!= R_SH_IMM32
1420 && irelscan
->r_type
!= R_SH_IMAGEBASE
1421 && irelscan
->r_type
!= R_SH_IMM32CE
)
1423 if (irelscan
->r_type
!= R_SH_IMM32
)
1427 bfd_coff_swap_sym_in (abfd
,
1428 ((bfd_byte
*) obj_coff_external_syms (abfd
)
1429 + (irelscan
->r_symndx
1430 * bfd_coff_symesz (abfd
))),
1432 if (sym
.n_sclass
!= C_EXT
1433 && sym
.n_scnum
== sec
->target_index
1434 && ((bfd_vma
) sym
.n_value
<= addr
1435 || (bfd_vma
) sym
.n_value
>= toaddr
))
1439 if (ocontents
== NULL
)
1441 if (coff_section_data (abfd
, o
)->contents
!= NULL
)
1442 ocontents
= coff_section_data (abfd
, o
)->contents
;
1445 /* We always cache the section contents.
1446 Perhaps, if info->keep_memory is false, we
1447 should free them, if we are permitted to,
1448 when we leave sh_coff_relax_section. */
1449 ocontents
= (bfd_byte
*) bfd_malloc (o
->_raw_size
);
1450 if (ocontents
== NULL
)
1452 if (! bfd_get_section_contents (abfd
, o
, ocontents
,
1456 coff_section_data (abfd
, o
)->contents
= ocontents
;
1460 val
= bfd_get_32 (abfd
, ocontents
+ irelscan
->r_vaddr
- o
->vma
);
1462 if (val
> addr
&& val
< toaddr
)
1463 bfd_put_32 (abfd
, val
- count
,
1464 ocontents
+ irelscan
->r_vaddr
- o
->vma
);
1466 coff_section_data (abfd
, o
)->keep_contents
= true;
1471 /* Adjusting the internal symbols will not work if something has
1472 already retrieved the generic symbols. It would be possible to
1473 make this work by adjusting the generic symbols at the same time.
1474 However, this case should not arise in normal usage. */
1475 if (obj_symbols (abfd
) != NULL
1476 || obj_raw_syments (abfd
) != NULL
)
1478 ((*_bfd_error_handler
)
1479 ("%s: fatal: generic symbols retrieved before relaxing",
1480 bfd_archive_filename (abfd
)));
1481 bfd_set_error (bfd_error_invalid_operation
);
1485 /* Adjust all the symbols. */
1486 sym_hash
= obj_coff_sym_hashes (abfd
);
1487 symesz
= bfd_coff_symesz (abfd
);
1488 esym
= (bfd_byte
*) obj_coff_external_syms (abfd
);
1489 esymend
= esym
+ obj_raw_syment_count (abfd
) * symesz
;
1490 while (esym
< esymend
)
1492 struct internal_syment isym
;
1494 bfd_coff_swap_sym_in (abfd
, (PTR
) esym
, (PTR
) &isym
);
1496 if (isym
.n_scnum
== sec
->target_index
1497 && (bfd_vma
) isym
.n_value
> addr
1498 && (bfd_vma
) isym
.n_value
< toaddr
)
1500 isym
.n_value
-= count
;
1502 bfd_coff_swap_sym_out (abfd
, (PTR
) &isym
, (PTR
) esym
);
1504 if (*sym_hash
!= NULL
)
1506 BFD_ASSERT ((*sym_hash
)->root
.type
== bfd_link_hash_defined
1507 || (*sym_hash
)->root
.type
== bfd_link_hash_defweak
);
1508 BFD_ASSERT ((*sym_hash
)->root
.u
.def
.value
>= addr
1509 && (*sym_hash
)->root
.u
.def
.value
< toaddr
);
1510 (*sym_hash
)->root
.u
.def
.value
-= count
;
1514 esym
+= (isym
.n_numaux
+ 1) * symesz
;
1515 sym_hash
+= isym
.n_numaux
+ 1;
1518 /* See if we can move the ALIGN reloc forward. We have adjusted
1519 r_vaddr for it already. */
1520 if (irelalign
!= NULL
)
1522 bfd_vma alignto
, alignaddr
;
1524 alignto
= BFD_ALIGN (toaddr
, 1 << irelalign
->r_offset
);
1525 alignaddr
= BFD_ALIGN (irelalign
->r_vaddr
- sec
->vma
,
1526 1 << irelalign
->r_offset
);
1527 if (alignto
!= alignaddr
)
1529 /* Tail recursion. */
1530 return sh_relax_delete_bytes (abfd
, sec
, alignaddr
,
1531 (int) (alignto
- alignaddr
));
1538 /* This is yet another version of the SH opcode table, used to rapidly
1539 get information about a particular instruction. */
1541 /* The opcode map is represented by an array of these structures. The
1542 array is indexed by the high order four bits in the instruction. */
1544 struct sh_major_opcode
1546 /* A pointer to the instruction list. This is an array which
1547 contains all the instructions with this major opcode. */
1548 const struct sh_minor_opcode
*minor_opcodes
;
1549 /* The number of elements in minor_opcodes. */
1550 unsigned short count
;
1553 /* This structure holds information for a set of SH opcodes. The
1554 instruction code is anded with the mask value, and the resulting
1555 value is used to search the order opcode list. */
1557 struct sh_minor_opcode
1559 /* The sorted opcode list. */
1560 const struct sh_opcode
*opcodes
;
1561 /* The number of elements in opcodes. */
1562 unsigned short count
;
1563 /* The mask value to use when searching the opcode list. */
1564 unsigned short mask
;
1567 /* This structure holds information for an SH instruction. An array
1568 of these structures is sorted in order by opcode. */
1572 /* The code for this instruction, after it has been anded with the
1573 mask value in the sh_major_opcode structure. */
1574 unsigned short opcode
;
1575 /* Flags for this instruction. */
1576 unsigned long flags
;
1579 /* Flag which appear in the sh_opcode structure. */
1581 /* This instruction loads a value from memory. */
1584 /* This instruction stores a value to memory. */
1587 /* This instruction is a branch. */
1588 #define BRANCH (0x4)
1590 /* This instruction has a delay slot. */
1593 /* This instruction uses the value in the register in the field at
1594 mask 0x0f00 of the instruction. */
1595 #define USES1 (0x10)
1596 #define USES1_REG(x) ((x & 0x0f00) >> 8)
1598 /* This instruction uses the value in the register in the field at
1599 mask 0x00f0 of the instruction. */
1600 #define USES2 (0x20)
1601 #define USES2_REG(x) ((x & 0x00f0) >> 4)
1603 /* This instruction uses the value in register 0. */
1604 #define USESR0 (0x40)
1606 /* This instruction sets the value in the register in the field at
1607 mask 0x0f00 of the instruction. */
1608 #define SETS1 (0x80)
1609 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
1611 /* This instruction sets the value in the register in the field at
1612 mask 0x00f0 of the instruction. */
1613 #define SETS2 (0x100)
1614 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
1616 /* This instruction sets register 0. */
1617 #define SETSR0 (0x200)
1619 /* This instruction sets a special register. */
1620 #define SETSSP (0x400)
1622 /* This instruction uses a special register. */
1623 #define USESSP (0x800)
1625 /* This instruction uses the floating point register in the field at
1626 mask 0x0f00 of the instruction. */
1627 #define USESF1 (0x1000)
1628 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
1630 /* This instruction uses the floating point register in the field at
1631 mask 0x00f0 of the instruction. */
1632 #define USESF2 (0x2000)
1633 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
1635 /* This instruction uses floating point register 0. */
1636 #define USESF0 (0x4000)
1638 /* This instruction sets the floating point register in the field at
1639 mask 0x0f00 of the instruction. */
1640 #define SETSF1 (0x8000)
1641 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1643 #define USESAS (0x10000)
1644 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1645 #define USESR8 (0x20000)
1646 #define SETSAS (0x40000)
1647 #define SETSAS_REG(x) USESAS_REG (x)
1649 #ifndef COFF_IMAGE_WITH_PE
1650 static boolean sh_insn_uses_reg
1651 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1652 static boolean sh_insn_sets_reg
1653 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1654 static boolean sh_insn_uses_or_sets_reg
1655 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1656 static boolean sh_insn_uses_freg
1657 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1658 static boolean sh_insn_sets_freg
1659 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1660 static boolean sh_insn_uses_or_sets_freg
1661 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int));
1662 static boolean sh_insns_conflict
1663 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int,
1664 const struct sh_opcode
*));
1665 static boolean sh_load_use
1666 PARAMS ((unsigned int, const struct sh_opcode
*, unsigned int,
1667 const struct sh_opcode
*));
1669 /* The opcode maps. */
1671 #define MAP(a) a, sizeof a / sizeof a[0]
1673 static const struct sh_opcode sh_opcode00
[] =
1675 { 0x0008, SETSSP
}, /* clrt */
1676 { 0x0009, 0 }, /* nop */
1677 { 0x000b, BRANCH
| DELAY
| USESSP
}, /* rts */
1678 { 0x0018, SETSSP
}, /* sett */
1679 { 0x0019, SETSSP
}, /* div0u */
1680 { 0x001b, 0 }, /* sleep */
1681 { 0x0028, SETSSP
}, /* clrmac */
1682 { 0x002b, BRANCH
| DELAY
| SETSSP
}, /* rte */
1683 { 0x0038, USESSP
| SETSSP
}, /* ldtlb */
1684 { 0x0048, SETSSP
}, /* clrs */
1685 { 0x0058, SETSSP
} /* sets */
1688 static const struct sh_opcode sh_opcode01
[] =
1690 { 0x0003, BRANCH
| DELAY
| USES1
| SETSSP
}, /* bsrf rn */
1691 { 0x000a, SETS1
| USESSP
}, /* sts mach,rn */
1692 { 0x001a, SETS1
| USESSP
}, /* sts macl,rn */
1693 { 0x0023, BRANCH
| DELAY
| USES1
}, /* braf rn */
1694 { 0x0029, SETS1
| USESSP
}, /* movt rn */
1695 { 0x002a, SETS1
| USESSP
}, /* sts pr,rn */
1696 { 0x005a, SETS1
| USESSP
}, /* sts fpul,rn */
1697 { 0x006a, SETS1
| USESSP
}, /* sts fpscr,rn / sts dsr,rn */
1698 { 0x0083, LOAD
| USES1
}, /* pref @rn */
1699 { 0x007a, SETS1
| USESSP
}, /* sts a0,rn */
1700 { 0x008a, SETS1
| USESSP
}, /* sts x0,rn */
1701 { 0x009a, SETS1
| USESSP
}, /* sts x1,rn */
1702 { 0x00aa, SETS1
| USESSP
}, /* sts y0,rn */
1703 { 0x00ba, SETS1
| USESSP
} /* sts y1,rn */
1706 /* These sixteen instructions can be handled with one table entry below. */
1708 { 0x0002, SETS1
| USESSP
}, /* stc sr,rn */
1709 { 0x0012, SETS1
| USESSP
}, /* stc gbr,rn */
1710 { 0x0022, SETS1
| USESSP
}, /* stc vbr,rn */
1711 { 0x0032, SETS1
| USESSP
}, /* stc ssr,rn */
1712 { 0x0042, SETS1
| USESSP
}, /* stc spc,rn */
1713 { 0x0052, SETS1
| USESSP
}, /* stc mod,rn */
1714 { 0x0062, SETS1
| USESSP
}, /* stc rs,rn */
1715 { 0x0072, SETS1
| USESSP
}, /* stc re,rn */
1716 { 0x0082, SETS1
| USESSP
}, /* stc r0_bank,rn */
1717 { 0x0092, SETS1
| USESSP
}, /* stc r1_bank,rn */
1718 { 0x00a2, SETS1
| USESSP
}, /* stc r2_bank,rn */
1719 { 0x00b2, SETS1
| USESSP
}, /* stc r3_bank,rn */
1720 { 0x00c2, SETS1
| USESSP
}, /* stc r4_bank,rn */
1721 { 0x00d2, SETS1
| USESSP
}, /* stc r5_bank,rn */
1722 { 0x00e2, SETS1
| USESSP
}, /* stc r6_bank,rn */
1723 { 0x00f2, SETS1
| USESSP
} /* stc r7_bank,rn */
1726 static const struct sh_opcode sh_opcode02
[] =
1728 { 0x0002, SETS1
| USESSP
}, /* stc <special_reg>,rn */
1729 { 0x0004, STORE
| USES1
| USES2
| USESR0
}, /* mov.b rm,@(r0,rn) */
1730 { 0x0005, STORE
| USES1
| USES2
| USESR0
}, /* mov.w rm,@(r0,rn) */
1731 { 0x0006, STORE
| USES1
| USES2
| USESR0
}, /* mov.l rm,@(r0,rn) */
1732 { 0x0007, SETSSP
| USES1
| USES2
}, /* mul.l rm,rn */
1733 { 0x000c, LOAD
| SETS1
| USES2
| USESR0
}, /* mov.b @(r0,rm),rn */
1734 { 0x000d, LOAD
| SETS1
| USES2
| USESR0
}, /* mov.w @(r0,rm),rn */
1735 { 0x000e, LOAD
| SETS1
| USES2
| USESR0
}, /* mov.l @(r0,rm),rn */
1736 { 0x000f, LOAD
|SETS1
|SETS2
|SETSSP
|USES1
|USES2
|USESSP
}, /* mac.l @rm+,@rn+ */
1739 static const struct sh_minor_opcode sh_opcode0
[] =
1741 { MAP (sh_opcode00
), 0xffff },
1742 { MAP (sh_opcode01
), 0xf0ff },
1743 { MAP (sh_opcode02
), 0xf00f }
1746 static const struct sh_opcode sh_opcode10
[] =
1748 { 0x1000, STORE
| USES1
| USES2
} /* mov.l rm,@(disp,rn) */
1751 static const struct sh_minor_opcode sh_opcode1
[] =
1753 { MAP (sh_opcode10
), 0xf000 }
1756 static const struct sh_opcode sh_opcode20
[] =
1758 { 0x2000, STORE
| USES1
| USES2
}, /* mov.b rm,@rn */
1759 { 0x2001, STORE
| USES1
| USES2
}, /* mov.w rm,@rn */
1760 { 0x2002, STORE
| USES1
| USES2
}, /* mov.l rm,@rn */
1761 { 0x2004, STORE
| SETS1
| USES1
| USES2
}, /* mov.b rm,@-rn */
1762 { 0x2005, STORE
| SETS1
| USES1
| USES2
}, /* mov.w rm,@-rn */
1763 { 0x2006, STORE
| SETS1
| USES1
| USES2
}, /* mov.l rm,@-rn */
1764 { 0x2007, SETSSP
| USES1
| USES2
| USESSP
}, /* div0s */
1765 { 0x2008, SETSSP
| USES1
| USES2
}, /* tst rm,rn */
1766 { 0x2009, SETS1
| USES1
| USES2
}, /* and rm,rn */
1767 { 0x200a, SETS1
| USES1
| USES2
}, /* xor rm,rn */
1768 { 0x200b, SETS1
| USES1
| USES2
}, /* or rm,rn */
1769 { 0x200c, SETSSP
| USES1
| USES2
}, /* cmp/str rm,rn */
1770 { 0x200d, SETS1
| USES1
| USES2
}, /* xtrct rm,rn */
1771 { 0x200e, SETSSP
| USES1
| USES2
}, /* mulu.w rm,rn */
1772 { 0x200f, SETSSP
| USES1
| USES2
} /* muls.w rm,rn */
1775 static const struct sh_minor_opcode sh_opcode2
[] =
1777 { MAP (sh_opcode20
), 0xf00f }
1780 static const struct sh_opcode sh_opcode30
[] =
1782 { 0x3000, SETSSP
| USES1
| USES2
}, /* cmp/eq rm,rn */
1783 { 0x3002, SETSSP
| USES1
| USES2
}, /* cmp/hs rm,rn */
1784 { 0x3003, SETSSP
| USES1
| USES2
}, /* cmp/ge rm,rn */
1785 { 0x3004, SETSSP
| USESSP
| USES1
| USES2
}, /* div1 rm,rn */
1786 { 0x3005, SETSSP
| USES1
| USES2
}, /* dmulu.l rm,rn */
1787 { 0x3006, SETSSP
| USES1
| USES2
}, /* cmp/hi rm,rn */
1788 { 0x3007, SETSSP
| USES1
| USES2
}, /* cmp/gt rm,rn */
1789 { 0x3008, SETS1
| USES1
| USES2
}, /* sub rm,rn */
1790 { 0x300a, SETS1
| SETSSP
| USES1
| USES2
| USESSP
}, /* subc rm,rn */
1791 { 0x300b, SETS1
| SETSSP
| USES1
| USES2
}, /* subv rm,rn */
1792 { 0x300c, SETS1
| USES1
| USES2
}, /* add rm,rn */
1793 { 0x300d, SETSSP
| USES1
| USES2
}, /* dmuls.l rm,rn */
1794 { 0x300e, SETS1
| SETSSP
| USES1
| USES2
| USESSP
}, /* addc rm,rn */
1795 { 0x300f, SETS1
| SETSSP
| USES1
| USES2
} /* addv rm,rn */
1798 static const struct sh_minor_opcode sh_opcode3
[] =
1800 { MAP (sh_opcode30
), 0xf00f }
1803 static const struct sh_opcode sh_opcode40
[] =
1805 { 0x4000, SETS1
| SETSSP
| USES1
}, /* shll rn */
1806 { 0x4001, SETS1
| SETSSP
| USES1
}, /* shlr rn */
1807 { 0x4002, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l mach,@-rn */
1808 { 0x4004, SETS1
| SETSSP
| USES1
}, /* rotl rn */
1809 { 0x4005, SETS1
| SETSSP
| USES1
}, /* rotr rn */
1810 { 0x4006, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,mach */
1811 { 0x4008, SETS1
| USES1
}, /* shll2 rn */
1812 { 0x4009, SETS1
| USES1
}, /* shlr2 rn */
1813 { 0x400a, SETSSP
| USES1
}, /* lds rm,mach */
1814 { 0x400b, BRANCH
| DELAY
| USES1
}, /* jsr @rn */
1815 { 0x4010, SETS1
| SETSSP
| USES1
}, /* dt rn */
1816 { 0x4011, SETSSP
| USES1
}, /* cmp/pz rn */
1817 { 0x4012, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l macl,@-rn */
1818 { 0x4014, SETSSP
| USES1
}, /* setrc rm */
1819 { 0x4015, SETSSP
| USES1
}, /* cmp/pl rn */
1820 { 0x4016, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,macl */
1821 { 0x4018, SETS1
| USES1
}, /* shll8 rn */
1822 { 0x4019, SETS1
| USES1
}, /* shlr8 rn */
1823 { 0x401a, SETSSP
| USES1
}, /* lds rm,macl */
1824 { 0x401b, LOAD
| SETSSP
| USES1
}, /* tas.b @rn */
1825 { 0x4020, SETS1
| SETSSP
| USES1
}, /* shal rn */
1826 { 0x4021, SETS1
| SETSSP
| USES1
}, /* shar rn */
1827 { 0x4022, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l pr,@-rn */
1828 { 0x4024, SETS1
| SETSSP
| USES1
| USESSP
}, /* rotcl rn */
1829 { 0x4025, SETS1
| SETSSP
| USES1
| USESSP
}, /* rotcr rn */
1830 { 0x4026, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,pr */
1831 { 0x4028, SETS1
| USES1
}, /* shll16 rn */
1832 { 0x4029, SETS1
| USES1
}, /* shlr16 rn */
1833 { 0x402a, SETSSP
| USES1
}, /* lds rm,pr */
1834 { 0x402b, BRANCH
| DELAY
| USES1
}, /* jmp @rn */
1835 { 0x4052, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l fpul,@-rn */
1836 { 0x4056, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,fpul */
1837 { 0x405a, SETSSP
| USES1
}, /* lds.l rm,fpul */
1838 { 0x4062, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l fpscr / dsr,@-rn */
1839 { 0x4066, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,fpscr / dsr */
1840 { 0x406a, SETSSP
| USES1
}, /* lds rm,fpscr / lds rm,dsr */
1841 { 0x4072, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l a0,@-rn */
1842 { 0x4076, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,a0 */
1843 { 0x407a, SETSSP
| USES1
}, /* lds.l rm,a0 */
1844 { 0x4082, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l x0,@-rn */
1845 { 0x4086, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,x0 */
1846 { 0x408a, SETSSP
| USES1
}, /* lds.l rm,x0 */
1847 { 0x4092, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l x1,@-rn */
1848 { 0x4096, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,x1 */
1849 { 0x409a, SETSSP
| USES1
}, /* lds.l rm,x1 */
1850 { 0x40a2, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l y0,@-rn */
1851 { 0x40a6, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,y0 */
1852 { 0x40aa, SETSSP
| USES1
}, /* lds.l rm,y0 */
1853 { 0x40b2, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l y1,@-rn */
1854 { 0x40b6, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,y1 */
1855 { 0x40ba, SETSSP
| USES1
} /* lds.l rm,y1 */
1856 #if 0 /* These groups sixteen insns can be
1857 handled with one table entry each below. */
1858 { 0x4003, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l sr,@-rn */
1859 { 0x4013, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l gbr,@-rn */
1860 { 0x4023, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l vbr,@-rn */
1861 { 0x4033, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l ssr,@-rn */
1862 { 0x4043, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l spc,@-rn */
1863 { 0x4053, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l mod,@-rn */
1864 { 0x4063, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l rs,@-rn */
1865 { 0x4073, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l re,@-rn */
1866 { 0x4083, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l r0_bank,@-rn */
1868 { 0x40f3, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l r7_bank,@-rn */
1870 { 0x4007, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,sr */
1871 { 0x4017, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,gbr */
1872 { 0x4027, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,vbr */
1873 { 0x4037, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,ssr */
1874 { 0x4047, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,spc */
1875 { 0x4057, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,mod */
1876 { 0x4067, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,rs */
1877 { 0x4077, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,re */
1878 { 0x4087, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,r0_bank */
1880 { 0x40f7, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,r7_bank */
1882 { 0x400e, SETSSP
| USES1
}, /* ldc rm,sr */
1883 { 0x401e, SETSSP
| USES1
}, /* ldc rm,gbr */
1884 { 0x402e, SETSSP
| USES1
}, /* ldc rm,vbr */
1885 { 0x403e, SETSSP
| USES1
}, /* ldc rm,ssr */
1886 { 0x404e, SETSSP
| USES1
}, /* ldc rm,spc */
1887 { 0x405e, SETSSP
| USES1
}, /* ldc rm,mod */
1888 { 0x406e, SETSSP
| USES1
}, /* ldc rm,rs */
1889 { 0x407e, SETSSP
| USES1
} /* ldc rm,re */
1890 { 0x408e, SETSSP
| USES1
} /* ldc rm,r0_bank */
1892 { 0x40fe, SETSSP
| USES1
} /* ldc rm,r7_bank */
1896 static const struct sh_opcode sh_opcode41
[] =
1898 { 0x4003, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l <special_reg>,@-rn */
1899 { 0x4007, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,<special_reg> */
1900 { 0x400c, SETS1
| USES1
| USES2
}, /* shad rm,rn */
1901 { 0x400d, SETS1
| USES1
| USES2
}, /* shld rm,rn */
1902 { 0x400e, SETSSP
| USES1
}, /* ldc rm,<special_reg> */
1903 { 0x400f, LOAD
|SETS1
|SETS2
|SETSSP
|USES1
|USES2
|USESSP
}, /* mac.w @rm+,@rn+ */
1906 static const struct sh_minor_opcode sh_opcode4
[] =
1908 { MAP (sh_opcode40
), 0xf0ff },
1909 { MAP (sh_opcode41
), 0xf00f }
1912 static const struct sh_opcode sh_opcode50
[] =
1914 { 0x5000, LOAD
| SETS1
| USES2
} /* mov.l @(disp,rm),rn */
1917 static const struct sh_minor_opcode sh_opcode5
[] =
1919 { MAP (sh_opcode50
), 0xf000 }
1922 static const struct sh_opcode sh_opcode60
[] =
1924 { 0x6000, LOAD
| SETS1
| USES2
}, /* mov.b @rm,rn */
1925 { 0x6001, LOAD
| SETS1
| USES2
}, /* mov.w @rm,rn */
1926 { 0x6002, LOAD
| SETS1
| USES2
}, /* mov.l @rm,rn */
1927 { 0x6003, SETS1
| USES2
}, /* mov rm,rn */
1928 { 0x6004, LOAD
| SETS1
| SETS2
| USES2
}, /* mov.b @rm+,rn */
1929 { 0x6005, LOAD
| SETS1
| SETS2
| USES2
}, /* mov.w @rm+,rn */
1930 { 0x6006, LOAD
| SETS1
| SETS2
| USES2
}, /* mov.l @rm+,rn */
1931 { 0x6007, SETS1
| USES2
}, /* not rm,rn */
1932 { 0x6008, SETS1
| USES2
}, /* swap.b rm,rn */
1933 { 0x6009, SETS1
| USES2
}, /* swap.w rm,rn */
1934 { 0x600a, SETS1
| SETSSP
| USES2
| USESSP
}, /* negc rm,rn */
1935 { 0x600b, SETS1
| USES2
}, /* neg rm,rn */
1936 { 0x600c, SETS1
| USES2
}, /* extu.b rm,rn */
1937 { 0x600d, SETS1
| USES2
}, /* extu.w rm,rn */
1938 { 0x600e, SETS1
| USES2
}, /* exts.b rm,rn */
1939 { 0x600f, SETS1
| USES2
} /* exts.w rm,rn */
1942 static const struct sh_minor_opcode sh_opcode6
[] =
1944 { MAP (sh_opcode60
), 0xf00f }
1947 static const struct sh_opcode sh_opcode70
[] =
1949 { 0x7000, SETS1
| USES1
} /* add #imm,rn */
1952 static const struct sh_minor_opcode sh_opcode7
[] =
1954 { MAP (sh_opcode70
), 0xf000 }
1957 static const struct sh_opcode sh_opcode80
[] =
1959 { 0x8000, STORE
| USES2
| USESR0
}, /* mov.b r0,@(disp,rn) */
1960 { 0x8100, STORE
| USES2
| USESR0
}, /* mov.w r0,@(disp,rn) */
1961 { 0x8200, SETSSP
}, /* setrc #imm */
1962 { 0x8400, LOAD
| SETSR0
| USES2
}, /* mov.b @(disp,rm),r0 */
1963 { 0x8500, LOAD
| SETSR0
| USES2
}, /* mov.w @(disp,rn),r0 */
1964 { 0x8800, SETSSP
| USESR0
}, /* cmp/eq #imm,r0 */
1965 { 0x8900, BRANCH
| USESSP
}, /* bt label */
1966 { 0x8b00, BRANCH
| USESSP
}, /* bf label */
1967 { 0x8c00, SETSSP
}, /* ldrs @(disp,pc) */
1968 { 0x8d00, BRANCH
| DELAY
| USESSP
}, /* bt/s label */
1969 { 0x8e00, SETSSP
}, /* ldre @(disp,pc) */
1970 { 0x8f00, BRANCH
| DELAY
| USESSP
} /* bf/s label */
1973 static const struct sh_minor_opcode sh_opcode8
[] =
1975 { MAP (sh_opcode80
), 0xff00 }
1978 static const struct sh_opcode sh_opcode90
[] =
1980 { 0x9000, LOAD
| SETS1
} /* mov.w @(disp,pc),rn */
1983 static const struct sh_minor_opcode sh_opcode9
[] =
1985 { MAP (sh_opcode90
), 0xf000 }
1988 static const struct sh_opcode sh_opcodea0
[] =
1990 { 0xa000, BRANCH
| DELAY
} /* bra label */
1993 static const struct sh_minor_opcode sh_opcodea
[] =
1995 { MAP (sh_opcodea0
), 0xf000 }
1998 static const struct sh_opcode sh_opcodeb0
[] =
2000 { 0xb000, BRANCH
| DELAY
} /* bsr label */
2003 static const struct sh_minor_opcode sh_opcodeb
[] =
2005 { MAP (sh_opcodeb0
), 0xf000 }
2008 static const struct sh_opcode sh_opcodec0
[] =
2010 { 0xc000, STORE
| USESR0
| USESSP
}, /* mov.b r0,@(disp,gbr) */
2011 { 0xc100, STORE
| USESR0
| USESSP
}, /* mov.w r0,@(disp,gbr) */
2012 { 0xc200, STORE
| USESR0
| USESSP
}, /* mov.l r0,@(disp,gbr) */
2013 { 0xc300, BRANCH
| USESSP
}, /* trapa #imm */
2014 { 0xc400, LOAD
| SETSR0
| USESSP
}, /* mov.b @(disp,gbr),r0 */
2015 { 0xc500, LOAD
| SETSR0
| USESSP
}, /* mov.w @(disp,gbr),r0 */
2016 { 0xc600, LOAD
| SETSR0
| USESSP
}, /* mov.l @(disp,gbr),r0 */
2017 { 0xc700, SETSR0
}, /* mova @(disp,pc),r0 */
2018 { 0xc800, SETSSP
| USESR0
}, /* tst #imm,r0 */
2019 { 0xc900, SETSR0
| USESR0
}, /* and #imm,r0 */
2020 { 0xca00, SETSR0
| USESR0
}, /* xor #imm,r0 */
2021 { 0xcb00, SETSR0
| USESR0
}, /* or #imm,r0 */
2022 { 0xcc00, LOAD
| SETSSP
| USESR0
| USESSP
}, /* tst.b #imm,@(r0,gbr) */
2023 { 0xcd00, LOAD
| STORE
| USESR0
| USESSP
}, /* and.b #imm,@(r0,gbr) */
2024 { 0xce00, LOAD
| STORE
| USESR0
| USESSP
}, /* xor.b #imm,@(r0,gbr) */
2025 { 0xcf00, LOAD
| STORE
| USESR0
| USESSP
} /* or.b #imm,@(r0,gbr) */
2028 static const struct sh_minor_opcode sh_opcodec
[] =
2030 { MAP (sh_opcodec0
), 0xff00 }
2033 static const struct sh_opcode sh_opcoded0
[] =
2035 { 0xd000, LOAD
| SETS1
} /* mov.l @(disp,pc),rn */
2038 static const struct sh_minor_opcode sh_opcoded
[] =
2040 { MAP (sh_opcoded0
), 0xf000 }
2043 static const struct sh_opcode sh_opcodee0
[] =
2045 { 0xe000, SETS1
} /* mov #imm,rn */
2048 static const struct sh_minor_opcode sh_opcodee
[] =
2050 { MAP (sh_opcodee0
), 0xf000 }
2053 static const struct sh_opcode sh_opcodef0
[] =
2055 { 0xf000, SETSF1
| USESF1
| USESF2
}, /* fadd fm,fn */
2056 { 0xf001, SETSF1
| USESF1
| USESF2
}, /* fsub fm,fn */
2057 { 0xf002, SETSF1
| USESF1
| USESF2
}, /* fmul fm,fn */
2058 { 0xf003, SETSF1
| USESF1
| USESF2
}, /* fdiv fm,fn */
2059 { 0xf004, SETSSP
| USESF1
| USESF2
}, /* fcmp/eq fm,fn */
2060 { 0xf005, SETSSP
| USESF1
| USESF2
}, /* fcmp/gt fm,fn */
2061 { 0xf006, LOAD
| SETSF1
| USES2
| USESR0
}, /* fmov.s @(r0,rm),fn */
2062 { 0xf007, STORE
| USES1
| USESF2
| USESR0
}, /* fmov.s fm,@(r0,rn) */
2063 { 0xf008, LOAD
| SETSF1
| USES2
}, /* fmov.s @rm,fn */
2064 { 0xf009, LOAD
| SETS2
| SETSF1
| USES2
}, /* fmov.s @rm+,fn */
2065 { 0xf00a, STORE
| USES1
| USESF2
}, /* fmov.s fm,@rn */
2066 { 0xf00b, STORE
| SETS1
| USES1
| USESF2
}, /* fmov.s fm,@-rn */
2067 { 0xf00c, SETSF1
| USESF2
}, /* fmov fm,fn */
2068 { 0xf00e, SETSF1
| USESF1
| USESF2
| USESF0
} /* fmac f0,fm,fn */
2071 static const struct sh_opcode sh_opcodef1
[] =
2073 { 0xf00d, SETSF1
| USESSP
}, /* fsts fpul,fn */
2074 { 0xf01d, SETSSP
| USESF1
}, /* flds fn,fpul */
2075 { 0xf02d, SETSF1
| USESSP
}, /* float fpul,fn */
2076 { 0xf03d, SETSSP
| USESF1
}, /* ftrc fn,fpul */
2077 { 0xf04d, SETSF1
| USESF1
}, /* fneg fn */
2078 { 0xf05d, SETSF1
| USESF1
}, /* fabs fn */
2079 { 0xf06d, SETSF1
| USESF1
}, /* fsqrt fn */
2080 { 0xf07d, SETSSP
| USESF1
}, /* ftst/nan fn */
2081 { 0xf08d, SETSF1
}, /* fldi0 fn */
2082 { 0xf09d, SETSF1
} /* fldi1 fn */
2085 static const struct sh_minor_opcode sh_opcodef
[] =
2087 { MAP (sh_opcodef0
), 0xf00f },
2088 { MAP (sh_opcodef1
), 0xf0ff }
2091 #ifndef COFF_IMAGE_WITH_PE
2092 static struct sh_major_opcode sh_opcodes
[] =
2094 { MAP (sh_opcode0
) },
2095 { MAP (sh_opcode1
) },
2096 { MAP (sh_opcode2
) },
2097 { MAP (sh_opcode3
) },
2098 { MAP (sh_opcode4
) },
2099 { MAP (sh_opcode5
) },
2100 { MAP (sh_opcode6
) },
2101 { MAP (sh_opcode7
) },
2102 { MAP (sh_opcode8
) },
2103 { MAP (sh_opcode9
) },
2104 { MAP (sh_opcodea
) },
2105 { MAP (sh_opcodeb
) },
2106 { MAP (sh_opcodec
) },
2107 { MAP (sh_opcoded
) },
2108 { MAP (sh_opcodee
) },
2109 { MAP (sh_opcodef
) }
2113 /* The double data transfer / parallel processing insns are not
2114 described here. This will cause sh_align_load_span to leave them alone. */
2116 static const struct sh_opcode sh_dsp_opcodef0
[] =
2118 { 0xf400, USESAS
| SETSAS
| LOAD
| SETSSP
}, /* movs.x @-as,ds */
2119 { 0xf401, USESAS
| SETSAS
| STORE
| USESSP
}, /* movs.x ds,@-as */
2120 { 0xf404, USESAS
| LOAD
| SETSSP
}, /* movs.x @as,ds */
2121 { 0xf405, USESAS
| STORE
| USESSP
}, /* movs.x ds,@as */
2122 { 0xf408, USESAS
| SETSAS
| LOAD
| SETSSP
}, /* movs.x @as+,ds */
2123 { 0xf409, USESAS
| SETSAS
| STORE
| USESSP
}, /* movs.x ds,@as+ */
2124 { 0xf40c, USESAS
| SETSAS
| LOAD
| SETSSP
| USESR8
}, /* movs.x @as+r8,ds */
2125 { 0xf40d, USESAS
| SETSAS
| STORE
| USESSP
| USESR8
} /* movs.x ds,@as+r8 */
2128 static const struct sh_minor_opcode sh_dsp_opcodef
[] =
2130 { MAP (sh_dsp_opcodef0
), 0xfc0d }
2133 #ifndef COFF_IMAGE_WITH_PE
2134 /* Given an instruction, return a pointer to the corresponding
2135 sh_opcode structure. Return NULL if the instruction is not
2138 static const struct sh_opcode
*
2142 const struct sh_major_opcode
*maj
;
2143 const struct sh_minor_opcode
*min
, *minend
;
2145 maj
= &sh_opcodes
[(insn
& 0xf000) >> 12];
2146 min
= maj
->minor_opcodes
;
2147 minend
= min
+ maj
->count
;
2148 for (; min
< minend
; min
++)
2151 const struct sh_opcode
*op
, *opend
;
2153 l
= insn
& min
->mask
;
2155 opend
= op
+ min
->count
;
2157 /* Since the opcodes tables are sorted, we could use a binary
2158 search here if the count were above some cutoff value. */
2159 for (; op
< opend
; op
++)
2160 if (op
->opcode
== l
)
2167 /* See whether an instruction uses or sets a general purpose register */
2170 sh_insn_uses_or_sets_reg (insn
, op
, reg
)
2172 const struct sh_opcode
*op
;
2175 if (sh_insn_uses_reg (insn
, op
, reg
))
2178 return sh_insn_sets_reg (insn
, op
, reg
);
2181 /* See whether an instruction uses a general purpose register. */
2184 sh_insn_uses_reg (insn
, op
, reg
)
2186 const struct sh_opcode
*op
;
2193 if ((f
& USES1
) != 0
2194 && USES1_REG (insn
) == reg
)
2196 if ((f
& USES2
) != 0
2197 && USES2_REG (insn
) == reg
)
2199 if ((f
& USESR0
) != 0
2202 if ((f
& USESAS
) && reg
== USESAS_REG (insn
))
2204 if ((f
& USESR8
) && reg
== 8)
2210 /* See whether an instruction sets a general purpose register. */
2213 sh_insn_sets_reg (insn
, op
, reg
)
2215 const struct sh_opcode
*op
;
2222 if ((f
& SETS1
) != 0
2223 && SETS1_REG (insn
) == reg
)
2225 if ((f
& SETS2
) != 0
2226 && SETS2_REG (insn
) == reg
)
2228 if ((f
& SETSR0
) != 0
2231 if ((f
& SETSAS
) && reg
== SETSAS_REG (insn
))
2237 /* See whether an instruction uses or sets a floating point register */
2240 sh_insn_uses_or_sets_freg (insn
, op
, reg
)
2242 const struct sh_opcode
*op
;
2245 if (sh_insn_uses_freg (insn
, op
, reg
))
2248 return sh_insn_sets_freg (insn
, op
, reg
);
2251 /* See whether an instruction uses a floating point register. */
2254 sh_insn_uses_freg (insn
, op
, freg
)
2256 const struct sh_opcode
*op
;
2263 /* We can't tell if this is a double-precision insn, so just play safe
2264 and assume that it might be. So not only have we test FREG against
2265 itself, but also even FREG against FREG+1 - if the using insn uses
2266 just the low part of a double precision value - but also an odd
2267 FREG against FREG-1 - if the setting insn sets just the low part
2268 of a double precision value.
2269 So what this all boils down to is that we have to ignore the lowest
2270 bit of the register number. */
2272 if ((f
& USESF1
) != 0
2273 && (USESF1_REG (insn
) & 0xe) == (freg
& 0xe))
2275 if ((f
& USESF2
) != 0
2276 && (USESF2_REG (insn
) & 0xe) == (freg
& 0xe))
2278 if ((f
& USESF0
) != 0
2285 /* See whether an instruction sets a floating point register. */
2288 sh_insn_sets_freg (insn
, op
, freg
)
2290 const struct sh_opcode
*op
;
2297 /* We can't tell if this is a double-precision insn, so just play safe
2298 and assume that it might be. So not only have we test FREG against
2299 itself, but also even FREG against FREG+1 - if the using insn uses
2300 just the low part of a double precision value - but also an odd
2301 FREG against FREG-1 - if the setting insn sets just the low part
2302 of a double precision value.
2303 So what this all boils down to is that we have to ignore the lowest
2304 bit of the register number. */
2306 if ((f
& SETSF1
) != 0
2307 && (SETSF1_REG (insn
) & 0xe) == (freg
& 0xe))
2313 /* See whether instructions I1 and I2 conflict, assuming I1 comes
2314 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
2315 This should return true if there is a conflict, or false if the
2316 instructions can be swapped safely. */
2319 sh_insns_conflict (i1
, op1
, i2
, op2
)
2321 const struct sh_opcode
*op1
;
2323 const struct sh_opcode
*op2
;
2325 unsigned int f1
, f2
;
2330 /* Load of fpscr conflicts with floating point operations.
2331 FIXME: shouldn't test raw opcodes here. */
2332 if (((i1
& 0xf0ff) == 0x4066 && (i2
& 0xf000) == 0xf000)
2333 || ((i2
& 0xf0ff) == 0x4066 && (i1
& 0xf000) == 0xf000))
2336 if ((f1
& (BRANCH
| DELAY
)) != 0
2337 || (f2
& (BRANCH
| DELAY
)) != 0)
2340 if (((f1
| f2
) & SETSSP
)
2341 && (f1
& (SETSSP
| USESSP
))
2342 && (f2
& (SETSSP
| USESSP
)))
2345 if ((f1
& SETS1
) != 0
2346 && sh_insn_uses_or_sets_reg (i2
, op2
, SETS1_REG (i1
)))
2348 if ((f1
& SETS2
) != 0
2349 && sh_insn_uses_or_sets_reg (i2
, op2
, SETS2_REG (i1
)))
2351 if ((f1
& SETSR0
) != 0
2352 && sh_insn_uses_or_sets_reg (i2
, op2
, 0))
2355 && sh_insn_uses_or_sets_reg (i2
, op2
, SETSAS_REG (i1
)))
2357 if ((f1
& SETSF1
) != 0
2358 && sh_insn_uses_or_sets_freg (i2
, op2
, SETSF1_REG (i1
)))
2361 if ((f2
& SETS1
) != 0
2362 && sh_insn_uses_or_sets_reg (i1
, op1
, SETS1_REG (i2
)))
2364 if ((f2
& SETS2
) != 0
2365 && sh_insn_uses_or_sets_reg (i1
, op1
, SETS2_REG (i2
)))
2367 if ((f2
& SETSR0
) != 0
2368 && sh_insn_uses_or_sets_reg (i1
, op1
, 0))
2371 && sh_insn_uses_or_sets_reg (i1
, op1
, SETSAS_REG (i2
)))
2373 if ((f2
& SETSF1
) != 0
2374 && sh_insn_uses_or_sets_freg (i1
, op1
, SETSF1_REG (i2
)))
2377 /* The instructions do not conflict. */
2381 /* I1 is a load instruction, and I2 is some other instruction. Return
2382 true if I1 loads a register which I2 uses. */
2385 sh_load_use (i1
, op1
, i2
, op2
)
2387 const struct sh_opcode
*op1
;
2389 const struct sh_opcode
*op2
;
2395 if ((f1
& LOAD
) == 0)
2398 /* If both SETS1 and SETSSP are set, that means a load to a special
2399 register using postincrement addressing mode, which we don't care
2401 if ((f1
& SETS1
) != 0
2402 && (f1
& SETSSP
) == 0
2403 && sh_insn_uses_reg (i2
, op2
, (i1
& 0x0f00) >> 8))
2406 if ((f1
& SETSR0
) != 0
2407 && sh_insn_uses_reg (i2
, op2
, 0))
2410 if ((f1
& SETSF1
) != 0
2411 && sh_insn_uses_freg (i2
, op2
, (i1
& 0x0f00) >> 8))
2417 /* Try to align loads and stores within a span of memory. This is
2418 called by both the ELF and the COFF sh targets. ABFD and SEC are
2419 the BFD and section we are examining. CONTENTS is the contents of
2420 the section. SWAP is the routine to call to swap two instructions.
2421 RELOCS is a pointer to the internal relocation information, to be
2422 passed to SWAP. PLABEL is a pointer to the current label in a
2423 sorted list of labels; LABEL_END is the end of the list. START and
2424 STOP are the range of memory to examine. If a swap is made,
2425 *PSWAPPED is set to true. */
2431 _bfd_sh_align_load_span (abfd
, sec
, contents
, swap
, relocs
,
2432 plabel
, label_end
, start
, stop
, pswapped
)
2436 boolean (*swap
) PARAMS ((bfd
*, asection
*, PTR
, bfd_byte
*, bfd_vma
));
2444 int dsp
= (abfd
->arch_info
->mach
== bfd_mach_sh_dsp
2445 || abfd
->arch_info
->mach
== bfd_mach_sh3_dsp
);
2448 /* The SH4 has a Harvard architecture, hence aligning loads is not
2449 desirable. In fact, it is counter-productive, since it interferes
2450 with the schedules generated by the compiler. */
2451 if (abfd
->arch_info
->mach
== bfd_mach_sh4
)
2454 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2458 sh_opcodes
[0xf].minor_opcodes
= sh_dsp_opcodef
;
2459 sh_opcodes
[0xf].count
= sizeof sh_dsp_opcodef
/ sizeof sh_dsp_opcodef
;
2462 /* Instructions should be aligned on 2 byte boundaries. */
2463 if ((start
& 1) == 1)
2466 /* Now look through the unaligned addresses. */
2470 for (; i
< stop
; i
+= 4)
2473 const struct sh_opcode
*op
;
2474 unsigned int prev_insn
= 0;
2475 const struct sh_opcode
*prev_op
= NULL
;
2477 insn
= bfd_get_16 (abfd
, contents
+ i
);
2478 op
= sh_insn_info (insn
);
2480 || (op
->flags
& (LOAD
| STORE
)) == 0)
2483 /* This is a load or store which is not on a four byte boundary. */
2485 while (*plabel
< label_end
&& **plabel
< i
)
2490 prev_insn
= bfd_get_16 (abfd
, contents
+ i
- 2);
2491 /* If INSN is the field b of a parallel processing insn, it is not
2492 a load / store after all. Note that the test here might mistake
2493 the field_b of a pcopy insn for the starting code of a parallel
2494 processing insn; this might miss a swapping opportunity, but at
2495 least we're on the safe side. */
2496 if (dsp
&& (prev_insn
& 0xfc00) == 0xf800)
2499 /* Check if prev_insn is actually the field b of a parallel
2500 processing insn. Again, this can give a spurious match
2502 if (dsp
&& i
- 2 > start
)
2504 unsigned pprev_insn
= bfd_get_16 (abfd
, contents
+ i
- 4);
2506 if ((pprev_insn
& 0xfc00) == 0xf800)
2509 prev_op
= sh_insn_info (prev_insn
);
2512 prev_op
= sh_insn_info (prev_insn
);
2514 /* If the load/store instruction is in a delay slot, we
2517 || (prev_op
->flags
& DELAY
) != 0)
2521 && (*plabel
>= label_end
|| **plabel
!= i
)
2523 && (prev_op
->flags
& (LOAD
| STORE
)) == 0
2524 && ! sh_insns_conflict (prev_insn
, prev_op
, insn
, op
))
2528 /* The load/store instruction does not have a label, and
2529 there is a previous instruction; PREV_INSN is not
2530 itself a load/store instruction, and PREV_INSN and
2531 INSN do not conflict. */
2537 unsigned int prev2_insn
;
2538 const struct sh_opcode
*prev2_op
;
2540 prev2_insn
= bfd_get_16 (abfd
, contents
+ i
- 4);
2541 prev2_op
= sh_insn_info (prev2_insn
);
2543 /* If the instruction before PREV_INSN has a delay
2544 slot--that is, PREV_INSN is in a delay slot--we
2546 if (prev2_op
== NULL
2547 || (prev2_op
->flags
& DELAY
) != 0)
2550 /* If the instruction before PREV_INSN is a load,
2551 and it sets a register which INSN uses, then
2552 putting INSN immediately after PREV_INSN will
2553 cause a pipeline bubble, so there is no point to
2556 && (prev2_op
->flags
& LOAD
) != 0
2557 && sh_load_use (prev2_insn
, prev2_op
, insn
, op
))
2563 if (! (*swap
) (abfd
, sec
, relocs
, contents
, i
- 2))
2570 while (*plabel
< label_end
&& **plabel
< i
+ 2)
2574 && (*plabel
>= label_end
|| **plabel
!= i
+ 2))
2576 unsigned int next_insn
;
2577 const struct sh_opcode
*next_op
;
2579 /* There is an instruction after the load/store
2580 instruction, and it does not have a label. */
2581 next_insn
= bfd_get_16 (abfd
, contents
+ i
+ 2);
2582 next_op
= sh_insn_info (next_insn
);
2584 && (next_op
->flags
& (LOAD
| STORE
)) == 0
2585 && ! sh_insns_conflict (insn
, op
, next_insn
, next_op
))
2589 /* NEXT_INSN is not itself a load/store instruction,
2590 and it does not conflict with INSN. */
2594 /* If PREV_INSN is a load, and it sets a register
2595 which NEXT_INSN uses, then putting NEXT_INSN
2596 immediately after PREV_INSN will cause a pipeline
2597 bubble, so there is no reason to make this swap. */
2599 && (prev_op
->flags
& LOAD
) != 0
2600 && sh_load_use (prev_insn
, prev_op
, next_insn
, next_op
))
2603 /* If INSN is a load, and it sets a register which
2604 the insn after NEXT_INSN uses, then doing the
2605 swap will cause a pipeline bubble, so there is no
2606 reason to make the swap. However, if the insn
2607 after NEXT_INSN is itself a load or store
2608 instruction, then it is misaligned, so
2609 optimistically hope that it will be swapped
2610 itself, and just live with the pipeline bubble if
2614 && (op
->flags
& LOAD
) != 0)
2616 unsigned int next2_insn
;
2617 const struct sh_opcode
*next2_op
;
2619 next2_insn
= bfd_get_16 (abfd
, contents
+ i
+ 4);
2620 next2_op
= sh_insn_info (next2_insn
);
2621 if ((next2_op
->flags
& (LOAD
| STORE
)) == 0
2622 && sh_load_use (insn
, op
, next2_insn
, next2_op
))
2628 if (! (*swap
) (abfd
, sec
, relocs
, contents
, i
))
2639 #endif /* not COFF_IMAGE_WITH_PE */
2641 /* Look for loads and stores which we can align to four byte
2642 boundaries. See the longer comment above sh_relax_section for why
2643 this is desirable. This sets *PSWAPPED if some instruction was
2647 sh_align_loads (abfd
, sec
, internal_relocs
, contents
, pswapped
)
2650 struct internal_reloc
*internal_relocs
;
2654 struct internal_reloc
*irel
, *irelend
;
2655 bfd_vma
*labels
= NULL
;
2656 bfd_vma
*label
, *label_end
;
2661 irelend
= internal_relocs
+ sec
->reloc_count
;
2663 /* Get all the addresses with labels on them. */
2664 amt
= (bfd_size_type
) sec
->reloc_count
* sizeof (bfd_vma
);
2665 labels
= (bfd_vma
*) bfd_malloc (amt
);
2669 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2671 if (irel
->r_type
== R_SH_LABEL
)
2673 *label_end
= irel
->r_vaddr
- sec
->vma
;
2678 /* Note that the assembler currently always outputs relocs in
2679 address order. If that ever changes, this code will need to sort
2680 the label values and the relocs. */
2684 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2686 bfd_vma start
, stop
;
2688 if (irel
->r_type
!= R_SH_CODE
)
2691 start
= irel
->r_vaddr
- sec
->vma
;
2693 for (irel
++; irel
< irelend
; irel
++)
2694 if (irel
->r_type
== R_SH_DATA
)
2697 stop
= irel
->r_vaddr
- sec
->vma
;
2699 stop
= sec
->_cooked_size
;
2701 if (! _bfd_sh_align_load_span (abfd
, sec
, contents
, sh_swap_insns
,
2702 (PTR
) internal_relocs
, &label
,
2703 label_end
, start
, stop
, pswapped
))
2717 /* Swap two SH instructions. */
2720 sh_swap_insns (abfd
, sec
, relocs
, contents
, addr
)
2727 struct internal_reloc
*internal_relocs
= (struct internal_reloc
*) relocs
;
2728 unsigned short i1
, i2
;
2729 struct internal_reloc
*irel
, *irelend
;
2731 /* Swap the instructions themselves. */
2732 i1
= bfd_get_16 (abfd
, contents
+ addr
);
2733 i2
= bfd_get_16 (abfd
, contents
+ addr
+ 2);
2734 bfd_put_16 (abfd
, (bfd_vma
) i2
, contents
+ addr
);
2735 bfd_put_16 (abfd
, (bfd_vma
) i1
, contents
+ addr
+ 2);
2737 /* Adjust all reloc addresses. */
2738 irelend
= internal_relocs
+ sec
->reloc_count
;
2739 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2743 /* There are a few special types of relocs that we don't want to
2744 adjust. These relocs do not apply to the instruction itself,
2745 but are only associated with the address. */
2746 type
= irel
->r_type
;
2747 if (type
== R_SH_ALIGN
2748 || type
== R_SH_CODE
2749 || type
== R_SH_DATA
2750 || type
== R_SH_LABEL
)
2753 /* If an R_SH_USES reloc points to one of the addresses being
2754 swapped, we must adjust it. It would be incorrect to do this
2755 for a jump, though, since we want to execute both
2756 instructions after the jump. (We have avoided swapping
2757 around a label, so the jump will not wind up executing an
2758 instruction it shouldn't). */
2759 if (type
== R_SH_USES
)
2763 off
= irel
->r_vaddr
- sec
->vma
+ 4 + irel
->r_offset
;
2765 irel
->r_offset
+= 2;
2766 else if (off
== addr
+ 2)
2767 irel
->r_offset
-= 2;
2770 if (irel
->r_vaddr
- sec
->vma
== addr
)
2775 else if (irel
->r_vaddr
- sec
->vma
== addr
+ 2)
2786 unsigned short insn
, oinsn
;
2789 loc
= contents
+ irel
->r_vaddr
- sec
->vma
;
2796 case R_SH_PCDISP8BY2
:
2797 case R_SH_PCRELIMM8BY2
:
2798 insn
= bfd_get_16 (abfd
, loc
);
2801 if ((oinsn
& 0xff00) != (insn
& 0xff00))
2803 bfd_put_16 (abfd
, (bfd_vma
) insn
, loc
);
2807 insn
= bfd_get_16 (abfd
, loc
);
2810 if ((oinsn
& 0xf000) != (insn
& 0xf000))
2812 bfd_put_16 (abfd
, (bfd_vma
) insn
, loc
);
2815 case R_SH_PCRELIMM8BY4
:
2816 /* This reloc ignores the least significant 3 bits of
2817 the program counter before adding in the offset.
2818 This means that if ADDR is at an even address, the
2819 swap will not affect the offset. If ADDR is an at an
2820 odd address, then the instruction will be crossing a
2821 four byte boundary, and must be adjusted. */
2822 if ((addr
& 3) != 0)
2824 insn
= bfd_get_16 (abfd
, loc
);
2827 if ((oinsn
& 0xff00) != (insn
& 0xff00))
2829 bfd_put_16 (abfd
, (bfd_vma
) insn
, loc
);
2837 ((*_bfd_error_handler
)
2838 ("%s: 0x%lx: fatal: reloc overflow while relaxing",
2839 bfd_archive_filename (abfd
), (unsigned long) irel
->r_vaddr
));
2840 bfd_set_error (bfd_error_bad_value
);
2849 /* This is a modification of _bfd_coff_generic_relocate_section, which
2850 will handle SH relaxing. */
2853 sh_relocate_section (output_bfd
, info
, input_bfd
, input_section
, contents
,
2854 relocs
, syms
, sections
)
2855 bfd
*output_bfd ATTRIBUTE_UNUSED
;
2856 struct bfd_link_info
*info
;
2858 asection
*input_section
;
2860 struct internal_reloc
*relocs
;
2861 struct internal_syment
*syms
;
2862 asection
**sections
;
2864 struct internal_reloc
*rel
;
2865 struct internal_reloc
*relend
;
2868 relend
= rel
+ input_section
->reloc_count
;
2869 for (; rel
< relend
; rel
++)
2872 struct coff_link_hash_entry
*h
;
2873 struct internal_syment
*sym
;
2876 reloc_howto_type
*howto
;
2877 bfd_reloc_status_type rstat
;
2879 /* Almost all relocs have to do with relaxing. If any work must
2880 be done for them, it has been done in sh_relax_section. */
2881 if (rel
->r_type
!= R_SH_IMM32
2883 && rel
->r_type
!= R_SH_IMM32CE
2884 && rel
->r_type
!= R_SH_IMAGEBASE
2886 && rel
->r_type
!= R_SH_PCDISP
)
2889 symndx
= rel
->r_symndx
;
2899 || (unsigned long) symndx
>= obj_raw_syment_count (input_bfd
))
2901 (*_bfd_error_handler
)
2902 ("%s: illegal symbol index %ld in relocs",
2903 bfd_archive_filename (input_bfd
), symndx
);
2904 bfd_set_error (bfd_error_bad_value
);
2907 h
= obj_coff_sym_hashes (input_bfd
)[symndx
];
2908 sym
= syms
+ symndx
;
2911 if (sym
!= NULL
&& sym
->n_scnum
!= 0)
2912 addend
= - sym
->n_value
;
2916 if (rel
->r_type
== R_SH_PCDISP
)
2919 if (rel
->r_type
>= SH_COFF_HOWTO_COUNT
)
2922 howto
= &sh_coff_howtos
[rel
->r_type
];
2926 bfd_set_error (bfd_error_bad_value
);
2931 if (rel
->r_type
== R_SH_IMAGEBASE
)
2932 addend
-= pe_data (input_section
->output_section
->owner
)->pe_opthdr
.ImageBase
;
2941 /* There is nothing to do for an internal PCDISP reloc. */
2942 if (rel
->r_type
== R_SH_PCDISP
)
2947 sec
= bfd_abs_section_ptr
;
2952 sec
= sections
[symndx
];
2953 val
= (sec
->output_section
->vma
2954 + sec
->output_offset
2961 if (h
->root
.type
== bfd_link_hash_defined
2962 || h
->root
.type
== bfd_link_hash_defweak
)
2966 sec
= h
->root
.u
.def
.section
;
2967 val
= (h
->root
.u
.def
.value
2968 + sec
->output_section
->vma
2969 + sec
->output_offset
);
2971 else if (! info
->relocateable
)
2973 if (! ((*info
->callbacks
->undefined_symbol
)
2974 (info
, h
->root
.root
.string
, input_bfd
, input_section
,
2975 rel
->r_vaddr
- input_section
->vma
, true)))
2980 rstat
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2982 rel
->r_vaddr
- input_section
->vma
,
2991 case bfd_reloc_overflow
:
2994 char buf
[SYMNMLEN
+ 1];
2999 name
= h
->root
.root
.string
;
3000 else if (sym
->_n
._n_n
._n_zeroes
== 0
3001 && sym
->_n
._n_n
._n_offset
!= 0)
3002 name
= obj_coff_strings (input_bfd
) + sym
->_n
._n_n
._n_offset
;
3005 strncpy (buf
, sym
->_n
._n_name
, SYMNMLEN
);
3006 buf
[SYMNMLEN
] = '\0';
3010 if (! ((*info
->callbacks
->reloc_overflow
)
3011 (info
, name
, howto
->name
, (bfd_vma
) 0, input_bfd
,
3012 input_section
, rel
->r_vaddr
- input_section
->vma
)))
3021 /* This is a version of bfd_generic_get_relocated_section_contents
3022 which uses sh_relocate_section. */
3025 sh_coff_get_relocated_section_contents (output_bfd
, link_info
, link_order
,
3026 data
, relocateable
, symbols
)
3028 struct bfd_link_info
*link_info
;
3029 struct bfd_link_order
*link_order
;
3031 boolean relocateable
;
3034 asection
*input_section
= link_order
->u
.indirect
.section
;
3035 bfd
*input_bfd
= input_section
->owner
;
3036 asection
**sections
= NULL
;
3037 struct internal_reloc
*internal_relocs
= NULL
;
3038 struct internal_syment
*internal_syms
= NULL
;
3040 /* We only need to handle the case of relaxing, or of having a
3041 particular set of section contents, specially. */
3043 || coff_section_data (input_bfd
, input_section
) == NULL
3044 || coff_section_data (input_bfd
, input_section
)->contents
== NULL
)
3045 return bfd_generic_get_relocated_section_contents (output_bfd
, link_info
,
3050 memcpy (data
, coff_section_data (input_bfd
, input_section
)->contents
,
3051 (size_t) input_section
->_raw_size
);
3053 if ((input_section
->flags
& SEC_RELOC
) != 0
3054 && input_section
->reloc_count
> 0)
3056 bfd_size_type symesz
= bfd_coff_symesz (input_bfd
);
3057 bfd_byte
*esym
, *esymend
;
3058 struct internal_syment
*isymp
;
3062 if (! _bfd_coff_get_external_symbols (input_bfd
))
3065 internal_relocs
= (_bfd_coff_read_internal_relocs
3066 (input_bfd
, input_section
, false, (bfd_byte
*) NULL
,
3067 false, (struct internal_reloc
*) NULL
));
3068 if (internal_relocs
== NULL
)
3071 amt
= obj_raw_syment_count (input_bfd
);
3072 amt
*= sizeof (struct internal_syment
);
3073 internal_syms
= (struct internal_syment
*) bfd_malloc (amt
);
3074 if (internal_syms
== NULL
)
3077 amt
= obj_raw_syment_count (input_bfd
);
3078 amt
*= sizeof (asection
*);
3079 sections
= (asection
**) bfd_malloc (amt
);
3080 if (sections
== NULL
)
3083 isymp
= internal_syms
;
3085 esym
= (bfd_byte
*) obj_coff_external_syms (input_bfd
);
3086 esymend
= esym
+ obj_raw_syment_count (input_bfd
) * symesz
;
3087 while (esym
< esymend
)
3089 bfd_coff_swap_sym_in (input_bfd
, (PTR
) esym
, (PTR
) isymp
);
3091 if (isymp
->n_scnum
!= 0)
3092 *secpp
= coff_section_from_bfd_index (input_bfd
, isymp
->n_scnum
);
3095 if (isymp
->n_value
== 0)
3096 *secpp
= bfd_und_section_ptr
;
3098 *secpp
= bfd_com_section_ptr
;
3101 esym
+= (isymp
->n_numaux
+ 1) * symesz
;
3102 secpp
+= isymp
->n_numaux
+ 1;
3103 isymp
+= isymp
->n_numaux
+ 1;
3106 if (! sh_relocate_section (output_bfd
, link_info
, input_bfd
,
3107 input_section
, data
, internal_relocs
,
3108 internal_syms
, sections
))
3113 free (internal_syms
);
3114 internal_syms
= NULL
;
3115 free (internal_relocs
);
3116 internal_relocs
= NULL
;
3122 if (internal_relocs
!= NULL
)
3123 free (internal_relocs
);
3124 if (internal_syms
!= NULL
)
3125 free (internal_syms
);
3126 if (sections
!= NULL
)
3131 /* The target vectors. */
3133 #ifndef TARGET_SHL_SYM
3134 CREATE_BIG_COFF_TARGET_VEC (shcoff_vec
, "coff-sh", BFD_IS_RELAXABLE
, 0, '_', NULL
)
3137 #ifdef TARGET_SHL_SYM
3138 #define TARGET_SYM TARGET_SHL_SYM
3140 #define TARGET_SYM shlcoff_vec
3143 #ifndef TARGET_SHL_NAME
3144 #define TARGET_SHL_NAME "coff-shl"
3148 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM
, TARGET_SHL_NAME
, BFD_IS_RELAXABLE
,
3149 SEC_CODE
| SEC_DATA
, '_', NULL
);
3151 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM
, TARGET_SHL_NAME
, BFD_IS_RELAXABLE
,
3155 #ifndef TARGET_SHL_SYM
3156 static const bfd_target
* coff_small_object_p
PARAMS ((bfd
*));
3157 static boolean coff_small_new_section_hook
PARAMS ((bfd
*, asection
*));
3158 /* Some people want versions of the SH COFF target which do not align
3159 to 16 byte boundaries. We implement that by adding a couple of new
3160 target vectors. These are just like the ones above, but they
3161 change the default section alignment. To generate them in the
3162 assembler, use -small. To use them in the linker, use -b
3163 coff-sh{l}-small and -oformat coff-sh{l}-small.
3165 Yes, this is a horrible hack. A general solution for setting
3166 section alignment in COFF is rather complex. ELF handles this
3169 /* Only recognize the small versions if the target was not defaulted.
3170 Otherwise we won't recognize the non default endianness. */
3172 static const bfd_target
*
3173 coff_small_object_p (abfd
)
3176 if (abfd
->target_defaulted
)
3178 bfd_set_error (bfd_error_wrong_format
);
3181 return coff_object_p (abfd
);
3184 /* Set the section alignment for the small versions. */
3187 coff_small_new_section_hook (abfd
, section
)
3191 if (! coff_new_section_hook (abfd
, section
))
3194 /* We must align to at least a four byte boundary, because longword
3195 accesses must be on a four byte boundary. */
3196 if (section
->alignment_power
== COFF_DEFAULT_SECTION_ALIGNMENT_POWER
)
3197 section
->alignment_power
= 2;
3202 /* This is copied from bfd_coff_std_swap_table so that we can change
3203 the default section alignment power. */
3205 static const bfd_coff_backend_data bfd_coff_small_swap_table
=
3207 coff_swap_aux_in
, coff_swap_sym_in
, coff_swap_lineno_in
,
3208 coff_swap_aux_out
, coff_swap_sym_out
,
3209 coff_swap_lineno_out
, coff_swap_reloc_out
,
3210 coff_swap_filehdr_out
, coff_swap_aouthdr_out
,
3211 coff_swap_scnhdr_out
,
3212 FILHSZ
, AOUTSZ
, SCNHSZ
, SYMESZ
, AUXESZ
, RELSZ
, LINESZ
, FILNMLEN
,
3213 #ifdef COFF_LONG_FILENAMES
3218 #ifdef COFF_LONG_SECTION_NAMES
3224 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3229 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3234 coff_swap_filehdr_in
, coff_swap_aouthdr_in
, coff_swap_scnhdr_in
,
3235 coff_swap_reloc_in
, coff_bad_format_hook
, coff_set_arch_mach_hook
,
3236 coff_mkobject_hook
, styp_to_sec_flags
, coff_set_alignment_hook
,
3237 coff_slurp_symbol_table
, symname_in_debug_hook
, coff_pointerize_aux_hook
,
3238 coff_print_aux
, coff_reloc16_extra_cases
, coff_reloc16_estimate
,
3239 coff_classify_symbol
, coff_compute_section_file_positions
,
3240 coff_start_final_link
, coff_relocate_section
, coff_rtype_to_howto
,
3241 coff_adjust_symndx
, coff_link_add_one_symbol
,
3242 coff_link_output_has_begun
, coff_final_link_postscript
3245 #define coff_small_close_and_cleanup \
3246 coff_close_and_cleanup
3247 #define coff_small_bfd_free_cached_info \
3248 coff_bfd_free_cached_info
3249 #define coff_small_get_section_contents \
3250 coff_get_section_contents
3251 #define coff_small_get_section_contents_in_window \
3252 coff_get_section_contents_in_window
3254 extern const bfd_target shlcoff_small_vec
;
3256 const bfd_target shcoff_small_vec
=
3258 "coff-sh-small", /* name */
3259 bfd_target_coff_flavour
,
3260 BFD_ENDIAN_BIG
, /* data byte order is big */
3261 BFD_ENDIAN_BIG
, /* header byte order is big */
3263 (HAS_RELOC
| EXEC_P
| /* object flags */
3264 HAS_LINENO
| HAS_DEBUG
|
3265 HAS_SYMS
| HAS_LOCALS
| WP_TEXT
| BFD_IS_RELAXABLE
),
3267 (SEC_HAS_CONTENTS
| SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
),
3268 '_', /* leading symbol underscore */
3269 '/', /* ar_pad_char */
3270 15, /* ar_max_namelen */
3271 bfd_getb64
, bfd_getb_signed_64
, bfd_putb64
,
3272 bfd_getb32
, bfd_getb_signed_32
, bfd_putb32
,
3273 bfd_getb16
, bfd_getb_signed_16
, bfd_putb16
, /* data */
3274 bfd_getb64
, bfd_getb_signed_64
, bfd_putb64
,
3275 bfd_getb32
, bfd_getb_signed_32
, bfd_putb32
,
3276 bfd_getb16
, bfd_getb_signed_16
, bfd_putb16
, /* hdrs */
3278 {_bfd_dummy_target
, coff_small_object_p
, /* bfd_check_format */
3279 bfd_generic_archive_p
, _bfd_dummy_target
},
3280 {bfd_false
, coff_mkobject
, _bfd_generic_mkarchive
, /* bfd_set_format */
3282 {bfd_false
, coff_write_object_contents
, /* bfd_write_contents */
3283 _bfd_write_archive_contents
, bfd_false
},
3285 BFD_JUMP_TABLE_GENERIC (coff_small
),
3286 BFD_JUMP_TABLE_COPY (coff
),
3287 BFD_JUMP_TABLE_CORE (_bfd_nocore
),
3288 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff
),
3289 BFD_JUMP_TABLE_SYMBOLS (coff
),
3290 BFD_JUMP_TABLE_RELOCS (coff
),
3291 BFD_JUMP_TABLE_WRITE (coff
),
3292 BFD_JUMP_TABLE_LINK (coff
),
3293 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic
),
3295 & shlcoff_small_vec
,
3297 (PTR
) &bfd_coff_small_swap_table
3300 const bfd_target shlcoff_small_vec
=
3302 "coff-shl-small", /* name */
3303 bfd_target_coff_flavour
,
3304 BFD_ENDIAN_LITTLE
, /* data byte order is little */
3305 BFD_ENDIAN_LITTLE
, /* header byte order is little endian too*/
3307 (HAS_RELOC
| EXEC_P
| /* object flags */
3308 HAS_LINENO
| HAS_DEBUG
|
3309 HAS_SYMS
| HAS_LOCALS
| WP_TEXT
| BFD_IS_RELAXABLE
),
3311 (SEC_HAS_CONTENTS
| SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
),
3312 '_', /* leading symbol underscore */
3313 '/', /* ar_pad_char */
3314 15, /* ar_max_namelen */
3315 bfd_getl64
, bfd_getl_signed_64
, bfd_putl64
,
3316 bfd_getl32
, bfd_getl_signed_32
, bfd_putl32
,
3317 bfd_getl16
, bfd_getl_signed_16
, bfd_putl16
, /* data */
3318 bfd_getl64
, bfd_getl_signed_64
, bfd_putl64
,
3319 bfd_getl32
, bfd_getl_signed_32
, bfd_putl32
,
3320 bfd_getl16
, bfd_getl_signed_16
, bfd_putl16
, /* hdrs */
3322 {_bfd_dummy_target
, coff_small_object_p
, /* bfd_check_format */
3323 bfd_generic_archive_p
, _bfd_dummy_target
},
3324 {bfd_false
, coff_mkobject
, _bfd_generic_mkarchive
, /* bfd_set_format */
3326 {bfd_false
, coff_write_object_contents
, /* bfd_write_contents */
3327 _bfd_write_archive_contents
, bfd_false
},
3329 BFD_JUMP_TABLE_GENERIC (coff_small
),
3330 BFD_JUMP_TABLE_COPY (coff
),
3331 BFD_JUMP_TABLE_CORE (_bfd_nocore
),
3332 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff
),
3333 BFD_JUMP_TABLE_SYMBOLS (coff
),
3334 BFD_JUMP_TABLE_RELOCS (coff
),
3335 BFD_JUMP_TABLE_WRITE (coff
),
3336 BFD_JUMP_TABLE_LINK (coff
),
3337 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic
),
3341 (PTR
) &bfd_coff_small_swap_table