1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24 #ifdef ANSI_PROTOTYPES
34 #include "elf/xtensa.h"
35 #include "xtensa-isa.h"
36 #include "xtensa-config.h"
38 #define XTENSA_NO_NOP_REMOVAL 0
40 /* Local helper functions. */
42 static bfd_boolean
add_extra_plt_sections (bfd
*, int);
43 static char *build_encoding_error_message (xtensa_opcode
, bfd_vma
);
44 static bfd_reloc_status_type bfd_elf_xtensa_reloc
45 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
46 static bfd_boolean do_fix_for_relocatable_link
47 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*);
48 static void do_fix_for_final_link
49 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*, bfd_vma
*);
51 /* Local functions to handle Xtensa configurability. */
53 static bfd_boolean
is_indirect_call_opcode (xtensa_opcode
);
54 static bfd_boolean
is_direct_call_opcode (xtensa_opcode
);
55 static bfd_boolean
is_windowed_call_opcode (xtensa_opcode
);
56 static xtensa_opcode
get_const16_opcode (void);
57 static xtensa_opcode
get_l32r_opcode (void);
58 static bfd_vma
l32r_offset (bfd_vma
, bfd_vma
);
59 static int get_relocation_opnd (xtensa_opcode
, int);
60 static int get_relocation_slot (int);
61 static xtensa_opcode get_relocation_opcode
62 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
63 static bfd_boolean is_l32r_relocation
64 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
65 static bfd_boolean
is_alt_relocation (int);
66 static bfd_boolean
is_operand_relocation (int);
67 static bfd_size_type insn_decode_len
68 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
69 static xtensa_opcode insn_decode_opcode
70 (bfd_byte
*, bfd_size_type
, bfd_size_type
, int);
71 static bfd_boolean check_branch_target_aligned
72 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
73 static bfd_boolean check_loop_aligned
74 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
75 static bfd_boolean
check_branch_target_aligned_address (bfd_vma
, int);
76 static bfd_size_type get_asm_simplify_size
77 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
79 /* Functions for link-time code simplifications. */
81 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
82 (bfd_byte
*, bfd_vma
, bfd_vma
, char **);
83 static bfd_reloc_status_type contract_asm_expansion
84 (bfd_byte
*, bfd_vma
, Elf_Internal_Rela
*, char **);
85 static xtensa_opcode
swap_callx_for_call_opcode (xtensa_opcode
);
86 static xtensa_opcode
get_expanded_call_opcode (bfd_byte
*, int, bfd_boolean
*);
88 /* Access to internal relocations, section contents and symbols. */
90 static Elf_Internal_Rela
*retrieve_internal_relocs
91 (bfd
*, asection
*, bfd_boolean
);
92 static void pin_internal_relocs (asection
*, Elf_Internal_Rela
*);
93 static void release_internal_relocs (asection
*, Elf_Internal_Rela
*);
94 static bfd_byte
*retrieve_contents (bfd
*, asection
*, bfd_boolean
);
95 static void pin_contents (asection
*, bfd_byte
*);
96 static void release_contents (asection
*, bfd_byte
*);
97 static Elf_Internal_Sym
*retrieve_local_syms (bfd
*);
99 /* Miscellaneous utility functions. */
101 static asection
*elf_xtensa_get_plt_section (bfd
*, int);
102 static asection
*elf_xtensa_get_gotplt_section (bfd
*, int);
103 static asection
*get_elf_r_symndx_section (bfd
*, unsigned long);
104 static struct elf_link_hash_entry
*get_elf_r_symndx_hash_entry
105 (bfd
*, unsigned long);
106 static bfd_vma
get_elf_r_symndx_offset (bfd
*, unsigned long);
107 static bfd_boolean
is_reloc_sym_weak (bfd
*, Elf_Internal_Rela
*);
108 static bfd_boolean
pcrel_reloc_fits (xtensa_opcode
, int, bfd_vma
, bfd_vma
);
109 static bfd_boolean
xtensa_is_property_section (asection
*);
110 static bfd_boolean
xtensa_is_littable_section (asection
*);
111 static int internal_reloc_compare (const void *, const void *);
112 static int internal_reloc_matches (const void *, const void *);
113 extern char *xtensa_get_property_section_name (asection
*, const char *);
114 static flagword
xtensa_get_property_predef_flags (asection
*);
116 /* Other functions called directly by the linker. */
118 typedef void (*deps_callback_t
)
119 (asection
*, bfd_vma
, asection
*, bfd_vma
, void *);
120 extern bfd_boolean xtensa_callback_required_dependence
121 (bfd
*, asection
*, struct bfd_link_info
*, deps_callback_t
, void *);
124 /* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
129 int elf32xtensa_size_opt
;
132 /* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
136 typedef struct xtensa_relax_info_struct xtensa_relax_info
;
139 /* Total count of PLT relocations seen during check_relocs.
140 The actual PLT code must be split into multiple sections and all
141 the sections have to be created before size_dynamic_sections,
142 where we figure out the exact number of PLT entries that will be
143 needed. It is OK if this count is an overestimate, e.g., some
144 relocations may be removed by GC. */
146 static int plt_reloc_count
= 0;
149 /* The GNU tools do not easily allow extending interfaces to pass around
150 the pointer to the Xtensa ISA information, so instead we add a global
151 variable here (in BFD) that can be used by any of the tools that need
154 xtensa_isa xtensa_default_isa
;
157 /* When this is true, relocations may have been modified to refer to
158 symbols from other input files. The per-section list of "fix"
159 records needs to be checked when resolving relocations. */
161 static bfd_boolean relaxing_section
= FALSE
;
163 /* When this is true, during final links, literals that cannot be
164 coalesced and their relocations may be moved to other sections. */
166 int elf32xtensa_no_literal_movement
= 1;
169 static reloc_howto_type elf_howto_table
[] =
171 HOWTO (R_XTENSA_NONE
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
172 bfd_elf_xtensa_reloc
, "R_XTENSA_NONE",
173 FALSE
, 0x00000000, 0x00000000, FALSE
),
174 HOWTO (R_XTENSA_32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
175 bfd_elf_xtensa_reloc
, "R_XTENSA_32",
176 TRUE
, 0xffffffff, 0xffffffff, FALSE
),
177 /* Replace a 32-bit value with a value from the runtime linker (only
178 used by linker-generated stub functions). The r_addend value is
179 special: 1 means to substitute a pointer to the runtime linker's
180 dynamic resolver function; 2 means to substitute the link map for
181 the shared object. */
182 HOWTO (R_XTENSA_RTLD
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
183 NULL
, "R_XTENSA_RTLD",
184 FALSE
, 0x00000000, 0x00000000, FALSE
),
185 HOWTO (R_XTENSA_GLOB_DAT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
186 bfd_elf_generic_reloc
, "R_XTENSA_GLOB_DAT",
187 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
188 HOWTO (R_XTENSA_JMP_SLOT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
189 bfd_elf_generic_reloc
, "R_XTENSA_JMP_SLOT",
190 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
191 HOWTO (R_XTENSA_RELATIVE
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
192 bfd_elf_generic_reloc
, "R_XTENSA_RELATIVE",
193 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
194 HOWTO (R_XTENSA_PLT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
195 bfd_elf_xtensa_reloc
, "R_XTENSA_PLT",
196 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
198 HOWTO (R_XTENSA_OP0
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
199 bfd_elf_xtensa_reloc
, "R_XTENSA_OP0",
200 FALSE
, 0x00000000, 0x00000000, TRUE
),
201 HOWTO (R_XTENSA_OP1
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
202 bfd_elf_xtensa_reloc
, "R_XTENSA_OP1",
203 FALSE
, 0x00000000, 0x00000000, TRUE
),
204 HOWTO (R_XTENSA_OP2
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
205 bfd_elf_xtensa_reloc
, "R_XTENSA_OP2",
206 FALSE
, 0x00000000, 0x00000000, TRUE
),
207 /* Assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_EXPAND
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
209 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_EXPAND",
210 FALSE
, 0x00000000, 0x00000000, FALSE
),
211 /* Relax assembly auto-expansion. */
212 HOWTO (R_XTENSA_ASM_SIMPLIFY
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
213 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_SIMPLIFY",
214 FALSE
, 0x00000000, 0x00000000, TRUE
),
217 /* GNU extension to record C++ vtable hierarchy. */
218 HOWTO (R_XTENSA_GNU_VTINHERIT
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
219 NULL
, "R_XTENSA_GNU_VTINHERIT",
220 FALSE
, 0x00000000, 0x00000000, FALSE
),
221 /* GNU extension to record C++ vtable member usage. */
222 HOWTO (R_XTENSA_GNU_VTENTRY
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
223 _bfd_elf_rel_vtable_reloc_fn
, "R_XTENSA_GNU_VTENTRY",
224 FALSE
, 0x00000000, 0x00000000, FALSE
),
226 /* Relocations for supporting difference of symbols. */
227 HOWTO (R_XTENSA_DIFF8
, 0, 0, 8, FALSE
, 0, complain_overflow_bitfield
,
228 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF8",
229 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
230 HOWTO (R_XTENSA_DIFF16
, 0, 1, 16, FALSE
, 0, complain_overflow_bitfield
,
231 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF16",
232 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
233 HOWTO (R_XTENSA_DIFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
234 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF32",
235 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
237 /* General immediate operand relocations. */
238 HOWTO (R_XTENSA_SLOT0_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
239 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_OP",
240 FALSE
, 0x00000000, 0x00000000, TRUE
),
241 HOWTO (R_XTENSA_SLOT1_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
242 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_OP",
243 FALSE
, 0x00000000, 0x00000000, TRUE
),
244 HOWTO (R_XTENSA_SLOT2_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
245 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_OP",
246 FALSE
, 0x00000000, 0x00000000, TRUE
),
247 HOWTO (R_XTENSA_SLOT3_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
248 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_OP",
249 FALSE
, 0x00000000, 0x00000000, TRUE
),
250 HOWTO (R_XTENSA_SLOT4_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
251 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_OP",
252 FALSE
, 0x00000000, 0x00000000, TRUE
),
253 HOWTO (R_XTENSA_SLOT5_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
254 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_OP",
255 FALSE
, 0x00000000, 0x00000000, TRUE
),
256 HOWTO (R_XTENSA_SLOT6_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
257 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_OP",
258 FALSE
, 0x00000000, 0x00000000, TRUE
),
259 HOWTO (R_XTENSA_SLOT7_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
260 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_OP",
261 FALSE
, 0x00000000, 0x00000000, TRUE
),
262 HOWTO (R_XTENSA_SLOT8_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
263 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_OP",
264 FALSE
, 0x00000000, 0x00000000, TRUE
),
265 HOWTO (R_XTENSA_SLOT9_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
266 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_OP",
267 FALSE
, 0x00000000, 0x00000000, TRUE
),
268 HOWTO (R_XTENSA_SLOT10_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
269 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_OP",
270 FALSE
, 0x00000000, 0x00000000, TRUE
),
271 HOWTO (R_XTENSA_SLOT11_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
272 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_OP",
273 FALSE
, 0x00000000, 0x00000000, TRUE
),
274 HOWTO (R_XTENSA_SLOT12_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
275 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_OP",
276 FALSE
, 0x00000000, 0x00000000, TRUE
),
277 HOWTO (R_XTENSA_SLOT13_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
278 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_OP",
279 FALSE
, 0x00000000, 0x00000000, TRUE
),
280 HOWTO (R_XTENSA_SLOT14_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
281 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_OP",
282 FALSE
, 0x00000000, 0x00000000, TRUE
),
284 /* "Alternate" relocations. The meaning of these is opcode-specific. */
285 HOWTO (R_XTENSA_SLOT0_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
286 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_ALT",
287 FALSE
, 0x00000000, 0x00000000, TRUE
),
288 HOWTO (R_XTENSA_SLOT1_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
289 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_ALT",
290 FALSE
, 0x00000000, 0x00000000, TRUE
),
291 HOWTO (R_XTENSA_SLOT2_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
292 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_ALT",
293 FALSE
, 0x00000000, 0x00000000, TRUE
),
294 HOWTO (R_XTENSA_SLOT3_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
295 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_ALT",
296 FALSE
, 0x00000000, 0x00000000, TRUE
),
297 HOWTO (R_XTENSA_SLOT4_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
298 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_ALT",
299 FALSE
, 0x00000000, 0x00000000, TRUE
),
300 HOWTO (R_XTENSA_SLOT5_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
301 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_ALT",
302 FALSE
, 0x00000000, 0x00000000, TRUE
),
303 HOWTO (R_XTENSA_SLOT6_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
304 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_ALT",
305 FALSE
, 0x00000000, 0x00000000, TRUE
),
306 HOWTO (R_XTENSA_SLOT7_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
307 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_ALT",
308 FALSE
, 0x00000000, 0x00000000, TRUE
),
309 HOWTO (R_XTENSA_SLOT8_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
310 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_ALT",
311 FALSE
, 0x00000000, 0x00000000, TRUE
),
312 HOWTO (R_XTENSA_SLOT9_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
313 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_ALT",
314 FALSE
, 0x00000000, 0x00000000, TRUE
),
315 HOWTO (R_XTENSA_SLOT10_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
316 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_ALT",
317 FALSE
, 0x00000000, 0x00000000, TRUE
),
318 HOWTO (R_XTENSA_SLOT11_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
319 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_ALT",
320 FALSE
, 0x00000000, 0x00000000, TRUE
),
321 HOWTO (R_XTENSA_SLOT12_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
322 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_ALT",
323 FALSE
, 0x00000000, 0x00000000, TRUE
),
324 HOWTO (R_XTENSA_SLOT13_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
325 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_ALT",
326 FALSE
, 0x00000000, 0x00000000, TRUE
),
327 HOWTO (R_XTENSA_SLOT14_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
328 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_ALT",
329 FALSE
, 0x00000000, 0x00000000, TRUE
)
334 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
339 static reloc_howto_type
*
340 elf_xtensa_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
341 bfd_reloc_code_real_type code
)
346 TRACE ("BFD_RELOC_NONE");
347 return &elf_howto_table
[(unsigned) R_XTENSA_NONE
];
350 TRACE ("BFD_RELOC_32");
351 return &elf_howto_table
[(unsigned) R_XTENSA_32
];
353 case BFD_RELOC_XTENSA_DIFF8
:
354 TRACE ("BFD_RELOC_XTENSA_DIFF8");
355 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF8
];
357 case BFD_RELOC_XTENSA_DIFF16
:
358 TRACE ("BFD_RELOC_XTENSA_DIFF16");
359 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF16
];
361 case BFD_RELOC_XTENSA_DIFF32
:
362 TRACE ("BFD_RELOC_XTENSA_DIFF32");
363 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF32
];
365 case BFD_RELOC_XTENSA_RTLD
:
366 TRACE ("BFD_RELOC_XTENSA_RTLD");
367 return &elf_howto_table
[(unsigned) R_XTENSA_RTLD
];
369 case BFD_RELOC_XTENSA_GLOB_DAT
:
370 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
371 return &elf_howto_table
[(unsigned) R_XTENSA_GLOB_DAT
];
373 case BFD_RELOC_XTENSA_JMP_SLOT
:
374 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
375 return &elf_howto_table
[(unsigned) R_XTENSA_JMP_SLOT
];
377 case BFD_RELOC_XTENSA_RELATIVE
:
378 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
379 return &elf_howto_table
[(unsigned) R_XTENSA_RELATIVE
];
381 case BFD_RELOC_XTENSA_PLT
:
382 TRACE ("BFD_RELOC_XTENSA_PLT");
383 return &elf_howto_table
[(unsigned) R_XTENSA_PLT
];
385 case BFD_RELOC_XTENSA_OP0
:
386 TRACE ("BFD_RELOC_XTENSA_OP0");
387 return &elf_howto_table
[(unsigned) R_XTENSA_OP0
];
389 case BFD_RELOC_XTENSA_OP1
:
390 TRACE ("BFD_RELOC_XTENSA_OP1");
391 return &elf_howto_table
[(unsigned) R_XTENSA_OP1
];
393 case BFD_RELOC_XTENSA_OP2
:
394 TRACE ("BFD_RELOC_XTENSA_OP2");
395 return &elf_howto_table
[(unsigned) R_XTENSA_OP2
];
397 case BFD_RELOC_XTENSA_ASM_EXPAND
:
398 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
399 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_EXPAND
];
401 case BFD_RELOC_XTENSA_ASM_SIMPLIFY
:
402 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
403 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_SIMPLIFY
];
405 case BFD_RELOC_VTABLE_INHERIT
:
406 TRACE ("BFD_RELOC_VTABLE_INHERIT");
407 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTINHERIT
];
409 case BFD_RELOC_VTABLE_ENTRY
:
410 TRACE ("BFD_RELOC_VTABLE_ENTRY");
411 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTENTRY
];
414 if (code
>= BFD_RELOC_XTENSA_SLOT0_OP
415 && code
<= BFD_RELOC_XTENSA_SLOT14_OP
)
417 unsigned n
= (R_XTENSA_SLOT0_OP
+
418 (code
- BFD_RELOC_XTENSA_SLOT0_OP
));
419 return &elf_howto_table
[n
];
422 if (code
>= BFD_RELOC_XTENSA_SLOT0_ALT
423 && code
<= BFD_RELOC_XTENSA_SLOT14_ALT
)
425 unsigned n
= (R_XTENSA_SLOT0_ALT
+
426 (code
- BFD_RELOC_XTENSA_SLOT0_ALT
));
427 return &elf_howto_table
[n
];
438 /* Given an ELF "rela" relocation, find the corresponding howto and record
439 it in the BFD internal arelent representation of the relocation. */
442 elf_xtensa_info_to_howto_rela (bfd
*abfd ATTRIBUTE_UNUSED
,
444 Elf_Internal_Rela
*dst
)
446 unsigned int r_type
= ELF32_R_TYPE (dst
->r_info
);
448 BFD_ASSERT (r_type
< (unsigned int) R_XTENSA_max
);
449 cache_ptr
->howto
= &elf_howto_table
[r_type
];
453 /* Functions for the Xtensa ELF linker. */
455 /* The name of the dynamic interpreter. This is put in the .interp
458 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
460 /* The size in bytes of an entry in the procedure linkage table.
461 (This does _not_ include the space for the literals associated with
464 #define PLT_ENTRY_SIZE 16
466 /* For _really_ large PLTs, we may need to alternate between literals
467 and code to keep the literals within the 256K range of the L32R
468 instructions in the code. It's unlikely that anyone would ever need
469 such a big PLT, but an arbitrary limit on the PLT size would be bad.
470 Thus, we split the PLT into chunks. Since there's very little
471 overhead (2 extra literals) for each chunk, the chunk size is kept
472 small so that the code for handling multiple chunks get used and
473 tested regularly. With 254 entries, there are 1K of literals for
474 each chunk, and that seems like a nice round number. */
476 #define PLT_ENTRIES_PER_CHUNK 254
478 /* PLT entries are actually used as stub functions for lazy symbol
479 resolution. Once the symbol is resolved, the stub function is never
480 invoked. Note: the 32-byte frame size used here cannot be changed
481 without a corresponding change in the runtime linker. */
483 static const bfd_byte elf_xtensa_be_plt_entry
[PLT_ENTRY_SIZE
] =
485 0x6c, 0x10, 0x04, /* entry sp, 32 */
486 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
487 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
488 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
489 0x0a, 0x80, 0x00, /* jx a8 */
493 static const bfd_byte elf_xtensa_le_plt_entry
[PLT_ENTRY_SIZE
] =
495 0x36, 0x41, 0x00, /* entry sp, 32 */
496 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
497 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
498 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
499 0xa0, 0x08, 0x00, /* jx a8 */
504 static inline bfd_boolean
505 xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
506 struct bfd_link_info
*info
)
508 /* Check if we should do dynamic things to this symbol. The
509 "ignore_protected" argument need not be set, because Xtensa code
510 does not require special handling of STV_PROTECTED to make function
511 pointer comparisons work properly. The PLT addresses are never
512 used for function pointers. */
514 return _bfd_elf_dynamic_symbol_p (h
, info
, 0);
519 property_table_compare (const void *ap
, const void *bp
)
521 const property_table_entry
*a
= (const property_table_entry
*) ap
;
522 const property_table_entry
*b
= (const property_table_entry
*) bp
;
524 if (a
->address
== b
->address
)
526 if (a
->size
!= b
->size
)
527 return (a
->size
- b
->size
);
529 if ((a
->flags
& XTENSA_PROP_ALIGN
) != (b
->flags
& XTENSA_PROP_ALIGN
))
530 return ((b
->flags
& XTENSA_PROP_ALIGN
)
531 - (a
->flags
& XTENSA_PROP_ALIGN
));
533 if ((a
->flags
& XTENSA_PROP_ALIGN
)
534 && (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
535 != GET_XTENSA_PROP_ALIGNMENT (b
->flags
)))
536 return (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
537 - GET_XTENSA_PROP_ALIGNMENT (b
->flags
));
539 if ((a
->flags
& XTENSA_PROP_UNREACHABLE
)
540 != (b
->flags
& XTENSA_PROP_UNREACHABLE
))
541 return ((b
->flags
& XTENSA_PROP_UNREACHABLE
)
542 - (a
->flags
& XTENSA_PROP_UNREACHABLE
));
544 return (a
->flags
- b
->flags
);
547 return (a
->address
- b
->address
);
552 property_table_matches (const void *ap
, const void *bp
)
554 const property_table_entry
*a
= (const property_table_entry
*) ap
;
555 const property_table_entry
*b
= (const property_table_entry
*) bp
;
557 /* Check if one entry overlaps with the other. */
558 if ((b
->address
>= a
->address
&& b
->address
< (a
->address
+ a
->size
))
559 || (a
->address
>= b
->address
&& a
->address
< (b
->address
+ b
->size
)))
562 return (a
->address
- b
->address
);
566 /* Get the literal table or property table entries for the given
567 section. Sets TABLE_P and returns the number of entries. On
568 error, returns a negative value. */
571 xtensa_read_table_entries (bfd
*abfd
,
573 property_table_entry
**table_p
,
574 const char *sec_name
,
575 bfd_boolean output_addr
)
577 asection
*table_section
;
578 char *table_section_name
;
579 bfd_size_type table_size
= 0;
580 bfd_byte
*table_data
;
581 property_table_entry
*blocks
;
582 int blk
, block_count
;
583 bfd_size_type num_records
;
584 Elf_Internal_Rela
*internal_relocs
;
585 bfd_vma section_addr
;
586 flagword predef_flags
;
587 bfd_size_type table_entry_size
;
590 || !(section
->flags
& SEC_ALLOC
)
591 || (section
->flags
& SEC_DEBUGGING
))
597 table_section_name
= xtensa_get_property_section_name (section
, sec_name
);
598 table_section
= bfd_get_section_by_name (abfd
, table_section_name
);
599 free (table_section_name
);
601 table_size
= table_section
->size
;
609 predef_flags
= xtensa_get_property_predef_flags (table_section
);
610 table_entry_size
= 12;
612 table_entry_size
-= 4;
614 num_records
= table_size
/ table_entry_size
;
615 table_data
= retrieve_contents (abfd
, table_section
, TRUE
);
616 blocks
= (property_table_entry
*)
617 bfd_malloc (num_records
* sizeof (property_table_entry
));
621 section_addr
= section
->output_section
->vma
+ section
->output_offset
;
623 section_addr
= section
->vma
;
625 /* If the file has not yet been relocated, process the relocations
626 and sort out the table entries that apply to the specified section. */
627 internal_relocs
= retrieve_internal_relocs (abfd
, table_section
, TRUE
);
628 if (internal_relocs
&& !table_section
->reloc_done
)
632 for (i
= 0; i
< table_section
->reloc_count
; i
++)
634 Elf_Internal_Rela
*rel
= &internal_relocs
[i
];
635 unsigned long r_symndx
;
637 if (ELF32_R_TYPE (rel
->r_info
) == R_XTENSA_NONE
)
640 BFD_ASSERT (ELF32_R_TYPE (rel
->r_info
) == R_XTENSA_32
);
641 r_symndx
= ELF32_R_SYM (rel
->r_info
);
643 if (get_elf_r_symndx_section (abfd
, r_symndx
) == section
)
645 bfd_vma sym_off
= get_elf_r_symndx_offset (abfd
, r_symndx
);
646 BFD_ASSERT (sym_off
== 0);
647 BFD_ASSERT (rel
->r_addend
== 0);
648 blocks
[block_count
].address
=
649 (section_addr
+ sym_off
+ rel
->r_addend
650 + bfd_get_32 (abfd
, table_data
+ rel
->r_offset
));
651 blocks
[block_count
].size
=
652 bfd_get_32 (abfd
, table_data
+ rel
->r_offset
+ 4);
654 blocks
[block_count
].flags
= predef_flags
;
656 blocks
[block_count
].flags
=
657 bfd_get_32 (abfd
, table_data
+ rel
->r_offset
+ 8);
664 /* The file has already been relocated and the addresses are
665 already in the table. */
667 bfd_size_type section_limit
= bfd_get_section_limit (abfd
, section
);
669 for (off
= 0; off
< table_size
; off
+= table_entry_size
)
671 bfd_vma address
= bfd_get_32 (abfd
, table_data
+ off
);
673 if (address
>= section_addr
674 && address
< section_addr
+ section_limit
)
676 blocks
[block_count
].address
= address
;
677 blocks
[block_count
].size
=
678 bfd_get_32 (abfd
, table_data
+ off
+ 4);
680 blocks
[block_count
].flags
= predef_flags
;
682 blocks
[block_count
].flags
=
683 bfd_get_32 (abfd
, table_data
+ off
+ 8);
689 release_contents (table_section
, table_data
);
690 release_internal_relocs (table_section
, internal_relocs
);
694 /* Now sort them into address order for easy reference. */
695 qsort (blocks
, block_count
, sizeof (property_table_entry
),
696 property_table_compare
);
698 /* Check that the table contents are valid. Problems may occur,
699 for example, if an unrelocated object file is stripped. */
700 for (blk
= 1; blk
< block_count
; blk
++)
702 /* The only circumstance where two entries may legitimately
703 have the same address is when one of them is a zero-size
704 placeholder to mark a place where fill can be inserted.
705 The zero-size entry should come first. */
706 if (blocks
[blk
- 1].address
== blocks
[blk
].address
&&
707 blocks
[blk
- 1].size
!= 0)
709 (*_bfd_error_handler
) (_("%B(%A): invalid property table"),
711 bfd_set_error (bfd_error_bad_value
);
723 static property_table_entry
*
724 elf_xtensa_find_property_entry (property_table_entry
*property_table
,
725 int property_table_size
,
728 property_table_entry entry
;
729 property_table_entry
*rv
;
731 if (property_table_size
== 0)
734 entry
.address
= addr
;
738 rv
= bsearch (&entry
, property_table
, property_table_size
,
739 sizeof (property_table_entry
), property_table_matches
);
745 elf_xtensa_in_literal_pool (property_table_entry
*lit_table
,
749 if (elf_xtensa_find_property_entry (lit_table
, lit_table_size
, addr
))
756 /* Look through the relocs for a section during the first phase, and
757 calculate needed space in the dynamic reloc sections. */
760 elf_xtensa_check_relocs (bfd
*abfd
,
761 struct bfd_link_info
*info
,
763 const Elf_Internal_Rela
*relocs
)
765 Elf_Internal_Shdr
*symtab_hdr
;
766 struct elf_link_hash_entry
**sym_hashes
;
767 const Elf_Internal_Rela
*rel
;
768 const Elf_Internal_Rela
*rel_end
;
770 if (info
->relocatable
)
773 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
774 sym_hashes
= elf_sym_hashes (abfd
);
776 rel_end
= relocs
+ sec
->reloc_count
;
777 for (rel
= relocs
; rel
< rel_end
; rel
++)
780 unsigned long r_symndx
;
781 struct elf_link_hash_entry
*h
;
783 r_symndx
= ELF32_R_SYM (rel
->r_info
);
784 r_type
= ELF32_R_TYPE (rel
->r_info
);
786 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
788 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
793 if (r_symndx
< symtab_hdr
->sh_info
)
797 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
798 while (h
->root
.type
== bfd_link_hash_indirect
799 || h
->root
.type
== bfd_link_hash_warning
)
800 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
809 if ((sec
->flags
& SEC_ALLOC
) != 0)
811 if (h
->got
.refcount
<= 0)
814 h
->got
.refcount
+= 1;
819 /* If this relocation is against a local symbol, then it's
820 exactly the same as a normal local GOT entry. */
824 if ((sec
->flags
& SEC_ALLOC
) != 0)
826 if (h
->plt
.refcount
<= 0)
832 h
->plt
.refcount
+= 1;
834 /* Keep track of the total PLT relocation count even if we
835 don't yet know whether the dynamic sections will be
837 plt_reloc_count
+= 1;
839 if (elf_hash_table (info
)->dynamic_sections_created
)
841 if (!add_extra_plt_sections (elf_hash_table (info
)->dynobj
,
849 if ((sec
->flags
& SEC_ALLOC
) != 0)
851 bfd_signed_vma
*local_got_refcounts
;
853 /* This is a global offset table entry for a local symbol. */
854 local_got_refcounts
= elf_local_got_refcounts (abfd
);
855 if (local_got_refcounts
== NULL
)
859 size
= symtab_hdr
->sh_info
;
860 size
*= sizeof (bfd_signed_vma
);
861 local_got_refcounts
=
862 (bfd_signed_vma
*) bfd_zalloc (abfd
, size
);
863 if (local_got_refcounts
== NULL
)
865 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
867 local_got_refcounts
[r_symndx
] += 1;
874 case R_XTENSA_SLOT0_OP
:
875 case R_XTENSA_SLOT1_OP
:
876 case R_XTENSA_SLOT2_OP
:
877 case R_XTENSA_SLOT3_OP
:
878 case R_XTENSA_SLOT4_OP
:
879 case R_XTENSA_SLOT5_OP
:
880 case R_XTENSA_SLOT6_OP
:
881 case R_XTENSA_SLOT7_OP
:
882 case R_XTENSA_SLOT8_OP
:
883 case R_XTENSA_SLOT9_OP
:
884 case R_XTENSA_SLOT10_OP
:
885 case R_XTENSA_SLOT11_OP
:
886 case R_XTENSA_SLOT12_OP
:
887 case R_XTENSA_SLOT13_OP
:
888 case R_XTENSA_SLOT14_OP
:
889 case R_XTENSA_SLOT0_ALT
:
890 case R_XTENSA_SLOT1_ALT
:
891 case R_XTENSA_SLOT2_ALT
:
892 case R_XTENSA_SLOT3_ALT
:
893 case R_XTENSA_SLOT4_ALT
:
894 case R_XTENSA_SLOT5_ALT
:
895 case R_XTENSA_SLOT6_ALT
:
896 case R_XTENSA_SLOT7_ALT
:
897 case R_XTENSA_SLOT8_ALT
:
898 case R_XTENSA_SLOT9_ALT
:
899 case R_XTENSA_SLOT10_ALT
:
900 case R_XTENSA_SLOT11_ALT
:
901 case R_XTENSA_SLOT12_ALT
:
902 case R_XTENSA_SLOT13_ALT
:
903 case R_XTENSA_SLOT14_ALT
:
904 case R_XTENSA_ASM_EXPAND
:
905 case R_XTENSA_ASM_SIMPLIFY
:
907 case R_XTENSA_DIFF16
:
908 case R_XTENSA_DIFF32
:
909 /* Nothing to do for these. */
912 case R_XTENSA_GNU_VTINHERIT
:
913 /* This relocation describes the C++ object vtable hierarchy.
914 Reconstruct it for later use during GC. */
915 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
919 case R_XTENSA_GNU_VTENTRY
:
920 /* This relocation describes which C++ vtable entries are actually
921 used. Record for later use during GC. */
922 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
936 elf_xtensa_make_sym_local (struct bfd_link_info
*info
,
937 struct elf_link_hash_entry
*h
)
941 if (h
->plt
.refcount
> 0)
943 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
944 if (h
->got
.refcount
< 0)
946 h
->got
.refcount
+= h
->plt
.refcount
;
952 /* Don't need any dynamic relocations at all. */
960 elf_xtensa_hide_symbol (struct bfd_link_info
*info
,
961 struct elf_link_hash_entry
*h
,
962 bfd_boolean force_local
)
964 /* For a shared link, move the plt refcount to the got refcount to leave
965 space for RELATIVE relocs. */
966 elf_xtensa_make_sym_local (info
, h
);
968 _bfd_elf_link_hash_hide_symbol (info
, h
, force_local
);
972 /* Return the section that should be marked against GC for a given
976 elf_xtensa_gc_mark_hook (asection
*sec
,
977 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
978 Elf_Internal_Rela
*rel
,
979 struct elf_link_hash_entry
*h
,
980 Elf_Internal_Sym
*sym
)
984 switch (ELF32_R_TYPE (rel
->r_info
))
986 case R_XTENSA_GNU_VTINHERIT
:
987 case R_XTENSA_GNU_VTENTRY
:
991 switch (h
->root
.type
)
993 case bfd_link_hash_defined
:
994 case bfd_link_hash_defweak
:
995 return h
->root
.u
.def
.section
;
997 case bfd_link_hash_common
:
998 return h
->root
.u
.c
.p
->section
;
1006 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
1012 /* Update the GOT & PLT entry reference counts
1013 for the section being removed. */
1016 elf_xtensa_gc_sweep_hook (bfd
*abfd
,
1017 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1019 const Elf_Internal_Rela
*relocs
)
1021 Elf_Internal_Shdr
*symtab_hdr
;
1022 struct elf_link_hash_entry
**sym_hashes
;
1023 bfd_signed_vma
*local_got_refcounts
;
1024 const Elf_Internal_Rela
*rel
, *relend
;
1026 if ((sec
->flags
& SEC_ALLOC
) == 0)
1029 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1030 sym_hashes
= elf_sym_hashes (abfd
);
1031 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1033 relend
= relocs
+ sec
->reloc_count
;
1034 for (rel
= relocs
; rel
< relend
; rel
++)
1036 unsigned long r_symndx
;
1037 unsigned int r_type
;
1038 struct elf_link_hash_entry
*h
= NULL
;
1040 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1041 if (r_symndx
>= symtab_hdr
->sh_info
)
1043 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1044 while (h
->root
.type
== bfd_link_hash_indirect
1045 || h
->root
.type
== bfd_link_hash_warning
)
1046 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1049 r_type
= ELF32_R_TYPE (rel
->r_info
);
1055 if (h
->got
.refcount
> 0)
1062 if (h
->plt
.refcount
> 0)
1067 if (local_got_refcounts
[r_symndx
] > 0)
1068 local_got_refcounts
[r_symndx
] -= 1;
1080 /* Create all the dynamic sections. */
1083 elf_xtensa_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
1085 flagword flags
, noalloc_flags
;
1088 /* First do all the standard stuff. */
1089 if (! _bfd_elf_create_dynamic_sections (dynobj
, info
))
1092 /* Create any extra PLT sections in case check_relocs has already
1093 been called on all the non-dynamic input files. */
1094 if (!add_extra_plt_sections (dynobj
, plt_reloc_count
))
1097 noalloc_flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1098 | SEC_LINKER_CREATED
| SEC_READONLY
);
1099 flags
= noalloc_flags
| SEC_ALLOC
| SEC_LOAD
;
1101 /* Mark the ".got.plt" section READONLY. */
1102 s
= bfd_get_section_by_name (dynobj
, ".got.plt");
1104 || ! bfd_set_section_flags (dynobj
, s
, flags
))
1107 /* Create ".rela.got". */
1108 s
= bfd_make_section (dynobj
, ".rela.got");
1110 || ! bfd_set_section_flags (dynobj
, s
, flags
)
1111 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1114 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1115 s
= bfd_make_section (dynobj
, ".got.loc");
1117 || ! bfd_set_section_flags (dynobj
, s
, flags
)
1118 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1121 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1122 s
= bfd_make_section (dynobj
, ".xt.lit.plt");
1124 || ! bfd_set_section_flags (dynobj
, s
, noalloc_flags
)
1125 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1133 add_extra_plt_sections (bfd
*dynobj
, int count
)
1137 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1138 ".got.plt" sections. */
1139 for (chunk
= count
/ PLT_ENTRIES_PER_CHUNK
; chunk
> 0; chunk
--)
1145 /* Stop when we find a section has already been created. */
1146 if (elf_xtensa_get_plt_section (dynobj
, chunk
))
1149 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1150 | SEC_LINKER_CREATED
| SEC_READONLY
);
1152 sname
= (char *) bfd_malloc (10);
1153 sprintf (sname
, ".plt.%u", chunk
);
1154 s
= bfd_make_section (dynobj
, sname
);
1156 || ! bfd_set_section_flags (dynobj
, s
, flags
| SEC_CODE
)
1157 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1160 sname
= (char *) bfd_malloc (14);
1161 sprintf (sname
, ".got.plt.%u", chunk
);
1162 s
= bfd_make_section (dynobj
, sname
);
1164 || ! bfd_set_section_flags (dynobj
, s
, flags
)
1165 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1173 /* Adjust a symbol defined by a dynamic object and referenced by a
1174 regular object. The current definition is in some section of the
1175 dynamic object, but we're not including those sections. We have to
1176 change the definition to something the rest of the link can
1180 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1181 struct elf_link_hash_entry
*h
)
1183 /* If this is a weak symbol, and there is a real definition, the
1184 processor independent code will have arranged for us to see the
1185 real definition first, and we can just use the same value. */
1188 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1189 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1190 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1191 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1195 /* This is a reference to a symbol defined by a dynamic object. The
1196 reference must go through the GOT, so there's no need for COPY relocs,
1204 elf_xtensa_fix_refcounts (struct elf_link_hash_entry
*h
, void *arg
)
1206 struct bfd_link_info
*info
= (struct bfd_link_info
*) arg
;
1208 if (h
->root
.type
== bfd_link_hash_warning
)
1209 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1211 if (! xtensa_elf_dynamic_symbol_p (h
, info
))
1212 elf_xtensa_make_sym_local (info
, h
);
1219 elf_xtensa_allocate_plt_size (struct elf_link_hash_entry
*h
, void *arg
)
1221 asection
*srelplt
= (asection
*) arg
;
1223 if (h
->root
.type
== bfd_link_hash_warning
)
1224 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1226 if (h
->plt
.refcount
> 0)
1227 srelplt
->size
+= (h
->plt
.refcount
* sizeof (Elf32_External_Rela
));
1234 elf_xtensa_allocate_got_size (struct elf_link_hash_entry
*h
, void *arg
)
1236 asection
*srelgot
= (asection
*) arg
;
1238 if (h
->root
.type
== bfd_link_hash_warning
)
1239 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1241 if (h
->got
.refcount
> 0)
1242 srelgot
->size
+= (h
->got
.refcount
* sizeof (Elf32_External_Rela
));
1249 elf_xtensa_allocate_local_got_size (struct bfd_link_info
*info
,
1254 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
1256 bfd_signed_vma
*local_got_refcounts
;
1257 bfd_size_type j
, cnt
;
1258 Elf_Internal_Shdr
*symtab_hdr
;
1260 local_got_refcounts
= elf_local_got_refcounts (i
);
1261 if (!local_got_refcounts
)
1264 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
1265 cnt
= symtab_hdr
->sh_info
;
1267 for (j
= 0; j
< cnt
; ++j
)
1269 if (local_got_refcounts
[j
] > 0)
1270 srelgot
->size
+= (local_got_refcounts
[j
]
1271 * sizeof (Elf32_External_Rela
));
1277 /* Set the sizes of the dynamic sections. */
1280 elf_xtensa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
1281 struct bfd_link_info
*info
)
1284 asection
*s
, *srelplt
, *splt
, *sgotplt
, *srelgot
, *spltlittbl
, *sgotloc
;
1285 bfd_boolean relplt
, relgot
;
1286 int plt_entries
, plt_chunks
, chunk
;
1292 dynobj
= elf_hash_table (info
)->dynobj
;
1296 if (elf_hash_table (info
)->dynamic_sections_created
)
1298 /* Set the contents of the .interp section to the interpreter. */
1299 if (info
->executable
)
1301 s
= bfd_get_section_by_name (dynobj
, ".interp");
1304 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1305 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1308 /* Allocate room for one word in ".got". */
1309 s
= bfd_get_section_by_name (dynobj
, ".got");
1314 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1315 elf_link_hash_traverse (elf_hash_table (info
),
1316 elf_xtensa_fix_refcounts
,
1319 /* Allocate space in ".rela.got" for literals that reference
1321 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1322 if (srelgot
== NULL
)
1324 elf_link_hash_traverse (elf_hash_table (info
),
1325 elf_xtensa_allocate_got_size
,
1328 /* If we are generating a shared object, we also need space in
1329 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1330 reference local symbols. */
1332 elf_xtensa_allocate_local_got_size (info
, srelgot
);
1334 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1335 srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1336 if (srelplt
== NULL
)
1338 elf_link_hash_traverse (elf_hash_table (info
),
1339 elf_xtensa_allocate_plt_size
,
1342 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1343 each PLT entry, we need the PLT code plus a 4-byte literal.
1344 For each chunk of ".plt", we also need two more 4-byte
1345 literals, two corresponding entries in ".rela.got", and an
1346 8-byte entry in ".xt.lit.plt". */
1347 spltlittbl
= bfd_get_section_by_name (dynobj
, ".xt.lit.plt");
1348 if (spltlittbl
== NULL
)
1351 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
1353 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
1355 /* Iterate over all the PLT chunks, including any extra sections
1356 created earlier because the initial count of PLT relocations
1357 was an overestimate. */
1359 (splt
= elf_xtensa_get_plt_section (dynobj
, chunk
)) != NULL
;
1364 sgotplt
= elf_xtensa_get_gotplt_section (dynobj
, chunk
);
1365 if (sgotplt
== NULL
)
1368 if (chunk
< plt_chunks
- 1)
1369 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
1370 else if (chunk
== plt_chunks
- 1)
1371 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
1375 if (chunk_entries
!= 0)
1377 sgotplt
->size
= 4 * (chunk_entries
+ 2);
1378 splt
->size
= PLT_ENTRY_SIZE
* chunk_entries
;
1379 srelgot
->size
+= 2 * sizeof (Elf32_External_Rela
);
1380 spltlittbl
->size
+= 8;
1389 /* Allocate space in ".got.loc" to match the total size of all the
1391 sgotloc
= bfd_get_section_by_name (dynobj
, ".got.loc");
1392 if (sgotloc
== NULL
)
1394 sgotloc
->size
= spltlittbl
->size
;
1395 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
1397 if (abfd
->flags
& DYNAMIC
)
1399 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1401 if (! elf_discarded_section (s
)
1402 && xtensa_is_littable_section (s
)
1404 sgotloc
->size
+= s
->size
;
1409 /* Allocate memory for dynamic sections. */
1412 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1417 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1420 /* It's OK to base decisions on the section name, because none
1421 of the dynobj section names depend upon the input files. */
1422 name
= bfd_get_section_name (dynobj
, s
);
1426 if (strncmp (name
, ".rela", 5) == 0)
1428 if (strcmp (name
, ".rela.plt") == 0)
1430 else if (strcmp (name
, ".rela.got") == 0)
1433 /* We use the reloc_count field as a counter if we need
1434 to copy relocs into the output file. */
1437 else if (strncmp (name
, ".plt.", 5) == 0
1438 || strncmp (name
, ".got.plt.", 9) == 0)
1442 /* If we don't need this section, strip it from the output
1443 file. We must create the ".plt*" and ".got.plt*"
1444 sections in create_dynamic_sections and/or check_relocs
1445 based on a conservative estimate of the PLT relocation
1446 count, because the sections must be created before the
1447 linker maps input sections to output sections. The
1448 linker does that before size_dynamic_sections, where we
1449 compute the exact size of the PLT, so there may be more
1450 of these sections than are actually needed. */
1454 else if (strcmp (name
, ".got") != 0
1455 && strcmp (name
, ".plt") != 0
1456 && strcmp (name
, ".got.plt") != 0
1457 && strcmp (name
, ".xt.lit.plt") != 0
1458 && strcmp (name
, ".got.loc") != 0)
1460 /* It's not one of our sections, so don't allocate space. */
1465 _bfd_strip_section_from_output (info
, s
);
1468 /* Allocate memory for the section contents. */
1469 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1470 if (s
->contents
== NULL
&& s
->size
!= 0)
1475 if (elf_hash_table (info
)->dynamic_sections_created
)
1477 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1478 known until finish_dynamic_sections, but we need to get the relocs
1479 in place before they are sorted. */
1480 if (srelgot
== NULL
)
1482 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
1484 Elf_Internal_Rela irela
;
1488 irela
.r_info
= ELF32_R_INFO (0, R_XTENSA_RTLD
);
1491 loc
= (srelgot
->contents
1492 + srelgot
->reloc_count
* sizeof (Elf32_External_Rela
));
1493 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
1494 bfd_elf32_swap_reloca_out (output_bfd
, &irela
,
1495 loc
+ sizeof (Elf32_External_Rela
));
1496 srelgot
->reloc_count
+= 2;
1499 /* Add some entries to the .dynamic section. We fill in the
1500 values later, in elf_xtensa_finish_dynamic_sections, but we
1501 must add the entries now so that we get the correct size for
1502 the .dynamic section. The DT_DEBUG entry is filled in by the
1503 dynamic linker and used by the debugger. */
1504 #define add_dynamic_entry(TAG, VAL) \
1505 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1509 if (!add_dynamic_entry (DT_DEBUG
, 0))
1515 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1516 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
1517 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1518 || !add_dynamic_entry (DT_JMPREL
, 0))
1524 if (!add_dynamic_entry (DT_RELA
, 0)
1525 || !add_dynamic_entry (DT_RELASZ
, 0)
1526 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
1530 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF
, 0)
1531 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ
, 0))
1534 #undef add_dynamic_entry
1540 /* Remove any PT_LOAD segments with no allocated sections. Prior to
1541 binutils 2.13, this function used to remove the non-SEC_ALLOC
1542 sections from PT_LOAD segments, but that task has now been moved
1543 into elf.c. We still need this function to remove any empty
1544 segments that result, but there's nothing Xtensa-specific about
1545 this and it probably ought to be moved into elf.c as well. */
1548 elf_xtensa_modify_segment_map (bfd
*abfd
,
1549 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
1551 struct elf_segment_map
**m_p
;
1553 m_p
= &elf_tdata (abfd
)->segment_map
;
1556 if ((*m_p
)->p_type
== PT_LOAD
&& (*m_p
)->count
== 0)
1557 *m_p
= (*m_p
)->next
;
1559 m_p
= &(*m_p
)->next
;
1565 /* Perform the specified relocation. The instruction at (contents + address)
1566 is modified to set one operand to represent the value in "relocation". The
1567 operand position is determined by the relocation type recorded in the
1570 #define CALL_SEGMENT_BITS (30)
1571 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1573 static bfd_reloc_status_type
1574 elf_xtensa_do_reloc (reloc_howto_type
*howto
,
1576 asection
*input_section
,
1580 bfd_boolean is_weak_undef
,
1581 char **error_message
)
1584 xtensa_opcode opcode
;
1585 xtensa_isa isa
= xtensa_default_isa
;
1586 static xtensa_insnbuf ibuff
= NULL
;
1587 static xtensa_insnbuf sbuff
= NULL
;
1588 bfd_vma self_address
= 0;
1589 bfd_size_type input_size
;
1595 ibuff
= xtensa_insnbuf_alloc (isa
);
1596 sbuff
= xtensa_insnbuf_alloc (isa
);
1599 input_size
= bfd_get_section_limit (abfd
, input_section
);
1601 switch (howto
->type
)
1604 case R_XTENSA_DIFF8
:
1605 case R_XTENSA_DIFF16
:
1606 case R_XTENSA_DIFF32
:
1607 return bfd_reloc_ok
;
1609 case R_XTENSA_ASM_EXPAND
:
1612 /* Check for windowed CALL across a 1GB boundary. */
1613 xtensa_opcode opcode
=
1614 get_expanded_call_opcode (contents
+ address
,
1615 input_size
- address
, 0);
1616 if (is_windowed_call_opcode (opcode
))
1618 self_address
= (input_section
->output_section
->vma
1619 + input_section
->output_offset
1621 if ((self_address
>> CALL_SEGMENT_BITS
)
1622 != (relocation
>> CALL_SEGMENT_BITS
))
1624 *error_message
= "windowed longcall crosses 1GB boundary; "
1626 return bfd_reloc_dangerous
;
1630 return bfd_reloc_ok
;
1632 case R_XTENSA_ASM_SIMPLIFY
:
1634 /* Convert the L32R/CALLX to CALL. */
1635 bfd_reloc_status_type retval
=
1636 elf_xtensa_do_asm_simplify (contents
, address
, input_size
,
1638 if (retval
!= bfd_reloc_ok
)
1639 return bfd_reloc_dangerous
;
1641 /* The CALL needs to be relocated. Continue below for that part. */
1643 howto
= &elf_howto_table
[(unsigned) R_XTENSA_SLOT0_OP
];
1651 x
= bfd_get_32 (abfd
, contents
+ address
);
1653 bfd_put_32 (abfd
, x
, contents
+ address
);
1655 return bfd_reloc_ok
;
1658 /* Only instruction slot-specific relocations handled below.... */
1659 slot
= get_relocation_slot (howto
->type
);
1660 if (slot
== XTENSA_UNDEFINED
)
1662 *error_message
= "unexpected relocation";
1663 return bfd_reloc_dangerous
;
1666 /* Read the instruction into a buffer and decode the opcode. */
1667 xtensa_insnbuf_from_chars (isa
, ibuff
, contents
+ address
,
1668 input_size
- address
);
1669 fmt
= xtensa_format_decode (isa
, ibuff
);
1670 if (fmt
== XTENSA_UNDEFINED
)
1672 *error_message
= "cannot decode instruction format";
1673 return bfd_reloc_dangerous
;
1676 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
1678 opcode
= xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
1679 if (opcode
== XTENSA_UNDEFINED
)
1681 *error_message
= "cannot decode instruction opcode";
1682 return bfd_reloc_dangerous
;
1685 /* Check for opcode-specific "alternate" relocations. */
1686 if (is_alt_relocation (howto
->type
))
1688 if (opcode
== get_l32r_opcode ())
1690 /* Handle the special-case of non-PC-relative L32R instructions. */
1691 bfd
*output_bfd
= input_section
->output_section
->owner
;
1692 asection
*lit4_sec
= bfd_get_section_by_name (output_bfd
, ".lit4");
1695 *error_message
= "relocation references missing .lit4 section";
1696 return bfd_reloc_dangerous
;
1698 self_address
= ((lit4_sec
->vma
& ~0xfff)
1699 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1700 newval
= relocation
;
1703 else if (opcode
== get_const16_opcode ())
1705 /* ALT used for high 16 bits. */
1706 newval
= relocation
>> 16;
1711 /* No other "alternate" relocations currently defined. */
1712 *error_message
= "unexpected relocation";
1713 return bfd_reloc_dangerous
;
1716 else /* Not an "alternate" relocation.... */
1718 if (opcode
== get_const16_opcode ())
1720 newval
= relocation
& 0xffff;
1725 /* ...normal PC-relative relocation.... */
1727 /* Determine which operand is being relocated. */
1728 opnd
= get_relocation_opnd (opcode
, howto
->type
);
1729 if (opnd
== XTENSA_UNDEFINED
)
1731 *error_message
= "unexpected relocation";
1732 return bfd_reloc_dangerous
;
1735 if (!howto
->pc_relative
)
1737 *error_message
= "expected PC-relative relocation";
1738 return bfd_reloc_dangerous
;
1741 /* Calculate the PC address for this instruction. */
1742 self_address
= (input_section
->output_section
->vma
1743 + input_section
->output_offset
1746 newval
= relocation
;
1750 /* Apply the relocation. */
1751 if (xtensa_operand_do_reloc (isa
, opcode
, opnd
, &newval
, self_address
)
1752 || xtensa_operand_encode (isa
, opcode
, opnd
, &newval
)
1753 || xtensa_operand_set_field (isa
, opcode
, opnd
, fmt
, slot
,
1756 *error_message
= build_encoding_error_message (opcode
, relocation
);
1757 return bfd_reloc_dangerous
;
1760 /* Check for calls across 1GB boundaries. */
1761 if (is_direct_call_opcode (opcode
)
1762 && is_windowed_call_opcode (opcode
))
1764 if ((self_address
>> CALL_SEGMENT_BITS
)
1765 != (relocation
>> CALL_SEGMENT_BITS
))
1768 "windowed call crosses 1GB boundary; return may fail";
1769 return bfd_reloc_dangerous
;
1773 /* Write the modified instruction back out of the buffer. */
1774 xtensa_format_set_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
1775 xtensa_insnbuf_to_chars (isa
, ibuff
, contents
+ address
,
1776 input_size
- address
);
1777 return bfd_reloc_ok
;
1782 vsprint_msg (const char *origmsg
, const char *fmt
, int arglen
, ...)
1784 /* To reduce the size of the memory leak,
1785 we only use a single message buffer. */
1786 static bfd_size_type alloc_size
= 0;
1787 static char *message
= NULL
;
1788 bfd_size_type orig_len
, len
= 0;
1789 bfd_boolean is_append
;
1791 VA_OPEN (ap
, arglen
);
1792 VA_FIXEDARG (ap
, const char *, origmsg
);
1794 is_append
= (origmsg
== message
);
1796 orig_len
= strlen (origmsg
);
1797 len
= orig_len
+ strlen (fmt
) + arglen
+ 20;
1798 if (len
> alloc_size
)
1800 message
= (char *) bfd_realloc (message
, len
);
1804 memcpy (message
, origmsg
, orig_len
);
1805 vsprintf (message
+ orig_len
, fmt
, ap
);
1812 build_encoding_error_message (xtensa_opcode opcode
, bfd_vma target_address
)
1814 const char *opname
= xtensa_opcode_name (xtensa_default_isa
, opcode
);
1817 msg
= "cannot encode";
1818 if (is_direct_call_opcode (opcode
))
1820 if ((target_address
& 0x3) != 0)
1821 msg
= "misaligned call target";
1823 msg
= "call target out of range";
1825 else if (opcode
== get_l32r_opcode ())
1827 if ((target_address
& 0x3) != 0)
1828 msg
= "misaligned literal target";
1830 msg
= "literal target out of range";
1833 return vsprint_msg (opname
, ": %s", strlen (msg
) + 2, msg
);
1837 /* This function is registered as the "special_function" in the
1838 Xtensa howto for handling simplify operations.
1839 bfd_perform_relocation / bfd_install_relocation use it to
1840 perform (install) the specified relocation. Since this replaces the code
1841 in bfd_perform_relocation, it is basically an Xtensa-specific,
1842 stripped-down version of bfd_perform_relocation. */
1844 static bfd_reloc_status_type
1845 bfd_elf_xtensa_reloc (bfd
*abfd
,
1846 arelent
*reloc_entry
,
1849 asection
*input_section
,
1851 char **error_message
)
1854 bfd_reloc_status_type flag
;
1855 bfd_size_type octets
= reloc_entry
->address
* bfd_octets_per_byte (abfd
);
1856 bfd_vma output_base
= 0;
1857 reloc_howto_type
*howto
= reloc_entry
->howto
;
1858 asection
*reloc_target_output_section
;
1859 bfd_boolean is_weak_undef
;
1861 /* ELF relocs are against symbols. If we are producing relocatable
1862 output, and the reloc is against an external symbol, the resulting
1863 reloc will also be against the same symbol. In such a case, we
1864 don't want to change anything about the way the reloc is handled,
1865 since it will all be done at final link time. This test is similar
1866 to what bfd_elf_generic_reloc does except that it lets relocs with
1867 howto->partial_inplace go through even if the addend is non-zero.
1868 (The real problem is that partial_inplace is set for XTENSA_32
1869 relocs to begin with, but that's a long story and there's little we
1870 can do about it now....) */
1872 if (output_bfd
&& (symbol
->flags
& BSF_SECTION_SYM
) == 0)
1874 reloc_entry
->address
+= input_section
->output_offset
;
1875 return bfd_reloc_ok
;
1878 /* Is the address of the relocation really within the section? */
1879 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1880 return bfd_reloc_outofrange
;
1882 /* Work out which section the relocation is targeted at and the
1883 initial relocation command value. */
1885 /* Get symbol value. (Common symbols are special.) */
1886 if (bfd_is_com_section (symbol
->section
))
1889 relocation
= symbol
->value
;
1891 reloc_target_output_section
= symbol
->section
->output_section
;
1893 /* Convert input-section-relative symbol value to absolute. */
1894 if ((output_bfd
&& !howto
->partial_inplace
)
1895 || reloc_target_output_section
== NULL
)
1898 output_base
= reloc_target_output_section
->vma
;
1900 relocation
+= output_base
+ symbol
->section
->output_offset
;
1902 /* Add in supplied addend. */
1903 relocation
+= reloc_entry
->addend
;
1905 /* Here the variable relocation holds the final address of the
1906 symbol we are relocating against, plus any addend. */
1909 if (!howto
->partial_inplace
)
1911 /* This is a partial relocation, and we want to apply the relocation
1912 to the reloc entry rather than the raw data. Everything except
1913 relocations against section symbols has already been handled
1916 BFD_ASSERT (symbol
->flags
& BSF_SECTION_SYM
);
1917 reloc_entry
->addend
= relocation
;
1918 reloc_entry
->address
+= input_section
->output_offset
;
1919 return bfd_reloc_ok
;
1923 reloc_entry
->address
+= input_section
->output_offset
;
1924 reloc_entry
->addend
= 0;
1928 is_weak_undef
= (bfd_is_und_section (symbol
->section
)
1929 && (symbol
->flags
& BSF_WEAK
) != 0);
1930 flag
= elf_xtensa_do_reloc (howto
, abfd
, input_section
, relocation
,
1931 (bfd_byte
*) data
, (bfd_vma
) octets
,
1932 is_weak_undef
, error_message
);
1934 if (flag
== bfd_reloc_dangerous
)
1936 /* Add the symbol name to the error message. */
1937 if (! *error_message
)
1938 *error_message
= "";
1939 *error_message
= vsprint_msg (*error_message
, ": (%s + 0x%lx)",
1940 strlen (symbol
->name
) + 17,
1941 symbol
->name
, reloc_entry
->addend
);
1948 /* Set up an entry in the procedure linkage table. */
1951 elf_xtensa_create_plt_entry (bfd
*dynobj
,
1953 unsigned reloc_index
)
1955 asection
*splt
, *sgotplt
;
1956 bfd_vma plt_base
, got_base
;
1957 bfd_vma code_offset
, lit_offset
;
1960 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
1961 splt
= elf_xtensa_get_plt_section (dynobj
, chunk
);
1962 sgotplt
= elf_xtensa_get_gotplt_section (dynobj
, chunk
);
1963 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
1965 plt_base
= splt
->output_section
->vma
+ splt
->output_offset
;
1966 got_base
= sgotplt
->output_section
->vma
+ sgotplt
->output_offset
;
1968 lit_offset
= 8 + (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * 4;
1969 code_offset
= (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * PLT_ENTRY_SIZE
;
1971 /* Fill in the literal entry. This is the offset of the dynamic
1972 relocation entry. */
1973 bfd_put_32 (output_bfd
, reloc_index
* sizeof (Elf32_External_Rela
),
1974 sgotplt
->contents
+ lit_offset
);
1976 /* Fill in the entry in the procedure linkage table. */
1977 memcpy (splt
->contents
+ code_offset
,
1978 (bfd_big_endian (output_bfd
)
1979 ? elf_xtensa_be_plt_entry
1980 : elf_xtensa_le_plt_entry
),
1982 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 0,
1983 plt_base
+ code_offset
+ 3),
1984 splt
->contents
+ code_offset
+ 4);
1985 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 4,
1986 plt_base
+ code_offset
+ 6),
1987 splt
->contents
+ code_offset
+ 7);
1988 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ lit_offset
,
1989 plt_base
+ code_offset
+ 9),
1990 splt
->contents
+ code_offset
+ 10);
1992 return plt_base
+ code_offset
;
1996 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1997 both relocatable and final links. */
2000 elf_xtensa_relocate_section (bfd
*output_bfd
,
2001 struct bfd_link_info
*info
,
2003 asection
*input_section
,
2005 Elf_Internal_Rela
*relocs
,
2006 Elf_Internal_Sym
*local_syms
,
2007 asection
**local_sections
)
2009 Elf_Internal_Shdr
*symtab_hdr
;
2010 Elf_Internal_Rela
*rel
;
2011 Elf_Internal_Rela
*relend
;
2012 struct elf_link_hash_entry
**sym_hashes
;
2013 asection
*srelgot
, *srelplt
;
2015 property_table_entry
*lit_table
= 0;
2017 char *error_message
= NULL
;
2018 bfd_size_type input_size
;
2020 if (!xtensa_default_isa
)
2021 xtensa_default_isa
= xtensa_isa_init (0, 0);
2023 dynobj
= elf_hash_table (info
)->dynobj
;
2024 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2025 sym_hashes
= elf_sym_hashes (input_bfd
);
2031 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");;
2032 srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2035 if (elf_hash_table (info
)->dynamic_sections_created
)
2037 ltblsize
= xtensa_read_table_entries (input_bfd
, input_section
,
2038 &lit_table
, XTENSA_LIT_SEC_NAME
,
2044 input_size
= bfd_get_section_limit (input_bfd
, input_section
);
2047 relend
= relocs
+ input_section
->reloc_count
;
2048 for (; rel
< relend
; rel
++)
2051 reloc_howto_type
*howto
;
2052 unsigned long r_symndx
;
2053 struct elf_link_hash_entry
*h
;
2054 Elf_Internal_Sym
*sym
;
2057 bfd_reloc_status_type r
;
2058 bfd_boolean is_weak_undef
;
2059 bfd_boolean unresolved_reloc
;
2062 r_type
= ELF32_R_TYPE (rel
->r_info
);
2063 if (r_type
== (int) R_XTENSA_GNU_VTINHERIT
2064 || r_type
== (int) R_XTENSA_GNU_VTENTRY
)
2067 if (r_type
< 0 || r_type
>= (int) R_XTENSA_max
)
2069 bfd_set_error (bfd_error_bad_value
);
2072 howto
= &elf_howto_table
[r_type
];
2074 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2076 if (info
->relocatable
)
2078 /* This is a relocatable link.
2079 1) If the reloc is against a section symbol, adjust
2080 according to the output section.
2081 2) If there is a new target for this relocation,
2082 the new target will be in the same output section.
2083 We adjust the relocation by the output section
2086 if (relaxing_section
)
2088 /* Check if this references a section in another input file. */
2089 if (!do_fix_for_relocatable_link (rel
, input_bfd
, input_section
,
2092 r_type
= ELF32_R_TYPE (rel
->r_info
);
2095 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
2097 char *error_message
= NULL
;
2098 /* Convert ASM_SIMPLIFY into the simpler relocation
2099 so that they never escape a relaxing link. */
2100 r
= contract_asm_expansion (contents
, input_size
, rel
,
2102 if (r
!= bfd_reloc_ok
)
2104 if (!((*info
->callbacks
->reloc_dangerous
)
2105 (info
, error_message
, input_bfd
, input_section
,
2109 r_type
= ELF32_R_TYPE (rel
->r_info
);
2112 /* This is a relocatable link, so we don't have to change
2113 anything unless the reloc is against a section symbol,
2114 in which case we have to adjust according to where the
2115 section symbol winds up in the output section. */
2116 if (r_symndx
< symtab_hdr
->sh_info
)
2118 sym
= local_syms
+ r_symndx
;
2119 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
2121 sec
= local_sections
[r_symndx
];
2122 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
2126 /* If there is an addend with a partial_inplace howto,
2127 then move the addend to the contents. This is a hack
2128 to work around problems with DWARF in relocatable links
2129 with some previous version of BFD. Now we can't easily get
2130 rid of the hack without breaking backward compatibility.... */
2133 howto
= &elf_howto_table
[r_type
];
2134 if (howto
->partial_inplace
)
2136 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2137 rel
->r_addend
, contents
,
2138 rel
->r_offset
, FALSE
,
2140 if (r
!= bfd_reloc_ok
)
2142 if (!((*info
->callbacks
->reloc_dangerous
)
2143 (info
, error_message
, input_bfd
, input_section
,
2151 /* Done with work for relocatable link; continue with next reloc. */
2155 /* This is a final link. */
2160 is_weak_undef
= FALSE
;
2161 unresolved_reloc
= FALSE
;
2164 if (howto
->partial_inplace
)
2166 /* Because R_XTENSA_32 was made partial_inplace to fix some
2167 problems with DWARF info in partial links, there may be
2168 an addend stored in the contents. Take it out of there
2169 and move it back into the addend field of the reloc. */
2170 rel
->r_addend
+= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2171 bfd_put_32 (input_bfd
, 0, contents
+ rel
->r_offset
);
2174 if (r_symndx
< symtab_hdr
->sh_info
)
2176 sym
= local_syms
+ r_symndx
;
2177 sec
= local_sections
[r_symndx
];
2178 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2182 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2183 r_symndx
, symtab_hdr
, sym_hashes
,
2185 unresolved_reloc
, warned
);
2188 && !unresolved_reloc
2189 && h
->root
.type
== bfd_link_hash_undefweak
)
2190 is_weak_undef
= TRUE
;
2193 if (relaxing_section
)
2195 /* Check if this references a section in another input file. */
2196 do_fix_for_final_link (rel
, input_bfd
, input_section
, contents
,
2199 /* Update some already cached values. */
2200 r_type
= ELF32_R_TYPE (rel
->r_info
);
2201 howto
= &elf_howto_table
[r_type
];
2204 /* Sanity check the address. */
2205 if (rel
->r_offset
>= input_size
2206 && ELF32_R_TYPE (rel
->r_info
) != R_XTENSA_NONE
)
2208 (*_bfd_error_handler
)
2209 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2210 input_bfd
, input_section
, rel
->r_offset
, input_size
);
2211 bfd_set_error (bfd_error_bad_value
);
2215 /* Generate dynamic relocations. */
2216 if (elf_hash_table (info
)->dynamic_sections_created
)
2218 bfd_boolean dynamic_symbol
= xtensa_elf_dynamic_symbol_p (h
, info
);
2220 if (dynamic_symbol
&& is_operand_relocation (r_type
))
2222 /* This is an error. The symbol's real value won't be known
2223 until runtime and it's likely to be out of range anyway. */
2224 const char *name
= h
->root
.root
.string
;
2225 error_message
= vsprint_msg ("invalid relocation for dynamic "
2227 strlen (name
) + 2, name
);
2228 if (!((*info
->callbacks
->reloc_dangerous
)
2229 (info
, error_message
, input_bfd
, input_section
,
2233 else if ((r_type
== R_XTENSA_32
|| r_type
== R_XTENSA_PLT
)
2234 && (input_section
->flags
& SEC_ALLOC
) != 0
2235 && (dynamic_symbol
|| info
->shared
))
2237 Elf_Internal_Rela outrel
;
2241 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
2246 BFD_ASSERT (srel
!= NULL
);
2249 _bfd_elf_section_offset (output_bfd
, info
,
2250 input_section
, rel
->r_offset
);
2252 if ((outrel
.r_offset
| 1) == (bfd_vma
) -1)
2253 memset (&outrel
, 0, sizeof outrel
);
2256 outrel
.r_offset
+= (input_section
->output_section
->vma
2257 + input_section
->output_offset
);
2259 /* Complain if the relocation is in a read-only section
2260 and not in a literal pool. */
2261 if ((input_section
->flags
& SEC_READONLY
) != 0
2262 && !elf_xtensa_in_literal_pool (lit_table
, ltblsize
,
2266 _("dynamic relocation in read-only section");
2267 if (!((*info
->callbacks
->reloc_dangerous
)
2268 (info
, error_message
, input_bfd
, input_section
,
2275 outrel
.r_addend
= rel
->r_addend
;
2278 if (r_type
== R_XTENSA_32
)
2281 ELF32_R_INFO (h
->dynindx
, R_XTENSA_GLOB_DAT
);
2284 else /* r_type == R_XTENSA_PLT */
2287 ELF32_R_INFO (h
->dynindx
, R_XTENSA_JMP_SLOT
);
2289 /* Create the PLT entry and set the initial
2290 contents of the literal entry to the address of
2293 elf_xtensa_create_plt_entry (dynobj
, output_bfd
,
2296 unresolved_reloc
= FALSE
;
2300 /* Generate a RELATIVE relocation. */
2301 outrel
.r_info
= ELF32_R_INFO (0, R_XTENSA_RELATIVE
);
2302 outrel
.r_addend
= 0;
2306 loc
= (srel
->contents
2307 + srel
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2308 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
2309 BFD_ASSERT (sizeof (Elf32_External_Rela
) * srel
->reloc_count
2314 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2315 because such sections are not SEC_ALLOC and thus ld.so will
2316 not process them. */
2317 if (unresolved_reloc
2318 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2320 (*_bfd_error_handler
)
2321 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2324 (long) rel
->r_offset
,
2325 h
->root
.root
.string
);
2327 /* There's no point in calling bfd_perform_relocation here.
2328 Just go directly to our "special function". */
2329 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2330 relocation
+ rel
->r_addend
,
2331 contents
, rel
->r_offset
, is_weak_undef
,
2334 if (r
!= bfd_reloc_ok
&& !warned
)
2338 BFD_ASSERT (r
== bfd_reloc_dangerous
|| r
== bfd_reloc_other
);
2339 BFD_ASSERT (error_message
!= NULL
);
2342 name
= h
->root
.root
.string
;
2345 name
= bfd_elf_string_from_elf_section
2346 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
);
2347 if (name
&& *name
== '\0')
2348 name
= bfd_section_name (input_bfd
, sec
);
2352 if (rel
->r_addend
== 0)
2353 error_message
= vsprint_msg (error_message
, ": %s",
2354 strlen (name
) + 2, name
);
2356 error_message
= vsprint_msg (error_message
, ": (%s+0x%x)",
2358 name
, rel
->r_addend
);
2361 if (!((*info
->callbacks
->reloc_dangerous
)
2362 (info
, error_message
, input_bfd
, input_section
,
2371 input_section
->reloc_done
= TRUE
;
2377 /* Finish up dynamic symbol handling. There's not much to do here since
2378 the PLT and GOT entries are all set up by relocate_section. */
2381 elf_xtensa_finish_dynamic_symbol (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2382 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2383 struct elf_link_hash_entry
*h
,
2384 Elf_Internal_Sym
*sym
)
2389 /* Mark the symbol as undefined, rather than as defined in
2390 the .plt section. Leave the value alone. */
2391 sym
->st_shndx
= SHN_UNDEF
;
2394 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2395 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2396 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
2397 sym
->st_shndx
= SHN_ABS
;
2403 /* Combine adjacent literal table entries in the output. Adjacent
2404 entries within each input section may have been removed during
2405 relaxation, but we repeat the process here, even though it's too late
2406 to shrink the output section, because it's important to minimize the
2407 number of literal table entries to reduce the start-up work for the
2408 runtime linker. Returns the number of remaining table entries or -1
2412 elf_xtensa_combine_prop_entries (bfd
*output_bfd
,
2417 property_table_entry
*table
;
2418 bfd_size_type section_size
, sgotloc_size
;
2422 section_size
= sxtlit
->size
;
2423 BFD_ASSERT (section_size
% 8 == 0);
2424 num
= section_size
/ 8;
2426 sgotloc_size
= sgotloc
->size
;
2427 if (sgotloc_size
!= section_size
)
2429 (*_bfd_error_handler
)
2430 (_("internal inconsistency in size of .got.loc section"));
2434 table
= bfd_malloc (num
* sizeof (property_table_entry
));
2438 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2439 propagates to the output section, where it doesn't really apply and
2440 where it breaks the following call to bfd_malloc_and_get_section. */
2441 sxtlit
->flags
&= ~SEC_IN_MEMORY
;
2443 if (!bfd_malloc_and_get_section (output_bfd
, sxtlit
, &contents
))
2451 /* There should never be any relocations left at this point, so this
2452 is quite a bit easier than what is done during relaxation. */
2454 /* Copy the raw contents into a property table array and sort it. */
2456 for (n
= 0; n
< num
; n
++)
2458 table
[n
].address
= bfd_get_32 (output_bfd
, &contents
[offset
]);
2459 table
[n
].size
= bfd_get_32 (output_bfd
, &contents
[offset
+ 4]);
2462 qsort (table
, num
, sizeof (property_table_entry
), property_table_compare
);
2464 for (n
= 0; n
< num
; n
++)
2466 bfd_boolean remove
= FALSE
;
2468 if (table
[n
].size
== 0)
2471 (table
[n
-1].address
+ table
[n
-1].size
== table
[n
].address
))
2473 table
[n
-1].size
+= table
[n
].size
;
2479 for (m
= n
; m
< num
- 1; m
++)
2481 table
[m
].address
= table
[m
+1].address
;
2482 table
[m
].size
= table
[m
+1].size
;
2490 /* Copy the data back to the raw contents. */
2492 for (n
= 0; n
< num
; n
++)
2494 bfd_put_32 (output_bfd
, table
[n
].address
, &contents
[offset
]);
2495 bfd_put_32 (output_bfd
, table
[n
].size
, &contents
[offset
+ 4]);
2499 /* Clear the removed bytes. */
2500 if ((bfd_size_type
) (num
* 8) < section_size
)
2501 memset (&contents
[num
* 8], 0, section_size
- num
* 8);
2503 if (! bfd_set_section_contents (output_bfd
, sxtlit
, contents
, 0,
2507 /* Copy the contents to ".got.loc". */
2508 memcpy (sgotloc
->contents
, contents
, section_size
);
2516 /* Finish up the dynamic sections. */
2519 elf_xtensa_finish_dynamic_sections (bfd
*output_bfd
,
2520 struct bfd_link_info
*info
)
2523 asection
*sdyn
, *srelplt
, *sgot
, *sxtlit
, *sgotloc
;
2524 Elf32_External_Dyn
*dyncon
, *dynconend
;
2525 int num_xtlit_entries
;
2527 if (! elf_hash_table (info
)->dynamic_sections_created
)
2530 dynobj
= elf_hash_table (info
)->dynobj
;
2531 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2532 BFD_ASSERT (sdyn
!= NULL
);
2534 /* Set the first entry in the global offset table to the address of
2535 the dynamic section. */
2536 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2539 BFD_ASSERT (sgot
->size
== 4);
2541 bfd_put_32 (output_bfd
, 0, sgot
->contents
);
2543 bfd_put_32 (output_bfd
,
2544 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2548 srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2549 if (srelplt
&& srelplt
->size
!= 0)
2551 asection
*sgotplt
, *srelgot
, *spltlittbl
;
2552 int chunk
, plt_chunks
, plt_entries
;
2553 Elf_Internal_Rela irela
;
2555 unsigned rtld_reloc
;
2557 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");;
2558 BFD_ASSERT (srelgot
!= NULL
);
2560 spltlittbl
= bfd_get_section_by_name (dynobj
, ".xt.lit.plt");
2561 BFD_ASSERT (spltlittbl
!= NULL
);
2563 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2564 of them follow immediately after.... */
2565 for (rtld_reloc
= 0; rtld_reloc
< srelgot
->reloc_count
; rtld_reloc
++)
2567 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
2568 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
2569 if (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
)
2572 BFD_ASSERT (rtld_reloc
< srelgot
->reloc_count
);
2574 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
2576 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
2578 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
2580 int chunk_entries
= 0;
2582 sgotplt
= elf_xtensa_get_gotplt_section (dynobj
, chunk
);
2583 BFD_ASSERT (sgotplt
!= NULL
);
2585 /* Emit special RTLD relocations for the first two entries in
2586 each chunk of the .got.plt section. */
2588 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
2589 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
2590 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
2591 irela
.r_offset
= (sgotplt
->output_section
->vma
2592 + sgotplt
->output_offset
);
2593 irela
.r_addend
= 1; /* tell rtld to set value to resolver function */
2594 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
2596 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
2598 /* Next literal immediately follows the first. */
2599 loc
+= sizeof (Elf32_External_Rela
);
2600 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
2601 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
2602 irela
.r_offset
= (sgotplt
->output_section
->vma
2603 + sgotplt
->output_offset
+ 4);
2604 /* Tell rtld to set value to object's link map. */
2606 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
2608 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
2610 /* Fill in the literal table. */
2611 if (chunk
< plt_chunks
- 1)
2612 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
2614 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
2616 BFD_ASSERT ((unsigned) (chunk
+ 1) * 8 <= spltlittbl
->size
);
2617 bfd_put_32 (output_bfd
,
2618 sgotplt
->output_section
->vma
+ sgotplt
->output_offset
,
2619 spltlittbl
->contents
+ (chunk
* 8) + 0);
2620 bfd_put_32 (output_bfd
,
2621 8 + (chunk_entries
* 4),
2622 spltlittbl
->contents
+ (chunk
* 8) + 4);
2625 /* All the dynamic relocations have been emitted at this point.
2626 Make sure the relocation sections are the correct size. */
2627 if (srelgot
->size
!= (sizeof (Elf32_External_Rela
)
2628 * srelgot
->reloc_count
)
2629 || srelplt
->size
!= (sizeof (Elf32_External_Rela
)
2630 * srelplt
->reloc_count
))
2633 /* The .xt.lit.plt section has just been modified. This must
2634 happen before the code below which combines adjacent literal
2635 table entries, and the .xt.lit.plt contents have to be forced to
2637 if (! bfd_set_section_contents (output_bfd
,
2638 spltlittbl
->output_section
,
2639 spltlittbl
->contents
,
2640 spltlittbl
->output_offset
,
2643 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2644 spltlittbl
->flags
&= ~SEC_HAS_CONTENTS
;
2647 /* Combine adjacent literal table entries. */
2648 BFD_ASSERT (! info
->relocatable
);
2649 sxtlit
= bfd_get_section_by_name (output_bfd
, ".xt.lit");
2650 sgotloc
= bfd_get_section_by_name (dynobj
, ".got.loc");
2651 BFD_ASSERT (sxtlit
&& sgotloc
);
2653 elf_xtensa_combine_prop_entries (output_bfd
, sxtlit
, sgotloc
);
2654 if (num_xtlit_entries
< 0)
2657 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
2658 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
2659 for (; dyncon
< dynconend
; dyncon
++)
2661 Elf_Internal_Dyn dyn
;
2665 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2672 case DT_XTENSA_GOT_LOC_SZ
:
2673 dyn
.d_un
.d_val
= num_xtlit_entries
;
2676 case DT_XTENSA_GOT_LOC_OFF
:
2685 s
= bfd_get_section_by_name (output_bfd
, name
);
2687 dyn
.d_un
.d_ptr
= s
->vma
;
2691 s
= bfd_get_section_by_name (output_bfd
, ".rela.plt");
2693 dyn
.d_un
.d_val
= s
->size
;
2697 /* Adjust RELASZ to not include JMPREL. This matches what
2698 glibc expects and what is done for several other ELF
2699 targets (e.g., i386, alpha), but the "correct" behavior
2700 seems to be unresolved. Since the linker script arranges
2701 for .rela.plt to follow all other relocation sections, we
2702 don't have to worry about changing the DT_RELA entry. */
2703 s
= bfd_get_section_by_name (output_bfd
, ".rela.plt");
2705 dyn
.d_un
.d_val
-= s
->size
;
2709 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2716 /* Functions for dealing with the e_flags field. */
2718 /* Merge backend specific data from an object file to the output
2719 object file when linking. */
2722 elf_xtensa_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
2724 unsigned out_mach
, in_mach
;
2725 flagword out_flag
, in_flag
;
2727 /* Check if we have the same endianess. */
2728 if (!_bfd_generic_verify_endian_match (ibfd
, obfd
))
2731 /* Don't even pretend to support mixed-format linking. */
2732 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2733 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2736 out_flag
= elf_elfheader (obfd
)->e_flags
;
2737 in_flag
= elf_elfheader (ibfd
)->e_flags
;
2739 out_mach
= out_flag
& EF_XTENSA_MACH
;
2740 in_mach
= in_flag
& EF_XTENSA_MACH
;
2741 if (out_mach
!= in_mach
)
2743 (*_bfd_error_handler
)
2744 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2745 ibfd
, out_mach
, in_mach
);
2746 bfd_set_error (bfd_error_wrong_format
);
2750 if (! elf_flags_init (obfd
))
2752 elf_flags_init (obfd
) = TRUE
;
2753 elf_elfheader (obfd
)->e_flags
= in_flag
;
2755 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
2756 && bfd_get_arch_info (obfd
)->the_default
)
2757 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
2758 bfd_get_mach (ibfd
));
2763 if ((out_flag
& EF_XTENSA_XT_INSN
) != (in_flag
& EF_XTENSA_XT_INSN
))
2764 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_INSN
);
2766 if ((out_flag
& EF_XTENSA_XT_LIT
) != (in_flag
& EF_XTENSA_XT_LIT
))
2767 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_LIT
);
2774 elf_xtensa_set_private_flags (bfd
*abfd
, flagword flags
)
2776 BFD_ASSERT (!elf_flags_init (abfd
)
2777 || elf_elfheader (abfd
)->e_flags
== flags
);
2779 elf_elfheader (abfd
)->e_flags
|= flags
;
2780 elf_flags_init (abfd
) = TRUE
;
2787 elf_xtensa_print_private_bfd_data (bfd
*abfd
, void *farg
)
2789 FILE *f
= (FILE *) farg
;
2790 flagword e_flags
= elf_elfheader (abfd
)->e_flags
;
2792 fprintf (f
, "\nXtensa header:\n");
2793 if ((e_flags
& EF_XTENSA_MACH
) == E_XTENSA_MACH
)
2794 fprintf (f
, "\nMachine = Base\n");
2796 fprintf (f
, "\nMachine Id = 0x%x\n", e_flags
& EF_XTENSA_MACH
);
2798 fprintf (f
, "Insn tables = %s\n",
2799 (e_flags
& EF_XTENSA_XT_INSN
) ? "true" : "false");
2801 fprintf (f
, "Literal tables = %s\n",
2802 (e_flags
& EF_XTENSA_XT_LIT
) ? "true" : "false");
2804 return _bfd_elf_print_private_bfd_data (abfd
, farg
);
2808 /* Set the right machine number for an Xtensa ELF file. */
2811 elf_xtensa_object_p (bfd
*abfd
)
2814 unsigned long arch
= elf_elfheader (abfd
)->e_flags
& EF_XTENSA_MACH
;
2819 mach
= bfd_mach_xtensa
;
2825 (void) bfd_default_set_arch_mach (abfd
, bfd_arch_xtensa
, mach
);
2830 /* The final processing done just before writing out an Xtensa ELF object
2831 file. This gets the Xtensa architecture right based on the machine
2835 elf_xtensa_final_write_processing (bfd
*abfd
,
2836 bfd_boolean linker ATTRIBUTE_UNUSED
)
2841 switch (mach
= bfd_get_mach (abfd
))
2843 case bfd_mach_xtensa
:
2844 val
= E_XTENSA_MACH
;
2850 elf_elfheader (abfd
)->e_flags
&= (~ EF_XTENSA_MACH
);
2851 elf_elfheader (abfd
)->e_flags
|= val
;
2855 static enum elf_reloc_type_class
2856 elf_xtensa_reloc_type_class (const Elf_Internal_Rela
*rela
)
2858 switch ((int) ELF32_R_TYPE (rela
->r_info
))
2860 case R_XTENSA_RELATIVE
:
2861 return reloc_class_relative
;
2862 case R_XTENSA_JMP_SLOT
:
2863 return reloc_class_plt
;
2865 return reloc_class_normal
;
2871 elf_xtensa_discard_info_for_section (bfd
*abfd
,
2872 struct elf_reloc_cookie
*cookie
,
2873 struct bfd_link_info
*info
,
2877 bfd_vma section_size
;
2878 bfd_vma offset
, actual_offset
;
2879 size_t removed_bytes
= 0;
2881 section_size
= sec
->size
;
2882 if (section_size
== 0 || section_size
% 8 != 0)
2885 if (sec
->output_section
2886 && bfd_is_abs_section (sec
->output_section
))
2889 contents
= retrieve_contents (abfd
, sec
, info
->keep_memory
);
2893 cookie
->rels
= retrieve_internal_relocs (abfd
, sec
, info
->keep_memory
);
2896 release_contents (sec
, contents
);
2900 cookie
->rel
= cookie
->rels
;
2901 cookie
->relend
= cookie
->rels
+ sec
->reloc_count
;
2903 for (offset
= 0; offset
< section_size
; offset
+= 8)
2905 actual_offset
= offset
- removed_bytes
;
2907 /* The ...symbol_deleted_p function will skip over relocs but it
2908 won't adjust their offsets, so do that here. */
2909 while (cookie
->rel
< cookie
->relend
2910 && cookie
->rel
->r_offset
< offset
)
2912 cookie
->rel
->r_offset
-= removed_bytes
;
2916 while (cookie
->rel
< cookie
->relend
2917 && cookie
->rel
->r_offset
== offset
)
2919 if (bfd_elf_reloc_symbol_deleted_p (offset
, cookie
))
2921 /* Remove the table entry. (If the reloc type is NONE, then
2922 the entry has already been merged with another and deleted
2923 during relaxation.) */
2924 if (ELF32_R_TYPE (cookie
->rel
->r_info
) != R_XTENSA_NONE
)
2926 /* Shift the contents up. */
2927 if (offset
+ 8 < section_size
)
2928 memmove (&contents
[actual_offset
],
2929 &contents
[actual_offset
+8],
2930 section_size
- offset
- 8);
2934 /* Remove this relocation. */
2935 cookie
->rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
2938 /* Adjust the relocation offset for previous removals. This
2939 should not be done before calling ...symbol_deleted_p
2940 because it might mess up the offset comparisons there.
2941 Make sure the offset doesn't underflow in the case where
2942 the first entry is removed. */
2943 if (cookie
->rel
->r_offset
>= removed_bytes
)
2944 cookie
->rel
->r_offset
-= removed_bytes
;
2946 cookie
->rel
->r_offset
= 0;
2952 if (removed_bytes
!= 0)
2954 /* Adjust any remaining relocs (shouldn't be any). */
2955 for (; cookie
->rel
< cookie
->relend
; cookie
->rel
++)
2957 if (cookie
->rel
->r_offset
>= removed_bytes
)
2958 cookie
->rel
->r_offset
-= removed_bytes
;
2960 cookie
->rel
->r_offset
= 0;
2963 /* Clear the removed bytes. */
2964 memset (&contents
[section_size
- removed_bytes
], 0, removed_bytes
);
2966 pin_contents (sec
, contents
);
2967 pin_internal_relocs (sec
, cookie
->rels
);
2970 sec
->size
= section_size
- removed_bytes
;
2972 if (xtensa_is_littable_section (sec
))
2974 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
2978 bfd_get_section_by_name (dynobj
, ".got.loc");
2980 sgotloc
->size
-= removed_bytes
;
2986 release_contents (sec
, contents
);
2987 release_internal_relocs (sec
, cookie
->rels
);
2990 return (removed_bytes
!= 0);
2995 elf_xtensa_discard_info (bfd
*abfd
,
2996 struct elf_reloc_cookie
*cookie
,
2997 struct bfd_link_info
*info
)
3000 bfd_boolean changed
= FALSE
;
3002 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3004 if (xtensa_is_property_section (sec
))
3006 if (elf_xtensa_discard_info_for_section (abfd
, cookie
, info
, sec
))
3016 elf_xtensa_ignore_discarded_relocs (asection
*sec
)
3018 return xtensa_is_property_section (sec
);
3022 /* Support for core dump NOTE sections. */
3025 elf_xtensa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
3030 /* The size for Xtensa is variable, so don't try to recognize the format
3031 based on the size. Just assume this is GNU/Linux. */
3034 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
3037 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
3041 size
= note
->descsz
- offset
- 4;
3043 /* Make a ".reg/999" section. */
3044 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
3045 size
, note
->descpos
+ offset
);
3050 elf_xtensa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
3052 switch (note
->descsz
)
3057 case 128: /* GNU/Linux elf_prpsinfo */
3058 elf_tdata (abfd
)->core_program
3059 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 32, 16);
3060 elf_tdata (abfd
)->core_command
3061 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 48, 80);
3064 /* Note that for some reason, a spurious space is tacked
3065 onto the end of the args in some (at least one anyway)
3066 implementations, so strip it off if it exists. */
3069 char *command
= elf_tdata (abfd
)->core_command
;
3070 int n
= strlen (command
);
3072 if (0 < n
&& command
[n
- 1] == ' ')
3073 command
[n
- 1] = '\0';
3080 /* Generic Xtensa configurability stuff. */
3082 static xtensa_opcode callx0_op
= XTENSA_UNDEFINED
;
3083 static xtensa_opcode callx4_op
= XTENSA_UNDEFINED
;
3084 static xtensa_opcode callx8_op
= XTENSA_UNDEFINED
;
3085 static xtensa_opcode callx12_op
= XTENSA_UNDEFINED
;
3086 static xtensa_opcode call0_op
= XTENSA_UNDEFINED
;
3087 static xtensa_opcode call4_op
= XTENSA_UNDEFINED
;
3088 static xtensa_opcode call8_op
= XTENSA_UNDEFINED
;
3089 static xtensa_opcode call12_op
= XTENSA_UNDEFINED
;
3092 init_call_opcodes (void)
3094 if (callx0_op
== XTENSA_UNDEFINED
)
3096 callx0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx0");
3097 callx4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx4");
3098 callx8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx8");
3099 callx12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx12");
3100 call0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call0");
3101 call4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call4");
3102 call8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call8");
3103 call12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call12");
3109 is_indirect_call_opcode (xtensa_opcode opcode
)
3111 init_call_opcodes ();
3112 return (opcode
== callx0_op
3113 || opcode
== callx4_op
3114 || opcode
== callx8_op
3115 || opcode
== callx12_op
);
3120 is_direct_call_opcode (xtensa_opcode opcode
)
3122 init_call_opcodes ();
3123 return (opcode
== call0_op
3124 || opcode
== call4_op
3125 || opcode
== call8_op
3126 || opcode
== call12_op
);
3131 is_windowed_call_opcode (xtensa_opcode opcode
)
3133 init_call_opcodes ();
3134 return (opcode
== call4_op
3135 || opcode
== call8_op
3136 || opcode
== call12_op
3137 || opcode
== callx4_op
3138 || opcode
== callx8_op
3139 || opcode
== callx12_op
);
3143 static xtensa_opcode
3144 get_const16_opcode (void)
3146 static bfd_boolean done_lookup
= FALSE
;
3147 static xtensa_opcode const16_opcode
= XTENSA_UNDEFINED
;
3150 const16_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "const16");
3153 return const16_opcode
;
3157 static xtensa_opcode
3158 get_l32r_opcode (void)
3160 static xtensa_opcode l32r_opcode
= XTENSA_UNDEFINED
;
3161 static bfd_boolean done_lookup
= FALSE
;
3165 l32r_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "l32r");
3173 l32r_offset (bfd_vma addr
, bfd_vma pc
)
3177 offset
= addr
- ((pc
+3) & -4);
3178 BFD_ASSERT ((offset
& ((1 << 2) - 1)) == 0);
3179 offset
= (signed int) offset
>> 2;
3180 BFD_ASSERT ((signed int) offset
>> 16 == -1);
3186 get_relocation_opnd (xtensa_opcode opcode
, int r_type
)
3188 xtensa_isa isa
= xtensa_default_isa
;
3189 int last_immed
, last_opnd
, opi
;
3191 if (opcode
== XTENSA_UNDEFINED
)
3192 return XTENSA_UNDEFINED
;
3194 /* Find the last visible PC-relative immediate operand for the opcode.
3195 If there are no PC-relative immediates, then choose the last visible
3196 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3197 last_immed
= XTENSA_UNDEFINED
;
3198 last_opnd
= xtensa_opcode_num_operands (isa
, opcode
);
3199 for (opi
= last_opnd
- 1; opi
>= 0; opi
--)
3201 if (xtensa_operand_is_visible (isa
, opcode
, opi
) == 0)
3203 if (xtensa_operand_is_PCrelative (isa
, opcode
, opi
) == 1)
3208 if (last_immed
== XTENSA_UNDEFINED
3209 && xtensa_operand_is_register (isa
, opcode
, opi
) == 0)
3213 return XTENSA_UNDEFINED
;
3215 /* If the operand number was specified in an old-style relocation,
3216 check for consistency with the operand computed above. */
3217 if (r_type
>= R_XTENSA_OP0
&& r_type
<= R_XTENSA_OP2
)
3219 int reloc_opnd
= r_type
- R_XTENSA_OP0
;
3220 if (reloc_opnd
!= last_immed
)
3221 return XTENSA_UNDEFINED
;
3229 get_relocation_slot (int r_type
)
3239 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
3240 return r_type
- R_XTENSA_SLOT0_OP
;
3241 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
3242 return r_type
- R_XTENSA_SLOT0_ALT
;
3246 return XTENSA_UNDEFINED
;
3250 /* Get the opcode for a relocation. */
3252 static xtensa_opcode
3253 get_relocation_opcode (bfd
*abfd
,
3256 Elf_Internal_Rela
*irel
)
3258 static xtensa_insnbuf ibuff
= NULL
;
3259 static xtensa_insnbuf sbuff
= NULL
;
3260 xtensa_isa isa
= xtensa_default_isa
;
3264 if (contents
== NULL
)
3265 return XTENSA_UNDEFINED
;
3267 if (bfd_get_section_limit (abfd
, sec
) <= irel
->r_offset
)
3268 return XTENSA_UNDEFINED
;
3272 ibuff
= xtensa_insnbuf_alloc (isa
);
3273 sbuff
= xtensa_insnbuf_alloc (isa
);
3276 /* Decode the instruction. */
3277 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[irel
->r_offset
],
3278 sec
->size
- irel
->r_offset
);
3279 fmt
= xtensa_format_decode (isa
, ibuff
);
3280 slot
= get_relocation_slot (ELF32_R_TYPE (irel
->r_info
));
3281 if (slot
== XTENSA_UNDEFINED
)
3282 return XTENSA_UNDEFINED
;
3283 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
3284 return xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
3289 is_l32r_relocation (bfd
*abfd
,
3292 Elf_Internal_Rela
*irel
)
3294 xtensa_opcode opcode
;
3295 if (!is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
3297 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
3298 return (opcode
== get_l32r_opcode ());
3302 static bfd_size_type
3303 get_asm_simplify_size (bfd_byte
*contents
,
3304 bfd_size_type content_len
,
3305 bfd_size_type offset
)
3307 bfd_size_type insnlen
, size
= 0;
3309 /* Decode the size of the next two instructions. */
3310 insnlen
= insn_decode_len (contents
, content_len
, offset
);
3316 insnlen
= insn_decode_len (contents
, content_len
, offset
+ size
);
3326 is_alt_relocation (int r_type
)
3328 return (r_type
>= R_XTENSA_SLOT0_ALT
3329 && r_type
<= R_XTENSA_SLOT14_ALT
);
3334 is_operand_relocation (int r_type
)
3344 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
3346 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
3355 #define MIN_INSN_LENGTH 2
3357 /* Return 0 if it fails to decode. */
3360 insn_decode_len (bfd_byte
*contents
,
3361 bfd_size_type content_len
,
3362 bfd_size_type offset
)
3365 xtensa_isa isa
= xtensa_default_isa
;
3367 static xtensa_insnbuf ibuff
= NULL
;
3369 if (offset
+ MIN_INSN_LENGTH
> content_len
)
3373 ibuff
= xtensa_insnbuf_alloc (isa
);
3374 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[offset
],
3375 content_len
- offset
);
3376 fmt
= xtensa_format_decode (isa
, ibuff
);
3377 if (fmt
== XTENSA_UNDEFINED
)
3379 insn_len
= xtensa_format_length (isa
, fmt
);
3380 if (insn_len
== XTENSA_UNDEFINED
)
3386 /* Decode the opcode for a single slot instruction.
3387 Return 0 if it fails to decode or the instruction is multi-slot. */
3390 insn_decode_opcode (bfd_byte
*contents
,
3391 bfd_size_type content_len
,
3392 bfd_size_type offset
,
3395 xtensa_isa isa
= xtensa_default_isa
;
3397 static xtensa_insnbuf insnbuf
= NULL
;
3398 static xtensa_insnbuf slotbuf
= NULL
;
3400 if (offset
+ MIN_INSN_LENGTH
> content_len
)
3401 return XTENSA_UNDEFINED
;
3403 if (insnbuf
== NULL
)
3405 insnbuf
= xtensa_insnbuf_alloc (isa
);
3406 slotbuf
= xtensa_insnbuf_alloc (isa
);
3409 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
3410 content_len
- offset
);
3411 fmt
= xtensa_format_decode (isa
, insnbuf
);
3412 if (fmt
== XTENSA_UNDEFINED
)
3413 return XTENSA_UNDEFINED
;
3415 if (slot
>= xtensa_format_num_slots (isa
, fmt
))
3416 return XTENSA_UNDEFINED
;
3418 xtensa_format_get_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
3419 return xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
3423 /* The offset is the offset in the contents.
3424 The address is the address of that offset. */
3427 check_branch_target_aligned (bfd_byte
*contents
,
3428 bfd_size_type content_length
,
3432 bfd_size_type insn_len
= insn_decode_len (contents
, content_length
, offset
);
3435 return check_branch_target_aligned_address (address
, insn_len
);
3440 check_loop_aligned (bfd_byte
*contents
,
3441 bfd_size_type content_length
,
3445 bfd_size_type loop_len
, insn_len
;
3446 xtensa_opcode opcode
=
3447 insn_decode_opcode (contents
, content_length
, offset
, 0);
3448 BFD_ASSERT (opcode
!= XTENSA_UNDEFINED
);
3449 if (opcode
!= XTENSA_UNDEFINED
)
3451 BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa
, opcode
));
3452 if (!xtensa_opcode_is_loop (xtensa_default_isa
, opcode
))
3455 loop_len
= insn_decode_len (contents
, content_length
, offset
);
3456 BFD_ASSERT (loop_len
!= 0);
3460 insn_len
= insn_decode_len (contents
, content_length
, offset
+ loop_len
);
3461 BFD_ASSERT (insn_len
!= 0);
3465 return check_branch_target_aligned_address (address
+ loop_len
, insn_len
);
3470 check_branch_target_aligned_address (bfd_vma addr
, int len
)
3473 return (addr
% 8 == 0);
3474 return ((addr
>> 2) == ((addr
+ len
- 1) >> 2));
3478 /* Instruction widening and narrowing. */
3480 /* When FLIX is available we need to access certain instructions only
3481 when they are 16-bit or 24-bit instructions. This table caches
3482 information about such instructions by walking through all the
3483 opcodes and finding the smallest single-slot format into which each
3486 static xtensa_format
*op_single_fmt_table
= NULL
;
3490 init_op_single_format_table (void)
3492 xtensa_isa isa
= xtensa_default_isa
;
3493 xtensa_insnbuf ibuf
;
3494 xtensa_opcode opcode
;
3498 if (op_single_fmt_table
)
3501 ibuf
= xtensa_insnbuf_alloc (isa
);
3502 num_opcodes
= xtensa_isa_num_opcodes (isa
);
3504 op_single_fmt_table
= (xtensa_format
*)
3505 bfd_malloc (sizeof (xtensa_format
) * num_opcodes
);
3506 for (opcode
= 0; opcode
< num_opcodes
; opcode
++)
3508 op_single_fmt_table
[opcode
] = XTENSA_UNDEFINED
;
3509 for (fmt
= 0; fmt
< xtensa_isa_num_formats (isa
); fmt
++)
3511 if (xtensa_format_num_slots (isa
, fmt
) == 1
3512 && xtensa_opcode_encode (isa
, fmt
, 0, ibuf
, opcode
) == 0)
3514 xtensa_opcode old_fmt
= op_single_fmt_table
[opcode
];
3515 int fmt_length
= xtensa_format_length (isa
, fmt
);
3516 if (old_fmt
== XTENSA_UNDEFINED
3517 || fmt_length
< xtensa_format_length (isa
, old_fmt
))
3518 op_single_fmt_table
[opcode
] = fmt
;
3522 xtensa_insnbuf_free (isa
, ibuf
);
3526 static xtensa_format
3527 get_single_format (xtensa_opcode opcode
)
3529 init_op_single_format_table ();
3530 return op_single_fmt_table
[opcode
];
3534 /* For the set of narrowable instructions we do NOT include the
3535 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3536 involved during linker relaxation that may require these to
3537 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3538 requires special case code to ensure it only works when op1 == op2. */
3546 struct string_pair narrowable
[] =
3549 { "addi", "addi.n" },
3550 { "addmi", "addi.n" },
3551 { "l32i", "l32i.n" },
3552 { "movi", "movi.n" },
3554 { "retw", "retw.n" },
3555 { "s32i", "s32i.n" },
3556 { "or", "mov.n" } /* special case only when op1 == op2 */
3559 struct string_pair widenable
[] =
3562 { "addi", "addi.n" },
3563 { "addmi", "addi.n" },
3564 { "beqz", "beqz.n" },
3565 { "bnez", "bnez.n" },
3566 { "l32i", "l32i.n" },
3567 { "movi", "movi.n" },
3569 { "retw", "retw.n" },
3570 { "s32i", "s32i.n" },
3571 { "or", "mov.n" } /* special case only when op1 == op2 */
3575 /* Attempt to narrow an instruction. Return true if the narrowing is
3576 valid. If the do_it parameter is non-zero, then perform the action
3577 in-place directly into the contents. Otherwise, do not modify the
3578 contents. The set of valid narrowing are specified by a string table
3579 but require some special case operand checks in some cases. */
3582 narrow_instruction (bfd_byte
*contents
,
3583 bfd_size_type content_length
,
3584 bfd_size_type offset
,
3587 xtensa_opcode opcode
;
3588 bfd_size_type insn_len
, opi
;
3589 xtensa_isa isa
= xtensa_default_isa
;
3590 xtensa_format fmt
, o_fmt
;
3592 static xtensa_insnbuf insnbuf
= NULL
;
3593 static xtensa_insnbuf slotbuf
= NULL
;
3594 static xtensa_insnbuf o_insnbuf
= NULL
;
3595 static xtensa_insnbuf o_slotbuf
= NULL
;
3597 if (insnbuf
== NULL
)
3599 insnbuf
= xtensa_insnbuf_alloc (isa
);
3600 slotbuf
= xtensa_insnbuf_alloc (isa
);
3601 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
3602 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
3605 BFD_ASSERT (offset
< content_length
);
3607 if (content_length
< 2)
3610 /* We will hand-code a few of these for a little while.
3611 These have all been specified in the assembler aleady. */
3612 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
3613 content_length
- offset
);
3614 fmt
= xtensa_format_decode (isa
, insnbuf
);
3615 if (xtensa_format_num_slots (isa
, fmt
) != 1)
3618 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
3621 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
3622 if (opcode
== XTENSA_UNDEFINED
)
3624 insn_len
= xtensa_format_length (isa
, fmt
);
3625 if (insn_len
> content_length
)
3628 for (opi
= 0; opi
< (sizeof (narrowable
)/sizeof (struct string_pair
)); ++opi
)
3630 bfd_boolean is_or
= (strcmp ("or", narrowable
[opi
].wide
) == 0);
3632 if (opcode
== xtensa_opcode_lookup (isa
, narrowable
[opi
].wide
))
3634 uint32 value
, newval
;
3635 int i
, operand_count
, o_operand_count
;
3636 xtensa_opcode o_opcode
;
3638 /* Address does not matter in this case. We might need to
3639 fix it to handle branches/jumps. */
3640 bfd_vma self_address
= 0;
3642 o_opcode
= xtensa_opcode_lookup (isa
, narrowable
[opi
].narrow
);
3643 if (o_opcode
== XTENSA_UNDEFINED
)
3645 o_fmt
= get_single_format (o_opcode
);
3646 if (o_fmt
== XTENSA_UNDEFINED
)
3649 if (xtensa_format_length (isa
, fmt
) != 3
3650 || xtensa_format_length (isa
, o_fmt
) != 2)
3653 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
3654 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
3655 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
3657 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
3662 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
3667 uint32 rawval0
, rawval1
, rawval2
;
3669 if (o_operand_count
+ 1 != operand_count
)
3671 if (xtensa_operand_get_field (isa
, opcode
, 0,
3672 fmt
, 0, slotbuf
, &rawval0
) != 0)
3674 if (xtensa_operand_get_field (isa
, opcode
, 1,
3675 fmt
, 0, slotbuf
, &rawval1
) != 0)
3677 if (xtensa_operand_get_field (isa
, opcode
, 2,
3678 fmt
, 0, slotbuf
, &rawval2
) != 0)
3681 if (rawval1
!= rawval2
)
3683 if (rawval0
== rawval1
) /* it is a nop */
3687 for (i
= 0; i
< o_operand_count
; ++i
)
3689 if (xtensa_operand_get_field (isa
, opcode
, i
, fmt
, 0,
3691 || xtensa_operand_decode (isa
, opcode
, i
, &value
))
3694 /* PC-relative branches need adjustment, but
3695 the PC-rel operand will always have a relocation. */
3697 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
3699 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
3700 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
3705 if (xtensa_format_set_slot (isa
, o_fmt
, 0,
3706 o_insnbuf
, o_slotbuf
) != 0)
3710 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
3711 content_length
- offset
);
3719 /* Attempt to widen an instruction. Return true if the widening is
3720 valid. If the do_it parameter is non-zero, then the action should
3721 be performed inplace into the contents. Otherwise, do not modify
3722 the contents. The set of valid widenings are specified by a string
3723 table but require some special case operand checks in some
3727 widen_instruction (bfd_byte
*contents
,
3728 bfd_size_type content_length
,
3729 bfd_size_type offset
,
3732 xtensa_opcode opcode
;
3733 bfd_size_type insn_len
, opi
;
3734 xtensa_isa isa
= xtensa_default_isa
;
3735 xtensa_format fmt
, o_fmt
;
3737 static xtensa_insnbuf insnbuf
= NULL
;
3738 static xtensa_insnbuf slotbuf
= NULL
;
3739 static xtensa_insnbuf o_insnbuf
= NULL
;
3740 static xtensa_insnbuf o_slotbuf
= NULL
;
3742 if (insnbuf
== NULL
)
3744 insnbuf
= xtensa_insnbuf_alloc (isa
);
3745 slotbuf
= xtensa_insnbuf_alloc (isa
);
3746 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
3747 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
3750 BFD_ASSERT (offset
< content_length
);
3752 if (content_length
< 2)
3755 /* We will hand code a few of these for a little while.
3756 These have all been specified in the assembler aleady. */
3757 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
3758 content_length
- offset
);
3759 fmt
= xtensa_format_decode (isa
, insnbuf
);
3760 if (xtensa_format_num_slots (isa
, fmt
) != 1)
3763 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
3766 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
3767 if (opcode
== XTENSA_UNDEFINED
)
3769 insn_len
= xtensa_format_length (isa
, fmt
);
3770 if (insn_len
> content_length
)
3773 for (opi
= 0; opi
< (sizeof (widenable
)/sizeof (struct string_pair
)); ++opi
)
3775 bfd_boolean is_or
= (strcmp ("or", widenable
[opi
].wide
) == 0);
3776 bfd_boolean is_branch
= (strcmp ("beqz", widenable
[opi
].wide
) == 0
3777 || strcmp ("bnez", widenable
[opi
].wide
) == 0);
3779 if (opcode
== xtensa_opcode_lookup (isa
, widenable
[opi
].narrow
))
3781 uint32 value
, newval
;
3782 int i
, operand_count
, o_operand_count
, check_operand_count
;
3783 xtensa_opcode o_opcode
;
3785 /* Address does not matter in this case. We might need to fix it
3786 to handle branches/jumps. */
3787 bfd_vma self_address
= 0;
3789 o_opcode
= xtensa_opcode_lookup (isa
, widenable
[opi
].wide
);
3790 if (o_opcode
== XTENSA_UNDEFINED
)
3792 o_fmt
= get_single_format (o_opcode
);
3793 if (o_fmt
== XTENSA_UNDEFINED
)
3796 if (xtensa_format_length (isa
, fmt
) != 2
3797 || xtensa_format_length (isa
, o_fmt
) != 3)
3800 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
3801 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
3802 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
3803 check_operand_count
= o_operand_count
;
3805 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
3810 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
3815 uint32 rawval0
, rawval1
;
3817 if (o_operand_count
!= operand_count
+ 1)
3819 if (xtensa_operand_get_field (isa
, opcode
, 0,
3820 fmt
, 0, slotbuf
, &rawval0
) != 0)
3822 if (xtensa_operand_get_field (isa
, opcode
, 1,
3823 fmt
, 0, slotbuf
, &rawval1
) != 0)
3825 if (rawval0
== rawval1
) /* it is a nop */
3829 check_operand_count
--;
3831 for (i
= 0; i
< check_operand_count
; ++i
)
3834 if (is_or
&& i
== o_operand_count
- 1)
3836 if (xtensa_operand_get_field (isa
, opcode
, new_i
, fmt
, 0,
3838 || xtensa_operand_decode (isa
, opcode
, new_i
, &value
))
3841 /* PC-relative branches need adjustment, but
3842 the PC-rel operand will always have a relocation. */
3844 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
3846 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
3847 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
3852 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
3856 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
3857 content_length
- offset
);
3865 /* Code for transforming CALLs at link-time. */
3867 static bfd_reloc_status_type
3868 elf_xtensa_do_asm_simplify (bfd_byte
*contents
,
3870 bfd_vma content_length
,
3871 char **error_message
)
3873 static xtensa_insnbuf insnbuf
= NULL
;
3874 static xtensa_insnbuf slotbuf
= NULL
;
3875 xtensa_format core_format
= XTENSA_UNDEFINED
;
3876 xtensa_opcode opcode
;
3877 xtensa_opcode direct_call_opcode
;
3878 xtensa_isa isa
= xtensa_default_isa
;
3879 bfd_byte
*chbuf
= contents
+ address
;
3882 if (insnbuf
== NULL
)
3884 insnbuf
= xtensa_insnbuf_alloc (isa
);
3885 slotbuf
= xtensa_insnbuf_alloc (isa
);
3888 if (content_length
< address
)
3890 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
3891 return bfd_reloc_other
;
3894 opcode
= get_expanded_call_opcode (chbuf
, content_length
- address
, 0);
3895 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
3896 if (direct_call_opcode
== XTENSA_UNDEFINED
)
3898 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
3899 return bfd_reloc_other
;
3902 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3903 core_format
= xtensa_format_lookup (isa
, "x24");
3904 opcode
= xtensa_opcode_lookup (isa
, "or");
3905 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, opcode
);
3906 for (opn
= 0; opn
< 3; opn
++)
3909 xtensa_operand_encode (isa
, opcode
, opn
, ®no
);
3910 xtensa_operand_set_field (isa
, opcode
, opn
, core_format
, 0,
3913 xtensa_format_encode (isa
, core_format
, insnbuf
);
3914 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
3915 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
, content_length
- address
);
3917 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3918 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, direct_call_opcode
);
3919 xtensa_operand_set_field (isa
, opcode
, 0, core_format
, 0, slotbuf
, 0);
3921 xtensa_format_encode (isa
, core_format
, insnbuf
);
3922 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
3923 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
+ 3,
3924 content_length
- address
- 3);
3926 return bfd_reloc_ok
;
3930 static bfd_reloc_status_type
3931 contract_asm_expansion (bfd_byte
*contents
,
3932 bfd_vma content_length
,
3933 Elf_Internal_Rela
*irel
,
3934 char **error_message
)
3936 bfd_reloc_status_type retval
=
3937 elf_xtensa_do_asm_simplify (contents
, irel
->r_offset
, content_length
,
3940 if (retval
!= bfd_reloc_ok
)
3941 return bfd_reloc_dangerous
;
3943 /* Update the irel->r_offset field so that the right immediate and
3944 the right instruction are modified during the relocation. */
3945 irel
->r_offset
+= 3;
3946 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
), R_XTENSA_SLOT0_OP
);
3947 return bfd_reloc_ok
;
3951 static xtensa_opcode
3952 swap_callx_for_call_opcode (xtensa_opcode opcode
)
3954 init_call_opcodes ();
3956 if (opcode
== callx0_op
) return call0_op
;
3957 if (opcode
== callx4_op
) return call4_op
;
3958 if (opcode
== callx8_op
) return call8_op
;
3959 if (opcode
== callx12_op
) return call12_op
;
3961 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3962 return XTENSA_UNDEFINED
;
3966 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3967 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3968 If not, return XTENSA_UNDEFINED. */
3970 #define L32R_TARGET_REG_OPERAND 0
3971 #define CONST16_TARGET_REG_OPERAND 0
3972 #define CALLN_SOURCE_OPERAND 0
3974 static xtensa_opcode
3975 get_expanded_call_opcode (bfd_byte
*buf
, int bufsize
, bfd_boolean
*p_uses_l32r
)
3977 static xtensa_insnbuf insnbuf
= NULL
;
3978 static xtensa_insnbuf slotbuf
= NULL
;
3980 xtensa_opcode opcode
;
3981 xtensa_isa isa
= xtensa_default_isa
;
3982 uint32 regno
, const16_regno
, call_regno
;
3985 if (insnbuf
== NULL
)
3987 insnbuf
= xtensa_insnbuf_alloc (isa
);
3988 slotbuf
= xtensa_insnbuf_alloc (isa
);
3991 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
, bufsize
);
3992 fmt
= xtensa_format_decode (isa
, insnbuf
);
3993 if (fmt
== XTENSA_UNDEFINED
3994 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
3995 return XTENSA_UNDEFINED
;
3997 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
3998 if (opcode
== XTENSA_UNDEFINED
)
3999 return XTENSA_UNDEFINED
;
4001 if (opcode
== get_l32r_opcode ())
4004 *p_uses_l32r
= TRUE
;
4005 if (xtensa_operand_get_field (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4006 fmt
, 0, slotbuf
, ®no
)
4007 || xtensa_operand_decode (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4009 return XTENSA_UNDEFINED
;
4011 else if (opcode
== get_const16_opcode ())
4014 *p_uses_l32r
= FALSE
;
4015 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4016 fmt
, 0, slotbuf
, ®no
)
4017 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4019 return XTENSA_UNDEFINED
;
4021 /* Check that the next instruction is also CONST16. */
4022 offset
+= xtensa_format_length (isa
, fmt
);
4023 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4024 fmt
= xtensa_format_decode (isa
, insnbuf
);
4025 if (fmt
== XTENSA_UNDEFINED
4026 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4027 return XTENSA_UNDEFINED
;
4028 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4029 if (opcode
!= get_const16_opcode ())
4030 return XTENSA_UNDEFINED
;
4032 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4033 fmt
, 0, slotbuf
, &const16_regno
)
4034 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4036 || const16_regno
!= regno
)
4037 return XTENSA_UNDEFINED
;
4040 return XTENSA_UNDEFINED
;
4042 /* Next instruction should be an CALLXn with operand 0 == regno. */
4043 offset
+= xtensa_format_length (isa
, fmt
);
4044 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4045 fmt
= xtensa_format_decode (isa
, insnbuf
);
4046 if (fmt
== XTENSA_UNDEFINED
4047 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4048 return XTENSA_UNDEFINED
;
4049 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4050 if (opcode
== XTENSA_UNDEFINED
4051 || !is_indirect_call_opcode (opcode
))
4052 return XTENSA_UNDEFINED
;
4054 if (xtensa_operand_get_field (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4055 fmt
, 0, slotbuf
, &call_regno
)
4056 || xtensa_operand_decode (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4058 return XTENSA_UNDEFINED
;
4060 if (call_regno
!= regno
)
4061 return XTENSA_UNDEFINED
;
4067 /* Data structures used during relaxation. */
4069 /* r_reloc: relocation values. */
4071 /* Through the relaxation process, we need to keep track of the values
4072 that will result from evaluating relocations. The standard ELF
4073 relocation structure is not sufficient for this purpose because we're
4074 operating on multiple input files at once, so we need to know which
4075 input file a relocation refers to. The r_reloc structure thus
4076 records both the input file (bfd) and ELF relocation.
4078 For efficiency, an r_reloc also contains a "target_offset" field to
4079 cache the target-section-relative offset value that is represented by
4082 The r_reloc also contains a virtual offset that allows multiple
4083 inserted literals to be placed at the same "address" with
4084 different offsets. */
4086 typedef struct r_reloc_struct r_reloc
;
4088 struct r_reloc_struct
4091 Elf_Internal_Rela rela
;
4092 bfd_vma target_offset
;
4093 bfd_vma virtual_offset
;
4097 /* The r_reloc structure is included by value in literal_value, but not
4098 every literal_value has an associated relocation -- some are simple
4099 constants. In such cases, we set all the fields in the r_reloc
4100 struct to zero. The r_reloc_is_const function should be used to
4101 detect this case. */
4104 r_reloc_is_const (const r_reloc
*r_rel
)
4106 return (r_rel
->abfd
== NULL
);
4111 r_reloc_get_target_offset (const r_reloc
*r_rel
)
4113 bfd_vma target_offset
;
4114 unsigned long r_symndx
;
4116 BFD_ASSERT (!r_reloc_is_const (r_rel
));
4117 r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4118 target_offset
= get_elf_r_symndx_offset (r_rel
->abfd
, r_symndx
);
4119 return (target_offset
+ r_rel
->rela
.r_addend
);
4123 static struct elf_link_hash_entry
*
4124 r_reloc_get_hash_entry (const r_reloc
*r_rel
)
4126 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4127 return get_elf_r_symndx_hash_entry (r_rel
->abfd
, r_symndx
);
4132 r_reloc_get_section (const r_reloc
*r_rel
)
4134 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4135 return get_elf_r_symndx_section (r_rel
->abfd
, r_symndx
);
4140 r_reloc_is_defined (const r_reloc
*r_rel
)
4146 sec
= r_reloc_get_section (r_rel
);
4147 if (sec
== bfd_abs_section_ptr
4148 || sec
== bfd_com_section_ptr
4149 || sec
== bfd_und_section_ptr
)
4156 r_reloc_init (r_reloc
*r_rel
,
4158 Elf_Internal_Rela
*irel
,
4160 bfd_size_type content_length
)
4163 reloc_howto_type
*howto
;
4167 r_rel
->rela
= *irel
;
4169 r_rel
->target_offset
= r_reloc_get_target_offset (r_rel
);
4170 r_rel
->virtual_offset
= 0;
4171 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
4172 howto
= &elf_howto_table
[r_type
];
4173 if (howto
->partial_inplace
)
4175 bfd_vma inplace_val
;
4176 BFD_ASSERT (r_rel
->rela
.r_offset
< content_length
);
4178 inplace_val
= bfd_get_32 (abfd
, &contents
[r_rel
->rela
.r_offset
]);
4179 r_rel
->target_offset
+= inplace_val
;
4183 memset (r_rel
, 0, sizeof (r_reloc
));
4190 print_r_reloc (FILE *fp
, const r_reloc
*r_rel
)
4192 if (r_reloc_is_defined (r_rel
))
4194 asection
*sec
= r_reloc_get_section (r_rel
);
4195 fprintf (fp
, " %s(%s + ", sec
->owner
->filename
, sec
->name
);
4197 else if (r_reloc_get_hash_entry (r_rel
))
4198 fprintf (fp
, " %s + ", r_reloc_get_hash_entry (r_rel
)->root
.root
.string
);
4200 fprintf (fp
, " ?? + ");
4202 fprintf_vma (fp
, r_rel
->target_offset
);
4203 if (r_rel
->virtual_offset
)
4205 fprintf (fp
, " + ");
4206 fprintf_vma (fp
, r_rel
->virtual_offset
);
4215 /* source_reloc: relocations that reference literals. */
4217 /* To determine whether literals can be coalesced, we need to first
4218 record all the relocations that reference the literals. The
4219 source_reloc structure below is used for this purpose. The
4220 source_reloc entries are kept in a per-literal-section array, sorted
4221 by offset within the literal section (i.e., target offset).
4223 The source_sec and r_rel.rela.r_offset fields identify the source of
4224 the relocation. The r_rel field records the relocation value, i.e.,
4225 the offset of the literal being referenced. The opnd field is needed
4226 to determine the range of the immediate field to which the relocation
4227 applies, so we can determine whether another literal with the same
4228 value is within range. The is_null field is true when the relocation
4229 is being removed (e.g., when an L32R is being removed due to a CALLX
4230 that is converted to a direct CALL). */
4232 typedef struct source_reloc_struct source_reloc
;
4234 struct source_reloc_struct
4236 asection
*source_sec
;
4238 xtensa_opcode opcode
;
4240 bfd_boolean is_null
;
4241 bfd_boolean is_abs_literal
;
4246 init_source_reloc (source_reloc
*reloc
,
4247 asection
*source_sec
,
4248 const r_reloc
*r_rel
,
4249 xtensa_opcode opcode
,
4251 bfd_boolean is_abs_literal
)
4253 reloc
->source_sec
= source_sec
;
4254 reloc
->r_rel
= *r_rel
;
4255 reloc
->opcode
= opcode
;
4257 reloc
->is_null
= FALSE
;
4258 reloc
->is_abs_literal
= is_abs_literal
;
4262 /* Find the source_reloc for a particular source offset and relocation
4263 type. Note that the array is sorted by _target_ offset, so this is
4264 just a linear search. */
4266 static source_reloc
*
4267 find_source_reloc (source_reloc
*src_relocs
,
4270 Elf_Internal_Rela
*irel
)
4274 for (i
= 0; i
< src_count
; i
++)
4276 if (src_relocs
[i
].source_sec
== sec
4277 && src_relocs
[i
].r_rel
.rela
.r_offset
== irel
->r_offset
4278 && (ELF32_R_TYPE (src_relocs
[i
].r_rel
.rela
.r_info
)
4279 == ELF32_R_TYPE (irel
->r_info
)))
4280 return &src_relocs
[i
];
4288 source_reloc_compare (const void *ap
, const void *bp
)
4290 const source_reloc
*a
= (const source_reloc
*) ap
;
4291 const source_reloc
*b
= (const source_reloc
*) bp
;
4293 if (a
->r_rel
.target_offset
!= b
->r_rel
.target_offset
)
4294 return (a
->r_rel
.target_offset
- b
->r_rel
.target_offset
);
4296 /* We don't need to sort on these criteria for correctness,
4297 but enforcing a more strict ordering prevents unstable qsort
4298 from behaving differently with different implementations.
4299 Without the code below we get correct but different results
4300 on Solaris 2.7 and 2.8. We would like to always produce the
4301 same results no matter the host. */
4303 if ((!a
->is_null
) - (!b
->is_null
))
4304 return ((!a
->is_null
) - (!b
->is_null
));
4305 return internal_reloc_compare (&a
->r_rel
.rela
, &b
->r_rel
.rela
);
4309 /* Literal values and value hash tables. */
4311 /* Literals with the same value can be coalesced. The literal_value
4312 structure records the value of a literal: the "r_rel" field holds the
4313 information from the relocation on the literal (if there is one) and
4314 the "value" field holds the contents of the literal word itself.
4316 The value_map structure records a literal value along with the
4317 location of a literal holding that value. The value_map hash table
4318 is indexed by the literal value, so that we can quickly check if a
4319 particular literal value has been seen before and is thus a candidate
4322 typedef struct literal_value_struct literal_value
;
4323 typedef struct value_map_struct value_map
;
4324 typedef struct value_map_hash_table_struct value_map_hash_table
;
4326 struct literal_value_struct
4329 unsigned long value
;
4330 bfd_boolean is_abs_literal
;
4333 struct value_map_struct
4335 literal_value val
; /* The literal value. */
4336 r_reloc loc
; /* Location of the literal. */
4340 struct value_map_hash_table_struct
4342 unsigned bucket_count
;
4343 value_map
**buckets
;
4345 bfd_boolean has_last_loc
;
4351 init_literal_value (literal_value
*lit
,
4352 const r_reloc
*r_rel
,
4353 unsigned long value
,
4354 bfd_boolean is_abs_literal
)
4356 lit
->r_rel
= *r_rel
;
4358 lit
->is_abs_literal
= is_abs_literal
;
4363 literal_value_equal (const literal_value
*src1
,
4364 const literal_value
*src2
,
4365 bfd_boolean final_static_link
)
4367 struct elf_link_hash_entry
*h1
, *h2
;
4369 if (r_reloc_is_const (&src1
->r_rel
) != r_reloc_is_const (&src2
->r_rel
))
4372 if (r_reloc_is_const (&src1
->r_rel
))
4373 return (src1
->value
== src2
->value
);
4375 if (ELF32_R_TYPE (src1
->r_rel
.rela
.r_info
)
4376 != ELF32_R_TYPE (src2
->r_rel
.rela
.r_info
))
4379 if (src1
->r_rel
.target_offset
!= src2
->r_rel
.target_offset
)
4382 if (src1
->r_rel
.virtual_offset
!= src2
->r_rel
.virtual_offset
)
4385 if (src1
->value
!= src2
->value
)
4388 /* Now check for the same section (if defined) or the same elf_hash
4389 (if undefined or weak). */
4390 h1
= r_reloc_get_hash_entry (&src1
->r_rel
);
4391 h2
= r_reloc_get_hash_entry (&src2
->r_rel
);
4392 if (r_reloc_is_defined (&src1
->r_rel
)
4393 && (final_static_link
4394 || ((!h1
|| h1
->root
.type
!= bfd_link_hash_defweak
)
4395 && (!h2
|| h2
->root
.type
!= bfd_link_hash_defweak
))))
4397 if (r_reloc_get_section (&src1
->r_rel
)
4398 != r_reloc_get_section (&src2
->r_rel
))
4403 /* Require that the hash entries (i.e., symbols) be identical. */
4404 if (h1
!= h2
|| h1
== 0)
4408 if (src1
->is_abs_literal
!= src2
->is_abs_literal
)
4415 /* Must be power of 2. */
4416 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4418 static value_map_hash_table
*
4419 value_map_hash_table_init (void)
4421 value_map_hash_table
*values
;
4423 values
= (value_map_hash_table
*)
4424 bfd_zmalloc (sizeof (value_map_hash_table
));
4425 values
->bucket_count
= INITIAL_HASH_RELOC_BUCKET_COUNT
;
4427 values
->buckets
= (value_map
**)
4428 bfd_zmalloc (sizeof (value_map
*) * values
->bucket_count
);
4429 if (values
->buckets
== NULL
)
4434 values
->has_last_loc
= FALSE
;
4441 value_map_hash_table_delete (value_map_hash_table
*table
)
4443 free (table
->buckets
);
4449 hash_bfd_vma (bfd_vma val
)
4451 return (val
>> 2) + (val
>> 10);
4456 literal_value_hash (const literal_value
*src
)
4460 hash_val
= hash_bfd_vma (src
->value
);
4461 if (!r_reloc_is_const (&src
->r_rel
))
4465 hash_val
+= hash_bfd_vma (src
->is_abs_literal
* 1000);
4466 hash_val
+= hash_bfd_vma (src
->r_rel
.target_offset
);
4467 hash_val
+= hash_bfd_vma (src
->r_rel
.virtual_offset
);
4469 /* Now check for the same section and the same elf_hash. */
4470 if (r_reloc_is_defined (&src
->r_rel
))
4471 sec_or_hash
= r_reloc_get_section (&src
->r_rel
);
4473 sec_or_hash
= r_reloc_get_hash_entry (&src
->r_rel
);
4474 hash_val
+= hash_bfd_vma ((bfd_vma
) (size_t) sec_or_hash
);
4480 /* Check if the specified literal_value has been seen before. */
4483 value_map_get_cached_value (value_map_hash_table
*map
,
4484 const literal_value
*val
,
4485 bfd_boolean final_static_link
)
4491 idx
= literal_value_hash (val
);
4492 idx
= idx
& (map
->bucket_count
- 1);
4493 bucket
= map
->buckets
[idx
];
4494 for (map_e
= bucket
; map_e
; map_e
= map_e
->next
)
4496 if (literal_value_equal (&map_e
->val
, val
, final_static_link
))
4503 /* Record a new literal value. It is illegal to call this if VALUE
4504 already has an entry here. */
4507 add_value_map (value_map_hash_table
*map
,
4508 const literal_value
*val
,
4510 bfd_boolean final_static_link
)
4512 value_map
**bucket_p
;
4515 value_map
*val_e
= (value_map
*) bfd_zmalloc (sizeof (value_map
));
4518 bfd_set_error (bfd_error_no_memory
);
4522 BFD_ASSERT (!value_map_get_cached_value (map
, val
, final_static_link
));
4526 idx
= literal_value_hash (val
);
4527 idx
= idx
& (map
->bucket_count
- 1);
4528 bucket_p
= &map
->buckets
[idx
];
4530 val_e
->next
= *bucket_p
;
4533 /* FIXME: Consider resizing the hash table if we get too many entries. */
4539 /* Lists of text actions (ta_) for narrowing, widening, longcall
4540 conversion, space fill, code & literal removal, etc. */
4542 /* The following text actions are generated:
4544 "ta_remove_insn" remove an instruction or instructions
4545 "ta_remove_longcall" convert longcall to call
4546 "ta_convert_longcall" convert longcall to nop/call
4547 "ta_narrow_insn" narrow a wide instruction
4548 "ta_widen" widen a narrow instruction
4549 "ta_fill" add fill or remove fill
4550 removed < 0 is a fill; branches to the fill address will be
4551 changed to address + fill size (e.g., address - removed)
4552 removed >= 0 branches to the fill address will stay unchanged
4553 "ta_remove_literal" remove a literal; this action is
4554 indicated when a literal is removed
4556 "ta_add_literal" insert a new literal; this action is
4557 indicated when a literal has been moved.
4558 It may use a virtual_offset because
4559 multiple literals can be placed at the
4562 For each of these text actions, we also record the number of bytes
4563 removed by performing the text action. In the case of a "ta_widen"
4564 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4566 typedef struct text_action_struct text_action
;
4567 typedef struct text_action_list_struct text_action_list
;
4568 typedef enum text_action_enum_t text_action_t
;
4570 enum text_action_enum_t
4573 ta_remove_insn
, /* removed = -size */
4574 ta_remove_longcall
, /* removed = -size */
4575 ta_convert_longcall
, /* removed = 0 */
4576 ta_narrow_insn
, /* removed = -1 */
4577 ta_widen_insn
, /* removed = +1 */
4578 ta_fill
, /* removed = +size */
4584 /* Structure for a text action record. */
4585 struct text_action_struct
4587 text_action_t action
;
4588 asection
*sec
; /* Optional */
4590 bfd_vma virtual_offset
; /* Zero except for adding literals. */
4592 literal_value value
; /* Only valid when adding literals. */
4598 /* List of all of the actions taken on a text section. */
4599 struct text_action_list_struct
4605 static text_action
*
4606 find_fill_action (text_action_list
*l
, asection
*sec
, bfd_vma offset
)
4610 /* It is not necessary to fill at the end of a section. */
4611 if (sec
->size
== offset
)
4614 for (m_p
= &l
->head
; *m_p
&& (*m_p
)->offset
<= offset
; m_p
= &(*m_p
)->next
)
4616 text_action
*t
= *m_p
;
4617 /* When the action is another fill at the same address,
4618 just increase the size. */
4619 if (t
->offset
== offset
&& t
->action
== ta_fill
)
4627 compute_removed_action_diff (const text_action
*ta
,
4631 int removable_space
)
4634 int current_removed
= 0;
4637 current_removed
= ta
->removed_bytes
;
4639 BFD_ASSERT (ta
== NULL
|| ta
->offset
== offset
);
4640 BFD_ASSERT (ta
== NULL
|| ta
->action
== ta_fill
);
4642 /* It is not necessary to fill at the end of a section. Clean this up. */
4643 if (sec
->size
== offset
)
4644 new_removed
= removable_space
- 0;
4648 int added
= -removed
- current_removed
;
4649 /* Ignore multiples of the section alignment. */
4650 added
= ((1 << sec
->alignment_power
) - 1) & added
;
4651 new_removed
= (-added
);
4653 /* Modify for removable. */
4654 space
= removable_space
- new_removed
;
4655 new_removed
= (removable_space
4656 - (((1 << sec
->alignment_power
) - 1) & space
));
4658 return (new_removed
- current_removed
);
4663 adjust_fill_action (text_action
*ta
, int fill_diff
)
4665 ta
->removed_bytes
+= fill_diff
;
4669 /* Add a modification action to the text. For the case of adding or
4670 removing space, modify any current fill and assume that
4671 "unreachable_space" bytes can be freely contracted. Note that a
4672 negative removed value is a fill. */
4675 text_action_add (text_action_list
*l
,
4676 text_action_t action
,
4684 /* It is not necessary to fill at the end of a section. */
4685 if (action
== ta_fill
&& sec
->size
== offset
)
4688 /* It is not necessary to fill 0 bytes. */
4689 if (action
== ta_fill
&& removed
== 0)
4692 for (m_p
= &l
->head
; *m_p
&& (*m_p
)->offset
<= offset
; m_p
= &(*m_p
)->next
)
4694 text_action
*t
= *m_p
;
4695 /* When the action is another fill at the same address,
4696 just increase the size. */
4697 if (t
->offset
== offset
&& t
->action
== ta_fill
&& action
== ta_fill
)
4699 t
->removed_bytes
+= removed
;
4704 /* Create a new record and fill it up. */
4705 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
4706 ta
->action
= action
;
4708 ta
->offset
= offset
;
4709 ta
->removed_bytes
= removed
;
4716 text_action_add_literal (text_action_list
*l
,
4717 text_action_t action
,
4719 const literal_value
*value
,
4724 asection
*sec
= r_reloc_get_section (loc
);
4725 bfd_vma offset
= loc
->target_offset
;
4726 bfd_vma virtual_offset
= loc
->virtual_offset
;
4728 BFD_ASSERT (action
== ta_add_literal
);
4730 for (m_p
= &l
->head
; *m_p
!= NULL
; m_p
= &(*m_p
)->next
)
4732 if ((*m_p
)->offset
> offset
4733 && ((*m_p
)->offset
!= offset
4734 || (*m_p
)->virtual_offset
> virtual_offset
))
4738 /* Create a new record and fill it up. */
4739 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
4740 ta
->action
= action
;
4742 ta
->offset
= offset
;
4743 ta
->virtual_offset
= virtual_offset
;
4745 ta
->removed_bytes
= removed
;
4752 offset_with_removed_text (text_action_list
*action_list
, bfd_vma offset
)
4757 for (r
= action_list
->head
; r
&& r
->offset
<= offset
; r
= r
->next
)
4759 if (r
->offset
< offset
4760 || (r
->action
== ta_fill
&& r
->removed_bytes
< 0))
4761 removed
+= r
->removed_bytes
;
4764 return (offset
- removed
);
4769 offset_with_removed_text_before_fill (text_action_list
*action_list
,
4775 for (r
= action_list
->head
; r
&& r
->offset
< offset
; r
= r
->next
)
4776 removed
+= r
->removed_bytes
;
4778 return (offset
- removed
);
4782 /* The find_insn_action routine will only find non-fill actions. */
4784 static text_action
*
4785 find_insn_action (text_action_list
*action_list
, bfd_vma offset
)
4788 for (t
= action_list
->head
; t
; t
= t
->next
)
4790 if (t
->offset
== offset
)
4797 case ta_remove_insn
:
4798 case ta_remove_longcall
:
4799 case ta_convert_longcall
:
4800 case ta_narrow_insn
:
4803 case ta_remove_literal
:
4804 case ta_add_literal
:
4817 print_action_list (FILE *fp
, text_action_list
*action_list
)
4821 fprintf (fp
, "Text Action\n");
4822 for (r
= action_list
->head
; r
!= NULL
; r
= r
->next
)
4824 const char *t
= "unknown";
4827 case ta_remove_insn
:
4828 t
= "remove_insn"; break;
4829 case ta_remove_longcall
:
4830 t
= "remove_longcall"; break;
4831 case ta_convert_longcall
:
4832 t
= "remove_longcall"; break;
4833 case ta_narrow_insn
:
4834 t
= "narrow_insn"; break;
4836 t
= "widen_insn"; break;
4841 case ta_remove_literal
:
4842 t
= "remove_literal"; break;
4843 case ta_add_literal
:
4844 t
= "add_literal"; break;
4847 fprintf (fp
, "%s: %s[0x%lx] \"%s\" %d\n",
4848 r
->sec
->owner
->filename
,
4849 r
->sec
->name
, r
->offset
, t
, r
->removed_bytes
);
4856 /* Lists of literals being coalesced or removed. */
4858 /* In the usual case, the literal identified by "from" is being
4859 coalesced with another literal identified by "to". If the literal is
4860 unused and is being removed altogether, "to.abfd" will be NULL.
4861 The removed_literal entries are kept on a per-section list, sorted
4862 by the "from" offset field. */
4864 typedef struct removed_literal_struct removed_literal
;
4865 typedef struct removed_literal_list_struct removed_literal_list
;
4867 struct removed_literal_struct
4871 removed_literal
*next
;
4874 struct removed_literal_list_struct
4876 removed_literal
*head
;
4877 removed_literal
*tail
;
4881 /* Record that the literal at "from" is being removed. If "to" is not
4882 NULL, the "from" literal is being coalesced with the "to" literal. */
4885 add_removed_literal (removed_literal_list
*removed_list
,
4886 const r_reloc
*from
,
4889 removed_literal
*r
, *new_r
, *next_r
;
4891 new_r
= (removed_literal
*) bfd_zmalloc (sizeof (removed_literal
));
4893 new_r
->from
= *from
;
4897 new_r
->to
.abfd
= NULL
;
4900 r
= removed_list
->head
;
4903 removed_list
->head
= new_r
;
4904 removed_list
->tail
= new_r
;
4906 /* Special check for common case of append. */
4907 else if (removed_list
->tail
->from
.target_offset
< from
->target_offset
)
4909 removed_list
->tail
->next
= new_r
;
4910 removed_list
->tail
= new_r
;
4914 while (r
->from
.target_offset
< from
->target_offset
&& r
->next
)
4920 new_r
->next
= next_r
;
4922 removed_list
->tail
= new_r
;
4927 /* Check if the list of removed literals contains an entry for the
4928 given address. Return the entry if found. */
4930 static removed_literal
*
4931 find_removed_literal (removed_literal_list
*removed_list
, bfd_vma addr
)
4933 removed_literal
*r
= removed_list
->head
;
4934 while (r
&& r
->from
.target_offset
< addr
)
4936 if (r
&& r
->from
.target_offset
== addr
)
4945 print_removed_literals (FILE *fp
, removed_literal_list
*removed_list
)
4948 r
= removed_list
->head
;
4950 fprintf (fp
, "Removed Literals\n");
4951 for (; r
!= NULL
; r
= r
->next
)
4953 print_r_reloc (fp
, &r
->from
);
4954 fprintf (fp
, " => ");
4955 if (r
->to
.abfd
== NULL
)
4956 fprintf (fp
, "REMOVED");
4958 print_r_reloc (fp
, &r
->to
);
4966 /* Per-section data for relaxation. */
4968 typedef struct reloc_bfd_fix_struct reloc_bfd_fix
;
4970 struct xtensa_relax_info_struct
4972 bfd_boolean is_relaxable_literal_section
;
4973 bfd_boolean is_relaxable_asm_section
;
4974 int visited
; /* Number of times visited. */
4976 source_reloc
*src_relocs
; /* Array[src_count]. */
4978 int src_next
; /* Next src_relocs entry to assign. */
4980 removed_literal_list removed_list
;
4981 text_action_list action_list
;
4983 reloc_bfd_fix
*fix_list
;
4984 reloc_bfd_fix
*fix_array
;
4985 unsigned fix_array_count
;
4987 /* Support for expanding the reloc array that is stored
4988 in the section structure. If the relocations have been
4989 reallocated, the newly allocated relocations will be referenced
4990 here along with the actual size allocated. The relocation
4991 count will always be found in the section structure. */
4992 Elf_Internal_Rela
*allocated_relocs
;
4993 unsigned relocs_count
;
4994 unsigned allocated_relocs_count
;
4997 struct elf_xtensa_section_data
4999 struct bfd_elf_section_data elf
;
5000 xtensa_relax_info relax_info
;
5005 elf_xtensa_new_section_hook (bfd
*abfd
, asection
*sec
)
5007 struct elf_xtensa_section_data
*sdata
;
5008 bfd_size_type amt
= sizeof (*sdata
);
5010 sdata
= (struct elf_xtensa_section_data
*) bfd_zalloc (abfd
, amt
);
5013 sec
->used_by_bfd
= (void *) sdata
;
5015 return _bfd_elf_new_section_hook (abfd
, sec
);
5019 static xtensa_relax_info
*
5020 get_xtensa_relax_info (asection
*sec
)
5022 struct elf_xtensa_section_data
*section_data
;
5024 /* No info available if no section or if it is an output section. */
5025 if (!sec
|| sec
== sec
->output_section
)
5028 section_data
= (struct elf_xtensa_section_data
*) elf_section_data (sec
);
5029 return §ion_data
->relax_info
;
5034 init_xtensa_relax_info (asection
*sec
)
5036 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5038 relax_info
->is_relaxable_literal_section
= FALSE
;
5039 relax_info
->is_relaxable_asm_section
= FALSE
;
5040 relax_info
->visited
= 0;
5042 relax_info
->src_relocs
= NULL
;
5043 relax_info
->src_count
= 0;
5044 relax_info
->src_next
= 0;
5046 relax_info
->removed_list
.head
= NULL
;
5047 relax_info
->removed_list
.tail
= NULL
;
5049 relax_info
->action_list
.head
= NULL
;
5051 relax_info
->fix_list
= NULL
;
5052 relax_info
->fix_array
= NULL
;
5053 relax_info
->fix_array_count
= 0;
5055 relax_info
->allocated_relocs
= NULL
;
5056 relax_info
->relocs_count
= 0;
5057 relax_info
->allocated_relocs_count
= 0;
5061 /* Coalescing literals may require a relocation to refer to a section in
5062 a different input file, but the standard relocation information
5063 cannot express that. Instead, the reloc_bfd_fix structures are used
5064 to "fix" the relocations that refer to sections in other input files.
5065 These structures are kept on per-section lists. The "src_type" field
5066 records the relocation type in case there are multiple relocations on
5067 the same location. FIXME: This is ugly; an alternative might be to
5068 add new symbols with the "owner" field to some other input file. */
5070 struct reloc_bfd_fix_struct
5074 unsigned src_type
; /* Relocation type. */
5077 asection
*target_sec
;
5078 bfd_vma target_offset
;
5079 bfd_boolean translated
;
5081 reloc_bfd_fix
*next
;
5085 static reloc_bfd_fix
*
5086 reloc_bfd_fix_init (asection
*src_sec
,
5090 asection
*target_sec
,
5091 bfd_vma target_offset
,
5092 bfd_boolean translated
)
5096 fix
= (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
));
5097 fix
->src_sec
= src_sec
;
5098 fix
->src_offset
= src_offset
;
5099 fix
->src_type
= src_type
;
5100 fix
->target_abfd
= target_abfd
;
5101 fix
->target_sec
= target_sec
;
5102 fix
->target_offset
= target_offset
;
5103 fix
->translated
= translated
;
5110 add_fix (asection
*src_sec
, reloc_bfd_fix
*fix
)
5112 xtensa_relax_info
*relax_info
;
5114 relax_info
= get_xtensa_relax_info (src_sec
);
5115 fix
->next
= relax_info
->fix_list
;
5116 relax_info
->fix_list
= fix
;
5121 fix_compare (const void *ap
, const void *bp
)
5123 const reloc_bfd_fix
*a
= (const reloc_bfd_fix
*) ap
;
5124 const reloc_bfd_fix
*b
= (const reloc_bfd_fix
*) bp
;
5126 if (a
->src_offset
!= b
->src_offset
)
5127 return (a
->src_offset
- b
->src_offset
);
5128 return (a
->src_type
- b
->src_type
);
5133 cache_fix_array (asection
*sec
)
5135 unsigned i
, count
= 0;
5137 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5139 if (relax_info
== NULL
)
5141 if (relax_info
->fix_list
== NULL
)
5144 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
5147 relax_info
->fix_array
=
5148 (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
) * count
);
5149 relax_info
->fix_array_count
= count
;
5151 r
= relax_info
->fix_list
;
5152 for (i
= 0; i
< count
; i
++, r
= r
->next
)
5154 relax_info
->fix_array
[count
- 1 - i
] = *r
;
5155 relax_info
->fix_array
[count
- 1 - i
].next
= NULL
;
5158 qsort (relax_info
->fix_array
, relax_info
->fix_array_count
,
5159 sizeof (reloc_bfd_fix
), fix_compare
);
5163 static reloc_bfd_fix
*
5164 get_bfd_fix (asection
*sec
, bfd_vma offset
, unsigned type
)
5166 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5170 if (relax_info
== NULL
)
5172 if (relax_info
->fix_list
== NULL
)
5175 if (relax_info
->fix_array
== NULL
)
5176 cache_fix_array (sec
);
5178 key
.src_offset
= offset
;
5179 key
.src_type
= type
;
5180 rv
= bsearch (&key
, relax_info
->fix_array
, relax_info
->fix_array_count
,
5181 sizeof (reloc_bfd_fix
), fix_compare
);
5186 /* Section caching. */
5188 typedef struct section_cache_struct section_cache_t
;
5190 struct section_cache_struct
5194 bfd_byte
*contents
; /* Cache of the section contents. */
5195 bfd_size_type content_length
;
5197 property_table_entry
*ptbl
; /* Cache of the section property table. */
5200 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
5201 unsigned reloc_count
;
5206 init_section_cache (section_cache_t
*sec_cache
)
5208 memset (sec_cache
, 0, sizeof (*sec_cache
));
5213 clear_section_cache (section_cache_t
*sec_cache
)
5217 release_contents (sec_cache
->sec
, sec_cache
->contents
);
5218 release_internal_relocs (sec_cache
->sec
, sec_cache
->relocs
);
5219 if (sec_cache
->ptbl
)
5220 free (sec_cache
->ptbl
);
5221 memset (sec_cache
, 0, sizeof (sec_cache
));
5227 section_cache_section (section_cache_t
*sec_cache
,
5229 struct bfd_link_info
*link_info
)
5232 property_table_entry
*prop_table
= NULL
;
5234 bfd_byte
*contents
= NULL
;
5235 Elf_Internal_Rela
*internal_relocs
= NULL
;
5236 bfd_size_type sec_size
;
5240 if (sec
== sec_cache
->sec
)
5244 sec_size
= bfd_get_section_limit (abfd
, sec
);
5246 /* Get the contents. */
5247 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
5248 if (contents
== NULL
&& sec_size
!= 0)
5251 /* Get the relocations. */
5252 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
5253 link_info
->keep_memory
);
5255 /* Get the entry table. */
5256 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
5257 XTENSA_PROP_SEC_NAME
, FALSE
);
5261 /* Fill in the new section cache. */
5262 clear_section_cache (sec_cache
);
5263 memset (sec_cache
, 0, sizeof (sec_cache
));
5265 sec_cache
->sec
= sec
;
5266 sec_cache
->contents
= contents
;
5267 sec_cache
->content_length
= sec_size
;
5268 sec_cache
->relocs
= internal_relocs
;
5269 sec_cache
->reloc_count
= sec
->reloc_count
;
5270 sec_cache
->pte_count
= ptblsize
;
5271 sec_cache
->ptbl
= prop_table
;
5276 release_contents (sec
, contents
);
5277 release_internal_relocs (sec
, internal_relocs
);
5284 /* Extended basic blocks. */
5286 /* An ebb_struct represents an Extended Basic Block. Within this
5287 range, we guarantee that all instructions are decodable, the
5288 property table entries are contiguous, and no property table
5289 specifies a segment that cannot have instructions moved. This
5290 structure contains caches of the contents, property table and
5291 relocations for the specified section for easy use. The range is
5292 specified by ranges of indices for the byte offset, property table
5293 offsets and relocation offsets. These must be consistent. */
5295 typedef struct ebb_struct ebb_t
;
5301 bfd_byte
*contents
; /* Cache of the section contents. */
5302 bfd_size_type content_length
;
5304 property_table_entry
*ptbl
; /* Cache of the section property table. */
5307 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
5308 unsigned reloc_count
;
5310 bfd_vma start_offset
; /* Offset in section. */
5311 unsigned start_ptbl_idx
; /* Offset in the property table. */
5312 unsigned start_reloc_idx
; /* Offset in the relocations. */
5315 unsigned end_ptbl_idx
;
5316 unsigned end_reloc_idx
;
5318 bfd_boolean ends_section
; /* Is this the last ebb in a section? */
5320 /* The unreachable property table at the end of this set of blocks;
5321 NULL if the end is not an unreachable block. */
5322 property_table_entry
*ends_unreachable
;
5326 enum ebb_target_enum
5329 EBB_DESIRE_TGT_ALIGN
,
5330 EBB_REQUIRE_TGT_ALIGN
,
5331 EBB_REQUIRE_LOOP_ALIGN
,
5336 /* proposed_action_struct is similar to the text_action_struct except
5337 that is represents a potential transformation, not one that will
5338 occur. We build a list of these for an extended basic block
5339 and use them to compute the actual actions desired. We must be
5340 careful that the entire set of actual actions we perform do not
5341 break any relocations that would fit if the actions were not
5344 typedef struct proposed_action_struct proposed_action
;
5346 struct proposed_action_struct
5348 enum ebb_target_enum align_type
; /* for the target alignment */
5349 bfd_vma alignment_pow
;
5350 text_action_t action
;
5353 bfd_boolean do_action
; /* If false, then we will not perform the action. */
5357 /* The ebb_constraint_struct keeps a set of proposed actions for an
5358 extended basic block. */
5360 typedef struct ebb_constraint_struct ebb_constraint
;
5362 struct ebb_constraint_struct
5365 bfd_boolean start_movable
;
5367 /* Bytes of extra space at the beginning if movable. */
5368 int start_extra_space
;
5370 enum ebb_target_enum start_align
;
5372 bfd_boolean end_movable
;
5374 /* Bytes of extra space at the end if movable. */
5375 int end_extra_space
;
5377 unsigned action_count
;
5378 unsigned action_allocated
;
5380 /* Array of proposed actions. */
5381 proposed_action
*actions
;
5383 /* Action alignments -- one for each proposed action. */
5384 enum ebb_target_enum
*action_aligns
;
5389 init_ebb_constraint (ebb_constraint
*c
)
5391 memset (c
, 0, sizeof (ebb_constraint
));
5396 free_ebb_constraint (ebb_constraint
*c
)
5404 init_ebb (ebb_t
*ebb
,
5407 bfd_size_type content_length
,
5408 property_table_entry
*prop_table
,
5410 Elf_Internal_Rela
*internal_relocs
,
5411 unsigned reloc_count
)
5413 memset (ebb
, 0, sizeof (ebb_t
));
5415 ebb
->contents
= contents
;
5416 ebb
->content_length
= content_length
;
5417 ebb
->ptbl
= prop_table
;
5418 ebb
->pte_count
= ptblsize
;
5419 ebb
->relocs
= internal_relocs
;
5420 ebb
->reloc_count
= reloc_count
;
5421 ebb
->start_offset
= 0;
5422 ebb
->end_offset
= ebb
->content_length
- 1;
5423 ebb
->start_ptbl_idx
= 0;
5424 ebb
->end_ptbl_idx
= ptblsize
;
5425 ebb
->start_reloc_idx
= 0;
5426 ebb
->end_reloc_idx
= reloc_count
;
5430 /* Extend the ebb to all decodable contiguous sections. The algorithm
5431 for building a basic block around an instruction is to push it
5432 forward until we hit the end of a section, an unreachable block or
5433 a block that cannot be transformed. Then we push it backwards
5434 searching for similar conditions. */
5436 static bfd_boolean
extend_ebb_bounds_forward (ebb_t
*);
5437 static bfd_boolean
extend_ebb_bounds_backward (ebb_t
*);
5438 static bfd_size_type insn_block_decodable_len
5439 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_size_type
);
5442 extend_ebb_bounds (ebb_t
*ebb
)
5444 if (!extend_ebb_bounds_forward (ebb
))
5446 if (!extend_ebb_bounds_backward (ebb
))
5453 extend_ebb_bounds_forward (ebb_t
*ebb
)
5455 property_table_entry
*the_entry
, *new_entry
;
5457 the_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
5459 /* Stop when (1) we cannot decode an instruction, (2) we are at
5460 the end of the property tables, (3) we hit a non-contiguous property
5461 table entry, (4) we hit a NO_TRANSFORM region. */
5466 bfd_size_type insn_block_len
;
5468 entry_end
= the_entry
->address
- ebb
->sec
->vma
+ the_entry
->size
;
5470 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
5472 entry_end
- ebb
->end_offset
);
5473 if (insn_block_len
!= (entry_end
- ebb
->end_offset
))
5475 (*_bfd_error_handler
)
5476 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5477 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
5480 ebb
->end_offset
+= insn_block_len
;
5482 if (ebb
->end_offset
== ebb
->sec
->size
)
5483 ebb
->ends_section
= TRUE
;
5485 /* Update the reloc counter. */
5486 while (ebb
->end_reloc_idx
+ 1 < ebb
->reloc_count
5487 && (ebb
->relocs
[ebb
->end_reloc_idx
+ 1].r_offset
5490 ebb
->end_reloc_idx
++;
5493 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
5496 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
5497 if (((new_entry
->flags
& XTENSA_PROP_INSN
) == 0)
5498 || ((new_entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
) != 0)
5499 || ((the_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
5502 if (the_entry
->address
+ the_entry
->size
!= new_entry
->address
)
5505 the_entry
= new_entry
;
5506 ebb
->end_ptbl_idx
++;
5509 /* Quick check for an unreachable or end of file just at the end. */
5510 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
5512 if (ebb
->end_offset
== ebb
->content_length
)
5513 ebb
->ends_section
= TRUE
;
5517 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
5518 if ((new_entry
->flags
& XTENSA_PROP_UNREACHABLE
) != 0
5519 && the_entry
->address
+ the_entry
->size
== new_entry
->address
)
5520 ebb
->ends_unreachable
= new_entry
;
5523 /* Any other ending requires exact alignment. */
5529 extend_ebb_bounds_backward (ebb_t
*ebb
)
5531 property_table_entry
*the_entry
, *new_entry
;
5533 the_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
5535 /* Stop when (1) we cannot decode the instructions in the current entry.
5536 (2) we are at the beginning of the property tables, (3) we hit a
5537 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5541 bfd_vma block_begin
;
5542 bfd_size_type insn_block_len
;
5544 block_begin
= the_entry
->address
- ebb
->sec
->vma
;
5546 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
5548 ebb
->start_offset
- block_begin
);
5549 if (insn_block_len
!= ebb
->start_offset
- block_begin
)
5551 (*_bfd_error_handler
)
5552 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5553 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
5556 ebb
->start_offset
-= insn_block_len
;
5558 /* Update the reloc counter. */
5559 while (ebb
->start_reloc_idx
> 0
5560 && (ebb
->relocs
[ebb
->start_reloc_idx
- 1].r_offset
5561 >= ebb
->start_offset
))
5563 ebb
->start_reloc_idx
--;
5566 if (ebb
->start_ptbl_idx
== 0)
5569 new_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
- 1];
5570 if ((new_entry
->flags
& XTENSA_PROP_INSN
) == 0
5571 || ((new_entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
) != 0)
5572 || ((new_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
5574 if (new_entry
->address
+ new_entry
->size
!= the_entry
->address
)
5577 the_entry
= new_entry
;
5578 ebb
->start_ptbl_idx
--;
5584 static bfd_size_type
5585 insn_block_decodable_len (bfd_byte
*contents
,
5586 bfd_size_type content_len
,
5587 bfd_vma block_offset
,
5588 bfd_size_type block_len
)
5590 bfd_vma offset
= block_offset
;
5592 while (offset
< block_offset
+ block_len
)
5594 bfd_size_type insn_len
= 0;
5596 insn_len
= insn_decode_len (contents
, content_len
, offset
);
5598 return (offset
- block_offset
);
5601 return (offset
- block_offset
);
5606 ebb_propose_action (ebb_constraint
*c
,
5607 enum ebb_target_enum align_type
,
5608 bfd_vma alignment_pow
,
5609 text_action_t action
,
5612 bfd_boolean do_action
)
5614 proposed_action
*act
;
5616 if (c
->action_allocated
<= c
->action_count
)
5618 unsigned new_allocated
, i
;
5619 proposed_action
*new_actions
;
5621 new_allocated
= (c
->action_count
+ 2) * 2;
5622 new_actions
= (proposed_action
*)
5623 bfd_zmalloc (sizeof (proposed_action
) * new_allocated
);
5625 for (i
= 0; i
< c
->action_count
; i
++)
5626 new_actions
[i
] = c
->actions
[i
];
5629 c
->actions
= new_actions
;
5630 c
->action_allocated
= new_allocated
;
5633 act
= &c
->actions
[c
->action_count
];
5634 act
->align_type
= align_type
;
5635 act
->alignment_pow
= alignment_pow
;
5636 act
->action
= action
;
5637 act
->offset
= offset
;
5638 act
->removed_bytes
= removed_bytes
;
5639 act
->do_action
= do_action
;
5645 /* Access to internal relocations, section contents and symbols. */
5647 /* During relaxation, we need to modify relocations, section contents,
5648 and symbol definitions, and we need to keep the original values from
5649 being reloaded from the input files, i.e., we need to "pin" the
5650 modified values in memory. We also want to continue to observe the
5651 setting of the "keep-memory" flag. The following functions wrap the
5652 standard BFD functions to take care of this for us. */
5654 static Elf_Internal_Rela
*
5655 retrieve_internal_relocs (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
5657 Elf_Internal_Rela
*internal_relocs
;
5659 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
5662 internal_relocs
= elf_section_data (sec
)->relocs
;
5663 if (internal_relocs
== NULL
)
5664 internal_relocs
= (_bfd_elf_link_read_relocs
5665 (abfd
, sec
, NULL
, NULL
, keep_memory
));
5666 return internal_relocs
;
5671 pin_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
5673 elf_section_data (sec
)->relocs
= internal_relocs
;
5678 release_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
5681 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5682 free (internal_relocs
);
5687 retrieve_contents (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
5690 bfd_size_type sec_size
;
5692 sec_size
= bfd_get_section_limit (abfd
, sec
);
5693 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5695 if (contents
== NULL
&& sec_size
!= 0)
5697 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5704 elf_section_data (sec
)->this_hdr
.contents
= contents
;
5711 pin_contents (asection
*sec
, bfd_byte
*contents
)
5713 elf_section_data (sec
)->this_hdr
.contents
= contents
;
5718 release_contents (asection
*sec
, bfd_byte
*contents
)
5720 if (contents
&& elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5725 static Elf_Internal_Sym
*
5726 retrieve_local_syms (bfd
*input_bfd
)
5728 Elf_Internal_Shdr
*symtab_hdr
;
5729 Elf_Internal_Sym
*isymbuf
;
5732 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5733 locsymcount
= symtab_hdr
->sh_info
;
5735 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
5736 if (isymbuf
== NULL
&& locsymcount
!= 0)
5737 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
5740 /* Save the symbols for this input file so they won't be read again. */
5741 if (isymbuf
&& isymbuf
!= (Elf_Internal_Sym
*) symtab_hdr
->contents
)
5742 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
5748 /* Code for link-time relaxation. */
5750 /* Initialization for relaxation: */
5751 static bfd_boolean
analyze_relocations (struct bfd_link_info
*);
5752 static bfd_boolean find_relaxable_sections
5753 (bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*);
5754 static bfd_boolean collect_source_relocs
5755 (bfd
*, asection
*, struct bfd_link_info
*);
5756 static bfd_boolean is_resolvable_asm_expansion
5757 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, struct bfd_link_info
*,
5759 static Elf_Internal_Rela
*find_associated_l32r_irel
5760 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, Elf_Internal_Rela
*);
5761 static bfd_boolean compute_text_actions
5762 (bfd
*, asection
*, struct bfd_link_info
*);
5763 static bfd_boolean
compute_ebb_proposed_actions (ebb_constraint
*);
5764 static bfd_boolean
compute_ebb_actions (ebb_constraint
*);
5765 static bfd_boolean check_section_ebb_pcrels_fit
5766 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, const ebb_constraint
*);
5767 static bfd_boolean
check_section_ebb_reduces (const ebb_constraint
*);
5768 static void text_action_add_proposed
5769 (text_action_list
*, const ebb_constraint
*, asection
*);
5770 static int compute_fill_extra_space (property_table_entry
*);
5773 static bfd_boolean compute_removed_literals
5774 (bfd
*, asection
*, struct bfd_link_info
*, value_map_hash_table
*);
5775 static Elf_Internal_Rela
*get_irel_at_offset
5776 (asection
*, Elf_Internal_Rela
*, bfd_vma
);
5777 static bfd_boolean is_removable_literal
5778 (const source_reloc
*, int, const source_reloc
*, int);
5779 static bfd_boolean remove_dead_literal
5780 (bfd
*, asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
5781 Elf_Internal_Rela
*, source_reloc
*, property_table_entry
*, int);
5782 static bfd_boolean identify_literal_placement
5783 (bfd
*, asection
*, bfd_byte
*, struct bfd_link_info
*,
5784 value_map_hash_table
*, bfd_boolean
*, Elf_Internal_Rela
*, int,
5785 source_reloc
*, property_table_entry
*, int, section_cache_t
*,
5787 static bfd_boolean
relocations_reach (source_reloc
*, int, const r_reloc
*);
5788 static bfd_boolean coalesce_shared_literal
5789 (asection
*, source_reloc
*, property_table_entry
*, int, value_map
*);
5790 static bfd_boolean move_shared_literal
5791 (asection
*, struct bfd_link_info
*, source_reloc
*, property_table_entry
*,
5792 int, const r_reloc
*, const literal_value
*, section_cache_t
*);
5795 static bfd_boolean
relax_section (bfd
*, asection
*, struct bfd_link_info
*);
5796 static bfd_boolean
translate_section_fixes (asection
*);
5797 static bfd_boolean
translate_reloc_bfd_fix (reloc_bfd_fix
*);
5798 static void translate_reloc (const r_reloc
*, r_reloc
*);
5799 static void shrink_dynamic_reloc_sections
5800 (struct bfd_link_info
*, bfd
*, asection
*, Elf_Internal_Rela
*);
5801 static bfd_boolean move_literal
5802 (bfd
*, struct bfd_link_info
*, asection
*, bfd_vma
, bfd_byte
*,
5803 xtensa_relax_info
*, Elf_Internal_Rela
**, const literal_value
*);
5804 static bfd_boolean relax_property_section
5805 (bfd
*, asection
*, struct bfd_link_info
*);
5808 static bfd_boolean
relax_section_symbols (bfd
*, asection
*);
5812 elf_xtensa_relax_section (bfd
*abfd
,
5814 struct bfd_link_info
*link_info
,
5817 static value_map_hash_table
*values
= NULL
;
5818 static bfd_boolean relocations_analyzed
= FALSE
;
5819 xtensa_relax_info
*relax_info
;
5821 if (!relocations_analyzed
)
5823 /* Do some overall initialization for relaxation. */
5824 values
= value_map_hash_table_init ();
5827 relaxing_section
= TRUE
;
5828 if (!analyze_relocations (link_info
))
5830 relocations_analyzed
= TRUE
;
5834 /* Don't mess with linker-created sections. */
5835 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
5838 relax_info
= get_xtensa_relax_info (sec
);
5839 BFD_ASSERT (relax_info
!= NULL
);
5841 switch (relax_info
->visited
)
5844 /* Note: It would be nice to fold this pass into
5845 analyze_relocations, but it is important for this step that the
5846 sections be examined in link order. */
5847 if (!compute_removed_literals (abfd
, sec
, link_info
, values
))
5854 value_map_hash_table_delete (values
);
5856 if (!relax_section (abfd
, sec
, link_info
))
5862 if (!relax_section_symbols (abfd
, sec
))
5867 relax_info
->visited
++;
5872 /* Initialization for relaxation. */
5874 /* This function is called once at the start of relaxation. It scans
5875 all the input sections and marks the ones that are relaxable (i.e.,
5876 literal sections with L32R relocations against them), and then
5877 collects source_reloc information for all the relocations against
5878 those relaxable sections. During this process, it also detects
5879 longcalls, i.e., calls relaxed by the assembler into indirect
5880 calls, that can be optimized back into direct calls. Within each
5881 extended basic block (ebb) containing an optimized longcall, it
5882 computes a set of "text actions" that can be performed to remove
5883 the L32R associated with the longcall while optionally preserving
5884 branch target alignments. */
5887 analyze_relocations (struct bfd_link_info
*link_info
)
5891 bfd_boolean is_relaxable
= FALSE
;
5893 /* Initialize the per-section relaxation info. */
5894 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5895 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5897 init_xtensa_relax_info (sec
);
5900 /* Mark relaxable sections (and count relocations against each one). */
5901 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5902 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5904 if (!find_relaxable_sections (abfd
, sec
, link_info
, &is_relaxable
))
5908 /* Bail out if there are no relaxable sections. */
5912 /* Allocate space for source_relocs. */
5913 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5914 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5916 xtensa_relax_info
*relax_info
;
5918 relax_info
= get_xtensa_relax_info (sec
);
5919 if (relax_info
->is_relaxable_literal_section
5920 || relax_info
->is_relaxable_asm_section
)
5922 relax_info
->src_relocs
= (source_reloc
*)
5923 bfd_malloc (relax_info
->src_count
* sizeof (source_reloc
));
5927 /* Collect info on relocations against each relaxable section. */
5928 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5929 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5931 if (!collect_source_relocs (abfd
, sec
, link_info
))
5935 /* Compute the text actions. */
5936 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5937 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5939 if (!compute_text_actions (abfd
, sec
, link_info
))
5947 /* Find all the sections that might be relaxed. The motivation for
5948 this pass is that collect_source_relocs() needs to record _all_ the
5949 relocations that target each relaxable section. That is expensive
5950 and unnecessary unless the target section is actually going to be
5951 relaxed. This pass identifies all such sections by checking if
5952 they have L32Rs pointing to them. In the process, the total number
5953 of relocations targeting each section is also counted so that we
5954 know how much space to allocate for source_relocs against each
5955 relaxable literal section. */
5958 find_relaxable_sections (bfd
*abfd
,
5960 struct bfd_link_info
*link_info
,
5961 bfd_boolean
*is_relaxable_p
)
5963 Elf_Internal_Rela
*internal_relocs
;
5965 bfd_boolean ok
= TRUE
;
5967 xtensa_relax_info
*source_relax_info
;
5969 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
5970 link_info
->keep_memory
);
5971 if (internal_relocs
== NULL
)
5974 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
5975 if (contents
== NULL
&& sec
->size
!= 0)
5981 source_relax_info
= get_xtensa_relax_info (sec
);
5982 for (i
= 0; i
< sec
->reloc_count
; i
++)
5984 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
5986 asection
*target_sec
;
5987 xtensa_relax_info
*target_relax_info
;
5989 /* If this section has not already been marked as "relaxable", and
5990 if it contains any ASM_EXPAND relocations (marking expanded
5991 longcalls) that can be optimized into direct calls, then mark
5992 the section as "relaxable". */
5993 if (source_relax_info
5994 && !source_relax_info
->is_relaxable_asm_section
5995 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_EXPAND
)
5997 bfd_boolean is_reachable
= FALSE
;
5998 if (is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
,
5999 link_info
, &is_reachable
)
6002 source_relax_info
->is_relaxable_asm_section
= TRUE
;
6003 *is_relaxable_p
= TRUE
;
6007 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
6008 bfd_get_section_limit (abfd
, sec
));
6010 target_sec
= r_reloc_get_section (&r_rel
);
6011 target_relax_info
= get_xtensa_relax_info (target_sec
);
6012 if (!target_relax_info
)
6015 /* Count PC-relative operand relocations against the target section.
6016 Note: The conditions tested here must match the conditions under
6017 which init_source_reloc is called in collect_source_relocs(). */
6018 if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
))
6019 && (!is_alt_relocation (ELF32_R_TYPE (irel
->r_info
))
6020 || is_l32r_relocation (abfd
, sec
, contents
, irel
)))
6021 target_relax_info
->src_count
++;
6023 if (is_l32r_relocation (abfd
, sec
, contents
, irel
)
6024 && r_reloc_is_defined (&r_rel
))
6026 /* Mark the target section as relaxable. */
6027 target_relax_info
->is_relaxable_literal_section
= TRUE
;
6028 *is_relaxable_p
= TRUE
;
6033 release_contents (sec
, contents
);
6034 release_internal_relocs (sec
, internal_relocs
);
6039 /* Record _all_ the relocations that point to relaxable sections, and
6040 get rid of ASM_EXPAND relocs by either converting them to
6041 ASM_SIMPLIFY or by removing them. */
6044 collect_source_relocs (bfd
*abfd
,
6046 struct bfd_link_info
*link_info
)
6048 Elf_Internal_Rela
*internal_relocs
;
6050 bfd_boolean ok
= TRUE
;
6052 bfd_size_type sec_size
;
6054 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6055 link_info
->keep_memory
);
6056 if (internal_relocs
== NULL
)
6059 sec_size
= bfd_get_section_limit (abfd
, sec
);
6060 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6061 if (contents
== NULL
&& sec_size
!= 0)
6067 /* Record relocations against relaxable literal sections. */
6068 for (i
= 0; i
< sec
->reloc_count
; i
++)
6070 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6072 asection
*target_sec
;
6073 xtensa_relax_info
*target_relax_info
;
6075 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
6077 target_sec
= r_reloc_get_section (&r_rel
);
6078 target_relax_info
= get_xtensa_relax_info (target_sec
);
6080 if (target_relax_info
6081 && (target_relax_info
->is_relaxable_literal_section
6082 || target_relax_info
->is_relaxable_asm_section
))
6084 xtensa_opcode opcode
= XTENSA_UNDEFINED
;
6086 bfd_boolean is_abs_literal
= FALSE
;
6088 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
6090 /* None of the current alternate relocs are PC-relative,
6091 and only PC-relative relocs matter here. However, we
6092 still need to record the opcode for literal
6094 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
6095 if (opcode
== get_l32r_opcode ())
6097 is_abs_literal
= TRUE
;
6101 opcode
= XTENSA_UNDEFINED
;
6103 else if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
6105 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
6106 opnd
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
6109 if (opcode
!= XTENSA_UNDEFINED
)
6111 int src_next
= target_relax_info
->src_next
++;
6112 source_reloc
*s_reloc
= &target_relax_info
->src_relocs
[src_next
];
6114 init_source_reloc (s_reloc
, sec
, &r_rel
, opcode
, opnd
,
6120 /* Now get rid of ASM_EXPAND relocations. At this point, the
6121 src_relocs array for the target literal section may still be
6122 incomplete, but it must at least contain the entries for the L32R
6123 relocations associated with ASM_EXPANDs because they were just
6124 added in the preceding loop over the relocations. */
6126 for (i
= 0; i
< sec
->reloc_count
; i
++)
6128 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6129 bfd_boolean is_reachable
;
6131 if (!is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
, link_info
,
6137 Elf_Internal_Rela
*l32r_irel
;
6139 asection
*target_sec
;
6140 xtensa_relax_info
*target_relax_info
;
6142 /* Mark the source_reloc for the L32R so that it will be
6143 removed in compute_removed_literals(), along with the
6144 associated literal. */
6145 l32r_irel
= find_associated_l32r_irel (abfd
, sec
, contents
,
6146 irel
, internal_relocs
);
6147 if (l32r_irel
== NULL
)
6150 r_reloc_init (&r_rel
, abfd
, l32r_irel
, contents
, sec_size
);
6152 target_sec
= r_reloc_get_section (&r_rel
);
6153 target_relax_info
= get_xtensa_relax_info (target_sec
);
6155 if (target_relax_info
6156 && (target_relax_info
->is_relaxable_literal_section
6157 || target_relax_info
->is_relaxable_asm_section
))
6159 source_reloc
*s_reloc
;
6161 /* Search the source_relocs for the entry corresponding to
6162 the l32r_irel. Note: The src_relocs array is not yet
6163 sorted, but it wouldn't matter anyway because we're
6164 searching by source offset instead of target offset. */
6165 s_reloc
= find_source_reloc (target_relax_info
->src_relocs
,
6166 target_relax_info
->src_next
,
6168 BFD_ASSERT (s_reloc
);
6169 s_reloc
->is_null
= TRUE
;
6172 /* Convert this reloc to ASM_SIMPLIFY. */
6173 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
),
6174 R_XTENSA_ASM_SIMPLIFY
);
6175 l32r_irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
6177 pin_internal_relocs (sec
, internal_relocs
);
6181 /* It is resolvable but doesn't reach. We resolve now
6182 by eliminating the relocation -- the call will remain
6183 expanded into L32R/CALLX. */
6184 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
6185 pin_internal_relocs (sec
, internal_relocs
);
6190 release_contents (sec
, contents
);
6191 release_internal_relocs (sec
, internal_relocs
);
6196 /* Return TRUE if the asm expansion can be resolved. Generally it can
6197 be resolved on a final link or when a partial link locates it in the
6198 same section as the target. Set "is_reachable" flag if the target of
6199 the call is within the range of a direct call, given the current VMA
6200 for this section and the target section. */
6203 is_resolvable_asm_expansion (bfd
*abfd
,
6206 Elf_Internal_Rela
*irel
,
6207 struct bfd_link_info
*link_info
,
6208 bfd_boolean
*is_reachable_p
)
6210 asection
*target_sec
;
6211 bfd_vma target_offset
;
6213 xtensa_opcode opcode
, direct_call_opcode
;
6214 bfd_vma self_address
;
6215 bfd_vma dest_address
;
6216 bfd_boolean uses_l32r
;
6217 bfd_size_type sec_size
;
6219 *is_reachable_p
= FALSE
;
6221 if (contents
== NULL
)
6224 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_EXPAND
)
6227 sec_size
= bfd_get_section_limit (abfd
, sec
);
6228 opcode
= get_expanded_call_opcode (contents
+ irel
->r_offset
,
6229 sec_size
- irel
->r_offset
, &uses_l32r
);
6230 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6234 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
6235 if (direct_call_opcode
== XTENSA_UNDEFINED
)
6238 /* Check and see that the target resolves. */
6239 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
6240 if (!r_reloc_is_defined (&r_rel
))
6243 target_sec
= r_reloc_get_section (&r_rel
);
6244 target_offset
= r_rel
.target_offset
;
6246 /* If the target is in a shared library, then it doesn't reach. This
6247 isn't supposed to come up because the compiler should never generate
6248 non-PIC calls on systems that use shared libraries, but the linker
6249 shouldn't crash regardless. */
6250 if (!target_sec
->output_section
)
6253 /* For relocatable sections, we can only simplify when the output
6254 section of the target is the same as the output section of the
6256 if (link_info
->relocatable
6257 && (target_sec
->output_section
!= sec
->output_section
6258 || is_reloc_sym_weak (abfd
, irel
)))
6261 self_address
= (sec
->output_section
->vma
6262 + sec
->output_offset
+ irel
->r_offset
+ 3);
6263 dest_address
= (target_sec
->output_section
->vma
6264 + target_sec
->output_offset
+ target_offset
);
6266 *is_reachable_p
= pcrel_reloc_fits (direct_call_opcode
, 0,
6267 self_address
, dest_address
);
6269 if ((self_address
>> CALL_SEGMENT_BITS
) !=
6270 (dest_address
>> CALL_SEGMENT_BITS
))
6277 static Elf_Internal_Rela
*
6278 find_associated_l32r_irel (bfd
*abfd
,
6281 Elf_Internal_Rela
*other_irel
,
6282 Elf_Internal_Rela
*internal_relocs
)
6286 for (i
= 0; i
< sec
->reloc_count
; i
++)
6288 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6290 if (irel
== other_irel
)
6292 if (irel
->r_offset
!= other_irel
->r_offset
)
6294 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
6302 /* The compute_text_actions function will build a list of potential
6303 transformation actions for code in the extended basic block of each
6304 longcall that is optimized to a direct call. From this list we
6305 generate a set of actions to actually perform that optimizes for
6306 space and, if not using size_opt, maintains branch target
6309 These actions to be performed are placed on a per-section list.
6310 The actual changes are performed by relax_section() in the second
6314 compute_text_actions (bfd
*abfd
,
6316 struct bfd_link_info
*link_info
)
6318 xtensa_relax_info
*relax_info
;
6320 Elf_Internal_Rela
*internal_relocs
;
6321 bfd_boolean ok
= TRUE
;
6323 property_table_entry
*prop_table
= 0;
6325 bfd_size_type sec_size
;
6326 static bfd_boolean no_insn_move
= FALSE
;
6331 /* Do nothing if the section contains no optimized longcalls. */
6332 relax_info
= get_xtensa_relax_info (sec
);
6333 BFD_ASSERT (relax_info
);
6334 if (!relax_info
->is_relaxable_asm_section
)
6337 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6338 link_info
->keep_memory
);
6340 if (internal_relocs
)
6341 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
6342 internal_reloc_compare
);
6344 sec_size
= bfd_get_section_limit (abfd
, sec
);
6345 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6346 if (contents
== NULL
&& sec_size
!= 0)
6352 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
6353 XTENSA_PROP_SEC_NAME
, FALSE
);
6360 for (i
= 0; i
< sec
->reloc_count
; i
++)
6362 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6364 property_table_entry
*the_entry
;
6367 ebb_constraint ebb_table
;
6368 bfd_size_type simplify_size
;
6370 if (irel
&& ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_SIMPLIFY
)
6372 r_offset
= irel
->r_offset
;
6374 simplify_size
= get_asm_simplify_size (contents
, sec_size
, r_offset
);
6375 if (simplify_size
== 0)
6377 (*_bfd_error_handler
)
6378 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6379 sec
->owner
, sec
, r_offset
);
6383 /* If the instruction table is not around, then don't do this
6385 the_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
6386 sec
->vma
+ irel
->r_offset
);
6387 if (the_entry
== NULL
|| XTENSA_NO_NOP_REMOVAL
)
6389 text_action_add (&relax_info
->action_list
,
6390 ta_convert_longcall
, sec
, r_offset
,
6395 /* If the next longcall happens to be at the same address as an
6396 unreachable section of size 0, then skip forward. */
6397 ptbl_idx
= the_entry
- prop_table
;
6398 while ((the_entry
->flags
& XTENSA_PROP_UNREACHABLE
)
6399 && the_entry
->size
== 0
6400 && ptbl_idx
+ 1 < ptblsize
6401 && (prop_table
[ptbl_idx
+ 1].address
6402 == prop_table
[ptbl_idx
].address
))
6408 if (the_entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
)
6409 /* NO_REORDER is OK */
6412 init_ebb_constraint (&ebb_table
);
6413 ebb
= &ebb_table
.ebb
;
6414 init_ebb (ebb
, sec
, contents
, sec_size
, prop_table
, ptblsize
,
6415 internal_relocs
, sec
->reloc_count
);
6416 ebb
->start_offset
= r_offset
+ simplify_size
;
6417 ebb
->end_offset
= r_offset
+ simplify_size
;
6418 ebb
->start_ptbl_idx
= ptbl_idx
;
6419 ebb
->end_ptbl_idx
= ptbl_idx
;
6420 ebb
->start_reloc_idx
= i
;
6421 ebb
->end_reloc_idx
= i
;
6423 if (!extend_ebb_bounds (ebb
)
6424 || !compute_ebb_proposed_actions (&ebb_table
)
6425 || !compute_ebb_actions (&ebb_table
)
6426 || !check_section_ebb_pcrels_fit (abfd
, sec
, contents
,
6427 internal_relocs
, &ebb_table
)
6428 || !check_section_ebb_reduces (&ebb_table
))
6430 /* If anything goes wrong or we get unlucky and something does
6431 not fit, with our plan because of expansion between
6432 critical branches, just convert to a NOP. */
6434 text_action_add (&relax_info
->action_list
,
6435 ta_convert_longcall
, sec
, r_offset
, 0);
6436 i
= ebb_table
.ebb
.end_reloc_idx
;
6437 free_ebb_constraint (&ebb_table
);
6441 text_action_add_proposed (&relax_info
->action_list
, &ebb_table
, sec
);
6443 /* Update the index so we do not go looking at the relocations
6444 we have already processed. */
6445 i
= ebb_table
.ebb
.end_reloc_idx
;
6446 free_ebb_constraint (&ebb_table
);
6450 if (relax_info
->action_list
.head
)
6451 print_action_list (stderr
, &relax_info
->action_list
);
6455 release_contents (sec
, contents
);
6456 release_internal_relocs (sec
, internal_relocs
);
6464 /* Find all of the possible actions for an extended basic block. */
6467 compute_ebb_proposed_actions (ebb_constraint
*ebb_table
)
6469 const ebb_t
*ebb
= &ebb_table
->ebb
;
6470 unsigned rel_idx
= ebb
->start_reloc_idx
;
6471 property_table_entry
*entry
, *start_entry
, *end_entry
;
6473 start_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
6474 end_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
6476 for (entry
= start_entry
; entry
<= end_entry
; entry
++)
6478 bfd_vma offset
, start_offset
, end_offset
;
6479 bfd_size_type insn_len
;
6481 start_offset
= entry
->address
- ebb
->sec
->vma
;
6482 end_offset
= entry
->address
+ entry
->size
- ebb
->sec
->vma
;
6484 if (entry
== start_entry
)
6485 start_offset
= ebb
->start_offset
;
6486 if (entry
== end_entry
)
6487 end_offset
= ebb
->end_offset
;
6488 offset
= start_offset
;
6490 if (offset
== entry
->address
- ebb
->sec
->vma
6491 && (entry
->flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) != 0)
6493 enum ebb_target_enum align_type
= EBB_DESIRE_TGT_ALIGN
;
6494 BFD_ASSERT (offset
!= end_offset
);
6495 if (offset
== end_offset
)
6498 insn_len
= insn_decode_len (ebb
->contents
, ebb
->content_length
,
6501 /* Propose no actions for a section with an undecodable offset. */
6504 (*_bfd_error_handler
)
6505 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6506 ebb
->sec
->owner
, ebb
->sec
, offset
);
6509 if (check_branch_target_aligned_address (offset
, insn_len
))
6510 align_type
= EBB_REQUIRE_TGT_ALIGN
;
6512 ebb_propose_action (ebb_table
, align_type
, 0,
6513 ta_none
, offset
, 0, TRUE
);
6516 while (offset
!= end_offset
)
6518 Elf_Internal_Rela
*irel
;
6519 xtensa_opcode opcode
;
6521 while (rel_idx
< ebb
->end_reloc_idx
6522 && (ebb
->relocs
[rel_idx
].r_offset
< offset
6523 || (ebb
->relocs
[rel_idx
].r_offset
== offset
6524 && (ELF32_R_TYPE (ebb
->relocs
[rel_idx
].r_info
)
6525 != R_XTENSA_ASM_SIMPLIFY
))))
6528 /* Check for longcall. */
6529 irel
= &ebb
->relocs
[rel_idx
];
6530 if (irel
->r_offset
== offset
6531 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_SIMPLIFY
)
6533 bfd_size_type simplify_size
;
6535 simplify_size
= get_asm_simplify_size (ebb
->contents
,
6536 ebb
->content_length
,
6538 if (simplify_size
== 0)
6540 (*_bfd_error_handler
)
6541 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6542 ebb
->sec
->owner
, ebb
->sec
, offset
);
6546 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6547 ta_convert_longcall
, offset
, 0, TRUE
);
6549 offset
+= simplify_size
;
6553 insn_len
= insn_decode_len (ebb
->contents
, ebb
->content_length
,
6555 /* If the instruction is undecodable, then report an error. */
6558 (*_bfd_error_handler
)
6559 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6560 ebb
->sec
->owner
, ebb
->sec
, offset
);
6564 if ((entry
->flags
& XTENSA_PROP_INSN_NO_DENSITY
) == 0
6565 && (entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
) == 0
6566 && narrow_instruction (ebb
->contents
, ebb
->content_length
,
6569 /* Add an instruction narrow action. */
6570 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6571 ta_narrow_insn
, offset
, 0, FALSE
);
6575 if ((entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
) == 0
6576 && widen_instruction (ebb
->contents
, ebb
->content_length
,
6579 /* Add an instruction widen action. */
6580 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6581 ta_widen_insn
, offset
, 0, FALSE
);
6585 opcode
= insn_decode_opcode (ebb
->contents
, ebb
->content_length
,
6587 if (xtensa_opcode_is_loop (xtensa_default_isa
, opcode
))
6589 /* Check for branch targets. */
6590 ebb_propose_action (ebb_table
, EBB_REQUIRE_LOOP_ALIGN
, 0,
6591 ta_none
, offset
, 0, TRUE
);
6600 if (ebb
->ends_unreachable
)
6602 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6603 ta_fill
, ebb
->end_offset
, 0, TRUE
);
6610 /* After all of the information has collected about the
6611 transformations possible in an EBB, compute the appropriate actions
6612 here in compute_ebb_actions. We still must check later to make
6613 sure that the actions do not break any relocations. The algorithm
6614 used here is pretty greedy. Basically, it removes as many no-ops
6615 as possible so that the end of the EBB has the same alignment
6616 characteristics as the original. First, it uses narrowing, then
6617 fill space at the end of the EBB, and finally widenings. If that
6618 does not work, it tries again with one fewer no-op removed. The
6619 optimization will only be performed if all of the branch targets
6620 that were aligned before transformation are also aligned after the
6623 When the size_opt flag is set, ignore the branch target alignments,
6624 narrow all wide instructions, and remove all no-ops unless the end
6625 of the EBB prevents it. */
6628 compute_ebb_actions (ebb_constraint
*ebb_table
)
6632 int removed_bytes
= 0;
6633 ebb_t
*ebb
= &ebb_table
->ebb
;
6634 unsigned seg_idx_start
= 0;
6635 unsigned seg_idx_end
= 0;
6637 /* We perform this like the assembler relaxation algorithm: Start by
6638 assuming all instructions are narrow and all no-ops removed; then
6641 /* For each segment of this that has a solid constraint, check to
6642 see if there are any combinations that will keep the constraint.
6644 for (seg_idx_end
= 0; seg_idx_end
< ebb_table
->action_count
; seg_idx_end
++)
6646 bfd_boolean requires_text_end_align
= FALSE
;
6647 unsigned longcall_count
= 0;
6648 unsigned longcall_convert_count
= 0;
6649 unsigned narrowable_count
= 0;
6650 unsigned narrowable_convert_count
= 0;
6651 unsigned widenable_count
= 0;
6652 unsigned widenable_convert_count
= 0;
6654 proposed_action
*action
= NULL
;
6655 int align
= (1 << ebb_table
->ebb
.sec
->alignment_power
);
6657 seg_idx_start
= seg_idx_end
;
6659 for (i
= seg_idx_start
; i
< ebb_table
->action_count
; i
++)
6661 action
= &ebb_table
->actions
[i
];
6662 if (action
->action
== ta_convert_longcall
)
6664 if (action
->action
== ta_narrow_insn
)
6666 if (action
->action
== ta_widen_insn
)
6668 if (action
->action
== ta_fill
)
6670 if (action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
6672 if (action
->align_type
== EBB_REQUIRE_TGT_ALIGN
6673 && !elf32xtensa_size_opt
)
6678 if (seg_idx_end
== ebb_table
->action_count
&& !ebb
->ends_unreachable
)
6679 requires_text_end_align
= TRUE
;
6681 if (elf32xtensa_size_opt
&& !requires_text_end_align
6682 && action
->align_type
!= EBB_REQUIRE_LOOP_ALIGN
6683 && action
->align_type
!= EBB_REQUIRE_TGT_ALIGN
)
6685 longcall_convert_count
= longcall_count
;
6686 narrowable_convert_count
= narrowable_count
;
6687 widenable_convert_count
= 0;
6691 /* There is a constraint. Convert the max number of longcalls. */
6692 narrowable_convert_count
= 0;
6693 longcall_convert_count
= 0;
6694 widenable_convert_count
= 0;
6696 for (j
= 0; j
< longcall_count
; j
++)
6698 int removed
= (longcall_count
- j
) * 3 & (align
- 1);
6699 unsigned desire_narrow
= (align
- removed
) & (align
- 1);
6700 unsigned desire_widen
= removed
;
6701 if (desire_narrow
<= narrowable_count
)
6703 narrowable_convert_count
= desire_narrow
;
6704 narrowable_convert_count
+=
6705 (align
* ((narrowable_count
- narrowable_convert_count
)
6707 longcall_convert_count
= (longcall_count
- j
);
6708 widenable_convert_count
= 0;
6711 if (desire_widen
<= widenable_count
&& !elf32xtensa_size_opt
)
6713 narrowable_convert_count
= 0;
6714 longcall_convert_count
= longcall_count
- j
;
6715 widenable_convert_count
= desire_widen
;
6721 /* Now the number of conversions are saved. Do them. */
6722 for (i
= seg_idx_start
; i
< seg_idx_end
; i
++)
6724 action
= &ebb_table
->actions
[i
];
6725 switch (action
->action
)
6727 case ta_convert_longcall
:
6728 if (longcall_convert_count
!= 0)
6730 action
->action
= ta_remove_longcall
;
6731 action
->do_action
= TRUE
;
6732 action
->removed_bytes
+= 3;
6733 longcall_convert_count
--;
6736 case ta_narrow_insn
:
6737 if (narrowable_convert_count
!= 0)
6739 action
->do_action
= TRUE
;
6740 action
->removed_bytes
+= 1;
6741 narrowable_convert_count
--;
6745 if (widenable_convert_count
!= 0)
6747 action
->do_action
= TRUE
;
6748 action
->removed_bytes
-= 1;
6749 widenable_convert_count
--;
6758 /* Now we move on to some local opts. Try to remove each of the
6759 remaining longcalls. */
6761 if (ebb_table
->ebb
.ends_section
|| ebb_table
->ebb
.ends_unreachable
)
6764 for (i
= 0; i
< ebb_table
->action_count
; i
++)
6766 int old_removed_bytes
= removed_bytes
;
6767 proposed_action
*action
= &ebb_table
->actions
[i
];
6769 if (action
->do_action
&& action
->action
== ta_convert_longcall
)
6771 bfd_boolean bad_alignment
= FALSE
;
6773 for (j
= i
+ 1; j
< ebb_table
->action_count
; j
++)
6775 proposed_action
*new_action
= &ebb_table
->actions
[j
];
6776 bfd_vma offset
= new_action
->offset
;
6777 if (new_action
->align_type
== EBB_REQUIRE_TGT_ALIGN
)
6779 if (!check_branch_target_aligned
6780 (ebb_table
->ebb
.contents
,
6781 ebb_table
->ebb
.content_length
,
6782 offset
, offset
- removed_bytes
))
6784 bad_alignment
= TRUE
;
6788 if (new_action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
6790 if (!check_loop_aligned (ebb_table
->ebb
.contents
,
6791 ebb_table
->ebb
.content_length
,
6793 offset
- removed_bytes
))
6795 bad_alignment
= TRUE
;
6799 if (new_action
->action
== ta_narrow_insn
6800 && !new_action
->do_action
6801 && ebb_table
->ebb
.sec
->alignment_power
== 2)
6803 /* Narrow an instruction and we are done. */
6804 new_action
->do_action
= TRUE
;
6805 new_action
->removed_bytes
+= 1;
6806 bad_alignment
= FALSE
;
6809 if (new_action
->action
== ta_widen_insn
6810 && new_action
->do_action
6811 && ebb_table
->ebb
.sec
->alignment_power
== 2)
6813 /* Narrow an instruction and we are done. */
6814 new_action
->do_action
= FALSE
;
6815 new_action
->removed_bytes
+= 1;
6816 bad_alignment
= FALSE
;
6822 action
->removed_bytes
+= 3;
6823 action
->action
= ta_remove_longcall
;
6824 action
->do_action
= TRUE
;
6827 removed_bytes
= old_removed_bytes
;
6828 if (action
->do_action
)
6829 removed_bytes
+= action
->removed_bytes
;
6834 for (i
= 0; i
< ebb_table
->action_count
; ++i
)
6836 proposed_action
*action
= &ebb_table
->actions
[i
];
6837 if (action
->do_action
)
6838 removed_bytes
+= action
->removed_bytes
;
6841 if ((removed_bytes
% (1 << ebb_table
->ebb
.sec
->alignment_power
)) != 0
6842 && ebb
->ends_unreachable
)
6844 proposed_action
*action
;
6848 BFD_ASSERT (ebb_table
->action_count
!= 0);
6849 action
= &ebb_table
->actions
[ebb_table
->action_count
- 1];
6850 BFD_ASSERT (action
->action
== ta_fill
);
6851 BFD_ASSERT (ebb
->ends_unreachable
->flags
& XTENSA_PROP_UNREACHABLE
);
6853 extra_space
= compute_fill_extra_space (ebb
->ends_unreachable
);
6854 br
= action
->removed_bytes
+ removed_bytes
+ extra_space
;
6855 br
= br
& ((1 << ebb
->sec
->alignment_power
) - 1);
6857 action
->removed_bytes
= extra_space
- br
;
6863 /* Use check_section_ebb_pcrels_fit to make sure that all of the
6864 relocations in a section will fit if a proposed set of actions
6868 check_section_ebb_pcrels_fit (bfd
*abfd
,
6871 Elf_Internal_Rela
*internal_relocs
,
6872 const ebb_constraint
*constraint
)
6875 Elf_Internal_Rela
*irel
;
6876 xtensa_relax_info
*relax_info
;
6878 relax_info
= get_xtensa_relax_info (sec
);
6880 for (i
= 0; i
< sec
->reloc_count
; i
++)
6883 bfd_vma orig_self_offset
, orig_target_offset
;
6884 bfd_vma self_offset
, target_offset
;
6886 reloc_howto_type
*howto
;
6887 int self_removed_bytes
, target_removed_bytes
;
6889 irel
= &internal_relocs
[i
];
6890 r_type
= ELF32_R_TYPE (irel
->r_info
);
6892 howto
= &elf_howto_table
[r_type
];
6893 /* We maintain the required invariant: PC-relative relocations
6894 that fit before linking must fit after linking. Thus we only
6895 need to deal with relocations to the same section that are
6897 if (ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_SIMPLIFY
6898 || !howto
->pc_relative
)
6901 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
6902 bfd_get_section_limit (abfd
, sec
));
6904 if (r_reloc_get_section (&r_rel
) != sec
)
6907 orig_self_offset
= irel
->r_offset
;
6908 orig_target_offset
= r_rel
.target_offset
;
6910 self_offset
= orig_self_offset
;
6911 target_offset
= orig_target_offset
;
6915 self_offset
= offset_with_removed_text (&relax_info
->action_list
,
6917 target_offset
= offset_with_removed_text (&relax_info
->action_list
,
6918 orig_target_offset
);
6921 self_removed_bytes
= 0;
6922 target_removed_bytes
= 0;
6924 for (j
= 0; j
< constraint
->action_count
; ++j
)
6926 proposed_action
*action
= &constraint
->actions
[j
];
6927 bfd_vma offset
= action
->offset
;
6928 int removed_bytes
= action
->removed_bytes
;
6929 if (offset
< orig_self_offset
6930 || (offset
== orig_self_offset
&& action
->action
== ta_fill
6931 && action
->removed_bytes
< 0))
6932 self_removed_bytes
+= removed_bytes
;
6933 if (offset
< orig_target_offset
6934 || (offset
== orig_target_offset
&& action
->action
== ta_fill
6935 && action
->removed_bytes
< 0))
6936 target_removed_bytes
+= removed_bytes
;
6938 self_offset
-= self_removed_bytes
;
6939 target_offset
-= target_removed_bytes
;
6941 /* Try to encode it. Get the operand and check. */
6942 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
6944 /* None of the current alternate relocs are PC-relative,
6945 and only PC-relative relocs matter here. */
6949 xtensa_opcode opcode
;
6952 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
6953 if (opcode
== XTENSA_UNDEFINED
)
6956 opnum
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
6957 if (opnum
== XTENSA_UNDEFINED
)
6960 if (!pcrel_reloc_fits (opcode
, opnum
, self_offset
, target_offset
))
6970 check_section_ebb_reduces (const ebb_constraint
*constraint
)
6975 for (i
= 0; i
< constraint
->action_count
; i
++)
6977 const proposed_action
*action
= &constraint
->actions
[i
];
6978 if (action
->do_action
)
6979 removed
+= action
->removed_bytes
;
6989 text_action_add_proposed (text_action_list
*l
,
6990 const ebb_constraint
*ebb_table
,
6995 for (i
= 0; i
< ebb_table
->action_count
; i
++)
6997 proposed_action
*action
= &ebb_table
->actions
[i
];
6999 if (!action
->do_action
)
7001 switch (action
->action
)
7003 case ta_remove_insn
:
7004 case ta_remove_longcall
:
7005 case ta_convert_longcall
:
7006 case ta_narrow_insn
:
7009 case ta_remove_literal
:
7010 text_action_add (l
, action
->action
, sec
, action
->offset
,
7011 action
->removed_bytes
);
7024 compute_fill_extra_space (property_table_entry
*entry
)
7026 int fill_extra_space
;
7031 if ((entry
->flags
& XTENSA_PROP_UNREACHABLE
) == 0)
7034 fill_extra_space
= entry
->size
;
7035 if ((entry
->flags
& XTENSA_PROP_ALIGN
) != 0)
7037 /* Fill bytes for alignment:
7038 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7039 int pow
= GET_XTENSA_PROP_ALIGNMENT (entry
->flags
);
7040 int nsm
= (1 << pow
) - 1;
7041 bfd_vma addr
= entry
->address
+ entry
->size
;
7042 bfd_vma align_fill
= nsm
- ((addr
+ nsm
) & nsm
);
7043 fill_extra_space
+= align_fill
;
7045 return fill_extra_space
;
7049 /* First relaxation pass. */
7051 /* If the section contains relaxable literals, check each literal to
7052 see if it has the same value as another literal that has already
7053 been seen, either in the current section or a previous one. If so,
7054 add an entry to the per-section list of removed literals. The
7055 actual changes are deferred until the next pass. */
7058 compute_removed_literals (bfd
*abfd
,
7060 struct bfd_link_info
*link_info
,
7061 value_map_hash_table
*values
)
7063 xtensa_relax_info
*relax_info
;
7065 Elf_Internal_Rela
*internal_relocs
;
7066 source_reloc
*src_relocs
, *rel
;
7067 bfd_boolean ok
= TRUE
;
7068 property_table_entry
*prop_table
= NULL
;
7071 bfd_boolean last_loc_is_prev
= FALSE
;
7072 bfd_vma last_target_offset
= 0;
7073 section_cache_t target_sec_cache
;
7074 bfd_size_type sec_size
;
7076 init_section_cache (&target_sec_cache
);
7078 /* Do nothing if it is not a relaxable literal section. */
7079 relax_info
= get_xtensa_relax_info (sec
);
7080 BFD_ASSERT (relax_info
);
7081 if (!relax_info
->is_relaxable_literal_section
)
7084 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7085 link_info
->keep_memory
);
7087 sec_size
= bfd_get_section_limit (abfd
, sec
);
7088 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7089 if (contents
== NULL
&& sec_size
!= 0)
7095 /* Sort the source_relocs by target offset. */
7096 src_relocs
= relax_info
->src_relocs
;
7097 qsort (src_relocs
, relax_info
->src_count
,
7098 sizeof (source_reloc
), source_reloc_compare
);
7099 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
7100 internal_reloc_compare
);
7102 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
7103 XTENSA_PROP_SEC_NAME
, FALSE
);
7111 for (i
= 0; i
< relax_info
->src_count
; i
++)
7113 Elf_Internal_Rela
*irel
= NULL
;
7115 rel
= &src_relocs
[i
];
7116 if (get_l32r_opcode () != rel
->opcode
)
7118 irel
= get_irel_at_offset (sec
, internal_relocs
,
7119 rel
->r_rel
.target_offset
);
7121 /* If the relocation on this is not a simple R_XTENSA_32 or
7122 R_XTENSA_PLT then do not consider it. This may happen when
7123 the difference of two symbols is used in a literal. */
7124 if (irel
&& (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_32
7125 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_PLT
))
7128 /* If the target_offset for this relocation is the same as the
7129 previous relocation, then we've already considered whether the
7130 literal can be coalesced. Skip to the next one.... */
7131 if (i
!= 0 && prev_i
!= -1
7132 && src_relocs
[i
-1].r_rel
.target_offset
== rel
->r_rel
.target_offset
)
7136 if (last_loc_is_prev
&&
7137 last_target_offset
+ 4 != rel
->r_rel
.target_offset
)
7138 last_loc_is_prev
= FALSE
;
7140 /* Check if the relocation was from an L32R that is being removed
7141 because a CALLX was converted to a direct CALL, and check if
7142 there are no other relocations to the literal. */
7143 if (is_removable_literal (rel
, i
, src_relocs
, relax_info
->src_count
))
7145 if (!remove_dead_literal (abfd
, sec
, link_info
, internal_relocs
,
7146 irel
, rel
, prop_table
, ptblsize
))
7151 last_target_offset
= rel
->r_rel
.target_offset
;
7155 if (!identify_literal_placement (abfd
, sec
, contents
, link_info
,
7157 &last_loc_is_prev
, irel
,
7158 relax_info
->src_count
- i
, rel
,
7159 prop_table
, ptblsize
,
7160 &target_sec_cache
, rel
->is_abs_literal
))
7165 last_target_offset
= rel
->r_rel
.target_offset
;
7169 print_removed_literals (stderr
, &relax_info
->removed_list
);
7170 print_action_list (stderr
, &relax_info
->action_list
);
7174 if (prop_table
) free (prop_table
);
7175 clear_section_cache (&target_sec_cache
);
7177 release_contents (sec
, contents
);
7178 release_internal_relocs (sec
, internal_relocs
);
7183 static Elf_Internal_Rela
*
7184 get_irel_at_offset (asection
*sec
,
7185 Elf_Internal_Rela
*internal_relocs
,
7189 Elf_Internal_Rela
*irel
;
7191 Elf_Internal_Rela key
;
7193 if (!internal_relocs
)
7196 key
.r_offset
= offset
;
7197 irel
= bsearch (&key
, internal_relocs
, sec
->reloc_count
,
7198 sizeof (Elf_Internal_Rela
), internal_reloc_matches
);
7202 /* bsearch does not guarantee which will be returned if there are
7203 multiple matches. We need the first that is not an alignment. */
7204 i
= irel
- internal_relocs
;
7207 if (internal_relocs
[i
-1].r_offset
!= offset
)
7211 for ( ; i
< sec
->reloc_count
; i
++)
7213 irel
= &internal_relocs
[i
];
7214 r_type
= ELF32_R_TYPE (irel
->r_info
);
7215 if (irel
->r_offset
== offset
&& r_type
!= R_XTENSA_NONE
)
7224 is_removable_literal (const source_reloc
*rel
,
7226 const source_reloc
*src_relocs
,
7229 const source_reloc
*curr_rel
;
7233 for (++i
; i
< src_count
; ++i
)
7235 curr_rel
= &src_relocs
[i
];
7236 /* If all others have the same target offset.... */
7237 if (curr_rel
->r_rel
.target_offset
!= rel
->r_rel
.target_offset
)
7240 if (!curr_rel
->is_null
7241 && !xtensa_is_property_section (curr_rel
->source_sec
)
7242 && !(curr_rel
->source_sec
->flags
& SEC_DEBUGGING
))
7250 remove_dead_literal (bfd
*abfd
,
7252 struct bfd_link_info
*link_info
,
7253 Elf_Internal_Rela
*internal_relocs
,
7254 Elf_Internal_Rela
*irel
,
7256 property_table_entry
*prop_table
,
7259 property_table_entry
*entry
;
7260 xtensa_relax_info
*relax_info
;
7262 relax_info
= get_xtensa_relax_info (sec
);
7266 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7267 sec
->vma
+ rel
->r_rel
.target_offset
);
7269 /* Mark the unused literal so that it will be removed. */
7270 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, NULL
);
7272 text_action_add (&relax_info
->action_list
,
7273 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
7275 /* If the section is 4-byte aligned, do not add fill. */
7276 if (sec
->alignment_power
> 2)
7278 int fill_extra_space
;
7279 bfd_vma entry_sec_offset
;
7281 property_table_entry
*the_add_entry
;
7285 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
7287 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
7289 /* If the literal range is at the end of the section,
7291 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7293 fill_extra_space
= compute_fill_extra_space (the_add_entry
);
7295 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
7296 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
7297 -4, fill_extra_space
);
7299 adjust_fill_action (fa
, removed_diff
);
7301 text_action_add (&relax_info
->action_list
,
7302 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
7305 /* Zero out the relocation on this literal location. */
7308 if (elf_hash_table (link_info
)->dynamic_sections_created
)
7309 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
7311 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7312 pin_internal_relocs (sec
, internal_relocs
);
7315 /* Do not modify "last_loc_is_prev". */
7321 identify_literal_placement (bfd
*abfd
,
7324 struct bfd_link_info
*link_info
,
7325 value_map_hash_table
*values
,
7326 bfd_boolean
*last_loc_is_prev_p
,
7327 Elf_Internal_Rela
*irel
,
7328 int remaining_src_rels
,
7330 property_table_entry
*prop_table
,
7332 section_cache_t
*target_sec_cache
,
7333 bfd_boolean is_abs_literal
)
7337 xtensa_relax_info
*relax_info
;
7338 bfd_boolean literal_placed
= FALSE
;
7340 unsigned long value
;
7341 bfd_boolean final_static_link
;
7342 bfd_size_type sec_size
;
7344 relax_info
= get_xtensa_relax_info (sec
);
7348 sec_size
= bfd_get_section_limit (abfd
, sec
);
7351 (!link_info
->relocatable
7352 && !elf_hash_table (link_info
)->dynamic_sections_created
);
7354 /* The placement algorithm first checks to see if the literal is
7355 already in the value map. If so and the value map is reachable
7356 from all uses, then the literal is moved to that location. If
7357 not, then we identify the last location where a fresh literal was
7358 placed. If the literal can be safely moved there, then we do so.
7359 If not, then we assume that the literal is not to move and leave
7360 the literal where it is, marking it as the last literal
7363 /* Find the literal value. */
7365 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7368 BFD_ASSERT (rel
->r_rel
.target_offset
< sec_size
);
7369 value
= bfd_get_32 (abfd
, contents
+ rel
->r_rel
.target_offset
);
7371 init_literal_value (&val
, &r_rel
, value
, is_abs_literal
);
7373 /* Check if we've seen another literal with the same value that
7374 is in the same output section. */
7375 val_map
= value_map_get_cached_value (values
, &val
, final_static_link
);
7378 && (r_reloc_get_section (&val_map
->loc
)->output_section
7379 == sec
->output_section
)
7380 && relocations_reach (rel
, remaining_src_rels
, &val_map
->loc
)
7381 && coalesce_shared_literal (sec
, rel
, prop_table
, ptblsize
, val_map
))
7383 /* No change to last_loc_is_prev. */
7384 literal_placed
= TRUE
;
7387 /* For relocatable links, do not try to move literals. To do it
7388 correctly might increase the number of relocations in an input
7389 section making the default relocatable linking fail. */
7390 if (!link_info
->relocatable
&& !literal_placed
7391 && values
->has_last_loc
&& !(*last_loc_is_prev_p
))
7393 asection
*target_sec
= r_reloc_get_section (&values
->last_loc
);
7394 if (target_sec
&& target_sec
->output_section
== sec
->output_section
)
7396 /* Increment the virtual offset. */
7397 r_reloc try_loc
= values
->last_loc
;
7398 try_loc
.virtual_offset
+= 4;
7400 /* There is a last loc that was in the same output section. */
7401 if (relocations_reach (rel
, remaining_src_rels
, &try_loc
)
7402 && move_shared_literal (sec
, link_info
, rel
,
7403 prop_table
, ptblsize
,
7404 &try_loc
, &val
, target_sec_cache
))
7406 values
->last_loc
.virtual_offset
+= 4;
7407 literal_placed
= TRUE
;
7409 val_map
= add_value_map (values
, &val
, &try_loc
,
7412 val_map
->loc
= try_loc
;
7417 if (!literal_placed
)
7419 /* Nothing worked, leave the literal alone but update the last loc. */
7420 values
->has_last_loc
= TRUE
;
7421 values
->last_loc
= rel
->r_rel
;
7423 val_map
= add_value_map (values
, &val
, &rel
->r_rel
, final_static_link
);
7425 val_map
->loc
= rel
->r_rel
;
7426 *last_loc_is_prev_p
= TRUE
;
7433 /* Check if the original relocations (presumably on L32R instructions)
7434 identified by reloc[0..N] can be changed to reference the literal
7435 identified by r_rel. If r_rel is out of range for any of the
7436 original relocations, then we don't want to coalesce the original
7437 literal with the one at r_rel. We only check reloc[0..N], where the
7438 offsets are all the same as for reloc[0] (i.e., they're all
7439 referencing the same literal) and where N is also bounded by the
7440 number of remaining entries in the "reloc" array. The "reloc" array
7441 is sorted by target offset so we know all the entries for the same
7442 literal will be contiguous. */
7445 relocations_reach (source_reloc
*reloc
,
7446 int remaining_relocs
,
7447 const r_reloc
*r_rel
)
7449 bfd_vma from_offset
, source_address
, dest_address
;
7453 if (!r_reloc_is_defined (r_rel
))
7456 sec
= r_reloc_get_section (r_rel
);
7457 from_offset
= reloc
[0].r_rel
.target_offset
;
7459 for (i
= 0; i
< remaining_relocs
; i
++)
7461 if (reloc
[i
].r_rel
.target_offset
!= from_offset
)
7464 /* Ignore relocations that have been removed. */
7465 if (reloc
[i
].is_null
)
7468 /* The original and new output section for these must be the same
7469 in order to coalesce. */
7470 if (r_reloc_get_section (&reloc
[i
].r_rel
)->output_section
7471 != sec
->output_section
)
7474 /* A literal with no PC-relative relocations can be moved anywhere. */
7475 if (reloc
[i
].opnd
!= -1)
7477 /* Otherwise, check to see that it fits. */
7478 source_address
= (reloc
[i
].source_sec
->output_section
->vma
7479 + reloc
[i
].source_sec
->output_offset
7480 + reloc
[i
].r_rel
.rela
.r_offset
);
7481 dest_address
= (sec
->output_section
->vma
7482 + sec
->output_offset
7483 + r_rel
->target_offset
);
7485 if (!pcrel_reloc_fits (reloc
[i
].opcode
, reloc
[i
].opnd
,
7486 source_address
, dest_address
))
7495 /* Move a literal to another literal location because it is
7496 the same as the other literal value. */
7499 coalesce_shared_literal (asection
*sec
,
7501 property_table_entry
*prop_table
,
7505 property_table_entry
*entry
;
7507 property_table_entry
*the_add_entry
;
7509 xtensa_relax_info
*relax_info
;
7511 relax_info
= get_xtensa_relax_info (sec
);
7515 entry
= elf_xtensa_find_property_entry
7516 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
7517 if (entry
&& (entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
))
7520 /* Mark that the literal will be coalesced. */
7521 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, &val_map
->loc
);
7523 text_action_add (&relax_info
->action_list
,
7524 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
7526 /* If the section is 4-byte aligned, do not add fill. */
7527 if (sec
->alignment_power
> 2)
7529 int fill_extra_space
;
7530 bfd_vma entry_sec_offset
;
7533 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
7535 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
7537 /* If the literal range is at the end of the section,
7539 fill_extra_space
= 0;
7540 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7542 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
7543 fill_extra_space
= the_add_entry
->size
;
7545 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
7546 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
7547 -4, fill_extra_space
);
7549 adjust_fill_action (fa
, removed_diff
);
7551 text_action_add (&relax_info
->action_list
,
7552 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
7559 /* Move a literal to another location. This may actually increase the
7560 total amount of space used because of alignments so we need to do
7561 this carefully. Also, it may make a branch go out of range. */
7564 move_shared_literal (asection
*sec
,
7565 struct bfd_link_info
*link_info
,
7567 property_table_entry
*prop_table
,
7569 const r_reloc
*target_loc
,
7570 const literal_value
*lit_value
,
7571 section_cache_t
*target_sec_cache
)
7573 property_table_entry
*the_add_entry
, *src_entry
, *target_entry
= NULL
;
7574 text_action
*fa
, *target_fa
;
7576 xtensa_relax_info
*relax_info
, *target_relax_info
;
7577 asection
*target_sec
;
7579 ebb_constraint ebb_table
;
7580 bfd_boolean relocs_fit
;
7582 /* If this routine always returns FALSE, the literals that cannot be
7583 coalesced will not be moved. */
7584 if (elf32xtensa_no_literal_movement
)
7587 relax_info
= get_xtensa_relax_info (sec
);
7591 target_sec
= r_reloc_get_section (target_loc
);
7592 target_relax_info
= get_xtensa_relax_info (target_sec
);
7594 /* Literals to undefined sections may not be moved because they
7595 must report an error. */
7596 if (bfd_is_und_section (target_sec
))
7599 src_entry
= elf_xtensa_find_property_entry
7600 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
7602 if (!section_cache_section (target_sec_cache
, target_sec
, link_info
))
7605 target_entry
= elf_xtensa_find_property_entry
7606 (target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
7607 target_sec
->vma
+ target_loc
->target_offset
);
7612 /* Make sure that we have not broken any branches. */
7615 init_ebb_constraint (&ebb_table
);
7616 ebb
= &ebb_table
.ebb
;
7617 init_ebb (ebb
, target_sec_cache
->sec
, target_sec_cache
->contents
,
7618 target_sec_cache
->content_length
,
7619 target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
7620 target_sec_cache
->relocs
, target_sec_cache
->reloc_count
);
7622 /* Propose to add 4 bytes + worst-case alignment size increase to
7624 ebb_propose_action (&ebb_table
, EBB_NO_ALIGN
, 0,
7625 ta_fill
, target_loc
->target_offset
,
7626 -4 - (1 << target_sec
->alignment_power
), TRUE
);
7628 /* Check all of the PC-relative relocations to make sure they still fit. */
7629 relocs_fit
= check_section_ebb_pcrels_fit (target_sec
->owner
, target_sec
,
7630 target_sec_cache
->contents
,
7631 target_sec_cache
->relocs
,
7637 text_action_add_literal (&target_relax_info
->action_list
,
7638 ta_add_literal
, target_loc
, lit_value
, -4);
7640 if (target_sec
->alignment_power
> 2 && target_entry
!= src_entry
)
7642 /* May need to add or remove some fill to maintain alignment. */
7643 int fill_extra_space
;
7644 bfd_vma entry_sec_offset
;
7647 target_entry
->address
- target_sec
->vma
+ target_entry
->size
;
7649 /* If the literal range is at the end of the section,
7651 fill_extra_space
= 0;
7653 elf_xtensa_find_property_entry (target_sec_cache
->ptbl
,
7654 target_sec_cache
->pte_count
,
7656 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
7657 fill_extra_space
= the_add_entry
->size
;
7659 target_fa
= find_fill_action (&target_relax_info
->action_list
,
7660 target_sec
, entry_sec_offset
);
7661 removed_diff
= compute_removed_action_diff (target_fa
, target_sec
,
7662 entry_sec_offset
, 4,
7665 adjust_fill_action (target_fa
, removed_diff
);
7667 text_action_add (&target_relax_info
->action_list
,
7668 ta_fill
, target_sec
, entry_sec_offset
, removed_diff
);
7671 /* Mark that the literal will be moved to the new location. */
7672 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, target_loc
);
7674 /* Remove the literal. */
7675 text_action_add (&relax_info
->action_list
,
7676 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
7678 /* If the section is 4-byte aligned, do not add fill. */
7679 if (sec
->alignment_power
> 2 && target_entry
!= src_entry
)
7681 int fill_extra_space
;
7682 bfd_vma entry_sec_offset
;
7685 entry_sec_offset
= src_entry
->address
- sec
->vma
+ src_entry
->size
;
7687 entry_sec_offset
= rel
->r_rel
.target_offset
+4;
7689 /* If the literal range is at the end of the section,
7691 fill_extra_space
= 0;
7692 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7694 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
7695 fill_extra_space
= the_add_entry
->size
;
7697 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
7698 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
7699 -4, fill_extra_space
);
7701 adjust_fill_action (fa
, removed_diff
);
7703 text_action_add (&relax_info
->action_list
,
7704 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
7711 /* Second relaxation pass. */
7713 /* Modify all of the relocations to point to the right spot, and if this
7714 is a relaxable section, delete the unwanted literals and fix the
7718 relax_section (bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
)
7720 Elf_Internal_Rela
*internal_relocs
;
7721 xtensa_relax_info
*relax_info
;
7723 bfd_boolean ok
= TRUE
;
7725 bfd_boolean rv
= FALSE
;
7726 bfd_boolean virtual_action
;
7727 bfd_size_type sec_size
;
7729 sec_size
= bfd_get_section_limit (abfd
, sec
);
7730 relax_info
= get_xtensa_relax_info (sec
);
7731 BFD_ASSERT (relax_info
);
7733 /* First translate any of the fixes that have been added already. */
7734 translate_section_fixes (sec
);
7736 /* Handle property sections (e.g., literal tables) specially. */
7737 if (xtensa_is_property_section (sec
))
7739 BFD_ASSERT (!relax_info
->is_relaxable_literal_section
);
7740 return relax_property_section (abfd
, sec
, link_info
);
7743 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7744 link_info
->keep_memory
);
7745 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7746 if (contents
== NULL
&& sec_size
!= 0)
7752 if (internal_relocs
)
7754 for (i
= 0; i
< sec
->reloc_count
; i
++)
7756 Elf_Internal_Rela
*irel
;
7757 xtensa_relax_info
*target_relax_info
;
7758 bfd_vma source_offset
, old_source_offset
;
7761 asection
*target_sec
;
7763 /* Locally change the source address.
7764 Translate the target to the new target address.
7765 If it points to this section and has been removed,
7769 irel
= &internal_relocs
[i
];
7770 source_offset
= irel
->r_offset
;
7771 old_source_offset
= source_offset
;
7773 r_type
= ELF32_R_TYPE (irel
->r_info
);
7774 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
7775 bfd_get_section_limit (abfd
, sec
));
7777 /* If this section could have changed then we may need to
7778 change the relocation's offset. */
7780 if (relax_info
->is_relaxable_literal_section
7781 || relax_info
->is_relaxable_asm_section
)
7783 if (r_type
!= R_XTENSA_NONE
7784 && find_removed_literal (&relax_info
->removed_list
,
7787 /* Remove this relocation. */
7788 if (elf_hash_table (link_info
)->dynamic_sections_created
)
7789 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
7790 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7791 irel
->r_offset
= offset_with_removed_text
7792 (&relax_info
->action_list
, irel
->r_offset
);
7793 pin_internal_relocs (sec
, internal_relocs
);
7797 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
7799 text_action
*action
=
7800 find_insn_action (&relax_info
->action_list
,
7802 if (action
&& (action
->action
== ta_convert_longcall
7803 || action
->action
== ta_remove_longcall
))
7805 bfd_reloc_status_type retval
;
7806 char *error_message
= NULL
;
7808 retval
= contract_asm_expansion (contents
, sec_size
,
7809 irel
, &error_message
);
7810 if (retval
!= bfd_reloc_ok
)
7812 (*link_info
->callbacks
->reloc_dangerous
)
7813 (link_info
, error_message
, abfd
, sec
,
7817 /* Update the action so that the code that moves
7818 the contents will do the right thing. */
7819 if (action
->action
== ta_remove_longcall
)
7820 action
->action
= ta_remove_insn
;
7822 action
->action
= ta_none
;
7823 /* Refresh the info in the r_rel. */
7824 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7825 r_type
= ELF32_R_TYPE (irel
->r_info
);
7829 source_offset
= offset_with_removed_text
7830 (&relax_info
->action_list
, irel
->r_offset
);
7831 irel
->r_offset
= source_offset
;
7834 /* If the target section could have changed then
7835 we may need to change the relocation's target offset. */
7837 target_sec
= r_reloc_get_section (&r_rel
);
7838 target_relax_info
= get_xtensa_relax_info (target_sec
);
7840 if (target_relax_info
7841 && (target_relax_info
->is_relaxable_literal_section
7842 || target_relax_info
->is_relaxable_asm_section
))
7846 bfd_vma addend_displacement
;
7848 translate_reloc (&r_rel
, &new_reloc
);
7850 if (r_type
== R_XTENSA_DIFF8
7851 || r_type
== R_XTENSA_DIFF16
7852 || r_type
== R_XTENSA_DIFF32
)
7854 bfd_vma diff_value
= 0, new_end_offset
, diff_mask
= 0;
7856 if (bfd_get_section_limit (abfd
, sec
) < old_source_offset
)
7858 (*link_info
->callbacks
->reloc_dangerous
)
7859 (link_info
, _("invalid relocation address"),
7860 abfd
, sec
, old_source_offset
);
7866 case R_XTENSA_DIFF8
:
7868 bfd_get_8 (abfd
, &contents
[old_source_offset
]);
7870 case R_XTENSA_DIFF16
:
7872 bfd_get_16 (abfd
, &contents
[old_source_offset
]);
7874 case R_XTENSA_DIFF32
:
7876 bfd_get_32 (abfd
, &contents
[old_source_offset
]);
7880 new_end_offset
= offset_with_removed_text
7881 (&target_relax_info
->action_list
,
7882 r_rel
.target_offset
+ diff_value
);
7883 diff_value
= new_end_offset
- new_reloc
.target_offset
;
7887 case R_XTENSA_DIFF8
:
7889 bfd_put_8 (abfd
, diff_value
,
7890 &contents
[old_source_offset
]);
7892 case R_XTENSA_DIFF16
:
7894 bfd_put_16 (abfd
, diff_value
,
7895 &contents
[old_source_offset
]);
7897 case R_XTENSA_DIFF32
:
7898 diff_mask
= 0xffffffff;
7899 bfd_put_32 (abfd
, diff_value
,
7900 &contents
[old_source_offset
]);
7904 /* Check for overflow. */
7905 if ((diff_value
& ~diff_mask
) != 0)
7907 (*link_info
->callbacks
->reloc_dangerous
)
7908 (link_info
, _("overflow after relaxation"),
7909 abfd
, sec
, old_source_offset
);
7913 pin_contents (sec
, contents
);
7916 /* FIXME: If the relocation still references a section in
7917 the same input file, the relocation should be modified
7918 directly instead of adding a "fix" record. */
7920 addend_displacement
=
7921 new_reloc
.target_offset
+ new_reloc
.virtual_offset
;
7923 fix
= reloc_bfd_fix_init (sec
, source_offset
, r_type
, 0,
7924 r_reloc_get_section (&new_reloc
),
7925 addend_displacement
, TRUE
);
7929 pin_internal_relocs (sec
, internal_relocs
);
7933 if ((relax_info
->is_relaxable_literal_section
7934 || relax_info
->is_relaxable_asm_section
)
7935 && relax_info
->action_list
.head
)
7937 /* Walk through the planned actions and build up a table
7938 of move, copy and fill records. Use the move, copy and
7939 fill records to perform the actions once. */
7941 bfd_size_type size
= sec
->size
;
7943 bfd_size_type final_size
, copy_size
, orig_insn_size
;
7944 bfd_byte
*scratch
= NULL
;
7945 bfd_byte
*dup_contents
= NULL
;
7946 bfd_size_type orig_size
= size
;
7947 bfd_vma orig_dot
= 0;
7948 bfd_vma orig_dot_copied
= 0; /* Byte copied already from
7949 orig dot in physical memory. */
7950 bfd_vma orig_dot_vo
= 0; /* Virtual offset from orig_dot. */
7951 bfd_vma dup_dot
= 0;
7953 text_action
*action
= relax_info
->action_list
.head
;
7955 final_size
= sec
->size
;
7956 for (action
= relax_info
->action_list
.head
; action
;
7957 action
= action
->next
)
7959 final_size
-= action
->removed_bytes
;
7962 scratch
= (bfd_byte
*) bfd_zmalloc (final_size
);
7963 dup_contents
= (bfd_byte
*) bfd_zmalloc (final_size
);
7965 /* The dot is the current fill location. */
7967 print_action_list (stderr
, &relax_info
->action_list
);
7970 for (action
= relax_info
->action_list
.head
; action
;
7971 action
= action
->next
)
7973 virtual_action
= FALSE
;
7974 if (action
->offset
> orig_dot
)
7976 orig_dot
+= orig_dot_copied
;
7977 orig_dot_copied
= 0;
7979 /* Out of the virtual world. */
7982 if (action
->offset
> orig_dot
)
7984 copy_size
= action
->offset
- orig_dot
;
7985 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
7986 orig_dot
+= copy_size
;
7987 dup_dot
+= copy_size
;
7988 BFD_ASSERT (action
->offset
== orig_dot
);
7990 else if (action
->offset
< orig_dot
)
7992 if (action
->action
== ta_fill
7993 && action
->offset
- action
->removed_bytes
== orig_dot
)
7995 /* This is OK because the fill only effects the dup_dot. */
7997 else if (action
->action
== ta_add_literal
)
7999 /* TBD. Might need to handle this. */
8002 if (action
->offset
== orig_dot
)
8004 if (action
->virtual_offset
> orig_dot_vo
)
8006 if (orig_dot_vo
== 0)
8008 /* Need to copy virtual_offset bytes. Probably four. */
8009 copy_size
= action
->virtual_offset
- orig_dot_vo
;
8010 memmove (&dup_contents
[dup_dot
],
8011 &contents
[orig_dot
], copy_size
);
8012 orig_dot_copied
= copy_size
;
8013 dup_dot
+= copy_size
;
8015 virtual_action
= TRUE
;
8018 BFD_ASSERT (action
->virtual_offset
<= orig_dot_vo
);
8020 switch (action
->action
)
8022 case ta_remove_literal
:
8023 case ta_remove_insn
:
8024 BFD_ASSERT (action
->removed_bytes
>= 0);
8025 orig_dot
+= action
->removed_bytes
;
8028 case ta_narrow_insn
:
8031 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
8032 BFD_ASSERT (action
->removed_bytes
== 1);
8033 rv
= narrow_instruction (scratch
, final_size
, 0, TRUE
);
8035 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
8036 orig_dot
+= orig_insn_size
;
8037 dup_dot
+= copy_size
;
8041 if (action
->removed_bytes
>= 0)
8042 orig_dot
+= action
->removed_bytes
;
8045 /* Already zeroed in dup_contents. Just bump the
8047 dup_dot
+= (-action
->removed_bytes
);
8052 BFD_ASSERT (action
->removed_bytes
== 0);
8055 case ta_convert_longcall
:
8056 case ta_remove_longcall
:
8057 /* These will be removed or converted before we get here. */
8064 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
8065 BFD_ASSERT (action
->removed_bytes
== -1);
8066 rv
= widen_instruction (scratch
, final_size
, 0, TRUE
);
8068 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
8069 orig_dot
+= orig_insn_size
;
8070 dup_dot
+= copy_size
;
8073 case ta_add_literal
:
8076 BFD_ASSERT (action
->removed_bytes
== -4);
8077 /* TBD -- place the literal value here and insert
8079 memset (&dup_contents
[dup_dot
], 0, 4);
8080 pin_internal_relocs (sec
, internal_relocs
);
8081 pin_contents (sec
, contents
);
8083 if (!move_literal (abfd
, link_info
, sec
, dup_dot
, dup_contents
,
8084 relax_info
, &internal_relocs
, &action
->value
))
8088 orig_dot_vo
+= copy_size
;
8090 orig_dot
+= orig_insn_size
;
8091 dup_dot
+= copy_size
;
8095 /* Not implemented yet. */
8100 size
-= action
->removed_bytes
;
8101 removed
+= action
->removed_bytes
;
8102 BFD_ASSERT (dup_dot
<= final_size
);
8103 BFD_ASSERT (orig_dot
<= orig_size
);
8106 orig_dot
+= orig_dot_copied
;
8107 orig_dot_copied
= 0;
8109 if (orig_dot
!= orig_size
)
8111 copy_size
= orig_size
- orig_dot
;
8112 BFD_ASSERT (orig_size
> orig_dot
);
8113 BFD_ASSERT (dup_dot
+ copy_size
== final_size
);
8114 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
8115 orig_dot
+= copy_size
;
8116 dup_dot
+= copy_size
;
8118 BFD_ASSERT (orig_size
== orig_dot
);
8119 BFD_ASSERT (final_size
== dup_dot
);
8121 /* Move the dup_contents back. */
8122 if (final_size
> orig_size
)
8124 /* Contents need to be reallocated. Swap the dup_contents into
8126 sec
->contents
= dup_contents
;
8128 contents
= dup_contents
;
8129 pin_contents (sec
, contents
);
8133 BFD_ASSERT (final_size
<= orig_size
);
8134 memset (contents
, 0, orig_size
);
8135 memcpy (contents
, dup_contents
, final_size
);
8136 free (dup_contents
);
8139 pin_contents (sec
, contents
);
8141 sec
->size
= final_size
;
8145 release_internal_relocs (sec
, internal_relocs
);
8146 release_contents (sec
, contents
);
8152 translate_section_fixes (asection
*sec
)
8154 xtensa_relax_info
*relax_info
;
8157 relax_info
= get_xtensa_relax_info (sec
);
8161 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
8162 if (!translate_reloc_bfd_fix (r
))
8169 /* Translate a fix given the mapping in the relax info for the target
8170 section. If it has already been translated, no work is required. */
8173 translate_reloc_bfd_fix (reloc_bfd_fix
*fix
)
8175 reloc_bfd_fix new_fix
;
8177 xtensa_relax_info
*relax_info
;
8178 removed_literal
*removed
;
8179 bfd_vma new_offset
, target_offset
;
8181 if (fix
->translated
)
8184 sec
= fix
->target_sec
;
8185 target_offset
= fix
->target_offset
;
8187 relax_info
= get_xtensa_relax_info (sec
);
8190 fix
->translated
= TRUE
;
8196 /* The fix does not need to be translated if the section cannot change. */
8197 if (!relax_info
->is_relaxable_literal_section
8198 && !relax_info
->is_relaxable_asm_section
)
8200 fix
->translated
= TRUE
;
8204 /* If the literal has been moved and this relocation was on an
8205 opcode, then the relocation should move to the new literal
8206 location. Otherwise, the relocation should move within the
8210 if (is_operand_relocation (fix
->src_type
))
8212 /* Check if the original relocation is against a literal being
8214 removed
= find_removed_literal (&relax_info
->removed_list
,
8222 /* The fact that there is still a relocation to this literal indicates
8223 that the literal is being coalesced, not simply removed. */
8224 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
8226 /* This was moved to some other address (possibly another section). */
8227 new_sec
= r_reloc_get_section (&removed
->to
);
8231 relax_info
= get_xtensa_relax_info (sec
);
8233 (!relax_info
->is_relaxable_literal_section
8234 && !relax_info
->is_relaxable_asm_section
))
8236 target_offset
= removed
->to
.target_offset
;
8237 new_fix
.target_sec
= new_sec
;
8238 new_fix
.target_offset
= target_offset
;
8239 new_fix
.translated
= TRUE
;
8244 target_offset
= removed
->to
.target_offset
;
8245 new_fix
.target_sec
= new_sec
;
8248 /* The target address may have been moved within its section. */
8249 new_offset
= offset_with_removed_text (&relax_info
->action_list
,
8252 new_fix
.target_offset
= new_offset
;
8253 new_fix
.target_offset
= new_offset
;
8254 new_fix
.translated
= TRUE
;
8260 /* Fix up a relocation to take account of removed literals. */
8263 translate_reloc (const r_reloc
*orig_rel
, r_reloc
*new_rel
)
8266 xtensa_relax_info
*relax_info
;
8267 removed_literal
*removed
;
8268 bfd_vma new_offset
, target_offset
, removed_bytes
;
8270 *new_rel
= *orig_rel
;
8272 if (!r_reloc_is_defined (orig_rel
))
8274 sec
= r_reloc_get_section (orig_rel
);
8276 relax_info
= get_xtensa_relax_info (sec
);
8277 BFD_ASSERT (relax_info
);
8279 if (!relax_info
->is_relaxable_literal_section
8280 && !relax_info
->is_relaxable_asm_section
)
8283 target_offset
= orig_rel
->target_offset
;
8286 if (is_operand_relocation (ELF32_R_TYPE (orig_rel
->rela
.r_info
)))
8288 /* Check if the original relocation is against a literal being
8290 removed
= find_removed_literal (&relax_info
->removed_list
,
8293 if (removed
&& removed
->to
.abfd
)
8297 /* The fact that there is still a relocation to this literal indicates
8298 that the literal is being coalesced, not simply removed. */
8299 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
8301 /* This was moved to some other address
8302 (possibly in another section). */
8303 *new_rel
= removed
->to
;
8304 new_sec
= r_reloc_get_section (new_rel
);
8308 relax_info
= get_xtensa_relax_info (sec
);
8310 || (!relax_info
->is_relaxable_literal_section
8311 && !relax_info
->is_relaxable_asm_section
))
8314 target_offset
= new_rel
->target_offset
;
8317 /* ...and the target address may have been moved within its section. */
8318 new_offset
= offset_with_removed_text (&relax_info
->action_list
,
8321 /* Modify the offset and addend. */
8322 removed_bytes
= target_offset
- new_offset
;
8323 new_rel
->target_offset
= new_offset
;
8324 new_rel
->rela
.r_addend
-= removed_bytes
;
8328 /* For dynamic links, there may be a dynamic relocation for each
8329 literal. The number of dynamic relocations must be computed in
8330 size_dynamic_sections, which occurs before relaxation. When a
8331 literal is removed, this function checks if there is a corresponding
8332 dynamic relocation and shrinks the size of the appropriate dynamic
8333 relocation section accordingly. At this point, the contents of the
8334 dynamic relocation sections have not yet been filled in, so there's
8335 nothing else that needs to be done. */
8338 shrink_dynamic_reloc_sections (struct bfd_link_info
*info
,
8340 asection
*input_section
,
8341 Elf_Internal_Rela
*rel
)
8343 Elf_Internal_Shdr
*symtab_hdr
;
8344 struct elf_link_hash_entry
**sym_hashes
;
8345 unsigned long r_symndx
;
8347 struct elf_link_hash_entry
*h
;
8348 bfd_boolean dynamic_symbol
;
8350 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8351 sym_hashes
= elf_sym_hashes (abfd
);
8353 r_type
= ELF32_R_TYPE (rel
->r_info
);
8354 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8356 if (r_symndx
< symtab_hdr
->sh_info
)
8359 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
8361 dynamic_symbol
= xtensa_elf_dynamic_symbol_p (h
, info
);
8363 if ((r_type
== R_XTENSA_32
|| r_type
== R_XTENSA_PLT
)
8364 && (input_section
->flags
& SEC_ALLOC
) != 0
8365 && (dynamic_symbol
|| info
->shared
))
8368 const char *srel_name
;
8370 bfd_boolean is_plt
= FALSE
;
8372 dynobj
= elf_hash_table (info
)->dynobj
;
8373 BFD_ASSERT (dynobj
!= NULL
);
8375 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
8377 srel_name
= ".rela.plt";
8381 srel_name
= ".rela.got";
8383 /* Reduce size of the .rela.* section by one reloc. */
8384 srel
= bfd_get_section_by_name (dynobj
, srel_name
);
8385 BFD_ASSERT (srel
!= NULL
);
8386 BFD_ASSERT (srel
->size
>= sizeof (Elf32_External_Rela
));
8387 srel
->size
-= sizeof (Elf32_External_Rela
);
8391 asection
*splt
, *sgotplt
, *srelgot
;
8392 int reloc_index
, chunk
;
8394 /* Find the PLT reloc index of the entry being removed. This
8395 is computed from the size of ".rela.plt". It is needed to
8396 figure out which PLT chunk to resize. Usually "last index
8397 = size - 1" since the index starts at zero, but in this
8398 context, the size has just been decremented so there's no
8399 need to subtract one. */
8400 reloc_index
= srel
->size
/ sizeof (Elf32_External_Rela
);
8402 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
8403 splt
= elf_xtensa_get_plt_section (dynobj
, chunk
);
8404 sgotplt
= elf_xtensa_get_gotplt_section (dynobj
, chunk
);
8405 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
8407 /* Check if an entire PLT chunk has just been eliminated. */
8408 if (reloc_index
% PLT_ENTRIES_PER_CHUNK
== 0)
8410 /* The two magic GOT entries for that chunk can go away. */
8411 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
8412 BFD_ASSERT (srelgot
!= NULL
);
8413 srelgot
->reloc_count
-= 2;
8414 srelgot
->size
-= 2 * sizeof (Elf32_External_Rela
);
8417 /* There should be only one entry left (and it will be
8419 BFD_ASSERT (sgotplt
->size
== 4);
8420 BFD_ASSERT (splt
->size
== PLT_ENTRY_SIZE
);
8423 BFD_ASSERT (sgotplt
->size
>= 4);
8424 BFD_ASSERT (splt
->size
>= PLT_ENTRY_SIZE
);
8427 splt
->size
-= PLT_ENTRY_SIZE
;
8433 /* Take an r_rel and move it to another section. This usually
8434 requires extending the interal_relocation array and pinning it. If
8435 the original r_rel is from the same BFD, we can complete this here.
8436 Otherwise, we add a fix record to let the final link fix the
8437 appropriate address. Contents and internal relocations for the
8438 section must be pinned after calling this routine. */
8441 move_literal (bfd
*abfd
,
8442 struct bfd_link_info
*link_info
,
8446 xtensa_relax_info
*relax_info
,
8447 Elf_Internal_Rela
**internal_relocs_p
,
8448 const literal_value
*lit
)
8450 Elf_Internal_Rela
*new_relocs
= NULL
;
8451 size_t new_relocs_count
= 0;
8452 Elf_Internal_Rela this_rela
;
8453 const r_reloc
*r_rel
;
8455 r_rel
= &lit
->r_rel
;
8456 BFD_ASSERT (elf_section_data (sec
)->relocs
== *internal_relocs_p
);
8458 if (r_reloc_is_const (r_rel
))
8459 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
8464 asection
*target_sec
;
8468 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
8469 target_sec
= r_reloc_get_section (r_rel
);
8471 /* This is the difficult case. We have to create a fix up. */
8472 this_rela
.r_offset
= offset
;
8473 this_rela
.r_info
= ELF32_R_INFO (0, r_type
);
8474 this_rela
.r_addend
=
8475 r_rel
->target_offset
- r_reloc_get_target_offset (r_rel
);
8476 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
8478 /* Currently, we cannot move relocations during a relocatable link. */
8479 BFD_ASSERT (!link_info
->relocatable
);
8480 fix
= reloc_bfd_fix_init (sec
, offset
, r_type
, r_rel
->abfd
,
8481 r_reloc_get_section (r_rel
),
8482 r_rel
->target_offset
+ r_rel
->virtual_offset
,
8484 /* We also need to mark that relocations are needed here. */
8485 sec
->flags
|= SEC_RELOC
;
8487 translate_reloc_bfd_fix (fix
);
8488 /* This fix has not yet been translated. */
8491 /* Add the relocation. If we have already allocated our own
8492 space for the relocations and we have room for more, then use
8493 it. Otherwise, allocate new space and move the literals. */
8494 insert_at
= sec
->reloc_count
;
8495 for (i
= 0; i
< sec
->reloc_count
; ++i
)
8497 if (this_rela
.r_offset
< (*internal_relocs_p
)[i
].r_offset
)
8504 if (*internal_relocs_p
!= relax_info
->allocated_relocs
8505 || sec
->reloc_count
+ 1 > relax_info
->allocated_relocs_count
)
8507 BFD_ASSERT (relax_info
->allocated_relocs
== NULL
8508 || sec
->reloc_count
== relax_info
->relocs_count
);
8510 if (relax_info
->allocated_relocs_count
== 0)
8511 new_relocs_count
= (sec
->reloc_count
+ 2) * 2;
8513 new_relocs_count
= (relax_info
->allocated_relocs_count
+ 2) * 2;
8515 new_relocs
= (Elf_Internal_Rela
*)
8516 bfd_zmalloc (sizeof (Elf_Internal_Rela
) * (new_relocs_count
));
8520 /* We could handle this more quickly by finding the split point. */
8522 memcpy (new_relocs
, *internal_relocs_p
,
8523 insert_at
* sizeof (Elf_Internal_Rela
));
8525 new_relocs
[insert_at
] = this_rela
;
8527 if (insert_at
!= sec
->reloc_count
)
8528 memcpy (new_relocs
+ insert_at
+ 1,
8529 (*internal_relocs_p
) + insert_at
,
8530 (sec
->reloc_count
- insert_at
)
8531 * sizeof (Elf_Internal_Rela
));
8533 if (*internal_relocs_p
!= relax_info
->allocated_relocs
)
8535 /* The first time we re-allocate, we can only free the
8536 old relocs if they were allocated with bfd_malloc.
8537 This is not true when keep_memory is in effect. */
8538 if (!link_info
->keep_memory
)
8539 free (*internal_relocs_p
);
8542 free (*internal_relocs_p
);
8543 relax_info
->allocated_relocs
= new_relocs
;
8544 relax_info
->allocated_relocs_count
= new_relocs_count
;
8545 elf_section_data (sec
)->relocs
= new_relocs
;
8547 relax_info
->relocs_count
= sec
->reloc_count
;
8548 *internal_relocs_p
= new_relocs
;
8552 if (insert_at
!= sec
->reloc_count
)
8555 for (idx
= sec
->reloc_count
; idx
> insert_at
; idx
--)
8556 (*internal_relocs_p
)[idx
] = (*internal_relocs_p
)[idx
-1];
8558 (*internal_relocs_p
)[insert_at
] = this_rela
;
8560 if (relax_info
->allocated_relocs
)
8561 relax_info
->relocs_count
= sec
->reloc_count
;
8568 /* This is similar to relax_section except that when a target is moved,
8569 we shift addresses up. We also need to modify the size. This
8570 algorithm does NOT allow for relocations into the middle of the
8571 property sections. */
8574 relax_property_section (bfd
*abfd
,
8576 struct bfd_link_info
*link_info
)
8578 Elf_Internal_Rela
*internal_relocs
;
8581 bfd_boolean ok
= TRUE
;
8582 bfd_boolean is_full_prop_section
;
8583 size_t last_zfill_target_offset
= 0;
8584 asection
*last_zfill_target_sec
= NULL
;
8585 bfd_size_type sec_size
;
8587 sec_size
= bfd_get_section_limit (abfd
, sec
);
8588 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
8589 link_info
->keep_memory
);
8590 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
8591 if (contents
== NULL
&& sec_size
!= 0)
8597 is_full_prop_section
=
8598 ((strcmp (sec
->name
, XTENSA_PROP_SEC_NAME
) == 0)
8599 || (strncmp (sec
->name
, ".gnu.linkonce.prop.",
8600 sizeof ".gnu.linkonce.prop." - 1) == 0));
8602 if (internal_relocs
)
8604 for (i
= 0; i
< sec
->reloc_count
; i
++)
8606 Elf_Internal_Rela
*irel
;
8607 xtensa_relax_info
*target_relax_info
;
8609 asection
*target_sec
;
8611 bfd_byte
*size_p
, *flags_p
;
8613 /* Locally change the source address.
8614 Translate the target to the new target address.
8615 If it points to this section and has been removed, MOVE IT.
8616 Also, don't forget to modify the associated SIZE at
8619 irel
= &internal_relocs
[i
];
8620 r_type
= ELF32_R_TYPE (irel
->r_info
);
8621 if (r_type
== R_XTENSA_NONE
)
8624 /* Find the literal value. */
8625 r_reloc_init (&val
.r_rel
, abfd
, irel
, contents
, sec_size
);
8626 size_p
= &contents
[irel
->r_offset
+ 4];
8628 if (is_full_prop_section
)
8630 flags_p
= &contents
[irel
->r_offset
+ 8];
8631 BFD_ASSERT (irel
->r_offset
+ 12 <= sec_size
);
8634 BFD_ASSERT (irel
->r_offset
+ 8 <= sec_size
);
8636 target_sec
= r_reloc_get_section (&val
.r_rel
);
8637 target_relax_info
= get_xtensa_relax_info (target_sec
);
8639 if (target_relax_info
8640 && (target_relax_info
->is_relaxable_literal_section
8641 || target_relax_info
->is_relaxable_asm_section
))
8643 /* Translate the relocation's destination. */
8644 bfd_vma new_offset
, new_end_offset
;
8645 long old_size
, new_size
;
8647 new_offset
= offset_with_removed_text
8648 (&target_relax_info
->action_list
, val
.r_rel
.target_offset
);
8650 /* Assert that we are not out of bounds. */
8651 old_size
= bfd_get_32 (abfd
, size_p
);
8655 /* Only the first zero-sized unreachable entry is
8656 allowed to expand. In this case the new offset
8657 should be the offset before the fill and the new
8658 size is the expansion size. For other zero-sized
8659 entries the resulting size should be zero with an
8660 offset before or after the fill address depending
8661 on whether the expanding unreachable entry
8663 if (last_zfill_target_sec
8664 && last_zfill_target_sec
== target_sec
8665 && last_zfill_target_offset
== val
.r_rel
.target_offset
)
8666 new_end_offset
= new_offset
;
8669 new_end_offset
= new_offset
;
8670 new_offset
= offset_with_removed_text_before_fill
8671 (&target_relax_info
->action_list
,
8672 val
.r_rel
.target_offset
);
8674 /* If it is not unreachable and we have not yet
8675 seen an unreachable at this address, place it
8676 before the fill address. */
8678 || (bfd_get_32 (abfd
, flags_p
)
8679 & XTENSA_PROP_UNREACHABLE
) == 0)
8680 new_end_offset
= new_offset
;
8683 last_zfill_target_sec
= target_sec
;
8684 last_zfill_target_offset
= val
.r_rel
.target_offset
;
8690 new_end_offset
= offset_with_removed_text_before_fill
8691 (&target_relax_info
->action_list
,
8692 val
.r_rel
.target_offset
+ old_size
);
8695 new_size
= new_end_offset
- new_offset
;
8697 if (new_size
!= old_size
)
8699 bfd_put_32 (abfd
, new_size
, size_p
);
8700 pin_contents (sec
, contents
);
8703 if (new_offset
!= val
.r_rel
.target_offset
)
8705 bfd_vma diff
= new_offset
- val
.r_rel
.target_offset
;
8706 irel
->r_addend
+= diff
;
8707 pin_internal_relocs (sec
, internal_relocs
);
8713 /* Combine adjacent property table entries. This is also done in
8714 finish_dynamic_sections() but at that point it's too late to
8715 reclaim the space in the output section, so we do this twice. */
8717 if (internal_relocs
&& (!link_info
->relocatable
8718 || strcmp (sec
->name
, XTENSA_LIT_SEC_NAME
) == 0))
8720 Elf_Internal_Rela
*last_irel
= NULL
;
8721 int removed_bytes
= 0;
8722 bfd_vma offset
, last_irel_offset
;
8723 bfd_vma section_size
;
8724 bfd_size_type entry_size
;
8725 flagword predef_flags
;
8727 if (is_full_prop_section
)
8732 predef_flags
= xtensa_get_property_predef_flags (sec
);
8734 /* Walk over memory and irels at the same time.
8735 This REQUIRES that the internal_relocs be sorted by offset. */
8736 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
8737 internal_reloc_compare
);
8738 nexti
= 0; /* Index into internal_relocs. */
8740 pin_internal_relocs (sec
, internal_relocs
);
8741 pin_contents (sec
, contents
);
8743 last_irel_offset
= (bfd_vma
) -1;
8744 section_size
= sec
->size
;
8745 BFD_ASSERT (section_size
% entry_size
== 0);
8747 for (offset
= 0; offset
< section_size
; offset
+= entry_size
)
8749 Elf_Internal_Rela
*irel
, *next_irel
;
8750 bfd_vma bytes_to_remove
, size
, actual_offset
;
8751 bfd_boolean remove_this_irel
;
8757 /* Find the next two relocations (if there are that many left),
8758 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8759 the starting reloc index. After these two loops, "i"
8760 is the index of the first non-NONE reloc past that starting
8761 index, and "nexti" is the index for the next non-NONE reloc
8764 for (i
= nexti
; i
< sec
->reloc_count
; i
++)
8766 if (ELF32_R_TYPE (internal_relocs
[i
].r_info
) != R_XTENSA_NONE
)
8768 irel
= &internal_relocs
[i
];
8771 internal_relocs
[i
].r_offset
-= removed_bytes
;
8774 for (nexti
= i
+ 1; nexti
< sec
->reloc_count
; nexti
++)
8776 if (ELF32_R_TYPE (internal_relocs
[nexti
].r_info
)
8779 next_irel
= &internal_relocs
[nexti
];
8782 internal_relocs
[nexti
].r_offset
-= removed_bytes
;
8785 remove_this_irel
= FALSE
;
8786 bytes_to_remove
= 0;
8787 actual_offset
= offset
- removed_bytes
;
8788 size
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 4]);
8790 if (is_full_prop_section
)
8791 flags
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 8]);
8793 flags
= predef_flags
;
8795 /* Check that the irels are sorted by offset,
8796 with only one per address. */
8797 BFD_ASSERT (!irel
|| (int) irel
->r_offset
> (int) last_irel_offset
);
8798 BFD_ASSERT (!next_irel
|| next_irel
->r_offset
> irel
->r_offset
);
8800 /* Make sure there aren't relocs on the size or flag fields. */
8801 if ((irel
&& irel
->r_offset
== offset
+ 4)
8802 || (is_full_prop_section
8803 && irel
&& irel
->r_offset
== offset
+ 8))
8805 irel
->r_offset
-= removed_bytes
;
8806 last_irel_offset
= irel
->r_offset
;
8808 else if (next_irel
&& (next_irel
->r_offset
== offset
+ 4
8809 || (is_full_prop_section
8810 && next_irel
->r_offset
== offset
+ 8)))
8813 irel
->r_offset
-= removed_bytes
;
8814 next_irel
->r_offset
-= removed_bytes
;
8815 last_irel_offset
= next_irel
->r_offset
;
8817 else if (size
== 0 && (flags
& XTENSA_PROP_ALIGN
) == 0
8818 && (flags
& XTENSA_PROP_UNREACHABLE
) == 0)
8820 /* Always remove entries with zero size and no alignment. */
8821 bytes_to_remove
= entry_size
;
8822 if (irel
&& irel
->r_offset
== offset
)
8824 remove_this_irel
= TRUE
;
8826 irel
->r_offset
-= removed_bytes
;
8827 last_irel_offset
= irel
->r_offset
;
8830 else if (irel
&& irel
->r_offset
== offset
)
8832 if (ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_32
)
8838 bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
+ 4]);
8839 bfd_vma old_address
=
8840 (last_irel
->r_addend
8841 + bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
]));
8842 bfd_vma new_address
=
8844 + bfd_get_32 (abfd
, &contents
[actual_offset
]));
8845 if (is_full_prop_section
)
8846 old_flags
= bfd_get_32
8847 (abfd
, &contents
[last_irel
->r_offset
+ 8]);
8849 old_flags
= predef_flags
;
8851 if ((ELF32_R_SYM (irel
->r_info
)
8852 == ELF32_R_SYM (last_irel
->r_info
))
8853 && old_address
+ old_size
== new_address
8854 && old_flags
== flags
8855 && (old_flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) == 0
8856 && (old_flags
& XTENSA_PROP_INSN_LOOP_TARGET
) == 0)
8858 /* Fix the old size. */
8859 bfd_put_32 (abfd
, old_size
+ size
,
8860 &contents
[last_irel
->r_offset
+ 4]);
8861 bytes_to_remove
= entry_size
;
8862 remove_this_irel
= TRUE
;
8871 irel
->r_offset
-= removed_bytes
;
8872 last_irel_offset
= irel
->r_offset
;
8875 if (remove_this_irel
)
8877 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
8878 irel
->r_offset
-= bytes_to_remove
;
8881 if (bytes_to_remove
!= 0)
8883 removed_bytes
+= bytes_to_remove
;
8884 if (offset
+ bytes_to_remove
< section_size
)
8885 memmove (&contents
[actual_offset
],
8886 &contents
[actual_offset
+ bytes_to_remove
],
8887 section_size
- offset
- bytes_to_remove
);
8893 /* Clear the removed bytes. */
8894 memset (&contents
[section_size
- removed_bytes
], 0, removed_bytes
);
8896 sec
->size
= section_size
- removed_bytes
;
8898 if (xtensa_is_littable_section (sec
))
8900 bfd
*dynobj
= elf_hash_table (link_info
)->dynobj
;
8904 bfd_get_section_by_name (dynobj
, ".got.loc");
8906 sgotloc
->size
-= removed_bytes
;
8913 release_internal_relocs (sec
, internal_relocs
);
8914 release_contents (sec
, contents
);
8919 /* Third relaxation pass. */
8921 /* Change symbol values to account for removed literals. */
8924 relax_section_symbols (bfd
*abfd
, asection
*sec
)
8926 xtensa_relax_info
*relax_info
;
8927 unsigned int sec_shndx
;
8928 Elf_Internal_Shdr
*symtab_hdr
;
8929 Elf_Internal_Sym
*isymbuf
;
8930 unsigned i
, num_syms
, num_locals
;
8932 relax_info
= get_xtensa_relax_info (sec
);
8933 BFD_ASSERT (relax_info
);
8935 if (!relax_info
->is_relaxable_literal_section
8936 && !relax_info
->is_relaxable_asm_section
)
8939 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
8941 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8942 isymbuf
= retrieve_local_syms (abfd
);
8944 num_syms
= symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
);
8945 num_locals
= symtab_hdr
->sh_info
;
8947 /* Adjust the local symbols defined in this section. */
8948 for (i
= 0; i
< num_locals
; i
++)
8950 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
8952 if (isym
->st_shndx
== sec_shndx
)
8954 bfd_vma new_address
= offset_with_removed_text
8955 (&relax_info
->action_list
, isym
->st_value
);
8956 bfd_vma new_size
= isym
->st_size
;
8958 if (ELF32_ST_TYPE (isym
->st_info
) == STT_FUNC
)
8960 bfd_vma new_end
= offset_with_removed_text
8961 (&relax_info
->action_list
, isym
->st_value
+ isym
->st_size
);
8962 new_size
= new_end
- new_address
;
8965 isym
->st_value
= new_address
;
8966 isym
->st_size
= new_size
;
8970 /* Now adjust the global symbols defined in this section. */
8971 for (i
= 0; i
< (num_syms
- num_locals
); i
++)
8973 struct elf_link_hash_entry
*sym_hash
;
8975 sym_hash
= elf_sym_hashes (abfd
)[i
];
8977 if (sym_hash
->root
.type
== bfd_link_hash_warning
)
8978 sym_hash
= (struct elf_link_hash_entry
*) sym_hash
->root
.u
.i
.link
;
8980 if ((sym_hash
->root
.type
== bfd_link_hash_defined
8981 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
8982 && sym_hash
->root
.u
.def
.section
== sec
)
8984 bfd_vma new_address
= offset_with_removed_text
8985 (&relax_info
->action_list
, sym_hash
->root
.u
.def
.value
);
8986 bfd_vma new_size
= sym_hash
->size
;
8988 if (sym_hash
->type
== STT_FUNC
)
8990 bfd_vma new_end
= offset_with_removed_text
8991 (&relax_info
->action_list
,
8992 sym_hash
->root
.u
.def
.value
+ sym_hash
->size
);
8993 new_size
= new_end
- new_address
;
8996 sym_hash
->root
.u
.def
.value
= new_address
;
8997 sym_hash
->size
= new_size
;
9005 /* "Fix" handling functions, called while performing relocations. */
9008 do_fix_for_relocatable_link (Elf_Internal_Rela
*rel
,
9010 asection
*input_section
,
9014 asection
*sec
, *old_sec
;
9016 int r_type
= ELF32_R_TYPE (rel
->r_info
);
9019 if (r_type
== R_XTENSA_NONE
)
9022 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
9026 r_reloc_init (&r_rel
, input_bfd
, rel
, contents
,
9027 bfd_get_section_limit (input_bfd
, input_section
));
9028 old_sec
= r_reloc_get_section (&r_rel
);
9029 old_offset
= r_rel
.target_offset
;
9031 if (!old_sec
|| !r_reloc_is_defined (&r_rel
))
9033 if (r_type
!= R_XTENSA_ASM_EXPAND
)
9035 (*_bfd_error_handler
)
9036 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9037 input_bfd
, input_section
, rel
->r_offset
,
9038 elf_howto_table
[r_type
].name
);
9041 /* Leave it be. Resolution will happen in a later stage. */
9045 sec
= fix
->target_sec
;
9046 rel
->r_addend
+= ((sec
->output_offset
+ fix
->target_offset
)
9047 - (old_sec
->output_offset
+ old_offset
));
9054 do_fix_for_final_link (Elf_Internal_Rela
*rel
,
9056 asection
*input_section
,
9058 bfd_vma
*relocationp
)
9061 int r_type
= ELF32_R_TYPE (rel
->r_info
);
9065 if (r_type
== R_XTENSA_NONE
)
9068 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
9072 sec
= fix
->target_sec
;
9074 fixup_diff
= rel
->r_addend
;
9075 if (elf_howto_table
[fix
->src_type
].partial_inplace
)
9077 bfd_vma inplace_val
;
9078 BFD_ASSERT (fix
->src_offset
9079 < bfd_get_section_limit (input_bfd
, input_section
));
9080 inplace_val
= bfd_get_32 (input_bfd
, &contents
[fix
->src_offset
]);
9081 fixup_diff
+= inplace_val
;
9084 *relocationp
= (sec
->output_section
->vma
9085 + sec
->output_offset
9086 + fix
->target_offset
- fixup_diff
);
9090 /* Miscellaneous utility functions.... */
9093 elf_xtensa_get_plt_section (bfd
*dynobj
, int chunk
)
9098 return bfd_get_section_by_name (dynobj
, ".plt");
9100 sprintf (plt_name
, ".plt.%u", chunk
);
9101 return bfd_get_section_by_name (dynobj
, plt_name
);
9106 elf_xtensa_get_gotplt_section (bfd
*dynobj
, int chunk
)
9111 return bfd_get_section_by_name (dynobj
, ".got.plt");
9113 sprintf (got_name
, ".got.plt.%u", chunk
);
9114 return bfd_get_section_by_name (dynobj
, got_name
);
9118 /* Get the input section for a given symbol index.
9120 . a section symbol, return the section;
9121 . a common symbol, return the common section;
9122 . an undefined symbol, return the undefined section;
9123 . an indirect symbol, follow the links;
9124 . an absolute value, return the absolute section. */
9127 get_elf_r_symndx_section (bfd
*abfd
, unsigned long r_symndx
)
9129 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9130 asection
*target_sec
= NULL
;
9131 if (r_symndx
< symtab_hdr
->sh_info
)
9133 Elf_Internal_Sym
*isymbuf
;
9134 unsigned int section_index
;
9136 isymbuf
= retrieve_local_syms (abfd
);
9137 section_index
= isymbuf
[r_symndx
].st_shndx
;
9139 if (section_index
== SHN_UNDEF
)
9140 target_sec
= bfd_und_section_ptr
;
9141 else if (section_index
> 0 && section_index
< SHN_LORESERVE
)
9142 target_sec
= bfd_section_from_elf_index (abfd
, section_index
);
9143 else if (section_index
== SHN_ABS
)
9144 target_sec
= bfd_abs_section_ptr
;
9145 else if (section_index
== SHN_COMMON
)
9146 target_sec
= bfd_com_section_ptr
;
9153 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
9154 struct elf_link_hash_entry
*h
= elf_sym_hashes (abfd
)[indx
];
9156 while (h
->root
.type
== bfd_link_hash_indirect
9157 || h
->root
.type
== bfd_link_hash_warning
)
9158 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9160 switch (h
->root
.type
)
9162 case bfd_link_hash_defined
:
9163 case bfd_link_hash_defweak
:
9164 target_sec
= h
->root
.u
.def
.section
;
9166 case bfd_link_hash_common
:
9167 target_sec
= bfd_com_section_ptr
;
9169 case bfd_link_hash_undefined
:
9170 case bfd_link_hash_undefweak
:
9171 target_sec
= bfd_und_section_ptr
;
9173 default: /* New indirect warning. */
9174 target_sec
= bfd_und_section_ptr
;
9182 static struct elf_link_hash_entry
*
9183 get_elf_r_symndx_hash_entry (bfd
*abfd
, unsigned long r_symndx
)
9186 struct elf_link_hash_entry
*h
;
9187 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9189 if (r_symndx
< symtab_hdr
->sh_info
)
9192 indx
= r_symndx
- symtab_hdr
->sh_info
;
9193 h
= elf_sym_hashes (abfd
)[indx
];
9194 while (h
->root
.type
== bfd_link_hash_indirect
9195 || h
->root
.type
== bfd_link_hash_warning
)
9196 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9201 /* Get the section-relative offset for a symbol number. */
9204 get_elf_r_symndx_offset (bfd
*abfd
, unsigned long r_symndx
)
9206 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9209 if (r_symndx
< symtab_hdr
->sh_info
)
9211 Elf_Internal_Sym
*isymbuf
;
9212 isymbuf
= retrieve_local_syms (abfd
);
9213 offset
= isymbuf
[r_symndx
].st_value
;
9217 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
9218 struct elf_link_hash_entry
*h
=
9219 elf_sym_hashes (abfd
)[indx
];
9221 while (h
->root
.type
== bfd_link_hash_indirect
9222 || h
->root
.type
== bfd_link_hash_warning
)
9223 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9224 if (h
->root
.type
== bfd_link_hash_defined
9225 || h
->root
.type
== bfd_link_hash_defweak
)
9226 offset
= h
->root
.u
.def
.value
;
9233 is_reloc_sym_weak (bfd
*abfd
, Elf_Internal_Rela
*rel
)
9235 unsigned long r_symndx
= ELF32_R_SYM (rel
->r_info
);
9236 struct elf_link_hash_entry
*h
;
9238 h
= get_elf_r_symndx_hash_entry (abfd
, r_symndx
);
9239 if (h
&& h
->root
.type
== bfd_link_hash_defweak
)
9246 pcrel_reloc_fits (xtensa_opcode opc
,
9248 bfd_vma self_address
,
9249 bfd_vma dest_address
)
9251 xtensa_isa isa
= xtensa_default_isa
;
9252 uint32 valp
= dest_address
;
9253 if (xtensa_operand_do_reloc (isa
, opc
, opnd
, &valp
, self_address
)
9254 || xtensa_operand_encode (isa
, opc
, opnd
, &valp
))
9260 static int linkonce_len
= sizeof (".gnu.linkonce.") - 1;
9261 static int insn_sec_len
= sizeof (XTENSA_INSN_SEC_NAME
) - 1;
9262 static int lit_sec_len
= sizeof (XTENSA_LIT_SEC_NAME
) - 1;
9263 static int prop_sec_len
= sizeof (XTENSA_PROP_SEC_NAME
) - 1;
9267 xtensa_is_property_section (asection
*sec
)
9269 if (strncmp (XTENSA_INSN_SEC_NAME
, sec
->name
, insn_sec_len
) == 0
9270 || strncmp (XTENSA_LIT_SEC_NAME
, sec
->name
, lit_sec_len
) == 0
9271 || strncmp (XTENSA_PROP_SEC_NAME
, sec
->name
, prop_sec_len
) == 0)
9274 if (strncmp (".gnu.linkonce.", sec
->name
, linkonce_len
) == 0
9275 && (strncmp (&sec
->name
[linkonce_len
], "x.", 2) == 0
9276 || strncmp (&sec
->name
[linkonce_len
], "p.", 2) == 0
9277 || strncmp (&sec
->name
[linkonce_len
], "prop.", 5) == 0))
9285 xtensa_is_littable_section (asection
*sec
)
9287 if (strncmp (XTENSA_LIT_SEC_NAME
, sec
->name
, lit_sec_len
) == 0)
9290 if (strncmp (".gnu.linkonce.", sec
->name
, linkonce_len
) == 0
9291 && sec
->name
[linkonce_len
] == 'p'
9292 && sec
->name
[linkonce_len
+ 1] == '.')
9300 internal_reloc_compare (const void *ap
, const void *bp
)
9302 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
9303 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
9305 if (a
->r_offset
!= b
->r_offset
)
9306 return (a
->r_offset
- b
->r_offset
);
9308 /* We don't need to sort on these criteria for correctness,
9309 but enforcing a more strict ordering prevents unstable qsort
9310 from behaving differently with different implementations.
9311 Without the code below we get correct but different results
9312 on Solaris 2.7 and 2.8. We would like to always produce the
9313 same results no matter the host. */
9315 if (a
->r_info
!= b
->r_info
)
9316 return (a
->r_info
- b
->r_info
);
9318 return (a
->r_addend
- b
->r_addend
);
9323 internal_reloc_matches (const void *ap
, const void *bp
)
9325 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
9326 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
9328 /* Check if one entry overlaps with the other; this shouldn't happen
9329 except when searching for a match. */
9330 return (a
->r_offset
- b
->r_offset
);
9335 xtensa_get_property_section_name (asection
*sec
, const char *base_name
)
9337 if (strncmp (sec
->name
, ".gnu.linkonce.", linkonce_len
) == 0)
9339 char *prop_sec_name
;
9341 char *linkonce_kind
= 0;
9343 if (strcmp (base_name
, XTENSA_INSN_SEC_NAME
) == 0)
9344 linkonce_kind
= "x";
9345 else if (strcmp (base_name
, XTENSA_LIT_SEC_NAME
) == 0)
9346 linkonce_kind
= "p";
9347 else if (strcmp (base_name
, XTENSA_PROP_SEC_NAME
) == 0)
9348 linkonce_kind
= "prop.";
9352 prop_sec_name
= (char *) bfd_malloc (strlen (sec
->name
)
9353 + strlen (linkonce_kind
) + 1);
9354 memcpy (prop_sec_name
, ".gnu.linkonce.", linkonce_len
);
9355 strcpy (prop_sec_name
+ linkonce_len
, linkonce_kind
);
9357 suffix
= sec
->name
+ linkonce_len
;
9358 /* For backward compatibility, replace "t." instead of inserting
9359 the new linkonce_kind (but not for "prop" sections). */
9360 if (strncmp (suffix
, "t.", 2) == 0 && linkonce_kind
[1] == '.')
9362 strcat (prop_sec_name
+ linkonce_len
, suffix
);
9364 return prop_sec_name
;
9367 return strdup (base_name
);
9372 xtensa_get_property_predef_flags (asection
*sec
)
9374 if (strcmp (sec
->name
, XTENSA_INSN_SEC_NAME
) == 0
9375 || strncmp (sec
->name
, ".gnu.linkonce.x.",
9376 sizeof ".gnu.linkonce.x." - 1) == 0)
9377 return (XTENSA_PROP_INSN
9378 | XTENSA_PROP_INSN_NO_TRANSFORM
9379 | XTENSA_PROP_INSN_NO_REORDER
);
9381 if (xtensa_is_littable_section (sec
))
9382 return (XTENSA_PROP_LITERAL
9383 | XTENSA_PROP_INSN_NO_TRANSFORM
9384 | XTENSA_PROP_INSN_NO_REORDER
);
9390 /* Other functions called directly by the linker. */
9393 xtensa_callback_required_dependence (bfd
*abfd
,
9395 struct bfd_link_info
*link_info
,
9396 deps_callback_t callback
,
9399 Elf_Internal_Rela
*internal_relocs
;
9402 bfd_boolean ok
= TRUE
;
9403 bfd_size_type sec_size
;
9405 sec_size
= bfd_get_section_limit (abfd
, sec
);
9407 /* ".plt*" sections have no explicit relocations but they contain L32R
9408 instructions that reference the corresponding ".got.plt*" sections. */
9409 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0
9410 && strncmp (sec
->name
, ".plt", 4) == 0)
9414 /* Find the corresponding ".got.plt*" section. */
9415 if (sec
->name
[4] == '\0')
9416 sgotplt
= bfd_get_section_by_name (sec
->owner
, ".got.plt");
9422 BFD_ASSERT (sec
->name
[4] == '.');
9423 chunk
= strtol (&sec
->name
[5], NULL
, 10);
9425 sprintf (got_name
, ".got.plt.%u", chunk
);
9426 sgotplt
= bfd_get_section_by_name (sec
->owner
, got_name
);
9428 BFD_ASSERT (sgotplt
);
9430 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9431 section referencing a literal at the very beginning of
9432 ".got.plt". This is very close to the real dependence, anyway. */
9433 (*callback
) (sec
, sec_size
, sgotplt
, 0, closure
);
9436 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
9437 link_info
->keep_memory
);
9438 if (internal_relocs
== NULL
9439 || sec
->reloc_count
== 0)
9442 /* Cache the contents for the duration of this scan. */
9443 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
9444 if (contents
== NULL
&& sec_size
!= 0)
9450 if (!xtensa_default_isa
)
9451 xtensa_default_isa
= xtensa_isa_init (0, 0);
9453 for (i
= 0; i
< sec
->reloc_count
; i
++)
9455 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
9456 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
9459 asection
*target_sec
;
9460 bfd_vma target_offset
;
9462 r_reloc_init (&l32r_rel
, abfd
, irel
, contents
, sec_size
);
9465 /* L32Rs must be local to the input file. */
9466 if (r_reloc_is_defined (&l32r_rel
))
9468 target_sec
= r_reloc_get_section (&l32r_rel
);
9469 target_offset
= l32r_rel
.target_offset
;
9471 (*callback
) (sec
, irel
->r_offset
, target_sec
, target_offset
,
9477 release_internal_relocs (sec
, internal_relocs
);
9478 release_contents (sec
, contents
);
9482 /* The default literal sections should always be marked as "code" (i.e.,
9483 SHF_EXECINSTR). This is particularly important for the Linux kernel
9484 module loader so that the literals are not placed after the text. */
9485 static struct bfd_elf_special_section
const elf_xtensa_special_sections
[]=
9487 { ".literal", 8, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
9488 { ".init.literal", 13, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
9489 { ".fini.literal", 13, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
9490 { NULL
, 0, 0, 0, 0 }
9495 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9496 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9497 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9498 #define TARGET_BIG_NAME "elf32-xtensa-be"
9499 #define ELF_ARCH bfd_arch_xtensa
9501 /* The new EM_XTENSA value will be recognized beginning in the Xtensa T1040
9502 release. However, we still have to generate files with the EM_XTENSA_OLD
9503 value so that pre-T1040 tools can read the files. As soon as we stop
9504 caring about pre-T1040 tools, the following two values should be
9505 swapped. At the same time, any other code that uses EM_XTENSA_OLD
9506 should be changed to use EM_XTENSA. */
9507 #define ELF_MACHINE_CODE EM_XTENSA_OLD
9508 #define ELF_MACHINE_ALT1 EM_XTENSA
9511 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9512 #else /* !XCHAL_HAVE_MMU */
9513 #define ELF_MAXPAGESIZE 1
9514 #endif /* !XCHAL_HAVE_MMU */
9515 #endif /* ELF_ARCH */
9517 #define elf_backend_can_gc_sections 1
9518 #define elf_backend_can_refcount 1
9519 #define elf_backend_plt_readonly 1
9520 #define elf_backend_got_header_size 4
9521 #define elf_backend_want_dynbss 0
9522 #define elf_backend_want_got_plt 1
9524 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9526 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9527 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9528 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9529 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9530 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9531 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9533 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9534 #define elf_backend_check_relocs elf_xtensa_check_relocs
9535 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9536 #define elf_backend_discard_info elf_xtensa_discard_info
9537 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9538 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9539 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9540 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9541 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9542 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9543 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9544 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9545 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9546 #define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9547 #define elf_backend_object_p elf_xtensa_object_p
9548 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9549 #define elf_backend_relocate_section elf_xtensa_relocate_section
9550 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9551 #define elf_backend_special_sections elf_xtensa_special_sections
9553 #include "elf32-target.h"