1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
72 Creating a linker hash table
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocateable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
110 Adding symbols to the hash table
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
136 Differing file formats
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the <<creator>>
153 field of the hash table must be checked to make sure that the
154 hash table was created by an object file of the same format.
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the <<creator>> field before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
173 Adding symbols from an object file
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is true, so
204 that the <<-no-keep-memory>> linker switch is effective.
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
217 Adding symbols from an archive
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table.
226 @findex _bfd_generic_link_add_archive_symbols
227 In most cases the work of looking through the symbols in the
228 archive should be done by the
229 <<_bfd_generic_link_add_archive_symbols>> function. This
230 function builds a hash table from the archive symbol table and
231 looks through the list of undefined symbols to see which
232 elements should be included.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table.
238 The function passed to
239 <<_bfd_generic_link_add_archive_symbols>> must read the
240 symbols of the archive element and decide whether the archive
241 element should be included in the link. If the element is to
242 be included, the <<add_archive_element>> linker callback
243 routine must be called with the element as an argument, and
244 the elements symbols must be added to the linker hash table
245 just as though the element had itself been passed to the
246 <<_bfd_link_add_symbols>> function.
248 When the a.out <<_bfd_link_add_symbols>> function receives an
249 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 passing <<aout_link_check_archive_element>> as the function
251 argument. <<aout_link_check_archive_element>> calls
252 <<aout_link_check_ar_symbols>>. If the latter decides to add
253 the element (an element is only added if it provides a real,
254 non-common, definition for a previously undefined or common
255 symbol) it calls the <<add_archive_element>> callback and then
256 <<aout_link_check_archive_element>> calls
257 <<aout_link_add_symbols>> to actually add the symbols to the
260 The ECOFF back end is unusual in that it does not normally
261 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 archives already contain a hash table of symbols. The ECOFF
263 back end searches the archive itself to avoid the overhead of
264 creating a new hash table.
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
269 Performing the final link
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 When all the input files have been processed, the linker calls
274 the <<_bfd_final_link>> entry point of the output BFD. This
275 routine is responsible for producing the final output file,
276 which has several aspects. It must relocate the contents of
277 the input sections and copy the data into the output sections.
278 It must build an output symbol table including any local
279 symbols from the input files and the global symbols from the
280 hash table. When producing relocateable output, it must
281 modify the input relocs and write them into the output file.
282 There may also be object format dependent work to be done.
284 The linker will also call the <<write_object_contents>> entry
285 point when the BFD is closed. The two entry points must work
286 together in order to produce the correct output file.
288 The details of how this works are inevitably dependent upon
289 the specific object file format. The a.out
290 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
301 Information provided by the linker
303 Before the linker calls the <<_bfd_final_link>> entry point,
304 it sets up some data structures for the function to use.
306 The <<input_bfds>> field of the <<bfd_link_info>> structure
307 will point to a list of all the input files included in the
308 link. These files are linked through the <<link_next>> field
309 of the <<bfd>> structure.
311 Each section in the output file will have a list of
312 <<link_order>> structures attached to the <<link_order_head>>
313 field (the <<link_order>> structure is defined in
314 <<bfdlink.h>>). These structures describe how to create the
315 contents of the output section in terms of the contents of
316 various input sections, fill constants, and, eventually, other
317 types of information. They also describe relocs that must be
318 created by the BFD backend, but do not correspond to any input
319 file; this is used to support -Ur, which builds constructors
320 while generating a relocateable object file.
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
325 Relocating the section contents
327 The <<_bfd_final_link>> function should look through the
328 <<link_order>> structures attached to each section of the
329 output file. Each <<link_order>> structure should either be
330 handled specially, or it should be passed to the function
331 <<_bfd_default_link_order>> which will do the right thing
332 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
334 For efficiency, a <<link_order>> of type
335 <<bfd_indirect_link_order>> whose associated section belongs
336 to a BFD of the same format as the output BFD must be handled
337 specially. This type of <<link_order>> describes part of an
338 output section in terms of a section belonging to one of the
339 input files. The <<_bfd_final_link>> function should read the
340 contents of the section and any associated relocs, apply the
341 relocs to the section contents, and write out the modified
342 section contents. If performing a relocateable link, the
343 relocs themselves must also be modified and written out.
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 The functions <<_bfd_relocate_contents>> and
348 <<_bfd_final_link_relocate>> provide some general support for
349 performing the actual relocations, notably overflow checking.
350 Their arguments include information about the symbol the
351 relocation is against and a <<reloc_howto_type>> argument
352 which describes the relocation to perform. These functions
353 are defined in <<reloc.c>>.
355 The a.out function which handles reading, relocating, and
356 writing section contents is <<aout_link_input_section>>. The
357 actual relocation is done in <<aout_link_input_section_std>>
358 and <<aout_link_input_section_ext>>.
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
363 Writing the symbol table
365 The <<_bfd_final_link>> function must gather all the symbols
366 in the input files and write them out. It must also write out
367 all the symbols in the global hash table. This must be
368 controlled by the <<strip>> and <<discard>> fields of the
369 <<bfd_link_info>> structure.
371 The local symbols of the input files will not have been
372 entered into the linker hash table. The <<_bfd_final_link>>
373 routine must consider each input file and include the symbols
374 in the output file. It may be convenient to do this when
375 looking through the <<link_order>> structures, or it may be
376 done by stepping through the <<input_bfds>> list.
378 The <<_bfd_final_link>> routine must also traverse the global
379 hash table to gather all the externally visible symbols. It
380 is possible that most of the externally visible symbols may be
381 written out when considering the symbols of each input file,
382 but it is still necessary to traverse the hash table since the
383 linker script may have defined some symbols that are not in
384 any of the input files.
386 The <<strip>> field of the <<bfd_link_info>> structure
387 controls which symbols are written out. The possible values
388 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
389 then the <<keep_hash>> field of the <<bfd_link_info>>
390 structure is a hash table of symbols to keep; each symbol
391 should be looked up in this hash table, and only symbols which
392 are present should be included in the output file.
394 If the <<strip>> field of the <<bfd_link_info>> structure
395 permits local symbols to be written out, the <<discard>> field
396 is used to further controls which local symbols are included
397 in the output file. If the value is <<discard_l>>, then all
398 local symbols which begin with a certain prefix are discarded;
399 this is controlled by the <<bfd_is_local_label_name>> entry point.
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
409 static boolean generic_link_read_symbols
411 static boolean generic_link_add_symbols
412 PARAMS ((bfd
*, struct bfd_link_info
*, boolean collect
));
413 static boolean generic_link_add_object_symbols
414 PARAMS ((bfd
*, struct bfd_link_info
*, boolean collect
));
415 static boolean generic_link_check_archive_element_no_collect
416 PARAMS ((bfd
*, struct bfd_link_info
*, boolean
*pneeded
));
417 static boolean generic_link_check_archive_element_collect
418 PARAMS ((bfd
*, struct bfd_link_info
*, boolean
*pneeded
));
419 static boolean generic_link_check_archive_element
420 PARAMS ((bfd
*, struct bfd_link_info
*, boolean
*pneeded
, boolean collect
));
421 static boolean generic_link_add_symbol_list
422 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_size_type count
, asymbol
**,
424 static bfd
*hash_entry_bfd
PARAMS ((struct bfd_link_hash_entry
*));
425 static void set_symbol_from_hash
426 PARAMS ((asymbol
*, struct bfd_link_hash_entry
*));
427 static boolean generic_add_output_symbol
428 PARAMS ((bfd
*, size_t *psymalloc
, asymbol
*));
429 static boolean default_fill_link_order
430 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
431 struct bfd_link_order
*));
432 static boolean default_indirect_link_order
433 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
434 struct bfd_link_order
*, boolean
));
436 /* The link hash table structure is defined in bfdlink.h. It provides
437 a base hash table which the backend specific hash tables are built
440 /* Routine to create an entry in the link hash table. */
442 struct bfd_hash_entry
*
443 _bfd_link_hash_newfunc (entry
, table
, string
)
444 struct bfd_hash_entry
*entry
;
445 struct bfd_hash_table
*table
;
448 /* Allocate the structure if it has not already been allocated by a
452 entry
= bfd_hash_allocate (table
, sizeof (struct bfd_link_hash_entry
));
457 /* Call the allocation method of the superclass. */
458 entry
= bfd_hash_newfunc (entry
, table
, string
);
461 struct bfd_link_hash_entry
*h
= (struct bfd_link_hash_entry
*) entry
;
463 /* Initialize the local fields. */
464 h
->type
= bfd_link_hash_new
;
471 /* Initialize a link hash table. The BFD argument is the one
472 responsible for creating this table. */
475 _bfd_link_hash_table_init (table
, abfd
, newfunc
)
476 struct bfd_link_hash_table
*table
;
478 struct bfd_hash_entry
*(*newfunc
) PARAMS ((struct bfd_hash_entry
*,
479 struct bfd_hash_table
*,
482 table
->creator
= abfd
->xvec
;
483 table
->undefs
= NULL
;
484 table
->undefs_tail
= NULL
;
485 table
->type
= bfd_link_generic_hash_table
;
487 return bfd_hash_table_init (&table
->table
, newfunc
);
490 /* Look up a symbol in a link hash table. If follow is true, we
491 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
494 struct bfd_link_hash_entry
*
495 bfd_link_hash_lookup (table
, string
, create
, copy
, follow
)
496 struct bfd_link_hash_table
*table
;
502 struct bfd_link_hash_entry
*ret
;
504 ret
= ((struct bfd_link_hash_entry
*)
505 bfd_hash_lookup (&table
->table
, string
, create
, copy
));
507 if (follow
&& ret
!= (struct bfd_link_hash_entry
*) NULL
)
509 while (ret
->type
== bfd_link_hash_indirect
510 || ret
->type
== bfd_link_hash_warning
)
517 /* Look up a symbol in the main linker hash table if the symbol might
518 be wrapped. This should only be used for references to an
519 undefined symbol, not for definitions of a symbol. */
521 struct bfd_link_hash_entry
*
522 bfd_wrapped_link_hash_lookup (abfd
, info
, string
, create
, copy
, follow
)
524 struct bfd_link_info
*info
;
532 if (info
->wrap_hash
!= NULL
)
537 if (*l
== bfd_get_symbol_leading_char (abfd
))
541 #define WRAP "__wrap_"
543 if (bfd_hash_lookup (info
->wrap_hash
, l
, false, false) != NULL
)
546 struct bfd_link_hash_entry
*h
;
548 /* This symbol is being wrapped. We want to replace all
549 references to SYM with references to __wrap_SYM. */
551 amt
= strlen (l
) + sizeof WRAP
+ 1;
552 n
= (char *) bfd_malloc (amt
);
556 /* Note that symbol_leading_char may be '\0'. */
557 n
[0] = bfd_get_symbol_leading_char (abfd
);
561 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, true, follow
);
569 #define REAL "__real_"
572 && strncmp (l
, REAL
, sizeof REAL
- 1) == 0
573 && bfd_hash_lookup (info
->wrap_hash
, l
+ sizeof REAL
- 1,
574 false, false) != NULL
)
577 struct bfd_link_hash_entry
*h
;
579 /* This is a reference to __real_SYM, where SYM is being
580 wrapped. We want to replace all references to __real_SYM
581 with references to SYM. */
583 amt
= strlen (l
+ sizeof REAL
- 1) + 2;
584 n
= (char *) bfd_malloc (amt
);
588 /* Note that symbol_leading_char may be '\0'. */
589 n
[0] = bfd_get_symbol_leading_char (abfd
);
591 strcat (n
, l
+ sizeof REAL
- 1);
592 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, true, follow
);
600 return bfd_link_hash_lookup (info
->hash
, string
, create
, copy
, follow
);
603 /* Traverse a generic link hash table. The only reason this is not a
604 macro is to do better type checking. This code presumes that an
605 argument passed as a struct bfd_hash_entry * may be caught as a
606 struct bfd_link_hash_entry * with no explicit cast required on the
610 bfd_link_hash_traverse (table
, func
, info
)
611 struct bfd_link_hash_table
*table
;
612 boolean (*func
) PARAMS ((struct bfd_link_hash_entry
*, PTR
));
615 bfd_hash_traverse (&table
->table
,
616 ((boolean (*) PARAMS ((struct bfd_hash_entry
*, PTR
)))
621 /* Add a symbol to the linker hash table undefs list. */
624 bfd_link_add_undef (table
, h
)
625 struct bfd_link_hash_table
*table
;
626 struct bfd_link_hash_entry
*h
;
628 BFD_ASSERT (h
->next
== NULL
);
629 if (table
->undefs_tail
!= (struct bfd_link_hash_entry
*) NULL
)
630 table
->undefs_tail
->next
= h
;
631 if (table
->undefs
== (struct bfd_link_hash_entry
*) NULL
)
633 table
->undefs_tail
= h
;
636 /* Routine to create an entry in an generic link hash table. */
638 struct bfd_hash_entry
*
639 _bfd_generic_link_hash_newfunc (entry
, table
, string
)
640 struct bfd_hash_entry
*entry
;
641 struct bfd_hash_table
*table
;
644 /* Allocate the structure if it has not already been allocated by a
648 entry
= bfd_hash_allocate (table
,
649 sizeof (struct generic_link_hash_entry
));
654 /* Call the allocation method of the superclass. */
655 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
658 struct generic_link_hash_entry
*ret
;
660 /* Set local fields. */
661 ret
= (struct generic_link_hash_entry
*) entry
;
662 ret
->written
= false;
669 /* Create an generic link hash table. */
671 struct bfd_link_hash_table
*
672 _bfd_generic_link_hash_table_create (abfd
)
675 struct generic_link_hash_table
*ret
;
676 bfd_size_type amt
= sizeof (struct generic_link_hash_table
);
678 ret
= (struct generic_link_hash_table
*) bfd_alloc (abfd
, amt
);
680 return (struct bfd_link_hash_table
*) NULL
;
681 if (! _bfd_link_hash_table_init (&ret
->root
, abfd
,
682 _bfd_generic_link_hash_newfunc
))
685 return (struct bfd_link_hash_table
*) NULL
;
690 /* Grab the symbols for an object file when doing a generic link. We
691 store the symbols in the outsymbols field. We need to keep them
692 around for the entire link to ensure that we only read them once.
693 If we read them multiple times, we might wind up with relocs and
694 the hash table pointing to different instances of the symbol
698 generic_link_read_symbols (abfd
)
701 if (bfd_get_outsymbols (abfd
) == (asymbol
**) NULL
)
706 symsize
= bfd_get_symtab_upper_bound (abfd
);
709 bfd_get_outsymbols (abfd
) =
710 (asymbol
**) bfd_alloc (abfd
, (bfd_size_type
) symsize
);
711 if (bfd_get_outsymbols (abfd
) == NULL
&& symsize
!= 0)
713 symcount
= bfd_canonicalize_symtab (abfd
, bfd_get_outsymbols (abfd
));
716 bfd_get_symcount (abfd
) = symcount
;
722 /* Generic function to add symbols to from an object file to the
723 global hash table. This version does not automatically collect
724 constructors by name. */
727 _bfd_generic_link_add_symbols (abfd
, info
)
729 struct bfd_link_info
*info
;
731 return generic_link_add_symbols (abfd
, info
, false);
734 /* Generic function to add symbols from an object file to the global
735 hash table. This version automatically collects constructors by
736 name, as the collect2 program does. It should be used for any
737 target which does not provide some other mechanism for setting up
738 constructors and destructors; these are approximately those targets
739 for which gcc uses collect2 and do not support stabs. */
742 _bfd_generic_link_add_symbols_collect (abfd
, info
)
744 struct bfd_link_info
*info
;
746 return generic_link_add_symbols (abfd
, info
, true);
749 /* Add symbols from an object file to the global hash table. */
752 generic_link_add_symbols (abfd
, info
, collect
)
754 struct bfd_link_info
*info
;
759 switch (bfd_get_format (abfd
))
762 ret
= generic_link_add_object_symbols (abfd
, info
, collect
);
765 ret
= (_bfd_generic_link_add_archive_symbols
768 ? generic_link_check_archive_element_collect
769 : generic_link_check_archive_element_no_collect
)));
772 bfd_set_error (bfd_error_wrong_format
);
779 /* Add symbols from an object file to the global hash table. */
782 generic_link_add_object_symbols (abfd
, info
, collect
)
784 struct bfd_link_info
*info
;
787 bfd_size_type symcount
;
788 struct symbol_cache_entry
**outsyms
;
790 if (! generic_link_read_symbols (abfd
))
792 symcount
= _bfd_generic_link_get_symcount (abfd
);
793 outsyms
= _bfd_generic_link_get_symbols (abfd
);
794 return generic_link_add_symbol_list (abfd
, info
, symcount
, outsyms
, collect
);
797 /* We build a hash table of all symbols defined in an archive. */
799 /* An archive symbol may be defined by multiple archive elements.
800 This linked list is used to hold the elements. */
804 struct archive_list
*next
;
808 /* An entry in an archive hash table. */
810 struct archive_hash_entry
812 struct bfd_hash_entry root
;
813 /* Where the symbol is defined. */
814 struct archive_list
*defs
;
817 /* An archive hash table itself. */
819 struct archive_hash_table
821 struct bfd_hash_table table
;
824 static struct bfd_hash_entry
*archive_hash_newfunc
825 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
826 static boolean archive_hash_table_init
827 PARAMS ((struct archive_hash_table
*,
828 struct bfd_hash_entry
*(*) (struct bfd_hash_entry
*,
829 struct bfd_hash_table
*,
832 /* Create a new entry for an archive hash table. */
834 static struct bfd_hash_entry
*
835 archive_hash_newfunc (entry
, table
, string
)
836 struct bfd_hash_entry
*entry
;
837 struct bfd_hash_table
*table
;
840 struct archive_hash_entry
*ret
= (struct archive_hash_entry
*) entry
;
842 /* Allocate the structure if it has not already been allocated by a
844 if (ret
== (struct archive_hash_entry
*) NULL
)
845 ret
= ((struct archive_hash_entry
*)
846 bfd_hash_allocate (table
, sizeof (struct archive_hash_entry
)));
847 if (ret
== (struct archive_hash_entry
*) NULL
)
850 /* Call the allocation method of the superclass. */
851 ret
= ((struct archive_hash_entry
*)
852 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
856 /* Initialize the local fields. */
857 ret
->defs
= (struct archive_list
*) NULL
;
860 return (struct bfd_hash_entry
*) ret
;
863 /* Initialize an archive hash table. */
866 archive_hash_table_init (table
, newfunc
)
867 struct archive_hash_table
*table
;
868 struct bfd_hash_entry
*(*newfunc
) PARAMS ((struct bfd_hash_entry
*,
869 struct bfd_hash_table
*,
872 return bfd_hash_table_init (&table
->table
, newfunc
);
875 /* Look up an entry in an archive hash table. */
877 #define archive_hash_lookup(t, string, create, copy) \
878 ((struct archive_hash_entry *) \
879 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
881 /* Allocate space in an archive hash table. */
883 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
885 /* Free an archive hash table. */
887 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
889 /* Generic function to add symbols from an archive file to the global
890 hash file. This function presumes that the archive symbol table
891 has already been read in (this is normally done by the
892 bfd_check_format entry point). It looks through the undefined and
893 common symbols and searches the archive symbol table for them. If
894 it finds an entry, it includes the associated object file in the
897 The old linker looked through the archive symbol table for
898 undefined symbols. We do it the other way around, looking through
899 undefined symbols for symbols defined in the archive. The
900 advantage of the newer scheme is that we only have to look through
901 the list of undefined symbols once, whereas the old method had to
902 re-search the symbol table each time a new object file was added.
904 The CHECKFN argument is used to see if an object file should be
905 included. CHECKFN should set *PNEEDED to true if the object file
906 should be included, and must also call the bfd_link_info
907 add_archive_element callback function and handle adding the symbols
908 to the global hash table. CHECKFN should only return false if some
909 sort of error occurs.
911 For some formats, such as a.out, it is possible to look through an
912 object file but not actually include it in the link. The
913 archive_pass field in a BFD is used to avoid checking the symbols
914 of an object files too many times. When an object is included in
915 the link, archive_pass is set to -1. If an object is scanned but
916 not included, archive_pass is set to the pass number. The pass
917 number is incremented each time a new object file is included. The
918 pass number is used because when a new object file is included it
919 may create new undefined symbols which cause a previously examined
920 object file to be included. */
923 _bfd_generic_link_add_archive_symbols (abfd
, info
, checkfn
)
925 struct bfd_link_info
*info
;
926 boolean (*checkfn
) PARAMS ((bfd
*, struct bfd_link_info
*,
931 register carsym
*arsym
;
933 struct archive_hash_table arsym_hash
;
935 struct bfd_link_hash_entry
**pundef
;
937 if (! bfd_has_map (abfd
))
939 /* An empty archive is a special case. */
940 if (bfd_openr_next_archived_file (abfd
, (bfd
*) NULL
) == NULL
)
942 bfd_set_error (bfd_error_no_armap
);
946 arsyms
= bfd_ardata (abfd
)->symdefs
;
947 arsym_end
= arsyms
+ bfd_ardata (abfd
)->symdef_count
;
949 /* In order to quickly determine whether an symbol is defined in
950 this archive, we build a hash table of the symbols. */
951 if (! archive_hash_table_init (&arsym_hash
, archive_hash_newfunc
))
953 for (arsym
= arsyms
, indx
= 0; arsym
< arsym_end
; arsym
++, indx
++)
955 struct archive_hash_entry
*arh
;
956 struct archive_list
*l
, **pp
;
958 arh
= archive_hash_lookup (&arsym_hash
, arsym
->name
, true, false);
959 if (arh
== (struct archive_hash_entry
*) NULL
)
961 l
= ((struct archive_list
*)
962 archive_hash_allocate (&arsym_hash
, sizeof (struct archive_list
)));
966 for (pp
= &arh
->defs
;
967 *pp
!= (struct archive_list
*) NULL
;
974 /* The archive_pass field in the archive itself is used to
975 initialize PASS, sine we may search the same archive multiple
977 pass
= abfd
->archive_pass
+ 1;
979 /* New undefined symbols are added to the end of the list, so we
980 only need to look through it once. */
981 pundef
= &info
->hash
->undefs
;
982 while (*pundef
!= (struct bfd_link_hash_entry
*) NULL
)
984 struct bfd_link_hash_entry
*h
;
985 struct archive_hash_entry
*arh
;
986 struct archive_list
*l
;
990 /* When a symbol is defined, it is not necessarily removed from
992 if (h
->type
!= bfd_link_hash_undefined
993 && h
->type
!= bfd_link_hash_common
)
995 /* Remove this entry from the list, for general cleanliness
996 and because we are going to look through the list again
997 if we search any more libraries. We can't remove the
998 entry if it is the tail, because that would lose any
999 entries we add to the list later on (it would also cause
1000 us to lose track of whether the symbol has been
1002 if (*pundef
!= info
->hash
->undefs_tail
)
1003 *pundef
= (*pundef
)->next
;
1005 pundef
= &(*pundef
)->next
;
1009 /* Look for this symbol in the archive symbol map. */
1010 arh
= archive_hash_lookup (&arsym_hash
, h
->root
.string
, false, false);
1011 if (arh
== (struct archive_hash_entry
*) NULL
)
1013 /* If we haven't found the exact symbol we're looking for,
1014 let's look for its import thunk */
1015 if (info
->pei386_auto_import
)
1017 bfd_size_type amt
= strlen (h
->root
.string
) + 10;
1018 char *buf
= (char *) bfd_malloc (amt
);
1022 sprintf (buf
, "__imp_%s", h
->root
.string
);
1023 arh
= archive_hash_lookup (&arsym_hash
, buf
, false, false);
1026 if (arh
== (struct archive_hash_entry
*) NULL
)
1028 pundef
= &(*pundef
)->next
;
1032 /* Look at all the objects which define this symbol. */
1033 for (l
= arh
->defs
; l
!= (struct archive_list
*) NULL
; l
= l
->next
)
1038 /* If the symbol has gotten defined along the way, quit. */
1039 if (h
->type
!= bfd_link_hash_undefined
1040 && h
->type
!= bfd_link_hash_common
)
1043 element
= bfd_get_elt_at_index (abfd
, l
->indx
);
1044 if (element
== (bfd
*) NULL
)
1047 /* If we've already included this element, or if we've
1048 already checked it on this pass, continue. */
1049 if (element
->archive_pass
== -1
1050 || element
->archive_pass
== pass
)
1053 /* If we can't figure this element out, just ignore it. */
1054 if (! bfd_check_format (element
, bfd_object
))
1056 element
->archive_pass
= -1;
1060 /* CHECKFN will see if this element should be included, and
1061 go ahead and include it if appropriate. */
1062 if (! (*checkfn
) (element
, info
, &needed
))
1066 element
->archive_pass
= pass
;
1069 element
->archive_pass
= -1;
1071 /* Increment the pass count to show that we may need to
1072 recheck object files which were already checked. */
1077 pundef
= &(*pundef
)->next
;
1080 archive_hash_table_free (&arsym_hash
);
1082 /* Save PASS in case we are called again. */
1083 abfd
->archive_pass
= pass
;
1088 archive_hash_table_free (&arsym_hash
);
1092 /* See if we should include an archive element. This version is used
1093 when we do not want to automatically collect constructors based on
1094 the symbol name, presumably because we have some other mechanism
1095 for finding them. */
1098 generic_link_check_archive_element_no_collect (abfd
, info
, pneeded
)
1100 struct bfd_link_info
*info
;
1103 return generic_link_check_archive_element (abfd
, info
, pneeded
, false);
1106 /* See if we should include an archive element. This version is used
1107 when we want to automatically collect constructors based on the
1108 symbol name, as collect2 does. */
1111 generic_link_check_archive_element_collect (abfd
, info
, pneeded
)
1113 struct bfd_link_info
*info
;
1116 return generic_link_check_archive_element (abfd
, info
, pneeded
, true);
1119 /* See if we should include an archive element. Optionally collect
1123 generic_link_check_archive_element (abfd
, info
, pneeded
, collect
)
1125 struct bfd_link_info
*info
;
1129 asymbol
**pp
, **ppend
;
1133 if (! generic_link_read_symbols (abfd
))
1136 pp
= _bfd_generic_link_get_symbols (abfd
);
1137 ppend
= pp
+ _bfd_generic_link_get_symcount (abfd
);
1138 for (; pp
< ppend
; pp
++)
1141 struct bfd_link_hash_entry
*h
;
1145 /* We are only interested in globally visible symbols. */
1146 if (! bfd_is_com_section (p
->section
)
1147 && (p
->flags
& (BSF_GLOBAL
| BSF_INDIRECT
| BSF_WEAK
)) == 0)
1150 /* We are only interested if we know something about this
1151 symbol, and it is undefined or common. An undefined weak
1152 symbol (type bfd_link_hash_undefweak) is not considered to be
1153 a reference when pulling files out of an archive. See the
1154 SVR4 ABI, p. 4-27. */
1155 h
= bfd_link_hash_lookup (info
->hash
, bfd_asymbol_name (p
), false,
1157 if (h
== (struct bfd_link_hash_entry
*) NULL
1158 || (h
->type
!= bfd_link_hash_undefined
1159 && h
->type
!= bfd_link_hash_common
))
1162 /* P is a symbol we are looking for. */
1164 if (! bfd_is_com_section (p
->section
))
1166 bfd_size_type symcount
;
1169 /* This object file defines this symbol, so pull it in. */
1170 if (! (*info
->callbacks
->add_archive_element
) (info
, abfd
,
1171 bfd_asymbol_name (p
)))
1173 symcount
= _bfd_generic_link_get_symcount (abfd
);
1174 symbols
= _bfd_generic_link_get_symbols (abfd
);
1175 if (! generic_link_add_symbol_list (abfd
, info
, symcount
,
1182 /* P is a common symbol. */
1184 if (h
->type
== bfd_link_hash_undefined
)
1190 symbfd
= h
->u
.undef
.abfd
;
1191 if (symbfd
== (bfd
*) NULL
)
1193 /* This symbol was created as undefined from outside
1194 BFD. We assume that we should link in the object
1195 file. This is for the -u option in the linker. */
1196 if (! (*info
->callbacks
->add_archive_element
)
1197 (info
, abfd
, bfd_asymbol_name (p
)))
1203 /* Turn the symbol into a common symbol but do not link in
1204 the object file. This is how a.out works. Object
1205 formats that require different semantics must implement
1206 this function differently. This symbol is already on the
1207 undefs list. We add the section to a common section
1208 attached to symbfd to ensure that it is in a BFD which
1209 will be linked in. */
1210 h
->type
= bfd_link_hash_common
;
1212 ((struct bfd_link_hash_common_entry
*)
1213 bfd_hash_allocate (&info
->hash
->table
,
1214 sizeof (struct bfd_link_hash_common_entry
)));
1215 if (h
->u
.c
.p
== NULL
)
1218 size
= bfd_asymbol_value (p
);
1221 power
= bfd_log2 (size
);
1224 h
->u
.c
.p
->alignment_power
= power
;
1226 if (p
->section
== bfd_com_section_ptr
)
1227 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
, "COMMON");
1229 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
,
1231 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1235 /* Adjust the size of the common symbol if necessary. This
1236 is how a.out works. Object formats that require
1237 different semantics must implement this function
1239 if (bfd_asymbol_value (p
) > h
->u
.c
.size
)
1240 h
->u
.c
.size
= bfd_asymbol_value (p
);
1244 /* This archive element is not needed. */
1248 /* Add the symbols from an object file to the global hash table. ABFD
1249 is the object file. INFO is the linker information. SYMBOL_COUNT
1250 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1251 is true if constructors should be automatically collected by name
1252 as is done by collect2. */
1255 generic_link_add_symbol_list (abfd
, info
, symbol_count
, symbols
, collect
)
1257 struct bfd_link_info
*info
;
1258 bfd_size_type symbol_count
;
1262 asymbol
**pp
, **ppend
;
1265 ppend
= symbols
+ symbol_count
;
1266 for (; pp
< ppend
; pp
++)
1272 if ((p
->flags
& (BSF_INDIRECT
1277 || bfd_is_und_section (bfd_get_section (p
))
1278 || bfd_is_com_section (bfd_get_section (p
))
1279 || bfd_is_ind_section (bfd_get_section (p
)))
1283 struct generic_link_hash_entry
*h
;
1285 name
= bfd_asymbol_name (p
);
1286 if (((p
->flags
& BSF_INDIRECT
) != 0
1287 || bfd_is_ind_section (p
->section
))
1291 string
= bfd_asymbol_name (*pp
);
1293 else if ((p
->flags
& BSF_WARNING
) != 0
1296 /* The name of P is actually the warning string, and the
1297 next symbol is the one to warn about. */
1300 name
= bfd_asymbol_name (*pp
);
1306 if (! (_bfd_generic_link_add_one_symbol
1307 (info
, abfd
, name
, p
->flags
, bfd_get_section (p
),
1308 p
->value
, string
, false, collect
,
1309 (struct bfd_link_hash_entry
**) &h
)))
1312 /* If this is a constructor symbol, and the linker didn't do
1313 anything with it, then we want to just pass the symbol
1314 through to the output file. This will happen when
1316 if ((p
->flags
& BSF_CONSTRUCTOR
) != 0
1317 && (h
== NULL
|| h
->root
.type
== bfd_link_hash_new
))
1323 /* Save the BFD symbol so that we don't lose any backend
1324 specific information that may be attached to it. We only
1325 want this one if it gives more information than the
1326 existing one; we don't want to replace a defined symbol
1327 with an undefined one. This routine may be called with a
1328 hash table other than the generic hash table, so we only
1329 do this if we are certain that the hash table is a
1331 if (info
->hash
->creator
== abfd
->xvec
)
1333 if (h
->sym
== (asymbol
*) NULL
1334 || (! bfd_is_und_section (bfd_get_section (p
))
1335 && (! bfd_is_com_section (bfd_get_section (p
))
1336 || bfd_is_und_section (bfd_get_section (h
->sym
)))))
1339 /* BSF_OLD_COMMON is a hack to support COFF reloc
1340 reading, and it should go away when the COFF
1341 linker is switched to the new version. */
1342 if (bfd_is_com_section (bfd_get_section (p
)))
1343 p
->flags
|= BSF_OLD_COMMON
;
1347 /* Store a back pointer from the symbol to the hash
1348 table entry for the benefit of relaxation code until
1349 it gets rewritten to not use asymbol structures.
1350 Setting this is also used to check whether these
1351 symbols were set up by the generic linker. */
1352 p
->udata
.p
= (PTR
) h
;
1359 /* We use a state table to deal with adding symbols from an object
1360 file. The first index into the state table describes the symbol
1361 from the object file. The second index into the state table is the
1362 type of the symbol in the hash table. */
1364 /* The symbol from the object file is turned into one of these row
1369 UNDEF_ROW
, /* Undefined. */
1370 UNDEFW_ROW
, /* Weak undefined. */
1371 DEF_ROW
, /* Defined. */
1372 DEFW_ROW
, /* Weak defined. */
1373 COMMON_ROW
, /* Common. */
1374 INDR_ROW
, /* Indirect. */
1375 WARN_ROW
, /* Warning. */
1376 SET_ROW
/* Member of set. */
1379 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1382 /* The actions to take in the state table. */
1387 UND
, /* Mark symbol undefined. */
1388 WEAK
, /* Mark symbol weak undefined. */
1389 DEF
, /* Mark symbol defined. */
1390 DEFW
, /* Mark symbol weak defined. */
1391 COM
, /* Mark symbol common. */
1392 REF
, /* Mark defined symbol referenced. */
1393 CREF
, /* Possibly warn about common reference to defined symbol. */
1394 CDEF
, /* Define existing common symbol. */
1395 NOACT
, /* No action. */
1396 BIG
, /* Mark symbol common using largest size. */
1397 MDEF
, /* Multiple definition error. */
1398 MIND
, /* Multiple indirect symbols. */
1399 IND
, /* Make indirect symbol. */
1400 CIND
, /* Make indirect symbol from existing common symbol. */
1401 SET
, /* Add value to set. */
1402 MWARN
, /* Make warning symbol. */
1403 WARN
, /* Issue warning. */
1404 CWARN
, /* Warn if referenced, else MWARN. */
1405 CYCLE
, /* Repeat with symbol pointed to. */
1406 REFC
, /* Mark indirect symbol referenced and then CYCLE. */
1407 WARNC
/* Issue warning and then CYCLE. */
1410 /* The state table itself. The first index is a link_row and the
1411 second index is a bfd_link_hash_type. */
1413 static const enum link_action link_action
[8][8] =
1415 /* current\prev new undef undefw def defw com indr warn */
1416 /* UNDEF_ROW */ {UND
, NOACT
, UND
, REF
, REF
, NOACT
, REFC
, WARNC
},
1417 /* UNDEFW_ROW */ {WEAK
, NOACT
, NOACT
, REF
, REF
, NOACT
, REFC
, WARNC
},
1418 /* DEF_ROW */ {DEF
, DEF
, DEF
, MDEF
, DEF
, CDEF
, MDEF
, CYCLE
},
1419 /* DEFW_ROW */ {DEFW
, DEFW
, DEFW
, NOACT
, NOACT
, NOACT
, NOACT
, CYCLE
},
1420 /* COMMON_ROW */ {COM
, COM
, COM
, CREF
, COM
, BIG
, REFC
, WARNC
},
1421 /* INDR_ROW */ {IND
, IND
, IND
, MDEF
, IND
, CIND
, MIND
, CYCLE
},
1422 /* WARN_ROW */ {MWARN
, WARN
, WARN
, CWARN
, CWARN
, WARN
, CWARN
, MWARN
},
1423 /* SET_ROW */ {SET
, SET
, SET
, SET
, SET
, SET
, CYCLE
, CYCLE
}
1426 /* Most of the entries in the LINK_ACTION table are straightforward,
1427 but a few are somewhat subtle.
1429 A reference to an indirect symbol (UNDEF_ROW/indr or
1430 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1431 symbol and to the symbol the indirect symbol points to.
1433 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1434 causes the warning to be issued.
1436 A common definition of an indirect symbol (COMMON_ROW/indr) is
1437 treated as a multiple definition error. Likewise for an indirect
1438 definition of a common symbol (INDR_ROW/com).
1440 An indirect definition of a warning (INDR_ROW/warn) does not cause
1441 the warning to be issued.
1443 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1444 warning is created for the symbol the indirect symbol points to.
1446 Adding an entry to a set does not count as a reference to a set,
1447 and no warning is issued (SET_ROW/warn). */
1449 /* Return the BFD in which a hash entry has been defined, if known. */
1453 struct bfd_link_hash_entry
*h
;
1455 while (h
->type
== bfd_link_hash_warning
)
1461 case bfd_link_hash_undefined
:
1462 case bfd_link_hash_undefweak
:
1463 return h
->u
.undef
.abfd
;
1464 case bfd_link_hash_defined
:
1465 case bfd_link_hash_defweak
:
1466 return h
->u
.def
.section
->owner
;
1467 case bfd_link_hash_common
:
1468 return h
->u
.c
.p
->section
->owner
;
1473 /* Add a symbol to the global hash table.
1474 ABFD is the BFD the symbol comes from.
1475 NAME is the name of the symbol.
1476 FLAGS is the BSF_* bits associated with the symbol.
1477 SECTION is the section in which the symbol is defined; this may be
1478 bfd_und_section_ptr or bfd_com_section_ptr.
1479 VALUE is the value of the symbol, relative to the section.
1480 STRING is used for either an indirect symbol, in which case it is
1481 the name of the symbol to indirect to, or a warning symbol, in
1482 which case it is the warning string.
1483 COPY is true if NAME or STRING must be copied into locally
1484 allocated memory if they need to be saved.
1485 COLLECT is true if we should automatically collect gcc constructor
1486 or destructor names as collect2 does.
1487 HASHP, if not NULL, is a place to store the created hash table
1488 entry; if *HASHP is not NULL, the caller has already looked up
1489 the hash table entry, and stored it in *HASHP. */
1492 _bfd_generic_link_add_one_symbol (info
, abfd
, name
, flags
, section
, value
,
1493 string
, copy
, collect
, hashp
)
1494 struct bfd_link_info
*info
;
1503 struct bfd_link_hash_entry
**hashp
;
1506 struct bfd_link_hash_entry
*h
;
1509 if (bfd_is_ind_section (section
)
1510 || (flags
& BSF_INDIRECT
) != 0)
1512 else if ((flags
& BSF_WARNING
) != 0)
1514 else if ((flags
& BSF_CONSTRUCTOR
) != 0)
1516 else if (bfd_is_und_section (section
))
1518 if ((flags
& BSF_WEAK
) != 0)
1523 else if ((flags
& BSF_WEAK
) != 0)
1525 else if (bfd_is_com_section (section
))
1530 if (hashp
!= NULL
&& *hashp
!= NULL
)
1534 if (row
== UNDEF_ROW
|| row
== UNDEFW_ROW
)
1535 h
= bfd_wrapped_link_hash_lookup (abfd
, info
, name
, true, copy
, false);
1537 h
= bfd_link_hash_lookup (info
->hash
, name
, true, copy
, false);
1546 if (info
->notice_all
1547 || (info
->notice_hash
!= (struct bfd_hash_table
*) NULL
1548 && (bfd_hash_lookup (info
->notice_hash
, name
, false, false)
1549 != (struct bfd_hash_entry
*) NULL
)))
1551 if (! (*info
->callbacks
->notice
) (info
, h
->root
.string
, abfd
, section
,
1556 if (hashp
!= (struct bfd_link_hash_entry
**) NULL
)
1561 enum link_action action
;
1564 action
= link_action
[(int) row
][(int) h
->type
];
1575 /* Make a new undefined symbol. */
1576 h
->type
= bfd_link_hash_undefined
;
1577 h
->u
.undef
.abfd
= abfd
;
1578 bfd_link_add_undef (info
->hash
, h
);
1582 /* Make a new weak undefined symbol. */
1583 h
->type
= bfd_link_hash_undefweak
;
1584 h
->u
.undef
.abfd
= abfd
;
1588 /* We have found a definition for a symbol which was
1589 previously common. */
1590 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1591 if (! ((*info
->callbacks
->multiple_common
)
1592 (info
, h
->root
.string
,
1593 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1594 abfd
, bfd_link_hash_defined
, (bfd_vma
) 0)))
1600 enum bfd_link_hash_type oldtype
;
1602 /* Define a symbol. */
1605 h
->type
= bfd_link_hash_defweak
;
1607 h
->type
= bfd_link_hash_defined
;
1608 h
->u
.def
.section
= section
;
1609 h
->u
.def
.value
= value
;
1611 /* If we have been asked to, we act like collect2 and
1612 identify all functions that might be global
1613 constructors and destructors and pass them up in a
1614 callback. We only do this for certain object file
1615 types, since many object file types can handle this
1617 if (collect
&& name
[0] == '_')
1621 /* A constructor or destructor name starts like this:
1622 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1623 the second are the same character (we accept any
1624 character there, in case a new object file format
1625 comes along with even worse naming restrictions). */
1627 #define CONS_PREFIX "GLOBAL_"
1628 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1634 && strncmp (s
, CONS_PREFIX
, CONS_PREFIX_LEN
- 1) == 0)
1638 c
= s
[CONS_PREFIX_LEN
+ 1];
1639 if ((c
== 'I' || c
== 'D')
1640 && s
[CONS_PREFIX_LEN
] == s
[CONS_PREFIX_LEN
+ 2])
1642 /* If this is a definition of a symbol which
1643 was previously weakly defined, we are in
1644 trouble. We have already added a
1645 constructor entry for the weak defined
1646 symbol, and now we are trying to add one
1647 for the new symbol. Fortunately, this case
1648 should never arise in practice. */
1649 if (oldtype
== bfd_link_hash_defweak
)
1652 if (! ((*info
->callbacks
->constructor
)
1654 c
== 'I' ? true : false,
1655 h
->root
.string
, abfd
, section
, value
)))
1665 /* We have found a common definition for a symbol. */
1666 if (h
->type
== bfd_link_hash_new
)
1667 bfd_link_add_undef (info
->hash
, h
);
1668 h
->type
= bfd_link_hash_common
;
1670 ((struct bfd_link_hash_common_entry
*)
1671 bfd_hash_allocate (&info
->hash
->table
,
1672 sizeof (struct bfd_link_hash_common_entry
)));
1673 if (h
->u
.c
.p
== NULL
)
1676 h
->u
.c
.size
= value
;
1678 /* Select a default alignment based on the size. This may
1679 be overridden by the caller. */
1683 power
= bfd_log2 (value
);
1686 h
->u
.c
.p
->alignment_power
= power
;
1689 /* The section of a common symbol is only used if the common
1690 symbol is actually allocated. It basically provides a
1691 hook for the linker script to decide which output section
1692 the common symbols should be put in. In most cases, the
1693 section of a common symbol will be bfd_com_section_ptr,
1694 the code here will choose a common symbol section named
1695 "COMMON", and the linker script will contain *(COMMON) in
1696 the appropriate place. A few targets use separate common
1697 sections for small symbols, and they require special
1699 if (section
== bfd_com_section_ptr
)
1701 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
, "COMMON");
1702 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1704 else if (section
->owner
!= abfd
)
1706 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
,
1708 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1711 h
->u
.c
.p
->section
= section
;
1715 /* A reference to a defined symbol. */
1716 if (h
->next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1721 /* We have found a common definition for a symbol which
1722 already had a common definition. Use the maximum of the
1723 two sizes, and use the section required by the larger symbol. */
1724 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1725 if (! ((*info
->callbacks
->multiple_common
)
1726 (info
, h
->root
.string
,
1727 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1728 abfd
, bfd_link_hash_common
, value
)))
1730 if (value
> h
->u
.c
.size
)
1734 h
->u
.c
.size
= value
;
1736 /* Select a default alignment based on the size. This may
1737 be overridden by the caller. */
1738 power
= bfd_log2 (value
);
1741 h
->u
.c
.p
->alignment_power
= power
;
1743 /* Some systems have special treatment for small commons,
1744 hence we want to select the section used by the larger
1745 symbol. This makes sure the symbol does not go in a
1746 small common section if it is now too large. */
1747 if (section
== bfd_com_section_ptr
)
1750 = bfd_make_section_old_way (abfd
, "COMMON");
1751 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1753 else if (section
->owner
!= abfd
)
1756 = bfd_make_section_old_way (abfd
, section
->name
);
1757 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1760 h
->u
.c
.p
->section
= section
;
1768 /* We have found a common definition for a symbol which
1769 was already defined. FIXME: It would nice if we could
1770 report the BFD which defined an indirect symbol, but we
1771 don't have anywhere to store the information. */
1772 if (h
->type
== bfd_link_hash_defined
1773 || h
->type
== bfd_link_hash_defweak
)
1774 obfd
= h
->u
.def
.section
->owner
;
1777 if (! ((*info
->callbacks
->multiple_common
)
1778 (info
, h
->root
.string
, obfd
, h
->type
, (bfd_vma
) 0,
1779 abfd
, bfd_link_hash_common
, value
)))
1785 /* Multiple indirect symbols. This is OK if they both point
1786 to the same symbol. */
1787 if (strcmp (h
->u
.i
.link
->root
.string
, string
) == 0)
1791 /* Handle a multiple definition. */
1793 asection
*msec
= NULL
;
1798 case bfd_link_hash_defined
:
1799 msec
= h
->u
.def
.section
;
1800 mval
= h
->u
.def
.value
;
1802 case bfd_link_hash_indirect
:
1803 msec
= bfd_ind_section_ptr
;
1810 /* Ignore a redefinition of an absolute symbol to the same
1811 value; it's harmless. */
1812 if (h
->type
== bfd_link_hash_defined
1813 && bfd_is_abs_section (msec
)
1814 && bfd_is_abs_section (section
)
1818 if (! ((*info
->callbacks
->multiple_definition
)
1819 (info
, h
->root
.string
, msec
->owner
, msec
, mval
, abfd
,
1826 /* Create an indirect symbol from an existing common symbol. */
1827 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1828 if (! ((*info
->callbacks
->multiple_common
)
1829 (info
, h
->root
.string
,
1830 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1831 abfd
, bfd_link_hash_indirect
, (bfd_vma
) 0)))
1835 /* Create an indirect symbol. */
1837 struct bfd_link_hash_entry
*inh
;
1839 /* STRING is the name of the symbol we want to indirect
1841 inh
= bfd_wrapped_link_hash_lookup (abfd
, info
, string
, true,
1843 if (inh
== (struct bfd_link_hash_entry
*) NULL
)
1845 if (inh
->type
== bfd_link_hash_indirect
1846 && inh
->u
.i
.link
== h
)
1848 (*_bfd_error_handler
)
1849 (_("%s: indirect symbol `%s' to `%s' is a loop"),
1850 bfd_archive_filename (abfd
), name
, string
);
1851 bfd_set_error (bfd_error_invalid_operation
);
1854 if (inh
->type
== bfd_link_hash_new
)
1856 inh
->type
= bfd_link_hash_undefined
;
1857 inh
->u
.undef
.abfd
= abfd
;
1858 bfd_link_add_undef (info
->hash
, inh
);
1861 /* If the indirect symbol has been referenced, we need to
1862 push the reference down to the symbol we are
1864 if (h
->type
!= bfd_link_hash_new
)
1870 h
->type
= bfd_link_hash_indirect
;
1876 /* Add an entry to a set. */
1877 if (! (*info
->callbacks
->add_to_set
) (info
, h
, BFD_RELOC_CTOR
,
1878 abfd
, section
, value
))
1883 /* Issue a warning and cycle. */
1884 if (h
->u
.i
.warning
!= NULL
)
1886 if (! (*info
->callbacks
->warning
) (info
, h
->u
.i
.warning
,
1887 h
->root
.string
, abfd
,
1891 /* Only issue a warning once. */
1892 h
->u
.i
.warning
= NULL
;
1896 /* Try again with the referenced symbol. */
1902 /* A reference to an indirect symbol. */
1903 if (h
->next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1910 /* Issue a warning. */
1911 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1913 (asection
*) NULL
, (bfd_vma
) 0))
1918 /* Warn if this symbol has been referenced already,
1919 otherwise add a warning. A symbol has been referenced if
1920 the next field is not NULL, or it is the tail of the
1921 undefined symbol list. The REF case above helps to
1923 if (h
->next
!= NULL
|| info
->hash
->undefs_tail
== h
)
1925 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1934 /* Make a warning symbol. */
1936 struct bfd_link_hash_entry
*sub
;
1938 /* STRING is the warning to give. */
1939 sub
= ((struct bfd_link_hash_entry
*)
1940 ((*info
->hash
->table
.newfunc
)
1941 ((struct bfd_hash_entry
*) NULL
, &info
->hash
->table
,
1946 sub
->type
= bfd_link_hash_warning
;
1949 sub
->u
.i
.warning
= string
;
1954 w
= bfd_hash_allocate (&info
->hash
->table
,
1955 strlen (string
) + 1);
1959 sub
->u
.i
.warning
= w
;
1962 bfd_hash_replace (&info
->hash
->table
,
1963 (struct bfd_hash_entry
*) h
,
1964 (struct bfd_hash_entry
*) sub
);
1976 /* Generic final link routine. */
1979 _bfd_generic_final_link (abfd
, info
)
1981 struct bfd_link_info
*info
;
1985 struct bfd_link_order
*p
;
1987 struct generic_write_global_symbol_info wginfo
;
1989 bfd_get_outsymbols (abfd
) = (asymbol
**) NULL
;
1990 bfd_get_symcount (abfd
) = 0;
1993 /* Mark all sections which will be included in the output file. */
1994 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
1995 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
1996 if (p
->type
== bfd_indirect_link_order
)
1997 p
->u
.indirect
.section
->linker_mark
= true;
1999 /* Build the output symbol table. */
2000 for (sub
= info
->input_bfds
; sub
!= (bfd
*) NULL
; sub
= sub
->link_next
)
2001 if (! _bfd_generic_link_output_symbols (abfd
, sub
, info
, &outsymalloc
))
2004 /* Accumulate the global symbols. */
2006 wginfo
.output_bfd
= abfd
;
2007 wginfo
.psymalloc
= &outsymalloc
;
2008 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info
),
2009 _bfd_generic_link_write_global_symbol
,
2012 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2013 shouldn't really need one, since we have SYMCOUNT, but some old
2014 code still expects one. */
2015 if (! generic_add_output_symbol (abfd
, &outsymalloc
, NULL
))
2018 if (info
->relocateable
)
2020 /* Allocate space for the output relocs for each section. */
2021 for (o
= abfd
->sections
;
2022 o
!= (asection
*) NULL
;
2026 for (p
= o
->link_order_head
;
2027 p
!= (struct bfd_link_order
*) NULL
;
2030 if (p
->type
== bfd_section_reloc_link_order
2031 || p
->type
== bfd_symbol_reloc_link_order
)
2033 else if (p
->type
== bfd_indirect_link_order
)
2035 asection
*input_section
;
2042 input_section
= p
->u
.indirect
.section
;
2043 input_bfd
= input_section
->owner
;
2044 relsize
= bfd_get_reloc_upper_bound (input_bfd
,
2048 relocs
= (arelent
**) bfd_malloc ((bfd_size_type
) relsize
);
2049 if (!relocs
&& relsize
!= 0)
2051 symbols
= _bfd_generic_link_get_symbols (input_bfd
);
2052 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
2056 if (reloc_count
< 0)
2058 BFD_ASSERT ((unsigned long) reloc_count
2059 == input_section
->reloc_count
);
2060 o
->reloc_count
+= reloc_count
;
2064 if (o
->reloc_count
> 0)
2068 amt
= o
->reloc_count
;
2069 amt
*= sizeof (arelent
*);
2070 o
->orelocation
= (arelent
**) bfd_alloc (abfd
, amt
);
2071 if (!o
->orelocation
)
2073 o
->flags
|= SEC_RELOC
;
2074 /* Reset the count so that it can be used as an index
2075 when putting in the output relocs. */
2081 /* Handle all the link order information for the sections. */
2082 for (o
= abfd
->sections
;
2083 o
!= (asection
*) NULL
;
2086 for (p
= o
->link_order_head
;
2087 p
!= (struct bfd_link_order
*) NULL
;
2092 case bfd_section_reloc_link_order
:
2093 case bfd_symbol_reloc_link_order
:
2094 if (! _bfd_generic_reloc_link_order (abfd
, info
, o
, p
))
2097 case bfd_indirect_link_order
:
2098 if (! default_indirect_link_order (abfd
, info
, o
, p
, true))
2102 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
2112 /* Add an output symbol to the output BFD. */
2115 generic_add_output_symbol (output_bfd
, psymalloc
, sym
)
2120 if (bfd_get_symcount (output_bfd
) >= *psymalloc
)
2125 if (*psymalloc
== 0)
2130 amt
*= sizeof (asymbol
*);
2131 newsyms
= (asymbol
**) bfd_realloc (bfd_get_outsymbols (output_bfd
), amt
);
2132 if (newsyms
== (asymbol
**) NULL
)
2134 bfd_get_outsymbols (output_bfd
) = newsyms
;
2137 bfd_get_outsymbols (output_bfd
) [bfd_get_symcount (output_bfd
)] = sym
;
2139 ++ bfd_get_symcount (output_bfd
);
2144 /* Handle the symbols for an input BFD. */
2147 _bfd_generic_link_output_symbols (output_bfd
, input_bfd
, info
, psymalloc
)
2150 struct bfd_link_info
*info
;
2156 if (! generic_link_read_symbols (input_bfd
))
2159 /* Create a filename symbol if we are supposed to. */
2160 if (info
->create_object_symbols_section
!= (asection
*) NULL
)
2164 for (sec
= input_bfd
->sections
;
2165 sec
!= (asection
*) NULL
;
2168 if (sec
->output_section
== info
->create_object_symbols_section
)
2172 newsym
= bfd_make_empty_symbol (input_bfd
);
2175 newsym
->name
= input_bfd
->filename
;
2177 newsym
->flags
= BSF_LOCAL
| BSF_FILE
;
2178 newsym
->section
= sec
;
2180 if (! generic_add_output_symbol (output_bfd
, psymalloc
,
2189 /* Adjust the values of the globally visible symbols, and write out
2191 sym_ptr
= _bfd_generic_link_get_symbols (input_bfd
);
2192 sym_end
= sym_ptr
+ _bfd_generic_link_get_symcount (input_bfd
);
2193 for (; sym_ptr
< sym_end
; sym_ptr
++)
2196 struct generic_link_hash_entry
*h
;
2199 h
= (struct generic_link_hash_entry
*) NULL
;
2201 if ((sym
->flags
& (BSF_INDIRECT
2206 || bfd_is_und_section (bfd_get_section (sym
))
2207 || bfd_is_com_section (bfd_get_section (sym
))
2208 || bfd_is_ind_section (bfd_get_section (sym
)))
2210 if (sym
->udata
.p
!= NULL
)
2211 h
= (struct generic_link_hash_entry
*) sym
->udata
.p
;
2212 else if ((sym
->flags
& BSF_CONSTRUCTOR
) != 0)
2214 /* This case normally means that the main linker code
2215 deliberately ignored this constructor symbol. We
2216 should just pass it through. This will screw up if
2217 the constructor symbol is from a different,
2218 non-generic, object file format, but the case will
2219 only arise when linking with -r, which will probably
2220 fail anyhow, since there will be no way to represent
2221 the relocs in the output format being used. */
2224 else if (bfd_is_und_section (bfd_get_section (sym
)))
2225 h
= ((struct generic_link_hash_entry
*)
2226 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2227 bfd_asymbol_name (sym
),
2228 false, false, true));
2230 h
= _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info
),
2231 bfd_asymbol_name (sym
),
2232 false, false, true);
2234 if (h
!= (struct generic_link_hash_entry
*) NULL
)
2236 /* Force all references to this symbol to point to
2237 the same area in memory. It is possible that
2238 this routine will be called with a hash table
2239 other than a generic hash table, so we double
2241 if (info
->hash
->creator
== input_bfd
->xvec
)
2243 if (h
->sym
!= (asymbol
*) NULL
)
2244 *sym_ptr
= sym
= h
->sym
;
2247 switch (h
->root
.type
)
2250 case bfd_link_hash_new
:
2252 case bfd_link_hash_undefined
:
2254 case bfd_link_hash_undefweak
:
2255 sym
->flags
|= BSF_WEAK
;
2257 case bfd_link_hash_indirect
:
2258 h
= (struct generic_link_hash_entry
*) h
->root
.u
.i
.link
;
2260 case bfd_link_hash_defined
:
2261 sym
->flags
|= BSF_GLOBAL
;
2262 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2263 sym
->value
= h
->root
.u
.def
.value
;
2264 sym
->section
= h
->root
.u
.def
.section
;
2266 case bfd_link_hash_defweak
:
2267 sym
->flags
|= BSF_WEAK
;
2268 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2269 sym
->value
= h
->root
.u
.def
.value
;
2270 sym
->section
= h
->root
.u
.def
.section
;
2272 case bfd_link_hash_common
:
2273 sym
->value
= h
->root
.u
.c
.size
;
2274 sym
->flags
|= BSF_GLOBAL
;
2275 if (! bfd_is_com_section (sym
->section
))
2277 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2278 sym
->section
= bfd_com_section_ptr
;
2280 /* We do not set the section of the symbol to
2281 h->root.u.c.p->section. That value was saved so
2282 that we would know where to allocate the symbol
2283 if it was defined. In this case the type is
2284 still bfd_link_hash_common, so we did not define
2285 it, so we do not want to use that section. */
2291 /* This switch is straight from the old code in
2292 write_file_locals in ldsym.c. */
2293 if (info
->strip
== strip_all
2294 || (info
->strip
== strip_some
2295 && (bfd_hash_lookup (info
->keep_hash
, bfd_asymbol_name (sym
),
2297 == (struct bfd_hash_entry
*) NULL
)))
2299 else if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0)
2301 /* If this symbol is marked as occurring now, rather
2302 than at the end, output it now. This is used for
2303 COFF C_EXT FCN symbols. FIXME: There must be a
2305 if (bfd_asymbol_bfd (sym
) == input_bfd
2306 && (sym
->flags
& BSF_NOT_AT_END
) != 0)
2311 else if (bfd_is_ind_section (sym
->section
))
2313 else if ((sym
->flags
& BSF_DEBUGGING
) != 0)
2315 if (info
->strip
== strip_none
)
2320 else if (bfd_is_und_section (sym
->section
)
2321 || bfd_is_com_section (sym
->section
))
2323 else if ((sym
->flags
& BSF_LOCAL
) != 0)
2325 if ((sym
->flags
& BSF_WARNING
) != 0)
2329 switch (info
->discard
)
2335 case discard_sec_merge
:
2337 if (info
->relocateable
2338 || ! (sym
->section
->flags
& SEC_MERGE
))
2342 if (bfd_is_local_label (input_bfd
, sym
))
2353 else if ((sym
->flags
& BSF_CONSTRUCTOR
))
2355 if (info
->strip
!= strip_all
)
2363 /* If this symbol is in a section which is not being included
2364 in the output file, then we don't want to output the symbol.
2366 Gross. .bss and similar sections won't have the linker_mark
2368 if ((sym
->section
->flags
& SEC_HAS_CONTENTS
) != 0
2369 && sym
->section
->linker_mark
== false)
2374 if (! generic_add_output_symbol (output_bfd
, psymalloc
, sym
))
2376 if (h
!= (struct generic_link_hash_entry
*) NULL
)
2384 /* Set the section and value of a generic BFD symbol based on a linker
2385 hash table entry. */
2388 set_symbol_from_hash (sym
, h
)
2390 struct bfd_link_hash_entry
*h
;
2397 case bfd_link_hash_new
:
2398 /* This can happen when a constructor symbol is seen but we are
2399 not building constructors. */
2400 if (sym
->section
!= NULL
)
2402 BFD_ASSERT ((sym
->flags
& BSF_CONSTRUCTOR
) != 0);
2406 sym
->flags
|= BSF_CONSTRUCTOR
;
2407 sym
->section
= bfd_abs_section_ptr
;
2411 case bfd_link_hash_undefined
:
2412 sym
->section
= bfd_und_section_ptr
;
2415 case bfd_link_hash_undefweak
:
2416 sym
->section
= bfd_und_section_ptr
;
2418 sym
->flags
|= BSF_WEAK
;
2420 case bfd_link_hash_defined
:
2421 sym
->section
= h
->u
.def
.section
;
2422 sym
->value
= h
->u
.def
.value
;
2424 case bfd_link_hash_defweak
:
2425 sym
->flags
|= BSF_WEAK
;
2426 sym
->section
= h
->u
.def
.section
;
2427 sym
->value
= h
->u
.def
.value
;
2429 case bfd_link_hash_common
:
2430 sym
->value
= h
->u
.c
.size
;
2431 if (sym
->section
== NULL
)
2432 sym
->section
= bfd_com_section_ptr
;
2433 else if (! bfd_is_com_section (sym
->section
))
2435 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2436 sym
->section
= bfd_com_section_ptr
;
2438 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2440 case bfd_link_hash_indirect
:
2441 case bfd_link_hash_warning
:
2442 /* FIXME: What should we do here? */
2447 /* Write out a global symbol, if it hasn't already been written out.
2448 This is called for each symbol in the hash table. */
2451 _bfd_generic_link_write_global_symbol (h
, data
)
2452 struct generic_link_hash_entry
*h
;
2455 struct generic_write_global_symbol_info
*wginfo
=
2456 (struct generic_write_global_symbol_info
*) data
;
2464 if (wginfo
->info
->strip
== strip_all
2465 || (wginfo
->info
->strip
== strip_some
2466 && bfd_hash_lookup (wginfo
->info
->keep_hash
, h
->root
.root
.string
,
2467 false, false) == NULL
))
2470 if (h
->sym
!= (asymbol
*) NULL
)
2474 sym
= bfd_make_empty_symbol (wginfo
->output_bfd
);
2477 sym
->name
= h
->root
.root
.string
;
2481 set_symbol_from_hash (sym
, &h
->root
);
2483 sym
->flags
|= BSF_GLOBAL
;
2485 if (! generic_add_output_symbol (wginfo
->output_bfd
, wginfo
->psymalloc
,
2488 /* FIXME: No way to return failure. */
2495 /* Create a relocation. */
2498 _bfd_generic_reloc_link_order (abfd
, info
, sec
, link_order
)
2500 struct bfd_link_info
*info
;
2502 struct bfd_link_order
*link_order
;
2506 if (! info
->relocateable
)
2508 if (sec
->orelocation
== (arelent
**) NULL
)
2511 r
= (arelent
*) bfd_alloc (abfd
, (bfd_size_type
) sizeof (arelent
));
2512 if (r
== (arelent
*) NULL
)
2515 r
->address
= link_order
->offset
;
2516 r
->howto
= bfd_reloc_type_lookup (abfd
, link_order
->u
.reloc
.p
->reloc
);
2519 bfd_set_error (bfd_error_bad_value
);
2523 /* Get the symbol to use for the relocation. */
2524 if (link_order
->type
== bfd_section_reloc_link_order
)
2525 r
->sym_ptr_ptr
= link_order
->u
.reloc
.p
->u
.section
->symbol_ptr_ptr
;
2528 struct generic_link_hash_entry
*h
;
2530 h
= ((struct generic_link_hash_entry
*)
2531 bfd_wrapped_link_hash_lookup (abfd
, info
,
2532 link_order
->u
.reloc
.p
->u
.name
,
2533 false, false, true));
2534 if (h
== (struct generic_link_hash_entry
*) NULL
2537 if (! ((*info
->callbacks
->unattached_reloc
)
2538 (info
, link_order
->u
.reloc
.p
->u
.name
,
2539 (bfd
*) NULL
, (asection
*) NULL
, (bfd_vma
) 0)))
2541 bfd_set_error (bfd_error_bad_value
);
2544 r
->sym_ptr_ptr
= &h
->sym
;
2547 /* If this is an inplace reloc, write the addend to the object file.
2548 Otherwise, store it in the reloc addend. */
2549 if (! r
->howto
->partial_inplace
)
2550 r
->addend
= link_order
->u
.reloc
.p
->addend
;
2554 bfd_reloc_status_type rstat
;
2559 size
= bfd_get_reloc_size (r
->howto
);
2560 buf
= (bfd_byte
*) bfd_zmalloc (size
);
2561 if (buf
== (bfd_byte
*) NULL
)
2563 rstat
= _bfd_relocate_contents (r
->howto
, abfd
,
2564 (bfd_vma
) link_order
->u
.reloc
.p
->addend
,
2571 case bfd_reloc_outofrange
:
2573 case bfd_reloc_overflow
:
2574 if (! ((*info
->callbacks
->reloc_overflow
)
2576 (link_order
->type
== bfd_section_reloc_link_order
2577 ? bfd_section_name (abfd
, link_order
->u
.reloc
.p
->u
.section
)
2578 : link_order
->u
.reloc
.p
->u
.name
),
2579 r
->howto
->name
, link_order
->u
.reloc
.p
->addend
,
2580 (bfd
*) NULL
, (asection
*) NULL
, (bfd_vma
) 0)))
2587 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2588 ok
= bfd_set_section_contents (abfd
, sec
, (PTR
) buf
, loc
,
2589 (bfd_size_type
) size
);
2597 sec
->orelocation
[sec
->reloc_count
] = r
;
2603 /* Allocate a new link_order for a section. */
2605 struct bfd_link_order
*
2606 bfd_new_link_order (abfd
, section
)
2610 bfd_size_type amt
= sizeof (struct bfd_link_order
);
2611 struct bfd_link_order
*new = (struct bfd_link_order
*) bfd_alloc (abfd
, amt
);
2615 new->type
= bfd_undefined_link_order
;
2618 new->next
= (struct bfd_link_order
*) NULL
;
2620 if (section
->link_order_tail
!= (struct bfd_link_order
*) NULL
)
2621 section
->link_order_tail
->next
= new;
2623 section
->link_order_head
= new;
2624 section
->link_order_tail
= new;
2629 /* Default link order processing routine. Note that we can not handle
2630 the reloc_link_order types here, since they depend upon the details
2631 of how the particular backends generates relocs. */
2634 _bfd_default_link_order (abfd
, info
, sec
, link_order
)
2636 struct bfd_link_info
*info
;
2638 struct bfd_link_order
*link_order
;
2642 switch (link_order
->type
)
2644 case bfd_undefined_link_order
:
2645 case bfd_section_reloc_link_order
:
2646 case bfd_symbol_reloc_link_order
:
2649 case bfd_indirect_link_order
:
2650 return default_indirect_link_order (abfd
, info
, sec
, link_order
,
2652 case bfd_fill_link_order
:
2653 return default_fill_link_order (abfd
, info
, sec
, link_order
);
2654 case bfd_data_link_order
:
2655 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2656 return bfd_set_section_contents (abfd
, sec
,
2657 (PTR
) link_order
->u
.data
.contents
,
2658 loc
, link_order
->size
);
2662 /* Default routine to handle a bfd_fill_link_order. */
2665 default_fill_link_order (abfd
, info
, sec
, link_order
)
2667 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2669 struct bfd_link_order
*link_order
;
2672 unsigned char *space
;
2678 BFD_ASSERT ((sec
->flags
& SEC_HAS_CONTENTS
) != 0);
2680 size
= link_order
->size
;
2684 space
= (unsigned char *) bfd_malloc (size
);
2688 fill
= link_order
->u
.fill
.value
;
2689 for (i
= 0; i
< size
; i
+= 4)
2690 space
[i
] = fill
>> 24;
2691 for (i
= 1; i
< size
; i
+= 4)
2692 space
[i
] = fill
>> 16;
2693 for (i
= 2; i
< size
; i
+= 4)
2694 space
[i
] = fill
>> 8;
2695 for (i
= 3; i
< size
; i
+= 4)
2698 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2699 result
= bfd_set_section_contents (abfd
, sec
, space
, loc
, size
);
2705 /* Default routine to handle a bfd_indirect_link_order. */
2708 default_indirect_link_order (output_bfd
, info
, output_section
, link_order
,
2711 struct bfd_link_info
*info
;
2712 asection
*output_section
;
2713 struct bfd_link_order
*link_order
;
2714 boolean generic_linker
;
2716 asection
*input_section
;
2718 bfd_byte
*contents
= NULL
;
2719 bfd_byte
*new_contents
;
2720 bfd_size_type sec_size
;
2723 BFD_ASSERT ((output_section
->flags
& SEC_HAS_CONTENTS
) != 0);
2725 if (link_order
->size
== 0)
2728 input_section
= link_order
->u
.indirect
.section
;
2729 input_bfd
= input_section
->owner
;
2731 BFD_ASSERT (input_section
->output_section
== output_section
);
2732 BFD_ASSERT (input_section
->output_offset
== link_order
->offset
);
2733 BFD_ASSERT (input_section
->_cooked_size
== link_order
->size
);
2735 if (info
->relocateable
2736 && input_section
->reloc_count
> 0
2737 && output_section
->orelocation
== (arelent
**) NULL
)
2739 /* Space has not been allocated for the output relocations.
2740 This can happen when we are called by a specific backend
2741 because somebody is attempting to link together different
2742 types of object files. Handling this case correctly is
2743 difficult, and sometimes impossible. */
2744 (*_bfd_error_handler
)
2745 (_("Attempt to do relocateable link with %s input and %s output"),
2746 bfd_get_target (input_bfd
), bfd_get_target (output_bfd
));
2747 bfd_set_error (bfd_error_wrong_format
);
2751 if (! generic_linker
)
2756 /* Get the canonical symbols. The generic linker will always
2757 have retrieved them by this point, but we are being called by
2758 a specific linker, presumably because we are linking
2759 different types of object files together. */
2760 if (! generic_link_read_symbols (input_bfd
))
2763 /* Since we have been called by a specific linker, rather than
2764 the generic linker, the values of the symbols will not be
2765 right. They will be the values as seen in the input file,
2766 not the values of the final link. We need to fix them up
2767 before we can relocate the section. */
2768 sympp
= _bfd_generic_link_get_symbols (input_bfd
);
2769 symppend
= sympp
+ _bfd_generic_link_get_symcount (input_bfd
);
2770 for (; sympp
< symppend
; sympp
++)
2773 struct bfd_link_hash_entry
*h
;
2777 if ((sym
->flags
& (BSF_INDIRECT
2782 || bfd_is_und_section (bfd_get_section (sym
))
2783 || bfd_is_com_section (bfd_get_section (sym
))
2784 || bfd_is_ind_section (bfd_get_section (sym
)))
2786 /* sym->udata may have been set by
2787 generic_link_add_symbol_list. */
2788 if (sym
->udata
.p
!= NULL
)
2789 h
= (struct bfd_link_hash_entry
*) sym
->udata
.p
;
2790 else if (bfd_is_und_section (bfd_get_section (sym
)))
2791 h
= bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2792 bfd_asymbol_name (sym
),
2793 false, false, true);
2795 h
= bfd_link_hash_lookup (info
->hash
,
2796 bfd_asymbol_name (sym
),
2797 false, false, true);
2799 set_symbol_from_hash (sym
, h
);
2804 /* Get and relocate the section contents. */
2805 sec_size
= bfd_section_size (input_bfd
, input_section
);
2806 contents
= ((bfd_byte
*) bfd_malloc (sec_size
));
2807 if (contents
== NULL
&& sec_size
!= 0)
2809 new_contents
= (bfd_get_relocated_section_contents
2810 (output_bfd
, info
, link_order
, contents
, info
->relocateable
,
2811 _bfd_generic_link_get_symbols (input_bfd
)));
2815 /* Output the section contents. */
2816 loc
= link_order
->offset
* bfd_octets_per_byte (output_bfd
);
2817 if (! bfd_set_section_contents (output_bfd
, output_section
,
2818 (PTR
) new_contents
, loc
, link_order
->size
))
2821 if (contents
!= NULL
)
2826 if (contents
!= NULL
)
2831 /* A little routine to count the number of relocs in a link_order
2835 _bfd_count_link_order_relocs (link_order
)
2836 struct bfd_link_order
*link_order
;
2838 register unsigned int c
;
2839 register struct bfd_link_order
*l
;
2842 for (l
= link_order
; l
!= (struct bfd_link_order
*) NULL
; l
= l
->next
)
2844 if (l
->type
== bfd_section_reloc_link_order
2845 || l
->type
== bfd_symbol_reloc_link_order
)
2854 bfd_link_split_section
2857 boolean bfd_link_split_section(bfd *abfd, asection *sec);
2860 Return nonzero if @var{sec} should be split during a
2861 reloceatable or final link.
2863 .#define bfd_link_split_section(abfd, sec) \
2864 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2870 _bfd_generic_link_split_section (abfd
, sec
)
2871 bfd
*abfd ATTRIBUTE_UNUSED
;
2872 asection
*sec ATTRIBUTE_UNUSED
;