1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 #include "alloca-conf.h"
27 #include "elf64-hppa.h"
30 #define PLT_ENTRY_SIZE 0x10
31 #define DLT_ENTRY_SIZE 0x8
32 #define OPD_ENTRY_SIZE 0x20
34 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36 /* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
42 LDD PLTOFF+8(%r27),%r27
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46 static char plt_stub
[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
49 struct elf64_hppa_dyn_hash_entry
51 struct bfd_hash_entry root
;
53 /* Offsets for this symbol in various linker sections. */
59 /* The symbol table entry, if any, that this was derived from. */
60 struct elf_link_hash_entry
*h
;
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry
*next
;
84 /* The type of the relocation. */
87 /* The input section of the relocation. */
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
94 /* The offset within the input section of the relocation. */
97 /* The addend for the relocation. */
102 /* Nonzero if this symbol needs an entry in one of the linker
110 struct elf64_hppa_dyn_hash_table
112 struct bfd_hash_table root
;
115 struct elf64_hppa_link_hash_table
117 struct elf_link_hash_table root
;
119 /* Shortcuts to get to the various linker defined sections. */
121 asection
*dlt_rel_sec
;
123 asection
*plt_rel_sec
;
125 asection
*opd_rel_sec
;
126 asection
*other_rel_sec
;
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
138 bfd_vma text_segment_base
;
139 bfd_vma data_segment_base
;
141 struct elf64_hppa_dyn_hash_table dyn_hash_table
;
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
146 bfd
*section_syms_bfd
;
148 /* Array of symbol numbers for each input section attached to the
153 #define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156 typedef struct bfd_hash_entry
*(*new_hash_entry_func
)
157 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
159 static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table
*ht
, bfd
*abfd
,
161 new_hash_entry_func
new));
162 static struct bfd_hash_entry
*elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry
*entry
, struct bfd_hash_table
*table
,
164 const char *string
));
165 static struct bfd_link_hash_table
*elf64_hppa_hash_table_create
166 PARAMS ((bfd
*abfd
));
167 static struct elf64_hppa_dyn_hash_entry
*elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
, const char *string
,
169 boolean create
, boolean copy
));
170 static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
,
172 boolean (*func
) (struct elf64_hppa_dyn_hash_entry
*, PTR
),
175 static const char *get_dyn_name
176 PARAMS ((asection
*, struct elf_link_hash_entry
*,
177 const Elf_Internal_Rela
*, char **, size_t *));
179 /* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181 #include "elf-hppa.h"
183 static boolean elf64_hppa_object_p
186 static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd
*, Elf64_Internal_Shdr
*, const char *));
189 static void elf64_hppa_post_process_headers
190 PARAMS ((bfd
*, struct bfd_link_info
*));
192 static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd
*, struct bfd_link_info
*));
195 static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
198 static boolean elf64_hppa_mark_milli_and_exported_functions
199 PARAMS ((struct elf_link_hash_entry
*, PTR
));
201 static boolean elf64_hppa_size_dynamic_sections
202 PARAMS ((bfd
*, struct bfd_link_info
*));
204 static boolean elf64_hppa_link_output_symbol_hook
205 PARAMS ((bfd
*abfd
, struct bfd_link_info
*, const char *,
206 Elf_Internal_Sym
*, asection
*input_sec
));
208 static boolean elf64_hppa_finish_dynamic_symbol
209 PARAMS ((bfd
*, struct bfd_link_info
*,
210 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
212 static int elf64_hppa_additional_program_headers
PARAMS ((bfd
*));
214 static boolean elf64_hppa_modify_segment_map
PARAMS ((bfd
*));
216 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
217 PARAMS ((const Elf_Internal_Rela
*));
219 static boolean elf64_hppa_finish_dynamic_sections
220 PARAMS ((bfd
*, struct bfd_link_info
*));
222 static boolean elf64_hppa_check_relocs
223 PARAMS ((bfd
*, struct bfd_link_info
*,
224 asection
*, const Elf_Internal_Rela
*));
226 static boolean elf64_hppa_dynamic_symbol_p
227 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*));
229 static boolean elf64_hppa_mark_exported_functions
230 PARAMS ((struct elf_link_hash_entry
*, PTR
));
232 static boolean elf64_hppa_finalize_opd
233 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
235 static boolean elf64_hppa_finalize_dlt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
238 static boolean allocate_global_data_dlt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
241 static boolean allocate_global_data_plt
242 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
244 static boolean allocate_global_data_stub
245 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
247 static boolean allocate_global_data_opd
248 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
250 static boolean get_reloc_section
251 PARAMS ((bfd
*, struct elf64_hppa_link_hash_table
*, asection
*));
253 static boolean count_dyn_reloc
254 PARAMS ((bfd
*, struct elf64_hppa_dyn_hash_entry
*,
255 int, asection
*, int, bfd_vma
, bfd_vma
));
257 static boolean allocate_dynrel_entries
258 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
260 static boolean elf64_hppa_finalize_dynreloc
261 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
263 static boolean get_opd
264 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
266 static boolean get_plt
267 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
269 static boolean get_dlt
270 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
272 static boolean get_stub
273 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
275 static int elf64_hppa_elf_get_symbol_type
276 PARAMS ((Elf_Internal_Sym
*, int));
279 elf64_hppa_dyn_hash_table_init (ht
, abfd
, new)
280 struct elf64_hppa_dyn_hash_table
*ht
;
281 bfd
*abfd ATTRIBUTE_UNUSED
;
282 new_hash_entry_func
new;
284 memset (ht
, 0, sizeof (*ht
));
285 return bfd_hash_table_init (&ht
->root
, new);
288 static struct bfd_hash_entry
*
289 elf64_hppa_new_dyn_hash_entry (entry
, table
, string
)
290 struct bfd_hash_entry
*entry
;
291 struct bfd_hash_table
*table
;
294 struct elf64_hppa_dyn_hash_entry
*ret
;
295 ret
= (struct elf64_hppa_dyn_hash_entry
*) entry
;
297 /* Allocate the structure if it has not already been allocated by a
300 ret
= bfd_hash_allocate (table
, sizeof (*ret
));
305 /* Initialize our local data. All zeros, and definitely easier
306 than setting 8 bit fields. */
307 memset (ret
, 0, sizeof (*ret
));
309 /* Call the allocation method of the superclass. */
310 ret
= ((struct elf64_hppa_dyn_hash_entry
*)
311 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
316 /* Create the derived linker hash table. The PA64 ELF port uses this
317 derived hash table to keep information specific to the PA ElF
318 linker (without using static variables). */
320 static struct bfd_link_hash_table
*
321 elf64_hppa_hash_table_create (abfd
)
324 struct elf64_hppa_link_hash_table
*ret
;
326 ret
= bfd_zalloc (abfd
, (bfd_size_type
) sizeof (*ret
));
329 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
330 _bfd_elf_link_hash_newfunc
))
332 bfd_release (abfd
, ret
);
336 if (!elf64_hppa_dyn_hash_table_init (&ret
->dyn_hash_table
, abfd
,
337 elf64_hppa_new_dyn_hash_entry
))
339 return &ret
->root
.root
;
342 /* Look up an entry in a PA64 ELF linker hash table. */
344 static struct elf64_hppa_dyn_hash_entry
*
345 elf64_hppa_dyn_hash_lookup(table
, string
, create
, copy
)
346 struct elf64_hppa_dyn_hash_table
*table
;
348 boolean create
, copy
;
350 return ((struct elf64_hppa_dyn_hash_entry
*)
351 bfd_hash_lookup (&table
->root
, string
, create
, copy
));
354 /* Traverse a PA64 ELF linker hash table. */
357 elf64_hppa_dyn_hash_traverse (table
, func
, info
)
358 struct elf64_hppa_dyn_hash_table
*table
;
359 boolean (*func
) PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
364 (boolean (*) PARAMS ((struct bfd_hash_entry
*, PTR
))) func
,
368 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
370 Additionally we set the default architecture and machine. */
372 elf64_hppa_object_p (abfd
)
375 Elf_Internal_Ehdr
* i_ehdrp
;
378 i_ehdrp
= elf_elfheader (abfd
);
379 if (strcmp (bfd_get_target (abfd
), "elf64-hppa-linux") == 0)
381 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_LINUX
)
386 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
)
390 flags
= i_ehdrp
->e_flags
;
391 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
394 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
396 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
398 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
399 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
400 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
402 /* Don't be fussy. */
406 /* Given section type (hdr->sh_type), return a boolean indicating
407 whether or not the section is an elf64-hppa specific section. */
409 elf64_hppa_section_from_shdr (abfd
, hdr
, name
)
411 Elf64_Internal_Shdr
*hdr
;
416 switch (hdr
->sh_type
)
419 if (strcmp (name
, ".PARISC.archext") != 0)
422 case SHT_PARISC_UNWIND
:
423 if (strcmp (name
, ".PARISC.unwind") != 0)
427 case SHT_PARISC_ANNOT
:
432 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
434 newsect
= hdr
->bfd_section
;
439 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
440 name describes what was once potentially anonymous memory. We
441 allocate memory as necessary, possibly reusing PBUF/PLEN. */
444 get_dyn_name (sec
, h
, rel
, pbuf
, plen
)
446 struct elf_link_hash_entry
*h
;
447 const Elf_Internal_Rela
*rel
;
455 if (h
&& rel
->r_addend
== 0)
456 return h
->root
.root
.string
;
459 nlen
= strlen (h
->root
.root
.string
);
461 nlen
= 8 + 1 + sizeof (rel
->r_info
) * 2 - 8;
462 tlen
= nlen
+ 1 + sizeof (rel
->r_addend
) * 2 + 1;
470 *pbuf
= buf
= malloc (tlen
);
478 memcpy (buf
, h
->root
.root
.string
, nlen
);
480 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
484 nlen
= sprintf (buf
, "%x:%lx",
485 sec
->id
& 0xffffffff,
486 (long) ELF64_R_SYM (rel
->r_info
));
490 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
497 /* SEC is a section containing relocs for an input BFD when linking; return
498 a suitable section for holding relocs in the output BFD for a link. */
501 get_reloc_section (abfd
, hppa_info
, sec
)
503 struct elf64_hppa_link_hash_table
*hppa_info
;
506 const char *srel_name
;
510 srel_name
= (bfd_elf_string_from_elf_section
511 (abfd
, elf_elfheader(abfd
)->e_shstrndx
,
512 elf_section_data(sec
)->rel_hdr
.sh_name
));
513 if (srel_name
== NULL
)
516 BFD_ASSERT ((strncmp (srel_name
, ".rela", 5) == 0
517 && strcmp (bfd_get_section_name (abfd
, sec
),
519 || (strncmp (srel_name
, ".rel", 4) == 0
520 && strcmp (bfd_get_section_name (abfd
, sec
),
523 dynobj
= hppa_info
->root
.dynobj
;
525 hppa_info
->root
.dynobj
= dynobj
= abfd
;
527 srel
= bfd_get_section_by_name (dynobj
, srel_name
);
530 srel
= bfd_make_section (dynobj
, srel_name
);
532 || !bfd_set_section_flags (dynobj
, srel
,
539 || !bfd_set_section_alignment (dynobj
, srel
, 3))
543 hppa_info
->other_rel_sec
= srel
;
547 /* Add a new entry to the list of dynamic relocations against DYN_H.
549 We use this to keep a record of all the FPTR relocations against a
550 particular symbol so that we can create FPTR relocations in the
554 count_dyn_reloc (abfd
, dyn_h
, type
, sec
, sec_symndx
, offset
, addend
)
556 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
563 struct elf64_hppa_dyn_reloc_entry
*rent
;
565 rent
= (struct elf64_hppa_dyn_reloc_entry
*)
566 bfd_alloc (abfd
, (bfd_size_type
) sizeof (*rent
));
570 rent
->next
= dyn_h
->reloc_entries
;
573 rent
->sec_symndx
= sec_symndx
;
574 rent
->offset
= offset
;
575 rent
->addend
= addend
;
576 dyn_h
->reloc_entries
= rent
;
581 /* Scan the RELOCS and record the type of dynamic entries that each
582 referenced symbol needs. */
585 elf64_hppa_check_relocs (abfd
, info
, sec
, relocs
)
587 struct bfd_link_info
*info
;
589 const Elf_Internal_Rela
*relocs
;
591 struct elf64_hppa_link_hash_table
*hppa_info
;
592 const Elf_Internal_Rela
*relend
;
593 Elf_Internal_Shdr
*symtab_hdr
;
594 const Elf_Internal_Rela
*rel
;
595 asection
*dlt
, *plt
, *stubs
;
600 if (info
->relocateable
)
603 /* If this is the first dynamic object found in the link, create
604 the special sections required for dynamic linking. */
605 if (! elf_hash_table (info
)->dynamic_sections_created
)
607 if (! bfd_elf64_link_create_dynamic_sections (abfd
, info
))
611 hppa_info
= elf64_hppa_hash_table (info
);
612 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
614 /* If necessary, build a new table holding section symbols indices
617 if (info
->shared
&& hppa_info
->section_syms_bfd
!= abfd
)
620 unsigned int highest_shndx
;
621 Elf_Internal_Sym
*local_syms
= NULL
;
622 Elf_Internal_Sym
*isym
, *isymend
;
625 /* We're done with the old cache of section index to section symbol
626 index information. Free it.
628 ?!? Note we leak the last section_syms array. Presumably we
629 could free it in one of the later routines in this file. */
630 if (hppa_info
->section_syms
)
631 free (hppa_info
->section_syms
);
633 /* Read this BFD's local symbols. */
634 if (symtab_hdr
->sh_info
!= 0)
636 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
637 if (local_syms
== NULL
)
638 local_syms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
639 symtab_hdr
->sh_info
, 0,
641 if (local_syms
== NULL
)
645 /* Record the highest section index referenced by the local symbols. */
647 isymend
= local_syms
+ symtab_hdr
->sh_info
;
648 for (isym
= local_syms
; isym
< isymend
; isym
++)
650 if (isym
->st_shndx
> highest_shndx
)
651 highest_shndx
= isym
->st_shndx
;
654 /* Allocate an array to hold the section index to section symbol index
655 mapping. Bump by one since we start counting at zero. */
659 hppa_info
->section_syms
= (int *) bfd_malloc (amt
);
661 /* Now walk the local symbols again. If we find a section symbol,
662 record the index of the symbol into the section_syms array. */
663 for (i
= 0, isym
= local_syms
; isym
< isymend
; i
++, isym
++)
665 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
666 hppa_info
->section_syms
[isym
->st_shndx
] = i
;
669 /* We are finished with the local symbols. */
670 if (local_syms
!= NULL
671 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
673 if (! info
->keep_memory
)
677 /* Cache the symbols for elf_link_input_bfd. */
678 symtab_hdr
->contents
= (unsigned char *) local_syms
;
682 /* Record which BFD we built the section_syms mapping for. */
683 hppa_info
->section_syms_bfd
= abfd
;
686 /* Record the symbol index for this input section. We may need it for
687 relocations when building shared libraries. When not building shared
688 libraries this value is never really used, but assign it to zero to
689 prevent out of bounds memory accesses in other routines. */
692 sec_symndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
694 /* If we did not find a section symbol for this section, then
695 something went terribly wrong above. */
696 if (sec_symndx
== -1)
699 sec_symndx
= hppa_info
->section_syms
[sec_symndx
];
704 dlt
= plt
= stubs
= NULL
;
708 relend
= relocs
+ sec
->reloc_count
;
709 for (rel
= relocs
; rel
< relend
; ++rel
)
719 struct elf_link_hash_entry
*h
= NULL
;
720 unsigned long r_symndx
= ELF64_R_SYM (rel
->r_info
);
721 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
723 const char *addr_name
;
724 boolean maybe_dynamic
;
725 int dynrel_type
= R_PARISC_NONE
;
726 static reloc_howto_type
*howto
;
728 if (r_symndx
>= symtab_hdr
->sh_info
)
730 /* We're dealing with a global symbol -- find its hash entry
731 and mark it as being referenced. */
732 long indx
= r_symndx
- symtab_hdr
->sh_info
;
733 h
= elf_sym_hashes (abfd
)[indx
];
734 while (h
->root
.type
== bfd_link_hash_indirect
735 || h
->root
.type
== bfd_link_hash_warning
)
736 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
738 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
741 /* We can only get preliminary data on whether a symbol is
742 locally or externally defined, as not all of the input files
743 have yet been processed. Do something with what we know, as
744 this may help reduce memory usage and processing time later. */
745 maybe_dynamic
= false;
746 if (h
&& ((info
->shared
747 && (!info
->symbolic
|| info
->allow_shlib_undefined
) )
748 || ! (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)
749 || h
->root
.type
== bfd_link_hash_defweak
))
750 maybe_dynamic
= true;
752 howto
= elf_hppa_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
756 /* These are simple indirect references to symbols through the
757 DLT. We need to create a DLT entry for any symbols which
758 appears in a DLTIND relocation. */
759 case R_PARISC_DLTIND21L
:
760 case R_PARISC_DLTIND14R
:
761 case R_PARISC_DLTIND14F
:
762 case R_PARISC_DLTIND14WR
:
763 case R_PARISC_DLTIND14DR
:
764 need_entry
= NEED_DLT
;
767 /* ?!? These need a DLT entry. But I have no idea what to do with
768 the "link time TP value. */
769 case R_PARISC_LTOFF_TP21L
:
770 case R_PARISC_LTOFF_TP14R
:
771 case R_PARISC_LTOFF_TP14F
:
772 case R_PARISC_LTOFF_TP64
:
773 case R_PARISC_LTOFF_TP14WR
:
774 case R_PARISC_LTOFF_TP14DR
:
775 case R_PARISC_LTOFF_TP16F
:
776 case R_PARISC_LTOFF_TP16WF
:
777 case R_PARISC_LTOFF_TP16DF
:
778 need_entry
= NEED_DLT
;
781 /* These are function calls. Depending on their precise target we
782 may need to make a stub for them. The stub uses the PLT, so we
783 need to create PLT entries for these symbols too. */
784 case R_PARISC_PCREL12F
:
785 case R_PARISC_PCREL17F
:
786 case R_PARISC_PCREL22F
:
787 case R_PARISC_PCREL32
:
788 case R_PARISC_PCREL64
:
789 case R_PARISC_PCREL21L
:
790 case R_PARISC_PCREL17R
:
791 case R_PARISC_PCREL17C
:
792 case R_PARISC_PCREL14R
:
793 case R_PARISC_PCREL14F
:
794 case R_PARISC_PCREL22C
:
795 case R_PARISC_PCREL14WR
:
796 case R_PARISC_PCREL14DR
:
797 case R_PARISC_PCREL16F
:
798 case R_PARISC_PCREL16WF
:
799 case R_PARISC_PCREL16DF
:
800 need_entry
= (NEED_PLT
| NEED_STUB
);
803 case R_PARISC_PLTOFF21L
:
804 case R_PARISC_PLTOFF14R
:
805 case R_PARISC_PLTOFF14F
:
806 case R_PARISC_PLTOFF14WR
:
807 case R_PARISC_PLTOFF14DR
:
808 case R_PARISC_PLTOFF16F
:
809 case R_PARISC_PLTOFF16WF
:
810 case R_PARISC_PLTOFF16DF
:
811 need_entry
= (NEED_PLT
);
815 if (info
->shared
|| maybe_dynamic
)
816 need_entry
= (NEED_DYNREL
);
817 dynrel_type
= R_PARISC_DIR64
;
820 /* This is an indirect reference through the DLT to get the address
821 of a OPD descriptor. Thus we need to make a DLT entry that points
823 case R_PARISC_LTOFF_FPTR21L
:
824 case R_PARISC_LTOFF_FPTR14R
:
825 case R_PARISC_LTOFF_FPTR14WR
:
826 case R_PARISC_LTOFF_FPTR14DR
:
827 case R_PARISC_LTOFF_FPTR32
:
828 case R_PARISC_LTOFF_FPTR64
:
829 case R_PARISC_LTOFF_FPTR16F
:
830 case R_PARISC_LTOFF_FPTR16WF
:
831 case R_PARISC_LTOFF_FPTR16DF
:
832 if (info
->shared
|| maybe_dynamic
)
833 need_entry
= (NEED_DLT
| NEED_OPD
);
835 need_entry
= (NEED_DLT
| NEED_OPD
);
836 dynrel_type
= R_PARISC_FPTR64
;
839 /* This is a simple OPD entry. */
840 case R_PARISC_FPTR64
:
841 if (info
->shared
|| maybe_dynamic
)
842 need_entry
= (NEED_OPD
| NEED_DYNREL
);
844 need_entry
= (NEED_OPD
);
845 dynrel_type
= R_PARISC_FPTR64
;
848 /* Add more cases as needed. */
854 /* Collect a canonical name for this address. */
855 addr_name
= get_dyn_name (sec
, h
, rel
, &buf
, &buf_len
);
857 /* Collect the canonical entry data for this address. */
858 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
859 addr_name
, true, true);
862 /* Stash away enough information to be able to find this symbol
863 regardless of whether or not it is local or global. */
866 dyn_h
->sym_indx
= r_symndx
;
868 /* ?!? We may need to do some error checking in here. */
869 /* Create what's needed. */
870 if (need_entry
& NEED_DLT
)
872 if (! hppa_info
->dlt_sec
873 && ! get_dlt (abfd
, info
, hppa_info
))
878 if (need_entry
& NEED_PLT
)
880 if (! hppa_info
->plt_sec
881 && ! get_plt (abfd
, info
, hppa_info
))
886 if (need_entry
& NEED_STUB
)
888 if (! hppa_info
->stub_sec
889 && ! get_stub (abfd
, info
, hppa_info
))
891 dyn_h
->want_stub
= 1;
894 if (need_entry
& NEED_OPD
)
896 if (! hppa_info
->opd_sec
897 && ! get_opd (abfd
, info
, hppa_info
))
902 /* FPTRs are not allocated by the dynamic linker for PA64, though
903 it is possible that will change in the future. */
905 /* This could be a local function that had its address taken, in
906 which case H will be NULL. */
908 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
911 /* Add a new dynamic relocation to the chain of dynamic
912 relocations for this symbol. */
913 if ((need_entry
& NEED_DYNREL
) && (sec
->flags
& SEC_ALLOC
))
915 if (! hppa_info
->other_rel_sec
916 && ! get_reloc_section (abfd
, hppa_info
, sec
))
919 if (!count_dyn_reloc (abfd
, dyn_h
, dynrel_type
, sec
,
920 sec_symndx
, rel
->r_offset
, rel
->r_addend
))
923 /* If we are building a shared library and we just recorded
924 a dynamic R_PARISC_FPTR64 relocation, then make sure the
925 section symbol for this section ends up in the dynamic
927 if (info
->shared
&& dynrel_type
== R_PARISC_FPTR64
928 && ! (_bfd_elf64_link_record_local_dynamic_symbol
929 (info
, abfd
, sec_symndx
)))
944 struct elf64_hppa_allocate_data
946 struct bfd_link_info
*info
;
950 /* Should we do dynamic things to this symbol? */
953 elf64_hppa_dynamic_symbol_p (h
, info
)
954 struct elf_link_hash_entry
*h
;
955 struct bfd_link_info
*info
;
960 while (h
->root
.type
== bfd_link_hash_indirect
961 || h
->root
.type
== bfd_link_hash_warning
)
962 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
964 if (h
->dynindx
== -1)
967 if (h
->root
.type
== bfd_link_hash_undefweak
968 || h
->root
.type
== bfd_link_hash_defweak
)
971 if (h
->root
.root
.string
[0] == '$' && h
->root
.root
.string
[1] == '$')
974 if ((info
->shared
&& (!info
->symbolic
|| info
->allow_shlib_undefined
))
975 || ((h
->elf_link_hash_flags
976 & (ELF_LINK_HASH_DEF_DYNAMIC
| ELF_LINK_HASH_REF_REGULAR
))
977 == (ELF_LINK_HASH_DEF_DYNAMIC
| ELF_LINK_HASH_REF_REGULAR
)))
983 /* Mark all funtions exported by this file so that we can later allocate
984 entries in .opd for them. */
987 elf64_hppa_mark_exported_functions (h
, data
)
988 struct elf_link_hash_entry
*h
;
991 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
992 struct elf64_hppa_link_hash_table
*hppa_info
;
994 hppa_info
= elf64_hppa_hash_table (info
);
996 if (h
->root
.type
== bfd_link_hash_warning
)
997 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1000 && (h
->root
.type
== bfd_link_hash_defined
1001 || h
->root
.type
== bfd_link_hash_defweak
)
1002 && h
->root
.u
.def
.section
->output_section
!= NULL
1003 && h
->type
== STT_FUNC
)
1005 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1007 /* Add this symbol to the PA64 linker hash table. */
1008 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1009 h
->root
.root
.string
, true, true);
1013 if (! hppa_info
->opd_sec
1014 && ! get_opd (hppa_info
->root
.dynobj
, info
, hppa_info
))
1017 dyn_h
->want_opd
= 1;
1018 /* Put a flag here for output_symbol_hook. */
1019 dyn_h
->st_shndx
= -1;
1020 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1026 /* Allocate space for a DLT entry. */
1029 allocate_global_data_dlt (dyn_h
, data
)
1030 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1033 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1035 if (dyn_h
->want_dlt
)
1037 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1039 if (x
->info
->shared
)
1041 /* Possibly add the symbol to the local dynamic symbol
1042 table since we might need to create a dynamic relocation
1045 || (h
->dynindx
== -1 && h
->type
!= STT_PARISC_MILLI
))
1048 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1050 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1051 (x
->info
, owner
, dyn_h
->sym_indx
)))
1056 dyn_h
->dlt_offset
= x
->ofs
;
1057 x
->ofs
+= DLT_ENTRY_SIZE
;
1062 /* Allocate space for a DLT.PLT entry. */
1065 allocate_global_data_plt (dyn_h
, data
)
1066 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1069 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1072 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1073 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1074 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1075 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1077 dyn_h
->plt_offset
= x
->ofs
;
1078 x
->ofs
+= PLT_ENTRY_SIZE
;
1079 if (dyn_h
->plt_offset
< 0x2000)
1080 elf64_hppa_hash_table (x
->info
)->gp_offset
= dyn_h
->plt_offset
;
1083 dyn_h
->want_plt
= 0;
1088 /* Allocate space for a STUB entry. */
1091 allocate_global_data_stub (dyn_h
, data
)
1092 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1095 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1097 if (dyn_h
->want_stub
1098 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1099 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1100 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1101 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1103 dyn_h
->stub_offset
= x
->ofs
;
1104 x
->ofs
+= sizeof (plt_stub
);
1107 dyn_h
->want_stub
= 0;
1111 /* Allocate space for a FPTR entry. */
1114 allocate_global_data_opd (dyn_h
, data
)
1115 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1118 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1120 if (dyn_h
->want_opd
)
1122 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1125 while (h
->root
.type
== bfd_link_hash_indirect
1126 || h
->root
.type
== bfd_link_hash_warning
)
1127 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1129 /* We never need an opd entry for a symbol which is not
1130 defined by this output file. */
1131 if (h
&& (h
->root
.type
== bfd_link_hash_undefined
1132 || h
->root
.u
.def
.section
->output_section
== NULL
))
1133 dyn_h
->want_opd
= 0;
1135 /* If we are creating a shared library, took the address of a local
1136 function or might export this function from this object file, then
1137 we have to create an opd descriptor. */
1138 else if (x
->info
->shared
1140 || (h
->dynindx
== -1 && h
->type
!= STT_PARISC_MILLI
)
1141 || (h
->root
.type
== bfd_link_hash_defined
1142 || h
->root
.type
== bfd_link_hash_defweak
))
1144 /* If we are creating a shared library, then we will have to
1145 create a runtime relocation for the symbol to properly
1146 initialize the .opd entry. Make sure the symbol gets
1147 added to the dynamic symbol table. */
1149 && (h
== NULL
|| (h
->dynindx
== -1)))
1152 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1154 if (!_bfd_elf64_link_record_local_dynamic_symbol
1155 (x
->info
, owner
, dyn_h
->sym_indx
))
1159 /* This may not be necessary or desirable anymore now that
1160 we have some support for dealing with section symbols
1161 in dynamic relocs. But name munging does make the result
1162 much easier to debug. ie, the EPLT reloc will reference
1163 a symbol like .foobar, instead of .text + offset. */
1164 if (x
->info
->shared
&& h
)
1167 struct elf_link_hash_entry
*nh
;
1169 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
1171 strcpy (new_name
+ 1, h
->root
.root
.string
);
1173 nh
= elf_link_hash_lookup (elf_hash_table (x
->info
),
1174 new_name
, true, true, true);
1176 nh
->root
.type
= h
->root
.type
;
1177 nh
->root
.u
.def
.value
= h
->root
.u
.def
.value
;
1178 nh
->root
.u
.def
.section
= h
->root
.u
.def
.section
;
1180 if (! bfd_elf64_link_record_dynamic_symbol (x
->info
, nh
))
1184 dyn_h
->opd_offset
= x
->ofs
;
1185 x
->ofs
+= OPD_ENTRY_SIZE
;
1188 /* Otherwise we do not need an opd entry. */
1190 dyn_h
->want_opd
= 0;
1195 /* HP requires the EI_OSABI field to be filled in. The assignment to
1196 EI_ABIVERSION may not be strictly necessary. */
1199 elf64_hppa_post_process_headers (abfd
, link_info
)
1201 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
;
1203 Elf_Internal_Ehdr
* i_ehdrp
;
1205 i_ehdrp
= elf_elfheader (abfd
);
1207 if (strcmp (bfd_get_target (abfd
), "elf64-hppa-linux") == 0)
1209 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
1213 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_HPUX
;
1214 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;
1218 /* Create function descriptor section (.opd). This section is called .opd
1219 because it contains "official prodecure descriptors". The "official"
1220 refers to the fact that these descriptors are used when taking the address
1221 of a procedure, thus ensuring a unique address for each procedure. */
1224 get_opd (abfd
, info
, hppa_info
)
1226 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1227 struct elf64_hppa_link_hash_table
*hppa_info
;
1232 opd
= hppa_info
->opd_sec
;
1235 dynobj
= hppa_info
->root
.dynobj
;
1237 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1239 opd
= bfd_make_section (dynobj
, ".opd");
1241 || !bfd_set_section_flags (dynobj
, opd
,
1246 | SEC_LINKER_CREATED
))
1247 || !bfd_set_section_alignment (abfd
, opd
, 3))
1253 hppa_info
->opd_sec
= opd
;
1259 /* Create the PLT section. */
1262 get_plt (abfd
, info
, hppa_info
)
1264 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1265 struct elf64_hppa_link_hash_table
*hppa_info
;
1270 plt
= hppa_info
->plt_sec
;
1273 dynobj
= hppa_info
->root
.dynobj
;
1275 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1277 plt
= bfd_make_section (dynobj
, ".plt");
1279 || !bfd_set_section_flags (dynobj
, plt
,
1284 | SEC_LINKER_CREATED
))
1285 || !bfd_set_section_alignment (abfd
, plt
, 3))
1291 hppa_info
->plt_sec
= plt
;
1297 /* Create the DLT section. */
1300 get_dlt (abfd
, info
, hppa_info
)
1302 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1303 struct elf64_hppa_link_hash_table
*hppa_info
;
1308 dlt
= hppa_info
->dlt_sec
;
1311 dynobj
= hppa_info
->root
.dynobj
;
1313 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1315 dlt
= bfd_make_section (dynobj
, ".dlt");
1317 || !bfd_set_section_flags (dynobj
, dlt
,
1322 | SEC_LINKER_CREATED
))
1323 || !bfd_set_section_alignment (abfd
, dlt
, 3))
1329 hppa_info
->dlt_sec
= dlt
;
1335 /* Create the stubs section. */
1338 get_stub (abfd
, info
, hppa_info
)
1340 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1341 struct elf64_hppa_link_hash_table
*hppa_info
;
1346 stub
= hppa_info
->stub_sec
;
1349 dynobj
= hppa_info
->root
.dynobj
;
1351 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1353 stub
= bfd_make_section (dynobj
, ".stub");
1355 || !bfd_set_section_flags (dynobj
, stub
,
1361 | SEC_LINKER_CREATED
))
1362 || !bfd_set_section_alignment (abfd
, stub
, 3))
1368 hppa_info
->stub_sec
= stub
;
1374 /* Create sections necessary for dynamic linking. This is only a rough
1375 cut and will likely change as we learn more about the somewhat
1376 unusual dynamic linking scheme HP uses.
1379 Contains code to implement cross-space calls. The first time one
1380 of the stubs is used it will call into the dynamic linker, later
1381 calls will go straight to the target.
1383 The only stub we support right now looks like
1387 ldd OFFSET+8(%dp),%dp
1389 Other stubs may be needed in the future. We may want the remove
1390 the break/nop instruction. It is only used right now to keep the
1391 offset of a .plt entry and a .stub entry in sync.
1394 This is what most people call the .got. HP used a different name.
1398 Relocations for the DLT.
1401 Function pointers as address,gp pairs.
1404 Should contain dynamic IPLT (and EPLT?) relocations.
1410 EPLT relocations for symbols exported from shared libraries. */
1413 elf64_hppa_create_dynamic_sections (abfd
, info
)
1415 struct bfd_link_info
*info
;
1419 if (! get_stub (abfd
, info
, elf64_hppa_hash_table (info
)))
1422 if (! get_dlt (abfd
, info
, elf64_hppa_hash_table (info
)))
1425 if (! get_plt (abfd
, info
, elf64_hppa_hash_table (info
)))
1428 if (! get_opd (abfd
, info
, elf64_hppa_hash_table (info
)))
1431 s
= bfd_make_section(abfd
, ".rela.dlt");
1433 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1437 | SEC_LINKER_CREATED
))
1438 || !bfd_set_section_alignment (abfd
, s
, 3))
1440 elf64_hppa_hash_table (info
)->dlt_rel_sec
= s
;
1442 s
= bfd_make_section(abfd
, ".rela.plt");
1444 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1448 | SEC_LINKER_CREATED
))
1449 || !bfd_set_section_alignment (abfd
, s
, 3))
1451 elf64_hppa_hash_table (info
)->plt_rel_sec
= s
;
1453 s
= bfd_make_section(abfd
, ".rela.data");
1455 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1459 | SEC_LINKER_CREATED
))
1460 || !bfd_set_section_alignment (abfd
, s
, 3))
1462 elf64_hppa_hash_table (info
)->other_rel_sec
= s
;
1464 s
= bfd_make_section(abfd
, ".rela.opd");
1466 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1470 | SEC_LINKER_CREATED
))
1471 || !bfd_set_section_alignment (abfd
, s
, 3))
1473 elf64_hppa_hash_table (info
)->opd_rel_sec
= s
;
1478 /* Allocate dynamic relocations for those symbols that turned out
1482 allocate_dynrel_entries (dyn_h
, data
)
1483 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1486 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1487 struct elf64_hppa_link_hash_table
*hppa_info
;
1488 struct elf64_hppa_dyn_reloc_entry
*rent
;
1489 boolean dynamic_symbol
, shared
;
1491 hppa_info
= elf64_hppa_hash_table (x
->info
);
1492 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
);
1493 shared
= x
->info
->shared
;
1495 /* We may need to allocate relocations for a non-dynamic symbol
1496 when creating a shared library. */
1497 if (!dynamic_symbol
&& !shared
)
1500 /* Take care of the normal data relocations. */
1502 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
1504 /* Allocate one iff we are building a shared library, the relocation
1505 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1506 if (!shared
&& rent
->type
== R_PARISC_FPTR64
&& dyn_h
->want_opd
)
1509 hppa_info
->other_rel_sec
->_raw_size
+= sizeof (Elf64_External_Rela
);
1511 /* Make sure this symbol gets into the dynamic symbol table if it is
1512 not already recorded. ?!? This should not be in the loop since
1513 the symbol need only be added once. */
1515 || (dyn_h
->h
->dynindx
== -1 && dyn_h
->h
->type
!= STT_PARISC_MILLI
))
1516 if (!_bfd_elf64_link_record_local_dynamic_symbol
1517 (x
->info
, rent
->sec
->owner
, dyn_h
->sym_indx
))
1521 /* Take care of the GOT and PLT relocations. */
1523 if ((dynamic_symbol
|| shared
) && dyn_h
->want_dlt
)
1524 hppa_info
->dlt_rel_sec
->_raw_size
+= sizeof (Elf64_External_Rela
);
1526 /* If we are building a shared library, then every symbol that has an
1527 opd entry will need an EPLT relocation to relocate the symbol's address
1528 and __gp value based on the runtime load address. */
1529 if (shared
&& dyn_h
->want_opd
)
1530 hppa_info
->opd_rel_sec
->_raw_size
+= sizeof (Elf64_External_Rela
);
1532 if (dyn_h
->want_plt
&& dynamic_symbol
)
1534 bfd_size_type t
= 0;
1536 /* Dynamic symbols get one IPLT relocation. Local symbols in
1537 shared libraries get two REL relocations. Local symbols in
1538 main applications get nothing. */
1540 t
= sizeof (Elf64_External_Rela
);
1542 t
= 2 * sizeof (Elf64_External_Rela
);
1544 hppa_info
->plt_rel_sec
->_raw_size
+= t
;
1550 /* Adjust a symbol defined by a dynamic object and referenced by a
1554 elf64_hppa_adjust_dynamic_symbol (info
, h
)
1555 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1556 struct elf_link_hash_entry
*h
;
1558 /* ??? Undefined symbols with PLT entries should be re-defined
1559 to be the PLT entry. */
1561 /* If this is a weak symbol, and there is a real definition, the
1562 processor independent code will have arranged for us to see the
1563 real definition first, and we can just use the same value. */
1564 if (h
->weakdef
!= NULL
)
1566 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1567 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1568 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1569 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1573 /* If this is a reference to a symbol defined by a dynamic object which
1574 is not a function, we might allocate the symbol in our .dynbss section
1575 and allocate a COPY dynamic relocation.
1577 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1583 /* This function is called via elf_link_hash_traverse to mark millicode
1584 symbols with a dynindx of -1 and to remove the string table reference
1585 from the dynamic symbol table. If the symbol is not a millicode symbol,
1586 elf64_hppa_mark_exported_functions is called. */
1589 elf64_hppa_mark_milli_and_exported_functions (h
, data
)
1590 struct elf_link_hash_entry
*h
;
1593 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
1594 struct elf_link_hash_entry
*elf
= h
;
1596 if (elf
->root
.type
== bfd_link_hash_warning
)
1597 elf
= (struct elf_link_hash_entry
*) elf
->root
.u
.i
.link
;
1599 if (elf
->type
== STT_PARISC_MILLI
)
1601 if (elf
->dynindx
!= -1)
1604 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1610 return elf64_hppa_mark_exported_functions (h
, data
);
1613 /* Set the final sizes of the dynamic sections and allocate memory for
1614 the contents of our special sections. */
1617 elf64_hppa_size_dynamic_sections (output_bfd
, info
)
1619 struct bfd_link_info
*info
;
1626 struct elf64_hppa_allocate_data data
;
1627 struct elf64_hppa_link_hash_table
*hppa_info
;
1629 hppa_info
= elf64_hppa_hash_table (info
);
1631 dynobj
= elf_hash_table (info
)->dynobj
;
1632 BFD_ASSERT (dynobj
!= NULL
);
1634 /* Mark each function this program exports so that we will allocate
1635 space in the .opd section for each function's FPTR. If we are
1636 creating dynamic sections, change the dynamic index of millicode
1637 symbols to -1 and remove them from the string table for .dynstr.
1639 We have to traverse the main linker hash table since we have to
1640 find functions which may not have been mentioned in any relocs. */
1641 elf_link_hash_traverse (elf_hash_table (info
),
1642 (elf_hash_table (info
)->dynamic_sections_created
1643 ? elf64_hppa_mark_milli_and_exported_functions
1644 : elf64_hppa_mark_exported_functions
),
1647 if (elf_hash_table (info
)->dynamic_sections_created
)
1649 /* Set the contents of the .interp section to the interpreter. */
1652 s
= bfd_get_section_by_name (dynobj
, ".interp");
1653 BFD_ASSERT (s
!= NULL
);
1654 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1655 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1660 /* We may have created entries in the .rela.got section.
1661 However, if we are not creating the dynamic sections, we will
1662 not actually use these entries. Reset the size of .rela.dlt,
1663 which will cause it to get stripped from the output file
1665 s
= bfd_get_section_by_name (dynobj
, ".rela.dlt");
1670 /* Allocate the GOT entries. */
1673 if (elf64_hppa_hash_table (info
)->dlt_sec
)
1676 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1677 allocate_global_data_dlt
, &data
);
1678 hppa_info
->dlt_sec
->_raw_size
= data
.ofs
;
1681 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1682 allocate_global_data_plt
, &data
);
1683 hppa_info
->plt_sec
->_raw_size
= data
.ofs
;
1686 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1687 allocate_global_data_stub
, &data
);
1688 hppa_info
->stub_sec
->_raw_size
= data
.ofs
;
1691 /* Allocate space for entries in the .opd section. */
1692 if (elf64_hppa_hash_table (info
)->opd_sec
)
1695 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1696 allocate_global_data_opd
, &data
);
1697 hppa_info
->opd_sec
->_raw_size
= data
.ofs
;
1700 /* Now allocate space for dynamic relocations, if necessary. */
1701 if (hppa_info
->root
.dynamic_sections_created
)
1702 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1703 allocate_dynrel_entries
, &data
);
1705 /* The sizes of all the sections are set. Allocate memory for them. */
1709 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1714 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1717 /* It's OK to base decisions on the section name, because none
1718 of the dynobj section names depend upon the input files. */
1719 name
= bfd_get_section_name (dynobj
, s
);
1723 if (strcmp (name
, ".plt") == 0)
1725 /* Strip this section if we don't need it; see the comment below. */
1726 if (s
->_raw_size
== 0)
1732 /* Remember whether there is a PLT. */
1736 else if (strcmp (name
, ".dlt") == 0)
1738 /* Strip this section if we don't need it; see the comment below. */
1739 if (s
->_raw_size
== 0)
1744 else if (strcmp (name
, ".opd") == 0)
1746 /* Strip this section if we don't need it; see the comment below. */
1747 if (s
->_raw_size
== 0)
1752 else if (strncmp (name
, ".rela", 5) == 0)
1754 /* If we don't need this section, strip it from the output file.
1755 This is mostly to handle .rela.bss and .rela.plt. We must
1756 create both sections in create_dynamic_sections, because they
1757 must be created before the linker maps input sections to output
1758 sections. The linker does that before adjust_dynamic_symbol
1759 is called, and it is that function which decides whether
1760 anything needs to go into these sections. */
1761 if (s
->_raw_size
== 0)
1763 /* If we don't need this section, strip it from the
1764 output file. This is mostly to handle .rela.bss and
1765 .rela.plt. We must create both sections in
1766 create_dynamic_sections, because they must be created
1767 before the linker maps input sections to output
1768 sections. The linker does that before
1769 adjust_dynamic_symbol is called, and it is that
1770 function which decides whether anything needs to go
1771 into these sections. */
1778 /* Remember whether there are any reloc sections other
1780 if (strcmp (name
, ".rela.plt") != 0)
1782 const char *outname
;
1786 /* If this relocation section applies to a read only
1787 section, then we probably need a DT_TEXTREL
1788 entry. The entries in the .rela.plt section
1789 really apply to the .got section, which we
1790 created ourselves and so know is not readonly. */
1791 outname
= bfd_get_section_name (output_bfd
,
1793 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
1795 && (target
->flags
& SEC_READONLY
) != 0
1796 && (target
->flags
& SEC_ALLOC
) != 0)
1800 /* We use the reloc_count field as a counter if we need
1801 to copy relocs into the output file. */
1805 else if (strncmp (name
, ".dlt", 4) != 0
1806 && strcmp (name
, ".stub") != 0
1807 && strcmp (name
, ".got") != 0)
1809 /* It's not one of our sections, so don't allocate space. */
1815 _bfd_strip_section_from_output (info
, s
);
1819 /* Allocate memory for the section contents if it has not
1820 been allocated already. We use bfd_zalloc here in case
1821 unused entries are not reclaimed before the section's
1822 contents are written out. This should not happen, but this
1823 way if it does, we get a R_PARISC_NONE reloc instead of
1825 if (s
->contents
== NULL
)
1827 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1828 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1833 if (elf_hash_table (info
)->dynamic_sections_created
)
1835 /* Always create a DT_PLTGOT. It actually has nothing to do with
1836 the PLT, it is how we communicate the __gp value of a load
1837 module to the dynamic linker. */
1838 #define add_dynamic_entry(TAG, VAL) \
1839 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1841 if (!add_dynamic_entry (DT_HP_DLD_FLAGS
, 0)
1842 || !add_dynamic_entry (DT_PLTGOT
, 0))
1845 /* Add some entries to the .dynamic section. We fill in the
1846 values later, in elf64_hppa_finish_dynamic_sections, but we
1847 must add the entries now so that we get the correct size for
1848 the .dynamic section. The DT_DEBUG entry is filled in by the
1849 dynamic linker and used by the debugger. */
1852 if (!add_dynamic_entry (DT_DEBUG
, 0)
1853 || !add_dynamic_entry (DT_HP_DLD_HOOK
, 0)
1854 || !add_dynamic_entry (DT_HP_LOAD_MAP
, 0))
1858 /* Force DT_FLAGS to always be set.
1859 Required by HPUX 11.00 patch PHSS_26559. */
1860 if (!add_dynamic_entry (DT_FLAGS
, (info
)->flags
))
1865 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
1866 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1867 || !add_dynamic_entry (DT_JMPREL
, 0))
1873 if (!add_dynamic_entry (DT_RELA
, 0)
1874 || !add_dynamic_entry (DT_RELASZ
, 0)
1875 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
1881 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1883 info
->flags
|= DF_TEXTREL
;
1886 #undef add_dynamic_entry
1891 /* Called after we have output the symbol into the dynamic symbol
1892 table, but before we output the symbol into the normal symbol
1895 For some symbols we had to change their address when outputting
1896 the dynamic symbol table. We undo that change here so that
1897 the symbols have their expected value in the normal symbol
1901 elf64_hppa_link_output_symbol_hook (abfd
, info
, name
, sym
, input_sec
)
1902 bfd
*abfd ATTRIBUTE_UNUSED
;
1903 struct bfd_link_info
*info
;
1905 Elf_Internal_Sym
*sym
;
1906 asection
*input_sec ATTRIBUTE_UNUSED
;
1908 struct elf64_hppa_link_hash_table
*hppa_info
;
1909 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1911 /* We may be called with the file symbol or section symbols.
1912 They never need munging, so it is safe to ignore them. */
1916 /* Get the PA dyn_symbol (if any) associated with NAME. */
1917 hppa_info
= elf64_hppa_hash_table (info
);
1918 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1919 name
, false, false);
1921 /* Function symbols for which we created .opd entries *may* have been
1922 munged by finish_dynamic_symbol and have to be un-munged here.
1924 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1925 into non-dynamic ones, so we initialize st_shndx to -1 in
1926 mark_exported_functions and check to see if it was overwritten
1927 here instead of just checking dyn_h->h->dynindx. */
1928 if (dyn_h
&& dyn_h
->want_opd
&& dyn_h
->st_shndx
!= -1)
1930 /* Restore the saved value and section index. */
1931 sym
->st_value
= dyn_h
->st_value
;
1932 sym
->st_shndx
= dyn_h
->st_shndx
;
1938 /* Finish up dynamic symbol handling. We set the contents of various
1939 dynamic sections here. */
1942 elf64_hppa_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
1944 struct bfd_link_info
*info
;
1945 struct elf_link_hash_entry
*h
;
1946 Elf_Internal_Sym
*sym
;
1948 asection
*stub
, *splt
, *sdlt
, *sopd
, *spltrel
, *sdltrel
;
1949 struct elf64_hppa_link_hash_table
*hppa_info
;
1950 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1952 hppa_info
= elf64_hppa_hash_table (info
);
1953 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1954 h
->root
.root
.string
, false, false);
1956 stub
= hppa_info
->stub_sec
;
1957 splt
= hppa_info
->plt_sec
;
1958 sdlt
= hppa_info
->dlt_sec
;
1959 sopd
= hppa_info
->opd_sec
;
1960 spltrel
= hppa_info
->plt_rel_sec
;
1961 sdltrel
= hppa_info
->dlt_rel_sec
;
1963 /* Incredible. It is actually necessary to NOT use the symbol's real
1964 value when building the dynamic symbol table for a shared library.
1965 At least for symbols that refer to functions.
1967 We will store a new value and section index into the symbol long
1968 enough to output it into the dynamic symbol table, then we restore
1969 the original values (in elf64_hppa_link_output_symbol_hook). */
1970 if (dyn_h
&& dyn_h
->want_opd
)
1972 BFD_ASSERT (sopd
!= NULL
)
1974 /* Save away the original value and section index so that we
1975 can restore them later. */
1976 dyn_h
->st_value
= sym
->st_value
;
1977 dyn_h
->st_shndx
= sym
->st_shndx
;
1979 /* For the dynamic symbol table entry, we want the value to be
1980 address of this symbol's entry within the .opd section. */
1981 sym
->st_value
= (dyn_h
->opd_offset
1982 + sopd
->output_offset
1983 + sopd
->output_section
->vma
);
1984 sym
->st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
1985 sopd
->output_section
);
1988 /* Initialize a .plt entry if requested. */
1989 if (dyn_h
&& dyn_h
->want_plt
1990 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
1993 Elf_Internal_Rela rel
;
1995 BFD_ASSERT (splt
!= NULL
&& spltrel
!= NULL
)
1997 /* We do not actually care about the value in the PLT entry
1998 if we are creating a shared library and the symbol is
1999 still undefined, we create a dynamic relocation to fill
2000 in the correct value. */
2001 if (info
->shared
&& h
->root
.type
== bfd_link_hash_undefined
)
2004 value
= (h
->root
.u
.def
.value
+ h
->root
.u
.def
.section
->vma
);
2006 /* Fill in the entry in the procedure linkage table.
2008 The format of a plt entry is
2011 plt_offset is the offset within the PLT section at which to
2012 install the PLT entry.
2014 We are modifying the in-memory PLT contents here, so we do not add
2015 in the output_offset of the PLT section. */
2017 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
);
2018 value
= _bfd_get_gp_value (splt
->output_section
->owner
);
2019 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
+ 0x8);
2021 /* Create a dynamic IPLT relocation for this entry.
2023 We are creating a relocation in the output file's PLT section,
2024 which is included within the DLT secton. So we do need to include
2025 the PLT's output_offset in the computation of the relocation's
2027 rel
.r_offset
= (dyn_h
->plt_offset
+ splt
->output_offset
2028 + splt
->output_section
->vma
);
2029 rel
.r_info
= ELF64_R_INFO (h
->dynindx
, R_PARISC_IPLT
);
2032 bfd_elf64_swap_reloca_out (splt
->output_section
->owner
, &rel
,
2033 (((Elf64_External_Rela
*)
2035 + spltrel
->reloc_count
));
2036 spltrel
->reloc_count
++;
2039 /* Initialize an external call stub entry if requested. */
2040 if (dyn_h
&& dyn_h
->want_stub
2041 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
2045 unsigned int max_offset
;
2047 BFD_ASSERT (stub
!= NULL
)
2049 /* Install the generic stub template.
2051 We are modifying the contents of the stub section, so we do not
2052 need to include the stub section's output_offset here. */
2053 memcpy (stub
->contents
+ dyn_h
->stub_offset
, plt_stub
, sizeof (plt_stub
));
2055 /* Fix up the first ldd instruction.
2057 We are modifying the contents of the STUB section in memory,
2058 so we do not need to include its output offset in this computation.
2060 Note the plt_offset value is the value of the PLT entry relative to
2061 the start of the PLT section. These instructions will reference
2062 data relative to the value of __gp, which may not necessarily have
2063 the same address as the start of the PLT section.
2065 gp_offset contains the offset of __gp within the PLT section. */
2066 value
= dyn_h
->plt_offset
- hppa_info
->gp_offset
;
2068 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
);
2069 if (output_bfd
->arch_info
->mach
>= 25)
2071 /* Wide mode allows 16 bit offsets. */
2074 insn
|= re_assemble_16 ((int) value
);
2080 insn
|= re_assemble_14 ((int) value
);
2083 if ((value
& 7) || value
+ max_offset
>= 2*max_offset
- 8)
2085 (*_bfd_error_handler
) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2091 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2092 stub
->contents
+ dyn_h
->stub_offset
);
2094 /* Fix up the second ldd instruction. */
2096 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
+ 8);
2097 if (output_bfd
->arch_info
->mach
>= 25)
2100 insn
|= re_assemble_16 ((int) value
);
2105 insn
|= re_assemble_14 ((int) value
);
2107 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2108 stub
->contents
+ dyn_h
->stub_offset
+ 8);
2114 /* The .opd section contains FPTRs for each function this file
2115 exports. Initialize the FPTR entries. */
2118 elf64_hppa_finalize_opd (dyn_h
, data
)
2119 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2122 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2123 struct elf64_hppa_link_hash_table
*hppa_info
;
2124 struct elf_link_hash_entry
*h
= dyn_h
? dyn_h
->h
: NULL
;
2128 hppa_info
= elf64_hppa_hash_table (info
);
2129 sopd
= hppa_info
->opd_sec
;
2130 sopdrel
= hppa_info
->opd_rel_sec
;
2132 if (h
&& dyn_h
->want_opd
)
2136 /* The first two words of an .opd entry are zero.
2138 We are modifying the contents of the OPD section in memory, so we
2139 do not need to include its output offset in this computation. */
2140 memset (sopd
->contents
+ dyn_h
->opd_offset
, 0, 16);
2142 value
= (h
->root
.u
.def
.value
2143 + h
->root
.u
.def
.section
->output_section
->vma
2144 + h
->root
.u
.def
.section
->output_offset
);
2146 /* The next word is the address of the function. */
2147 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 16);
2149 /* The last word is our local __gp value. */
2150 value
= _bfd_get_gp_value (sopd
->output_section
->owner
);
2151 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 24);
2154 /* If we are generating a shared library, we must generate EPLT relocations
2155 for each entry in the .opd, even for static functions (they may have
2156 had their address taken). */
2157 if (info
->shared
&& dyn_h
&& dyn_h
->want_opd
)
2159 Elf64_Internal_Rela rel
;
2162 /* We may need to do a relocation against a local symbol, in
2163 which case we have to look up it's dynamic symbol index off
2164 the local symbol hash table. */
2165 if (h
&& h
->dynindx
!= -1)
2166 dynindx
= h
->dynindx
;
2169 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2172 /* The offset of this relocation is the absolute address of the
2173 .opd entry for this symbol. */
2174 rel
.r_offset
= (dyn_h
->opd_offset
+ sopd
->output_offset
2175 + sopd
->output_section
->vma
);
2177 /* If H is non-null, then we have an external symbol.
2179 It is imperative that we use a different dynamic symbol for the
2180 EPLT relocation if the symbol has global scope.
2182 In the dynamic symbol table, the function symbol will have a value
2183 which is address of the function's .opd entry.
2185 Thus, we can not use that dynamic symbol for the EPLT relocation
2186 (if we did, the data in the .opd would reference itself rather
2187 than the actual address of the function). Instead we have to use
2188 a new dynamic symbol which has the same value as the original global
2191 We prefix the original symbol with a "." and use the new symbol in
2192 the EPLT relocation. This new symbol has already been recorded in
2193 the symbol table, we just have to look it up and use it.
2195 We do not have such problems with static functions because we do
2196 not make their addresses in the dynamic symbol table point to
2197 the .opd entry. Ultimately this should be safe since a static
2198 function can not be directly referenced outside of its shared
2201 We do have to play similar games for FPTR relocations in shared
2202 libraries, including those for static symbols. See the FPTR
2203 handling in elf64_hppa_finalize_dynreloc. */
2207 struct elf_link_hash_entry
*nh
;
2209 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
2211 strcpy (new_name
+ 1, h
->root
.root
.string
);
2213 nh
= elf_link_hash_lookup (elf_hash_table (info
),
2214 new_name
, false, false, false);
2216 /* All we really want from the new symbol is its dynamic
2218 dynindx
= nh
->dynindx
;
2222 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_EPLT
);
2224 bfd_elf64_swap_reloca_out (sopd
->output_section
->owner
, &rel
,
2225 (((Elf64_External_Rela
*)
2227 + sopdrel
->reloc_count
));
2228 sopdrel
->reloc_count
++;
2233 /* The .dlt section contains addresses for items referenced through the
2234 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2235 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2238 elf64_hppa_finalize_dlt (dyn_h
, data
)
2239 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2242 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2243 struct elf64_hppa_link_hash_table
*hppa_info
;
2244 asection
*sdlt
, *sdltrel
;
2245 struct elf_link_hash_entry
*h
= dyn_h
? dyn_h
->h
: NULL
;
2247 hppa_info
= elf64_hppa_hash_table (info
);
2249 sdlt
= hppa_info
->dlt_sec
;
2250 sdltrel
= hppa_info
->dlt_rel_sec
;
2252 /* H/DYN_H may refer to a local variable and we know it's
2253 address, so there is no need to create a relocation. Just install
2254 the proper value into the DLT, note this shortcut can not be
2255 skipped when building a shared library. */
2256 if (! info
->shared
&& h
&& dyn_h
->want_dlt
)
2260 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2261 to point to the FPTR entry in the .opd section.
2263 We include the OPD's output offset in this computation as
2264 we are referring to an absolute address in the resulting
2266 if (dyn_h
->want_opd
)
2268 value
= (dyn_h
->opd_offset
2269 + hppa_info
->opd_sec
->output_offset
2270 + hppa_info
->opd_sec
->output_section
->vma
);
2272 else if (h
->root
.u
.def
.section
)
2274 value
= h
->root
.u
.def
.value
+ h
->root
.u
.def
.section
->output_offset
;
2275 if (h
->root
.u
.def
.section
->output_section
)
2276 value
+= h
->root
.u
.def
.section
->output_section
->vma
;
2278 value
+= h
->root
.u
.def
.section
->vma
;
2281 /* We have an undefined function reference. */
2284 /* We do not need to include the output offset of the DLT section
2285 here because we are modifying the in-memory contents. */
2286 bfd_put_64 (sdlt
->owner
, value
, sdlt
->contents
+ dyn_h
->dlt_offset
);
2289 /* Create a relocation for the DLT entry assocated with this symbol.
2290 When building a shared library the symbol does not have to be dynamic. */
2292 && (elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
) || info
->shared
))
2294 Elf64_Internal_Rela rel
;
2297 /* We may need to do a relocation against a local symbol, in
2298 which case we have to look up it's dynamic symbol index off
2299 the local symbol hash table. */
2300 if (h
&& h
->dynindx
!= -1)
2301 dynindx
= h
->dynindx
;
2304 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2307 /* Create a dynamic relocation for this entry. Do include the output
2308 offset of the DLT entry since we need an absolute address in the
2309 resulting object file. */
2310 rel
.r_offset
= (dyn_h
->dlt_offset
+ sdlt
->output_offset
2311 + sdlt
->output_section
->vma
);
2312 if (h
&& h
->type
== STT_FUNC
)
2313 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_FPTR64
);
2315 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_DIR64
);
2318 bfd_elf64_swap_reloca_out (sdlt
->output_section
->owner
, &rel
,
2319 (((Elf64_External_Rela
*)
2321 + sdltrel
->reloc_count
));
2322 sdltrel
->reloc_count
++;
2327 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2328 for dynamic functions used to initialize static data. */
2331 elf64_hppa_finalize_dynreloc (dyn_h
, data
)
2332 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2335 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2336 struct elf64_hppa_link_hash_table
*hppa_info
;
2337 struct elf_link_hash_entry
*h
;
2340 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
);
2342 if (!dynamic_symbol
&& !info
->shared
)
2345 if (dyn_h
->reloc_entries
)
2347 struct elf64_hppa_dyn_reloc_entry
*rent
;
2350 hppa_info
= elf64_hppa_hash_table (info
);
2353 /* We may need to do a relocation against a local symbol, in
2354 which case we have to look up it's dynamic symbol index off
2355 the local symbol hash table. */
2356 if (h
&& h
->dynindx
!= -1)
2357 dynindx
= h
->dynindx
;
2360 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2363 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
2365 Elf64_Internal_Rela rel
;
2367 /* Allocate one iff we are building a shared library, the relocation
2368 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2369 if (!info
->shared
&& rent
->type
== R_PARISC_FPTR64
&& dyn_h
->want_opd
)
2372 /* Create a dynamic relocation for this entry.
2374 We need the output offset for the reloc's section because
2375 we are creating an absolute address in the resulting object
2377 rel
.r_offset
= (rent
->offset
+ rent
->sec
->output_offset
2378 + rent
->sec
->output_section
->vma
);
2380 /* An FPTR64 relocation implies that we took the address of
2381 a function and that the function has an entry in the .opd
2382 section. We want the FPTR64 relocation to reference the
2385 We could munge the symbol value in the dynamic symbol table
2386 (in fact we already do for functions with global scope) to point
2387 to the .opd entry. Then we could use that dynamic symbol in
2390 Or we could do something sensible, not munge the symbol's
2391 address and instead just use a different symbol to reference
2392 the .opd entry. At least that seems sensible until you
2393 realize there's no local dynamic symbols we can use for that
2394 purpose. Thus the hair in the check_relocs routine.
2396 We use a section symbol recorded by check_relocs as the
2397 base symbol for the relocation. The addend is the difference
2398 between the section symbol and the address of the .opd entry. */
2399 if (info
->shared
&& rent
->type
== R_PARISC_FPTR64
&& dyn_h
->want_opd
)
2401 bfd_vma value
, value2
;
2403 /* First compute the address of the opd entry for this symbol. */
2404 value
= (dyn_h
->opd_offset
2405 + hppa_info
->opd_sec
->output_section
->vma
2406 + hppa_info
->opd_sec
->output_offset
);
2408 /* Compute the value of the start of the section with
2410 value2
= (rent
->sec
->output_section
->vma
2411 + rent
->sec
->output_offset
);
2413 /* Compute the difference between the start of the section
2414 with the relocation and the opd entry. */
2417 /* The result becomes the addend of the relocation. */
2418 rel
.r_addend
= value
;
2420 /* The section symbol becomes the symbol for the dynamic
2423 = _bfd_elf_link_lookup_local_dynindx (info
,
2428 rel
.r_addend
= rent
->addend
;
2430 rel
.r_info
= ELF64_R_INFO (dynindx
, rent
->type
);
2432 bfd_elf64_swap_reloca_out (hppa_info
->other_rel_sec
->output_section
->owner
,
2434 (((Elf64_External_Rela
*)
2435 hppa_info
->other_rel_sec
->contents
)
2436 + hppa_info
->other_rel_sec
->reloc_count
));
2437 hppa_info
->other_rel_sec
->reloc_count
++;
2444 /* Used to decide how to sort relocs in an optimal manner for the
2445 dynamic linker, before writing them out. */
2447 static enum elf_reloc_type_class
2448 elf64_hppa_reloc_type_class (rela
)
2449 const Elf_Internal_Rela
*rela
;
2451 if (ELF64_R_SYM (rela
->r_info
) == 0)
2452 return reloc_class_relative
;
2454 switch ((int) ELF64_R_TYPE (rela
->r_info
))
2457 return reloc_class_plt
;
2459 return reloc_class_copy
;
2461 return reloc_class_normal
;
2465 /* Finish up the dynamic sections. */
2468 elf64_hppa_finish_dynamic_sections (output_bfd
, info
)
2470 struct bfd_link_info
*info
;
2474 struct elf64_hppa_link_hash_table
*hppa_info
;
2476 hppa_info
= elf64_hppa_hash_table (info
);
2478 /* Finalize the contents of the .opd section. */
2479 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2480 elf64_hppa_finalize_opd
,
2483 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2484 elf64_hppa_finalize_dynreloc
,
2487 /* Finalize the contents of the .dlt section. */
2488 dynobj
= elf_hash_table (info
)->dynobj
;
2489 /* Finalize the contents of the .dlt section. */
2490 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2491 elf64_hppa_finalize_dlt
,
2494 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2496 if (elf_hash_table (info
)->dynamic_sections_created
)
2498 Elf64_External_Dyn
*dyncon
, *dynconend
;
2500 BFD_ASSERT (sdyn
!= NULL
);
2502 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2503 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2504 for (; dyncon
< dynconend
; dyncon
++)
2506 Elf_Internal_Dyn dyn
;
2509 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2516 case DT_HP_LOAD_MAP
:
2517 /* Compute the absolute address of 16byte scratchpad area
2518 for the dynamic linker.
2520 By convention the linker script will allocate the scratchpad
2521 area at the start of the .data section. So all we have to
2522 to is find the start of the .data section. */
2523 s
= bfd_get_section_by_name (output_bfd
, ".data");
2524 dyn
.d_un
.d_ptr
= s
->vma
;
2525 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2529 /* HP's use PLTGOT to set the GOT register. */
2530 dyn
.d_un
.d_ptr
= _bfd_get_gp_value (output_bfd
);
2531 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2535 s
= hppa_info
->plt_rel_sec
;
2536 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2537 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2541 s
= hppa_info
->plt_rel_sec
;
2542 dyn
.d_un
.d_val
= s
->_raw_size
;
2543 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2547 s
= hppa_info
->other_rel_sec
;
2548 if (! s
|| ! s
->_raw_size
)
2549 s
= hppa_info
->dlt_rel_sec
;
2550 if (! s
|| ! s
->_raw_size
)
2551 s
= hppa_info
->opd_rel_sec
;
2552 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2553 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2557 s
= hppa_info
->other_rel_sec
;
2558 dyn
.d_un
.d_val
= s
->_raw_size
;
2559 s
= hppa_info
->dlt_rel_sec
;
2560 dyn
.d_un
.d_val
+= s
->_raw_size
;
2561 s
= hppa_info
->opd_rel_sec
;
2562 dyn
.d_un
.d_val
+= s
->_raw_size
;
2563 /* There is some question about whether or not the size of
2564 the PLT relocs should be included here. HP's tools do
2565 it, so we'll emulate them. */
2566 s
= hppa_info
->plt_rel_sec
;
2567 dyn
.d_un
.d_val
+= s
->_raw_size
;
2568 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2578 /* Return the number of additional phdrs we will need.
2580 The generic ELF code only creates PT_PHDRs for executables. The HP
2581 dynamic linker requires PT_PHDRs for dynamic libraries too.
2583 This routine indicates that the backend needs one additional program
2584 header for that case.
2586 Note we do not have access to the link info structure here, so we have
2587 to guess whether or not we are building a shared library based on the
2588 existence of a .interp section. */
2591 elf64_hppa_additional_program_headers (abfd
)
2596 /* If we are creating a shared library, then we have to create a
2597 PT_PHDR segment. HP's dynamic linker chokes without it. */
2598 s
= bfd_get_section_by_name (abfd
, ".interp");
2604 /* Allocate and initialize any program headers required by this
2607 The generic ELF code only creates PT_PHDRs for executables. The HP
2608 dynamic linker requires PT_PHDRs for dynamic libraries too.
2610 This allocates the PT_PHDR and initializes it in a manner suitable
2613 Note we do not have access to the link info structure here, so we have
2614 to guess whether or not we are building a shared library based on the
2615 existence of a .interp section. */
2618 elf64_hppa_modify_segment_map (abfd
)
2621 struct elf_segment_map
*m
;
2624 s
= bfd_get_section_by_name (abfd
, ".interp");
2627 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2628 if (m
->p_type
== PT_PHDR
)
2632 m
= ((struct elf_segment_map
*)
2633 bfd_zalloc (abfd
, (bfd_size_type
) sizeof *m
));
2637 m
->p_type
= PT_PHDR
;
2638 m
->p_flags
= PF_R
| PF_X
;
2639 m
->p_flags_valid
= 1;
2640 m
->p_paddr_valid
= 1;
2641 m
->includes_phdrs
= 1;
2643 m
->next
= elf_tdata (abfd
)->segment_map
;
2644 elf_tdata (abfd
)->segment_map
= m
;
2648 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2649 if (m
->p_type
== PT_LOAD
)
2653 for (i
= 0; i
< m
->count
; i
++)
2655 /* The code "hint" is not really a hint. It is a requirement
2656 for certain versions of the HP dynamic linker. Worse yet,
2657 it must be set even if the shared library does not have
2658 any code in its "text" segment (thus the check for .hash
2659 to catch this situation). */
2660 if (m
->sections
[i
]->flags
& SEC_CODE
2661 || (strcmp (m
->sections
[i
]->name
, ".hash") == 0))
2662 m
->p_flags
|= (PF_X
| PF_HP_CODE
);
2669 /* Called when writing out an object file to decide the type of a
2672 elf64_hppa_elf_get_symbol_type (elf_sym
, type
)
2673 Elf_Internal_Sym
*elf_sym
;
2676 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
2677 return STT_PARISC_MILLI
;
2682 /* The hash bucket size is the standard one, namely 4. */
2684 const struct elf_size_info hppa64_elf_size_info
=
2686 sizeof (Elf64_External_Ehdr
),
2687 sizeof (Elf64_External_Phdr
),
2688 sizeof (Elf64_External_Shdr
),
2689 sizeof (Elf64_External_Rel
),
2690 sizeof (Elf64_External_Rela
),
2691 sizeof (Elf64_External_Sym
),
2692 sizeof (Elf64_External_Dyn
),
2693 sizeof (Elf_External_Note
),
2697 ELFCLASS64
, EV_CURRENT
,
2698 bfd_elf64_write_out_phdrs
,
2699 bfd_elf64_write_shdrs_and_ehdr
,
2700 bfd_elf64_write_relocs
,
2701 bfd_elf64_swap_symbol_in
,
2702 bfd_elf64_swap_symbol_out
,
2703 bfd_elf64_slurp_reloc_table
,
2704 bfd_elf64_slurp_symbol_table
,
2705 bfd_elf64_swap_dyn_in
,
2706 bfd_elf64_swap_dyn_out
,
2713 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2714 #define TARGET_BIG_NAME "elf64-hppa"
2715 #define ELF_ARCH bfd_arch_hppa
2716 #define ELF_MACHINE_CODE EM_PARISC
2717 /* This is not strictly correct. The maximum page size for PA2.0 is
2718 64M. But everything still uses 4k. */
2719 #define ELF_MAXPAGESIZE 0x1000
2720 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2721 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2722 #define elf_info_to_howto elf_hppa_info_to_howto
2723 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2725 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2726 #define elf_backend_object_p elf64_hppa_object_p
2727 #define elf_backend_final_write_processing \
2728 elf_hppa_final_write_processing
2729 #define elf_backend_fake_sections elf_hppa_fake_sections
2730 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2732 #define elf_backend_relocate_section elf_hppa_relocate_section
2734 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2736 #define elf_backend_create_dynamic_sections \
2737 elf64_hppa_create_dynamic_sections
2738 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2740 #define elf_backend_adjust_dynamic_symbol \
2741 elf64_hppa_adjust_dynamic_symbol
2743 #define elf_backend_size_dynamic_sections \
2744 elf64_hppa_size_dynamic_sections
2746 #define elf_backend_finish_dynamic_symbol \
2747 elf64_hppa_finish_dynamic_symbol
2748 #define elf_backend_finish_dynamic_sections \
2749 elf64_hppa_finish_dynamic_sections
2751 /* Stuff for the BFD linker: */
2752 #define bfd_elf64_bfd_link_hash_table_create \
2753 elf64_hppa_hash_table_create
2755 #define elf_backend_check_relocs \
2756 elf64_hppa_check_relocs
2758 #define elf_backend_size_info \
2759 hppa64_elf_size_info
2761 #define elf_backend_additional_program_headers \
2762 elf64_hppa_additional_program_headers
2764 #define elf_backend_modify_segment_map \
2765 elf64_hppa_modify_segment_map
2767 #define elf_backend_link_output_symbol_hook \
2768 elf64_hppa_link_output_symbol_hook
2770 #define elf_backend_want_got_plt 0
2771 #define elf_backend_plt_readonly 0
2772 #define elf_backend_want_plt_sym 0
2773 #define elf_backend_got_header_size 0
2774 #define elf_backend_plt_header_size 0
2775 #define elf_backend_type_change_ok true
2776 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2777 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2778 #define elf_backend_rela_normal 1
2780 #include "elf64-target.h"
2782 #undef TARGET_BIG_SYM
2783 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2784 #undef TARGET_BIG_NAME
2785 #define TARGET_BIG_NAME "elf64-hppa-linux"
2787 #define INCLUDED_TARGET_FILE 1
2788 #include "elf64-target.h"