1 /* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21 /* No specific ABI or "processor-specific supplement" defined. */
24 - "Traditional" linker relaxation (shrinking whole sections).
25 - Merge reloc stubs jumping to same location.
26 - GETA stub relaxation (call a stub for out of range new
27 R_MMIX_GETA_STUBBABLE). */
34 #include "opcode/mmix.h"
36 #define MINUS_ONE (((bfd_vma) 0) - 1)
38 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
40 /* Put these everywhere in new code. */
42 _bfd_abort (__FILE__, __LINE__, \
43 "Internal: Non-debugged code (test-case missing)")
46 _bfd_abort (__FILE__, __LINE__, \
49 struct _mmix_elf_section_data
51 struct bfd_elf_section_data elf
;
54 struct bpo_reloc_section_info
*reloc
;
55 struct bpo_greg_section_info
*greg
;
58 struct pushj_stub_info
60 /* Maximum number of stubs needed for this section. */
61 bfd_size_type n_pushj_relocs
;
63 /* Size of stubs after a mmix_elf_relax_section round. */
64 bfd_size_type stubs_size_sum
;
66 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
67 of these. Allocated in mmix_elf_check_common_relocs. */
68 bfd_size_type
*stub_size
;
70 /* Offset of next stub during relocation. Somewhat redundant with the
71 above: error coverage is easier and we don't have to reset the
72 stubs_size_sum for relocation. */
73 bfd_size_type stub_offset
;
77 #define mmix_elf_section_data(sec) \
78 ((struct _mmix_elf_section_data *) elf_section_data (sec))
80 /* For each section containing a base-plus-offset (BPO) reloc, we attach
81 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
83 struct bpo_reloc_section_info
85 /* The base is 1; this is the first number in this section. */
86 size_t first_base_plus_offset_reloc
;
88 /* Number of BPO-relocs in this section. */
89 size_t n_bpo_relocs_this_section
;
91 /* Running index, used at relocation time. */
94 /* We don't have access to the bfd_link_info struct in
95 mmix_final_link_relocate. What we really want to get at is the
96 global single struct greg_relocation, so we stash it here. */
97 asection
*bpo_greg_section
;
100 /* Helper struct (in global context) for the one below.
101 There's one of these created for every BPO reloc. */
102 struct bpo_reloc_request
106 /* Valid after relaxation. The base is 0; the first register number
107 must be added. The offset is in range 0..255. */
111 /* The order number for this BPO reloc, corresponding to the order in
112 which BPO relocs were found. Used to create an index after reloc
113 requests are sorted. */
116 /* Set when the value is computed. Better than coding "guard values"
117 into the other members. Is FALSE only for BPO relocs in a GC:ed
122 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
123 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
124 which is linked into the register contents section
125 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
126 linker; using the same hook as for usual with BPO relocs does not
128 struct bpo_greg_section_info
130 /* After GC, this reflects the number of remaining, non-excluded
134 /* This is the number of allocated bpo_reloc_requests; the size of
135 sorted_indexes. Valid after the check.*relocs functions are called
136 for all incoming sections. It includes the number of BPO relocs in
137 sections that were GC:ed. */
138 size_t n_max_bpo_relocs
;
140 /* A counter used to find out when to fold the BPO gregs, since we
141 don't have a single "after-relaxation" hook. */
142 size_t n_remaining_bpo_relocs_this_relaxation_round
;
144 /* The number of linker-allocated GREGs resulting from BPO relocs.
145 This is an approximation after _bfd_mmix_before_linker_allocation
146 and supposedly accurate after mmix_elf_relax_section is called for
147 all incoming non-collected sections. */
148 size_t n_allocated_bpo_gregs
;
150 /* Index into reloc_request[], sorted on increasing "value", secondary
151 by increasing index for strict sorting order. */
152 size_t *bpo_reloc_indexes
;
154 /* An array of all relocations, with the "value" member filled in by
155 the relaxation function. */
156 struct bpo_reloc_request
*reloc_request
;
159 static bfd_boolean mmix_elf_link_output_symbol_hook
160 PARAMS ((struct bfd_link_info
*, const char *, Elf_Internal_Sym
*,
161 asection
*, struct elf_link_hash_entry
*));
163 static bfd_reloc_status_type mmix_elf_reloc
164 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
166 static reloc_howto_type
*bfd_elf64_bfd_reloc_type_lookup
167 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
169 static void mmix_info_to_howto_rela
170 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
172 static int mmix_elf_sort_relocs
PARAMS ((const PTR
, const PTR
));
174 static bfd_boolean mmix_elf_new_section_hook
175 PARAMS ((bfd
*, asection
*));
177 static bfd_boolean mmix_elf_check_relocs
178 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
179 const Elf_Internal_Rela
*));
181 static bfd_boolean mmix_elf_check_common_relocs
182 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
183 const Elf_Internal_Rela
*));
185 static bfd_boolean mmix_elf_relocate_section
186 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
187 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
189 static asection
* mmix_elf_gc_mark_hook
190 PARAMS ((asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
191 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
193 static bfd_boolean mmix_elf_gc_sweep_hook
194 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
195 const Elf_Internal_Rela
*));
197 static bfd_reloc_status_type mmix_final_link_relocate
198 PARAMS ((reloc_howto_type
*, asection
*, bfd_byte
*,
199 bfd_vma
, bfd_signed_vma
, bfd_vma
, const char *, asection
*));
201 static bfd_reloc_status_type mmix_elf_perform_relocation
202 PARAMS ((asection
*, reloc_howto_type
*, PTR
, bfd_vma
, bfd_vma
));
204 static bfd_boolean mmix_elf_section_from_bfd_section
205 PARAMS ((bfd
*, asection
*, int *));
207 static bfd_boolean mmix_elf_add_symbol_hook
208 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Sym
*,
209 const char **, flagword
*, asection
**, bfd_vma
*));
211 static bfd_boolean mmix_elf_is_local_label_name
212 PARAMS ((bfd
*, const char *));
214 static int bpo_reloc_request_sort_fn
PARAMS ((const PTR
, const PTR
));
216 static bfd_boolean mmix_elf_relax_section
217 PARAMS ((bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
,
218 bfd_boolean
*again
));
220 extern bfd_boolean mmix_elf_final_link
PARAMS ((bfd
*, struct bfd_link_info
*));
222 extern void mmix_elf_symbol_processing
PARAMS ((bfd
*, asymbol
*));
224 /* Only intended to be called from a debugger. */
225 extern void mmix_dump_bpo_gregs
226 PARAMS ((struct bfd_link_info
*, bfd_error_handler_type
));
229 mmix_set_relaxable_size
230 PARAMS ((bfd
*, asection
*, void *));
233 /* Watch out: this currently needs to have elements with the same index as
234 their R_MMIX_ number. */
235 static reloc_howto_type elf_mmix_howto_table
[] =
237 /* This reloc does nothing. */
238 HOWTO (R_MMIX_NONE
, /* type */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
242 FALSE
, /* pc_relative */
244 complain_overflow_bitfield
, /* complain_on_overflow */
245 bfd_elf_generic_reloc
, /* special_function */
246 "R_MMIX_NONE", /* name */
247 FALSE
, /* partial_inplace */
250 FALSE
), /* pcrel_offset */
252 /* An 8 bit absolute relocation. */
253 HOWTO (R_MMIX_8
, /* type */
255 0, /* size (0 = byte, 1 = short, 2 = long) */
257 FALSE
, /* pc_relative */
259 complain_overflow_bitfield
, /* complain_on_overflow */
260 bfd_elf_generic_reloc
, /* special_function */
261 "R_MMIX_8", /* name */
262 FALSE
, /* partial_inplace */
265 FALSE
), /* pcrel_offset */
267 /* An 16 bit absolute relocation. */
268 HOWTO (R_MMIX_16
, /* type */
270 1, /* size (0 = byte, 1 = short, 2 = long) */
272 FALSE
, /* pc_relative */
274 complain_overflow_bitfield
, /* complain_on_overflow */
275 bfd_elf_generic_reloc
, /* special_function */
276 "R_MMIX_16", /* name */
277 FALSE
, /* partial_inplace */
279 0xffff, /* dst_mask */
280 FALSE
), /* pcrel_offset */
282 /* An 24 bit absolute relocation. */
283 HOWTO (R_MMIX_24
, /* type */
285 2, /* size (0 = byte, 1 = short, 2 = long) */
287 FALSE
, /* pc_relative */
289 complain_overflow_bitfield
, /* complain_on_overflow */
290 bfd_elf_generic_reloc
, /* special_function */
291 "R_MMIX_24", /* name */
292 FALSE
, /* partial_inplace */
293 ~0xffffff, /* src_mask */
294 0xffffff, /* dst_mask */
295 FALSE
), /* pcrel_offset */
297 /* A 32 bit absolute relocation. */
298 HOWTO (R_MMIX_32
, /* type */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
302 FALSE
, /* pc_relative */
304 complain_overflow_bitfield
, /* complain_on_overflow */
305 bfd_elf_generic_reloc
, /* special_function */
306 "R_MMIX_32", /* name */
307 FALSE
, /* partial_inplace */
309 0xffffffff, /* dst_mask */
310 FALSE
), /* pcrel_offset */
312 /* 64 bit relocation. */
313 HOWTO (R_MMIX_64
, /* type */
315 4, /* size (0 = byte, 1 = short, 2 = long) */
317 FALSE
, /* pc_relative */
319 complain_overflow_bitfield
, /* complain_on_overflow */
320 bfd_elf_generic_reloc
, /* special_function */
321 "R_MMIX_64", /* name */
322 FALSE
, /* partial_inplace */
324 MINUS_ONE
, /* dst_mask */
325 FALSE
), /* pcrel_offset */
327 /* An 8 bit PC-relative relocation. */
328 HOWTO (R_MMIX_PC_8
, /* type */
330 0, /* size (0 = byte, 1 = short, 2 = long) */
332 TRUE
, /* pc_relative */
334 complain_overflow_bitfield
, /* complain_on_overflow */
335 bfd_elf_generic_reloc
, /* special_function */
336 "R_MMIX_PC_8", /* name */
337 FALSE
, /* partial_inplace */
340 TRUE
), /* pcrel_offset */
342 /* An 16 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_16
, /* type */
345 1, /* size (0 = byte, 1 = short, 2 = long) */
347 TRUE
, /* pc_relative */
349 complain_overflow_bitfield
, /* complain_on_overflow */
350 bfd_elf_generic_reloc
, /* special_function */
351 "R_MMIX_PC_16", /* name */
352 FALSE
, /* partial_inplace */
354 0xffff, /* dst_mask */
355 TRUE
), /* pcrel_offset */
357 /* An 24 bit PC-relative relocation. */
358 HOWTO (R_MMIX_PC_24
, /* type */
360 2, /* size (0 = byte, 1 = short, 2 = long) */
362 TRUE
, /* pc_relative */
364 complain_overflow_bitfield
, /* complain_on_overflow */
365 bfd_elf_generic_reloc
, /* special_function */
366 "R_MMIX_PC_24", /* name */
367 FALSE
, /* partial_inplace */
368 ~0xffffff, /* src_mask */
369 0xffffff, /* dst_mask */
370 TRUE
), /* pcrel_offset */
372 /* A 32 bit absolute PC-relative relocation. */
373 HOWTO (R_MMIX_PC_32
, /* type */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
377 TRUE
, /* pc_relative */
379 complain_overflow_bitfield
, /* complain_on_overflow */
380 bfd_elf_generic_reloc
, /* special_function */
381 "R_MMIX_PC_32", /* name */
382 FALSE
, /* partial_inplace */
384 0xffffffff, /* dst_mask */
385 TRUE
), /* pcrel_offset */
387 /* 64 bit PC-relative relocation. */
388 HOWTO (R_MMIX_PC_64
, /* type */
390 4, /* size (0 = byte, 1 = short, 2 = long) */
392 TRUE
, /* pc_relative */
394 complain_overflow_bitfield
, /* complain_on_overflow */
395 bfd_elf_generic_reloc
, /* special_function */
396 "R_MMIX_PC_64", /* name */
397 FALSE
, /* partial_inplace */
399 MINUS_ONE
, /* dst_mask */
400 TRUE
), /* pcrel_offset */
402 /* GNU extension to record C++ vtable hierarchy. */
403 HOWTO (R_MMIX_GNU_VTINHERIT
, /* type */
405 0, /* size (0 = byte, 1 = short, 2 = long) */
407 FALSE
, /* pc_relative */
409 complain_overflow_dont
, /* complain_on_overflow */
410 NULL
, /* special_function */
411 "R_MMIX_GNU_VTINHERIT", /* name */
412 FALSE
, /* partial_inplace */
415 TRUE
), /* pcrel_offset */
417 /* GNU extension to record C++ vtable member usage. */
418 HOWTO (R_MMIX_GNU_VTENTRY
, /* type */
420 0, /* size (0 = byte, 1 = short, 2 = long) */
422 FALSE
, /* pc_relative */
424 complain_overflow_dont
, /* complain_on_overflow */
425 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
426 "R_MMIX_GNU_VTENTRY", /* name */
427 FALSE
, /* partial_inplace */
430 FALSE
), /* pcrel_offset */
432 /* The GETA relocation is supposed to get any address that could
433 possibly be reached by the GETA instruction. It can silently expand
434 to get a 64-bit operand, but will complain if any of the two least
435 significant bits are set. The howto members reflect a simple GETA. */
436 HOWTO (R_MMIX_GETA
, /* type */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
440 TRUE
, /* pc_relative */
442 complain_overflow_signed
, /* complain_on_overflow */
443 mmix_elf_reloc
, /* special_function */
444 "R_MMIX_GETA", /* name */
445 FALSE
, /* partial_inplace */
446 ~0x0100ffff, /* src_mask */
447 0x0100ffff, /* dst_mask */
448 TRUE
), /* pcrel_offset */
450 HOWTO (R_MMIX_GETA_1
, /* type */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
454 TRUE
, /* pc_relative */
456 complain_overflow_signed
, /* complain_on_overflow */
457 mmix_elf_reloc
, /* special_function */
458 "R_MMIX_GETA_1", /* name */
459 FALSE
, /* partial_inplace */
460 ~0x0100ffff, /* src_mask */
461 0x0100ffff, /* dst_mask */
462 TRUE
), /* pcrel_offset */
464 HOWTO (R_MMIX_GETA_2
, /* type */
466 2, /* size (0 = byte, 1 = short, 2 = long) */
468 TRUE
, /* pc_relative */
470 complain_overflow_signed
, /* complain_on_overflow */
471 mmix_elf_reloc
, /* special_function */
472 "R_MMIX_GETA_2", /* name */
473 FALSE
, /* partial_inplace */
474 ~0x0100ffff, /* src_mask */
475 0x0100ffff, /* dst_mask */
476 TRUE
), /* pcrel_offset */
478 HOWTO (R_MMIX_GETA_3
, /* type */
480 2, /* size (0 = byte, 1 = short, 2 = long) */
482 TRUE
, /* pc_relative */
484 complain_overflow_signed
, /* complain_on_overflow */
485 mmix_elf_reloc
, /* special_function */
486 "R_MMIX_GETA_3", /* name */
487 FALSE
, /* partial_inplace */
488 ~0x0100ffff, /* src_mask */
489 0x0100ffff, /* dst_mask */
490 TRUE
), /* pcrel_offset */
492 /* The conditional branches are supposed to reach any (code) address.
493 It can silently expand to a 64-bit operand, but will emit an error if
494 any of the two least significant bits are set. The howto members
495 reflect a simple branch. */
496 HOWTO (R_MMIX_CBRANCH
, /* type */
498 2, /* size (0 = byte, 1 = short, 2 = long) */
500 TRUE
, /* pc_relative */
502 complain_overflow_signed
, /* complain_on_overflow */
503 mmix_elf_reloc
, /* special_function */
504 "R_MMIX_CBRANCH", /* name */
505 FALSE
, /* partial_inplace */
506 ~0x0100ffff, /* src_mask */
507 0x0100ffff, /* dst_mask */
508 TRUE
), /* pcrel_offset */
510 HOWTO (R_MMIX_CBRANCH_J
, /* type */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
514 TRUE
, /* pc_relative */
516 complain_overflow_signed
, /* complain_on_overflow */
517 mmix_elf_reloc
, /* special_function */
518 "R_MMIX_CBRANCH_J", /* name */
519 FALSE
, /* partial_inplace */
520 ~0x0100ffff, /* src_mask */
521 0x0100ffff, /* dst_mask */
522 TRUE
), /* pcrel_offset */
524 HOWTO (R_MMIX_CBRANCH_1
, /* type */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
528 TRUE
, /* pc_relative */
530 complain_overflow_signed
, /* complain_on_overflow */
531 mmix_elf_reloc
, /* special_function */
532 "R_MMIX_CBRANCH_1", /* name */
533 FALSE
, /* partial_inplace */
534 ~0x0100ffff, /* src_mask */
535 0x0100ffff, /* dst_mask */
536 TRUE
), /* pcrel_offset */
538 HOWTO (R_MMIX_CBRANCH_2
, /* type */
540 2, /* size (0 = byte, 1 = short, 2 = long) */
542 TRUE
, /* pc_relative */
544 complain_overflow_signed
, /* complain_on_overflow */
545 mmix_elf_reloc
, /* special_function */
546 "R_MMIX_CBRANCH_2", /* name */
547 FALSE
, /* partial_inplace */
548 ~0x0100ffff, /* src_mask */
549 0x0100ffff, /* dst_mask */
550 TRUE
), /* pcrel_offset */
552 HOWTO (R_MMIX_CBRANCH_3
, /* type */
554 2, /* size (0 = byte, 1 = short, 2 = long) */
556 TRUE
, /* pc_relative */
558 complain_overflow_signed
, /* complain_on_overflow */
559 mmix_elf_reloc
, /* special_function */
560 "R_MMIX_CBRANCH_3", /* name */
561 FALSE
, /* partial_inplace */
562 ~0x0100ffff, /* src_mask */
563 0x0100ffff, /* dst_mask */
564 TRUE
), /* pcrel_offset */
566 /* The PUSHJ instruction can reach any (code) address, as long as it's
567 the beginning of a function (no usable restriction). It can silently
568 expand to a 64-bit operand, but will emit an error if any of the two
569 least significant bits are set. It can also expand into a call to a
570 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
572 HOWTO (R_MMIX_PUSHJ
, /* type */
574 2, /* size (0 = byte, 1 = short, 2 = long) */
576 TRUE
, /* pc_relative */
578 complain_overflow_signed
, /* complain_on_overflow */
579 mmix_elf_reloc
, /* special_function */
580 "R_MMIX_PUSHJ", /* name */
581 FALSE
, /* partial_inplace */
582 ~0x0100ffff, /* src_mask */
583 0x0100ffff, /* dst_mask */
584 TRUE
), /* pcrel_offset */
586 HOWTO (R_MMIX_PUSHJ_1
, /* type */
588 2, /* size (0 = byte, 1 = short, 2 = long) */
590 TRUE
, /* pc_relative */
592 complain_overflow_signed
, /* complain_on_overflow */
593 mmix_elf_reloc
, /* special_function */
594 "R_MMIX_PUSHJ_1", /* name */
595 FALSE
, /* partial_inplace */
596 ~0x0100ffff, /* src_mask */
597 0x0100ffff, /* dst_mask */
598 TRUE
), /* pcrel_offset */
600 HOWTO (R_MMIX_PUSHJ_2
, /* type */
602 2, /* size (0 = byte, 1 = short, 2 = long) */
604 TRUE
, /* pc_relative */
606 complain_overflow_signed
, /* complain_on_overflow */
607 mmix_elf_reloc
, /* special_function */
608 "R_MMIX_PUSHJ_2", /* name */
609 FALSE
, /* partial_inplace */
610 ~0x0100ffff, /* src_mask */
611 0x0100ffff, /* dst_mask */
612 TRUE
), /* pcrel_offset */
614 HOWTO (R_MMIX_PUSHJ_3
, /* type */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
618 TRUE
, /* pc_relative */
620 complain_overflow_signed
, /* complain_on_overflow */
621 mmix_elf_reloc
, /* special_function */
622 "R_MMIX_PUSHJ_3", /* name */
623 FALSE
, /* partial_inplace */
624 ~0x0100ffff, /* src_mask */
625 0x0100ffff, /* dst_mask */
626 TRUE
), /* pcrel_offset */
628 /* A JMP is supposed to reach any (code) address. By itself, it can
629 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
630 limit is soon reached if you link the program in wildly different
631 memory segments. The howto members reflect a trivial JMP. */
632 HOWTO (R_MMIX_JMP
, /* type */
634 2, /* size (0 = byte, 1 = short, 2 = long) */
636 TRUE
, /* pc_relative */
638 complain_overflow_signed
, /* complain_on_overflow */
639 mmix_elf_reloc
, /* special_function */
640 "R_MMIX_JMP", /* name */
641 FALSE
, /* partial_inplace */
642 ~0x1ffffff, /* src_mask */
643 0x1ffffff, /* dst_mask */
644 TRUE
), /* pcrel_offset */
646 HOWTO (R_MMIX_JMP_1
, /* type */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
650 TRUE
, /* pc_relative */
652 complain_overflow_signed
, /* complain_on_overflow */
653 mmix_elf_reloc
, /* special_function */
654 "R_MMIX_JMP_1", /* name */
655 FALSE
, /* partial_inplace */
656 ~0x1ffffff, /* src_mask */
657 0x1ffffff, /* dst_mask */
658 TRUE
), /* pcrel_offset */
660 HOWTO (R_MMIX_JMP_2
, /* type */
662 2, /* size (0 = byte, 1 = short, 2 = long) */
664 TRUE
, /* pc_relative */
666 complain_overflow_signed
, /* complain_on_overflow */
667 mmix_elf_reloc
, /* special_function */
668 "R_MMIX_JMP_2", /* name */
669 FALSE
, /* partial_inplace */
670 ~0x1ffffff, /* src_mask */
671 0x1ffffff, /* dst_mask */
672 TRUE
), /* pcrel_offset */
674 HOWTO (R_MMIX_JMP_3
, /* type */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
678 TRUE
, /* pc_relative */
680 complain_overflow_signed
, /* complain_on_overflow */
681 mmix_elf_reloc
, /* special_function */
682 "R_MMIX_JMP_3", /* name */
683 FALSE
, /* partial_inplace */
684 ~0x1ffffff, /* src_mask */
685 0x1ffffff, /* dst_mask */
686 TRUE
), /* pcrel_offset */
688 /* When we don't emit link-time-relaxable code from the assembler, or
689 when relaxation has done all it can do, these relocs are used. For
690 GETA/PUSHJ/branches. */
691 HOWTO (R_MMIX_ADDR19
, /* type */
693 2, /* size (0 = byte, 1 = short, 2 = long) */
695 TRUE
, /* pc_relative */
697 complain_overflow_signed
, /* complain_on_overflow */
698 mmix_elf_reloc
, /* special_function */
699 "R_MMIX_ADDR19", /* name */
700 FALSE
, /* partial_inplace */
701 ~0x0100ffff, /* src_mask */
702 0x0100ffff, /* dst_mask */
703 TRUE
), /* pcrel_offset */
706 HOWTO (R_MMIX_ADDR27
, /* type */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
710 TRUE
, /* pc_relative */
712 complain_overflow_signed
, /* complain_on_overflow */
713 mmix_elf_reloc
, /* special_function */
714 "R_MMIX_ADDR27", /* name */
715 FALSE
, /* partial_inplace */
716 ~0x1ffffff, /* src_mask */
717 0x1ffffff, /* dst_mask */
718 TRUE
), /* pcrel_offset */
720 /* A general register or the value 0..255. If a value, then the
721 instruction (offset -3) needs adjusting. */
722 HOWTO (R_MMIX_REG_OR_BYTE
, /* type */
724 1, /* size (0 = byte, 1 = short, 2 = long) */
726 FALSE
, /* pc_relative */
728 complain_overflow_bitfield
, /* complain_on_overflow */
729 mmix_elf_reloc
, /* special_function */
730 "R_MMIX_REG_OR_BYTE", /* name */
731 FALSE
, /* partial_inplace */
734 FALSE
), /* pcrel_offset */
736 /* A general register. */
737 HOWTO (R_MMIX_REG
, /* type */
739 1, /* size (0 = byte, 1 = short, 2 = long) */
741 FALSE
, /* pc_relative */
743 complain_overflow_bitfield
, /* complain_on_overflow */
744 mmix_elf_reloc
, /* special_function */
745 "R_MMIX_REG", /* name */
746 FALSE
, /* partial_inplace */
749 FALSE
), /* pcrel_offset */
751 /* A register plus an index, corresponding to the relocation expression.
752 The sizes must correspond to the valid range of the expression, while
753 the bitmasks correspond to what we store in the image. */
754 HOWTO (R_MMIX_BASE_PLUS_OFFSET
, /* type */
756 4, /* size (0 = byte, 1 = short, 2 = long) */
758 FALSE
, /* pc_relative */
760 complain_overflow_bitfield
, /* complain_on_overflow */
761 mmix_elf_reloc
, /* special_function */
762 "R_MMIX_BASE_PLUS_OFFSET", /* name */
763 FALSE
, /* partial_inplace */
765 0xffff, /* dst_mask */
766 FALSE
), /* pcrel_offset */
768 /* A "magic" relocation for a LOCAL expression, asserting that the
769 expression is less than the number of global registers. No actual
770 modification of the contents is done. Implementing this as a
771 relocation was less intrusive than e.g. putting such expressions in a
772 section to discard *after* relocation. */
773 HOWTO (R_MMIX_LOCAL
, /* type */
775 0, /* size (0 = byte, 1 = short, 2 = long) */
777 FALSE
, /* pc_relative */
779 complain_overflow_dont
, /* complain_on_overflow */
780 mmix_elf_reloc
, /* special_function */
781 "R_MMIX_LOCAL", /* name */
782 FALSE
, /* partial_inplace */
785 FALSE
), /* pcrel_offset */
787 HOWTO (R_MMIX_PUSHJ_STUBBABLE
, /* type */
789 2, /* size (0 = byte, 1 = short, 2 = long) */
791 TRUE
, /* pc_relative */
793 complain_overflow_signed
, /* complain_on_overflow */
794 mmix_elf_reloc
, /* special_function */
795 "R_MMIX_PUSHJ_STUBBABLE", /* name */
796 FALSE
, /* partial_inplace */
797 ~0x0100ffff, /* src_mask */
798 0x0100ffff, /* dst_mask */
799 TRUE
) /* pcrel_offset */
803 /* Map BFD reloc types to MMIX ELF reloc types. */
805 struct mmix_reloc_map
807 bfd_reloc_code_real_type bfd_reloc_val
;
808 enum elf_mmix_reloc_type elf_reloc_val
;
812 static const struct mmix_reloc_map mmix_reloc_map
[] =
814 {BFD_RELOC_NONE
, R_MMIX_NONE
},
815 {BFD_RELOC_8
, R_MMIX_8
},
816 {BFD_RELOC_16
, R_MMIX_16
},
817 {BFD_RELOC_24
, R_MMIX_24
},
818 {BFD_RELOC_32
, R_MMIX_32
},
819 {BFD_RELOC_64
, R_MMIX_64
},
820 {BFD_RELOC_8_PCREL
, R_MMIX_PC_8
},
821 {BFD_RELOC_16_PCREL
, R_MMIX_PC_16
},
822 {BFD_RELOC_24_PCREL
, R_MMIX_PC_24
},
823 {BFD_RELOC_32_PCREL
, R_MMIX_PC_32
},
824 {BFD_RELOC_64_PCREL
, R_MMIX_PC_64
},
825 {BFD_RELOC_VTABLE_INHERIT
, R_MMIX_GNU_VTINHERIT
},
826 {BFD_RELOC_VTABLE_ENTRY
, R_MMIX_GNU_VTENTRY
},
827 {BFD_RELOC_MMIX_GETA
, R_MMIX_GETA
},
828 {BFD_RELOC_MMIX_CBRANCH
, R_MMIX_CBRANCH
},
829 {BFD_RELOC_MMIX_PUSHJ
, R_MMIX_PUSHJ
},
830 {BFD_RELOC_MMIX_JMP
, R_MMIX_JMP
},
831 {BFD_RELOC_MMIX_ADDR19
, R_MMIX_ADDR19
},
832 {BFD_RELOC_MMIX_ADDR27
, R_MMIX_ADDR27
},
833 {BFD_RELOC_MMIX_REG_OR_BYTE
, R_MMIX_REG_OR_BYTE
},
834 {BFD_RELOC_MMIX_REG
, R_MMIX_REG
},
835 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET
, R_MMIX_BASE_PLUS_OFFSET
},
836 {BFD_RELOC_MMIX_LOCAL
, R_MMIX_LOCAL
},
837 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE
, R_MMIX_PUSHJ_STUBBABLE
}
840 static reloc_howto_type
*
841 bfd_elf64_bfd_reloc_type_lookup (abfd
, code
)
842 bfd
*abfd ATTRIBUTE_UNUSED
;
843 bfd_reloc_code_real_type code
;
848 i
< sizeof (mmix_reloc_map
) / sizeof (mmix_reloc_map
[0]);
851 if (mmix_reloc_map
[i
].bfd_reloc_val
== code
)
852 return &elf_mmix_howto_table
[mmix_reloc_map
[i
].elf_reloc_val
];
859 mmix_elf_new_section_hook (abfd
, sec
)
863 struct _mmix_elf_section_data
*sdata
;
864 bfd_size_type amt
= sizeof (*sdata
);
866 sdata
= (struct _mmix_elf_section_data
*) bfd_zalloc (abfd
, amt
);
869 sec
->used_by_bfd
= (PTR
) sdata
;
871 return _bfd_elf_new_section_hook (abfd
, sec
);
875 /* This function performs the actual bitfiddling and sanity check for a
876 final relocation. Each relocation gets its *worst*-case expansion
877 in size when it arrives here; any reduction in size should have been
878 caught in linker relaxation earlier. When we get here, the relocation
879 looks like the smallest instruction with SWYM:s (nop:s) appended to the
880 max size. We fill in those nop:s.
882 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
886 INCML $N,(foo >> 16) & 0xffff
887 INCMH $N,(foo >> 32) & 0xffff
888 INCH $N,(foo >> 48) & 0xffff
890 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
891 condbranches needing relaxation might be rare enough to not be
902 R_MMIX_PUSHJ: (FIXME: Relaxation...)
911 R_MMIX_JMP: (FIXME: Relaxation...)
920 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
922 static bfd_reloc_status_type
923 mmix_elf_perform_relocation (isec
, howto
, datap
, addr
, value
)
925 reloc_howto_type
*howto
;
930 bfd
*abfd
= isec
->owner
;
931 bfd_reloc_status_type flag
= bfd_reloc_ok
;
932 bfd_reloc_status_type r
;
936 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
937 We handle the differences here and the common sequence later. */
942 reg
= bfd_get_8 (abfd
, (bfd_byte
*) datap
+ 1);
944 /* We change to an absolute value. */
950 int in1
= bfd_get_16 (abfd
, (bfd_byte
*) datap
) << 16;
952 /* Invert the condition and prediction bit, and set the offset
953 to five instructions ahead.
955 We *can* do better if we want to. If the branch is found to be
956 within limits, we could leave the branch as is; there'll just
957 be a bunch of NOP:s after it. But we shouldn't see this
958 sequence often enough that it's worth doing it. */
961 (((in1
^ ((PRED_INV_BIT
| COND_INV_BIT
) << 24)) & ~0xffff)
965 /* Put a "GO $255,$255,0" after the common sequence. */
967 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24) | 0xffff00,
968 (bfd_byte
*) datap
+ 20);
970 /* Common sequence starts at offset 4. */
973 /* We change to an absolute value. */
978 case R_MMIX_PUSHJ_STUBBABLE
:
979 /* If the address fits, we're fine. */
981 /* Note rightshift 0; see R_MMIX_JMP case below. */
982 && (r
= bfd_check_overflow (complain_overflow_signed
,
985 bfd_arch_bits_per_address (abfd
),
986 value
)) == bfd_reloc_ok
)
987 goto pcrel_mmix_reloc_fits
;
990 bfd_size_type size
= isec
->rawsize
? isec
->rawsize
: isec
->size
;
992 /* We have the bytes at the PUSHJ insn and need to get the
993 position for the stub. There's supposed to be room allocated
995 bfd_byte
*stubcontents
996 = ((bfd_byte
*) datap
997 - (addr
- (isec
->output_section
->vma
+ isec
->output_offset
))
999 + mmix_elf_section_data (isec
)->pjs
.stub_offset
);
1002 /* The address doesn't fit, so redirect the PUSHJ to the
1003 location of the stub. */
1004 r
= mmix_elf_perform_relocation (isec
,
1005 &elf_mmix_howto_table
1009 isec
->output_section
->vma
1010 + isec
->output_offset
1012 + (mmix_elf_section_data (isec
)
1015 if (r
!= bfd_reloc_ok
)
1019 = (isec
->output_section
->vma
1020 + isec
->output_offset
1022 + mmix_elf_section_data (isec
)->pjs
.stub_offset
);
1024 /* We generate a simple JMP if that suffices, else the whole 5
1026 if (bfd_check_overflow (complain_overflow_signed
,
1027 elf_mmix_howto_table
[R_MMIX_ADDR27
].bitsize
,
1029 bfd_arch_bits_per_address (abfd
),
1030 addr
+ value
- stubaddr
) == bfd_reloc_ok
)
1032 bfd_put_32 (abfd
, JMP_INSN_BYTE
<< 24, stubcontents
);
1033 r
= mmix_elf_perform_relocation (isec
,
1034 &elf_mmix_howto_table
1038 value
+ addr
- stubaddr
);
1039 mmix_elf_section_data (isec
)->pjs
.stub_offset
+= 4;
1041 if (size
+ mmix_elf_section_data (isec
)->pjs
.stub_offset
1049 /* Put a "GO $255,0" after the common sequence. */
1051 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1052 | 0xff00, (bfd_byte
*) stubcontents
+ 16);
1054 /* Prepare for the general code to set the first part of the
1057 datap
= stubcontents
;
1058 mmix_elf_section_data (isec
)->pjs
.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE
;
1066 int inreg
= bfd_get_8 (abfd
, (bfd_byte
*) datap
+ 1);
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1070 ((PUSHGO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1073 (bfd_byte
*) datap
+ 16);
1075 /* We change to an absolute value. */
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1084 If so, we fall through to the bit-fiddling relocs.
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1089 if (! ((value
& 3) == 0
1090 && (r
= bfd_check_overflow (complain_overflow_signed
,
1093 bfd_arch_bits_per_address (abfd
),
1094 value
)) == bfd_reloc_ok
))
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1100 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1102 (bfd_byte
*) datap
+ 16);
1104 /* We change to an absolute value. */
1111 pcrel_mmix_reloc_fits
:
1112 /* These must be in range, or else we emit an error. */
1113 if ((value
& 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r
= bfd_check_overflow (complain_overflow_signed
,
1118 bfd_arch_bits_per_address (abfd
),
1119 value
)) == bfd_reloc_ok
)
1122 = bfd_get_32 (abfd
, (bfd_byte
*) datap
);
1125 if ((bfd_signed_vma
) value
< 0)
1128 value
+= (1 << (howto
->bitsize
- 1));
1136 (in1
& howto
->src_mask
)
1138 | (value
& howto
->dst_mask
),
1139 (bfd_byte
*) datap
);
1141 return bfd_reloc_ok
;
1144 return bfd_reloc_overflow
;
1146 case R_MMIX_BASE_PLUS_OFFSET
:
1148 struct bpo_reloc_section_info
*bpodata
1149 = mmix_elf_section_data (isec
)->bpo
.reloc
;
1150 asection
*bpo_greg_section
1151 = bpodata
->bpo_greg_section
;
1152 struct bpo_greg_section_info
*gregdata
1153 = mmix_elf_section_data (bpo_greg_section
)->bpo
.greg
;
1155 = gregdata
->bpo_reloc_indexes
[bpodata
->bpo_index
++];
1157 /* A consistency check: The value we now have in "relocation" must
1158 be the same as the value we stored for that relocation. It
1159 doesn't cost much, so can be left in at all times. */
1160 if (value
!= gregdata
->reloc_request
[bpo_index
].value
)
1162 (*_bfd_error_handler
)
1163 (_("%s: Internal inconsistency error for value for\n\
1164 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1165 bfd_get_filename (isec
->owner
),
1166 (unsigned long) (value
>> 32), (unsigned long) value
,
1167 (unsigned long) (gregdata
->reloc_request
[bpo_index
].value
1169 (unsigned long) gregdata
->reloc_request
[bpo_index
].value
);
1170 bfd_set_error (bfd_error_bad_value
);
1171 return bfd_reloc_overflow
;
1174 /* Then store the register number and offset for that register
1175 into datap and datap + 1 respectively. */
1177 gregdata
->reloc_request
[bpo_index
].regindex
1178 + bpo_greg_section
->output_section
->vma
/ 8,
1181 gregdata
->reloc_request
[bpo_index
].offset
,
1182 ((unsigned char *) datap
) + 1);
1183 return bfd_reloc_ok
;
1186 case R_MMIX_REG_OR_BYTE
:
1189 return bfd_reloc_overflow
;
1190 bfd_put_8 (abfd
, value
, datap
);
1191 return bfd_reloc_ok
;
1194 BAD_CASE (howto
->type
);
1197 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1200 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1201 everything that looks strange. */
1203 flag
= bfd_reloc_overflow
;
1206 (SETL_INSN_BYTE
<< 24) | (value
& 0xffff) | (reg
<< 16),
1207 (bfd_byte
*) datap
+ offs
);
1209 (INCML_INSN_BYTE
<< 24) | ((value
>> 16) & 0xffff) | (reg
<< 16),
1210 (bfd_byte
*) datap
+ offs
+ 4);
1212 (INCMH_INSN_BYTE
<< 24) | ((value
>> 32) & 0xffff) | (reg
<< 16),
1213 (bfd_byte
*) datap
+ offs
+ 8);
1215 (INCH_INSN_BYTE
<< 24) | ((value
>> 48) & 0xffff) | (reg
<< 16),
1216 (bfd_byte
*) datap
+ offs
+ 12);
1221 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1224 mmix_info_to_howto_rela (abfd
, cache_ptr
, dst
)
1225 bfd
*abfd ATTRIBUTE_UNUSED
;
1227 Elf_Internal_Rela
*dst
;
1229 unsigned int r_type
;
1231 r_type
= ELF64_R_TYPE (dst
->r_info
);
1232 BFD_ASSERT (r_type
< (unsigned int) R_MMIX_max
);
1233 cache_ptr
->howto
= &elf_mmix_howto_table
[r_type
];
1236 /* Any MMIX-specific relocation gets here at assembly time or when linking
1237 to other formats (such as mmo); this is the relocation function from
1238 the reloc_table. We don't get here for final pure ELF linking. */
1240 static bfd_reloc_status_type
1241 mmix_elf_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1242 output_bfd
, error_message
)
1244 arelent
*reloc_entry
;
1247 asection
*input_section
;
1249 char **error_message ATTRIBUTE_UNUSED
;
1252 bfd_reloc_status_type r
;
1253 asection
*reloc_target_output_section
;
1254 bfd_reloc_status_type flag
= bfd_reloc_ok
;
1255 bfd_vma output_base
= 0;
1258 r
= bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1259 input_section
, output_bfd
, error_message
);
1261 /* If that was all that was needed (i.e. this isn't a final link, only
1262 some segment adjustments), we're done. */
1263 if (r
!= bfd_reloc_continue
)
1266 if (bfd_is_und_section (symbol
->section
)
1267 && (symbol
->flags
& BSF_WEAK
) == 0
1268 && output_bfd
== (bfd
*) NULL
)
1269 return bfd_reloc_undefined
;
1271 /* Is the address of the relocation really within the section? */
1272 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1273 return bfd_reloc_outofrange
;
1275 /* Work out which section the relocation is targeted at and the
1276 initial relocation command value. */
1278 /* Get symbol value. (Common symbols are special.) */
1279 if (bfd_is_com_section (symbol
->section
))
1282 relocation
= symbol
->value
;
1284 reloc_target_output_section
= bfd_get_output_section (symbol
);
1286 /* Here the variable relocation holds the final address of the symbol we
1287 are relocating against, plus any addend. */
1291 output_base
= reloc_target_output_section
->vma
;
1293 relocation
+= output_base
+ symbol
->section
->output_offset
;
1295 /* Get position of relocation. */
1296 addr
= (reloc_entry
->address
+ input_section
->output_section
->vma
1297 + input_section
->output_offset
);
1298 if (output_bfd
!= (bfd
*) NULL
)
1300 /* Add in supplied addend. */
1301 relocation
+= reloc_entry
->addend
;
1303 /* This is a partial relocation, and we want to apply the
1304 relocation to the reloc entry rather than the raw data.
1305 Modify the reloc inplace to reflect what we now know. */
1306 reloc_entry
->addend
= relocation
;
1307 reloc_entry
->address
+= input_section
->output_offset
;
1311 return mmix_final_link_relocate (reloc_entry
->howto
, input_section
,
1312 data
, reloc_entry
->address
,
1313 reloc_entry
->addend
, relocation
,
1314 bfd_asymbol_name (symbol
),
1315 reloc_target_output_section
);
1318 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1319 for guidance if you're thinking of copying this. */
1322 mmix_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1323 contents
, relocs
, local_syms
, local_sections
)
1324 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1325 struct bfd_link_info
*info
;
1327 asection
*input_section
;
1329 Elf_Internal_Rela
*relocs
;
1330 Elf_Internal_Sym
*local_syms
;
1331 asection
**local_sections
;
1333 Elf_Internal_Shdr
*symtab_hdr
;
1334 struct elf_link_hash_entry
**sym_hashes
;
1335 Elf_Internal_Rela
*rel
;
1336 Elf_Internal_Rela
*relend
;
1340 size
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
1341 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1342 sym_hashes
= elf_sym_hashes (input_bfd
);
1343 relend
= relocs
+ input_section
->reloc_count
;
1345 /* Zero the stub area before we start. */
1346 if (input_section
->rawsize
!= 0
1347 && input_section
->size
> input_section
->rawsize
)
1348 memset (contents
+ input_section
->rawsize
, 0,
1349 input_section
->size
- input_section
->rawsize
);
1351 for (rel
= relocs
; rel
< relend
; rel
++)
1353 reloc_howto_type
*howto
;
1354 unsigned long r_symndx
;
1355 Elf_Internal_Sym
*sym
;
1357 struct elf_link_hash_entry
*h
;
1359 bfd_reloc_status_type r
;
1360 const char *name
= NULL
;
1362 bfd_boolean undefined_signalled
= FALSE
;
1364 r_type
= ELF64_R_TYPE (rel
->r_info
);
1366 if (r_type
== R_MMIX_GNU_VTINHERIT
1367 || r_type
== R_MMIX_GNU_VTENTRY
)
1370 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1372 if (info
->relocatable
)
1374 /* This is a relocatable link. For most relocs we don't have to
1375 change anything, unless the reloc is against a section
1376 symbol, in which case we have to adjust according to where
1377 the section symbol winds up in the output section. */
1378 if (r_symndx
< symtab_hdr
->sh_info
)
1380 sym
= local_syms
+ r_symndx
;
1382 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1384 sec
= local_sections
[r_symndx
];
1385 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
1389 /* For PUSHJ stub relocs however, we may need to change the
1390 reloc and the section contents, if the reloc doesn't reach
1391 beyond the end of the output section and previous stubs.
1392 Then we change the section contents to be a PUSHJ to the end
1393 of the input section plus stubs (we can do that without using
1394 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1395 at the stub location. */
1396 if (r_type
== R_MMIX_PUSHJ_STUBBABLE
)
1398 /* We've already checked whether we need a stub; use that
1400 if (mmix_elf_section_data (input_section
)->pjs
.stub_size
[pjsno
]
1403 Elf_Internal_Rela relcpy
;
1405 if (mmix_elf_section_data (input_section
)
1406 ->pjs
.stub_size
[pjsno
] != MAX_PUSHJ_STUB_SIZE
)
1409 /* There's already a PUSHJ insn there, so just fill in
1410 the offset bits to the stub. */
1411 if (mmix_final_link_relocate (elf_mmix_howto_table
1418 ->output_section
->vma
1419 + input_section
->output_offset
1421 + mmix_elf_section_data (input_section
)
1423 NULL
, NULL
) != bfd_reloc_ok
)
1426 /* Put a JMP insn at the stub; it goes with the
1427 R_MMIX_JMP reloc. */
1428 bfd_put_32 (output_bfd
, JMP_INSN_BYTE
<< 24,
1431 + mmix_elf_section_data (input_section
)
1434 /* Change the reloc to be at the stub, and to a full
1435 R_MMIX_JMP reloc. */
1436 rel
->r_info
= ELF64_R_INFO (r_symndx
, R_MMIX_JMP
);
1439 + mmix_elf_section_data (input_section
)
1442 mmix_elf_section_data (input_section
)->pjs
.stub_offset
1443 += MAX_PUSHJ_STUB_SIZE
;
1445 /* Shift this reloc to the end of the relocs to maintain
1446 the r_offset sorted reloc order. */
1448 memmove (rel
, rel
+ 1, (char *) relend
- (char *) rel
);
1449 relend
[-1] = relcpy
;
1451 /* Back up one reloc, or else we'd skip the next reloc
1461 /* This is a final link. */
1462 howto
= elf_mmix_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
1467 if (r_symndx
< symtab_hdr
->sh_info
)
1469 sym
= local_syms
+ r_symndx
;
1470 sec
= local_sections
[r_symndx
];
1471 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
1473 name
= bfd_elf_string_from_elf_section (input_bfd
,
1474 symtab_hdr
->sh_link
,
1477 name
= bfd_section_name (input_bfd
, sec
);
1481 bfd_boolean unresolved_reloc
;
1483 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
1484 r_symndx
, symtab_hdr
, sym_hashes
,
1486 unresolved_reloc
, undefined_signalled
);
1487 name
= h
->root
.root
.string
;
1490 r
= mmix_final_link_relocate (howto
, input_section
,
1491 contents
, rel
->r_offset
,
1492 rel
->r_addend
, relocation
, name
, sec
);
1494 if (r
!= bfd_reloc_ok
)
1496 bfd_boolean check_ok
= TRUE
;
1497 const char * msg
= (const char *) NULL
;
1501 case bfd_reloc_overflow
:
1502 check_ok
= info
->callbacks
->reloc_overflow
1503 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
1504 (bfd_vma
) 0, input_bfd
, input_section
, rel
->r_offset
);
1507 case bfd_reloc_undefined
:
1508 /* We may have sent this message above. */
1509 if (! undefined_signalled
)
1510 check_ok
= info
->callbacks
->undefined_symbol
1511 (info
, name
, input_bfd
, input_section
, rel
->r_offset
,
1513 undefined_signalled
= TRUE
;
1516 case bfd_reloc_outofrange
:
1517 msg
= _("internal error: out of range error");
1520 case bfd_reloc_notsupported
:
1521 msg
= _("internal error: unsupported relocation error");
1524 case bfd_reloc_dangerous
:
1525 msg
= _("internal error: dangerous relocation");
1529 msg
= _("internal error: unknown error");
1534 check_ok
= info
->callbacks
->warning
1535 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
1545 /* Perform a single relocation. By default we use the standard BFD
1546 routines. A few relocs we have to do ourselves. */
1548 static bfd_reloc_status_type
1549 mmix_final_link_relocate (howto
, input_section
, contents
,
1550 r_offset
, r_addend
, relocation
, symname
, symsec
)
1551 reloc_howto_type
*howto
;
1552 asection
*input_section
;
1555 bfd_signed_vma r_addend
;
1557 const char *symname
;
1560 bfd_reloc_status_type r
= bfd_reloc_ok
;
1562 = (input_section
->output_section
->vma
1563 + input_section
->output_offset
1566 = (bfd_signed_vma
) relocation
+ r_addend
;
1568 switch (howto
->type
)
1570 /* All these are PC-relative. */
1571 case R_MMIX_PUSHJ_STUBBABLE
:
1573 case R_MMIX_CBRANCH
:
1578 contents
+= r_offset
;
1580 srel
-= (input_section
->output_section
->vma
1581 + input_section
->output_offset
1584 r
= mmix_elf_perform_relocation (input_section
, howto
, contents
,
1588 case R_MMIX_BASE_PLUS_OFFSET
:
1590 return bfd_reloc_undefined
;
1592 /* Check that we're not relocating against a register symbol. */
1593 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1594 MMIX_REG_CONTENTS_SECTION_NAME
) == 0
1595 || strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1596 MMIX_REG_SECTION_NAME
) == 0)
1598 /* Note: This is separated out into two messages in order
1599 to ease the translation into other languages. */
1600 if (symname
== NULL
|| *symname
== 0)
1601 (*_bfd_error_handler
)
1602 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1603 bfd_get_filename (input_section
->owner
),
1604 bfd_get_section_name (symsec
->owner
, symsec
));
1606 (*_bfd_error_handler
)
1607 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1608 bfd_get_filename (input_section
->owner
), symname
,
1609 bfd_get_section_name (symsec
->owner
, symsec
));
1610 return bfd_reloc_overflow
;
1614 case R_MMIX_REG_OR_BYTE
:
1616 /* For now, we handle these alike. They must refer to an register
1617 symbol, which is either relative to the register section and in
1618 the range 0..255, or is in the register contents section with vma
1621 /* FIXME: A better way to check for reg contents section?
1622 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1624 return bfd_reloc_undefined
;
1626 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1627 MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
1629 if ((srel
& 7) != 0 || srel
< 32*8 || srel
> 255*8)
1631 /* The bfd_reloc_outofrange return value, though intuitively
1632 a better value, will not get us an error. */
1633 return bfd_reloc_overflow
;
1637 else if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1638 MMIX_REG_SECTION_NAME
) == 0)
1640 if (srel
< 0 || srel
> 255)
1641 /* The bfd_reloc_outofrange return value, though intuitively a
1642 better value, will not get us an error. */
1643 return bfd_reloc_overflow
;
1647 /* Note: This is separated out into two messages in order
1648 to ease the translation into other languages. */
1649 if (symname
== NULL
|| *symname
== 0)
1650 (*_bfd_error_handler
)
1651 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1652 bfd_get_filename (input_section
->owner
),
1653 bfd_get_section_name (symsec
->owner
, symsec
));
1655 (*_bfd_error_handler
)
1656 (_("%s: register relocation against non-register symbol: %s in %s"),
1657 bfd_get_filename (input_section
->owner
), symname
,
1658 bfd_get_section_name (symsec
->owner
, symsec
));
1660 /* The bfd_reloc_outofrange return value, though intuitively a
1661 better value, will not get us an error. */
1662 return bfd_reloc_overflow
;
1665 contents
+= r_offset
;
1666 r
= mmix_elf_perform_relocation (input_section
, howto
, contents
,
1671 /* This isn't a real relocation, it's just an assertion that the
1672 final relocation value corresponds to a local register. We
1673 ignore the actual relocation; nothing is changed. */
1676 = bfd_get_section_by_name (input_section
->output_section
->owner
,
1677 MMIX_REG_CONTENTS_SECTION_NAME
);
1678 bfd_vma first_global
;
1680 /* Check that this is an absolute value, or a reference to the
1681 register contents section or the register (symbol) section.
1682 Absolute numbers can get here as undefined section. Undefined
1683 symbols are signalled elsewhere, so there's no conflict in us
1684 accidentally handling it. */
1685 if (!bfd_is_abs_section (symsec
)
1686 && !bfd_is_und_section (symsec
)
1687 && strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1688 MMIX_REG_CONTENTS_SECTION_NAME
) != 0
1689 && strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1690 MMIX_REG_SECTION_NAME
) != 0)
1692 (*_bfd_error_handler
)
1693 (_("%s: directive LOCAL valid only with a register or absolute value"),
1694 bfd_get_filename (input_section
->owner
));
1696 return bfd_reloc_overflow
;
1699 /* If we don't have a register contents section, then $255 is the
1700 first global register. */
1705 first_global
= bfd_get_section_vma (abfd
, regsec
) / 8;
1706 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1707 MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
1709 if ((srel
& 7) != 0 || srel
< 32*8 || srel
> 255*8)
1710 /* The bfd_reloc_outofrange return value, though
1711 intuitively a better value, will not get us an error. */
1712 return bfd_reloc_overflow
;
1717 if ((bfd_vma
) srel
>= first_global
)
1719 /* FIXME: Better error message. */
1720 (*_bfd_error_handler
)
1721 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1722 bfd_get_filename (input_section
->owner
), (long) srel
, (long) first_global
);
1724 return bfd_reloc_overflow
;
1731 r
= _bfd_final_link_relocate (howto
, input_section
->owner
, input_section
,
1733 relocation
, r_addend
);
1739 /* Return the section that should be marked against GC for a given
1743 mmix_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
)
1745 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1746 Elf_Internal_Rela
*rel
;
1747 struct elf_link_hash_entry
*h
;
1748 Elf_Internal_Sym
*sym
;
1752 switch (ELF64_R_TYPE (rel
->r_info
))
1754 case R_MMIX_GNU_VTINHERIT
:
1755 case R_MMIX_GNU_VTENTRY
:
1759 switch (h
->root
.type
)
1761 case bfd_link_hash_defined
:
1762 case bfd_link_hash_defweak
:
1763 return h
->root
.u
.def
.section
;
1765 case bfd_link_hash_common
:
1766 return h
->root
.u
.c
.p
->section
;
1774 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
1779 /* Update relocation info for a GC-excluded section. We could supposedly
1780 perform the allocation after GC, but there's no suitable hook between
1781 GC (or section merge) and the point when all input sections must be
1782 present. Better to waste some memory and (perhaps) a little time. */
1785 mmix_elf_gc_sweep_hook (abfd
, info
, sec
, relocs
)
1786 bfd
*abfd ATTRIBUTE_UNUSED
;
1787 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1788 asection
*sec ATTRIBUTE_UNUSED
;
1789 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
1791 struct bpo_reloc_section_info
*bpodata
1792 = mmix_elf_section_data (sec
)->bpo
.reloc
;
1793 asection
*allocated_gregs_section
;
1795 /* If no bpodata here, we have nothing to do. */
1796 if (bpodata
== NULL
)
1799 allocated_gregs_section
= bpodata
->bpo_greg_section
;
1801 mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
->n_bpo_relocs
1802 -= bpodata
->n_bpo_relocs_this_section
;
1807 /* Sort register relocs to come before expanding relocs. */
1810 mmix_elf_sort_relocs (p1
, p2
)
1814 const Elf_Internal_Rela
*r1
= (const Elf_Internal_Rela
*) p1
;
1815 const Elf_Internal_Rela
*r2
= (const Elf_Internal_Rela
*) p2
;
1816 int r1_is_reg
, r2_is_reg
;
1818 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1820 if ((r1
->r_offset
& ~(bfd_vma
) 3) > (r2
->r_offset
& ~(bfd_vma
) 3))
1822 else if ((r1
->r_offset
& ~(bfd_vma
) 3) < (r2
->r_offset
& ~(bfd_vma
) 3))
1826 = (ELF64_R_TYPE (r1
->r_info
) == R_MMIX_REG_OR_BYTE
1827 || ELF64_R_TYPE (r1
->r_info
) == R_MMIX_REG
);
1829 = (ELF64_R_TYPE (r2
->r_info
) == R_MMIX_REG_OR_BYTE
1830 || ELF64_R_TYPE (r2
->r_info
) == R_MMIX_REG
);
1831 if (r1_is_reg
!= r2_is_reg
)
1832 return r2_is_reg
- r1_is_reg
;
1834 /* Neither or both are register relocs. Then sort on full offset. */
1835 if (r1
->r_offset
> r2
->r_offset
)
1837 else if (r1
->r_offset
< r2
->r_offset
)
1842 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1845 mmix_elf_check_common_relocs (abfd
, info
, sec
, relocs
)
1847 struct bfd_link_info
*info
;
1849 const Elf_Internal_Rela
*relocs
;
1851 bfd
*bpo_greg_owner
= NULL
;
1852 asection
*allocated_gregs_section
= NULL
;
1853 struct bpo_greg_section_info
*gregdata
= NULL
;
1854 struct bpo_reloc_section_info
*bpodata
= NULL
;
1855 const Elf_Internal_Rela
*rel
;
1856 const Elf_Internal_Rela
*rel_end
;
1858 /* We currently have to abuse this COFF-specific member, since there's
1859 no target-machine-dedicated member. There's no alternative outside
1860 the bfd_link_info struct; we can't specialize a hash-table since
1861 they're different between ELF and mmo. */
1862 bpo_greg_owner
= (bfd
*) info
->base_file
;
1864 rel_end
= relocs
+ sec
->reloc_count
;
1865 for (rel
= relocs
; rel
< rel_end
; rel
++)
1867 switch (ELF64_R_TYPE (rel
->r_info
))
1869 /* This relocation causes a GREG allocation. We need to count
1870 them, and we need to create a section for them, so we need an
1871 object to fake as the owner of that section. We can't use
1872 the ELF dynobj for this, since the ELF bits assume lots of
1873 DSO-related stuff if that member is non-NULL. */
1874 case R_MMIX_BASE_PLUS_OFFSET
:
1875 /* We don't do anything with this reloc for a relocatable link. */
1876 if (info
->relocatable
)
1879 if (bpo_greg_owner
== NULL
)
1881 bpo_greg_owner
= abfd
;
1882 info
->base_file
= (PTR
) bpo_greg_owner
;
1885 if (allocated_gregs_section
== NULL
)
1886 allocated_gregs_section
1887 = bfd_get_section_by_name (bpo_greg_owner
,
1888 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
1890 if (allocated_gregs_section
== NULL
)
1892 allocated_gregs_section
1893 = bfd_make_section_with_flags (bpo_greg_owner
,
1894 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
,
1897 | SEC_LINKER_CREATED
));
1898 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1899 treated like any other section, and we'd get errors for
1900 address overlap with the text section. Let's set none of
1901 those flags, as that is what currently happens for usual
1902 GREG allocations, and that works. */
1903 if (allocated_gregs_section
== NULL
1904 || !bfd_set_section_alignment (bpo_greg_owner
,
1905 allocated_gregs_section
,
1909 gregdata
= (struct bpo_greg_section_info
*)
1910 bfd_zalloc (bpo_greg_owner
, sizeof (struct bpo_greg_section_info
));
1911 if (gregdata
== NULL
)
1913 mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
1916 else if (gregdata
== NULL
)
1918 = mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
;
1920 /* Get ourselves some auxiliary info for the BPO-relocs. */
1921 if (bpodata
== NULL
)
1923 /* No use doing a separate iteration pass to find the upper
1924 limit - just use the number of relocs. */
1925 bpodata
= (struct bpo_reloc_section_info
*)
1926 bfd_alloc (bpo_greg_owner
,
1927 sizeof (struct bpo_reloc_section_info
)
1928 * (sec
->reloc_count
+ 1));
1929 if (bpodata
== NULL
)
1931 mmix_elf_section_data (sec
)->bpo
.reloc
= bpodata
;
1932 bpodata
->first_base_plus_offset_reloc
1933 = bpodata
->bpo_index
1934 = gregdata
->n_max_bpo_relocs
;
1935 bpodata
->bpo_greg_section
1936 = allocated_gregs_section
;
1937 bpodata
->n_bpo_relocs_this_section
= 0;
1940 bpodata
->n_bpo_relocs_this_section
++;
1941 gregdata
->n_max_bpo_relocs
++;
1943 /* We don't get another chance to set this before GC; we've not
1944 set up any hook that runs before GC. */
1945 gregdata
->n_bpo_relocs
1946 = gregdata
->n_max_bpo_relocs
;
1949 case R_MMIX_PUSHJ_STUBBABLE
:
1950 mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
++;
1955 /* Allocate per-reloc stub storage and initialize it to the max stub
1957 if (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
!= 0)
1961 mmix_elf_section_data (sec
)->pjs
.stub_size
1962 = bfd_alloc (abfd
, mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
1963 * sizeof (mmix_elf_section_data (sec
)
1964 ->pjs
.stub_size
[0]));
1965 if (mmix_elf_section_data (sec
)->pjs
.stub_size
== NULL
)
1968 for (i
= 0; i
< mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
; i
++)
1969 mmix_elf_section_data (sec
)->pjs
.stub_size
[i
] = MAX_PUSHJ_STUB_SIZE
;
1975 /* Look through the relocs for a section during the first phase. */
1978 mmix_elf_check_relocs (abfd
, info
, sec
, relocs
)
1980 struct bfd_link_info
*info
;
1982 const Elf_Internal_Rela
*relocs
;
1984 Elf_Internal_Shdr
*symtab_hdr
;
1985 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
1986 const Elf_Internal_Rela
*rel
;
1987 const Elf_Internal_Rela
*rel_end
;
1989 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1990 sym_hashes
= elf_sym_hashes (abfd
);
1991 sym_hashes_end
= sym_hashes
+ symtab_hdr
->sh_size
/sizeof(Elf64_External_Sym
);
1992 if (!elf_bad_symtab (abfd
))
1993 sym_hashes_end
-= symtab_hdr
->sh_info
;
1995 /* First we sort the relocs so that any register relocs come before
1996 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1997 qsort ((PTR
) relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
1998 mmix_elf_sort_relocs
);
2000 /* Do the common part. */
2001 if (!mmix_elf_check_common_relocs (abfd
, info
, sec
, relocs
))
2004 if (info
->relocatable
)
2007 rel_end
= relocs
+ sec
->reloc_count
;
2008 for (rel
= relocs
; rel
< rel_end
; rel
++)
2010 struct elf_link_hash_entry
*h
;
2011 unsigned long r_symndx
;
2013 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2014 if (r_symndx
< symtab_hdr
->sh_info
)
2018 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2019 while (h
->root
.type
== bfd_link_hash_indirect
2020 || h
->root
.type
== bfd_link_hash_warning
)
2021 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2024 switch (ELF64_R_TYPE (rel
->r_info
))
2026 /* This relocation describes the C++ object vtable hierarchy.
2027 Reconstruct it for later use during GC. */
2028 case R_MMIX_GNU_VTINHERIT
:
2029 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
2033 /* This relocation describes which C++ vtable entries are actually
2034 used. Record for later use during GC. */
2035 case R_MMIX_GNU_VTENTRY
:
2036 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
2045 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2046 Copied from elf_link_add_object_symbols. */
2049 _bfd_mmix_check_all_relocs (abfd
, info
)
2051 struct bfd_link_info
*info
;
2055 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2057 Elf_Internal_Rela
*internal_relocs
;
2060 if ((o
->flags
& SEC_RELOC
) == 0
2061 || o
->reloc_count
== 0
2062 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
2063 && (o
->flags
& SEC_DEBUGGING
) != 0)
2064 || bfd_is_abs_section (o
->output_section
))
2068 = _bfd_elf_link_read_relocs (abfd
, o
, (PTR
) NULL
,
2069 (Elf_Internal_Rela
*) NULL
,
2071 if (internal_relocs
== NULL
)
2074 ok
= mmix_elf_check_common_relocs (abfd
, info
, o
, internal_relocs
);
2076 if (! info
->keep_memory
)
2077 free (internal_relocs
);
2086 /* Change symbols relative to the reg contents section to instead be to
2087 the register section, and scale them down to correspond to the register
2091 mmix_elf_link_output_symbol_hook (info
, name
, sym
, input_sec
, h
)
2092 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2093 const char *name ATTRIBUTE_UNUSED
;
2094 Elf_Internal_Sym
*sym
;
2095 asection
*input_sec
;
2096 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
;
2098 if (input_sec
!= NULL
2099 && input_sec
->name
!= NULL
2100 && ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
2101 && strcmp (input_sec
->name
, MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
2104 sym
->st_shndx
= SHN_REGISTER
;
2110 /* We fake a register section that holds values that are register numbers.
2111 Having a SHN_REGISTER and register section translates better to other
2112 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2113 This section faking is based on a construct in elf32-mips.c. */
2114 static asection mmix_elf_reg_section
;
2115 static asymbol mmix_elf_reg_section_symbol
;
2116 static asymbol
*mmix_elf_reg_section_symbol_ptr
;
2118 /* Handle the special section numbers that a symbol may use. */
2121 mmix_elf_symbol_processing (abfd
, asym
)
2122 bfd
*abfd ATTRIBUTE_UNUSED
;
2125 elf_symbol_type
*elfsym
;
2127 elfsym
= (elf_symbol_type
*) asym
;
2128 switch (elfsym
->internal_elf_sym
.st_shndx
)
2131 if (mmix_elf_reg_section
.name
== NULL
)
2133 /* Initialize the register section. */
2134 mmix_elf_reg_section
.name
= MMIX_REG_SECTION_NAME
;
2135 mmix_elf_reg_section
.flags
= SEC_NO_FLAGS
;
2136 mmix_elf_reg_section
.output_section
= &mmix_elf_reg_section
;
2137 mmix_elf_reg_section
.symbol
= &mmix_elf_reg_section_symbol
;
2138 mmix_elf_reg_section
.symbol_ptr_ptr
= &mmix_elf_reg_section_symbol_ptr
;
2139 mmix_elf_reg_section_symbol
.name
= MMIX_REG_SECTION_NAME
;
2140 mmix_elf_reg_section_symbol
.flags
= BSF_SECTION_SYM
;
2141 mmix_elf_reg_section_symbol
.section
= &mmix_elf_reg_section
;
2142 mmix_elf_reg_section_symbol_ptr
= &mmix_elf_reg_section_symbol
;
2144 asym
->section
= &mmix_elf_reg_section
;
2152 /* Given a BFD section, try to locate the corresponding ELF section
2156 mmix_elf_section_from_bfd_section (abfd
, sec
, retval
)
2157 bfd
* abfd ATTRIBUTE_UNUSED
;
2161 if (strcmp (bfd_get_section_name (abfd
, sec
), MMIX_REG_SECTION_NAME
) == 0)
2162 *retval
= SHN_REGISTER
;
2169 /* Hook called by the linker routine which adds symbols from an object
2170 file. We must handle the special SHN_REGISTER section number here.
2172 We also check that we only have *one* each of the section-start
2173 symbols, since otherwise having two with the same value would cause
2174 them to be "merged", but with the contents serialized. */
2177 mmix_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
2179 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2180 Elf_Internal_Sym
*sym
;
2181 const char **namep ATTRIBUTE_UNUSED
;
2182 flagword
*flagsp ATTRIBUTE_UNUSED
;
2184 bfd_vma
*valp ATTRIBUTE_UNUSED
;
2186 if (sym
->st_shndx
== SHN_REGISTER
)
2188 *secp
= bfd_make_section_old_way (abfd
, MMIX_REG_SECTION_NAME
);
2189 (*secp
)->flags
|= SEC_LINKER_CREATED
;
2191 else if ((*namep
)[0] == '_' && (*namep
)[1] == '_' && (*namep
)[2] == '.'
2192 && strncmp (*namep
, MMIX_LOC_SECTION_START_SYMBOL_PREFIX
,
2193 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX
)) == 0)
2195 /* See if we have another one. */
2196 struct bfd_link_hash_entry
*h
= bfd_link_hash_lookup (info
->hash
,
2202 if (h
!= NULL
&& h
->type
!= bfd_link_hash_undefined
)
2204 /* How do we get the asymbol (or really: the filename) from h?
2205 h->u.def.section->owner is NULL. */
2206 ((*_bfd_error_handler
)
2207 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2208 bfd_get_filename (abfd
), *namep
,
2209 *namep
+ strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX
)));
2210 bfd_set_error (bfd_error_bad_value
);
2218 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2221 mmix_elf_is_local_label_name (abfd
, name
)
2228 /* Also include the default local-label definition. */
2229 if (_bfd_elf_is_local_label_name (abfd
, name
))
2235 /* If there's no ":", or more than one, it's not a local symbol. */
2236 colpos
= strchr (name
, ':');
2237 if (colpos
== NULL
|| strchr (colpos
+ 1, ':') != NULL
)
2240 /* Check that there are remaining characters and that they are digits. */
2244 digits
= strspn (colpos
+ 1, "0123456789");
2245 return digits
!= 0 && colpos
[1 + digits
] == 0;
2248 /* We get rid of the register section here. */
2251 mmix_elf_final_link (abfd
, info
)
2253 struct bfd_link_info
*info
;
2255 /* We never output a register section, though we create one for
2256 temporary measures. Check that nobody entered contents into it. */
2257 asection
*reg_section
;
2259 reg_section
= bfd_get_section_by_name (abfd
, MMIX_REG_SECTION_NAME
);
2261 if (reg_section
!= NULL
)
2263 /* FIXME: Pass error state gracefully. */
2264 if (bfd_get_section_flags (abfd
, reg_section
) & SEC_HAS_CONTENTS
)
2265 _bfd_abort (__FILE__
, __LINE__
, _("Register section has contents\n"));
2267 /* Really remove the section, if it hasn't already been done. */
2268 if (!bfd_section_removed_from_list (abfd
, reg_section
))
2270 bfd_section_list_remove (abfd
, reg_section
);
2271 --abfd
->section_count
;
2275 if (! bfd_elf_final_link (abfd
, info
))
2278 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2279 the regular linker machinery. We do it here, like other targets with
2280 special sections. */
2281 if (info
->base_file
!= NULL
)
2283 asection
*greg_section
2284 = bfd_get_section_by_name ((bfd
*) info
->base_file
,
2285 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2286 if (!bfd_set_section_contents (abfd
,
2287 greg_section
->output_section
,
2288 greg_section
->contents
,
2289 (file_ptr
) greg_section
->output_offset
,
2290 greg_section
->size
))
2296 /* We need to include the maximum size of PUSHJ-stubs in the initial
2297 section size. This is expected to shrink during linker relaxation. */
2300 mmix_set_relaxable_size (abfd
, sec
, ptr
)
2301 bfd
*abfd ATTRIBUTE_UNUSED
;
2305 struct bfd_link_info
*info
= ptr
;
2307 /* Make sure we only do this for section where we know we want this,
2308 otherwise we might end up resetting the size of COMMONs. */
2309 if (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
== 0)
2312 sec
->rawsize
= sec
->size
;
2313 sec
->size
+= (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
2314 * MAX_PUSHJ_STUB_SIZE
);
2316 /* For use in relocatable link, we start with a max stubs size. See
2317 mmix_elf_relax_section. */
2318 if (info
->relocatable
&& sec
->output_section
)
2319 mmix_elf_section_data (sec
->output_section
)->pjs
.stubs_size_sum
2320 += (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
2321 * MAX_PUSHJ_STUB_SIZE
);
2324 /* Initialize stuff for the linker-generated GREGs to match
2325 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2328 _bfd_mmix_before_linker_allocation (abfd
, info
)
2329 bfd
*abfd ATTRIBUTE_UNUSED
;
2330 struct bfd_link_info
*info
;
2332 asection
*bpo_gregs_section
;
2333 bfd
*bpo_greg_owner
;
2334 struct bpo_greg_section_info
*gregdata
;
2338 size_t *bpo_reloc_indexes
;
2341 /* Set the initial size of sections. */
2342 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2343 bfd_map_over_sections (ibfd
, mmix_set_relaxable_size
, info
);
2345 /* The bpo_greg_owner bfd is supposed to have been set by
2346 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2347 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2348 bpo_greg_owner
= (bfd
*) info
->base_file
;
2349 if (bpo_greg_owner
== NULL
)
2353 = bfd_get_section_by_name (bpo_greg_owner
,
2354 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2356 if (bpo_gregs_section
== NULL
)
2359 /* We use the target-data handle in the ELF section data. */
2360 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2361 if (gregdata
== NULL
)
2364 n_gregs
= gregdata
->n_bpo_relocs
;
2365 gregdata
->n_allocated_bpo_gregs
= n_gregs
;
2367 /* When this reaches zero during relaxation, all entries have been
2368 filled in and the size of the linker gregs can be calculated. */
2369 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
= n_gregs
;
2371 /* Set the zeroth-order estimate for the GREGs size. */
2372 gregs_size
= n_gregs
* 8;
2374 if (!bfd_set_section_size (bpo_greg_owner
, bpo_gregs_section
, gregs_size
))
2377 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2378 time. Note that we must use the max number ever noted for the array,
2379 since the index numbers were created before GC. */
2380 gregdata
->reloc_request
2381 = bfd_zalloc (bpo_greg_owner
,
2382 sizeof (struct bpo_reloc_request
)
2383 * gregdata
->n_max_bpo_relocs
);
2385 gregdata
->bpo_reloc_indexes
2387 = bfd_alloc (bpo_greg_owner
,
2388 gregdata
->n_max_bpo_relocs
2390 if (bpo_reloc_indexes
== NULL
)
2393 /* The default order is an identity mapping. */
2394 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2396 bpo_reloc_indexes
[i
] = i
;
2397 gregdata
->reloc_request
[i
].bpo_reloc_no
= i
;
2403 /* Fill in contents in the linker allocated gregs. Everything is
2404 calculated at this point; we just move the contents into place here. */
2407 _bfd_mmix_after_linker_allocation (abfd
, link_info
)
2408 bfd
*abfd ATTRIBUTE_UNUSED
;
2409 struct bfd_link_info
*link_info
;
2411 asection
*bpo_gregs_section
;
2412 bfd
*bpo_greg_owner
;
2413 struct bpo_greg_section_info
*gregdata
;
2419 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2420 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2421 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2422 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2423 if (bpo_greg_owner
== NULL
)
2427 = bfd_get_section_by_name (bpo_greg_owner
,
2428 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2430 /* This can't happen without DSO handling. When DSOs are handled
2431 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2433 if (bpo_gregs_section
== NULL
)
2436 /* We use the target-data handle in the ELF section data. */
2438 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2439 if (gregdata
== NULL
)
2442 n_gregs
= gregdata
->n_allocated_bpo_gregs
;
2444 bpo_gregs_section
->contents
2445 = contents
= bfd_alloc (bpo_greg_owner
, bpo_gregs_section
->size
);
2446 if (contents
== NULL
)
2449 /* Sanity check: If these numbers mismatch, some relocation has not been
2450 accounted for and the rest of gregdata is probably inconsistent.
2451 It's a bug, but it's more helpful to identify it than segfaulting
2453 if (gregdata
->n_remaining_bpo_relocs_this_relaxation_round
2454 != gregdata
->n_bpo_relocs
)
2456 (*_bfd_error_handler
)
2457 (_("Internal inconsistency: remaining %u != max %u.\n\
2458 Please report this bug."),
2459 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
,
2460 gregdata
->n_bpo_relocs
);
2464 for (lastreg
= 255, i
= 0, j
= 0; j
< n_gregs
; i
++)
2465 if (gregdata
->reloc_request
[i
].regindex
!= lastreg
)
2467 bfd_put_64 (bpo_greg_owner
, gregdata
->reloc_request
[i
].value
,
2469 lastreg
= gregdata
->reloc_request
[i
].regindex
;
2476 /* Sort valid relocs to come before non-valid relocs, then on increasing
2480 bpo_reloc_request_sort_fn (p1
, p2
)
2484 const struct bpo_reloc_request
*r1
= (const struct bpo_reloc_request
*) p1
;
2485 const struct bpo_reloc_request
*r2
= (const struct bpo_reloc_request
*) p2
;
2487 /* Primary function is validity; non-valid relocs sorted after valid
2489 if (r1
->valid
!= r2
->valid
)
2490 return r2
->valid
- r1
->valid
;
2492 /* Then sort on value. Don't simplify and return just the difference of
2493 the values: the upper bits of the 64-bit value would be truncated on
2494 a host with 32-bit ints. */
2495 if (r1
->value
!= r2
->value
)
2496 return r1
->value
> r2
->value
? 1 : -1;
2498 /* As a last re-sort, use the relocation number, so we get a stable
2499 sort. The *addresses* aren't stable since items are swapped during
2500 sorting. It depends on the qsort implementation if this actually
2502 return r1
->bpo_reloc_no
> r2
->bpo_reloc_no
2503 ? 1 : (r1
->bpo_reloc_no
< r2
->bpo_reloc_no
? -1 : 0);
2506 /* For debug use only. Dumps the global register allocations resulting
2507 from base-plus-offset relocs. */
2510 mmix_dump_bpo_gregs (link_info
, pf
)
2511 struct bfd_link_info
*link_info
;
2512 bfd_error_handler_type pf
;
2514 bfd
*bpo_greg_owner
;
2515 asection
*bpo_gregs_section
;
2516 struct bpo_greg_section_info
*gregdata
;
2519 if (link_info
== NULL
|| link_info
->base_file
== NULL
)
2522 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2525 = bfd_get_section_by_name (bpo_greg_owner
,
2526 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2528 if (bpo_gregs_section
== NULL
)
2531 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2532 if (gregdata
== NULL
)
2536 pf
= _bfd_error_handler
;
2538 /* These format strings are not translated. They are for debug purposes
2539 only and never displayed to an end user. Should they escape, we
2540 surely want them in original. */
2541 (*pf
) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2542 n_allocated_bpo_gregs: %u\n", gregdata
->n_bpo_relocs
,
2543 gregdata
->n_max_bpo_relocs
,
2544 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
,
2545 gregdata
->n_allocated_bpo_gregs
);
2547 if (gregdata
->reloc_request
)
2548 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2549 (*pf
) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2551 (gregdata
->bpo_reloc_indexes
!= NULL
2552 ? gregdata
->bpo_reloc_indexes
[i
] : (size_t) -1),
2553 gregdata
->reloc_request
[i
].bpo_reloc_no
,
2554 gregdata
->reloc_request
[i
].valid
,
2556 (unsigned long) (gregdata
->reloc_request
[i
].value
>> 32),
2557 (unsigned long) gregdata
->reloc_request
[i
].value
,
2558 gregdata
->reloc_request
[i
].regindex
,
2559 gregdata
->reloc_request
[i
].offset
);
2562 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2563 when the last such reloc is done, an index-array is sorted according to
2564 the values and iterated over to produce register numbers (indexed by 0
2565 from the first allocated register number) and offsets for use in real
2568 PUSHJ stub accounting is also done here.
2570 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2573 mmix_elf_relax_section (abfd
, sec
, link_info
, again
)
2576 struct bfd_link_info
*link_info
;
2579 Elf_Internal_Shdr
*symtab_hdr
;
2580 Elf_Internal_Rela
*internal_relocs
;
2581 Elf_Internal_Rela
*irel
, *irelend
;
2582 asection
*bpo_gregs_section
= NULL
;
2583 struct bpo_greg_section_info
*gregdata
;
2584 struct bpo_reloc_section_info
*bpodata
2585 = mmix_elf_section_data (sec
)->bpo
.reloc
;
2586 /* The initialization is to quiet compiler warnings. The value is to
2587 spot a missing actual initialization. */
2588 size_t bpono
= (size_t) -1;
2590 bfd
*bpo_greg_owner
;
2591 Elf_Internal_Sym
*isymbuf
= NULL
;
2592 bfd_size_type size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
2594 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
= 0;
2596 /* Assume nothing changes. */
2599 /* We don't have to do anything if this section does not have relocs, or
2600 if this is not a code section. */
2601 if ((sec
->flags
& SEC_RELOC
) == 0
2602 || sec
->reloc_count
== 0
2603 || (sec
->flags
& SEC_CODE
) == 0
2604 || (sec
->flags
& SEC_LINKER_CREATED
) != 0
2605 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2606 then nothing to do. */
2608 && mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
== 0))
2611 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2613 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2615 if (bpodata
!= NULL
)
2617 bpo_gregs_section
= bpodata
->bpo_greg_section
;
2618 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2619 bpono
= bpodata
->first_base_plus_offset_reloc
;
2624 /* Get a copy of the native relocations. */
2626 = _bfd_elf_link_read_relocs (abfd
, sec
, (PTR
) NULL
,
2627 (Elf_Internal_Rela
*) NULL
,
2628 link_info
->keep_memory
);
2629 if (internal_relocs
== NULL
)
2632 /* Walk through them looking for relaxing opportunities. */
2633 irelend
= internal_relocs
+ sec
->reloc_count
;
2634 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2637 struct elf_link_hash_entry
*h
= NULL
;
2639 /* We only process two relocs. */
2640 if (ELF64_R_TYPE (irel
->r_info
) != (int) R_MMIX_BASE_PLUS_OFFSET
2641 && ELF64_R_TYPE (irel
->r_info
) != (int) R_MMIX_PUSHJ_STUBBABLE
)
2644 /* We process relocs in a distinctly different way when this is a
2645 relocatable link (for one, we don't look at symbols), so we avoid
2646 mixing its code with that for the "normal" relaxation. */
2647 if (link_info
->relocatable
)
2649 /* The only transformation in a relocatable link is to generate
2650 a full stub at the location of the stub calculated for the
2651 input section, if the relocated stub location, the end of the
2652 output section plus earlier stubs, cannot be reached. Thus
2653 relocatable linking can only lead to worse code, but it still
2655 if (ELF64_R_TYPE (irel
->r_info
) == R_MMIX_PUSHJ_STUBBABLE
)
2657 /* If we can reach the end of the output-section and beyond
2658 any current stubs, then we don't need a stub for this
2659 reloc. The relaxed order of output stub allocation may
2660 not exactly match the straightforward order, so we always
2661 assume presence of output stubs, which will allow
2662 relaxation only on relocations indifferent to the
2663 presence of output stub allocations for other relocations
2664 and thus the order of output stub allocation. */
2665 if (bfd_check_overflow (complain_overflow_signed
,
2668 bfd_arch_bits_per_address (abfd
),
2669 /* Output-stub location. */
2670 sec
->output_section
->rawsize
2671 + (mmix_elf_section_data (sec
2673 ->pjs
.stubs_size_sum
)
2674 /* Location of this PUSHJ reloc. */
2675 - (sec
->output_offset
+ irel
->r_offset
)
2676 /* Don't count *this* stub twice. */
2677 - (mmix_elf_section_data (sec
)
2678 ->pjs
.stub_size
[pjsno
]
2679 + MAX_PUSHJ_STUB_SIZE
))
2681 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 0;
2683 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
2684 += mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
];
2692 /* Get the value of the symbol referred to by the reloc. */
2693 if (ELF64_R_SYM (irel
->r_info
) < symtab_hdr
->sh_info
)
2695 /* A local symbol. */
2696 Elf_Internal_Sym
*isym
;
2699 /* Read this BFD's local symbols if we haven't already. */
2700 if (isymbuf
== NULL
)
2702 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2703 if (isymbuf
== NULL
)
2704 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
2705 symtab_hdr
->sh_info
, 0,
2711 isym
= isymbuf
+ ELF64_R_SYM (irel
->r_info
);
2712 if (isym
->st_shndx
== SHN_UNDEF
)
2713 sym_sec
= bfd_und_section_ptr
;
2714 else if (isym
->st_shndx
== SHN_ABS
)
2715 sym_sec
= bfd_abs_section_ptr
;
2716 else if (isym
->st_shndx
== SHN_COMMON
)
2717 sym_sec
= bfd_com_section_ptr
;
2719 sym_sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
2720 symval
= (isym
->st_value
2721 + sym_sec
->output_section
->vma
2722 + sym_sec
->output_offset
);
2728 /* An external symbol. */
2729 indx
= ELF64_R_SYM (irel
->r_info
) - symtab_hdr
->sh_info
;
2730 h
= elf_sym_hashes (abfd
)[indx
];
2731 BFD_ASSERT (h
!= NULL
);
2732 if (h
->root
.type
!= bfd_link_hash_defined
2733 && h
->root
.type
!= bfd_link_hash_defweak
)
2735 /* This appears to be a reference to an undefined symbol. Just
2736 ignore it--it will be caught by the regular reloc processing.
2737 We need to keep BPO reloc accounting consistent, though
2738 else we'll abort instead of emitting an error message. */
2739 if (ELF64_R_TYPE (irel
->r_info
) == R_MMIX_BASE_PLUS_OFFSET
2740 && gregdata
!= NULL
)
2742 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
--;
2748 symval
= (h
->root
.u
.def
.value
2749 + h
->root
.u
.def
.section
->output_section
->vma
2750 + h
->root
.u
.def
.section
->output_offset
);
2753 if (ELF64_R_TYPE (irel
->r_info
) == (int) R_MMIX_PUSHJ_STUBBABLE
)
2755 bfd_vma value
= symval
+ irel
->r_addend
;
2757 = (sec
->output_section
->vma
2758 + sec
->output_offset
2761 = (sec
->output_section
->vma
2762 + sec
->output_offset
2764 + mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
);
2766 if ((value
& 3) == 0
2767 && bfd_check_overflow (complain_overflow_signed
,
2770 bfd_arch_bits_per_address (abfd
),
2773 ? mmix_elf_section_data (sec
)
2774 ->pjs
.stub_size
[pjsno
]
2777 /* If the reloc fits, no stub is needed. */
2778 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 0;
2780 /* Maybe we can get away with just a JMP insn? */
2781 if ((value
& 3) == 0
2782 && bfd_check_overflow (complain_overflow_signed
,
2785 bfd_arch_bits_per_address (abfd
),
2788 ? mmix_elf_section_data (sec
)
2789 ->pjs
.stub_size
[pjsno
] - 4
2792 /* Yep, account for a stub consisting of a single JMP insn. */
2793 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 4;
2795 /* Nope, go for the full insn stub. It doesn't seem useful to
2796 emit the intermediate sizes; those will only be useful for
2797 a >64M program assuming contiguous code. */
2798 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
]
2799 = MAX_PUSHJ_STUB_SIZE
;
2801 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
2802 += mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
];
2807 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2809 gregdata
->reloc_request
[gregdata
->bpo_reloc_indexes
[bpono
]].value
2810 = symval
+ irel
->r_addend
;
2811 gregdata
->reloc_request
[gregdata
->bpo_reloc_indexes
[bpono
++]].valid
= TRUE
;
2812 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
--;
2815 /* Check if that was the last BPO-reloc. If so, sort the values and
2816 calculate how many registers we need to cover them. Set the size of
2817 the linker gregs, and if the number of registers changed, indicate
2818 that we need to relax some more because we have more work to do. */
2819 if (gregdata
!= NULL
2820 && gregdata
->n_remaining_bpo_relocs_this_relaxation_round
== 0)
2826 /* First, reset the remaining relocs for the next round. */
2827 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
2828 = gregdata
->n_bpo_relocs
;
2830 qsort ((PTR
) gregdata
->reloc_request
,
2831 gregdata
->n_max_bpo_relocs
,
2832 sizeof (struct bpo_reloc_request
),
2833 bpo_reloc_request_sort_fn
);
2835 /* Recalculate indexes. When we find a change (however unlikely
2836 after the initial iteration), we know we need to relax again,
2837 since items in the GREG-array are sorted by increasing value and
2838 stored in the relaxation phase. */
2839 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2840 if (gregdata
->bpo_reloc_indexes
[gregdata
->reloc_request
[i
].bpo_reloc_no
]
2843 gregdata
->bpo_reloc_indexes
[gregdata
->reloc_request
[i
].bpo_reloc_no
]
2848 /* Allocate register numbers (indexing from 0). Stop at the first
2850 for (i
= 0, regindex
= 0, prev_base
= gregdata
->reloc_request
[0].value
;
2851 i
< gregdata
->n_bpo_relocs
;
2854 if (gregdata
->reloc_request
[i
].value
> prev_base
+ 255)
2857 prev_base
= gregdata
->reloc_request
[i
].value
;
2859 gregdata
->reloc_request
[i
].regindex
= regindex
;
2860 gregdata
->reloc_request
[i
].offset
2861 = gregdata
->reloc_request
[i
].value
- prev_base
;
2864 /* If it's not the same as the last time, we need to relax again,
2865 because the size of the section has changed. I'm not sure we
2866 actually need to do any adjustments since the shrinking happens
2867 at the start of this section, but better safe than sorry. */
2868 if (gregdata
->n_allocated_bpo_gregs
!= regindex
+ 1)
2870 gregdata
->n_allocated_bpo_gregs
= regindex
+ 1;
2874 bpo_gregs_section
->size
= (regindex
+ 1) * 8;
2877 if (isymbuf
!= NULL
&& (unsigned char *) isymbuf
!= symtab_hdr
->contents
)
2879 if (! link_info
->keep_memory
)
2883 /* Cache the symbols for elf_link_input_bfd. */
2884 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
2888 if (internal_relocs
!= NULL
2889 && elf_section_data (sec
)->relocs
!= internal_relocs
)
2890 free (internal_relocs
);
2892 if (sec
->size
< size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
)
2895 if (sec
->size
> size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
)
2897 sec
->size
= size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
;
2904 if (isymbuf
!= NULL
&& (unsigned char *) isymbuf
!= symtab_hdr
->contents
)
2906 if (internal_relocs
!= NULL
2907 && elf_section_data (sec
)->relocs
!= internal_relocs
)
2908 free (internal_relocs
);
2912 #define ELF_ARCH bfd_arch_mmix
2913 #define ELF_MACHINE_CODE EM_MMIX
2915 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2916 However, that's too much for something somewhere in the linker part of
2917 BFD; perhaps the start-address has to be a non-zero multiple of this
2918 number, or larger than this number. The symptom is that the linker
2919 complains: "warning: allocated section `.text' not in segment". We
2920 settle for 64k; the page-size used in examples is 8k.
2921 #define ELF_MAXPAGESIZE 0x10000
2923 Unfortunately, this causes excessive padding in the supposedly small
2924 for-education programs that are the expected usage (where people would
2925 inspect output). We stick to 256 bytes just to have *some* default
2927 #define ELF_MAXPAGESIZE 0x100
2929 #define TARGET_BIG_SYM bfd_elf64_mmix_vec
2930 #define TARGET_BIG_NAME "elf64-mmix"
2932 #define elf_info_to_howto_rel NULL
2933 #define elf_info_to_howto mmix_info_to_howto_rela
2934 #define elf_backend_relocate_section mmix_elf_relocate_section
2935 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2936 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2938 #define elf_backend_link_output_symbol_hook \
2939 mmix_elf_link_output_symbol_hook
2940 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2942 #define elf_backend_check_relocs mmix_elf_check_relocs
2943 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2945 #define bfd_elf64_bfd_is_local_label_name \
2946 mmix_elf_is_local_label_name
2948 #define elf_backend_may_use_rel_p 0
2949 #define elf_backend_may_use_rela_p 1
2950 #define elf_backend_default_use_rela_p 1
2952 #define elf_backend_can_gc_sections 1
2953 #define elf_backend_section_from_bfd_section \
2954 mmix_elf_section_from_bfd_section
2956 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2957 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2958 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2960 #include "elf64-target.h"