1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "libiberty.h"
38 #include "parameters.h"
42 #include "script-sections.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
50 #include "descriptors.h"
52 #include "incremental.h"
58 // Layout::Relaxation_debug_check methods.
60 // Check that sections and special data are in reset states.
61 // We do not save states for Output_sections and special Output_data.
62 // So we check that they have not assigned any addresses or offsets.
63 // clean_up_after_relaxation simply resets their addresses and offsets.
65 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
66 const Layout::Section_list
& sections
,
67 const Layout::Data_list
& special_outputs
)
69 for(Layout::Section_list::const_iterator p
= sections
.begin();
72 gold_assert((*p
)->address_and_file_offset_have_reset_values());
74 for(Layout::Data_list::const_iterator p
= special_outputs
.begin();
75 p
!= special_outputs
.end();
77 gold_assert((*p
)->address_and_file_offset_have_reset_values());
80 // Save information of SECTIONS for checking later.
83 Layout::Relaxation_debug_check::read_sections(
84 const Layout::Section_list
& sections
)
86 for(Layout::Section_list::const_iterator p
= sections
.begin();
90 Output_section
* os
= *p
;
92 info
.output_section
= os
;
93 info
.address
= os
->is_address_valid() ? os
->address() : 0;
94 info
.data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
95 info
.offset
= os
->is_offset_valid()? os
->offset() : -1 ;
96 this->section_infos_
.push_back(info
);
100 // Verify SECTIONS using previously recorded information.
103 Layout::Relaxation_debug_check::verify_sections(
104 const Layout::Section_list
& sections
)
107 for(Layout::Section_list::const_iterator p
= sections
.begin();
111 Output_section
* os
= *p
;
112 uint64_t address
= os
->is_address_valid() ? os
->address() : 0;
113 off_t data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
114 off_t offset
= os
->is_offset_valid()? os
->offset() : -1 ;
116 if (i
>= this->section_infos_
.size())
118 gold_fatal("Section_info of %s missing.\n", os
->name());
120 const Section_info
& info
= this->section_infos_
[i
];
121 if (os
!= info
.output_section
)
122 gold_fatal("Section order changed. Expecting %s but see %s\n",
123 info
.output_section
->name(), os
->name());
124 if (address
!= info
.address
125 || data_size
!= info
.data_size
126 || offset
!= info
.offset
)
127 gold_fatal("Section %s changed.\n", os
->name());
131 // Layout_task_runner methods.
133 // Lay out the sections. This is called after all the input objects
137 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
139 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
144 // Now we know the final size of the output file and we know where
145 // each piece of information goes.
147 if (this->mapfile_
!= NULL
)
149 this->mapfile_
->print_discarded_sections(this->input_objects_
);
150 this->layout_
->print_to_mapfile(this->mapfile_
);
153 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
154 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
155 of
->set_is_temporary();
158 // Queue up the final set of tasks.
159 gold::queue_final_tasks(this->options_
, this->input_objects_
,
160 this->symtab_
, this->layout_
, workqueue
, of
);
165 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
166 : number_of_input_files_(number_of_input_files
),
167 script_options_(script_options
),
175 unattached_section_list_(),
176 special_output_list_(),
177 section_headers_(NULL
),
179 relro_segment_(NULL
),
181 symtab_section_(NULL
),
182 symtab_xindex_(NULL
),
183 dynsym_section_(NULL
),
184 dynsym_xindex_(NULL
),
185 dynamic_section_(NULL
),
186 dynamic_symbol_(NULL
),
188 eh_frame_section_(NULL
),
189 eh_frame_data_(NULL
),
190 added_eh_frame_data_(false),
191 eh_frame_hdr_section_(NULL
),
192 build_id_note_(NULL
),
196 output_file_size_(-1),
197 have_added_input_section_(false),
198 sections_are_attached_(false),
199 input_requires_executable_stack_(false),
200 input_with_gnu_stack_note_(false),
201 input_without_gnu_stack_note_(false),
202 has_static_tls_(false),
203 any_postprocessing_sections_(false),
204 resized_signatures_(false),
205 have_stabstr_section_(false),
206 incremental_inputs_(NULL
),
207 record_output_section_data_from_script_(false),
208 script_output_section_data_list_(),
209 segment_states_(NULL
),
210 relaxation_debug_check_(NULL
)
212 // Make space for more than enough segments for a typical file.
213 // This is just for efficiency--it's OK if we wind up needing more.
214 this->segment_list_
.reserve(12);
216 // We expect two unattached Output_data objects: the file header and
217 // the segment headers.
218 this->special_output_list_
.reserve(2);
220 // Initialize structure needed for an incremental build.
221 if (parameters
->incremental())
222 this->incremental_inputs_
= new Incremental_inputs
;
224 // The section name pool is worth optimizing in all cases, because
225 // it is small, but there are often overlaps due to .rel sections.
226 this->namepool_
.set_optimize();
229 // Hash a key we use to look up an output section mapping.
232 Layout::Hash_key::operator()(const Layout::Key
& k
) const
234 return k
.first
+ k
.second
.first
+ k
.second
.second
;
237 // Returns whether the given section is in the list of
238 // debug-sections-used-by-some-version-of-gdb. Currently,
239 // we've checked versions of gdb up to and including 6.7.1.
241 static const char* gdb_sections
[] =
243 // ".debug_aranges", // not used by gdb as of 6.7.1
250 // ".debug_pubnames", // not used by gdb as of 6.7.1
255 static const char* lines_only_debug_sections
[] =
257 // ".debug_aranges", // not used by gdb as of 6.7.1
264 // ".debug_pubnames", // not used by gdb as of 6.7.1
270 is_gdb_debug_section(const char* str
)
272 // We can do this faster: binary search or a hashtable. But why bother?
273 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
274 if (strcmp(str
, gdb_sections
[i
]) == 0)
280 is_lines_only_debug_section(const char* str
)
282 // We can do this faster: binary search or a hashtable. But why bother?
284 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
286 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
291 // Sometimes we compress sections. This is typically done for
292 // sections that are not part of normal program execution (such as
293 // .debug_* sections), and where the readers of these sections know
294 // how to deal with compressed sections. This routine doesn't say for
295 // certain whether we'll compress -- it depends on commandline options
296 // as well -- just whether this section is a candidate for compression.
297 // (The Output_compressed_section class decides whether to compress
298 // a given section, and picks the name of the compressed section.)
301 is_compressible_debug_section(const char* secname
)
303 return (is_prefix_of(".debug", secname
));
306 // We may see compressed debug sections in input files. Return TRUE
307 // if this is the name of a compressed debug section.
310 is_compressed_debug_section(const char* secname
)
312 return (is_prefix_of(".zdebug", secname
));
315 // Whether to include this section in the link.
317 template<int size
, bool big_endian
>
319 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
320 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
322 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
325 switch (shdr
.get_sh_type())
327 case elfcpp::SHT_NULL
:
328 case elfcpp::SHT_SYMTAB
:
329 case elfcpp::SHT_DYNSYM
:
330 case elfcpp::SHT_HASH
:
331 case elfcpp::SHT_DYNAMIC
:
332 case elfcpp::SHT_SYMTAB_SHNDX
:
335 case elfcpp::SHT_STRTAB
:
336 // Discard the sections which have special meanings in the ELF
337 // ABI. Keep others (e.g., .stabstr). We could also do this by
338 // checking the sh_link fields of the appropriate sections.
339 return (strcmp(name
, ".dynstr") != 0
340 && strcmp(name
, ".strtab") != 0
341 && strcmp(name
, ".shstrtab") != 0);
343 case elfcpp::SHT_RELA
:
344 case elfcpp::SHT_REL
:
345 case elfcpp::SHT_GROUP
:
346 // If we are emitting relocations these should be handled
348 gold_assert(!parameters
->options().relocatable()
349 && !parameters
->options().emit_relocs());
352 case elfcpp::SHT_PROGBITS
:
353 if (parameters
->options().strip_debug()
354 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
356 if (is_debug_info_section(name
))
359 if (parameters
->options().strip_debug_non_line()
360 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
362 // Debugging sections can only be recognized by name.
363 if (is_prefix_of(".debug", name
)
364 && !is_lines_only_debug_section(name
))
367 if (parameters
->options().strip_debug_gdb()
368 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
370 // Debugging sections can only be recognized by name.
371 if (is_prefix_of(".debug", name
)
372 && !is_gdb_debug_section(name
))
375 if (parameters
->options().strip_lto_sections()
376 && !parameters
->options().relocatable()
377 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
379 // Ignore LTO sections containing intermediate code.
380 if (is_prefix_of(".gnu.lto_", name
))
383 // The GNU linker strips .gnu_debuglink sections, so we do too.
384 // This is a feature used to keep debugging information in
386 if (strcmp(name
, ".gnu_debuglink") == 0)
395 // Return an output section named NAME, or NULL if there is none.
398 Layout::find_output_section(const char* name
) const
400 for (Section_list::const_iterator p
= this->section_list_
.begin();
401 p
!= this->section_list_
.end();
403 if (strcmp((*p
)->name(), name
) == 0)
408 // Return an output segment of type TYPE, with segment flags SET set
409 // and segment flags CLEAR clear. Return NULL if there is none.
412 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
413 elfcpp::Elf_Word clear
) const
415 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
416 p
!= this->segment_list_
.end();
418 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
419 && ((*p
)->flags() & set
) == set
420 && ((*p
)->flags() & clear
) == 0)
425 // Return the output section to use for section NAME with type TYPE
426 // and section flags FLAGS. NAME must be canonicalized in the string
427 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
428 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
429 // is used by the dynamic linker. IS_RELRO is true for a relro
430 // section. IS_LAST_RELRO is true for the last relro section.
431 // IS_FIRST_NON_RELRO is true for the first non-relro section.
434 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
435 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
436 Output_section_order order
, bool is_relro
)
438 elfcpp::Elf_Xword lookup_flags
= flags
;
440 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
441 // read-write with read-only sections. Some other ELF linkers do
442 // not do this. FIXME: Perhaps there should be an option
444 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
446 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
447 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
448 std::pair
<Section_name_map::iterator
, bool> ins(
449 this->section_name_map_
.insert(v
));
452 return ins
.first
->second
;
455 // This is the first time we've seen this name/type/flags
456 // combination. For compatibility with the GNU linker, we
457 // combine sections with contents and zero flags with sections
458 // with non-zero flags. This is a workaround for cases where
459 // assembler code forgets to set section flags. FIXME: Perhaps
460 // there should be an option to control this.
461 Output_section
* os
= NULL
;
463 if (type
== elfcpp::SHT_PROGBITS
)
467 Output_section
* same_name
= this->find_output_section(name
);
468 if (same_name
!= NULL
469 && same_name
->type() == elfcpp::SHT_PROGBITS
470 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
473 else if ((flags
& elfcpp::SHF_TLS
) == 0)
475 elfcpp::Elf_Xword zero_flags
= 0;
476 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
477 Section_name_map::iterator p
=
478 this->section_name_map_
.find(zero_key
);
479 if (p
!= this->section_name_map_
.end())
485 os
= this->make_output_section(name
, type
, flags
, order
, is_relro
);
487 ins
.first
->second
= os
;
492 // Pick the output section to use for section NAME, in input file
493 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
494 // linker created section. IS_INPUT_SECTION is true if we are
495 // choosing an output section for an input section found in a input
496 // file. IS_INTERP is true if this is the .interp section.
497 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
498 // dynamic linker. IS_RELRO is true for a relro section.
499 // IS_LAST_RELRO is true for the last relro section.
500 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
501 // will return NULL if the input section should be discarded.
504 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
505 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
506 bool is_input_section
, Output_section_order order
,
509 // We should not see any input sections after we have attached
510 // sections to segments.
511 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
513 // Some flags in the input section should not be automatically
514 // copied to the output section.
515 flags
&= ~ (elfcpp::SHF_INFO_LINK
518 | elfcpp::SHF_STRINGS
);
520 // We only clear the SHF_LINK_ORDER flag in for
521 // a non-relocatable link.
522 if (!parameters
->options().relocatable())
523 flags
&= ~elfcpp::SHF_LINK_ORDER
;
525 if (this->script_options_
->saw_sections_clause())
527 // We are using a SECTIONS clause, so the output section is
528 // chosen based only on the name.
530 Script_sections
* ss
= this->script_options_
->script_sections();
531 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
532 Output_section
** output_section_slot
;
533 Script_sections::Section_type script_section_type
;
534 const char* orig_name
= name
;
535 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
,
536 &script_section_type
);
539 gold_debug(DEBUG_SCRIPT
, _("Unable to create output section '%s' "
540 "because it is not allowed by the "
541 "SECTIONS clause of the linker script"),
543 // The SECTIONS clause says to discard this input section.
547 // We can only handle script section types ST_NONE and ST_NOLOAD.
548 switch (script_section_type
)
550 case Script_sections::ST_NONE
:
552 case Script_sections::ST_NOLOAD
:
553 flags
&= elfcpp::SHF_ALLOC
;
559 // If this is an orphan section--one not mentioned in the linker
560 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
561 // default processing below.
563 if (output_section_slot
!= NULL
)
565 if (*output_section_slot
!= NULL
)
567 (*output_section_slot
)->update_flags_for_input_section(flags
);
568 return *output_section_slot
;
571 // We don't put sections found in the linker script into
572 // SECTION_NAME_MAP_. That keeps us from getting confused
573 // if an orphan section is mapped to a section with the same
574 // name as one in the linker script.
576 name
= this->namepool_
.add(name
, false, NULL
);
578 Output_section
* os
= this->make_output_section(name
, type
, flags
,
581 os
->set_found_in_sections_clause();
583 // Special handling for NOLOAD sections.
584 if (script_section_type
== Script_sections::ST_NOLOAD
)
588 // The constructor of Output_section sets addresses of non-ALLOC
589 // sections to 0 by default. We don't want that for NOLOAD
590 // sections even if they have no SHF_ALLOC flag.
591 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0
592 && os
->is_address_valid())
594 gold_assert(os
->address() == 0
595 && !os
->is_offset_valid()
596 && !os
->is_data_size_valid());
597 os
->reset_address_and_file_offset();
601 *output_section_slot
= os
;
606 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
608 size_t len
= strlen(name
);
609 char* uncompressed_name
= NULL
;
611 // Compressed debug sections should be mapped to the corresponding
612 // uncompressed section.
613 if (is_compressed_debug_section(name
))
615 uncompressed_name
= new char[len
];
616 uncompressed_name
[0] = '.';
617 gold_assert(name
[0] == '.' && name
[1] == 'z');
618 strncpy(&uncompressed_name
[1], &name
[2], len
- 2);
619 uncompressed_name
[len
- 1] = '\0';
621 name
= uncompressed_name
;
624 // Turn NAME from the name of the input section into the name of the
627 && !this->script_options_
->saw_sections_clause()
628 && !parameters
->options().relocatable())
629 name
= Layout::output_section_name(name
, &len
);
631 Stringpool::Key name_key
;
632 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
634 if (uncompressed_name
!= NULL
)
635 delete[] uncompressed_name
;
637 // Find or make the output section. The output section is selected
638 // based on the section name, type, and flags.
639 return this->get_output_section(name
, name_key
, type
, flags
, order
, is_relro
);
642 // Return the output section to use for input section SHNDX, with name
643 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
644 // index of a relocation section which applies to this section, or 0
645 // if none, or -1U if more than one. RELOC_TYPE is the type of the
646 // relocation section if there is one. Set *OFF to the offset of this
647 // input section without the output section. Return NULL if the
648 // section should be discarded. Set *OFF to -1 if the section
649 // contents should not be written directly to the output file, but
650 // will instead receive special handling.
652 template<int size
, bool big_endian
>
654 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
655 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
656 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
660 if (!this->include_section(object
, name
, shdr
))
665 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
666 // correct section types. Force them here.
667 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
668 if (sh_type
== elfcpp::SHT_PROGBITS
)
670 static const char init_array_prefix
[] = ".init_array";
671 static const char preinit_array_prefix
[] = ".preinit_array";
672 static const char fini_array_prefix
[] = ".fini_array";
673 static size_t init_array_prefix_size
= sizeof(init_array_prefix
) - 1;
674 static size_t preinit_array_prefix_size
=
675 sizeof(preinit_array_prefix
) - 1;
676 static size_t fini_array_prefix_size
= sizeof(fini_array_prefix
) - 1;
678 if (strncmp(name
, init_array_prefix
, init_array_prefix_size
) == 0)
679 sh_type
= elfcpp::SHT_INIT_ARRAY
;
680 else if (strncmp(name
, preinit_array_prefix
, preinit_array_prefix_size
)
682 sh_type
= elfcpp::SHT_PREINIT_ARRAY
;
683 else if (strncmp(name
, fini_array_prefix
, fini_array_prefix_size
) == 0)
684 sh_type
= elfcpp::SHT_FINI_ARRAY
;
687 // In a relocatable link a grouped section must not be combined with
688 // any other sections.
689 if (parameters
->options().relocatable()
690 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
692 name
= this->namepool_
.add(name
, true, NULL
);
693 os
= this->make_output_section(name
, sh_type
, shdr
.get_sh_flags(),
694 ORDER_INVALID
, false);
698 os
= this->choose_output_section(object
, name
, sh_type
,
699 shdr
.get_sh_flags(), true,
700 ORDER_INVALID
, false);
705 // By default the GNU linker sorts input sections whose names match
706 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
707 // are sorted by name. This is used to implement constructor
708 // priority ordering. We are compatible.
709 if (!this->script_options_
->saw_sections_clause()
710 && (is_prefix_of(".ctors.", name
)
711 || is_prefix_of(".dtors.", name
)
712 || is_prefix_of(".init_array.", name
)
713 || is_prefix_of(".fini_array.", name
)))
714 os
->set_must_sort_attached_input_sections();
716 // FIXME: Handle SHF_LINK_ORDER somewhere.
718 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
719 this->script_options_
->saw_sections_clause());
720 this->have_added_input_section_
= true;
725 // Handle a relocation section when doing a relocatable link.
727 template<int size
, bool big_endian
>
729 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
731 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
732 Output_section
* data_section
,
733 Relocatable_relocs
* rr
)
735 gold_assert(parameters
->options().relocatable()
736 || parameters
->options().emit_relocs());
738 int sh_type
= shdr
.get_sh_type();
741 if (sh_type
== elfcpp::SHT_REL
)
743 else if (sh_type
== elfcpp::SHT_RELA
)
747 name
+= data_section
->name();
749 // In a relocatable link relocs for a grouped section must not be
750 // combined with other reloc sections.
752 if (!parameters
->options().relocatable()
753 || (data_section
->flags() & elfcpp::SHF_GROUP
) == 0)
754 os
= this->choose_output_section(object
, name
.c_str(), sh_type
,
755 shdr
.get_sh_flags(), false,
756 ORDER_INVALID
, false);
759 const char* n
= this->namepool_
.add(name
.c_str(), true, NULL
);
760 os
= this->make_output_section(n
, sh_type
, shdr
.get_sh_flags(),
761 ORDER_INVALID
, false);
764 os
->set_should_link_to_symtab();
765 os
->set_info_section(data_section
);
767 Output_section_data
* posd
;
768 if (sh_type
== elfcpp::SHT_REL
)
770 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
771 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
775 else if (sh_type
== elfcpp::SHT_RELA
)
777 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
778 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
785 os
->add_output_section_data(posd
);
786 rr
->set_output_data(posd
);
791 // Handle a group section when doing a relocatable link.
793 template<int size
, bool big_endian
>
795 Layout::layout_group(Symbol_table
* symtab
,
796 Sized_relobj
<size
, big_endian
>* object
,
798 const char* group_section_name
,
799 const char* signature
,
800 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
801 elfcpp::Elf_Word flags
,
802 std::vector
<unsigned int>* shndxes
)
804 gold_assert(parameters
->options().relocatable());
805 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
806 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
807 Output_section
* os
= this->make_output_section(group_section_name
,
810 ORDER_INVALID
, false);
812 // We need to find a symbol with the signature in the symbol table.
813 // If we don't find one now, we need to look again later.
814 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
816 os
->set_info_symndx(sym
);
819 // Reserve some space to minimize reallocations.
820 if (this->group_signatures_
.empty())
821 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
823 // We will wind up using a symbol whose name is the signature.
824 // So just put the signature in the symbol name pool to save it.
825 signature
= symtab
->canonicalize_name(signature
);
826 this->group_signatures_
.push_back(Group_signature(os
, signature
));
829 os
->set_should_link_to_symtab();
832 section_size_type entry_count
=
833 convert_to_section_size_type(shdr
.get_sh_size() / 4);
834 Output_section_data
* posd
=
835 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
837 os
->add_output_section_data(posd
);
840 // Special GNU handling of sections name .eh_frame. They will
841 // normally hold exception frame data as defined by the C++ ABI
842 // (http://codesourcery.com/cxx-abi/).
844 template<int size
, bool big_endian
>
846 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
847 const unsigned char* symbols
,
849 const unsigned char* symbol_names
,
850 off_t symbol_names_size
,
852 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
853 unsigned int reloc_shndx
, unsigned int reloc_type
,
856 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
857 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
859 const char* const name
= ".eh_frame";
860 Output_section
* os
= this->choose_output_section(object
, name
,
861 elfcpp::SHT_PROGBITS
,
862 elfcpp::SHF_ALLOC
, false,
863 ORDER_EHFRAME
, false);
867 if (this->eh_frame_section_
== NULL
)
869 this->eh_frame_section_
= os
;
870 this->eh_frame_data_
= new Eh_frame();
872 if (parameters
->options().eh_frame_hdr())
874 Output_section
* hdr_os
=
875 this->choose_output_section(NULL
, ".eh_frame_hdr",
876 elfcpp::SHT_PROGBITS
,
877 elfcpp::SHF_ALLOC
, false,
878 ORDER_EHFRAME
, false);
882 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
883 this->eh_frame_data_
);
884 hdr_os
->add_output_section_data(hdr_posd
);
886 hdr_os
->set_after_input_sections();
888 if (!this->script_options_
->saw_phdrs_clause())
890 Output_segment
* hdr_oseg
;
891 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
893 hdr_oseg
->add_output_section_to_nonload(hdr_os
,
897 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
902 gold_assert(this->eh_frame_section_
== os
);
904 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
913 os
->update_flags_for_input_section(shdr
.get_sh_flags());
915 // We found a .eh_frame section we are going to optimize, so now
916 // we can add the set of optimized sections to the output
917 // section. We need to postpone adding this until we've found a
918 // section we can optimize so that the .eh_frame section in
919 // crtbegin.o winds up at the start of the output section.
920 if (!this->added_eh_frame_data_
)
922 os
->add_output_section_data(this->eh_frame_data_
);
923 this->added_eh_frame_data_
= true;
929 // We couldn't handle this .eh_frame section for some reason.
930 // Add it as a normal section.
931 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
932 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
933 saw_sections_clause
);
934 this->have_added_input_section_
= true;
940 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
941 // the output section.
944 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
945 elfcpp::Elf_Xword flags
,
946 Output_section_data
* posd
,
947 Output_section_order order
, bool is_relro
)
949 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
950 false, order
, is_relro
);
952 os
->add_output_section_data(posd
);
956 // Map section flags to segment flags.
959 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
961 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
962 if ((flags
& elfcpp::SHF_WRITE
) != 0)
964 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
969 // Make a new Output_section, and attach it to segments as
970 // appropriate. ORDER is the order in which this section should
971 // appear in the output segment. IS_RELRO is true if this is a relro
972 // (read-only after relocations) section.
975 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
976 elfcpp::Elf_Xword flags
,
977 Output_section_order order
, bool is_relro
)
980 if ((flags
& elfcpp::SHF_ALLOC
) == 0
981 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
982 && is_compressible_debug_section(name
))
983 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
985 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
986 && parameters
->options().strip_debug_non_line()
987 && strcmp(".debug_abbrev", name
) == 0)
989 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
991 if (this->debug_info_
)
992 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
994 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
995 && parameters
->options().strip_debug_non_line()
996 && strcmp(".debug_info", name
) == 0)
998 os
= this->debug_info_
= new Output_reduced_debug_info_section(
1000 if (this->debug_abbrev_
)
1001 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
1005 // FIXME: const_cast is ugly.
1006 Target
* target
= const_cast<Target
*>(¶meters
->target());
1007 os
= target
->make_output_section(name
, type
, flags
);
1010 // With -z relro, we have to recognize the special sections by name.
1011 // There is no other way.
1012 bool is_relro_local
= false;
1013 if (!this->script_options_
->saw_sections_clause()
1014 && parameters
->options().relro()
1015 && type
== elfcpp::SHT_PROGBITS
1016 && (flags
& elfcpp::SHF_ALLOC
) != 0
1017 && (flags
& elfcpp::SHF_WRITE
) != 0)
1019 if (strcmp(name
, ".data.rel.ro") == 0)
1021 else if (strcmp(name
, ".data.rel.ro.local") == 0)
1024 is_relro_local
= true;
1026 else if (type
== elfcpp::SHT_INIT_ARRAY
1027 || type
== elfcpp::SHT_FINI_ARRAY
1028 || type
== elfcpp::SHT_PREINIT_ARRAY
)
1030 else if (strcmp(name
, ".ctors") == 0
1031 || strcmp(name
, ".dtors") == 0
1032 || strcmp(name
, ".jcr") == 0)
1039 if (order
== ORDER_INVALID
&& (flags
& elfcpp::SHF_ALLOC
) != 0)
1040 order
= this->default_section_order(os
, is_relro_local
);
1042 os
->set_order(order
);
1044 parameters
->target().new_output_section(os
);
1046 this->section_list_
.push_back(os
);
1048 // The GNU linker by default sorts some sections by priority, so we
1049 // do the same. We need to know that this might happen before we
1050 // attach any input sections.
1051 if (!this->script_options_
->saw_sections_clause()
1052 && (strcmp(name
, ".ctors") == 0
1053 || strcmp(name
, ".dtors") == 0
1054 || strcmp(name
, ".init_array") == 0
1055 || strcmp(name
, ".fini_array") == 0))
1056 os
->set_may_sort_attached_input_sections();
1058 // Check for .stab*str sections, as .stab* sections need to link to
1060 if (type
== elfcpp::SHT_STRTAB
1061 && !this->have_stabstr_section_
1062 && strncmp(name
, ".stab", 5) == 0
1063 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
1064 this->have_stabstr_section_
= true;
1066 // If we have already attached the sections to segments, then we
1067 // need to attach this one now. This happens for sections created
1068 // directly by the linker.
1069 if (this->sections_are_attached_
)
1070 this->attach_section_to_segment(os
);
1075 // Return the default order in which a section should be placed in an
1076 // output segment. This function captures a lot of the ideas in
1077 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1078 // linker created section is normally set when the section is created;
1079 // this function is used for input sections.
1081 Output_section_order
1082 Layout::default_section_order(Output_section
* os
, bool is_relro_local
)
1084 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
1085 bool is_write
= (os
->flags() & elfcpp::SHF_WRITE
) != 0;
1086 bool is_execinstr
= (os
->flags() & elfcpp::SHF_EXECINSTR
) != 0;
1087 bool is_bss
= false;
1092 case elfcpp::SHT_PROGBITS
:
1094 case elfcpp::SHT_NOBITS
:
1097 case elfcpp::SHT_RELA
:
1098 case elfcpp::SHT_REL
:
1100 return ORDER_DYNAMIC_RELOCS
;
1102 case elfcpp::SHT_HASH
:
1103 case elfcpp::SHT_DYNAMIC
:
1104 case elfcpp::SHT_SHLIB
:
1105 case elfcpp::SHT_DYNSYM
:
1106 case elfcpp::SHT_GNU_HASH
:
1107 case elfcpp::SHT_GNU_verdef
:
1108 case elfcpp::SHT_GNU_verneed
:
1109 case elfcpp::SHT_GNU_versym
:
1111 return ORDER_DYNAMIC_LINKER
;
1113 case elfcpp::SHT_NOTE
:
1114 return is_write
? ORDER_RW_NOTE
: ORDER_RO_NOTE
;
1117 if ((os
->flags() & elfcpp::SHF_TLS
) != 0)
1118 return is_bss
? ORDER_TLS_BSS
: ORDER_TLS_DATA
;
1120 if (!is_bss
&& !is_write
)
1124 if (strcmp(os
->name(), ".init") == 0)
1126 else if (strcmp(os
->name(), ".fini") == 0)
1129 return is_execinstr
? ORDER_TEXT
: ORDER_READONLY
;
1133 return is_relro_local
? ORDER_RELRO_LOCAL
: ORDER_RELRO
;
1135 if (os
->is_small_section())
1136 return is_bss
? ORDER_SMALL_BSS
: ORDER_SMALL_DATA
;
1137 if (os
->is_large_section())
1138 return is_bss
? ORDER_LARGE_BSS
: ORDER_LARGE_DATA
;
1140 return is_bss
? ORDER_BSS
: ORDER_DATA
;
1143 // Attach output sections to segments. This is called after we have
1144 // seen all the input sections.
1147 Layout::attach_sections_to_segments()
1149 for (Section_list::iterator p
= this->section_list_
.begin();
1150 p
!= this->section_list_
.end();
1152 this->attach_section_to_segment(*p
);
1154 this->sections_are_attached_
= true;
1157 // Attach an output section to a segment.
1160 Layout::attach_section_to_segment(Output_section
* os
)
1162 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
1163 this->unattached_section_list_
.push_back(os
);
1165 this->attach_allocated_section_to_segment(os
);
1168 // Attach an allocated output section to a segment.
1171 Layout::attach_allocated_section_to_segment(Output_section
* os
)
1173 elfcpp::Elf_Xword flags
= os
->flags();
1174 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
1176 if (parameters
->options().relocatable())
1179 // If we have a SECTIONS clause, we can't handle the attachment to
1180 // segments until after we've seen all the sections.
1181 if (this->script_options_
->saw_sections_clause())
1184 gold_assert(!this->script_options_
->saw_phdrs_clause());
1186 // This output section goes into a PT_LOAD segment.
1188 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
1190 // Check for --section-start.
1192 bool is_address_set
= parameters
->options().section_start(os
->name(), &addr
);
1194 // In general the only thing we really care about for PT_LOAD
1195 // segments is whether or not they are writable or executable,
1196 // so that is how we search for them.
1197 // Large data sections also go into their own PT_LOAD segment.
1198 // People who need segments sorted on some other basis will
1199 // have to use a linker script.
1201 Segment_list::const_iterator p
;
1202 for (p
= this->segment_list_
.begin();
1203 p
!= this->segment_list_
.end();
1206 if ((*p
)->type() != elfcpp::PT_LOAD
)
1208 if (!parameters
->options().omagic()
1209 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
1211 if (parameters
->options().rosegment()
1212 && ((*p
)->flags() & elfcpp::PF_X
) != (seg_flags
& elfcpp::PF_X
))
1214 // If -Tbss was specified, we need to separate the data and BSS
1216 if (parameters
->options().user_set_Tbss())
1218 if ((os
->type() == elfcpp::SHT_NOBITS
)
1219 == (*p
)->has_any_data_sections())
1222 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
1227 if ((*p
)->are_addresses_set())
1230 (*p
)->add_initial_output_data(os
);
1231 (*p
)->update_flags_for_output_section(seg_flags
);
1232 (*p
)->set_addresses(addr
, addr
);
1236 (*p
)->add_output_section_to_load(this, os
, seg_flags
);
1240 if (p
== this->segment_list_
.end())
1242 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
1244 if (os
->is_large_data_section())
1245 oseg
->set_is_large_data_segment();
1246 oseg
->add_output_section_to_load(this, os
, seg_flags
);
1248 oseg
->set_addresses(addr
, addr
);
1251 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1253 if (os
->type() == elfcpp::SHT_NOTE
)
1255 // See if we already have an equivalent PT_NOTE segment.
1256 for (p
= this->segment_list_
.begin();
1257 p
!= segment_list_
.end();
1260 if ((*p
)->type() == elfcpp::PT_NOTE
1261 && (((*p
)->flags() & elfcpp::PF_W
)
1262 == (seg_flags
& elfcpp::PF_W
)))
1264 (*p
)->add_output_section_to_nonload(os
, seg_flags
);
1269 if (p
== this->segment_list_
.end())
1271 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
1273 oseg
->add_output_section_to_nonload(os
, seg_flags
);
1277 // If we see a loadable SHF_TLS section, we create a PT_TLS
1278 // segment. There can only be one such segment.
1279 if ((flags
& elfcpp::SHF_TLS
) != 0)
1281 if (this->tls_segment_
== NULL
)
1282 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
1283 this->tls_segment_
->add_output_section_to_nonload(os
, seg_flags
);
1286 // If -z relro is in effect, and we see a relro section, we create a
1287 // PT_GNU_RELRO segment. There can only be one such segment.
1288 if (os
->is_relro() && parameters
->options().relro())
1290 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
1291 if (this->relro_segment_
== NULL
)
1292 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
1293 this->relro_segment_
->add_output_section_to_nonload(os
, seg_flags
);
1297 // Make an output section for a script.
1300 Layout::make_output_section_for_script(
1302 Script_sections::Section_type section_type
)
1304 name
= this->namepool_
.add(name
, false, NULL
);
1305 elfcpp::Elf_Xword sh_flags
= elfcpp::SHF_ALLOC
;
1306 if (section_type
== Script_sections::ST_NOLOAD
)
1308 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
1309 sh_flags
, ORDER_INVALID
,
1311 os
->set_found_in_sections_clause();
1312 if (section_type
== Script_sections::ST_NOLOAD
)
1313 os
->set_is_noload();
1317 // Return the number of segments we expect to see.
1320 Layout::expected_segment_count() const
1322 size_t ret
= this->segment_list_
.size();
1324 // If we didn't see a SECTIONS clause in a linker script, we should
1325 // already have the complete list of segments. Otherwise we ask the
1326 // SECTIONS clause how many segments it expects, and add in the ones
1327 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1329 if (!this->script_options_
->saw_sections_clause())
1333 const Script_sections
* ss
= this->script_options_
->script_sections();
1334 return ret
+ ss
->expected_segment_count(this);
1338 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1339 // is whether we saw a .note.GNU-stack section in the object file.
1340 // GNU_STACK_FLAGS is the section flags. The flags give the
1341 // protection required for stack memory. We record this in an
1342 // executable as a PT_GNU_STACK segment. If an object file does not
1343 // have a .note.GNU-stack segment, we must assume that it is an old
1344 // object. On some targets that will force an executable stack.
1347 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
1349 if (!seen_gnu_stack
)
1350 this->input_without_gnu_stack_note_
= true;
1353 this->input_with_gnu_stack_note_
= true;
1354 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1355 this->input_requires_executable_stack_
= true;
1359 // Create automatic note sections.
1362 Layout::create_notes()
1364 this->create_gold_note();
1365 this->create_executable_stack_info();
1366 this->create_build_id();
1369 // Create the dynamic sections which are needed before we read the
1373 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1375 if (parameters
->doing_static_link())
1378 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1379 elfcpp::SHT_DYNAMIC
,
1381 | elfcpp::SHF_WRITE
),
1385 this->dynamic_symbol_
=
1386 symtab
->define_in_output_data("_DYNAMIC", NULL
, Symbol_table::PREDEFINED
,
1387 this->dynamic_section_
, 0, 0,
1388 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1389 elfcpp::STV_HIDDEN
, 0, false, false);
1391 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1393 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1396 // For each output section whose name can be represented as C symbol,
1397 // define __start and __stop symbols for the section. This is a GNU
1401 Layout::define_section_symbols(Symbol_table
* symtab
)
1403 for (Section_list::const_iterator p
= this->section_list_
.begin();
1404 p
!= this->section_list_
.end();
1407 const char* const name
= (*p
)->name();
1408 if (is_cident(name
))
1410 const std::string
name_string(name
);
1411 const std::string
start_name(cident_section_start_prefix
1413 const std::string
stop_name(cident_section_stop_prefix
1416 symtab
->define_in_output_data(start_name
.c_str(),
1418 Symbol_table::PREDEFINED
,
1424 elfcpp::STV_DEFAULT
,
1426 false, // offset_is_from_end
1427 true); // only_if_ref
1429 symtab
->define_in_output_data(stop_name
.c_str(),
1431 Symbol_table::PREDEFINED
,
1437 elfcpp::STV_DEFAULT
,
1439 true, // offset_is_from_end
1440 true); // only_if_ref
1445 // Define symbols for group signatures.
1448 Layout::define_group_signatures(Symbol_table
* symtab
)
1450 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1451 p
!= this->group_signatures_
.end();
1454 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1456 p
->section
->set_info_symndx(sym
);
1459 // Force the name of the group section to the group
1460 // signature, and use the group's section symbol as the
1461 // signature symbol.
1462 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1464 const char* name
= this->namepool_
.add(p
->signature
,
1466 p
->section
->set_name(name
);
1468 p
->section
->set_needs_symtab_index();
1469 p
->section
->set_info_section_symndx(p
->section
);
1473 this->group_signatures_
.clear();
1476 // Find the first read-only PT_LOAD segment, creating one if
1480 Layout::find_first_load_seg()
1482 Output_segment
* best
= NULL
;
1483 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1484 p
!= this->segment_list_
.end();
1487 if ((*p
)->type() == elfcpp::PT_LOAD
1488 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1489 && (parameters
->options().omagic()
1490 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1492 if (best
== NULL
|| this->segment_precedes(*p
, best
))
1499 gold_assert(!this->script_options_
->saw_phdrs_clause());
1501 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1506 // Save states of all current output segments. Store saved states
1507 // in SEGMENT_STATES.
1510 Layout::save_segments(Segment_states
* segment_states
)
1512 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1513 p
!= this->segment_list_
.end();
1516 Output_segment
* segment
= *p
;
1518 Output_segment
* copy
= new Output_segment(*segment
);
1519 (*segment_states
)[segment
] = copy
;
1523 // Restore states of output segments and delete any segment not found in
1527 Layout::restore_segments(const Segment_states
* segment_states
)
1529 // Go through the segment list and remove any segment added in the
1531 this->tls_segment_
= NULL
;
1532 this->relro_segment_
= NULL
;
1533 Segment_list::iterator list_iter
= this->segment_list_
.begin();
1534 while (list_iter
!= this->segment_list_
.end())
1536 Output_segment
* segment
= *list_iter
;
1537 Segment_states::const_iterator states_iter
=
1538 segment_states
->find(segment
);
1539 if (states_iter
!= segment_states
->end())
1541 const Output_segment
* copy
= states_iter
->second
;
1542 // Shallow copy to restore states.
1545 // Also fix up TLS and RELRO segment pointers as appropriate.
1546 if (segment
->type() == elfcpp::PT_TLS
)
1547 this->tls_segment_
= segment
;
1548 else if (segment
->type() == elfcpp::PT_GNU_RELRO
)
1549 this->relro_segment_
= segment
;
1555 list_iter
= this->segment_list_
.erase(list_iter
);
1556 // This is a segment created during section layout. It should be
1557 // safe to remove it since we should have removed all pointers to it.
1563 // Clean up after relaxation so that sections can be laid out again.
1566 Layout::clean_up_after_relaxation()
1568 // Restore the segments to point state just prior to the relaxation loop.
1569 Script_sections
* script_section
= this->script_options_
->script_sections();
1570 script_section
->release_segments();
1571 this->restore_segments(this->segment_states_
);
1573 // Reset section addresses and file offsets
1574 for (Section_list::iterator p
= this->section_list_
.begin();
1575 p
!= this->section_list_
.end();
1578 (*p
)->restore_states();
1580 // If an input section changes size because of relaxation,
1581 // we need to adjust the section offsets of all input sections.
1582 // after such a section.
1583 if ((*p
)->section_offsets_need_adjustment())
1584 (*p
)->adjust_section_offsets();
1586 (*p
)->reset_address_and_file_offset();
1589 // Reset special output object address and file offsets.
1590 for (Data_list::iterator p
= this->special_output_list_
.begin();
1591 p
!= this->special_output_list_
.end();
1593 (*p
)->reset_address_and_file_offset();
1595 // A linker script may have created some output section data objects.
1596 // They are useless now.
1597 for (Output_section_data_list::const_iterator p
=
1598 this->script_output_section_data_list_
.begin();
1599 p
!= this->script_output_section_data_list_
.end();
1602 this->script_output_section_data_list_
.clear();
1605 // Prepare for relaxation.
1608 Layout::prepare_for_relaxation()
1610 // Create an relaxation debug check if in debugging mode.
1611 if (is_debugging_enabled(DEBUG_RELAXATION
))
1612 this->relaxation_debug_check_
= new Relaxation_debug_check();
1614 // Save segment states.
1615 this->segment_states_
= new Segment_states();
1616 this->save_segments(this->segment_states_
);
1618 for(Section_list::const_iterator p
= this->section_list_
.begin();
1619 p
!= this->section_list_
.end();
1621 (*p
)->save_states();
1623 if (is_debugging_enabled(DEBUG_RELAXATION
))
1624 this->relaxation_debug_check_
->check_output_data_for_reset_values(
1625 this->section_list_
, this->special_output_list_
);
1627 // Also enable recording of output section data from scripts.
1628 this->record_output_section_data_from_script_
= true;
1631 // Relaxation loop body: If target has no relaxation, this runs only once
1632 // Otherwise, the target relaxation hook is called at the end of
1633 // each iteration. If the hook returns true, it means re-layout of
1634 // section is required.
1636 // The number of segments created by a linking script without a PHDRS
1637 // clause may be affected by section sizes and alignments. There is
1638 // a remote chance that relaxation causes different number of PT_LOAD
1639 // segments are created and sections are attached to different segments.
1640 // Therefore, we always throw away all segments created during section
1641 // layout. In order to be able to restart the section layout, we keep
1642 // a copy of the segment list right before the relaxation loop and use
1643 // that to restore the segments.
1645 // PASS is the current relaxation pass number.
1646 // SYMTAB is a symbol table.
1647 // PLOAD_SEG is the address of a pointer for the load segment.
1648 // PHDR_SEG is a pointer to the PHDR segment.
1649 // SEGMENT_HEADERS points to the output segment header.
1650 // FILE_HEADER points to the output file header.
1651 // PSHNDX is the address to store the output section index.
1654 Layout::relaxation_loop_body(
1657 Symbol_table
* symtab
,
1658 Output_segment
** pload_seg
,
1659 Output_segment
* phdr_seg
,
1660 Output_segment_headers
* segment_headers
,
1661 Output_file_header
* file_header
,
1662 unsigned int* pshndx
)
1664 // If this is not the first iteration, we need to clean up after
1665 // relaxation so that we can lay out the sections again.
1667 this->clean_up_after_relaxation();
1669 // If there is a SECTIONS clause, put all the input sections into
1670 // the required order.
1671 Output_segment
* load_seg
;
1672 if (this->script_options_
->saw_sections_clause())
1673 load_seg
= this->set_section_addresses_from_script(symtab
);
1674 else if (parameters
->options().relocatable())
1677 load_seg
= this->find_first_load_seg();
1679 if (parameters
->options().oformat_enum()
1680 != General_options::OBJECT_FORMAT_ELF
)
1683 // If the user set the address of the text segment, that may not be
1684 // compatible with putting the segment headers and file headers into
1686 if (parameters
->options().user_set_Ttext())
1689 gold_assert(phdr_seg
== NULL
1691 || this->script_options_
->saw_sections_clause());
1693 // If the address of the load segment we found has been set by
1694 // --section-start rather than by a script, then adjust the VMA and
1695 // LMA downward if possible to include the file and section headers.
1696 uint64_t header_gap
= 0;
1697 if (load_seg
!= NULL
1698 && load_seg
->are_addresses_set()
1699 && !this->script_options_
->saw_sections_clause()
1700 && !parameters
->options().relocatable())
1702 file_header
->finalize_data_size();
1703 segment_headers
->finalize_data_size();
1704 size_t sizeof_headers
= (file_header
->data_size()
1705 + segment_headers
->data_size());
1706 const uint64_t abi_pagesize
= target
->abi_pagesize();
1707 uint64_t hdr_paddr
= load_seg
->paddr() - sizeof_headers
;
1708 hdr_paddr
&= ~(abi_pagesize
- 1);
1709 uint64_t subtract
= load_seg
->paddr() - hdr_paddr
;
1710 if (load_seg
->paddr() < subtract
|| load_seg
->vaddr() < subtract
)
1714 load_seg
->set_addresses(load_seg
->vaddr() - subtract
,
1715 load_seg
->paddr() - subtract
);
1716 header_gap
= subtract
- sizeof_headers
;
1720 // Lay out the segment headers.
1721 if (!parameters
->options().relocatable())
1723 gold_assert(segment_headers
!= NULL
);
1724 if (header_gap
!= 0 && load_seg
!= NULL
)
1726 Output_data_zero_fill
* z
= new Output_data_zero_fill(header_gap
, 1);
1727 load_seg
->add_initial_output_data(z
);
1729 if (load_seg
!= NULL
)
1730 load_seg
->add_initial_output_data(segment_headers
);
1731 if (phdr_seg
!= NULL
)
1732 phdr_seg
->add_initial_output_data(segment_headers
);
1735 // Lay out the file header.
1736 if (load_seg
!= NULL
)
1737 load_seg
->add_initial_output_data(file_header
);
1739 if (this->script_options_
->saw_phdrs_clause()
1740 && !parameters
->options().relocatable())
1742 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1743 // clause in a linker script.
1744 Script_sections
* ss
= this->script_options_
->script_sections();
1745 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1748 // We set the output section indexes in set_segment_offsets and
1749 // set_section_indexes.
1752 // Set the file offsets of all the segments, and all the sections
1755 if (!parameters
->options().relocatable())
1756 off
= this->set_segment_offsets(target
, load_seg
, pshndx
);
1758 off
= this->set_relocatable_section_offsets(file_header
, pshndx
);
1760 // Verify that the dummy relaxation does not change anything.
1761 if (is_debugging_enabled(DEBUG_RELAXATION
))
1764 this->relaxation_debug_check_
->read_sections(this->section_list_
);
1766 this->relaxation_debug_check_
->verify_sections(this->section_list_
);
1769 *pload_seg
= load_seg
;
1773 // Search the list of patterns and find the postion of the given section
1774 // name in the output section. If the section name matches a glob
1775 // pattern and a non-glob name, then the non-glob position takes
1776 // precedence. Return 0 if no match is found.
1779 Layout::find_section_order_index(const std::string
& section_name
)
1781 Unordered_map
<std::string
, unsigned int>::iterator map_it
;
1782 map_it
= this->input_section_position_
.find(section_name
);
1783 if (map_it
!= this->input_section_position_
.end())
1784 return map_it
->second
;
1786 // Absolute match failed. Linear search the glob patterns.
1787 std::vector
<std::string
>::iterator it
;
1788 for (it
= this->input_section_glob_
.begin();
1789 it
!= this->input_section_glob_
.end();
1792 if (fnmatch((*it
).c_str(), section_name
.c_str(), FNM_NOESCAPE
) == 0)
1794 map_it
= this->input_section_position_
.find(*it
);
1795 gold_assert(map_it
!= this->input_section_position_
.end());
1796 return map_it
->second
;
1802 // Read the sequence of input sections from the file specified with
1803 // --section-ordering-file.
1806 Layout::read_layout_from_file()
1808 const char* filename
= parameters
->options().section_ordering_file();
1814 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
1815 filename
, strerror(errno
));
1817 std::getline(in
, line
); // this chops off the trailing \n, if any
1818 unsigned int position
= 1;
1822 if (!line
.empty() && line
[line
.length() - 1] == '\r') // Windows
1823 line
.resize(line
.length() - 1);
1824 // Ignore comments, beginning with '#'
1827 std::getline(in
, line
);
1830 this->input_section_position_
[line
] = position
;
1831 // Store all glob patterns in a vector.
1832 if (is_wildcard_string(line
.c_str()))
1833 this->input_section_glob_
.push_back(line
);
1835 std::getline(in
, line
);
1839 // Finalize the layout. When this is called, we have created all the
1840 // output sections and all the output segments which are based on
1841 // input sections. We have several things to do, and we have to do
1842 // them in the right order, so that we get the right results correctly
1845 // 1) Finalize the list of output segments and create the segment
1848 // 2) Finalize the dynamic symbol table and associated sections.
1850 // 3) Determine the final file offset of all the output segments.
1852 // 4) Determine the final file offset of all the SHF_ALLOC output
1855 // 5) Create the symbol table sections and the section name table
1858 // 6) Finalize the symbol table: set symbol values to their final
1859 // value and make a final determination of which symbols are going
1860 // into the output symbol table.
1862 // 7) Create the section table header.
1864 // 8) Determine the final file offset of all the output sections which
1865 // are not SHF_ALLOC, including the section table header.
1867 // 9) Finalize the ELF file header.
1869 // This function returns the size of the output file.
1872 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1873 Target
* target
, const Task
* task
)
1875 target
->finalize_sections(this, input_objects
, symtab
);
1877 this->count_local_symbols(task
, input_objects
);
1879 this->link_stabs_sections();
1881 Output_segment
* phdr_seg
= NULL
;
1882 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1884 // There was a dynamic object in the link. We need to create
1885 // some information for the dynamic linker.
1887 // Create the PT_PHDR segment which will hold the program
1889 if (!this->script_options_
->saw_phdrs_clause())
1890 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1892 // Create the dynamic symbol table, including the hash table.
1893 Output_section
* dynstr
;
1894 std::vector
<Symbol
*> dynamic_symbols
;
1895 unsigned int local_dynamic_count
;
1896 Versions
versions(*this->script_options()->version_script_info(),
1898 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1899 &local_dynamic_count
, &dynamic_symbols
,
1902 // Create the .interp section to hold the name of the
1903 // interpreter, and put it in a PT_INTERP segment.
1904 if (!parameters
->options().shared())
1905 this->create_interp(target
);
1907 // Finish the .dynamic section to hold the dynamic data, and put
1908 // it in a PT_DYNAMIC segment.
1909 this->finish_dynamic_section(input_objects
, symtab
);
1911 // We should have added everything we need to the dynamic string
1913 this->dynpool_
.set_string_offsets();
1915 // Create the version sections. We can't do this until the
1916 // dynamic string table is complete.
1917 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1918 dynamic_symbols
, dynstr
);
1920 // Set the size of the _DYNAMIC symbol. We can't do this until
1921 // after we call create_version_sections.
1922 this->set_dynamic_symbol_size(symtab
);
1925 // Create segment headers.
1926 Output_segment_headers
* segment_headers
=
1927 (parameters
->options().relocatable()
1929 : new Output_segment_headers(this->segment_list_
));
1931 // Lay out the file header.
1932 Output_file_header
* file_header
1933 = new Output_file_header(target
, symtab
, segment_headers
,
1934 parameters
->options().entry());
1936 this->special_output_list_
.push_back(file_header
);
1937 if (segment_headers
!= NULL
)
1938 this->special_output_list_
.push_back(segment_headers
);
1940 // Find approriate places for orphan output sections if we are using
1942 if (this->script_options_
->saw_sections_clause())
1943 this->place_orphan_sections_in_script();
1945 Output_segment
* load_seg
;
1950 // Take a snapshot of the section layout as needed.
1951 if (target
->may_relax())
1952 this->prepare_for_relaxation();
1954 // Run the relaxation loop to lay out sections.
1957 off
= this->relaxation_loop_body(pass
, target
, symtab
, &load_seg
,
1958 phdr_seg
, segment_headers
, file_header
,
1962 while (target
->may_relax()
1963 && target
->relax(pass
, input_objects
, symtab
, this, task
));
1965 // Set the file offsets of all the non-data sections we've seen so
1966 // far which don't have to wait for the input sections. We need
1967 // this in order to finalize local symbols in non-allocated
1969 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1971 // Set the section indexes of all unallocated sections seen so far,
1972 // in case any of them are somehow referenced by a symbol.
1973 shndx
= this->set_section_indexes(shndx
);
1975 // Create the symbol table sections.
1976 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1977 if (!parameters
->doing_static_link())
1978 this->assign_local_dynsym_offsets(input_objects
);
1980 // Process any symbol assignments from a linker script. This must
1981 // be called after the symbol table has been finalized.
1982 this->script_options_
->finalize_symbols(symtab
, this);
1984 // Create the incremental inputs sections.
1985 if (this->incremental_inputs_
)
1987 this->incremental_inputs_
->finalize();
1988 this->create_incremental_info_sections(symtab
);
1991 // Create the .shstrtab section.
1992 Output_section
* shstrtab_section
= this->create_shstrtab();
1994 // Set the file offsets of the rest of the non-data sections which
1995 // don't have to wait for the input sections.
1996 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1998 // Now that all sections have been created, set the section indexes
1999 // for any sections which haven't been done yet.
2000 shndx
= this->set_section_indexes(shndx
);
2002 // Create the section table header.
2003 this->create_shdrs(shstrtab_section
, &off
);
2005 // If there are no sections which require postprocessing, we can
2006 // handle the section names now, and avoid a resize later.
2007 if (!this->any_postprocessing_sections_
)
2009 off
= this->set_section_offsets(off
,
2010 POSTPROCESSING_SECTIONS_PASS
);
2012 this->set_section_offsets(off
,
2013 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
2016 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
2018 // Now we know exactly where everything goes in the output file
2019 // (except for non-allocated sections which require postprocessing).
2020 Output_data::layout_complete();
2022 this->output_file_size_
= off
;
2027 // Create a note header following the format defined in the ELF ABI.
2028 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2029 // of the section to create, DESCSZ is the size of the descriptor.
2030 // ALLOCATE is true if the section should be allocated in memory.
2031 // This returns the new note section. It sets *TRAILING_PADDING to
2032 // the number of trailing zero bytes required.
2035 Layout::create_note(const char* name
, int note_type
,
2036 const char* section_name
, size_t descsz
,
2037 bool allocate
, size_t* trailing_padding
)
2039 // Authorities all agree that the values in a .note field should
2040 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2041 // they differ on what the alignment is for 64-bit binaries.
2042 // The GABI says unambiguously they take 8-byte alignment:
2043 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2044 // Other documentation says alignment should always be 4 bytes:
2045 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2046 // GNU ld and GNU readelf both support the latter (at least as of
2047 // version 2.16.91), and glibc always generates the latter for
2048 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2050 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2051 const int size
= parameters
->target().get_size();
2053 const int size
= 32;
2056 // The contents of the .note section.
2057 size_t namesz
= strlen(name
) + 1;
2058 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
2059 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
2061 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
2063 unsigned char* buffer
= new unsigned char[notehdrsz
];
2064 memset(buffer
, 0, notehdrsz
);
2066 bool is_big_endian
= parameters
->target().is_big_endian();
2072 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
2073 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
2074 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
2078 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
2079 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
2080 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
2083 else if (size
== 64)
2087 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
2088 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
2089 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
2093 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
2094 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
2095 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
2101 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
2103 elfcpp::Elf_Xword flags
= 0;
2104 Output_section_order order
= ORDER_INVALID
;
2107 flags
= elfcpp::SHF_ALLOC
;
2108 order
= ORDER_RO_NOTE
;
2110 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
2112 flags
, false, order
, false);
2116 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
2119 os
->add_output_section_data(posd
);
2121 *trailing_padding
= aligned_descsz
- descsz
;
2126 // For an executable or shared library, create a note to record the
2127 // version of gold used to create the binary.
2130 Layout::create_gold_note()
2132 if (parameters
->options().relocatable())
2135 std::string desc
= std::string("gold ") + gold::get_version_string();
2137 size_t trailing_padding
;
2138 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
2139 ".note.gnu.gold-version", desc
.size(),
2140 false, &trailing_padding
);
2144 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2145 os
->add_output_section_data(posd
);
2147 if (trailing_padding
> 0)
2149 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2150 os
->add_output_section_data(posd
);
2154 // Record whether the stack should be executable. This can be set
2155 // from the command line using the -z execstack or -z noexecstack
2156 // options. Otherwise, if any input file has a .note.GNU-stack
2157 // section with the SHF_EXECINSTR flag set, the stack should be
2158 // executable. Otherwise, if at least one input file a
2159 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2160 // section, we use the target default for whether the stack should be
2161 // executable. Otherwise, we don't generate a stack note. When
2162 // generating a object file, we create a .note.GNU-stack section with
2163 // the appropriate marking. When generating an executable or shared
2164 // library, we create a PT_GNU_STACK segment.
2167 Layout::create_executable_stack_info()
2169 bool is_stack_executable
;
2170 if (parameters
->options().is_execstack_set())
2171 is_stack_executable
= parameters
->options().is_stack_executable();
2172 else if (!this->input_with_gnu_stack_note_
)
2176 if (this->input_requires_executable_stack_
)
2177 is_stack_executable
= true;
2178 else if (this->input_without_gnu_stack_note_
)
2179 is_stack_executable
=
2180 parameters
->target().is_default_stack_executable();
2182 is_stack_executable
= false;
2185 if (parameters
->options().relocatable())
2187 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
2188 elfcpp::Elf_Xword flags
= 0;
2189 if (is_stack_executable
)
2190 flags
|= elfcpp::SHF_EXECINSTR
;
2191 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
,
2192 ORDER_INVALID
, false);
2196 if (this->script_options_
->saw_phdrs_clause())
2198 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
2199 if (is_stack_executable
)
2200 flags
|= elfcpp::PF_X
;
2201 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
2205 // If --build-id was used, set up the build ID note.
2208 Layout::create_build_id()
2210 if (!parameters
->options().user_set_build_id())
2213 const char* style
= parameters
->options().build_id();
2214 if (strcmp(style
, "none") == 0)
2217 // Set DESCSZ to the size of the note descriptor. When possible,
2218 // set DESC to the note descriptor contents.
2221 if (strcmp(style
, "md5") == 0)
2223 else if (strcmp(style
, "sha1") == 0)
2225 else if (strcmp(style
, "uuid") == 0)
2227 const size_t uuidsz
= 128 / 8;
2229 char buffer
[uuidsz
];
2230 memset(buffer
, 0, uuidsz
);
2232 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
2234 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2238 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
2239 release_descriptor(descriptor
, true);
2241 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
2242 else if (static_cast<size_t>(got
) != uuidsz
)
2243 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2247 desc
.assign(buffer
, uuidsz
);
2250 else if (strncmp(style
, "0x", 2) == 0)
2253 const char* p
= style
+ 2;
2256 if (hex_p(p
[0]) && hex_p(p
[1]))
2258 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
2262 else if (*p
== '-' || *p
== ':')
2265 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2268 descsz
= desc
.size();
2271 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
2274 size_t trailing_padding
;
2275 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
2276 ".note.gnu.build-id", descsz
, true,
2283 // We know the value already, so we fill it in now.
2284 gold_assert(desc
.size() == descsz
);
2286 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2287 os
->add_output_section_data(posd
);
2289 if (trailing_padding
!= 0)
2291 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2292 os
->add_output_section_data(posd
);
2297 // We need to compute a checksum after we have completed the
2299 gold_assert(trailing_padding
== 0);
2300 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
2301 os
->add_output_section_data(this->build_id_note_
);
2305 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2306 // field of the former should point to the latter. I'm not sure who
2307 // started this, but the GNU linker does it, and some tools depend
2311 Layout::link_stabs_sections()
2313 if (!this->have_stabstr_section_
)
2316 for (Section_list::iterator p
= this->section_list_
.begin();
2317 p
!= this->section_list_
.end();
2320 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
2323 const char* name
= (*p
)->name();
2324 if (strncmp(name
, ".stab", 5) != 0)
2327 size_t len
= strlen(name
);
2328 if (strcmp(name
+ len
- 3, "str") != 0)
2331 std::string
stab_name(name
, len
- 3);
2332 Output_section
* stab_sec
;
2333 stab_sec
= this->find_output_section(stab_name
.c_str());
2334 if (stab_sec
!= NULL
)
2335 stab_sec
->set_link_section(*p
);
2339 // Create .gnu_incremental_inputs and related sections needed
2340 // for the next run of incremental linking to check what has changed.
2343 Layout::create_incremental_info_sections(Symbol_table
* symtab
)
2345 Incremental_inputs
* incr
= this->incremental_inputs_
;
2347 gold_assert(incr
!= NULL
);
2349 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2350 incr
->create_data_sections(symtab
);
2352 // Add the .gnu_incremental_inputs section.
2353 const char* incremental_inputs_name
=
2354 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
2355 Output_section
* incremental_inputs_os
=
2356 this->make_output_section(incremental_inputs_name
,
2357 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0,
2358 ORDER_INVALID
, false);
2359 incremental_inputs_os
->add_output_section_data(incr
->inputs_section());
2361 // Add the .gnu_incremental_symtab section.
2362 const char* incremental_symtab_name
=
2363 this->namepool_
.add(".gnu_incremental_symtab", false, NULL
);
2364 Output_section
* incremental_symtab_os
=
2365 this->make_output_section(incremental_symtab_name
,
2366 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB
, 0,
2367 ORDER_INVALID
, false);
2368 incremental_symtab_os
->add_output_section_data(incr
->symtab_section());
2369 incremental_symtab_os
->set_entsize(4);
2371 // Add the .gnu_incremental_relocs section.
2372 const char* incremental_relocs_name
=
2373 this->namepool_
.add(".gnu_incremental_relocs", false, NULL
);
2374 Output_section
* incremental_relocs_os
=
2375 this->make_output_section(incremental_relocs_name
,
2376 elfcpp::SHT_GNU_INCREMENTAL_RELOCS
, 0,
2377 ORDER_INVALID
, false);
2378 incremental_relocs_os
->add_output_section_data(incr
->relocs_section());
2379 incremental_relocs_os
->set_entsize(incr
->relocs_entsize());
2381 // Add the .gnu_incremental_got_plt section.
2382 const char* incremental_got_plt_name
=
2383 this->namepool_
.add(".gnu_incremental_got_plt", false, NULL
);
2384 Output_section
* incremental_got_plt_os
=
2385 this->make_output_section(incremental_got_plt_name
,
2386 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT
, 0,
2387 ORDER_INVALID
, false);
2388 incremental_got_plt_os
->add_output_section_data(incr
->got_plt_section());
2390 // Add the .gnu_incremental_strtab section.
2391 const char* incremental_strtab_name
=
2392 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
2393 Output_section
* incremental_strtab_os
= this->make_output_section(incremental_strtab_name
,
2394 elfcpp::SHT_STRTAB
, 0,
2395 ORDER_INVALID
, false);
2396 Output_data_strtab
* strtab_data
=
2397 new Output_data_strtab(incr
->get_stringpool());
2398 incremental_strtab_os
->add_output_section_data(strtab_data
);
2400 incremental_inputs_os
->set_after_input_sections();
2401 incremental_symtab_os
->set_after_input_sections();
2402 incremental_relocs_os
->set_after_input_sections();
2403 incremental_got_plt_os
->set_after_input_sections();
2405 incremental_inputs_os
->set_link_section(incremental_strtab_os
);
2406 incremental_symtab_os
->set_link_section(incremental_inputs_os
);
2407 incremental_relocs_os
->set_link_section(incremental_inputs_os
);
2408 incremental_got_plt_os
->set_link_section(incremental_inputs_os
);
2411 // Return whether SEG1 should be before SEG2 in the output file. This
2412 // is based entirely on the segment type and flags. When this is
2413 // called the segment addresses has normally not yet been set.
2416 Layout::segment_precedes(const Output_segment
* seg1
,
2417 const Output_segment
* seg2
)
2419 elfcpp::Elf_Word type1
= seg1
->type();
2420 elfcpp::Elf_Word type2
= seg2
->type();
2422 // The single PT_PHDR segment is required to precede any loadable
2423 // segment. We simply make it always first.
2424 if (type1
== elfcpp::PT_PHDR
)
2426 gold_assert(type2
!= elfcpp::PT_PHDR
);
2429 if (type2
== elfcpp::PT_PHDR
)
2432 // The single PT_INTERP segment is required to precede any loadable
2433 // segment. We simply make it always second.
2434 if (type1
== elfcpp::PT_INTERP
)
2436 gold_assert(type2
!= elfcpp::PT_INTERP
);
2439 if (type2
== elfcpp::PT_INTERP
)
2442 // We then put PT_LOAD segments before any other segments.
2443 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
2445 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
2448 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2449 // segment, because that is where the dynamic linker expects to find
2450 // it (this is just for efficiency; other positions would also work
2452 if (type1
== elfcpp::PT_TLS
2453 && type2
!= elfcpp::PT_TLS
2454 && type2
!= elfcpp::PT_GNU_RELRO
)
2456 if (type2
== elfcpp::PT_TLS
2457 && type1
!= elfcpp::PT_TLS
2458 && type1
!= elfcpp::PT_GNU_RELRO
)
2461 // We put the PT_GNU_RELRO segment last, because that is where the
2462 // dynamic linker expects to find it (as with PT_TLS, this is just
2464 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
2466 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
2469 const elfcpp::Elf_Word flags1
= seg1
->flags();
2470 const elfcpp::Elf_Word flags2
= seg2
->flags();
2472 // The order of non-PT_LOAD segments is unimportant. We simply sort
2473 // by the numeric segment type and flags values. There should not
2474 // be more than one segment with the same type and flags.
2475 if (type1
!= elfcpp::PT_LOAD
)
2478 return type1
< type2
;
2479 gold_assert(flags1
!= flags2
);
2480 return flags1
< flags2
;
2483 // If the addresses are set already, sort by load address.
2484 if (seg1
->are_addresses_set())
2486 if (!seg2
->are_addresses_set())
2489 unsigned int section_count1
= seg1
->output_section_count();
2490 unsigned int section_count2
= seg2
->output_section_count();
2491 if (section_count1
== 0 && section_count2
> 0)
2493 if (section_count1
> 0 && section_count2
== 0)
2496 uint64_t paddr1
= (seg1
->are_addresses_set()
2498 : seg1
->first_section_load_address());
2499 uint64_t paddr2
= (seg2
->are_addresses_set()
2501 : seg2
->first_section_load_address());
2503 if (paddr1
!= paddr2
)
2504 return paddr1
< paddr2
;
2506 else if (seg2
->are_addresses_set())
2509 // A segment which holds large data comes after a segment which does
2510 // not hold large data.
2511 if (seg1
->is_large_data_segment())
2513 if (!seg2
->is_large_data_segment())
2516 else if (seg2
->is_large_data_segment())
2519 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2520 // segments come before writable segments. Then writable segments
2521 // with data come before writable segments without data. Then
2522 // executable segments come before non-executable segments. Then
2523 // the unlikely case of a non-readable segment comes before the
2524 // normal case of a readable segment. If there are multiple
2525 // segments with the same type and flags, we require that the
2526 // address be set, and we sort by virtual address and then physical
2528 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
2529 return (flags1
& elfcpp::PF_W
) == 0;
2530 if ((flags1
& elfcpp::PF_W
) != 0
2531 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
2532 return seg1
->has_any_data_sections();
2533 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
2534 return (flags1
& elfcpp::PF_X
) != 0;
2535 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
2536 return (flags1
& elfcpp::PF_R
) == 0;
2538 // We shouldn't get here--we shouldn't create segments which we
2539 // can't distinguish.
2543 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2546 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
2548 uint64_t unsigned_off
= off
;
2549 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
2550 | (addr
& (abi_pagesize
- 1)));
2551 if (aligned_off
< unsigned_off
)
2552 aligned_off
+= abi_pagesize
;
2556 // Set the file offsets of all the segments, and all the sections they
2557 // contain. They have all been created. LOAD_SEG must be be laid out
2558 // first. Return the offset of the data to follow.
2561 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
2562 unsigned int* pshndx
)
2564 // Sort them into the final order.
2565 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
2566 Layout::Compare_segments());
2568 // Find the PT_LOAD segments, and set their addresses and offsets
2569 // and their section's addresses and offsets.
2571 if (parameters
->options().user_set_Ttext())
2572 addr
= parameters
->options().Ttext();
2573 else if (parameters
->options().output_is_position_independent())
2576 addr
= target
->default_text_segment_address();
2579 // If LOAD_SEG is NULL, then the file header and segment headers
2580 // will not be loadable. But they still need to be at offset 0 in
2581 // the file. Set their offsets now.
2582 if (load_seg
== NULL
)
2584 for (Data_list::iterator p
= this->special_output_list_
.begin();
2585 p
!= this->special_output_list_
.end();
2588 off
= align_address(off
, (*p
)->addralign());
2589 (*p
)->set_address_and_file_offset(0, off
);
2590 off
+= (*p
)->data_size();
2594 unsigned int increase_relro
= this->increase_relro_
;
2595 if (this->script_options_
->saw_sections_clause())
2598 const bool check_sections
= parameters
->options().check_sections();
2599 Output_segment
* last_load_segment
= NULL
;
2601 for (Segment_list::iterator p
= this->segment_list_
.begin();
2602 p
!= this->segment_list_
.end();
2605 if ((*p
)->type() == elfcpp::PT_LOAD
)
2607 if (load_seg
!= NULL
&& load_seg
!= *p
)
2611 bool are_addresses_set
= (*p
)->are_addresses_set();
2612 if (are_addresses_set
)
2614 // When it comes to setting file offsets, we care about
2615 // the physical address.
2616 addr
= (*p
)->paddr();
2618 else if (parameters
->options().user_set_Tdata()
2619 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2620 && (!parameters
->options().user_set_Tbss()
2621 || (*p
)->has_any_data_sections()))
2623 addr
= parameters
->options().Tdata();
2624 are_addresses_set
= true;
2626 else if (parameters
->options().user_set_Tbss()
2627 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2628 && !(*p
)->has_any_data_sections())
2630 addr
= parameters
->options().Tbss();
2631 are_addresses_set
= true;
2634 uint64_t orig_addr
= addr
;
2635 uint64_t orig_off
= off
;
2637 uint64_t aligned_addr
= 0;
2638 uint64_t abi_pagesize
= target
->abi_pagesize();
2639 uint64_t common_pagesize
= target
->common_pagesize();
2641 if (!parameters
->options().nmagic()
2642 && !parameters
->options().omagic())
2643 (*p
)->set_minimum_p_align(common_pagesize
);
2645 if (!are_addresses_set
)
2647 // Skip the address forward one page, maintaining the same
2648 // position within the page. This lets us store both segments
2649 // overlapping on a single page in the file, but the loader will
2650 // put them on different pages in memory. We will revisit this
2651 // decision once we know the size of the segment.
2653 addr
= align_address(addr
, (*p
)->maximum_alignment());
2654 aligned_addr
= addr
;
2656 if ((addr
& (abi_pagesize
- 1)) != 0)
2657 addr
= addr
+ abi_pagesize
;
2659 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2662 if (!parameters
->options().nmagic()
2663 && !parameters
->options().omagic())
2664 off
= align_file_offset(off
, addr
, abi_pagesize
);
2665 else if (load_seg
== NULL
)
2667 // This is -N or -n with a section script which prevents
2668 // us from using a load segment. We need to ensure that
2669 // the file offset is aligned to the alignment of the
2670 // segment. This is because the linker script
2671 // implicitly assumed a zero offset. If we don't align
2672 // here, then the alignment of the sections in the
2673 // linker script may not match the alignment of the
2674 // sections in the set_section_addresses call below,
2675 // causing an error about dot moving backward.
2676 off
= align_address(off
, (*p
)->maximum_alignment());
2679 unsigned int shndx_hold
= *pshndx
;
2680 bool has_relro
= false;
2681 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
2686 // Now that we know the size of this segment, we may be able
2687 // to save a page in memory, at the cost of wasting some
2688 // file space, by instead aligning to the start of a new
2689 // page. Here we use the real machine page size rather than
2690 // the ABI mandated page size. If the segment has been
2691 // aligned so that the relro data ends at a page boundary,
2692 // we do not try to realign it.
2694 if (!are_addresses_set
&& !has_relro
&& aligned_addr
!= addr
)
2696 uint64_t first_off
= (common_pagesize
2698 & (common_pagesize
- 1)));
2699 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
2702 && ((aligned_addr
& ~ (common_pagesize
- 1))
2703 != (new_addr
& ~ (common_pagesize
- 1)))
2704 && first_off
+ last_off
<= common_pagesize
)
2706 *pshndx
= shndx_hold
;
2707 addr
= align_address(aligned_addr
, common_pagesize
);
2708 addr
= align_address(addr
, (*p
)->maximum_alignment());
2709 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2710 off
= align_file_offset(off
, addr
, abi_pagesize
);
2711 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
2720 // Implement --check-sections. We know that the segments
2721 // are sorted by LMA.
2722 if (check_sections
&& last_load_segment
!= NULL
)
2724 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
2725 if (last_load_segment
->paddr() + last_load_segment
->memsz()
2728 unsigned long long lb1
= last_load_segment
->paddr();
2729 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
2730 unsigned long long lb2
= (*p
)->paddr();
2731 unsigned long long le2
= lb2
+ (*p
)->memsz();
2732 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2733 "[0x%llx -> 0x%llx]"),
2734 lb1
, le1
, lb2
, le2
);
2737 last_load_segment
= *p
;
2741 // Handle the non-PT_LOAD segments, setting their offsets from their
2742 // section's offsets.
2743 for (Segment_list::iterator p
= this->segment_list_
.begin();
2744 p
!= this->segment_list_
.end();
2747 if ((*p
)->type() != elfcpp::PT_LOAD
)
2748 (*p
)->set_offset((*p
)->type() == elfcpp::PT_GNU_RELRO
2753 // Set the TLS offsets for each section in the PT_TLS segment.
2754 if (this->tls_segment_
!= NULL
)
2755 this->tls_segment_
->set_tls_offsets();
2760 // Set the offsets of all the allocated sections when doing a
2761 // relocatable link. This does the same jobs as set_segment_offsets,
2762 // only for a relocatable link.
2765 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
2766 unsigned int* pshndx
)
2770 file_header
->set_address_and_file_offset(0, 0);
2771 off
+= file_header
->data_size();
2773 for (Section_list::iterator p
= this->section_list_
.begin();
2774 p
!= this->section_list_
.end();
2777 // We skip unallocated sections here, except that group sections
2778 // have to come first.
2779 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
2780 && (*p
)->type() != elfcpp::SHT_GROUP
)
2783 off
= align_address(off
, (*p
)->addralign());
2785 // The linker script might have set the address.
2786 if (!(*p
)->is_address_valid())
2787 (*p
)->set_address(0);
2788 (*p
)->set_file_offset(off
);
2789 (*p
)->finalize_data_size();
2790 off
+= (*p
)->data_size();
2792 (*p
)->set_out_shndx(*pshndx
);
2799 // Set the file offset of all the sections not associated with a
2803 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
2805 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2806 p
!= this->unattached_section_list_
.end();
2809 // The symtab section is handled in create_symtab_sections.
2810 if (*p
== this->symtab_section_
)
2813 // If we've already set the data size, don't set it again.
2814 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
2817 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2818 && (*p
)->requires_postprocessing())
2820 (*p
)->create_postprocessing_buffer();
2821 this->any_postprocessing_sections_
= true;
2824 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2825 && (*p
)->after_input_sections())
2827 else if (pass
== POSTPROCESSING_SECTIONS_PASS
2828 && (!(*p
)->after_input_sections()
2829 || (*p
)->type() == elfcpp::SHT_STRTAB
))
2831 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2832 && (!(*p
)->after_input_sections()
2833 || (*p
)->type() != elfcpp::SHT_STRTAB
))
2836 off
= align_address(off
, (*p
)->addralign());
2837 (*p
)->set_file_offset(off
);
2838 (*p
)->finalize_data_size();
2839 off
+= (*p
)->data_size();
2841 // At this point the name must be set.
2842 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
2843 this->namepool_
.add((*p
)->name(), false, NULL
);
2848 // Set the section indexes of all the sections not associated with a
2852 Layout::set_section_indexes(unsigned int shndx
)
2854 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2855 p
!= this->unattached_section_list_
.end();
2858 if (!(*p
)->has_out_shndx())
2860 (*p
)->set_out_shndx(shndx
);
2867 // Set the section addresses according to the linker script. This is
2868 // only called when we see a SECTIONS clause. This returns the
2869 // program segment which should hold the file header and segment
2870 // headers, if any. It will return NULL if they should not be in a
2874 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2876 Script_sections
* ss
= this->script_options_
->script_sections();
2877 gold_assert(ss
->saw_sections_clause());
2878 return this->script_options_
->set_section_addresses(symtab
, this);
2881 // Place the orphan sections in the linker script.
2884 Layout::place_orphan_sections_in_script()
2886 Script_sections
* ss
= this->script_options_
->script_sections();
2887 gold_assert(ss
->saw_sections_clause());
2889 // Place each orphaned output section in the script.
2890 for (Section_list::iterator p
= this->section_list_
.begin();
2891 p
!= this->section_list_
.end();
2894 if (!(*p
)->found_in_sections_clause())
2895 ss
->place_orphan(*p
);
2899 // Count the local symbols in the regular symbol table and the dynamic
2900 // symbol table, and build the respective string pools.
2903 Layout::count_local_symbols(const Task
* task
,
2904 const Input_objects
* input_objects
)
2906 // First, figure out an upper bound on the number of symbols we'll
2907 // be inserting into each pool. This helps us create the pools with
2908 // the right size, to avoid unnecessary hashtable resizing.
2909 unsigned int symbol_count
= 0;
2910 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2911 p
!= input_objects
->relobj_end();
2913 symbol_count
+= (*p
)->local_symbol_count();
2915 // Go from "upper bound" to "estimate." We overcount for two
2916 // reasons: we double-count symbols that occur in more than one
2917 // object file, and we count symbols that are dropped from the
2918 // output. Add it all together and assume we overcount by 100%.
2921 // We assume all symbols will go into both the sympool and dynpool.
2922 this->sympool_
.reserve(symbol_count
);
2923 this->dynpool_
.reserve(symbol_count
);
2925 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2926 p
!= input_objects
->relobj_end();
2929 Task_lock_obj
<Object
> tlo(task
, *p
);
2930 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2934 // Create the symbol table sections. Here we also set the final
2935 // values of the symbols. At this point all the loadable sections are
2936 // fully laid out. SHNUM is the number of sections so far.
2939 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2940 Symbol_table
* symtab
,
2946 if (parameters
->target().get_size() == 32)
2948 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2951 else if (parameters
->target().get_size() == 64)
2953 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2960 off
= align_address(off
, align
);
2961 off_t startoff
= off
;
2963 // Save space for the dummy symbol at the start of the section. We
2964 // never bother to write this out--it will just be left as zero.
2966 unsigned int local_symbol_index
= 1;
2968 // Add STT_SECTION symbols for each Output section which needs one.
2969 for (Section_list::iterator p
= this->section_list_
.begin();
2970 p
!= this->section_list_
.end();
2973 if (!(*p
)->needs_symtab_index())
2974 (*p
)->set_symtab_index(-1U);
2977 (*p
)->set_symtab_index(local_symbol_index
);
2978 ++local_symbol_index
;
2983 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2984 p
!= input_objects
->relobj_end();
2987 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2989 off
+= (index
- local_symbol_index
) * symsize
;
2990 local_symbol_index
= index
;
2993 unsigned int local_symcount
= local_symbol_index
;
2994 gold_assert(static_cast<off_t
>(local_symcount
* symsize
) == off
- startoff
);
2997 size_t dyn_global_index
;
2999 if (this->dynsym_section_
== NULL
)
3002 dyn_global_index
= 0;
3007 dyn_global_index
= this->dynsym_section_
->info();
3008 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
3009 dynoff
= this->dynsym_section_
->offset() + locsize
;
3010 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
3011 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
3012 == this->dynsym_section_
->data_size() - locsize
);
3015 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
3016 &this->sympool_
, &local_symcount
);
3018 if (!parameters
->options().strip_all())
3020 this->sympool_
.set_string_offsets();
3022 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
3023 Output_section
* osymtab
= this->make_output_section(symtab_name
,
3027 this->symtab_section_
= osymtab
;
3029 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
3032 osymtab
->add_output_section_data(pos
);
3034 // We generate a .symtab_shndx section if we have more than
3035 // SHN_LORESERVE sections. Technically it is possible that we
3036 // don't need one, because it is possible that there are no
3037 // symbols in any of sections with indexes larger than
3038 // SHN_LORESERVE. That is probably unusual, though, and it is
3039 // easier to always create one than to compute section indexes
3040 // twice (once here, once when writing out the symbols).
3041 if (shnum
>= elfcpp::SHN_LORESERVE
)
3043 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
3045 Output_section
* osymtab_xindex
=
3046 this->make_output_section(symtab_xindex_name
,
3047 elfcpp::SHT_SYMTAB_SHNDX
, 0,
3048 ORDER_INVALID
, false);
3050 size_t symcount
= (off
- startoff
) / symsize
;
3051 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
3053 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
3055 osymtab_xindex
->set_link_section(osymtab
);
3056 osymtab_xindex
->set_addralign(4);
3057 osymtab_xindex
->set_entsize(4);
3059 osymtab_xindex
->set_after_input_sections();
3061 // This tells the driver code to wait until the symbol table
3062 // has written out before writing out the postprocessing
3063 // sections, including the .symtab_shndx section.
3064 this->any_postprocessing_sections_
= true;
3067 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
3068 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
3073 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
3074 ostrtab
->add_output_section_data(pstr
);
3076 osymtab
->set_file_offset(startoff
);
3077 osymtab
->finalize_data_size();
3078 osymtab
->set_link_section(ostrtab
);
3079 osymtab
->set_info(local_symcount
);
3080 osymtab
->set_entsize(symsize
);
3086 // Create the .shstrtab section, which holds the names of the
3087 // sections. At the time this is called, we have created all the
3088 // output sections except .shstrtab itself.
3091 Layout::create_shstrtab()
3093 // FIXME: We don't need to create a .shstrtab section if we are
3094 // stripping everything.
3096 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
3098 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0,
3099 ORDER_INVALID
, false);
3101 if (strcmp(parameters
->options().compress_debug_sections(), "none") != 0)
3103 // We can't write out this section until we've set all the
3104 // section names, and we don't set the names of compressed
3105 // output sections until relocations are complete. FIXME: With
3106 // the current names we use, this is unnecessary.
3107 os
->set_after_input_sections();
3110 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
3111 os
->add_output_section_data(posd
);
3116 // Create the section headers. SIZE is 32 or 64. OFF is the file
3120 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
3122 Output_section_headers
* oshdrs
;
3123 oshdrs
= new Output_section_headers(this,
3124 &this->segment_list_
,
3125 &this->section_list_
,
3126 &this->unattached_section_list_
,
3129 off_t off
= align_address(*poff
, oshdrs
->addralign());
3130 oshdrs
->set_address_and_file_offset(0, off
);
3131 off
+= oshdrs
->data_size();
3133 this->section_headers_
= oshdrs
;
3136 // Count the allocated sections.
3139 Layout::allocated_output_section_count() const
3141 size_t section_count
= 0;
3142 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3143 p
!= this->segment_list_
.end();
3145 section_count
+= (*p
)->output_section_count();
3146 return section_count
;
3149 // Create the dynamic symbol table.
3152 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
3153 Symbol_table
* symtab
,
3154 Output_section
** pdynstr
,
3155 unsigned int* plocal_dynamic_count
,
3156 std::vector
<Symbol
*>* pdynamic_symbols
,
3157 Versions
* pversions
)
3159 // Count all the symbols in the dynamic symbol table, and set the
3160 // dynamic symbol indexes.
3162 // Skip symbol 0, which is always all zeroes.
3163 unsigned int index
= 1;
3165 // Add STT_SECTION symbols for each Output section which needs one.
3166 for (Section_list::iterator p
= this->section_list_
.begin();
3167 p
!= this->section_list_
.end();
3170 if (!(*p
)->needs_dynsym_index())
3171 (*p
)->set_dynsym_index(-1U);
3174 (*p
)->set_dynsym_index(index
);
3179 // Count the local symbols that need to go in the dynamic symbol table,
3180 // and set the dynamic symbol indexes.
3181 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3182 p
!= input_objects
->relobj_end();
3185 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
3189 unsigned int local_symcount
= index
;
3190 *plocal_dynamic_count
= local_symcount
;
3192 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
3193 &this->dynpool_
, pversions
);
3197 const int size
= parameters
->target().get_size();
3200 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
3203 else if (size
== 64)
3205 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
3211 // Create the dynamic symbol table section.
3213 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
3217 ORDER_DYNAMIC_LINKER
,
3220 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
3223 dynsym
->add_output_section_data(odata
);
3225 dynsym
->set_info(local_symcount
);
3226 dynsym
->set_entsize(symsize
);
3227 dynsym
->set_addralign(align
);
3229 this->dynsym_section_
= dynsym
;
3231 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3232 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
3233 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
3235 // If there are more than SHN_LORESERVE allocated sections, we
3236 // create a .dynsym_shndx section. It is possible that we don't
3237 // need one, because it is possible that there are no dynamic
3238 // symbols in any of the sections with indexes larger than
3239 // SHN_LORESERVE. This is probably unusual, though, and at this
3240 // time we don't know the actual section indexes so it is
3241 // inconvenient to check.
3242 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
3244 Output_section
* dynsym_xindex
=
3245 this->choose_output_section(NULL
, ".dynsym_shndx",
3246 elfcpp::SHT_SYMTAB_SHNDX
,
3248 false, ORDER_DYNAMIC_LINKER
, false);
3250 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
3252 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
3254 dynsym_xindex
->set_link_section(dynsym
);
3255 dynsym_xindex
->set_addralign(4);
3256 dynsym_xindex
->set_entsize(4);
3258 dynsym_xindex
->set_after_input_sections();
3260 // This tells the driver code to wait until the symbol table has
3261 // written out before writing out the postprocessing sections,
3262 // including the .dynsym_shndx section.
3263 this->any_postprocessing_sections_
= true;
3266 // Create the dynamic string table section.
3268 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
3272 ORDER_DYNAMIC_LINKER
,
3275 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
3276 dynstr
->add_output_section_data(strdata
);
3278 dynsym
->set_link_section(dynstr
);
3279 this->dynamic_section_
->set_link_section(dynstr
);
3281 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
3282 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
3286 // Create the hash tables.
3288 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
3289 || strcmp(parameters
->options().hash_style(), "both") == 0)
3291 unsigned char* phash
;
3292 unsigned int hashlen
;
3293 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
3296 Output_section
* hashsec
=
3297 this->choose_output_section(NULL
, ".hash", elfcpp::SHT_HASH
,
3298 elfcpp::SHF_ALLOC
, false,
3299 ORDER_DYNAMIC_LINKER
, false);
3301 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3305 hashsec
->add_output_section_data(hashdata
);
3307 hashsec
->set_link_section(dynsym
);
3308 hashsec
->set_entsize(4);
3310 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
3313 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
3314 || strcmp(parameters
->options().hash_style(), "both") == 0)
3316 unsigned char* phash
;
3317 unsigned int hashlen
;
3318 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
3321 Output_section
* hashsec
=
3322 this->choose_output_section(NULL
, ".gnu.hash", elfcpp::SHT_GNU_HASH
,
3323 elfcpp::SHF_ALLOC
, false,
3324 ORDER_DYNAMIC_LINKER
, false);
3326 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3330 hashsec
->add_output_section_data(hashdata
);
3332 hashsec
->set_link_section(dynsym
);
3334 // For a 64-bit target, the entries in .gnu.hash do not have a
3335 // uniform size, so we only set the entry size for a 32-bit
3337 if (parameters
->target().get_size() == 32)
3338 hashsec
->set_entsize(4);
3340 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
3344 // Assign offsets to each local portion of the dynamic symbol table.
3347 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
3349 Output_section
* dynsym
= this->dynsym_section_
;
3350 gold_assert(dynsym
!= NULL
);
3352 off_t off
= dynsym
->offset();
3354 // Skip the dummy symbol at the start of the section.
3355 off
+= dynsym
->entsize();
3357 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3358 p
!= input_objects
->relobj_end();
3361 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
3362 off
+= count
* dynsym
->entsize();
3366 // Create the version sections.
3369 Layout::create_version_sections(const Versions
* versions
,
3370 const Symbol_table
* symtab
,
3371 unsigned int local_symcount
,
3372 const std::vector
<Symbol
*>& dynamic_symbols
,
3373 const Output_section
* dynstr
)
3375 if (!versions
->any_defs() && !versions
->any_needs())
3378 switch (parameters
->size_and_endianness())
3380 #ifdef HAVE_TARGET_32_LITTLE
3381 case Parameters::TARGET_32_LITTLE
:
3382 this->sized_create_version_sections
<32, false>(versions
, symtab
,
3384 dynamic_symbols
, dynstr
);
3387 #ifdef HAVE_TARGET_32_BIG
3388 case Parameters::TARGET_32_BIG
:
3389 this->sized_create_version_sections
<32, true>(versions
, symtab
,
3391 dynamic_symbols
, dynstr
);
3394 #ifdef HAVE_TARGET_64_LITTLE
3395 case Parameters::TARGET_64_LITTLE
:
3396 this->sized_create_version_sections
<64, false>(versions
, symtab
,
3398 dynamic_symbols
, dynstr
);
3401 #ifdef HAVE_TARGET_64_BIG
3402 case Parameters::TARGET_64_BIG
:
3403 this->sized_create_version_sections
<64, true>(versions
, symtab
,
3405 dynamic_symbols
, dynstr
);
3413 // Create the version sections, sized version.
3415 template<int size
, bool big_endian
>
3417 Layout::sized_create_version_sections(
3418 const Versions
* versions
,
3419 const Symbol_table
* symtab
,
3420 unsigned int local_symcount
,
3421 const std::vector
<Symbol
*>& dynamic_symbols
,
3422 const Output_section
* dynstr
)
3424 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
3425 elfcpp::SHT_GNU_versym
,
3428 ORDER_DYNAMIC_LINKER
,
3431 unsigned char* vbuf
;
3433 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
3438 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
3441 vsec
->add_output_section_data(vdata
);
3442 vsec
->set_entsize(2);
3443 vsec
->set_link_section(this->dynsym_section_
);
3445 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3446 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
3448 if (versions
->any_defs())
3450 Output_section
* vdsec
;
3451 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
3452 elfcpp::SHT_GNU_verdef
,
3454 false, ORDER_DYNAMIC_LINKER
, false);
3456 unsigned char* vdbuf
;
3457 unsigned int vdsize
;
3458 unsigned int vdentries
;
3459 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
3460 &vdsize
, &vdentries
);
3462 Output_section_data
* vddata
=
3463 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
3465 vdsec
->add_output_section_data(vddata
);
3466 vdsec
->set_link_section(dynstr
);
3467 vdsec
->set_info(vdentries
);
3469 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
3470 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
3473 if (versions
->any_needs())
3475 Output_section
* vnsec
;
3476 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
3477 elfcpp::SHT_GNU_verneed
,
3479 false, ORDER_DYNAMIC_LINKER
, false);
3481 unsigned char* vnbuf
;
3482 unsigned int vnsize
;
3483 unsigned int vnentries
;
3484 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
3488 Output_section_data
* vndata
=
3489 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
3491 vnsec
->add_output_section_data(vndata
);
3492 vnsec
->set_link_section(dynstr
);
3493 vnsec
->set_info(vnentries
);
3495 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
3496 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
3500 // Create the .interp section and PT_INTERP segment.
3503 Layout::create_interp(const Target
* target
)
3505 const char* interp
= parameters
->options().dynamic_linker();
3508 interp
= target
->dynamic_linker();
3509 gold_assert(interp
!= NULL
);
3512 size_t len
= strlen(interp
) + 1;
3514 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
3516 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
3517 elfcpp::SHT_PROGBITS
,
3519 false, ORDER_INTERP
,
3521 osec
->add_output_section_data(odata
);
3523 if (!this->script_options_
->saw_phdrs_clause())
3525 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
3527 oseg
->add_output_section_to_nonload(osec
, elfcpp::PF_R
);
3531 // Add dynamic tags for the PLT and the dynamic relocs. This is
3532 // called by the target-specific code. This does nothing if not doing
3535 // USE_REL is true for REL relocs rather than RELA relocs.
3537 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3539 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3540 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3541 // some targets have multiple reloc sections in PLT_REL.
3543 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3544 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3546 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3550 Layout::add_target_dynamic_tags(bool use_rel
, const Output_data
* plt_got
,
3551 const Output_data
* plt_rel
,
3552 const Output_data_reloc_generic
* dyn_rel
,
3553 bool add_debug
, bool dynrel_includes_plt
)
3555 Output_data_dynamic
* odyn
= this->dynamic_data_
;
3559 if (plt_got
!= NULL
&& plt_got
->output_section() != NULL
)
3560 odyn
->add_section_address(elfcpp::DT_PLTGOT
, plt_got
);
3562 if (plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
)
3564 odyn
->add_section_size(elfcpp::DT_PLTRELSZ
, plt_rel
->output_section());
3565 odyn
->add_section_address(elfcpp::DT_JMPREL
, plt_rel
->output_section());
3566 odyn
->add_constant(elfcpp::DT_PLTREL
,
3567 use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
);
3570 if (dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
)
3572 odyn
->add_section_address(use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
,
3574 if (plt_rel
!= NULL
&& dynrel_includes_plt
)
3575 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3578 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3580 const int size
= parameters
->target().get_size();
3585 rel_tag
= elfcpp::DT_RELENT
;
3587 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 32, false>::reloc_size
;
3588 else if (size
== 64)
3589 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 64, false>::reloc_size
;
3595 rel_tag
= elfcpp::DT_RELAENT
;
3597 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 32, false>::reloc_size
;
3598 else if (size
== 64)
3599 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 64, false>::reloc_size
;
3603 odyn
->add_constant(rel_tag
, rel_size
);
3605 if (parameters
->options().combreloc())
3607 size_t c
= dyn_rel
->relative_reloc_count();
3609 odyn
->add_constant((use_rel
3610 ? elfcpp::DT_RELCOUNT
3611 : elfcpp::DT_RELACOUNT
),
3616 if (add_debug
&& !parameters
->options().shared())
3618 // The value of the DT_DEBUG tag is filled in by the dynamic
3619 // linker at run time, and used by the debugger.
3620 odyn
->add_constant(elfcpp::DT_DEBUG
, 0);
3624 // Finish the .dynamic section and PT_DYNAMIC segment.
3627 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
3628 const Symbol_table
* symtab
)
3630 if (!this->script_options_
->saw_phdrs_clause())
3632 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
3635 oseg
->add_output_section_to_nonload(this->dynamic_section_
,
3636 elfcpp::PF_R
| elfcpp::PF_W
);
3639 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3641 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
3642 p
!= input_objects
->dynobj_end();
3645 if (!(*p
)->is_needed()
3646 && (*p
)->input_file()->options().as_needed())
3648 // This dynamic object was linked with --as-needed, but it
3653 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
3656 if (parameters
->options().shared())
3658 const char* soname
= parameters
->options().soname();
3660 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
3663 Symbol
* sym
= symtab
->lookup(parameters
->options().init());
3664 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3665 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
3667 sym
= symtab
->lookup(parameters
->options().fini());
3668 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3669 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
3671 // Look for .init_array, .preinit_array and .fini_array by checking
3673 for(Layout::Section_list::const_iterator p
= this->section_list_
.begin();
3674 p
!= this->section_list_
.end();
3676 switch((*p
)->type())
3678 case elfcpp::SHT_FINI_ARRAY
:
3679 odyn
->add_section_address(elfcpp::DT_FINI_ARRAY
, *p
);
3680 odyn
->add_section_size(elfcpp::DT_FINI_ARRAYSZ
, *p
);
3682 case elfcpp::SHT_INIT_ARRAY
:
3683 odyn
->add_section_address(elfcpp::DT_INIT_ARRAY
, *p
);
3684 odyn
->add_section_size(elfcpp::DT_INIT_ARRAYSZ
, *p
);
3686 case elfcpp::SHT_PREINIT_ARRAY
:
3687 odyn
->add_section_address(elfcpp::DT_PREINIT_ARRAY
, *p
);
3688 odyn
->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ
, *p
);
3694 // Add a DT_RPATH entry if needed.
3695 const General_options::Dir_list
& rpath(parameters
->options().rpath());
3698 std::string rpath_val
;
3699 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
3703 if (rpath_val
.empty())
3704 rpath_val
= p
->name();
3707 // Eliminate duplicates.
3708 General_options::Dir_list::const_iterator q
;
3709 for (q
= rpath
.begin(); q
!= p
; ++q
)
3710 if (q
->name() == p
->name())
3715 rpath_val
+= p
->name();
3720 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
3721 if (parameters
->options().enable_new_dtags())
3722 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
3725 // Look for text segments that have dynamic relocations.
3726 bool have_textrel
= false;
3727 if (!this->script_options_
->saw_sections_clause())
3729 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3730 p
!= this->segment_list_
.end();
3733 if (((*p
)->flags() & elfcpp::PF_W
) == 0
3734 && (*p
)->has_dynamic_reloc())
3736 have_textrel
= true;
3743 // We don't know the section -> segment mapping, so we are
3744 // conservative and just look for readonly sections with
3745 // relocations. If those sections wind up in writable segments,
3746 // then we have created an unnecessary DT_TEXTREL entry.
3747 for (Section_list::const_iterator p
= this->section_list_
.begin();
3748 p
!= this->section_list_
.end();
3751 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
3752 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
3753 && ((*p
)->has_dynamic_reloc()))
3755 have_textrel
= true;
3761 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3762 // post-link tools can easily modify these flags if desired.
3763 unsigned int flags
= 0;
3766 // Add a DT_TEXTREL for compatibility with older loaders.
3767 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
3768 flags
|= elfcpp::DF_TEXTREL
;
3770 if (parameters
->options().text())
3771 gold_error(_("read-only segment has dynamic relocations"));
3772 else if (parameters
->options().warn_shared_textrel()
3773 && parameters
->options().shared())
3774 gold_warning(_("shared library text segment is not shareable"));
3776 if (parameters
->options().shared() && this->has_static_tls())
3777 flags
|= elfcpp::DF_STATIC_TLS
;
3778 if (parameters
->options().origin())
3779 flags
|= elfcpp::DF_ORIGIN
;
3780 if (parameters
->options().Bsymbolic())
3782 flags
|= elfcpp::DF_SYMBOLIC
;
3783 // Add DT_SYMBOLIC for compatibility with older loaders.
3784 odyn
->add_constant(elfcpp::DT_SYMBOLIC
, 0);
3786 if (parameters
->options().now())
3787 flags
|= elfcpp::DF_BIND_NOW
;
3788 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
3791 if (parameters
->options().initfirst())
3792 flags
|= elfcpp::DF_1_INITFIRST
;
3793 if (parameters
->options().interpose())
3794 flags
|= elfcpp::DF_1_INTERPOSE
;
3795 if (parameters
->options().loadfltr())
3796 flags
|= elfcpp::DF_1_LOADFLTR
;
3797 if (parameters
->options().nodefaultlib())
3798 flags
|= elfcpp::DF_1_NODEFLIB
;
3799 if (parameters
->options().nodelete())
3800 flags
|= elfcpp::DF_1_NODELETE
;
3801 if (parameters
->options().nodlopen())
3802 flags
|= elfcpp::DF_1_NOOPEN
;
3803 if (parameters
->options().nodump())
3804 flags
|= elfcpp::DF_1_NODUMP
;
3805 if (!parameters
->options().shared())
3806 flags
&= ~(elfcpp::DF_1_INITFIRST
3807 | elfcpp::DF_1_NODELETE
3808 | elfcpp::DF_1_NOOPEN
);
3809 if (parameters
->options().origin())
3810 flags
|= elfcpp::DF_1_ORIGIN
;
3811 if (parameters
->options().now())
3812 flags
|= elfcpp::DF_1_NOW
;
3814 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
3817 // Set the size of the _DYNAMIC symbol table to be the size of the
3821 Layout::set_dynamic_symbol_size(const Symbol_table
* symtab
)
3823 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3824 odyn
->finalize_data_size();
3825 off_t data_size
= odyn
->data_size();
3826 const int size
= parameters
->target().get_size();
3828 symtab
->get_sized_symbol
<32>(this->dynamic_symbol_
)->set_symsize(data_size
);
3829 else if (size
== 64)
3830 symtab
->get_sized_symbol
<64>(this->dynamic_symbol_
)->set_symsize(data_size
);
3835 // The mapping of input section name prefixes to output section names.
3836 // In some cases one prefix is itself a prefix of another prefix; in
3837 // such a case the longer prefix must come first. These prefixes are
3838 // based on the GNU linker default ELF linker script.
3840 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3841 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
3843 MAPPING_INIT(".text.", ".text"),
3844 MAPPING_INIT(".ctors.", ".ctors"),
3845 MAPPING_INIT(".dtors.", ".dtors"),
3846 MAPPING_INIT(".rodata.", ".rodata"),
3847 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3848 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3849 MAPPING_INIT(".data.", ".data"),
3850 MAPPING_INIT(".bss.", ".bss"),
3851 MAPPING_INIT(".tdata.", ".tdata"),
3852 MAPPING_INIT(".tbss.", ".tbss"),
3853 MAPPING_INIT(".init_array.", ".init_array"),
3854 MAPPING_INIT(".fini_array.", ".fini_array"),
3855 MAPPING_INIT(".sdata.", ".sdata"),
3856 MAPPING_INIT(".sbss.", ".sbss"),
3857 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3858 // differently depending on whether it is creating a shared library.
3859 MAPPING_INIT(".sdata2.", ".sdata"),
3860 MAPPING_INIT(".sbss2.", ".sbss"),
3861 MAPPING_INIT(".lrodata.", ".lrodata"),
3862 MAPPING_INIT(".ldata.", ".ldata"),
3863 MAPPING_INIT(".lbss.", ".lbss"),
3864 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3865 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3866 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3867 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3868 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3869 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3870 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3871 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3872 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3873 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3874 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3875 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3876 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3877 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3878 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3879 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3880 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3881 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3882 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3883 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3884 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3888 const int Layout::section_name_mapping_count
=
3889 (sizeof(Layout::section_name_mapping
)
3890 / sizeof(Layout::section_name_mapping
[0]));
3892 // Choose the output section name to use given an input section name.
3893 // Set *PLEN to the length of the name. *PLEN is initialized to the
3897 Layout::output_section_name(const char* name
, size_t* plen
)
3899 // gcc 4.3 generates the following sorts of section names when it
3900 // needs a section name specific to a function:
3906 // .data.rel.local.FN
3908 // .data.rel.ro.local.FN
3915 // The GNU linker maps all of those to the part before the .FN,
3916 // except that .data.rel.local.FN is mapped to .data, and
3917 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3918 // beginning with .data.rel.ro.local are grouped together.
3920 // For an anonymous namespace, the string FN can contain a '.'.
3922 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3923 // GNU linker maps to .rodata.
3925 // The .data.rel.ro sections are used with -z relro. The sections
3926 // are recognized by name. We use the same names that the GNU
3927 // linker does for these sections.
3929 // It is hard to handle this in a principled way, so we don't even
3930 // try. We use a table of mappings. If the input section name is
3931 // not found in the table, we simply use it as the output section
3934 const Section_name_mapping
* psnm
= section_name_mapping
;
3935 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
3937 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
3939 *plen
= psnm
->tolen
;
3947 // Check if a comdat group or .gnu.linkonce section with the given
3948 // NAME is selected for the link. If there is already a section,
3949 // *KEPT_SECTION is set to point to the existing section and the
3950 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3951 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3952 // *KEPT_SECTION is set to the internal copy and the function returns
3956 Layout::find_or_add_kept_section(const std::string
& name
,
3961 Kept_section
** kept_section
)
3963 // It's normal to see a couple of entries here, for the x86 thunk
3964 // sections. If we see more than a few, we're linking a C++
3965 // program, and we resize to get more space to minimize rehashing.
3966 if (this->signatures_
.size() > 4
3967 && !this->resized_signatures_
)
3969 reserve_unordered_map(&this->signatures_
,
3970 this->number_of_input_files_
* 64);
3971 this->resized_signatures_
= true;
3974 Kept_section candidate
;
3975 std::pair
<Signatures::iterator
, bool> ins
=
3976 this->signatures_
.insert(std::make_pair(name
, candidate
));
3978 if (kept_section
!= NULL
)
3979 *kept_section
= &ins
.first
->second
;
3982 // This is the first time we've seen this signature.
3983 ins
.first
->second
.set_object(object
);
3984 ins
.first
->second
.set_shndx(shndx
);
3986 ins
.first
->second
.set_is_comdat();
3988 ins
.first
->second
.set_is_group_name();
3992 // We have already seen this signature.
3994 if (ins
.first
->second
.is_group_name())
3996 // We've already seen a real section group with this signature.
3997 // If the kept group is from a plugin object, and we're in the
3998 // replacement phase, accept the new one as a replacement.
3999 if (ins
.first
->second
.object() == NULL
4000 && parameters
->options().plugins()->in_replacement_phase())
4002 ins
.first
->second
.set_object(object
);
4003 ins
.first
->second
.set_shndx(shndx
);
4008 else if (is_group_name
)
4010 // This is a real section group, and we've already seen a
4011 // linkonce section with this signature. Record that we've seen
4012 // a section group, and don't include this section group.
4013 ins
.first
->second
.set_is_group_name();
4018 // We've already seen a linkonce section and this is a linkonce
4019 // section. These don't block each other--this may be the same
4020 // symbol name with different section types.
4025 // Store the allocated sections into the section list.
4028 Layout::get_allocated_sections(Section_list
* section_list
) const
4030 for (Section_list::const_iterator p
= this->section_list_
.begin();
4031 p
!= this->section_list_
.end();
4033 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
4034 section_list
->push_back(*p
);
4037 // Create an output segment.
4040 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
4042 gold_assert(!parameters
->options().relocatable());
4043 Output_segment
* oseg
= new Output_segment(type
, flags
);
4044 this->segment_list_
.push_back(oseg
);
4046 if (type
== elfcpp::PT_TLS
)
4047 this->tls_segment_
= oseg
;
4048 else if (type
== elfcpp::PT_GNU_RELRO
)
4049 this->relro_segment_
= oseg
;
4054 // Write out the Output_sections. Most won't have anything to write,
4055 // since most of the data will come from input sections which are
4056 // handled elsewhere. But some Output_sections do have Output_data.
4059 Layout::write_output_sections(Output_file
* of
) const
4061 for (Section_list::const_iterator p
= this->section_list_
.begin();
4062 p
!= this->section_list_
.end();
4065 if (!(*p
)->after_input_sections())
4070 // Write out data not associated with a section or the symbol table.
4073 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
4075 if (!parameters
->options().strip_all())
4077 const Output_section
* symtab_section
= this->symtab_section_
;
4078 for (Section_list::const_iterator p
= this->section_list_
.begin();
4079 p
!= this->section_list_
.end();
4082 if ((*p
)->needs_symtab_index())
4084 gold_assert(symtab_section
!= NULL
);
4085 unsigned int index
= (*p
)->symtab_index();
4086 gold_assert(index
> 0 && index
!= -1U);
4087 off_t off
= (symtab_section
->offset()
4088 + index
* symtab_section
->entsize());
4089 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
4094 const Output_section
* dynsym_section
= this->dynsym_section_
;
4095 for (Section_list::const_iterator p
= this->section_list_
.begin();
4096 p
!= this->section_list_
.end();
4099 if ((*p
)->needs_dynsym_index())
4101 gold_assert(dynsym_section
!= NULL
);
4102 unsigned int index
= (*p
)->dynsym_index();
4103 gold_assert(index
> 0 && index
!= -1U);
4104 off_t off
= (dynsym_section
->offset()
4105 + index
* dynsym_section
->entsize());
4106 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
4110 // Write out the Output_data which are not in an Output_section.
4111 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
4112 p
!= this->special_output_list_
.end();
4117 // Write out the Output_sections which can only be written after the
4118 // input sections are complete.
4121 Layout::write_sections_after_input_sections(Output_file
* of
)
4123 // Determine the final section offsets, and thus the final output
4124 // file size. Note we finalize the .shstrab last, to allow the
4125 // after_input_section sections to modify their section-names before
4127 if (this->any_postprocessing_sections_
)
4129 off_t off
= this->output_file_size_
;
4130 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
4132 // Now that we've finalized the names, we can finalize the shstrab.
4134 this->set_section_offsets(off
,
4135 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
4137 if (off
> this->output_file_size_
)
4140 this->output_file_size_
= off
;
4144 for (Section_list::const_iterator p
= this->section_list_
.begin();
4145 p
!= this->section_list_
.end();
4148 if ((*p
)->after_input_sections())
4152 this->section_headers_
->write(of
);
4155 // If the build ID requires computing a checksum, do so here, and
4156 // write it out. We compute a checksum over the entire file because
4157 // that is simplest.
4160 Layout::write_build_id(Output_file
* of
) const
4162 if (this->build_id_note_
== NULL
)
4165 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
4167 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
4168 this->build_id_note_
->data_size());
4170 const char* style
= parameters
->options().build_id();
4171 if (strcmp(style
, "sha1") == 0)
4174 sha1_init_ctx(&ctx
);
4175 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
4176 sha1_finish_ctx(&ctx
, ov
);
4178 else if (strcmp(style
, "md5") == 0)
4182 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
4183 md5_finish_ctx(&ctx
, ov
);
4188 of
->write_output_view(this->build_id_note_
->offset(),
4189 this->build_id_note_
->data_size(),
4192 of
->free_input_view(0, this->output_file_size_
, iv
);
4195 // Write out a binary file. This is called after the link is
4196 // complete. IN is the temporary output file we used to generate the
4197 // ELF code. We simply walk through the segments, read them from
4198 // their file offset in IN, and write them to their load address in
4199 // the output file. FIXME: with a bit more work, we could support
4200 // S-records and/or Intel hex format here.
4203 Layout::write_binary(Output_file
* in
) const
4205 gold_assert(parameters
->options().oformat_enum()
4206 == General_options::OBJECT_FORMAT_BINARY
);
4208 // Get the size of the binary file.
4209 uint64_t max_load_address
= 0;
4210 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4211 p
!= this->segment_list_
.end();
4214 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4216 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
4217 if (max_paddr
> max_load_address
)
4218 max_load_address
= max_paddr
;
4222 Output_file
out(parameters
->options().output_file_name());
4223 out
.open(max_load_address
);
4225 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4226 p
!= this->segment_list_
.end();
4229 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4231 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
4233 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
4235 memcpy(vout
, vin
, (*p
)->filesz());
4236 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
4237 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
4244 // Print the output sections to the map file.
4247 Layout::print_to_mapfile(Mapfile
* mapfile
) const
4249 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4250 p
!= this->segment_list_
.end();
4252 (*p
)->print_sections_to_mapfile(mapfile
);
4255 // Print statistical information to stderr. This is used for --stats.
4258 Layout::print_stats() const
4260 this->namepool_
.print_stats("section name pool");
4261 this->sympool_
.print_stats("output symbol name pool");
4262 this->dynpool_
.print_stats("dynamic name pool");
4264 for (Section_list::const_iterator p
= this->section_list_
.begin();
4265 p
!= this->section_list_
.end();
4267 (*p
)->print_merge_stats();
4270 // Write_sections_task methods.
4272 // We can always run this task.
4275 Write_sections_task::is_runnable()
4280 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4284 Write_sections_task::locks(Task_locker
* tl
)
4286 tl
->add(this, this->output_sections_blocker_
);
4287 tl
->add(this, this->final_blocker_
);
4290 // Run the task--write out the data.
4293 Write_sections_task::run(Workqueue
*)
4295 this->layout_
->write_output_sections(this->of_
);
4298 // Write_data_task methods.
4300 // We can always run this task.
4303 Write_data_task::is_runnable()
4308 // We need to unlock FINAL_BLOCKER when finished.
4311 Write_data_task::locks(Task_locker
* tl
)
4313 tl
->add(this, this->final_blocker_
);
4316 // Run the task--write out the data.
4319 Write_data_task::run(Workqueue
*)
4321 this->layout_
->write_data(this->symtab_
, this->of_
);
4324 // Write_symbols_task methods.
4326 // We can always run this task.
4329 Write_symbols_task::is_runnable()
4334 // We need to unlock FINAL_BLOCKER when finished.
4337 Write_symbols_task::locks(Task_locker
* tl
)
4339 tl
->add(this, this->final_blocker_
);
4342 // Run the task--write out the symbols.
4345 Write_symbols_task::run(Workqueue
*)
4347 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
4348 this->layout_
->symtab_xindex(),
4349 this->layout_
->dynsym_xindex(), this->of_
);
4352 // Write_after_input_sections_task methods.
4354 // We can only run this task after the input sections have completed.
4357 Write_after_input_sections_task::is_runnable()
4359 if (this->input_sections_blocker_
->is_blocked())
4360 return this->input_sections_blocker_
;
4364 // We need to unlock FINAL_BLOCKER when finished.
4367 Write_after_input_sections_task::locks(Task_locker
* tl
)
4369 tl
->add(this, this->final_blocker_
);
4375 Write_after_input_sections_task::run(Workqueue
*)
4377 this->layout_
->write_sections_after_input_sections(this->of_
);
4380 // Close_task_runner methods.
4382 // Run the task--close the file.
4385 Close_task_runner::run(Workqueue
*, const Task
*)
4387 // If we need to compute a checksum for the BUILD if, we do so here.
4388 this->layout_
->write_build_id(this->of_
);
4390 // If we've been asked to create a binary file, we do so here.
4391 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
4392 this->layout_
->write_binary(this->of_
);
4397 // Instantiate the templates we need. We could use the configure
4398 // script to restrict this to only the ones for implemented targets.
4400 #ifdef HAVE_TARGET_32_LITTLE
4403 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
4405 const elfcpp::Shdr
<32, false>& shdr
,
4406 unsigned int, unsigned int, off_t
*);
4409 #ifdef HAVE_TARGET_32_BIG
4412 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
4414 const elfcpp::Shdr
<32, true>& shdr
,
4415 unsigned int, unsigned int, off_t
*);
4418 #ifdef HAVE_TARGET_64_LITTLE
4421 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
4423 const elfcpp::Shdr
<64, false>& shdr
,
4424 unsigned int, unsigned int, off_t
*);
4427 #ifdef HAVE_TARGET_64_BIG
4430 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
4432 const elfcpp::Shdr
<64, true>& shdr
,
4433 unsigned int, unsigned int, off_t
*);
4436 #ifdef HAVE_TARGET_32_LITTLE
4439 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
4440 unsigned int reloc_shndx
,
4441 const elfcpp::Shdr
<32, false>& shdr
,
4442 Output_section
* data_section
,
4443 Relocatable_relocs
* rr
);
4446 #ifdef HAVE_TARGET_32_BIG
4449 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
4450 unsigned int reloc_shndx
,
4451 const elfcpp::Shdr
<32, true>& shdr
,
4452 Output_section
* data_section
,
4453 Relocatable_relocs
* rr
);
4456 #ifdef HAVE_TARGET_64_LITTLE
4459 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
4460 unsigned int reloc_shndx
,
4461 const elfcpp::Shdr
<64, false>& shdr
,
4462 Output_section
* data_section
,
4463 Relocatable_relocs
* rr
);
4466 #ifdef HAVE_TARGET_64_BIG
4469 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
4470 unsigned int reloc_shndx
,
4471 const elfcpp::Shdr
<64, true>& shdr
,
4472 Output_section
* data_section
,
4473 Relocatable_relocs
* rr
);
4476 #ifdef HAVE_TARGET_32_LITTLE
4479 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
4480 Sized_relobj
<32, false>* object
,
4482 const char* group_section_name
,
4483 const char* signature
,
4484 const elfcpp::Shdr
<32, false>& shdr
,
4485 elfcpp::Elf_Word flags
,
4486 std::vector
<unsigned int>* shndxes
);
4489 #ifdef HAVE_TARGET_32_BIG
4492 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
4493 Sized_relobj
<32, true>* object
,
4495 const char* group_section_name
,
4496 const char* signature
,
4497 const elfcpp::Shdr
<32, true>& shdr
,
4498 elfcpp::Elf_Word flags
,
4499 std::vector
<unsigned int>* shndxes
);
4502 #ifdef HAVE_TARGET_64_LITTLE
4505 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
4506 Sized_relobj
<64, false>* object
,
4508 const char* group_section_name
,
4509 const char* signature
,
4510 const elfcpp::Shdr
<64, false>& shdr
,
4511 elfcpp::Elf_Word flags
,
4512 std::vector
<unsigned int>* shndxes
);
4515 #ifdef HAVE_TARGET_64_BIG
4518 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
4519 Sized_relobj
<64, true>* object
,
4521 const char* group_section_name
,
4522 const char* signature
,
4523 const elfcpp::Shdr
<64, true>& shdr
,
4524 elfcpp::Elf_Word flags
,
4525 std::vector
<unsigned int>* shndxes
);
4528 #ifdef HAVE_TARGET_32_LITTLE
4531 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
4532 const unsigned char* symbols
,
4534 const unsigned char* symbol_names
,
4535 off_t symbol_names_size
,
4537 const elfcpp::Shdr
<32, false>& shdr
,
4538 unsigned int reloc_shndx
,
4539 unsigned int reloc_type
,
4543 #ifdef HAVE_TARGET_32_BIG
4546 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
4547 const unsigned char* symbols
,
4549 const unsigned char* symbol_names
,
4550 off_t symbol_names_size
,
4552 const elfcpp::Shdr
<32, true>& shdr
,
4553 unsigned int reloc_shndx
,
4554 unsigned int reloc_type
,
4558 #ifdef HAVE_TARGET_64_LITTLE
4561 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
4562 const unsigned char* symbols
,
4564 const unsigned char* symbol_names
,
4565 off_t symbol_names_size
,
4567 const elfcpp::Shdr
<64, false>& shdr
,
4568 unsigned int reloc_shndx
,
4569 unsigned int reloc_type
,
4573 #ifdef HAVE_TARGET_64_BIG
4576 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
4577 const unsigned char* symbols
,
4579 const unsigned char* symbol_names
,
4580 off_t symbol_names_size
,
4582 const elfcpp::Shdr
<64, true>& shdr
,
4583 unsigned int reloc_shndx
,
4584 unsigned int reloc_type
,
4588 } // End namespace gold.