1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
28 #include "bfd_stdint.h"
32 #include "elf/x86-64.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 /* The relocation "howto" table. Order of fields:
38 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
39 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
40 static reloc_howto_type x86_64_elf_howto_table
[] =
42 HOWTO(R_X86_64_NONE
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
43 bfd_elf_generic_reloc
, "R_X86_64_NONE", FALSE
, 0x00000000, 0x00000000,
45 HOWTO(R_X86_64_64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
46 bfd_elf_generic_reloc
, "R_X86_64_64", FALSE
, MINUS_ONE
, MINUS_ONE
,
48 HOWTO(R_X86_64_PC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
49 bfd_elf_generic_reloc
, "R_X86_64_PC32", FALSE
, 0xffffffff, 0xffffffff,
51 HOWTO(R_X86_64_GOT32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
52 bfd_elf_generic_reloc
, "R_X86_64_GOT32", FALSE
, 0xffffffff, 0xffffffff,
54 HOWTO(R_X86_64_PLT32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
55 bfd_elf_generic_reloc
, "R_X86_64_PLT32", FALSE
, 0xffffffff, 0xffffffff,
57 HOWTO(R_X86_64_COPY
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
58 bfd_elf_generic_reloc
, "R_X86_64_COPY", FALSE
, 0xffffffff, 0xffffffff,
60 HOWTO(R_X86_64_GLOB_DAT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
61 bfd_elf_generic_reloc
, "R_X86_64_GLOB_DAT", FALSE
, MINUS_ONE
,
63 HOWTO(R_X86_64_JUMP_SLOT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
64 bfd_elf_generic_reloc
, "R_X86_64_JUMP_SLOT", FALSE
, MINUS_ONE
,
66 HOWTO(R_X86_64_RELATIVE
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
67 bfd_elf_generic_reloc
, "R_X86_64_RELATIVE", FALSE
, MINUS_ONE
,
69 HOWTO(R_X86_64_GOTPCREL
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
70 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL", FALSE
, 0xffffffff,
72 HOWTO(R_X86_64_32
, 0, 2, 32, FALSE
, 0, complain_overflow_unsigned
,
73 bfd_elf_generic_reloc
, "R_X86_64_32", FALSE
, 0xffffffff, 0xffffffff,
75 HOWTO(R_X86_64_32S
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
76 bfd_elf_generic_reloc
, "R_X86_64_32S", FALSE
, 0xffffffff, 0xffffffff,
78 HOWTO(R_X86_64_16
, 0, 1, 16, FALSE
, 0, complain_overflow_bitfield
,
79 bfd_elf_generic_reloc
, "R_X86_64_16", FALSE
, 0xffff, 0xffff, FALSE
),
80 HOWTO(R_X86_64_PC16
,0, 1, 16, TRUE
, 0, complain_overflow_bitfield
,
81 bfd_elf_generic_reloc
, "R_X86_64_PC16", FALSE
, 0xffff, 0xffff, TRUE
),
82 HOWTO(R_X86_64_8
, 0, 0, 8, FALSE
, 0, complain_overflow_bitfield
,
83 bfd_elf_generic_reloc
, "R_X86_64_8", FALSE
, 0xff, 0xff, FALSE
),
84 HOWTO(R_X86_64_PC8
, 0, 0, 8, TRUE
, 0, complain_overflow_signed
,
85 bfd_elf_generic_reloc
, "R_X86_64_PC8", FALSE
, 0xff, 0xff, TRUE
),
86 HOWTO(R_X86_64_DTPMOD64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
87 bfd_elf_generic_reloc
, "R_X86_64_DTPMOD64", FALSE
, MINUS_ONE
,
89 HOWTO(R_X86_64_DTPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
90 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF64", FALSE
, MINUS_ONE
,
92 HOWTO(R_X86_64_TPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
93 bfd_elf_generic_reloc
, "R_X86_64_TPOFF64", FALSE
, MINUS_ONE
,
95 HOWTO(R_X86_64_TLSGD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
96 bfd_elf_generic_reloc
, "R_X86_64_TLSGD", FALSE
, 0xffffffff,
98 HOWTO(R_X86_64_TLSLD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
99 bfd_elf_generic_reloc
, "R_X86_64_TLSLD", FALSE
, 0xffffffff,
101 HOWTO(R_X86_64_DTPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
102 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF32", FALSE
, 0xffffffff,
104 HOWTO(R_X86_64_GOTTPOFF
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
105 bfd_elf_generic_reloc
, "R_X86_64_GOTTPOFF", FALSE
, 0xffffffff,
107 HOWTO(R_X86_64_TPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
108 bfd_elf_generic_reloc
, "R_X86_64_TPOFF32", FALSE
, 0xffffffff,
110 HOWTO(R_X86_64_PC64
, 0, 4, 64, TRUE
, 0, complain_overflow_bitfield
,
111 bfd_elf_generic_reloc
, "R_X86_64_PC64", FALSE
, MINUS_ONE
, MINUS_ONE
,
113 HOWTO(R_X86_64_GOTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
114 bfd_elf_generic_reloc
, "R_X86_64_GOTOFF64",
115 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
116 HOWTO(R_X86_64_GOTPC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
117 bfd_elf_generic_reloc
, "R_X86_64_GOTPC32",
118 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
119 HOWTO(R_X86_64_GOT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
120 bfd_elf_generic_reloc
, "R_X86_64_GOT64", FALSE
, MINUS_ONE
, MINUS_ONE
,
122 HOWTO(R_X86_64_GOTPCREL64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
123 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL64", FALSE
, MINUS_ONE
,
125 HOWTO(R_X86_64_GOTPC64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
126 bfd_elf_generic_reloc
, "R_X86_64_GOTPC64",
127 FALSE
, MINUS_ONE
, MINUS_ONE
, TRUE
),
128 HOWTO(R_X86_64_GOTPLT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
129 bfd_elf_generic_reloc
, "R_X86_64_GOTPLT64", FALSE
, MINUS_ONE
,
131 HOWTO(R_X86_64_PLTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
132 bfd_elf_generic_reloc
, "R_X86_64_PLTOFF64", FALSE
, MINUS_ONE
,
136 HOWTO(R_X86_64_GOTPC32_TLSDESC
, 0, 2, 32, TRUE
, 0,
137 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
138 "R_X86_64_GOTPC32_TLSDESC",
139 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
140 HOWTO(R_X86_64_TLSDESC_CALL
, 0, 0, 0, FALSE
, 0,
141 complain_overflow_dont
, bfd_elf_generic_reloc
,
142 "R_X86_64_TLSDESC_CALL",
144 HOWTO(R_X86_64_TLSDESC
, 0, 4, 64, FALSE
, 0,
145 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
147 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
148 HOWTO(R_X86_64_IRELATIVE
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
149 bfd_elf_generic_reloc
, "R_X86_64_IRELATIVE", FALSE
, MINUS_ONE
,
152 /* We have a gap in the reloc numbers here.
153 R_X86_64_standard counts the number up to this point, and
154 R_X86_64_vt_offset is the value to subtract from a reloc type of
155 R_X86_64_GNU_VT* to form an index into this table. */
156 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
157 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
159 /* GNU extension to record C++ vtable hierarchy. */
160 HOWTO (R_X86_64_GNU_VTINHERIT
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
161 NULL
, "R_X86_64_GNU_VTINHERIT", FALSE
, 0, 0, FALSE
),
163 /* GNU extension to record C++ vtable member usage. */
164 HOWTO (R_X86_64_GNU_VTENTRY
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
165 _bfd_elf_rel_vtable_reloc_fn
, "R_X86_64_GNU_VTENTRY", FALSE
, 0, 0,
169 #define IS_X86_64_PCREL_TYPE(TYPE) \
170 ( ((TYPE) == R_X86_64_PC8) \
171 || ((TYPE) == R_X86_64_PC16) \
172 || ((TYPE) == R_X86_64_PC32) \
173 || ((TYPE) == R_X86_64_PC64))
175 /* Map BFD relocs to the x86_64 elf relocs. */
178 bfd_reloc_code_real_type bfd_reloc_val
;
179 unsigned char elf_reloc_val
;
182 static const struct elf_reloc_map x86_64_reloc_map
[] =
184 { BFD_RELOC_NONE
, R_X86_64_NONE
, },
185 { BFD_RELOC_64
, R_X86_64_64
, },
186 { BFD_RELOC_32_PCREL
, R_X86_64_PC32
, },
187 { BFD_RELOC_X86_64_GOT32
, R_X86_64_GOT32
,},
188 { BFD_RELOC_X86_64_PLT32
, R_X86_64_PLT32
,},
189 { BFD_RELOC_X86_64_COPY
, R_X86_64_COPY
, },
190 { BFD_RELOC_X86_64_GLOB_DAT
, R_X86_64_GLOB_DAT
, },
191 { BFD_RELOC_X86_64_JUMP_SLOT
, R_X86_64_JUMP_SLOT
, },
192 { BFD_RELOC_X86_64_RELATIVE
, R_X86_64_RELATIVE
, },
193 { BFD_RELOC_X86_64_GOTPCREL
, R_X86_64_GOTPCREL
, },
194 { BFD_RELOC_32
, R_X86_64_32
, },
195 { BFD_RELOC_X86_64_32S
, R_X86_64_32S
, },
196 { BFD_RELOC_16
, R_X86_64_16
, },
197 { BFD_RELOC_16_PCREL
, R_X86_64_PC16
, },
198 { BFD_RELOC_8
, R_X86_64_8
, },
199 { BFD_RELOC_8_PCREL
, R_X86_64_PC8
, },
200 { BFD_RELOC_X86_64_DTPMOD64
, R_X86_64_DTPMOD64
, },
201 { BFD_RELOC_X86_64_DTPOFF64
, R_X86_64_DTPOFF64
, },
202 { BFD_RELOC_X86_64_TPOFF64
, R_X86_64_TPOFF64
, },
203 { BFD_RELOC_X86_64_TLSGD
, R_X86_64_TLSGD
, },
204 { BFD_RELOC_X86_64_TLSLD
, R_X86_64_TLSLD
, },
205 { BFD_RELOC_X86_64_DTPOFF32
, R_X86_64_DTPOFF32
, },
206 { BFD_RELOC_X86_64_GOTTPOFF
, R_X86_64_GOTTPOFF
, },
207 { BFD_RELOC_X86_64_TPOFF32
, R_X86_64_TPOFF32
, },
208 { BFD_RELOC_64_PCREL
, R_X86_64_PC64
, },
209 { BFD_RELOC_X86_64_GOTOFF64
, R_X86_64_GOTOFF64
, },
210 { BFD_RELOC_X86_64_GOTPC32
, R_X86_64_GOTPC32
, },
211 { BFD_RELOC_X86_64_GOT64
, R_X86_64_GOT64
, },
212 { BFD_RELOC_X86_64_GOTPCREL64
,R_X86_64_GOTPCREL64
, },
213 { BFD_RELOC_X86_64_GOTPC64
, R_X86_64_GOTPC64
, },
214 { BFD_RELOC_X86_64_GOTPLT64
, R_X86_64_GOTPLT64
, },
215 { BFD_RELOC_X86_64_PLTOFF64
, R_X86_64_PLTOFF64
, },
216 { BFD_RELOC_X86_64_GOTPC32_TLSDESC
, R_X86_64_GOTPC32_TLSDESC
, },
217 { BFD_RELOC_X86_64_TLSDESC_CALL
, R_X86_64_TLSDESC_CALL
, },
218 { BFD_RELOC_X86_64_TLSDESC
, R_X86_64_TLSDESC
, },
219 { BFD_RELOC_X86_64_IRELATIVE
, R_X86_64_IRELATIVE
, },
220 { BFD_RELOC_VTABLE_INHERIT
, R_X86_64_GNU_VTINHERIT
, },
221 { BFD_RELOC_VTABLE_ENTRY
, R_X86_64_GNU_VTENTRY
, },
224 static reloc_howto_type
*
225 elf64_x86_64_rtype_to_howto (bfd
*abfd
, unsigned r_type
)
229 if (r_type
< (unsigned int) R_X86_64_GNU_VTINHERIT
230 || r_type
>= (unsigned int) R_X86_64_max
)
232 if (r_type
>= (unsigned int) R_X86_64_standard
)
234 (*_bfd_error_handler
) (_("%B: invalid relocation type %d"),
236 r_type
= R_X86_64_NONE
;
241 i
= r_type
- (unsigned int) R_X86_64_vt_offset
;
242 BFD_ASSERT (x86_64_elf_howto_table
[i
].type
== r_type
);
243 return &x86_64_elf_howto_table
[i
];
246 /* Given a BFD reloc type, return a HOWTO structure. */
247 static reloc_howto_type
*
248 elf64_x86_64_reloc_type_lookup (bfd
*abfd
,
249 bfd_reloc_code_real_type code
)
253 for (i
= 0; i
< sizeof (x86_64_reloc_map
) / sizeof (struct elf_reloc_map
);
256 if (x86_64_reloc_map
[i
].bfd_reloc_val
== code
)
257 return elf64_x86_64_rtype_to_howto (abfd
,
258 x86_64_reloc_map
[i
].elf_reloc_val
);
263 static reloc_howto_type
*
264 elf64_x86_64_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
270 i
< (sizeof (x86_64_elf_howto_table
)
271 / sizeof (x86_64_elf_howto_table
[0]));
273 if (x86_64_elf_howto_table
[i
].name
!= NULL
274 && strcasecmp (x86_64_elf_howto_table
[i
].name
, r_name
) == 0)
275 return &x86_64_elf_howto_table
[i
];
280 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
283 elf64_x86_64_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*cache_ptr
,
284 Elf_Internal_Rela
*dst
)
288 r_type
= ELF64_R_TYPE (dst
->r_info
);
289 cache_ptr
->howto
= elf64_x86_64_rtype_to_howto (abfd
, r_type
);
290 BFD_ASSERT (r_type
== cache_ptr
->howto
->type
);
293 /* Support for core dump NOTE sections. */
295 elf64_x86_64_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
300 switch (note
->descsz
)
305 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
307 elf_tdata (abfd
)->core_signal
308 = bfd_get_16 (abfd
, note
->descdata
+ 12);
311 elf_tdata (abfd
)->core_lwpid
312 = bfd_get_32 (abfd
, note
->descdata
+ 32);
321 /* Make a ".reg/999" section. */
322 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
323 size
, note
->descpos
+ offset
);
327 elf64_x86_64_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
329 switch (note
->descsz
)
334 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
335 elf_tdata (abfd
)->core_pid
336 = bfd_get_32 (abfd
, note
->descdata
+ 24);
337 elf_tdata (abfd
)->core_program
338 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 40, 16);
339 elf_tdata (abfd
)->core_command
340 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 56, 80);
343 /* Note that for some reason, a spurious space is tacked
344 onto the end of the args in some (at least one anyway)
345 implementations, so strip it off if it exists. */
348 char *command
= elf_tdata (abfd
)->core_command
;
349 int n
= strlen (command
);
351 if (0 < n
&& command
[n
- 1] == ' ')
352 command
[n
- 1] = '\0';
358 /* Functions for the x86-64 ELF linker. */
360 /* The name of the dynamic interpreter. This is put in the .interp
363 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
365 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
366 copying dynamic variables from a shared lib into an app's dynbss
367 section, and instead use a dynamic relocation to point into the
369 #define ELIMINATE_COPY_RELOCS 1
371 /* The size in bytes of an entry in the global offset table. */
373 #define GOT_ENTRY_SIZE 8
375 /* The size in bytes of an entry in the procedure linkage table. */
377 #define PLT_ENTRY_SIZE 16
379 /* The first entry in a procedure linkage table looks like this. See the
380 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
382 static const bfd_byte elf64_x86_64_plt0_entry
[PLT_ENTRY_SIZE
] =
384 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
385 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
386 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
389 /* Subsequent entries in a procedure linkage table look like this. */
391 static const bfd_byte elf64_x86_64_plt_entry
[PLT_ENTRY_SIZE
] =
393 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
394 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
395 0x68, /* pushq immediate */
396 0, 0, 0, 0, /* replaced with index into relocation table. */
397 0xe9, /* jmp relative */
398 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
401 /* x86-64 ELF linker hash entry. */
403 struct elf64_x86_64_link_hash_entry
405 struct elf_link_hash_entry elf
;
407 /* Track dynamic relocs copied for this symbol. */
408 struct elf_dyn_relocs
*dyn_relocs
;
410 #define GOT_UNKNOWN 0
414 #define GOT_TLS_GDESC 4
415 #define GOT_TLS_GD_BOTH_P(type) \
416 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
417 #define GOT_TLS_GD_P(type) \
418 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
419 #define GOT_TLS_GDESC_P(type) \
420 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
421 #define GOT_TLS_GD_ANY_P(type) \
422 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
423 unsigned char tls_type
;
425 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
426 starting at the end of the jump table. */
430 #define elf64_x86_64_hash_entry(ent) \
431 ((struct elf64_x86_64_link_hash_entry *)(ent))
433 struct elf64_x86_64_obj_tdata
435 struct elf_obj_tdata root
;
437 /* tls_type for each local got entry. */
438 char *local_got_tls_type
;
440 /* GOTPLT entries for TLS descriptors. */
441 bfd_vma
*local_tlsdesc_gotent
;
444 #define elf64_x86_64_tdata(abfd) \
445 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
447 #define elf64_x86_64_local_got_tls_type(abfd) \
448 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
450 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
451 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
453 #define is_x86_64_elf(bfd) \
454 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
455 && elf_tdata (bfd) != NULL \
456 && elf_object_id (bfd) == X86_64_ELF_DATA)
459 elf64_x86_64_mkobject (bfd
*abfd
)
461 return bfd_elf_allocate_object (abfd
, sizeof (struct elf64_x86_64_obj_tdata
),
465 /* x86-64 ELF linker hash table. */
467 struct elf64_x86_64_link_hash_table
469 struct elf_link_hash_table elf
;
471 /* Short-cuts to get to dynamic linker sections. */
477 bfd_signed_vma refcount
;
481 /* The amount of space used by the jump slots in the GOT. */
482 bfd_vma sgotplt_jump_table_size
;
484 /* Small local sym cache. */
485 struct sym_cache sym_cache
;
487 /* _TLS_MODULE_BASE_ symbol. */
488 struct bfd_link_hash_entry
*tls_module_base
;
490 /* Used by local STT_GNU_IFUNC symbols. */
491 htab_t loc_hash_table
;
492 void * loc_hash_memory
;
494 /* The offset into splt of the PLT entry for the TLS descriptor
495 resolver. Special values are 0, if not necessary (or not found
496 to be necessary yet), and -1 if needed but not determined
499 /* The offset into sgot of the GOT entry used by the PLT entry
504 /* Get the x86-64 ELF linker hash table from a link_info structure. */
506 #define elf64_x86_64_hash_table(p) \
507 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
508 == X86_64_ELF_DATA ? ((struct elf64_x86_64_link_hash_table *) ((p)->hash)) : NULL)
510 #define elf64_x86_64_compute_jump_table_size(htab) \
511 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
513 /* Create an entry in an x86-64 ELF linker hash table. */
515 static struct bfd_hash_entry
*
516 elf64_x86_64_link_hash_newfunc (struct bfd_hash_entry
*entry
,
517 struct bfd_hash_table
*table
,
520 /* Allocate the structure if it has not already been allocated by a
524 entry
= (struct bfd_hash_entry
*)
525 bfd_hash_allocate (table
,
526 sizeof (struct elf64_x86_64_link_hash_entry
));
531 /* Call the allocation method of the superclass. */
532 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
535 struct elf64_x86_64_link_hash_entry
*eh
;
537 eh
= (struct elf64_x86_64_link_hash_entry
*) entry
;
538 eh
->dyn_relocs
= NULL
;
539 eh
->tls_type
= GOT_UNKNOWN
;
540 eh
->tlsdesc_got
= (bfd_vma
) -1;
546 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
547 for local symbol so that we can handle local STT_GNU_IFUNC symbols
548 as global symbol. We reuse indx and dynstr_index for local symbol
549 hash since they aren't used by global symbols in this backend. */
552 elf64_x86_64_local_htab_hash (const void *ptr
)
554 struct elf_link_hash_entry
*h
555 = (struct elf_link_hash_entry
*) ptr
;
556 return ELF_LOCAL_SYMBOL_HASH (h
->indx
, h
->dynstr_index
);
559 /* Compare local hash entries. */
562 elf64_x86_64_local_htab_eq (const void *ptr1
, const void *ptr2
)
564 struct elf_link_hash_entry
*h1
565 = (struct elf_link_hash_entry
*) ptr1
;
566 struct elf_link_hash_entry
*h2
567 = (struct elf_link_hash_entry
*) ptr2
;
569 return h1
->indx
== h2
->indx
&& h1
->dynstr_index
== h2
->dynstr_index
;
572 /* Find and/or create a hash entry for local symbol. */
574 static struct elf_link_hash_entry
*
575 elf64_x86_64_get_local_sym_hash (struct elf64_x86_64_link_hash_table
*htab
,
576 bfd
*abfd
, const Elf_Internal_Rela
*rel
,
579 struct elf64_x86_64_link_hash_entry e
, *ret
;
580 asection
*sec
= abfd
->sections
;
581 hashval_t h
= ELF_LOCAL_SYMBOL_HASH (sec
->id
,
582 ELF64_R_SYM (rel
->r_info
));
585 e
.elf
.indx
= sec
->id
;
586 e
.elf
.dynstr_index
= ELF64_R_SYM (rel
->r_info
);
587 slot
= htab_find_slot_with_hash (htab
->loc_hash_table
, &e
, h
,
588 create
? INSERT
: NO_INSERT
);
595 ret
= (struct elf64_x86_64_link_hash_entry
*) *slot
;
599 ret
= (struct elf64_x86_64_link_hash_entry
*)
600 objalloc_alloc ((struct objalloc
*) htab
->loc_hash_memory
,
601 sizeof (struct elf64_x86_64_link_hash_entry
));
604 memset (ret
, 0, sizeof (*ret
));
605 ret
->elf
.indx
= sec
->id
;
606 ret
->elf
.dynstr_index
= ELF64_R_SYM (rel
->r_info
);
607 ret
->elf
.dynindx
= -1;
613 /* Create an X86-64 ELF linker hash table. */
615 static struct bfd_link_hash_table
*
616 elf64_x86_64_link_hash_table_create (bfd
*abfd
)
618 struct elf64_x86_64_link_hash_table
*ret
;
619 bfd_size_type amt
= sizeof (struct elf64_x86_64_link_hash_table
);
621 ret
= (struct elf64_x86_64_link_hash_table
*) bfd_malloc (amt
);
625 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
,
626 elf64_x86_64_link_hash_newfunc
,
627 sizeof (struct elf64_x86_64_link_hash_entry
),
636 ret
->sym_cache
.abfd
= NULL
;
637 ret
->tlsdesc_plt
= 0;
638 ret
->tlsdesc_got
= 0;
639 ret
->tls_ld_got
.refcount
= 0;
640 ret
->sgotplt_jump_table_size
= 0;
641 ret
->tls_module_base
= NULL
;
643 ret
->loc_hash_table
= htab_try_create (1024,
644 elf64_x86_64_local_htab_hash
,
645 elf64_x86_64_local_htab_eq
,
647 ret
->loc_hash_memory
= objalloc_create ();
648 if (!ret
->loc_hash_table
|| !ret
->loc_hash_memory
)
654 return &ret
->elf
.root
;
657 /* Destroy an X86-64 ELF linker hash table. */
660 elf64_x86_64_link_hash_table_free (struct bfd_link_hash_table
*hash
)
662 struct elf64_x86_64_link_hash_table
*htab
663 = (struct elf64_x86_64_link_hash_table
*) hash
;
665 if (htab
->loc_hash_table
)
666 htab_delete (htab
->loc_hash_table
);
667 if (htab
->loc_hash_memory
)
668 objalloc_free ((struct objalloc
*) htab
->loc_hash_memory
);
669 _bfd_generic_link_hash_table_free (hash
);
672 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
673 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
677 elf64_x86_64_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
679 struct elf64_x86_64_link_hash_table
*htab
;
681 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
684 htab
= elf64_x86_64_hash_table (info
);
688 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
690 htab
->srelbss
= bfd_get_section_by_name (dynobj
, ".rela.bss");
693 || (!info
->shared
&& !htab
->srelbss
))
699 /* Copy the extra info we tack onto an elf_link_hash_entry. */
702 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info
*info
,
703 struct elf_link_hash_entry
*dir
,
704 struct elf_link_hash_entry
*ind
)
706 struct elf64_x86_64_link_hash_entry
*edir
, *eind
;
708 edir
= (struct elf64_x86_64_link_hash_entry
*) dir
;
709 eind
= (struct elf64_x86_64_link_hash_entry
*) ind
;
711 if (eind
->dyn_relocs
!= NULL
)
713 if (edir
->dyn_relocs
!= NULL
)
715 struct elf_dyn_relocs
**pp
;
716 struct elf_dyn_relocs
*p
;
718 /* Add reloc counts against the indirect sym to the direct sym
719 list. Merge any entries against the same section. */
720 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
722 struct elf_dyn_relocs
*q
;
724 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
725 if (q
->sec
== p
->sec
)
727 q
->pc_count
+= p
->pc_count
;
728 q
->count
+= p
->count
;
735 *pp
= edir
->dyn_relocs
;
738 edir
->dyn_relocs
= eind
->dyn_relocs
;
739 eind
->dyn_relocs
= NULL
;
742 if (ind
->root
.type
== bfd_link_hash_indirect
743 && dir
->got
.refcount
<= 0)
745 edir
->tls_type
= eind
->tls_type
;
746 eind
->tls_type
= GOT_UNKNOWN
;
749 if (ELIMINATE_COPY_RELOCS
750 && ind
->root
.type
!= bfd_link_hash_indirect
751 && dir
->dynamic_adjusted
)
753 /* If called to transfer flags for a weakdef during processing
754 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
755 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
756 dir
->ref_dynamic
|= ind
->ref_dynamic
;
757 dir
->ref_regular
|= ind
->ref_regular
;
758 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
759 dir
->needs_plt
|= ind
->needs_plt
;
760 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
763 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
767 elf64_x86_64_elf_object_p (bfd
*abfd
)
769 /* Set the right machine number for an x86-64 elf64 file. */
770 bfd_default_set_arch_mach (abfd
, bfd_arch_i386
, bfd_mach_x86_64
);
788 /* Return TRUE if the TLS access code sequence support transition
792 elf64_x86_64_check_tls_transition (bfd
*abfd
, asection
*sec
,
794 Elf_Internal_Shdr
*symtab_hdr
,
795 struct elf_link_hash_entry
**sym_hashes
,
797 const Elf_Internal_Rela
*rel
,
798 const Elf_Internal_Rela
*relend
)
801 unsigned long r_symndx
;
802 struct elf_link_hash_entry
*h
;
805 /* Get the section contents. */
806 if (contents
== NULL
)
808 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
809 contents
= elf_section_data (sec
)->this_hdr
.contents
;
812 /* FIXME: How to better handle error condition? */
813 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
816 /* Cache the section contents for elf_link_input_bfd. */
817 elf_section_data (sec
)->this_hdr
.contents
= contents
;
821 offset
= rel
->r_offset
;
826 if ((rel
+ 1) >= relend
)
829 if (r_type
== R_X86_64_TLSGD
)
831 /* Check transition from GD access model. Only
832 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
833 .word 0x6666; rex64; call __tls_get_addr
834 can transit to different access model. */
836 static x86_64_opcode32 leaq
= { { 0x66, 0x48, 0x8d, 0x3d } },
837 call
= { { 0x66, 0x66, 0x48, 0xe8 } };
839 || (offset
+ 12) > sec
->size
840 || bfd_get_32 (abfd
, contents
+ offset
- 4) != leaq
.i
841 || bfd_get_32 (abfd
, contents
+ offset
+ 4) != call
.i
)
846 /* Check transition from LD access model. Only
847 leaq foo@tlsld(%rip), %rdi;
849 can transit to different access model. */
851 static x86_64_opcode32 ld
= { { 0x48, 0x8d, 0x3d, 0xe8 } };
854 if (offset
< 3 || (offset
+ 9) > sec
->size
)
857 op
.i
= bfd_get_32 (abfd
, contents
+ offset
- 3);
858 op
.c
[3] = bfd_get_8 (abfd
, contents
+ offset
+ 4);
863 r_symndx
= ELF64_R_SYM (rel
[1].r_info
);
864 if (r_symndx
< symtab_hdr
->sh_info
)
867 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
868 /* Use strncmp to check __tls_get_addr since __tls_get_addr
871 && h
->root
.root
.string
!= NULL
872 && (ELF64_R_TYPE (rel
[1].r_info
) == R_X86_64_PC32
873 || ELF64_R_TYPE (rel
[1].r_info
) == R_X86_64_PLT32
)
874 && (strncmp (h
->root
.root
.string
,
875 "__tls_get_addr", 14) == 0));
877 case R_X86_64_GOTTPOFF
:
878 /* Check transition from IE access model:
879 movq foo@gottpoff(%rip), %reg
880 addq foo@gottpoff(%rip), %reg
883 if (offset
< 3 || (offset
+ 4) > sec
->size
)
886 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
887 if (val
!= 0x48 && val
!= 0x4c)
890 val
= bfd_get_8 (abfd
, contents
+ offset
- 2);
891 if (val
!= 0x8b && val
!= 0x03)
894 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
895 return (val
& 0xc7) == 5;
897 case R_X86_64_GOTPC32_TLSDESC
:
898 /* Check transition from GDesc access model:
899 leaq x@tlsdesc(%rip), %rax
901 Make sure it's a leaq adding rip to a 32-bit offset
902 into any register, although it's probably almost always
905 if (offset
< 3 || (offset
+ 4) > sec
->size
)
908 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
909 if ((val
& 0xfb) != 0x48)
912 if (bfd_get_8 (abfd
, contents
+ offset
- 2) != 0x8d)
915 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
916 return (val
& 0xc7) == 0x05;
918 case R_X86_64_TLSDESC_CALL
:
919 /* Check transition from GDesc access model:
920 call *x@tlsdesc(%rax)
922 if (offset
+ 2 <= sec
->size
)
924 /* Make sure that it's a call *x@tlsdesc(%rax). */
925 static x86_64_opcode16 call
= { { 0xff, 0x10 } };
926 return bfd_get_16 (abfd
, contents
+ offset
) == call
.i
;
936 /* Return TRUE if the TLS access transition is OK or no transition
937 will be performed. Update R_TYPE if there is a transition. */
940 elf64_x86_64_tls_transition (struct bfd_link_info
*info
, bfd
*abfd
,
941 asection
*sec
, bfd_byte
*contents
,
942 Elf_Internal_Shdr
*symtab_hdr
,
943 struct elf_link_hash_entry
**sym_hashes
,
944 unsigned int *r_type
, int tls_type
,
945 const Elf_Internal_Rela
*rel
,
946 const Elf_Internal_Rela
*relend
,
947 struct elf_link_hash_entry
*h
,
948 unsigned long r_symndx
)
950 unsigned int from_type
= *r_type
;
951 unsigned int to_type
= from_type
;
952 bfd_boolean check
= TRUE
;
954 /* Skip TLS transition for functions. */
956 && (h
->type
== STT_FUNC
957 || h
->type
== STT_GNU_IFUNC
))
963 case R_X86_64_GOTPC32_TLSDESC
:
964 case R_X86_64_TLSDESC_CALL
:
965 case R_X86_64_GOTTPOFF
:
966 if (info
->executable
)
969 to_type
= R_X86_64_TPOFF32
;
971 to_type
= R_X86_64_GOTTPOFF
;
974 /* When we are called from elf64_x86_64_relocate_section,
975 CONTENTS isn't NULL and there may be additional transitions
976 based on TLS_TYPE. */
977 if (contents
!= NULL
)
979 unsigned int new_to_type
= to_type
;
984 && tls_type
== GOT_TLS_IE
)
985 new_to_type
= R_X86_64_TPOFF32
;
987 if (to_type
== R_X86_64_TLSGD
988 || to_type
== R_X86_64_GOTPC32_TLSDESC
989 || to_type
== R_X86_64_TLSDESC_CALL
)
991 if (tls_type
== GOT_TLS_IE
)
992 new_to_type
= R_X86_64_GOTTPOFF
;
995 /* We checked the transition before when we were called from
996 elf64_x86_64_check_relocs. We only want to check the new
997 transition which hasn't been checked before. */
998 check
= new_to_type
!= to_type
&& from_type
== to_type
;
999 to_type
= new_to_type
;
1004 case R_X86_64_TLSLD
:
1005 if (info
->executable
)
1006 to_type
= R_X86_64_TPOFF32
;
1013 /* Return TRUE if there is no transition. */
1014 if (from_type
== to_type
)
1017 /* Check if the transition can be performed. */
1019 && ! elf64_x86_64_check_tls_transition (abfd
, sec
, contents
,
1020 symtab_hdr
, sym_hashes
,
1021 from_type
, rel
, relend
))
1023 reloc_howto_type
*from
, *to
;
1026 from
= elf64_x86_64_rtype_to_howto (abfd
, from_type
);
1027 to
= elf64_x86_64_rtype_to_howto (abfd
, to_type
);
1030 name
= h
->root
.root
.string
;
1033 struct elf64_x86_64_link_hash_table
*htab
;
1035 htab
= elf64_x86_64_hash_table (info
);
1040 Elf_Internal_Sym
*isym
;
1042 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1044 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
, NULL
);
1048 (*_bfd_error_handler
)
1049 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1050 "in section `%A' failed"),
1051 abfd
, sec
, from
->name
, to
->name
, name
,
1052 (unsigned long) rel
->r_offset
);
1053 bfd_set_error (bfd_error_bad_value
);
1061 /* Look through the relocs for a section during the first phase, and
1062 calculate needed space in the global offset table, procedure
1063 linkage table, and dynamic reloc sections. */
1066 elf64_x86_64_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
1068 const Elf_Internal_Rela
*relocs
)
1070 struct elf64_x86_64_link_hash_table
*htab
;
1071 Elf_Internal_Shdr
*symtab_hdr
;
1072 struct elf_link_hash_entry
**sym_hashes
;
1073 const Elf_Internal_Rela
*rel
;
1074 const Elf_Internal_Rela
*rel_end
;
1077 if (info
->relocatable
)
1080 BFD_ASSERT (is_x86_64_elf (abfd
));
1082 htab
= elf64_x86_64_hash_table (info
);
1086 symtab_hdr
= &elf_symtab_hdr (abfd
);
1087 sym_hashes
= elf_sym_hashes (abfd
);
1091 rel_end
= relocs
+ sec
->reloc_count
;
1092 for (rel
= relocs
; rel
< rel_end
; rel
++)
1094 unsigned int r_type
;
1095 unsigned long r_symndx
;
1096 struct elf_link_hash_entry
*h
;
1097 Elf_Internal_Sym
*isym
;
1100 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1101 r_type
= ELF64_R_TYPE (rel
->r_info
);
1103 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
1105 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
1110 if (r_symndx
< symtab_hdr
->sh_info
)
1112 /* A local symbol. */
1113 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1118 /* Check relocation against local STT_GNU_IFUNC symbol. */
1119 if (ELF64_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
1121 h
= elf64_x86_64_get_local_sym_hash (htab
, abfd
, rel
,
1126 /* Fake a STT_GNU_IFUNC symbol. */
1127 h
->type
= STT_GNU_IFUNC
;
1130 h
->forced_local
= 1;
1131 h
->root
.type
= bfd_link_hash_defined
;
1139 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1140 while (h
->root
.type
== bfd_link_hash_indirect
1141 || h
->root
.type
== bfd_link_hash_warning
)
1142 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1147 /* Create the ifunc sections for static executables. If we
1148 never see an indirect function symbol nor we are building
1149 a static executable, those sections will be empty and
1150 won't appear in output. */
1161 case R_X86_64_PLT32
:
1162 case R_X86_64_GOTPCREL
:
1163 case R_X86_64_GOTPCREL64
:
1164 if (!_bfd_elf_create_ifunc_sections (abfd
, info
))
1169 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1170 it here if it is defined in a non-shared object. */
1171 if (h
->type
== STT_GNU_IFUNC
1174 /* It is referenced by a non-shared object. */
1178 /* STT_GNU_IFUNC symbol must go through PLT. */
1179 h
->plt
.refcount
+= 1;
1181 /* STT_GNU_IFUNC needs dynamic sections. */
1182 if (htab
->elf
.dynobj
== NULL
)
1183 htab
->elf
.dynobj
= abfd
;
1188 if (h
->root
.root
.string
)
1189 name
= h
->root
.root
.string
;
1191 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
,
1193 (*_bfd_error_handler
)
1194 (_("%B: relocation %s against STT_GNU_IFUNC "
1195 "symbol `%s' isn't handled by %s"), abfd
,
1196 x86_64_elf_howto_table
[r_type
].name
,
1197 name
, __FUNCTION__
);
1198 bfd_set_error (bfd_error_bad_value
);
1203 h
->pointer_equality_needed
= 1;
1206 /* We must copy these reloc types into the output
1207 file. Create a reloc section in dynobj and
1208 make room for this reloc. */
1209 sreloc
= _bfd_elf_create_ifunc_dyn_reloc
1210 (abfd
, info
, sec
, sreloc
,
1211 &((struct elf64_x86_64_link_hash_entry
*) h
)->dyn_relocs
);
1222 if (r_type
!= R_X86_64_PC32
1223 && r_type
!= R_X86_64_PC64
)
1224 h
->pointer_equality_needed
= 1;
1227 case R_X86_64_PLT32
:
1230 case R_X86_64_GOTPCREL
:
1231 case R_X86_64_GOTPCREL64
:
1232 h
->got
.refcount
+= 1;
1233 if (htab
->elf
.sgot
== NULL
1234 && !_bfd_elf_create_got_section (htab
->elf
.dynobj
,
1244 if (! elf64_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1245 symtab_hdr
, sym_hashes
,
1246 &r_type
, GOT_UNKNOWN
,
1247 rel
, rel_end
, h
, r_symndx
))
1252 case R_X86_64_TLSLD
:
1253 htab
->tls_ld_got
.refcount
+= 1;
1256 case R_X86_64_TPOFF32
:
1257 if (!info
->executable
)
1260 name
= h
->root
.root
.string
;
1262 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
,
1264 (*_bfd_error_handler
)
1265 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1267 x86_64_elf_howto_table
[r_type
].name
, name
);
1268 bfd_set_error (bfd_error_bad_value
);
1273 case R_X86_64_GOTTPOFF
:
1274 if (!info
->executable
)
1275 info
->flags
|= DF_STATIC_TLS
;
1278 case R_X86_64_GOT32
:
1279 case R_X86_64_GOTPCREL
:
1280 case R_X86_64_TLSGD
:
1281 case R_X86_64_GOT64
:
1282 case R_X86_64_GOTPCREL64
:
1283 case R_X86_64_GOTPLT64
:
1284 case R_X86_64_GOTPC32_TLSDESC
:
1285 case R_X86_64_TLSDESC_CALL
:
1286 /* This symbol requires a global offset table entry. */
1288 int tls_type
, old_tls_type
;
1292 default: tls_type
= GOT_NORMAL
; break;
1293 case R_X86_64_TLSGD
: tls_type
= GOT_TLS_GD
; break;
1294 case R_X86_64_GOTTPOFF
: tls_type
= GOT_TLS_IE
; break;
1295 case R_X86_64_GOTPC32_TLSDESC
:
1296 case R_X86_64_TLSDESC_CALL
:
1297 tls_type
= GOT_TLS_GDESC
; break;
1302 if (r_type
== R_X86_64_GOTPLT64
)
1304 /* This relocation indicates that we also need
1305 a PLT entry, as this is a function. We don't need
1306 a PLT entry for local symbols. */
1308 h
->plt
.refcount
+= 1;
1310 h
->got
.refcount
+= 1;
1311 old_tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
1315 bfd_signed_vma
*local_got_refcounts
;
1317 /* This is a global offset table entry for a local symbol. */
1318 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1319 if (local_got_refcounts
== NULL
)
1323 size
= symtab_hdr
->sh_info
;
1324 size
*= sizeof (bfd_signed_vma
)
1325 + sizeof (bfd_vma
) + sizeof (char);
1326 local_got_refcounts
= ((bfd_signed_vma
*)
1327 bfd_zalloc (abfd
, size
));
1328 if (local_got_refcounts
== NULL
)
1330 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1331 elf64_x86_64_local_tlsdesc_gotent (abfd
)
1332 = (bfd_vma
*) (local_got_refcounts
+ symtab_hdr
->sh_info
);
1333 elf64_x86_64_local_got_tls_type (abfd
)
1334 = (char *) (local_got_refcounts
+ 2 * symtab_hdr
->sh_info
);
1336 local_got_refcounts
[r_symndx
] += 1;
1338 = elf64_x86_64_local_got_tls_type (abfd
) [r_symndx
];
1341 /* If a TLS symbol is accessed using IE at least once,
1342 there is no point to use dynamic model for it. */
1343 if (old_tls_type
!= tls_type
&& old_tls_type
!= GOT_UNKNOWN
1344 && (! GOT_TLS_GD_ANY_P (old_tls_type
)
1345 || tls_type
!= GOT_TLS_IE
))
1347 if (old_tls_type
== GOT_TLS_IE
&& GOT_TLS_GD_ANY_P (tls_type
))
1348 tls_type
= old_tls_type
;
1349 else if (GOT_TLS_GD_ANY_P (old_tls_type
)
1350 && GOT_TLS_GD_ANY_P (tls_type
))
1351 tls_type
|= old_tls_type
;
1355 name
= h
->root
.root
.string
;
1357 name
= bfd_elf_sym_name (abfd
, symtab_hdr
,
1359 (*_bfd_error_handler
)
1360 (_("%B: '%s' accessed both as normal and thread local symbol"),
1366 if (old_tls_type
!= tls_type
)
1369 elf64_x86_64_hash_entry (h
)->tls_type
= tls_type
;
1371 elf64_x86_64_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1376 case R_X86_64_GOTOFF64
:
1377 case R_X86_64_GOTPC32
:
1378 case R_X86_64_GOTPC64
:
1380 if (htab
->elf
.sgot
== NULL
)
1382 if (htab
->elf
.dynobj
== NULL
)
1383 htab
->elf
.dynobj
= abfd
;
1384 if (!_bfd_elf_create_got_section (htab
->elf
.dynobj
,
1390 case R_X86_64_PLT32
:
1391 /* This symbol requires a procedure linkage table entry. We
1392 actually build the entry in adjust_dynamic_symbol,
1393 because this might be a case of linking PIC code which is
1394 never referenced by a dynamic object, in which case we
1395 don't need to generate a procedure linkage table entry
1398 /* If this is a local symbol, we resolve it directly without
1399 creating a procedure linkage table entry. */
1404 h
->plt
.refcount
+= 1;
1407 case R_X86_64_PLTOFF64
:
1408 /* This tries to form the 'address' of a function relative
1409 to GOT. For global symbols we need a PLT entry. */
1413 h
->plt
.refcount
+= 1;
1421 /* Let's help debug shared library creation. These relocs
1422 cannot be used in shared libs. Don't error out for
1423 sections we don't care about, such as debug sections or
1424 non-constant sections. */
1426 && (sec
->flags
& SEC_ALLOC
) != 0
1427 && (sec
->flags
& SEC_READONLY
) != 0)
1430 name
= h
->root
.root
.string
;
1432 name
= bfd_elf_sym_name (abfd
, symtab_hdr
, isym
, NULL
);
1433 (*_bfd_error_handler
)
1434 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1435 abfd
, x86_64_elf_howto_table
[r_type
].name
, name
);
1436 bfd_set_error (bfd_error_bad_value
);
1446 if (h
!= NULL
&& info
->executable
)
1448 /* If this reloc is in a read-only section, we might
1449 need a copy reloc. We can't check reliably at this
1450 stage whether the section is read-only, as input
1451 sections have not yet been mapped to output sections.
1452 Tentatively set the flag for now, and correct in
1453 adjust_dynamic_symbol. */
1456 /* We may need a .plt entry if the function this reloc
1457 refers to is in a shared lib. */
1458 h
->plt
.refcount
+= 1;
1459 if (r_type
!= R_X86_64_PC32
&& r_type
!= R_X86_64_PC64
)
1460 h
->pointer_equality_needed
= 1;
1463 /* If we are creating a shared library, and this is a reloc
1464 against a global symbol, or a non PC relative reloc
1465 against a local symbol, then we need to copy the reloc
1466 into the shared library. However, if we are linking with
1467 -Bsymbolic, we do not need to copy a reloc against a
1468 global symbol which is defined in an object we are
1469 including in the link (i.e., DEF_REGULAR is set). At
1470 this point we have not seen all the input files, so it is
1471 possible that DEF_REGULAR is not set now but will be set
1472 later (it is never cleared). In case of a weak definition,
1473 DEF_REGULAR may be cleared later by a strong definition in
1474 a shared library. We account for that possibility below by
1475 storing information in the relocs_copied field of the hash
1476 table entry. A similar situation occurs when creating
1477 shared libraries and symbol visibility changes render the
1480 If on the other hand, we are creating an executable, we
1481 may need to keep relocations for symbols satisfied by a
1482 dynamic library if we manage to avoid copy relocs for the
1485 && (sec
->flags
& SEC_ALLOC
) != 0
1486 && (! IS_X86_64_PCREL_TYPE (r_type
)
1488 && (! SYMBOLIC_BIND (info
, h
)
1489 || h
->root
.type
== bfd_link_hash_defweak
1490 || !h
->def_regular
))))
1491 || (ELIMINATE_COPY_RELOCS
1493 && (sec
->flags
& SEC_ALLOC
) != 0
1495 && (h
->root
.type
== bfd_link_hash_defweak
1496 || !h
->def_regular
)))
1498 struct elf_dyn_relocs
*p
;
1499 struct elf_dyn_relocs
**head
;
1501 /* We must copy these reloc types into the output file.
1502 Create a reloc section in dynobj and make room for
1506 if (htab
->elf
.dynobj
== NULL
)
1507 htab
->elf
.dynobj
= abfd
;
1509 sreloc
= _bfd_elf_make_dynamic_reloc_section
1510 (sec
, htab
->elf
.dynobj
, 3, abfd
, /*rela?*/ TRUE
);
1516 /* If this is a global symbol, we count the number of
1517 relocations we need for this symbol. */
1520 head
= &((struct elf64_x86_64_link_hash_entry
*) h
)->dyn_relocs
;
1524 /* Track dynamic relocs needed for local syms too.
1525 We really need local syms available to do this
1530 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1535 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
1539 /* Beware of type punned pointers vs strict aliasing
1541 vpp
= &(elf_section_data (s
)->local_dynrel
);
1542 head
= (struct elf_dyn_relocs
**)vpp
;
1546 if (p
== NULL
|| p
->sec
!= sec
)
1548 bfd_size_type amt
= sizeof *p
;
1550 p
= ((struct elf_dyn_relocs
*)
1551 bfd_alloc (htab
->elf
.dynobj
, amt
));
1562 if (IS_X86_64_PCREL_TYPE (r_type
))
1567 /* This relocation describes the C++ object vtable hierarchy.
1568 Reconstruct it for later use during GC. */
1569 case R_X86_64_GNU_VTINHERIT
:
1570 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
1574 /* This relocation describes which C++ vtable entries are actually
1575 used. Record for later use during GC. */
1576 case R_X86_64_GNU_VTENTRY
:
1577 BFD_ASSERT (h
!= NULL
);
1579 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
1591 /* Return the section that should be marked against GC for a given
1595 elf64_x86_64_gc_mark_hook (asection
*sec
,
1596 struct bfd_link_info
*info
,
1597 Elf_Internal_Rela
*rel
,
1598 struct elf_link_hash_entry
*h
,
1599 Elf_Internal_Sym
*sym
)
1602 switch (ELF64_R_TYPE (rel
->r_info
))
1604 case R_X86_64_GNU_VTINHERIT
:
1605 case R_X86_64_GNU_VTENTRY
:
1609 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1612 /* Update the got entry reference counts for the section being removed. */
1615 elf64_x86_64_gc_sweep_hook (bfd
*abfd
, struct bfd_link_info
*info
,
1617 const Elf_Internal_Rela
*relocs
)
1619 struct elf64_x86_64_link_hash_table
*htab
;
1620 Elf_Internal_Shdr
*symtab_hdr
;
1621 struct elf_link_hash_entry
**sym_hashes
;
1622 bfd_signed_vma
*local_got_refcounts
;
1623 const Elf_Internal_Rela
*rel
, *relend
;
1625 if (info
->relocatable
)
1628 htab
= elf64_x86_64_hash_table (info
);
1632 elf_section_data (sec
)->local_dynrel
= NULL
;
1634 symtab_hdr
= &elf_symtab_hdr (abfd
);
1635 sym_hashes
= elf_sym_hashes (abfd
);
1636 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1638 relend
= relocs
+ sec
->reloc_count
;
1639 for (rel
= relocs
; rel
< relend
; rel
++)
1641 unsigned long r_symndx
;
1642 unsigned int r_type
;
1643 struct elf_link_hash_entry
*h
= NULL
;
1645 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1646 if (r_symndx
>= symtab_hdr
->sh_info
)
1648 struct elf64_x86_64_link_hash_entry
*eh
;
1649 struct elf_dyn_relocs
**pp
;
1650 struct elf_dyn_relocs
*p
;
1652 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1653 while (h
->root
.type
== bfd_link_hash_indirect
1654 || h
->root
.type
== bfd_link_hash_warning
)
1655 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1656 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1658 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
1661 /* Everything must go for SEC. */
1668 /* A local symbol. */
1669 Elf_Internal_Sym
*isym
;
1671 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1674 /* Check relocation against local STT_GNU_IFUNC symbol. */
1676 && ELF64_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
1678 h
= elf64_x86_64_get_local_sym_hash (htab
, abfd
, rel
,
1685 r_type
= ELF64_R_TYPE (rel
->r_info
);
1686 if (! elf64_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1687 symtab_hdr
, sym_hashes
,
1688 &r_type
, GOT_UNKNOWN
,
1689 rel
, relend
, h
, r_symndx
))
1694 case R_X86_64_TLSLD
:
1695 if (htab
->tls_ld_got
.refcount
> 0)
1696 htab
->tls_ld_got
.refcount
-= 1;
1699 case R_X86_64_TLSGD
:
1700 case R_X86_64_GOTPC32_TLSDESC
:
1701 case R_X86_64_TLSDESC_CALL
:
1702 case R_X86_64_GOTTPOFF
:
1703 case R_X86_64_GOT32
:
1704 case R_X86_64_GOTPCREL
:
1705 case R_X86_64_GOT64
:
1706 case R_X86_64_GOTPCREL64
:
1707 case R_X86_64_GOTPLT64
:
1710 if (r_type
== R_X86_64_GOTPLT64
&& h
->plt
.refcount
> 0)
1711 h
->plt
.refcount
-= 1;
1712 if (h
->got
.refcount
> 0)
1713 h
->got
.refcount
-= 1;
1714 if (h
->type
== STT_GNU_IFUNC
)
1716 if (h
->plt
.refcount
> 0)
1717 h
->plt
.refcount
-= 1;
1720 else if (local_got_refcounts
!= NULL
)
1722 if (local_got_refcounts
[r_symndx
] > 0)
1723 local_got_refcounts
[r_symndx
] -= 1;
1740 case R_X86_64_PLT32
:
1741 case R_X86_64_PLTOFF64
:
1744 if (h
->plt
.refcount
> 0)
1745 h
->plt
.refcount
-= 1;
1757 /* Adjust a symbol defined by a dynamic object and referenced by a
1758 regular object. The current definition is in some section of the
1759 dynamic object, but we're not including those sections. We have to
1760 change the definition to something the rest of the link can
1764 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info
*info
,
1765 struct elf_link_hash_entry
*h
)
1767 struct elf64_x86_64_link_hash_table
*htab
;
1770 /* STT_GNU_IFUNC symbol must go through PLT. */
1771 if (h
->type
== STT_GNU_IFUNC
)
1773 if (h
->plt
.refcount
<= 0)
1775 h
->plt
.offset
= (bfd_vma
) -1;
1781 /* If this is a function, put it in the procedure linkage table. We
1782 will fill in the contents of the procedure linkage table later,
1783 when we know the address of the .got section. */
1784 if (h
->type
== STT_FUNC
1787 if (h
->plt
.refcount
<= 0
1788 || SYMBOL_CALLS_LOCAL (info
, h
)
1789 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1790 && h
->root
.type
== bfd_link_hash_undefweak
))
1792 /* This case can occur if we saw a PLT32 reloc in an input
1793 file, but the symbol was never referred to by a dynamic
1794 object, or if all references were garbage collected. In
1795 such a case, we don't actually need to build a procedure
1796 linkage table, and we can just do a PC32 reloc instead. */
1797 h
->plt
.offset
= (bfd_vma
) -1;
1804 /* It's possible that we incorrectly decided a .plt reloc was
1805 needed for an R_X86_64_PC32 reloc to a non-function sym in
1806 check_relocs. We can't decide accurately between function and
1807 non-function syms in check-relocs; Objects loaded later in
1808 the link may change h->type. So fix it now. */
1809 h
->plt
.offset
= (bfd_vma
) -1;
1811 /* If this is a weak symbol, and there is a real definition, the
1812 processor independent code will have arranged for us to see the
1813 real definition first, and we can just use the same value. */
1814 if (h
->u
.weakdef
!= NULL
)
1816 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1817 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1818 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1819 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1820 if (ELIMINATE_COPY_RELOCS
|| info
->nocopyreloc
)
1821 h
->non_got_ref
= h
->u
.weakdef
->non_got_ref
;
1825 /* This is a reference to a symbol defined by a dynamic object which
1826 is not a function. */
1828 /* If we are creating a shared library, we must presume that the
1829 only references to the symbol are via the global offset table.
1830 For such cases we need not do anything here; the relocations will
1831 be handled correctly by relocate_section. */
1835 /* If there are no references to this symbol that do not use the
1836 GOT, we don't need to generate a copy reloc. */
1837 if (!h
->non_got_ref
)
1840 /* If -z nocopyreloc was given, we won't generate them either. */
1841 if (info
->nocopyreloc
)
1847 if (ELIMINATE_COPY_RELOCS
)
1849 struct elf64_x86_64_link_hash_entry
* eh
;
1850 struct elf_dyn_relocs
*p
;
1852 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1853 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1855 s
= p
->sec
->output_section
;
1856 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1860 /* If we didn't find any dynamic relocs in read-only sections, then
1861 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1871 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
1872 h
->root
.root
.string
);
1876 /* We must allocate the symbol in our .dynbss section, which will
1877 become part of the .bss section of the executable. There will be
1878 an entry for this symbol in the .dynsym section. The dynamic
1879 object will contain position independent code, so all references
1880 from the dynamic object to this symbol will go through the global
1881 offset table. The dynamic linker will use the .dynsym entry to
1882 determine the address it must put in the global offset table, so
1883 both the dynamic object and the regular object will refer to the
1884 same memory location for the variable. */
1886 htab
= elf64_x86_64_hash_table (info
);
1890 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1891 to copy the initial value out of the dynamic object and into the
1892 runtime process image. */
1893 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1895 htab
->srelbss
->size
+= sizeof (Elf64_External_Rela
);
1901 return _bfd_elf_adjust_dynamic_copy (h
, s
);
1904 /* Allocate space in .plt, .got and associated reloc sections for
1908 elf64_x86_64_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
1910 struct bfd_link_info
*info
;
1911 struct elf64_x86_64_link_hash_table
*htab
;
1912 struct elf64_x86_64_link_hash_entry
*eh
;
1913 struct elf_dyn_relocs
*p
;
1915 if (h
->root
.type
== bfd_link_hash_indirect
)
1918 if (h
->root
.type
== bfd_link_hash_warning
)
1919 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1920 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1922 info
= (struct bfd_link_info
*) inf
;
1923 htab
= elf64_x86_64_hash_table (info
);
1927 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
1928 here if it is defined and referenced in a non-shared object. */
1929 if (h
->type
== STT_GNU_IFUNC
1931 return _bfd_elf_allocate_ifunc_dyn_relocs (info
, h
,
1935 else if (htab
->elf
.dynamic_sections_created
1936 && h
->plt
.refcount
> 0)
1938 /* Make sure this symbol is output as a dynamic symbol.
1939 Undefined weak syms won't yet be marked as dynamic. */
1940 if (h
->dynindx
== -1
1941 && !h
->forced_local
)
1943 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1948 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
1950 asection
*s
= htab
->elf
.splt
;
1952 /* If this is the first .plt entry, make room for the special
1955 s
->size
+= PLT_ENTRY_SIZE
;
1957 h
->plt
.offset
= s
->size
;
1959 /* If this symbol is not defined in a regular file, and we are
1960 not generating a shared library, then set the symbol to this
1961 location in the .plt. This is required to make function
1962 pointers compare as equal between the normal executable and
1963 the shared library. */
1967 h
->root
.u
.def
.section
= s
;
1968 h
->root
.u
.def
.value
= h
->plt
.offset
;
1971 /* Make room for this entry. */
1972 s
->size
+= PLT_ENTRY_SIZE
;
1974 /* We also need to make an entry in the .got.plt section, which
1975 will be placed in the .got section by the linker script. */
1976 htab
->elf
.sgotplt
->size
+= GOT_ENTRY_SIZE
;
1978 /* We also need to make an entry in the .rela.plt section. */
1979 htab
->elf
.srelplt
->size
+= sizeof (Elf64_External_Rela
);
1980 htab
->elf
.srelplt
->reloc_count
++;
1984 h
->plt
.offset
= (bfd_vma
) -1;
1990 h
->plt
.offset
= (bfd_vma
) -1;
1994 eh
->tlsdesc_got
= (bfd_vma
) -1;
1996 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1997 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1998 if (h
->got
.refcount
> 0
2001 && elf64_x86_64_hash_entry (h
)->tls_type
== GOT_TLS_IE
)
2003 h
->got
.offset
= (bfd_vma
) -1;
2005 else if (h
->got
.refcount
> 0)
2009 int tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
2011 /* Make sure this symbol is output as a dynamic symbol.
2012 Undefined weak syms won't yet be marked as dynamic. */
2013 if (h
->dynindx
== -1
2014 && !h
->forced_local
)
2016 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
2020 if (GOT_TLS_GDESC_P (tls_type
))
2022 eh
->tlsdesc_got
= htab
->elf
.sgotplt
->size
2023 - elf64_x86_64_compute_jump_table_size (htab
);
2024 htab
->elf
.sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
2025 h
->got
.offset
= (bfd_vma
) -2;
2027 if (! GOT_TLS_GDESC_P (tls_type
)
2028 || GOT_TLS_GD_P (tls_type
))
2031 h
->got
.offset
= s
->size
;
2032 s
->size
+= GOT_ENTRY_SIZE
;
2033 if (GOT_TLS_GD_P (tls_type
))
2034 s
->size
+= GOT_ENTRY_SIZE
;
2036 dyn
= htab
->elf
.dynamic_sections_created
;
2037 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2039 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2040 if ((GOT_TLS_GD_P (tls_type
) && h
->dynindx
== -1)
2041 || tls_type
== GOT_TLS_IE
)
2042 htab
->elf
.srelgot
->size
+= sizeof (Elf64_External_Rela
);
2043 else if (GOT_TLS_GD_P (tls_type
))
2044 htab
->elf
.srelgot
->size
+= 2 * sizeof (Elf64_External_Rela
);
2045 else if (! GOT_TLS_GDESC_P (tls_type
)
2046 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2047 || h
->root
.type
!= bfd_link_hash_undefweak
)
2049 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
2050 htab
->elf
.srelgot
->size
+= sizeof (Elf64_External_Rela
);
2051 if (GOT_TLS_GDESC_P (tls_type
))
2053 htab
->elf
.srelplt
->size
+= sizeof (Elf64_External_Rela
);
2054 htab
->tlsdesc_plt
= (bfd_vma
) -1;
2058 h
->got
.offset
= (bfd_vma
) -1;
2060 if (eh
->dyn_relocs
== NULL
)
2063 /* In the shared -Bsymbolic case, discard space allocated for
2064 dynamic pc-relative relocs against symbols which turn out to be
2065 defined in regular objects. For the normal shared case, discard
2066 space for pc-relative relocs that have become local due to symbol
2067 visibility changes. */
2071 /* Relocs that use pc_count are those that appear on a call
2072 insn, or certain REL relocs that can generated via assembly.
2073 We want calls to protected symbols to resolve directly to the
2074 function rather than going via the plt. If people want
2075 function pointer comparisons to work as expected then they
2076 should avoid writing weird assembly. */
2077 if (SYMBOL_CALLS_LOCAL (info
, h
))
2079 struct elf_dyn_relocs
**pp
;
2081 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
2083 p
->count
-= p
->pc_count
;
2092 /* Also discard relocs on undefined weak syms with non-default
2094 if (eh
->dyn_relocs
!= NULL
2095 && h
->root
.type
== bfd_link_hash_undefweak
)
2097 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2098 eh
->dyn_relocs
= NULL
;
2100 /* Make sure undefined weak symbols are output as a dynamic
2102 else if (h
->dynindx
== -1
2103 && ! h
->forced_local
2104 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
2109 else if (ELIMINATE_COPY_RELOCS
)
2111 /* For the non-shared case, discard space for relocs against
2112 symbols which turn out to need copy relocs or are not
2118 || (htab
->elf
.dynamic_sections_created
2119 && (h
->root
.type
== bfd_link_hash_undefweak
2120 || h
->root
.type
== bfd_link_hash_undefined
))))
2122 /* Make sure this symbol is output as a dynamic symbol.
2123 Undefined weak syms won't yet be marked as dynamic. */
2124 if (h
->dynindx
== -1
2125 && ! h
->forced_local
2126 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
2129 /* If that succeeded, we know we'll be keeping all the
2131 if (h
->dynindx
!= -1)
2135 eh
->dyn_relocs
= NULL
;
2140 /* Finally, allocate space. */
2141 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2145 sreloc
= elf_section_data (p
->sec
)->sreloc
;
2147 BFD_ASSERT (sreloc
!= NULL
);
2149 sreloc
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
2155 /* Allocate space in .plt, .got and associated reloc sections for
2156 local dynamic relocs. */
2159 elf64_x86_64_allocate_local_dynrelocs (void **slot
, void *inf
)
2161 struct elf_link_hash_entry
*h
2162 = (struct elf_link_hash_entry
*) *slot
;
2164 if (h
->type
!= STT_GNU_IFUNC
2168 || h
->root
.type
!= bfd_link_hash_defined
)
2171 return elf64_x86_64_allocate_dynrelocs (h
, inf
);
2174 /* Find any dynamic relocs that apply to read-only sections. */
2177 elf64_x86_64_readonly_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
2179 struct elf64_x86_64_link_hash_entry
*eh
;
2180 struct elf_dyn_relocs
*p
;
2182 if (h
->root
.type
== bfd_link_hash_warning
)
2183 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2185 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
2186 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2188 asection
*s
= p
->sec
->output_section
;
2190 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
2192 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
2194 info
->flags
|= DF_TEXTREL
;
2196 /* Not an error, just cut short the traversal. */
2203 /* Set the sizes of the dynamic sections. */
2206 elf64_x86_64_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2207 struct bfd_link_info
*info
)
2209 struct elf64_x86_64_link_hash_table
*htab
;
2215 htab
= elf64_x86_64_hash_table (info
);
2219 dynobj
= htab
->elf
.dynobj
;
2223 if (htab
->elf
.dynamic_sections_created
)
2225 /* Set the contents of the .interp section to the interpreter. */
2226 if (info
->executable
)
2228 s
= bfd_get_section_by_name (dynobj
, ".interp");
2231 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2232 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
2236 /* Set up .got offsets for local syms, and space for local dynamic
2238 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2240 bfd_signed_vma
*local_got
;
2241 bfd_signed_vma
*end_local_got
;
2242 char *local_tls_type
;
2243 bfd_vma
*local_tlsdesc_gotent
;
2244 bfd_size_type locsymcount
;
2245 Elf_Internal_Shdr
*symtab_hdr
;
2248 if (! is_x86_64_elf (ibfd
))
2251 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
2253 struct elf_dyn_relocs
*p
;
2255 for (p
= (struct elf_dyn_relocs
*)
2256 (elf_section_data (s
)->local_dynrel
);
2260 if (!bfd_is_abs_section (p
->sec
)
2261 && bfd_is_abs_section (p
->sec
->output_section
))
2263 /* Input section has been discarded, either because
2264 it is a copy of a linkonce section or due to
2265 linker script /DISCARD/, so we'll be discarding
2268 else if (p
->count
!= 0)
2270 srel
= elf_section_data (p
->sec
)->sreloc
;
2271 srel
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
2272 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
2273 info
->flags
|= DF_TEXTREL
;
2278 local_got
= elf_local_got_refcounts (ibfd
);
2282 symtab_hdr
= &elf_symtab_hdr (ibfd
);
2283 locsymcount
= symtab_hdr
->sh_info
;
2284 end_local_got
= local_got
+ locsymcount
;
2285 local_tls_type
= elf64_x86_64_local_got_tls_type (ibfd
);
2286 local_tlsdesc_gotent
= elf64_x86_64_local_tlsdesc_gotent (ibfd
);
2288 srel
= htab
->elf
.srelgot
;
2289 for (; local_got
< end_local_got
;
2290 ++local_got
, ++local_tls_type
, ++local_tlsdesc_gotent
)
2292 *local_tlsdesc_gotent
= (bfd_vma
) -1;
2295 if (GOT_TLS_GDESC_P (*local_tls_type
))
2297 *local_tlsdesc_gotent
= htab
->elf
.sgotplt
->size
2298 - elf64_x86_64_compute_jump_table_size (htab
);
2299 htab
->elf
.sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
2300 *local_got
= (bfd_vma
) -2;
2302 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2303 || GOT_TLS_GD_P (*local_tls_type
))
2305 *local_got
= s
->size
;
2306 s
->size
+= GOT_ENTRY_SIZE
;
2307 if (GOT_TLS_GD_P (*local_tls_type
))
2308 s
->size
+= GOT_ENTRY_SIZE
;
2311 || GOT_TLS_GD_ANY_P (*local_tls_type
)
2312 || *local_tls_type
== GOT_TLS_IE
)
2314 if (GOT_TLS_GDESC_P (*local_tls_type
))
2316 htab
->elf
.srelplt
->size
2317 += sizeof (Elf64_External_Rela
);
2318 htab
->tlsdesc_plt
= (bfd_vma
) -1;
2320 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2321 || GOT_TLS_GD_P (*local_tls_type
))
2322 srel
->size
+= sizeof (Elf64_External_Rela
);
2326 *local_got
= (bfd_vma
) -1;
2330 if (htab
->tls_ld_got
.refcount
> 0)
2332 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2334 htab
->tls_ld_got
.offset
= htab
->elf
.sgot
->size
;
2335 htab
->elf
.sgot
->size
+= 2 * GOT_ENTRY_SIZE
;
2336 htab
->elf
.srelgot
->size
+= sizeof (Elf64_External_Rela
);
2339 htab
->tls_ld_got
.offset
= -1;
2341 /* Allocate global sym .plt and .got entries, and space for global
2342 sym dynamic relocs. */
2343 elf_link_hash_traverse (&htab
->elf
, elf64_x86_64_allocate_dynrelocs
,
2346 /* Allocate .plt and .got entries, and space for local symbols. */
2347 htab_traverse (htab
->loc_hash_table
,
2348 elf64_x86_64_allocate_local_dynrelocs
,
2351 /* For every jump slot reserved in the sgotplt, reloc_count is
2352 incremented. However, when we reserve space for TLS descriptors,
2353 it's not incremented, so in order to compute the space reserved
2354 for them, it suffices to multiply the reloc count by the jump
2356 if (htab
->elf
.srelplt
)
2357 htab
->sgotplt_jump_table_size
2358 = elf64_x86_64_compute_jump_table_size (htab
);
2360 if (htab
->tlsdesc_plt
)
2362 /* If we're not using lazy TLS relocations, don't generate the
2363 PLT and GOT entries they require. */
2364 if ((info
->flags
& DF_BIND_NOW
))
2365 htab
->tlsdesc_plt
= 0;
2368 htab
->tlsdesc_got
= htab
->elf
.sgot
->size
;
2369 htab
->elf
.sgot
->size
+= GOT_ENTRY_SIZE
;
2370 /* Reserve room for the initial entry.
2371 FIXME: we could probably do away with it in this case. */
2372 if (htab
->elf
.splt
->size
== 0)
2373 htab
->elf
.splt
->size
+= PLT_ENTRY_SIZE
;
2374 htab
->tlsdesc_plt
= htab
->elf
.splt
->size
;
2375 htab
->elf
.splt
->size
+= PLT_ENTRY_SIZE
;
2379 if (htab
->elf
.sgotplt
)
2381 struct elf_link_hash_entry
*got
;
2382 got
= elf_link_hash_lookup (elf_hash_table (info
),
2383 "_GLOBAL_OFFSET_TABLE_",
2384 FALSE
, FALSE
, FALSE
);
2386 /* Don't allocate .got.plt section if there are no GOT nor PLT
2387 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2389 || !got
->ref_regular_nonweak
)
2390 && (htab
->elf
.sgotplt
->size
2391 == get_elf_backend_data (output_bfd
)->got_header_size
)
2392 && (htab
->elf
.splt
== NULL
2393 || htab
->elf
.splt
->size
== 0)
2394 && (htab
->elf
.sgot
== NULL
2395 || htab
->elf
.sgot
->size
== 0)
2396 && (htab
->elf
.iplt
== NULL
2397 || htab
->elf
.iplt
->size
== 0)
2398 && (htab
->elf
.igotplt
== NULL
2399 || htab
->elf
.igotplt
->size
== 0))
2400 htab
->elf
.sgotplt
->size
= 0;
2403 /* We now have determined the sizes of the various dynamic sections.
2404 Allocate memory for them. */
2406 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
2408 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
2411 if (s
== htab
->elf
.splt
2412 || s
== htab
->elf
.sgot
2413 || s
== htab
->elf
.sgotplt
2414 || s
== htab
->elf
.iplt
2415 || s
== htab
->elf
.igotplt
2416 || s
== htab
->sdynbss
)
2418 /* Strip this section if we don't need it; see the
2421 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, s
), ".rela"))
2423 if (s
->size
!= 0 && s
!= htab
->elf
.srelplt
)
2426 /* We use the reloc_count field as a counter if we need
2427 to copy relocs into the output file. */
2428 if (s
!= htab
->elf
.srelplt
)
2433 /* It's not one of our sections, so don't allocate space. */
2439 /* If we don't need this section, strip it from the
2440 output file. This is mostly to handle .rela.bss and
2441 .rela.plt. We must create both sections in
2442 create_dynamic_sections, because they must be created
2443 before the linker maps input sections to output
2444 sections. The linker does that before
2445 adjust_dynamic_symbol is called, and it is that
2446 function which decides whether anything needs to go
2447 into these sections. */
2449 s
->flags
|= SEC_EXCLUDE
;
2453 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
2456 /* Allocate memory for the section contents. We use bfd_zalloc
2457 here in case unused entries are not reclaimed before the
2458 section's contents are written out. This should not happen,
2459 but this way if it does, we get a R_X86_64_NONE reloc instead
2461 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
2462 if (s
->contents
== NULL
)
2466 if (htab
->elf
.dynamic_sections_created
)
2468 /* Add some entries to the .dynamic section. We fill in the
2469 values later, in elf64_x86_64_finish_dynamic_sections, but we
2470 must add the entries now so that we get the correct size for
2471 the .dynamic section. The DT_DEBUG entry is filled in by the
2472 dynamic linker and used by the debugger. */
2473 #define add_dynamic_entry(TAG, VAL) \
2474 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2476 if (info
->executable
)
2478 if (!add_dynamic_entry (DT_DEBUG
, 0))
2482 if (htab
->elf
.splt
->size
!= 0)
2484 if (!add_dynamic_entry (DT_PLTGOT
, 0)
2485 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
2486 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2487 || !add_dynamic_entry (DT_JMPREL
, 0))
2490 if (htab
->tlsdesc_plt
2491 && (!add_dynamic_entry (DT_TLSDESC_PLT
, 0)
2492 || !add_dynamic_entry (DT_TLSDESC_GOT
, 0)))
2498 if (!add_dynamic_entry (DT_RELA
, 0)
2499 || !add_dynamic_entry (DT_RELASZ
, 0)
2500 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
2503 /* If any dynamic relocs apply to a read-only section,
2504 then we need a DT_TEXTREL entry. */
2505 if ((info
->flags
& DF_TEXTREL
) == 0)
2506 elf_link_hash_traverse (&htab
->elf
,
2507 elf64_x86_64_readonly_dynrelocs
,
2510 if ((info
->flags
& DF_TEXTREL
) != 0)
2512 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2517 #undef add_dynamic_entry
2523 elf64_x86_64_always_size_sections (bfd
*output_bfd
,
2524 struct bfd_link_info
*info
)
2526 asection
*tls_sec
= elf_hash_table (info
)->tls_sec
;
2530 struct elf_link_hash_entry
*tlsbase
;
2532 tlsbase
= elf_link_hash_lookup (elf_hash_table (info
),
2533 "_TLS_MODULE_BASE_",
2534 FALSE
, FALSE
, FALSE
);
2536 if (tlsbase
&& tlsbase
->type
== STT_TLS
)
2538 struct elf64_x86_64_link_hash_table
*htab
;
2539 struct bfd_link_hash_entry
*bh
= NULL
;
2540 const struct elf_backend_data
*bed
2541 = get_elf_backend_data (output_bfd
);
2543 htab
= elf64_x86_64_hash_table (info
);
2547 if (!(_bfd_generic_link_add_one_symbol
2548 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
2549 tls_sec
, 0, NULL
, FALSE
,
2550 bed
->collect
, &bh
)))
2553 htab
->tls_module_base
= bh
;
2555 tlsbase
= (struct elf_link_hash_entry
*)bh
;
2556 tlsbase
->def_regular
= 1;
2557 tlsbase
->other
= STV_HIDDEN
;
2558 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
2565 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2566 executables. Rather than setting it to the beginning of the TLS
2567 section, we have to set it to the end. This function may be called
2568 multiple times, it is idempotent. */
2571 elf64_x86_64_set_tls_module_base (struct bfd_link_info
*info
)
2573 struct elf64_x86_64_link_hash_table
*htab
;
2574 struct bfd_link_hash_entry
*base
;
2576 if (!info
->executable
)
2579 htab
= elf64_x86_64_hash_table (info
);
2583 base
= htab
->tls_module_base
;
2587 base
->u
.def
.value
= htab
->elf
.tls_size
;
2590 /* Return the base VMA address which should be subtracted from real addresses
2591 when resolving @dtpoff relocation.
2592 This is PT_TLS segment p_vaddr. */
2595 elf64_x86_64_dtpoff_base (struct bfd_link_info
*info
)
2597 /* If tls_sec is NULL, we should have signalled an error already. */
2598 if (elf_hash_table (info
)->tls_sec
== NULL
)
2600 return elf_hash_table (info
)->tls_sec
->vma
;
2603 /* Return the relocation value for @tpoff relocation
2604 if STT_TLS virtual address is ADDRESS. */
2607 elf64_x86_64_tpoff (struct bfd_link_info
*info
, bfd_vma address
)
2609 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
2610 const struct elf_backend_data
*bed
= get_elf_backend_data (info
->output_bfd
);
2611 bfd_vma static_tls_size
;
2613 /* If tls_segment is NULL, we should have signalled an error already. */
2614 if (htab
->tls_sec
== NULL
)
2617 /* Consider special static TLS alignment requirements. */
2618 static_tls_size
= BFD_ALIGN (htab
->tls_size
, bed
->static_tls_alignment
);
2619 return address
- static_tls_size
- htab
->tls_sec
->vma
;
2622 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2626 is_32bit_relative_branch (bfd_byte
*contents
, bfd_vma offset
)
2628 /* Opcode Instruction
2631 0x0f 0x8x conditional jump */
2633 && (contents
[offset
- 1] == 0xe8
2634 || contents
[offset
- 1] == 0xe9))
2636 && contents
[offset
- 2] == 0x0f
2637 && (contents
[offset
- 1] & 0xf0) == 0x80));
2641 elf64_x86_64_append_rela (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
2643 bfd_byte
*loc
= s
->contents
;
2644 loc
+= s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2645 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
2646 <= s
->contents
+ s
->size
);
2647 bfd_elf64_swap_reloca_out (abfd
, rel
, loc
);
2650 /* Relocate an x86_64 ELF section. */
2653 elf64_x86_64_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
2654 bfd
*input_bfd
, asection
*input_section
,
2655 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
2656 Elf_Internal_Sym
*local_syms
,
2657 asection
**local_sections
)
2659 struct elf64_x86_64_link_hash_table
*htab
;
2660 Elf_Internal_Shdr
*symtab_hdr
;
2661 struct elf_link_hash_entry
**sym_hashes
;
2662 bfd_vma
*local_got_offsets
;
2663 bfd_vma
*local_tlsdesc_gotents
;
2664 Elf_Internal_Rela
*rel
;
2665 Elf_Internal_Rela
*relend
;
2667 BFD_ASSERT (is_x86_64_elf (input_bfd
));
2669 htab
= elf64_x86_64_hash_table (info
);
2672 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
2673 sym_hashes
= elf_sym_hashes (input_bfd
);
2674 local_got_offsets
= elf_local_got_offsets (input_bfd
);
2675 local_tlsdesc_gotents
= elf64_x86_64_local_tlsdesc_gotent (input_bfd
);
2677 elf64_x86_64_set_tls_module_base (info
);
2680 relend
= relocs
+ input_section
->reloc_count
;
2681 for (; rel
< relend
; rel
++)
2683 unsigned int r_type
;
2684 reloc_howto_type
*howto
;
2685 unsigned long r_symndx
;
2686 struct elf_link_hash_entry
*h
;
2687 Elf_Internal_Sym
*sym
;
2689 bfd_vma off
, offplt
;
2691 bfd_boolean unresolved_reloc
;
2692 bfd_reloc_status_type r
;
2696 r_type
= ELF64_R_TYPE (rel
->r_info
);
2697 if (r_type
== (int) R_X86_64_GNU_VTINHERIT
2698 || r_type
== (int) R_X86_64_GNU_VTENTRY
)
2701 if (r_type
>= R_X86_64_max
)
2703 bfd_set_error (bfd_error_bad_value
);
2707 howto
= x86_64_elf_howto_table
+ r_type
;
2708 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2712 unresolved_reloc
= FALSE
;
2713 if (r_symndx
< symtab_hdr
->sh_info
)
2715 sym
= local_syms
+ r_symndx
;
2716 sec
= local_sections
[r_symndx
];
2718 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
,
2721 /* Relocate against local STT_GNU_IFUNC symbol. */
2722 if (!info
->relocatable
2723 && ELF64_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
2725 h
= elf64_x86_64_get_local_sym_hash (htab
, input_bfd
,
2730 /* Set STT_GNU_IFUNC symbol value. */
2731 h
->root
.u
.def
.value
= sym
->st_value
;
2732 h
->root
.u
.def
.section
= sec
;
2737 bfd_boolean warned ATTRIBUTE_UNUSED
;
2739 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2740 r_symndx
, symtab_hdr
, sym_hashes
,
2742 unresolved_reloc
, warned
);
2745 if (sec
!= NULL
&& elf_discarded_section (sec
))
2746 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
2747 rel
, relend
, howto
, contents
);
2749 if (info
->relocatable
)
2752 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2753 it here if it is defined in a non-shared object. */
2755 && h
->type
== STT_GNU_IFUNC
2762 if ((input_section
->flags
& SEC_ALLOC
) == 0
2763 || h
->plt
.offset
== (bfd_vma
) -1)
2766 /* STT_GNU_IFUNC symbol must go through PLT. */
2767 plt
= htab
->elf
.splt
? htab
->elf
.splt
: htab
->elf
.iplt
;
2768 relocation
= (plt
->output_section
->vma
2769 + plt
->output_offset
+ h
->plt
.offset
);
2774 if (h
->root
.root
.string
)
2775 name
= h
->root
.root
.string
;
2777 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
, sym
,
2779 (*_bfd_error_handler
)
2780 (_("%B: relocation %s against STT_GNU_IFUNC "
2781 "symbol `%s' isn't handled by %s"), input_bfd
,
2782 x86_64_elf_howto_table
[r_type
].name
,
2783 name
, __FUNCTION__
);
2784 bfd_set_error (bfd_error_bad_value
);
2793 if (rel
->r_addend
!= 0)
2795 if (h
->root
.root
.string
)
2796 name
= h
->root
.root
.string
;
2798 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
2800 (*_bfd_error_handler
)
2801 (_("%B: relocation %s against STT_GNU_IFUNC "
2802 "symbol `%s' has non-zero addend: %d"),
2803 input_bfd
, x86_64_elf_howto_table
[r_type
].name
,
2804 name
, rel
->r_addend
);
2805 bfd_set_error (bfd_error_bad_value
);
2809 /* Generate dynamic relcoation only when there is a
2810 non-GOF reference in a shared object. */
2811 if (info
->shared
&& h
->non_got_ref
)
2813 Elf_Internal_Rela outrel
;
2816 /* Need a dynamic relocation to get the real function
2818 outrel
.r_offset
= _bfd_elf_section_offset (output_bfd
,
2822 if (outrel
.r_offset
== (bfd_vma
) -1
2823 || outrel
.r_offset
== (bfd_vma
) -2)
2826 outrel
.r_offset
+= (input_section
->output_section
->vma
2827 + input_section
->output_offset
);
2829 if (h
->dynindx
== -1
2831 || info
->executable
)
2833 /* This symbol is resolved locally. */
2834 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_IRELATIVE
);
2835 outrel
.r_addend
= (h
->root
.u
.def
.value
2836 + h
->root
.u
.def
.section
->output_section
->vma
2837 + h
->root
.u
.def
.section
->output_offset
);
2841 outrel
.r_info
= ELF64_R_INFO (h
->dynindx
, r_type
);
2842 outrel
.r_addend
= 0;
2845 sreloc
= htab
->elf
.irelifunc
;
2846 elf64_x86_64_append_rela (output_bfd
, sreloc
, &outrel
);
2848 /* If this reloc is against an external symbol, we
2849 do not want to fiddle with the addend. Otherwise,
2850 we need to include the symbol value so that it
2851 becomes an addend for the dynamic reloc. For an
2852 internal symbol, we have updated addend. */
2859 case R_X86_64_PLT32
:
2862 case R_X86_64_GOTPCREL
:
2863 case R_X86_64_GOTPCREL64
:
2864 base_got
= htab
->elf
.sgot
;
2865 off
= h
->got
.offset
;
2867 if (base_got
== NULL
)
2870 if (off
== (bfd_vma
) -1)
2872 /* We can't use h->got.offset here to save state, or
2873 even just remember the offset, as finish_dynamic_symbol
2874 would use that as offset into .got. */
2876 if (htab
->elf
.splt
!= NULL
)
2878 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
2879 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
2880 base_got
= htab
->elf
.sgotplt
;
2884 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
;
2885 off
= plt_index
* GOT_ENTRY_SIZE
;
2886 base_got
= htab
->elf
.igotplt
;
2889 if (h
->dynindx
== -1
2893 /* This references the local defitionion. We must
2894 initialize this entry in the global offset table.
2895 Since the offset must always be a multiple of 8,
2896 we use the least significant bit to record
2897 whether we have initialized it already.
2899 When doing a dynamic link, we create a .rela.got
2900 relocation entry to initialize the value. This
2901 is done in the finish_dynamic_symbol routine. */
2906 bfd_put_64 (output_bfd
, relocation
,
2907 base_got
->contents
+ off
);
2908 /* Note that this is harmless for the GOTPLT64
2909 case, as -1 | 1 still is -1. */
2915 relocation
= (base_got
->output_section
->vma
2916 + base_got
->output_offset
+ off
);
2918 if (r_type
!= R_X86_64_GOTPCREL
2919 && r_type
!= R_X86_64_GOTPCREL64
)
2922 if (htab
->elf
.splt
!= NULL
)
2923 gotplt
= htab
->elf
.sgotplt
;
2925 gotplt
= htab
->elf
.igotplt
;
2926 relocation
-= (gotplt
->output_section
->vma
2927 - gotplt
->output_offset
);
2934 /* When generating a shared object, the relocations handled here are
2935 copied into the output file to be resolved at run time. */
2938 case R_X86_64_GOT32
:
2939 case R_X86_64_GOT64
:
2940 /* Relocation is to the entry for this symbol in the global
2942 case R_X86_64_GOTPCREL
:
2943 case R_X86_64_GOTPCREL64
:
2944 /* Use global offset table entry as symbol value. */
2945 case R_X86_64_GOTPLT64
:
2946 /* This is the same as GOT64 for relocation purposes, but
2947 indicates the existence of a PLT entry. The difficulty is,
2948 that we must calculate the GOT slot offset from the PLT
2949 offset, if this symbol got a PLT entry (it was global).
2950 Additionally if it's computed from the PLT entry, then that
2951 GOT offset is relative to .got.plt, not to .got. */
2952 base_got
= htab
->elf
.sgot
;
2954 if (htab
->elf
.sgot
== NULL
)
2961 off
= h
->got
.offset
;
2963 && h
->plt
.offset
!= (bfd_vma
)-1
2964 && off
== (bfd_vma
)-1)
2966 /* We can't use h->got.offset here to save
2967 state, or even just remember the offset, as
2968 finish_dynamic_symbol would use that as offset into
2970 bfd_vma plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
2971 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
2972 base_got
= htab
->elf
.sgotplt
;
2975 dyn
= htab
->elf
.dynamic_sections_created
;
2977 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2979 && SYMBOL_REFERENCES_LOCAL (info
, h
))
2980 || (ELF_ST_VISIBILITY (h
->other
)
2981 && h
->root
.type
== bfd_link_hash_undefweak
))
2983 /* This is actually a static link, or it is a -Bsymbolic
2984 link and the symbol is defined locally, or the symbol
2985 was forced to be local because of a version file. We
2986 must initialize this entry in the global offset table.
2987 Since the offset must always be a multiple of 8, we
2988 use the least significant bit to record whether we
2989 have initialized it already.
2991 When doing a dynamic link, we create a .rela.got
2992 relocation entry to initialize the value. This is
2993 done in the finish_dynamic_symbol routine. */
2998 bfd_put_64 (output_bfd
, relocation
,
2999 base_got
->contents
+ off
);
3000 /* Note that this is harmless for the GOTPLT64 case,
3001 as -1 | 1 still is -1. */
3006 unresolved_reloc
= FALSE
;
3010 if (local_got_offsets
== NULL
)
3013 off
= local_got_offsets
[r_symndx
];
3015 /* The offset must always be a multiple of 8. We use
3016 the least significant bit to record whether we have
3017 already generated the necessary reloc. */
3022 bfd_put_64 (output_bfd
, relocation
,
3023 base_got
->contents
+ off
);
3028 Elf_Internal_Rela outrel
;
3030 /* We need to generate a R_X86_64_RELATIVE reloc
3031 for the dynamic linker. */
3032 s
= htab
->elf
.srelgot
;
3036 outrel
.r_offset
= (base_got
->output_section
->vma
3037 + base_got
->output_offset
3039 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
3040 outrel
.r_addend
= relocation
;
3041 elf64_x86_64_append_rela (output_bfd
, s
, &outrel
);
3044 local_got_offsets
[r_symndx
] |= 1;
3048 if (off
>= (bfd_vma
) -2)
3051 relocation
= base_got
->output_section
->vma
3052 + base_got
->output_offset
+ off
;
3053 if (r_type
!= R_X86_64_GOTPCREL
&& r_type
!= R_X86_64_GOTPCREL64
)
3054 relocation
-= htab
->elf
.sgotplt
->output_section
->vma
3055 - htab
->elf
.sgotplt
->output_offset
;
3059 case R_X86_64_GOTOFF64
:
3060 /* Relocation is relative to the start of the global offset
3063 /* Check to make sure it isn't a protected function symbol
3064 for shared library since it may not be local when used
3065 as function address. */
3069 && h
->type
== STT_FUNC
3070 && ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
3072 (*_bfd_error_handler
)
3073 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3074 input_bfd
, h
->root
.root
.string
);
3075 bfd_set_error (bfd_error_bad_value
);
3079 /* Note that sgot is not involved in this
3080 calculation. We always want the start of .got.plt. If we
3081 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3082 permitted by the ABI, we might have to change this
3084 relocation
-= htab
->elf
.sgotplt
->output_section
->vma
3085 + htab
->elf
.sgotplt
->output_offset
;
3088 case R_X86_64_GOTPC32
:
3089 case R_X86_64_GOTPC64
:
3090 /* Use global offset table as symbol value. */
3091 relocation
= htab
->elf
.sgotplt
->output_section
->vma
3092 + htab
->elf
.sgotplt
->output_offset
;
3093 unresolved_reloc
= FALSE
;
3096 case R_X86_64_PLTOFF64
:
3097 /* Relocation is PLT entry relative to GOT. For local
3098 symbols it's the symbol itself relative to GOT. */
3100 /* See PLT32 handling. */
3101 && h
->plt
.offset
!= (bfd_vma
) -1
3102 && htab
->elf
.splt
!= NULL
)
3104 relocation
= (htab
->elf
.splt
->output_section
->vma
3105 + htab
->elf
.splt
->output_offset
3107 unresolved_reloc
= FALSE
;
3110 relocation
-= htab
->elf
.sgotplt
->output_section
->vma
3111 + htab
->elf
.sgotplt
->output_offset
;
3114 case R_X86_64_PLT32
:
3115 /* Relocation is to the entry for this symbol in the
3116 procedure linkage table. */
3118 /* Resolve a PLT32 reloc against a local symbol directly,
3119 without using the procedure linkage table. */
3123 if (h
->plt
.offset
== (bfd_vma
) -1
3124 || htab
->elf
.splt
== NULL
)
3126 /* We didn't make a PLT entry for this symbol. This
3127 happens when statically linking PIC code, or when
3128 using -Bsymbolic. */
3132 relocation
= (htab
->elf
.splt
->output_section
->vma
3133 + htab
->elf
.splt
->output_offset
3135 unresolved_reloc
= FALSE
;
3142 && (input_section
->flags
& SEC_ALLOC
) != 0
3143 && (input_section
->flags
& SEC_READONLY
) != 0
3146 bfd_boolean fail
= FALSE
;
3148 = (r_type
== R_X86_64_PC32
3149 && is_32bit_relative_branch (contents
, rel
->r_offset
));
3151 if (SYMBOL_REFERENCES_LOCAL (info
, h
))
3153 /* Symbol is referenced locally. Make sure it is
3154 defined locally or for a branch. */
3155 fail
= !h
->def_regular
&& !branch
;
3159 /* Symbol isn't referenced locally. We only allow
3160 branch to symbol with non-default visibility. */
3162 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
);
3169 const char *pic
= "";
3171 switch (ELF_ST_VISIBILITY (h
->other
))
3174 v
= _("hidden symbol");
3177 v
= _("internal symbol");
3180 v
= _("protected symbol");
3184 pic
= _("; recompile with -fPIC");
3189 fmt
= _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3191 fmt
= _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3193 (*_bfd_error_handler
) (fmt
, input_bfd
,
3194 x86_64_elf_howto_table
[r_type
].name
,
3195 v
, h
->root
.root
.string
, pic
);
3196 bfd_set_error (bfd_error_bad_value
);
3207 /* FIXME: The ABI says the linker should make sure the value is
3208 the same when it's zeroextended to 64 bit. */
3210 if ((input_section
->flags
& SEC_ALLOC
) == 0)
3215 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3216 || h
->root
.type
!= bfd_link_hash_undefweak
)
3217 && (! IS_X86_64_PCREL_TYPE (r_type
)
3218 || ! SYMBOL_CALLS_LOCAL (info
, h
)))
3219 || (ELIMINATE_COPY_RELOCS
3226 || h
->root
.type
== bfd_link_hash_undefweak
3227 || h
->root
.type
== bfd_link_hash_undefined
)))
3229 Elf_Internal_Rela outrel
;
3230 bfd_boolean skip
, relocate
;
3233 /* When generating a shared object, these relocations
3234 are copied into the output file to be resolved at run
3240 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3242 if (outrel
.r_offset
== (bfd_vma
) -1)
3244 else if (outrel
.r_offset
== (bfd_vma
) -2)
3245 skip
= TRUE
, relocate
= TRUE
;
3247 outrel
.r_offset
+= (input_section
->output_section
->vma
3248 + input_section
->output_offset
);
3251 memset (&outrel
, 0, sizeof outrel
);
3253 /* h->dynindx may be -1 if this symbol was marked to
3257 && (IS_X86_64_PCREL_TYPE (r_type
)
3259 || ! SYMBOLIC_BIND (info
, h
)
3260 || ! h
->def_regular
))
3262 outrel
.r_info
= ELF64_R_INFO (h
->dynindx
, r_type
);
3263 outrel
.r_addend
= rel
->r_addend
;
3267 /* This symbol is local, or marked to become local. */
3268 if (r_type
== R_X86_64_64
)
3271 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
3272 outrel
.r_addend
= relocation
+ rel
->r_addend
;
3278 if (bfd_is_abs_section (sec
))
3280 else if (sec
== NULL
|| sec
->owner
== NULL
)
3282 bfd_set_error (bfd_error_bad_value
);
3289 /* We are turning this relocation into one
3290 against a section symbol. It would be
3291 proper to subtract the symbol's value,
3292 osec->vma, from the emitted reloc addend,
3293 but ld.so expects buggy relocs. */
3294 osec
= sec
->output_section
;
3295 sindx
= elf_section_data (osec
)->dynindx
;
3298 asection
*oi
= htab
->elf
.text_index_section
;
3299 sindx
= elf_section_data (oi
)->dynindx
;
3301 BFD_ASSERT (sindx
!= 0);
3304 outrel
.r_info
= ELF64_R_INFO (sindx
, r_type
);
3305 outrel
.r_addend
= relocation
+ rel
->r_addend
;
3309 sreloc
= elf_section_data (input_section
)->sreloc
;
3311 BFD_ASSERT (sreloc
!= NULL
&& sreloc
->contents
!= NULL
);
3313 elf64_x86_64_append_rela (output_bfd
, sreloc
, &outrel
);
3315 /* If this reloc is against an external symbol, we do
3316 not want to fiddle with the addend. Otherwise, we
3317 need to include the symbol value so that it becomes
3318 an addend for the dynamic reloc. */
3325 case R_X86_64_TLSGD
:
3326 case R_X86_64_GOTPC32_TLSDESC
:
3327 case R_X86_64_TLSDESC_CALL
:
3328 case R_X86_64_GOTTPOFF
:
3329 tls_type
= GOT_UNKNOWN
;
3330 if (h
== NULL
&& local_got_offsets
)
3331 tls_type
= elf64_x86_64_local_got_tls_type (input_bfd
) [r_symndx
];
3333 tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
3335 if (! elf64_x86_64_tls_transition (info
, input_bfd
,
3336 input_section
, contents
,
3337 symtab_hdr
, sym_hashes
,
3338 &r_type
, tls_type
, rel
,
3339 relend
, h
, r_symndx
))
3342 if (r_type
== R_X86_64_TPOFF32
)
3344 bfd_vma roff
= rel
->r_offset
;
3346 BFD_ASSERT (! unresolved_reloc
);
3348 if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
3350 /* GD->LE transition.
3351 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3352 .word 0x6666; rex64; call __tls_get_addr
3355 leaq foo@tpoff(%rax), %rax */
3356 memcpy (contents
+ roff
- 4,
3357 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3359 bfd_put_32 (output_bfd
,
3360 elf64_x86_64_tpoff (info
, relocation
),
3361 contents
+ roff
+ 8);
3362 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3366 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
3368 /* GDesc -> LE transition.
3369 It's originally something like:
3370 leaq x@tlsdesc(%rip), %rax
3373 movl $x@tpoff, %rax. */
3375 unsigned int val
, type
;
3377 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3378 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3379 bfd_put_8 (output_bfd
, 0x48 | ((type
>> 2) & 1),
3380 contents
+ roff
- 3);
3381 bfd_put_8 (output_bfd
, 0xc7, contents
+ roff
- 2);
3382 bfd_put_8 (output_bfd
, 0xc0 | ((val
>> 3) & 7),
3383 contents
+ roff
- 1);
3384 bfd_put_32 (output_bfd
,
3385 elf64_x86_64_tpoff (info
, relocation
),
3389 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
3391 /* GDesc -> LE transition.
3396 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
3397 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
3400 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTTPOFF
)
3402 /* IE->LE transition:
3403 Originally it can be one of:
3404 movq foo@gottpoff(%rip), %reg
3405 addq foo@gottpoff(%rip), %reg
3408 leaq foo(%reg), %reg
3411 unsigned int val
, type
, reg
;
3413 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3414 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
3415 reg
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3421 bfd_put_8 (output_bfd
, 0x49,
3422 contents
+ roff
- 3);
3423 bfd_put_8 (output_bfd
, 0xc7,
3424 contents
+ roff
- 2);
3425 bfd_put_8 (output_bfd
, 0xc0 | reg
,
3426 contents
+ roff
- 1);
3430 /* addq -> addq - addressing with %rsp/%r12 is
3433 bfd_put_8 (output_bfd
, 0x49,
3434 contents
+ roff
- 3);
3435 bfd_put_8 (output_bfd
, 0x81,
3436 contents
+ roff
- 2);
3437 bfd_put_8 (output_bfd
, 0xc0 | reg
,
3438 contents
+ roff
- 1);
3444 bfd_put_8 (output_bfd
, 0x4d,
3445 contents
+ roff
- 3);
3446 bfd_put_8 (output_bfd
, 0x8d,
3447 contents
+ roff
- 2);
3448 bfd_put_8 (output_bfd
, 0x80 | reg
| (reg
<< 3),
3449 contents
+ roff
- 1);
3451 bfd_put_32 (output_bfd
,
3452 elf64_x86_64_tpoff (info
, relocation
),
3460 if (htab
->elf
.sgot
== NULL
)
3465 off
= h
->got
.offset
;
3466 offplt
= elf64_x86_64_hash_entry (h
)->tlsdesc_got
;
3470 if (local_got_offsets
== NULL
)
3473 off
= local_got_offsets
[r_symndx
];
3474 offplt
= local_tlsdesc_gotents
[r_symndx
];
3481 Elf_Internal_Rela outrel
;
3485 if (htab
->elf
.srelgot
== NULL
)
3488 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
3490 if (GOT_TLS_GDESC_P (tls_type
))
3492 outrel
.r_info
= ELF64_R_INFO (indx
, R_X86_64_TLSDESC
);
3493 BFD_ASSERT (htab
->sgotplt_jump_table_size
+ offplt
3494 + 2 * GOT_ENTRY_SIZE
<= htab
->elf
.sgotplt
->size
);
3495 outrel
.r_offset
= (htab
->elf
.sgotplt
->output_section
->vma
3496 + htab
->elf
.sgotplt
->output_offset
3498 + htab
->sgotplt_jump_table_size
);
3499 sreloc
= htab
->elf
.srelplt
;
3501 outrel
.r_addend
= relocation
- elf64_x86_64_dtpoff_base (info
);
3503 outrel
.r_addend
= 0;
3504 elf64_x86_64_append_rela (output_bfd
, sreloc
, &outrel
);
3507 sreloc
= htab
->elf
.srelgot
;
3509 outrel
.r_offset
= (htab
->elf
.sgot
->output_section
->vma
3510 + htab
->elf
.sgot
->output_offset
+ off
);
3512 if (GOT_TLS_GD_P (tls_type
))
3513 dr_type
= R_X86_64_DTPMOD64
;
3514 else if (GOT_TLS_GDESC_P (tls_type
))
3517 dr_type
= R_X86_64_TPOFF64
;
3519 bfd_put_64 (output_bfd
, 0, htab
->elf
.sgot
->contents
+ off
);
3520 outrel
.r_addend
= 0;
3521 if ((dr_type
== R_X86_64_TPOFF64
3522 || dr_type
== R_X86_64_TLSDESC
) && indx
== 0)
3523 outrel
.r_addend
= relocation
- elf64_x86_64_dtpoff_base (info
);
3524 outrel
.r_info
= ELF64_R_INFO (indx
, dr_type
);
3526 elf64_x86_64_append_rela (output_bfd
, sreloc
, &outrel
);
3528 if (GOT_TLS_GD_P (tls_type
))
3532 BFD_ASSERT (! unresolved_reloc
);
3533 bfd_put_64 (output_bfd
,
3534 relocation
- elf64_x86_64_dtpoff_base (info
),
3535 htab
->elf
.sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3539 bfd_put_64 (output_bfd
, 0,
3540 htab
->elf
.sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3541 outrel
.r_info
= ELF64_R_INFO (indx
,
3543 outrel
.r_offset
+= GOT_ENTRY_SIZE
;
3544 elf64_x86_64_append_rela (output_bfd
, sreloc
,
3553 local_got_offsets
[r_symndx
] |= 1;
3556 if (off
>= (bfd_vma
) -2
3557 && ! GOT_TLS_GDESC_P (tls_type
))
3559 if (r_type
== ELF64_R_TYPE (rel
->r_info
))
3561 if (r_type
== R_X86_64_GOTPC32_TLSDESC
3562 || r_type
== R_X86_64_TLSDESC_CALL
)
3563 relocation
= htab
->elf
.sgotplt
->output_section
->vma
3564 + htab
->elf
.sgotplt
->output_offset
3565 + offplt
+ htab
->sgotplt_jump_table_size
;
3567 relocation
= htab
->elf
.sgot
->output_section
->vma
3568 + htab
->elf
.sgot
->output_offset
+ off
;
3569 unresolved_reloc
= FALSE
;
3573 bfd_vma roff
= rel
->r_offset
;
3575 if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
3577 /* GD->IE transition.
3578 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3579 .word 0x6666; rex64; call __tls_get_addr@plt
3582 addq foo@gottpoff(%rip), %rax */
3583 memcpy (contents
+ roff
- 4,
3584 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3587 relocation
= (htab
->elf
.sgot
->output_section
->vma
3588 + htab
->elf
.sgot
->output_offset
+ off
3590 - input_section
->output_section
->vma
3591 - input_section
->output_offset
3593 bfd_put_32 (output_bfd
, relocation
,
3594 contents
+ roff
+ 8);
3595 /* Skip R_X86_64_PLT32. */
3599 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
3601 /* GDesc -> IE transition.
3602 It's originally something like:
3603 leaq x@tlsdesc(%rip), %rax
3606 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
3608 /* Now modify the instruction as appropriate. To
3609 turn a leaq into a movq in the form we use it, it
3610 suffices to change the second byte from 0x8d to
3612 bfd_put_8 (output_bfd
, 0x8b, contents
+ roff
- 2);
3614 bfd_put_32 (output_bfd
,
3615 htab
->elf
.sgot
->output_section
->vma
3616 + htab
->elf
.sgot
->output_offset
+ off
3618 - input_section
->output_section
->vma
3619 - input_section
->output_offset
3624 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
3626 /* GDesc -> IE transition.
3633 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
3634 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
3642 case R_X86_64_TLSLD
:
3643 if (! elf64_x86_64_tls_transition (info
, input_bfd
,
3644 input_section
, contents
,
3645 symtab_hdr
, sym_hashes
,
3646 &r_type
, GOT_UNKNOWN
,
3647 rel
, relend
, h
, r_symndx
))
3650 if (r_type
!= R_X86_64_TLSLD
)
3652 /* LD->LE transition:
3653 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3655 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3657 BFD_ASSERT (r_type
== R_X86_64_TPOFF32
);
3658 memcpy (contents
+ rel
->r_offset
- 3,
3659 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3660 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3665 if (htab
->elf
.sgot
== NULL
)
3668 off
= htab
->tls_ld_got
.offset
;
3673 Elf_Internal_Rela outrel
;
3675 if (htab
->elf
.srelgot
== NULL
)
3678 outrel
.r_offset
= (htab
->elf
.sgot
->output_section
->vma
3679 + htab
->elf
.sgot
->output_offset
+ off
);
3681 bfd_put_64 (output_bfd
, 0,
3682 htab
->elf
.sgot
->contents
+ off
);
3683 bfd_put_64 (output_bfd
, 0,
3684 htab
->elf
.sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3685 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_DTPMOD64
);
3686 outrel
.r_addend
= 0;
3687 elf64_x86_64_append_rela (output_bfd
, htab
->elf
.srelgot
,
3689 htab
->tls_ld_got
.offset
|= 1;
3691 relocation
= htab
->elf
.sgot
->output_section
->vma
3692 + htab
->elf
.sgot
->output_offset
+ off
;
3693 unresolved_reloc
= FALSE
;
3696 case R_X86_64_DTPOFF32
:
3697 if (!info
->executable
|| (input_section
->flags
& SEC_CODE
) == 0)
3698 relocation
-= elf64_x86_64_dtpoff_base (info
);
3700 relocation
= elf64_x86_64_tpoff (info
, relocation
);
3703 case R_X86_64_TPOFF32
:
3704 BFD_ASSERT (info
->executable
);
3705 relocation
= elf64_x86_64_tpoff (info
, relocation
);
3712 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3713 because such sections are not SEC_ALLOC and thus ld.so will
3714 not process them. */
3715 if (unresolved_reloc
3716 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
3718 (*_bfd_error_handler
)
3719 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3722 (long) rel
->r_offset
,
3724 h
->root
.root
.string
);
3727 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
3728 contents
, rel
->r_offset
,
3729 relocation
, rel
->r_addend
);
3731 if (r
!= bfd_reloc_ok
)
3736 name
= h
->root
.root
.string
;
3739 name
= bfd_elf_string_from_elf_section (input_bfd
,
3740 symtab_hdr
->sh_link
,
3745 name
= bfd_section_name (input_bfd
, sec
);
3748 if (r
== bfd_reloc_overflow
)
3750 if (! ((*info
->callbacks
->reloc_overflow
)
3751 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
3752 (bfd_vma
) 0, input_bfd
, input_section
,
3758 (*_bfd_error_handler
)
3759 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3760 input_bfd
, input_section
,
3761 (long) rel
->r_offset
, name
, (int) r
);
3770 /* Finish up dynamic symbol handling. We set the contents of various
3771 dynamic sections here. */
3774 elf64_x86_64_finish_dynamic_symbol (bfd
*output_bfd
,
3775 struct bfd_link_info
*info
,
3776 struct elf_link_hash_entry
*h
,
3777 Elf_Internal_Sym
*sym
)
3779 struct elf64_x86_64_link_hash_table
*htab
;
3781 htab
= elf64_x86_64_hash_table (info
);
3785 if (h
->plt
.offset
!= (bfd_vma
) -1)
3789 Elf_Internal_Rela rela
;
3791 asection
*plt
, *gotplt
, *relplt
;
3793 /* When building a static executable, use .iplt, .igot.plt and
3794 .rela.iplt sections for STT_GNU_IFUNC symbols. */
3795 if (htab
->elf
.splt
!= NULL
)
3797 plt
= htab
->elf
.splt
;
3798 gotplt
= htab
->elf
.sgotplt
;
3799 relplt
= htab
->elf
.srelplt
;
3803 plt
= htab
->elf
.iplt
;
3804 gotplt
= htab
->elf
.igotplt
;
3805 relplt
= htab
->elf
.irelplt
;
3808 /* This symbol has an entry in the procedure linkage table. Set
3810 if ((h
->dynindx
== -1
3811 && !((h
->forced_local
|| info
->executable
)
3813 && h
->type
== STT_GNU_IFUNC
))
3819 /* Get the index in the procedure linkage table which
3820 corresponds to this symbol. This is the index of this symbol
3821 in all the symbols for which we are making plt entries. The
3822 first entry in the procedure linkage table is reserved.
3824 Get the offset into the .got table of the entry that
3825 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3826 bytes. The first three are reserved for the dynamic linker.
3828 For static executables, we don't reserve anything. */
3830 if (plt
== htab
->elf
.splt
)
3832 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
3833 got_offset
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
3837 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
;
3838 got_offset
= plt_index
* GOT_ENTRY_SIZE
;
3841 /* Fill in the entry in the procedure linkage table. */
3842 memcpy (plt
->contents
+ h
->plt
.offset
, elf64_x86_64_plt_entry
,
3845 /* Insert the relocation positions of the plt section. The magic
3846 numbers at the end of the statements are the positions of the
3847 relocations in the plt section. */
3848 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3849 instruction uses 6 bytes, subtract this value. */
3850 bfd_put_32 (output_bfd
,
3851 (gotplt
->output_section
->vma
3852 + gotplt
->output_offset
3854 - plt
->output_section
->vma
3855 - plt
->output_offset
3858 plt
->contents
+ h
->plt
.offset
+ 2);
3860 /* Don't fill PLT entry for static executables. */
3861 if (plt
== htab
->elf
.splt
)
3863 /* Put relocation index. */
3864 bfd_put_32 (output_bfd
, plt_index
,
3865 plt
->contents
+ h
->plt
.offset
+ 7);
3866 /* Put offset for jmp .PLT0. */
3867 bfd_put_32 (output_bfd
, - (h
->plt
.offset
+ PLT_ENTRY_SIZE
),
3868 plt
->contents
+ h
->plt
.offset
+ 12);
3871 /* Fill in the entry in the global offset table, initially this
3872 points to the pushq instruction in the PLT which is at offset 6. */
3873 bfd_put_64 (output_bfd
, (plt
->output_section
->vma
3874 + plt
->output_offset
3875 + h
->plt
.offset
+ 6),
3876 gotplt
->contents
+ got_offset
);
3878 /* Fill in the entry in the .rela.plt section. */
3879 rela
.r_offset
= (gotplt
->output_section
->vma
3880 + gotplt
->output_offset
3882 if (h
->dynindx
== -1
3883 || ((info
->executable
3884 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
3886 && h
->type
== STT_GNU_IFUNC
))
3888 /* If an STT_GNU_IFUNC symbol is locally defined, generate
3889 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
3890 rela
.r_info
= ELF64_R_INFO (0, R_X86_64_IRELATIVE
);
3891 rela
.r_addend
= (h
->root
.u
.def
.value
3892 + h
->root
.u
.def
.section
->output_section
->vma
3893 + h
->root
.u
.def
.section
->output_offset
);
3897 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_JUMP_SLOT
);
3900 loc
= relplt
->contents
+ plt_index
* sizeof (Elf64_External_Rela
);
3901 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3903 if (!h
->def_regular
)
3905 /* Mark the symbol as undefined, rather than as defined in
3906 the .plt section. Leave the value if there were any
3907 relocations where pointer equality matters (this is a clue
3908 for the dynamic linker, to make function pointer
3909 comparisons work between an application and shared
3910 library), otherwise set it to zero. If a function is only
3911 called from a binary, there is no need to slow down
3912 shared libraries because of that. */
3913 sym
->st_shndx
= SHN_UNDEF
;
3914 if (!h
->pointer_equality_needed
)
3919 if (h
->got
.offset
!= (bfd_vma
) -1
3920 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h
)->tls_type
)
3921 && elf64_x86_64_hash_entry (h
)->tls_type
!= GOT_TLS_IE
)
3923 Elf_Internal_Rela rela
;
3925 /* This symbol has an entry in the global offset table. Set it
3927 if (htab
->elf
.sgot
== NULL
|| htab
->elf
.srelgot
== NULL
)
3930 rela
.r_offset
= (htab
->elf
.sgot
->output_section
->vma
3931 + htab
->elf
.sgot
->output_offset
3932 + (h
->got
.offset
&~ (bfd_vma
) 1));
3934 /* If this is a static link, or it is a -Bsymbolic link and the
3935 symbol is defined locally or was forced to be local because
3936 of a version file, we just want to emit a RELATIVE reloc.
3937 The entry in the global offset table will already have been
3938 initialized in the relocate_section function. */
3940 && h
->type
== STT_GNU_IFUNC
)
3944 /* Generate R_X86_64_GLOB_DAT. */
3951 if (!h
->pointer_equality_needed
)
3954 /* For non-shared object, we can't use .got.plt, which
3955 contains the real function addres if we need pointer
3956 equality. We load the GOT entry with the PLT entry. */
3957 plt
= htab
->elf
.splt
? htab
->elf
.splt
: htab
->elf
.iplt
;
3958 bfd_put_64 (output_bfd
, (plt
->output_section
->vma
3959 + plt
->output_offset
3961 htab
->elf
.sgot
->contents
+ h
->got
.offset
);
3965 else if (info
->shared
3966 && SYMBOL_REFERENCES_LOCAL (info
, h
))
3968 if (!h
->def_regular
)
3970 BFD_ASSERT((h
->got
.offset
& 1) != 0);
3971 rela
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
3972 rela
.r_addend
= (h
->root
.u
.def
.value
3973 + h
->root
.u
.def
.section
->output_section
->vma
3974 + h
->root
.u
.def
.section
->output_offset
);
3978 BFD_ASSERT((h
->got
.offset
& 1) == 0);
3980 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
3981 htab
->elf
.sgot
->contents
+ h
->got
.offset
);
3982 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_GLOB_DAT
);
3986 elf64_x86_64_append_rela (output_bfd
, htab
->elf
.srelgot
, &rela
);
3991 Elf_Internal_Rela rela
;
3993 /* This symbol needs a copy reloc. Set it up. */
3995 if (h
->dynindx
== -1
3996 || (h
->root
.type
!= bfd_link_hash_defined
3997 && h
->root
.type
!= bfd_link_hash_defweak
)
3998 || htab
->srelbss
== NULL
)
4001 rela
.r_offset
= (h
->root
.u
.def
.value
4002 + h
->root
.u
.def
.section
->output_section
->vma
4003 + h
->root
.u
.def
.section
->output_offset
);
4004 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_COPY
);
4006 elf64_x86_64_append_rela (output_bfd
, htab
->srelbss
, &rela
);
4009 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4010 be NULL for local symbols. */
4012 && (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
4013 || h
== htab
->elf
.hgot
))
4014 sym
->st_shndx
= SHN_ABS
;
4019 /* Finish up local dynamic symbol handling. We set the contents of
4020 various dynamic sections here. */
4023 elf64_x86_64_finish_local_dynamic_symbol (void **slot
, void *inf
)
4025 struct elf_link_hash_entry
*h
4026 = (struct elf_link_hash_entry
*) *slot
;
4027 struct bfd_link_info
*info
4028 = (struct bfd_link_info
*) inf
;
4030 return elf64_x86_64_finish_dynamic_symbol (info
->output_bfd
,
4034 /* Used to decide how to sort relocs in an optimal manner for the
4035 dynamic linker, before writing them out. */
4037 static enum elf_reloc_type_class
4038 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela
*rela
)
4040 switch ((int) ELF64_R_TYPE (rela
->r_info
))
4042 case R_X86_64_RELATIVE
:
4043 return reloc_class_relative
;
4044 case R_X86_64_JUMP_SLOT
:
4045 return reloc_class_plt
;
4047 return reloc_class_copy
;
4049 return reloc_class_normal
;
4053 /* Finish up the dynamic sections. */
4056 elf64_x86_64_finish_dynamic_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
4058 struct elf64_x86_64_link_hash_table
*htab
;
4062 htab
= elf64_x86_64_hash_table (info
);
4066 dynobj
= htab
->elf
.dynobj
;
4067 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
4069 if (htab
->elf
.dynamic_sections_created
)
4071 Elf64_External_Dyn
*dyncon
, *dynconend
;
4073 if (sdyn
== NULL
|| htab
->elf
.sgot
== NULL
)
4076 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
4077 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
4078 for (; dyncon
< dynconend
; dyncon
++)
4080 Elf_Internal_Dyn dyn
;
4083 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4091 s
= htab
->elf
.sgotplt
;
4092 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
4096 dyn
.d_un
.d_ptr
= htab
->elf
.srelplt
->output_section
->vma
;
4100 s
= htab
->elf
.srelplt
->output_section
;
4101 dyn
.d_un
.d_val
= s
->size
;
4105 /* The procedure linkage table relocs (DT_JMPREL) should
4106 not be included in the overall relocs (DT_RELA).
4107 Therefore, we override the DT_RELASZ entry here to
4108 make it not include the JMPREL relocs. Since the
4109 linker script arranges for .rela.plt to follow all
4110 other relocation sections, we don't have to worry
4111 about changing the DT_RELA entry. */
4112 if (htab
->elf
.srelplt
!= NULL
)
4114 s
= htab
->elf
.srelplt
->output_section
;
4115 dyn
.d_un
.d_val
-= s
->size
;
4119 case DT_TLSDESC_PLT
:
4121 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
4122 + htab
->tlsdesc_plt
;
4125 case DT_TLSDESC_GOT
:
4127 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
4128 + htab
->tlsdesc_got
;
4132 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4135 /* Fill in the special first entry in the procedure linkage table. */
4136 if (htab
->elf
.splt
&& htab
->elf
.splt
->size
> 0)
4138 /* Fill in the first entry in the procedure linkage table. */
4139 memcpy (htab
->elf
.splt
->contents
, elf64_x86_64_plt0_entry
,
4141 /* Add offset for pushq GOT+8(%rip), since the instruction
4142 uses 6 bytes subtract this value. */
4143 bfd_put_32 (output_bfd
,
4144 (htab
->elf
.sgotplt
->output_section
->vma
4145 + htab
->elf
.sgotplt
->output_offset
4147 - htab
->elf
.splt
->output_section
->vma
4148 - htab
->elf
.splt
->output_offset
4150 htab
->elf
.splt
->contents
+ 2);
4151 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4152 the end of the instruction. */
4153 bfd_put_32 (output_bfd
,
4154 (htab
->elf
.sgotplt
->output_section
->vma
4155 + htab
->elf
.sgotplt
->output_offset
4157 - htab
->elf
.splt
->output_section
->vma
4158 - htab
->elf
.splt
->output_offset
4160 htab
->elf
.splt
->contents
+ 8);
4162 elf_section_data (htab
->elf
.splt
->output_section
)->this_hdr
.sh_entsize
=
4165 if (htab
->tlsdesc_plt
)
4167 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
4168 htab
->elf
.sgot
->contents
+ htab
->tlsdesc_got
);
4170 memcpy (htab
->elf
.splt
->contents
+ htab
->tlsdesc_plt
,
4171 elf64_x86_64_plt0_entry
,
4174 /* Add offset for pushq GOT+8(%rip), since the
4175 instruction uses 6 bytes subtract this value. */
4176 bfd_put_32 (output_bfd
,
4177 (htab
->elf
.sgotplt
->output_section
->vma
4178 + htab
->elf
.sgotplt
->output_offset
4180 - htab
->elf
.splt
->output_section
->vma
4181 - htab
->elf
.splt
->output_offset
4184 htab
->elf
.splt
->contents
+ htab
->tlsdesc_plt
+ 2);
4185 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4186 htab->tlsdesc_got. The 12 is the offset to the end of
4188 bfd_put_32 (output_bfd
,
4189 (htab
->elf
.sgot
->output_section
->vma
4190 + htab
->elf
.sgot
->output_offset
4192 - htab
->elf
.splt
->output_section
->vma
4193 - htab
->elf
.splt
->output_offset
4196 htab
->elf
.splt
->contents
+ htab
->tlsdesc_plt
+ 8);
4201 if (htab
->elf
.sgotplt
)
4203 if (bfd_is_abs_section (htab
->elf
.sgotplt
->output_section
))
4205 (*_bfd_error_handler
)
4206 (_("discarded output section: `%A'"), htab
->elf
.sgotplt
);
4210 /* Fill in the first three entries in the global offset table. */
4211 if (htab
->elf
.sgotplt
->size
> 0)
4213 /* Set the first entry in the global offset table to the address of
4214 the dynamic section. */
4216 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->elf
.sgotplt
->contents
);
4218 bfd_put_64 (output_bfd
,
4219 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
4220 htab
->elf
.sgotplt
->contents
);
4221 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4222 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->elf
.sgotplt
->contents
+ GOT_ENTRY_SIZE
);
4223 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->elf
.sgotplt
->contents
+ GOT_ENTRY_SIZE
*2);
4226 elf_section_data (htab
->elf
.sgotplt
->output_section
)->this_hdr
.sh_entsize
=
4230 if (htab
->elf
.sgot
&& htab
->elf
.sgot
->size
> 0)
4231 elf_section_data (htab
->elf
.sgot
->output_section
)->this_hdr
.sh_entsize
4234 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4235 htab_traverse (htab
->loc_hash_table
,
4236 elf64_x86_64_finish_local_dynamic_symbol
,
4242 /* Return address for Ith PLT stub in section PLT, for relocation REL
4243 or (bfd_vma) -1 if it should not be included. */
4246 elf64_x86_64_plt_sym_val (bfd_vma i
, const asection
*plt
,
4247 const arelent
*rel ATTRIBUTE_UNUSED
)
4249 return plt
->vma
+ (i
+ 1) * PLT_ENTRY_SIZE
;
4252 /* Handle an x86-64 specific section when reading an object file. This
4253 is called when elfcode.h finds a section with an unknown type. */
4256 elf64_x86_64_section_from_shdr (bfd
*abfd
,
4257 Elf_Internal_Shdr
*hdr
,
4261 if (hdr
->sh_type
!= SHT_X86_64_UNWIND
)
4264 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
4270 /* Hook called by the linker routine which adds symbols from an object
4271 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4275 elf64_x86_64_add_symbol_hook (bfd
*abfd
,
4276 struct bfd_link_info
*info
,
4277 Elf_Internal_Sym
*sym
,
4278 const char **namep ATTRIBUTE_UNUSED
,
4279 flagword
*flagsp ATTRIBUTE_UNUSED
,
4285 switch (sym
->st_shndx
)
4287 case SHN_X86_64_LCOMMON
:
4288 lcomm
= bfd_get_section_by_name (abfd
, "LARGE_COMMON");
4291 lcomm
= bfd_make_section_with_flags (abfd
,
4295 | SEC_LINKER_CREATED
));
4298 elf_section_flags (lcomm
) |= SHF_X86_64_LARGE
;
4301 *valp
= sym
->st_size
;
4305 if ((abfd
->flags
& DYNAMIC
) == 0
4306 && ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
4307 elf_tdata (info
->output_bfd
)->has_ifunc_symbols
= TRUE
;
4313 /* Given a BFD section, try to locate the corresponding ELF section
4317 elf64_x86_64_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
4318 asection
*sec
, int *index_return
)
4320 if (sec
== &_bfd_elf_large_com_section
)
4322 *index_return
= SHN_X86_64_LCOMMON
;
4328 /* Process a symbol. */
4331 elf64_x86_64_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
4334 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
4336 switch (elfsym
->internal_elf_sym
.st_shndx
)
4338 case SHN_X86_64_LCOMMON
:
4339 asym
->section
= &_bfd_elf_large_com_section
;
4340 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
4341 /* Common symbol doesn't set BSF_GLOBAL. */
4342 asym
->flags
&= ~BSF_GLOBAL
;
4348 elf64_x86_64_common_definition (Elf_Internal_Sym
*sym
)
4350 return (sym
->st_shndx
== SHN_COMMON
4351 || sym
->st_shndx
== SHN_X86_64_LCOMMON
);
4355 elf64_x86_64_common_section_index (asection
*sec
)
4357 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
4360 return SHN_X86_64_LCOMMON
;
4364 elf64_x86_64_common_section (asection
*sec
)
4366 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
4367 return bfd_com_section_ptr
;
4369 return &_bfd_elf_large_com_section
;
4373 elf64_x86_64_merge_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
4374 struct elf_link_hash_entry
**sym_hash ATTRIBUTE_UNUSED
,
4375 struct elf_link_hash_entry
*h
,
4376 Elf_Internal_Sym
*sym
,
4378 bfd_vma
*pvalue ATTRIBUTE_UNUSED
,
4379 unsigned int *pold_alignment ATTRIBUTE_UNUSED
,
4380 bfd_boolean
*skip ATTRIBUTE_UNUSED
,
4381 bfd_boolean
*override ATTRIBUTE_UNUSED
,
4382 bfd_boolean
*type_change_ok ATTRIBUTE_UNUSED
,
4383 bfd_boolean
*size_change_ok ATTRIBUTE_UNUSED
,
4384 bfd_boolean
*newdef ATTRIBUTE_UNUSED
,
4385 bfd_boolean
*newdyn
,
4386 bfd_boolean
*newdyncommon ATTRIBUTE_UNUSED
,
4387 bfd_boolean
*newweak ATTRIBUTE_UNUSED
,
4388 bfd
*abfd ATTRIBUTE_UNUSED
,
4390 bfd_boolean
*olddef ATTRIBUTE_UNUSED
,
4391 bfd_boolean
*olddyn
,
4392 bfd_boolean
*olddyncommon ATTRIBUTE_UNUSED
,
4393 bfd_boolean
*oldweak ATTRIBUTE_UNUSED
,
4397 /* A normal common symbol and a large common symbol result in a
4398 normal common symbol. We turn the large common symbol into a
4401 && h
->root
.type
== bfd_link_hash_common
4403 && bfd_is_com_section (*sec
)
4406 if (sym
->st_shndx
== SHN_COMMON
4407 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) != 0)
4409 h
->root
.u
.c
.p
->section
4410 = bfd_make_section_old_way (oldbfd
, "COMMON");
4411 h
->root
.u
.c
.p
->section
->flags
= SEC_ALLOC
;
4413 else if (sym
->st_shndx
== SHN_X86_64_LCOMMON
4414 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) == 0)
4415 *psec
= *sec
= bfd_com_section_ptr
;
4422 elf64_x86_64_additional_program_headers (bfd
*abfd
,
4423 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
4428 /* Check to see if we need a large readonly segment. */
4429 s
= bfd_get_section_by_name (abfd
, ".lrodata");
4430 if (s
&& (s
->flags
& SEC_LOAD
))
4433 /* Check to see if we need a large data segment. Since .lbss sections
4434 is placed right after the .bss section, there should be no need for
4435 a large data segment just because of .lbss. */
4436 s
= bfd_get_section_by_name (abfd
, ".ldata");
4437 if (s
&& (s
->flags
& SEC_LOAD
))
4443 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4446 elf64_x86_64_hash_symbol (struct elf_link_hash_entry
*h
)
4448 if (h
->plt
.offset
!= (bfd_vma
) -1
4450 && !h
->pointer_equality_needed
)
4453 return _bfd_elf_hash_symbol (h
);
4456 static const struct bfd_elf_special_section
4457 elf64_x86_64_special_sections
[]=
4459 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
4460 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
4461 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
+ SHF_X86_64_LARGE
},
4462 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
4463 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
4464 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
4465 { NULL
, 0, 0, 0, 0 }
4468 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4469 #define TARGET_LITTLE_NAME "elf64-x86-64"
4470 #define ELF_ARCH bfd_arch_i386
4471 #define ELF_TARGET_ID X86_64_ELF_DATA
4472 #define ELF_MACHINE_CODE EM_X86_64
4473 #define ELF_MAXPAGESIZE 0x200000
4474 #define ELF_MINPAGESIZE 0x1000
4475 #define ELF_COMMONPAGESIZE 0x1000
4477 #define elf_backend_can_gc_sections 1
4478 #define elf_backend_can_refcount 1
4479 #define elf_backend_want_got_plt 1
4480 #define elf_backend_plt_readonly 1
4481 #define elf_backend_want_plt_sym 0
4482 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4483 #define elf_backend_rela_normal 1
4485 #define elf_info_to_howto elf64_x86_64_info_to_howto
4487 #define bfd_elf64_bfd_link_hash_table_create \
4488 elf64_x86_64_link_hash_table_create
4489 #define bfd_elf64_bfd_link_hash_table_free \
4490 elf64_x86_64_link_hash_table_free
4491 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
4492 #define bfd_elf64_bfd_reloc_name_lookup \
4493 elf64_x86_64_reloc_name_lookup
4495 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
4496 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4497 #define elf_backend_check_relocs elf64_x86_64_check_relocs
4498 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
4499 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
4500 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
4501 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
4502 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
4503 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
4504 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
4505 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
4506 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
4507 #define elf_backend_relocate_section elf64_x86_64_relocate_section
4508 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
4509 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
4510 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4511 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
4512 #define elf_backend_object_p elf64_x86_64_elf_object_p
4513 #define bfd_elf64_mkobject elf64_x86_64_mkobject
4515 #define elf_backend_section_from_shdr \
4516 elf64_x86_64_section_from_shdr
4518 #define elf_backend_section_from_bfd_section \
4519 elf64_x86_64_elf_section_from_bfd_section
4520 #define elf_backend_add_symbol_hook \
4521 elf64_x86_64_add_symbol_hook
4522 #define elf_backend_symbol_processing \
4523 elf64_x86_64_symbol_processing
4524 #define elf_backend_common_section_index \
4525 elf64_x86_64_common_section_index
4526 #define elf_backend_common_section \
4527 elf64_x86_64_common_section
4528 #define elf_backend_common_definition \
4529 elf64_x86_64_common_definition
4530 #define elf_backend_merge_symbol \
4531 elf64_x86_64_merge_symbol
4532 #define elf_backend_special_sections \
4533 elf64_x86_64_special_sections
4534 #define elf_backend_additional_program_headers \
4535 elf64_x86_64_additional_program_headers
4536 #define elf_backend_hash_symbol \
4537 elf64_x86_64_hash_symbol
4539 #undef elf_backend_post_process_headers
4540 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4542 #include "elf64-target.h"
4544 /* FreeBSD support. */
4546 #undef TARGET_LITTLE_SYM
4547 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4548 #undef TARGET_LITTLE_NAME
4549 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4552 #define ELF_OSABI ELFOSABI_FREEBSD
4555 #define elf64_bed elf64_x86_64_fbsd_bed
4557 #include "elf64-target.h"
4559 /* Solaris 2 support. */
4561 #undef TARGET_LITTLE_SYM
4562 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
4563 #undef TARGET_LITTLE_NAME
4564 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
4566 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
4567 objects won't be recognized. */
4571 #define elf64_bed elf64_x86_64_sol2_bed
4573 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
4575 #undef elf_backend_static_tls_alignment
4576 #define elf_backend_static_tls_alignment 16
4578 /* The Solaris 2 ABI requires a plt symbol on all platforms.
4580 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
4582 #undef elf_backend_want_plt_sym
4583 #define elf_backend_want_plt_sym 1
4585 #include "elf64-target.h"
4587 /* Intel L1OM support. */
4590 elf64_l1om_elf_object_p (bfd
*abfd
)
4592 /* Set the right machine number for an L1OM elf64 file. */
4593 bfd_default_set_arch_mach (abfd
, bfd_arch_l1om
, bfd_mach_l1om
);
4597 #undef TARGET_LITTLE_SYM
4598 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
4599 #undef TARGET_LITTLE_NAME
4600 #define TARGET_LITTLE_NAME "elf64-l1om"
4602 #define ELF_ARCH bfd_arch_l1om
4604 #undef ELF_MACHINE_CODE
4605 #define ELF_MACHINE_CODE EM_L1OM
4610 #define elf64_bed elf64_l1om_bed
4612 #undef elf_backend_object_p
4613 #define elf_backend_object_p elf64_l1om_elf_object_p
4615 #undef elf_backend_post_process_headers
4616 #undef elf_backend_static_tls_alignment
4618 #include "elf64-target.h"
4620 /* FreeBSD L1OM support. */
4622 #undef TARGET_LITTLE_SYM
4623 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
4624 #undef TARGET_LITTLE_NAME
4625 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
4628 #define ELF_OSABI ELFOSABI_FREEBSD
4631 #define elf64_bed elf64_l1om_fbsd_bed
4633 #undef elf_backend_post_process_headers
4634 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4636 #include "elf64-target.h"