1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "workqueue.h"
41 // Initialize fields in Symbol. This initializes everything except u_
45 Symbol::init_fields(const char* name
, const char* version
,
46 elfcpp::STT type
, elfcpp::STB binding
,
47 elfcpp::STV visibility
, unsigned char nonvis
)
50 this->version_
= version
;
51 this->symtab_index_
= 0;
52 this->dynsym_index_
= 0;
53 this->got_offset_
= 0;
54 this->plt_offset_
= 0;
56 this->binding_
= binding
;
57 this->visibility_
= visibility
;
58 this->nonvis_
= nonvis
;
59 this->is_target_special_
= false;
60 this->is_def_
= false;
61 this->is_forwarder_
= false;
62 this->needs_dynsym_entry_
= false;
63 this->in_reg_
= false;
64 this->in_dyn_
= false;
65 this->has_got_offset_
= false;
66 this->has_plt_offset_
= false;
67 this->has_warning_
= false;
70 // Initialize the fields in the base class Symbol for SYM in OBJECT.
72 template<int size
, bool big_endian
>
74 Symbol::init_base(const char* name
, const char* version
, Object
* object
,
75 const elfcpp::Sym
<size
, big_endian
>& sym
)
77 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
78 sym
.get_st_visibility(), sym
.get_st_nonvis());
79 this->u_
.from_object
.object
= object
;
80 // FIXME: Handle SHN_XINDEX.
81 this->u_
.from_object
.shndx
= sym
.get_st_shndx();
82 this->source_
= FROM_OBJECT
;
83 this->in_reg_
= !object
->is_dynamic();
84 this->in_dyn_
= object
->is_dynamic();
87 // Initialize the fields in the base class Symbol for a symbol defined
91 Symbol::init_base(const char* name
, Output_data
* od
, elfcpp::STT type
,
92 elfcpp::STB binding
, elfcpp::STV visibility
,
93 unsigned char nonvis
, bool offset_is_from_end
)
95 this->init_fields(name
, NULL
, type
, binding
, visibility
, nonvis
);
96 this->u_
.in_output_data
.output_data
= od
;
97 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
98 this->source_
= IN_OUTPUT_DATA
;
102 // Initialize the fields in the base class Symbol for a symbol defined
103 // in an Output_segment.
106 Symbol::init_base(const char* name
, Output_segment
* os
, elfcpp::STT type
,
107 elfcpp::STB binding
, elfcpp::STV visibility
,
108 unsigned char nonvis
, Segment_offset_base offset_base
)
110 this->init_fields(name
, NULL
, type
, binding
, visibility
, nonvis
);
111 this->u_
.in_output_segment
.output_segment
= os
;
112 this->u_
.in_output_segment
.offset_base
= offset_base
;
113 this->source_
= IN_OUTPUT_SEGMENT
;
114 this->in_reg_
= true;
117 // Initialize the fields in the base class Symbol for a symbol defined
121 Symbol::init_base(const char* name
, elfcpp::STT type
,
122 elfcpp::STB binding
, elfcpp::STV visibility
,
123 unsigned char nonvis
)
125 this->init_fields(name
, NULL
, type
, binding
, visibility
, nonvis
);
126 this->source_
= CONSTANT
;
127 this->in_reg_
= true;
130 // Initialize the fields in Sized_symbol for SYM in OBJECT.
133 template<bool big_endian
>
135 Sized_symbol
<size
>::init(const char* name
, const char* version
, Object
* object
,
136 const elfcpp::Sym
<size
, big_endian
>& sym
)
138 this->init_base(name
, version
, object
, sym
);
139 this->value_
= sym
.get_st_value();
140 this->symsize_
= sym
.get_st_size();
143 // Initialize the fields in Sized_symbol for a symbol defined in an
148 Sized_symbol
<size
>::init(const char* name
, Output_data
* od
,
149 Value_type value
, Size_type symsize
,
150 elfcpp::STT type
, elfcpp::STB binding
,
151 elfcpp::STV visibility
, unsigned char nonvis
,
152 bool offset_is_from_end
)
154 this->init_base(name
, od
, type
, binding
, visibility
, nonvis
,
156 this->value_
= value
;
157 this->symsize_
= symsize
;
160 // Initialize the fields in Sized_symbol for a symbol defined in an
165 Sized_symbol
<size
>::init(const char* name
, Output_segment
* os
,
166 Value_type value
, Size_type symsize
,
167 elfcpp::STT type
, elfcpp::STB binding
,
168 elfcpp::STV visibility
, unsigned char nonvis
,
169 Segment_offset_base offset_base
)
171 this->init_base(name
, os
, type
, binding
, visibility
, nonvis
, offset_base
);
172 this->value_
= value
;
173 this->symsize_
= symsize
;
176 // Initialize the fields in Sized_symbol for a symbol defined as a
181 Sized_symbol
<size
>::init(const char* name
, Value_type value
, Size_type symsize
,
182 elfcpp::STT type
, elfcpp::STB binding
,
183 elfcpp::STV visibility
, unsigned char nonvis
)
185 this->init_base(name
, type
, binding
, visibility
, nonvis
);
186 this->value_
= value
;
187 this->symsize_
= symsize
;
190 // Return true if the final value of this symbol is known at link
194 Symbol::final_value_is_known() const
196 // If we are not generating an executable, then no final values are
197 // known, since they will change at runtime.
198 if (!parameters
->output_is_executable())
201 // If the symbol is not from an object file, then it is defined, and
203 if (this->source_
!= FROM_OBJECT
)
206 // If the symbol is from a dynamic object, then the final value is
208 if (this->object()->is_dynamic())
211 // If the symbol is not undefined (it is defined or common), then
212 // the final value is known.
213 if (!this->is_undefined())
216 // If the symbol is undefined, then whether the final value is known
217 // depends on whether we are doing a static link. If we are doing a
218 // dynamic link, then the final value could be filled in at runtime.
219 // This could reasonably be the case for a weak undefined symbol.
220 return parameters
->doing_static_link();
223 // Class Symbol_table.
225 Symbol_table::Symbol_table()
226 : saw_undefined_(0), offset_(0), table_(), namepool_(),
227 forwarders_(), commons_(), warnings_()
231 Symbol_table::~Symbol_table()
235 // The hash function. The key is always canonicalized, so we use a
236 // simple combination of the pointers.
239 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key
& key
) const
241 return key
.first
^ key
.second
;
244 // The symbol table key equality function. This is only called with
245 // canonicalized name and version strings, so we can use pointer
249 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
250 const Symbol_table_key
& k2
) const
252 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
255 // Make TO a symbol which forwards to FROM.
258 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
260 gold_assert(from
!= to
);
261 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
262 this->forwarders_
[from
] = to
;
263 from
->set_forwarder();
266 // Resolve the forwards from FROM, returning the real symbol.
269 Symbol_table::resolve_forwards(const Symbol
* from
) const
271 gold_assert(from
->is_forwarder());
272 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
273 this->forwarders_
.find(from
);
274 gold_assert(p
!= this->forwarders_
.end());
278 // Look up a symbol by name.
281 Symbol_table::lookup(const char* name
, const char* version
) const
283 Stringpool::Key name_key
;
284 name
= this->namepool_
.find(name
, &name_key
);
288 Stringpool::Key version_key
= 0;
291 version
= this->namepool_
.find(version
, &version_key
);
296 Symbol_table_key
key(name_key
, version_key
);
297 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
298 if (p
== this->table_
.end())
303 // Resolve a Symbol with another Symbol. This is only used in the
304 // unusual case where there are references to both an unversioned
305 // symbol and a symbol with a version, and we then discover that that
306 // version is the default version. Because this is unusual, we do
307 // this the slow way, by converting back to an ELF symbol.
309 template<int size
, bool big_endian
>
311 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
,
312 const char* version ACCEPT_SIZE_ENDIAN
)
314 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
315 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
316 // We don't bother to set the st_name field.
317 esym
.put_st_value(from
->value());
318 esym
.put_st_size(from
->symsize());
319 esym
.put_st_info(from
->binding(), from
->type());
320 esym
.put_st_other(from
->visibility(), from
->nonvis());
321 esym
.put_st_shndx(from
->shndx());
322 Symbol_table::resolve(to
, esym
.sym(), from
->object(), version
);
329 // Add one symbol from OBJECT to the symbol table. NAME is symbol
330 // name and VERSION is the version; both are canonicalized. DEF is
331 // whether this is the default version.
333 // If DEF is true, then this is the definition of a default version of
334 // a symbol. That means that any lookup of NAME/NULL and any lookup
335 // of NAME/VERSION should always return the same symbol. This is
336 // obvious for references, but in particular we want to do this for
337 // definitions: overriding NAME/NULL should also override
338 // NAME/VERSION. If we don't do that, it would be very hard to
339 // override functions in a shared library which uses versioning.
341 // We implement this by simply making both entries in the hash table
342 // point to the same Symbol structure. That is easy enough if this is
343 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
344 // that we have seen both already, in which case they will both have
345 // independent entries in the symbol table. We can't simply change
346 // the symbol table entry, because we have pointers to the entries
347 // attached to the object files. So we mark the entry attached to the
348 // object file as a forwarder, and record it in the forwarders_ map.
349 // Note that entries in the hash table will never be marked as
352 template<int size
, bool big_endian
>
354 Symbol_table::add_from_object(Object
* object
,
356 Stringpool::Key name_key
,
358 Stringpool::Key version_key
,
360 const elfcpp::Sym
<size
, big_endian
>& sym
)
362 Symbol
* const snull
= NULL
;
363 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
364 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
367 std::pair
<typename
Symbol_table_type::iterator
, bool> insdef
=
368 std::make_pair(this->table_
.end(), false);
371 const Stringpool::Key vnull_key
= 0;
372 insdef
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
377 // ins.first: an iterator, which is a pointer to a pair.
378 // ins.first->first: the key (a pair of name and version).
379 // ins.first->second: the value (Symbol*).
380 // ins.second: true if new entry was inserted, false if not.
382 Sized_symbol
<size
>* ret
;
387 // We already have an entry for NAME/VERSION.
388 ret
= this->get_sized_symbol
SELECT_SIZE_NAME(size
) (ins
.first
->second
390 gold_assert(ret
!= NULL
);
392 was_undefined
= ret
->is_undefined();
393 was_common
= ret
->is_common();
395 Symbol_table::resolve(ret
, sym
, object
, version
);
401 // This is the first time we have seen NAME/NULL. Make
402 // NAME/NULL point to NAME/VERSION.
403 insdef
.first
->second
= ret
;
405 else if (insdef
.first
->second
!= ret
)
407 // This is the unfortunate case where we already have
408 // entries for both NAME/VERSION and NAME/NULL.
409 const Sized_symbol
<size
>* sym2
;
410 sym2
= this->get_sized_symbol
SELECT_SIZE_NAME(size
) (
413 Symbol_table::resolve
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
414 ret
, sym2
, version
SELECT_SIZE_ENDIAN(size
, big_endian
));
415 this->make_forwarder(insdef
.first
->second
, ret
);
416 insdef
.first
->second
= ret
;
422 // This is the first time we have seen NAME/VERSION.
423 gold_assert(ins
.first
->second
== NULL
);
425 was_undefined
= false;
428 if (def
&& !insdef
.second
)
430 // We already have an entry for NAME/NULL. If we override
431 // it, then change it to NAME/VERSION.
432 ret
= this->get_sized_symbol
SELECT_SIZE_NAME(size
) (
435 Symbol_table::resolve(ret
, sym
, object
, version
);
436 ins
.first
->second
= ret
;
440 Sized_target
<size
, big_endian
>* target
=
441 object
->sized_target
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
442 SELECT_SIZE_ENDIAN_ONLY(size
, big_endian
));
443 if (!target
->has_make_symbol())
444 ret
= new Sized_symbol
<size
>();
447 ret
= target
->make_symbol();
450 // This means that we don't want a symbol table
453 this->table_
.erase(ins
.first
);
456 this->table_
.erase(insdef
.first
);
457 // Inserting insdef invalidated ins.
458 this->table_
.erase(std::make_pair(name_key
,
465 ret
->init(name
, version
, object
, sym
);
467 ins
.first
->second
= ret
;
470 // This is the first time we have seen NAME/NULL. Point
471 // it at the new entry for NAME/VERSION.
472 gold_assert(insdef
.second
);
473 insdef
.first
->second
= ret
;
478 // Record every time we see a new undefined symbol, to speed up
480 if (!was_undefined
&& ret
->is_undefined())
481 ++this->saw_undefined_
;
483 // Keep track of common symbols, to speed up common symbol
485 if (!was_common
&& ret
->is_common())
486 this->commons_
.push_back(ret
);
491 // Add all the symbols in a relocatable object to the hash table.
493 template<int size
, bool big_endian
>
495 Symbol_table::add_from_relobj(
496 Sized_relobj
<size
, big_endian
>* relobj
,
497 const unsigned char* syms
,
499 const char* sym_names
,
500 size_t sym_name_size
,
501 Symbol
** sympointers
)
503 gold_assert(size
== relobj
->target()->get_size());
504 gold_assert(size
== parameters
->get_size());
506 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
508 const unsigned char* p
= syms
;
509 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
511 elfcpp::Sym
<size
, big_endian
> sym(p
);
512 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
514 unsigned int st_name
= psym
->get_st_name();
515 if (st_name
>= sym_name_size
)
518 _("%s: %s: bad global symbol name offset %u at %lu\n"),
519 program_name
, relobj
->name().c_str(), st_name
,
520 static_cast<unsigned long>(i
));
524 const char* name
= sym_names
+ st_name
;
526 // A symbol defined in a section which we are not including must
527 // be treated as an undefined symbol.
528 unsigned char symbuf
[sym_size
];
529 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
530 unsigned int st_shndx
= psym
->get_st_shndx();
531 if (st_shndx
!= elfcpp::SHN_UNDEF
532 && st_shndx
< elfcpp::SHN_LORESERVE
533 && !relobj
->is_section_included(st_shndx
))
535 memcpy(symbuf
, p
, sym_size
);
536 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
537 sw
.put_st_shndx(elfcpp::SHN_UNDEF
);
541 // In an object file, an '@' in the name separates the symbol
542 // name from the version name. If there are two '@' characters,
543 // this is the default version.
544 const char* ver
= strchr(name
, '@');
549 Stringpool::Key name_key
;
550 name
= this->namepool_
.add(name
, &name_key
);
551 res
= this->add_from_object(relobj
, name
, name_key
, NULL
, 0,
556 Stringpool::Key name_key
;
557 name
= this->namepool_
.add(name
, ver
- name
, &name_key
);
567 Stringpool::Key ver_key
;
568 ver
= this->namepool_
.add(ver
, &ver_key
);
570 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
574 *sympointers
++ = res
;
578 // Add all the symbols in a dynamic object to the hash table.
580 template<int size
, bool big_endian
>
582 Symbol_table::add_from_dynobj(
583 Sized_dynobj
<size
, big_endian
>* dynobj
,
584 const unsigned char* syms
,
586 const char* sym_names
,
587 size_t sym_name_size
,
588 const unsigned char* versym
,
590 const std::vector
<const char*>* version_map
)
592 gold_assert(size
== dynobj
->target()->get_size());
593 gold_assert(size
== parameters
->get_size());
595 if (versym
!= NULL
&& versym_size
/ 2 < count
)
597 fprintf(stderr
, _("%s: %s: too few symbol versions\n"),
598 program_name
, dynobj
->name().c_str());
602 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
604 const unsigned char* p
= syms
;
605 const unsigned char* vs
= versym
;
606 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
608 elfcpp::Sym
<size
, big_endian
> sym(p
);
610 // Ignore symbols with local binding.
611 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
)
614 unsigned int st_name
= sym
.get_st_name();
615 if (st_name
>= sym_name_size
)
617 fprintf(stderr
, _("%s: %s: bad symbol name offset %u at %lu\n"),
618 program_name
, dynobj
->name().c_str(), st_name
,
619 static_cast<unsigned long>(i
));
623 const char* name
= sym_names
+ st_name
;
627 Stringpool::Key name_key
;
628 name
= this->namepool_
.add(name
, &name_key
);
629 this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
634 // Read the version information.
636 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
638 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
639 v
&= elfcpp::VERSYM_VERSION
;
641 // The Sun documentation says that V can be VER_NDX_LOCAL, or
642 // VER_NDX_GLOBAL, or a version index. The meaning of
643 // VER_NDX_LOCAL is defined as "Symbol has local scope." The
644 // old GNU linker will happily generate VER_NDX_LOCAL for an
645 // undefined symbol. I don't know what the Sun linker will
648 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
649 && sym
.get_st_shndx() != elfcpp::SHN_UNDEF
)
651 // This symbol should not be visible outside the object.
655 // At this point we are definitely going to add this symbol.
656 Stringpool::Key name_key
;
657 name
= this->namepool_
.add(name
, &name_key
);
659 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
660 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
662 // This symbol does not have a version.
663 this->add_from_object(dynobj
, name
, name_key
, NULL
, 0, false, sym
);
667 if (v
>= version_map
->size())
670 _("%s: %s: versym for symbol %zu out of range: %u\n"),
671 program_name
, dynobj
->name().c_str(), i
, v
);
675 const char* version
= (*version_map
)[v
];
678 fprintf(stderr
, _("%s: %s: versym for symbol %zu has no name: %u\n"),
679 program_name
, dynobj
->name().c_str(), i
, v
);
683 Stringpool::Key version_key
;
684 version
= this->namepool_
.add(version
, &version_key
);
686 // If this is an absolute symbol, and the version name and
687 // symbol name are the same, then this is the version definition
688 // symbol. These symbols exist to support using -u to pull in
689 // particular versions. We do not want to record a version for
691 if (sym
.get_st_shndx() == elfcpp::SHN_ABS
&& name_key
== version_key
)
693 this->add_from_object(dynobj
, name
, name_key
, NULL
, 0, false, sym
);
697 const bool def
= !hidden
&& sym
.get_st_shndx() != elfcpp::SHN_UNDEF
;
699 this->add_from_object(dynobj
, name
, name_key
, version
, version_key
,
704 // Create and return a specially defined symbol. If ONLY_IF_REF is
705 // true, then only create the symbol if there is a reference to it.
706 // If this does not return NULL, it sets *POLDSYM to the existing
707 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
709 template<int size
, bool big_endian
>
711 Symbol_table::define_special_symbol(const Target
* target
, const char** pname
,
712 const char** pversion
, bool only_if_ref
,
713 Sized_symbol
<size
>** poldsym
717 Sized_symbol
<size
>* sym
;
718 bool add_to_table
= false;
719 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
723 oldsym
= this->lookup(*pname
, *pversion
);
724 if (oldsym
== NULL
|| !oldsym
->is_undefined())
727 *pname
= oldsym
->name();
728 *pversion
= oldsym
->version();
732 // Canonicalize NAME and VERSION.
733 Stringpool::Key name_key
;
734 *pname
= this->namepool_
.add(*pname
, &name_key
);
736 Stringpool::Key version_key
= 0;
737 if (*pversion
!= NULL
)
738 *pversion
= this->namepool_
.add(*pversion
, &version_key
);
740 Symbol
* const snull
= NULL
;
741 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
742 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
748 // We already have a symbol table entry for NAME/VERSION.
749 oldsym
= ins
.first
->second
;
750 gold_assert(oldsym
!= NULL
);
754 // We haven't seen this symbol before.
755 gold_assert(ins
.first
->second
== NULL
);
762 if (!target
->has_make_symbol())
763 sym
= new Sized_symbol
<size
>();
766 gold_assert(target
->get_size() == size
);
767 gold_assert(target
->is_big_endian() ? big_endian
: !big_endian
);
768 typedef Sized_target
<size
, big_endian
> My_target
;
769 const My_target
* sized_target
=
770 static_cast<const My_target
*>(target
);
771 sym
= sized_target
->make_symbol();
777 add_loc
->second
= sym
;
779 gold_assert(oldsym
!= NULL
);
781 *poldsym
= this->get_sized_symbol
SELECT_SIZE_NAME(size
) (oldsym
787 // Define a symbol based on an Output_data.
790 Symbol_table::define_in_output_data(const Target
* target
, const char* name
,
791 const char* version
, Output_data
* od
,
792 uint64_t value
, uint64_t symsize
,
793 elfcpp::STT type
, elfcpp::STB binding
,
794 elfcpp::STV visibility
,
795 unsigned char nonvis
,
796 bool offset_is_from_end
,
799 if (parameters
->get_size() == 32)
801 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
802 return this->do_define_in_output_data
<32>(target
, name
, version
, od
,
803 value
, symsize
, type
, binding
,
811 else if (parameters
->get_size() == 64)
813 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
814 return this->do_define_in_output_data
<64>(target
, name
, version
, od
,
815 value
, symsize
, type
, binding
,
827 // Define a symbol in an Output_data, sized version.
831 Symbol_table::do_define_in_output_data(
832 const Target
* target
,
836 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
837 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
840 elfcpp::STV visibility
,
841 unsigned char nonvis
,
842 bool offset_is_from_end
,
845 Sized_symbol
<size
>* sym
;
846 Sized_symbol
<size
>* oldsym
;
848 if (parameters
->is_big_endian())
850 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
851 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, true) (
852 target
, &name
, &version
, only_if_ref
, &oldsym
853 SELECT_SIZE_ENDIAN(size
, true));
860 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
861 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, false) (
862 target
, &name
, &version
, only_if_ref
, &oldsym
863 SELECT_SIZE_ENDIAN(size
, false));
872 gold_assert(version
== NULL
|| oldsym
!= NULL
);
873 sym
->init(name
, od
, value
, symsize
, type
, binding
, visibility
, nonvis
,
877 && Symbol_table::should_override_with_special(oldsym
))
878 oldsym
->override_with_special(sym
);
883 // Define a symbol based on an Output_segment.
886 Symbol_table::define_in_output_segment(const Target
* target
, const char* name
,
887 const char* version
, Output_segment
* os
,
888 uint64_t value
, uint64_t symsize
,
889 elfcpp::STT type
, elfcpp::STB binding
,
890 elfcpp::STV visibility
,
891 unsigned char nonvis
,
892 Symbol::Segment_offset_base offset_base
,
895 if (parameters
->get_size() == 32)
897 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
898 return this->do_define_in_output_segment
<32>(target
, name
, version
, os
,
899 value
, symsize
, type
,
900 binding
, visibility
, nonvis
,
901 offset_base
, only_if_ref
);
906 else if (parameters
->get_size() == 64)
908 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
909 return this->do_define_in_output_segment
<64>(target
, name
, version
, os
,
910 value
, symsize
, type
,
911 binding
, visibility
, nonvis
,
912 offset_base
, only_if_ref
);
921 // Define a symbol in an Output_segment, sized version.
925 Symbol_table::do_define_in_output_segment(
926 const Target
* target
,
930 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
931 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
934 elfcpp::STV visibility
,
935 unsigned char nonvis
,
936 Symbol::Segment_offset_base offset_base
,
939 Sized_symbol
<size
>* sym
;
940 Sized_symbol
<size
>* oldsym
;
942 if (parameters
->is_big_endian())
944 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
945 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, true) (
946 target
, &name
, &version
, only_if_ref
, &oldsym
947 SELECT_SIZE_ENDIAN(size
, true));
954 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
955 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, false) (
956 target
, &name
, &version
, only_if_ref
, &oldsym
957 SELECT_SIZE_ENDIAN(size
, false));
966 gold_assert(version
== NULL
|| oldsym
!= NULL
);
967 sym
->init(name
, os
, value
, symsize
, type
, binding
, visibility
, nonvis
,
971 && Symbol_table::should_override_with_special(oldsym
))
972 oldsym
->override_with_special(sym
);
977 // Define a special symbol with a constant value. It is a multiple
978 // definition error if this symbol is already defined.
981 Symbol_table::define_as_constant(const Target
* target
, const char* name
,
982 const char* version
, uint64_t value
,
983 uint64_t symsize
, elfcpp::STT type
,
984 elfcpp::STB binding
, elfcpp::STV visibility
,
985 unsigned char nonvis
, bool only_if_ref
)
987 if (parameters
->get_size() == 32)
989 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
990 return this->do_define_as_constant
<32>(target
, name
, version
, value
,
991 symsize
, type
, binding
,
992 visibility
, nonvis
, only_if_ref
);
997 else if (parameters
->get_size() == 64)
999 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1000 return this->do_define_as_constant
<64>(target
, name
, version
, value
,
1001 symsize
, type
, binding
,
1002 visibility
, nonvis
, only_if_ref
);
1011 // Define a symbol as a constant, sized version.
1015 Symbol_table::do_define_as_constant(
1016 const Target
* target
,
1018 const char* version
,
1019 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1020 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1022 elfcpp::STB binding
,
1023 elfcpp::STV visibility
,
1024 unsigned char nonvis
,
1027 Sized_symbol
<size
>* sym
;
1028 Sized_symbol
<size
>* oldsym
;
1030 if (parameters
->is_big_endian())
1032 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1033 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, true) (
1034 target
, &name
, &version
, only_if_ref
, &oldsym
1035 SELECT_SIZE_ENDIAN(size
, true));
1042 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1043 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, false) (
1044 target
, &name
, &version
, only_if_ref
, &oldsym
1045 SELECT_SIZE_ENDIAN(size
, false));
1054 gold_assert(version
== NULL
|| oldsym
!= NULL
);
1055 sym
->init(name
, value
, symsize
, type
, binding
, visibility
, nonvis
);
1058 && Symbol_table::should_override_with_special(oldsym
))
1059 oldsym
->override_with_special(sym
);
1064 // Define a set of symbols in output sections.
1067 Symbol_table::define_symbols(const Layout
* layout
, const Target
* target
,
1068 int count
, const Define_symbol_in_section
* p
)
1070 for (int i
= 0; i
< count
; ++i
, ++p
)
1072 Output_section
* os
= layout
->find_output_section(p
->output_section
);
1074 this->define_in_output_data(target
, p
->name
, NULL
, os
, p
->value
,
1075 p
->size
, p
->type
, p
->binding
,
1076 p
->visibility
, p
->nonvis
,
1077 p
->offset_is_from_end
, p
->only_if_ref
);
1079 this->define_as_constant(target
, p
->name
, NULL
, 0, p
->size
, p
->type
,
1080 p
->binding
, p
->visibility
, p
->nonvis
,
1085 // Define a set of symbols in output segments.
1088 Symbol_table::define_symbols(const Layout
* layout
, const Target
* target
,
1089 int count
, const Define_symbol_in_segment
* p
)
1091 for (int i
= 0; i
< count
; ++i
, ++p
)
1093 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
1094 p
->segment_flags_set
,
1095 p
->segment_flags_clear
);
1097 this->define_in_output_segment(target
, p
->name
, NULL
, os
, p
->value
,
1098 p
->size
, p
->type
, p
->binding
,
1099 p
->visibility
, p
->nonvis
,
1100 p
->offset_base
, p
->only_if_ref
);
1102 this->define_as_constant(target
, p
->name
, NULL
, 0, p
->size
, p
->type
,
1103 p
->binding
, p
->visibility
, p
->nonvis
,
1108 // Set the dynamic symbol indexes. INDEX is the index of the first
1109 // global dynamic symbol. Pointers to the symbols are stored into the
1110 // vector SYMS. The names are added to DYNPOOL. This returns an
1111 // updated dynamic symbol index.
1114 Symbol_table::set_dynsym_indexes(const General_options
* options
,
1115 const Target
* target
,
1117 std::vector
<Symbol
*>* syms
,
1118 Stringpool
* dynpool
,
1121 for (Symbol_table_type::iterator p
= this->table_
.begin();
1122 p
!= this->table_
.end();
1125 Symbol
* sym
= p
->second
;
1127 // Note that SYM may already have a dynamic symbol index, since
1128 // some symbols appear more than once in the symbol table, with
1129 // and without a version.
1131 if (!sym
->needs_dynsym_entry()
1132 && (!options
->export_dynamic()
1134 || !sym
->is_externally_visible()))
1135 sym
->set_dynsym_index(-1U);
1136 else if (!sym
->has_dynsym_index())
1138 sym
->set_dynsym_index(index
);
1140 syms
->push_back(sym
);
1141 dynpool
->add(sym
->name(), NULL
);
1143 // Record any version information.
1144 if (sym
->version() != NULL
)
1145 versions
->record_version(options
, dynpool
, sym
);
1149 // Finish up the versions. In some cases this may add new dynamic
1151 index
= versions
->finalize(target
, this, index
, syms
);
1156 // Set the final values for all the symbols. The index of the first
1157 // global symbol in the output file is INDEX. Record the file offset
1158 // OFF. Add their names to POOL. Return the new file offset.
1161 Symbol_table::finalize(unsigned int index
, off_t off
, off_t dynoff
,
1162 size_t dyn_global_index
, size_t dyncount
,
1167 gold_assert(index
!= 0);
1168 this->first_global_index_
= index
;
1170 this->dynamic_offset_
= dynoff
;
1171 this->first_dynamic_global_index_
= dyn_global_index
;
1172 this->dynamic_count_
= dyncount
;
1174 if (parameters
->get_size() == 32)
1176 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1177 ret
= this->sized_finalize
<32>(index
, off
, pool
);
1182 else if (parameters
->get_size() == 64)
1184 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1185 ret
= this->sized_finalize
<64>(index
, off
, pool
);
1193 // Now that we have the final symbol table, we can reliably note
1194 // which symbols should get warnings.
1195 this->warnings_
.note_warnings(this);
1200 // Set the final value for all the symbols. This is called after
1201 // Layout::finalize, so all the output sections have their final
1206 Symbol_table::sized_finalize(unsigned index
, off_t off
, Stringpool
* pool
)
1208 off
= align_address(off
, size
>> 3);
1209 this->offset_
= off
;
1211 size_t orig_index
= index
;
1213 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1214 for (Symbol_table_type::iterator p
= this->table_
.begin();
1215 p
!= this->table_
.end();
1218 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
1220 // FIXME: Here we need to decide which symbols should go into
1221 // the output file, based on --strip.
1223 // The default version of a symbol may appear twice in the
1224 // symbol table. We only need to finalize it once.
1225 if (sym
->has_symtab_index())
1230 gold_assert(!sym
->has_symtab_index());
1231 sym
->set_symtab_index(-1U);
1232 gold_assert(sym
->dynsym_index() == -1U);
1236 typename Sized_symbol
<size
>::Value_type value
;
1238 switch (sym
->source())
1240 case Symbol::FROM_OBJECT
:
1242 unsigned int shndx
= sym
->shndx();
1244 // FIXME: We need some target specific support here.
1245 if (shndx
>= elfcpp::SHN_LORESERVE
1246 && shndx
!= elfcpp::SHN_ABS
)
1248 fprintf(stderr
, _("%s: %s: unsupported symbol section 0x%x\n"),
1249 program_name
, sym
->name(), shndx
);
1253 Object
* symobj
= sym
->object();
1254 if (symobj
->is_dynamic())
1257 shndx
= elfcpp::SHN_UNDEF
;
1259 else if (shndx
== elfcpp::SHN_UNDEF
)
1261 else if (shndx
== elfcpp::SHN_ABS
)
1262 value
= sym
->value();
1265 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
1267 Output_section
* os
= relobj
->output_section(shndx
, &secoff
);
1271 sym
->set_symtab_index(-1U);
1272 gold_assert(sym
->dynsym_index() == -1U);
1276 value
= sym
->value() + os
->address() + secoff
;
1281 case Symbol::IN_OUTPUT_DATA
:
1283 Output_data
* od
= sym
->output_data();
1284 value
= sym
->value() + od
->address();
1285 if (sym
->offset_is_from_end())
1286 value
+= od
->data_size();
1290 case Symbol::IN_OUTPUT_SEGMENT
:
1292 Output_segment
* os
= sym
->output_segment();
1293 value
= sym
->value() + os
->vaddr();
1294 switch (sym
->offset_base())
1296 case Symbol::SEGMENT_START
:
1298 case Symbol::SEGMENT_END
:
1299 value
+= os
->memsz();
1301 case Symbol::SEGMENT_BSS
:
1302 value
+= os
->filesz();
1310 case Symbol::CONSTANT
:
1311 value
= sym
->value();
1318 sym
->set_value(value
);
1319 sym
->set_symtab_index(index
);
1320 pool
->add(sym
->name(), NULL
);
1325 this->output_count_
= index
- orig_index
;
1330 // Write out the global symbols.
1333 Symbol_table::write_globals(const Target
* target
, const Stringpool
* sympool
,
1334 const Stringpool
* dynpool
, Output_file
* of
) const
1336 if (parameters
->get_size() == 32)
1338 if (parameters
->is_big_endian())
1340 #ifdef HAVE_TARGET_32_BIG
1341 this->sized_write_globals
<32, true>(target
, sympool
, dynpool
, of
);
1348 #ifdef HAVE_TARGET_32_LITTLE
1349 this->sized_write_globals
<32, false>(target
, sympool
, dynpool
, of
);
1355 else if (parameters
->get_size() == 64)
1357 if (parameters
->is_big_endian())
1359 #ifdef HAVE_TARGET_64_BIG
1360 this->sized_write_globals
<64, true>(target
, sympool
, dynpool
, of
);
1367 #ifdef HAVE_TARGET_64_LITTLE
1368 this->sized_write_globals
<64, false>(target
, sympool
, dynpool
, of
);
1378 // Write out the global symbols.
1380 template<int size
, bool big_endian
>
1382 Symbol_table::sized_write_globals(const Target
* target
,
1383 const Stringpool
* sympool
,
1384 const Stringpool
* dynpool
,
1385 Output_file
* of
) const
1387 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1388 unsigned int index
= this->first_global_index_
;
1389 const off_t oview_size
= this->output_count_
* sym_size
;
1390 unsigned char* const psyms
= of
->get_output_view(this->offset_
, oview_size
);
1392 unsigned int dynamic_count
= this->dynamic_count_
;
1393 off_t dynamic_size
= dynamic_count
* sym_size
;
1394 unsigned int first_dynamic_global_index
= this->first_dynamic_global_index_
;
1395 unsigned char* dynamic_view
;
1396 if (this->dynamic_offset_
== 0)
1397 dynamic_view
= NULL
;
1399 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
1401 unsigned char* ps
= psyms
;
1402 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
1403 p
!= this->table_
.end();
1406 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
1408 unsigned int sym_index
= sym
->symtab_index();
1409 unsigned int dynsym_index
;
1410 if (dynamic_view
== NULL
)
1413 dynsym_index
= sym
->dynsym_index();
1415 if (sym_index
== -1U && dynsym_index
== -1U)
1417 // This symbol is not included in the output file.
1421 if (sym_index
== index
)
1423 else if (sym_index
!= -1U)
1425 // We have already seen this symbol, because it has a
1427 gold_assert(sym_index
< index
);
1428 if (dynsym_index
== -1U)
1434 typename
elfcpp::Elf_types
<32>::Elf_Addr value
= sym
->value();
1435 switch (sym
->source())
1437 case Symbol::FROM_OBJECT
:
1439 unsigned int in_shndx
= sym
->shndx();
1441 // FIXME: We need some target specific support here.
1442 if (in_shndx
>= elfcpp::SHN_LORESERVE
1443 && in_shndx
!= elfcpp::SHN_ABS
)
1445 fprintf(stderr
, _("%s: %s: unsupported symbol section 0x%x\n"),
1446 program_name
, sym
->name(), in_shndx
);
1450 Object
* symobj
= sym
->object();
1451 if (symobj
->is_dynamic())
1453 if (sym
->needs_dynsym_value())
1454 value
= target
->dynsym_value(sym
);
1455 shndx
= elfcpp::SHN_UNDEF
;
1457 else if (in_shndx
== elfcpp::SHN_UNDEF
1458 || in_shndx
== elfcpp::SHN_ABS
)
1462 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
1464 Output_section
* os
= relobj
->output_section(in_shndx
, &secoff
);
1465 gold_assert(os
!= NULL
);
1466 shndx
= os
->out_shndx();
1471 case Symbol::IN_OUTPUT_DATA
:
1472 shndx
= sym
->output_data()->out_shndx();
1475 case Symbol::IN_OUTPUT_SEGMENT
:
1476 shndx
= elfcpp::SHN_ABS
;
1479 case Symbol::CONSTANT
:
1480 shndx
= elfcpp::SHN_ABS
;
1487 if (sym_index
!= -1U)
1489 this->sized_write_symbol
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
1490 sym
, sym
->value(), shndx
, sympool
, ps
1491 SELECT_SIZE_ENDIAN(size
, big_endian
));
1495 if (dynsym_index
!= -1U)
1497 dynsym_index
-= first_dynamic_global_index
;
1498 gold_assert(dynsym_index
< dynamic_count
);
1499 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
1500 this->sized_write_symbol
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
1501 sym
, value
, shndx
, dynpool
, pd
1502 SELECT_SIZE_ENDIAN(size
, big_endian
));
1506 gold_assert(ps
- psyms
== oview_size
);
1508 of
->write_output_view(this->offset_
, oview_size
, psyms
);
1509 if (dynamic_view
!= NULL
)
1510 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
1513 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1514 // strtab holding the name.
1516 template<int size
, bool big_endian
>
1518 Symbol_table::sized_write_symbol(
1519 Sized_symbol
<size
>* sym
,
1520 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1522 const Stringpool
* pool
,
1524 ACCEPT_SIZE_ENDIAN
) const
1526 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
1527 osym
.put_st_name(pool
->get_offset(sym
->name()));
1528 osym
.put_st_value(value
);
1529 osym
.put_st_size(sym
->symsize());
1530 osym
.put_st_info(elfcpp::elf_st_info(sym
->binding(), sym
->type()));
1531 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
1532 osym
.put_st_shndx(shndx
);
1535 // Write out a section symbol. Return the update offset.
1538 Symbol_table::write_section_symbol(const Output_section
*os
,
1542 if (parameters
->get_size() == 32)
1544 if (parameters
->is_big_endian())
1546 #ifdef HAVE_TARGET_32_BIG
1547 this->sized_write_section_symbol
<32, true>(os
, of
, offset
);
1554 #ifdef HAVE_TARGET_32_LITTLE
1555 this->sized_write_section_symbol
<32, false>(os
, of
, offset
);
1561 else if (parameters
->get_size() == 64)
1563 if (parameters
->is_big_endian())
1565 #ifdef HAVE_TARGET_64_BIG
1566 this->sized_write_section_symbol
<64, true>(os
, of
, offset
);
1573 #ifdef HAVE_TARGET_64_LITTLE
1574 this->sized_write_section_symbol
<64, false>(os
, of
, offset
);
1584 // Write out a section symbol, specialized for size and endianness.
1586 template<int size
, bool big_endian
>
1588 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
1592 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1594 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
1596 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
1597 osym
.put_st_name(0);
1598 osym
.put_st_value(os
->address());
1599 osym
.put_st_size(0);
1600 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
1601 elfcpp::STT_SECTION
));
1602 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
1603 osym
.put_st_shndx(os
->out_shndx());
1605 of
->write_output_view(offset
, sym_size
, pov
);
1608 // Warnings functions.
1610 // Add a new warning.
1613 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
1616 name
= symtab
->canonicalize_name(name
);
1617 this->warnings_
[name
].set(obj
, shndx
);
1620 // Look through the warnings and mark the symbols for which we should
1621 // warn. This is called during Layout::finalize when we know the
1622 // sources for all the symbols.
1625 Warnings::note_warnings(Symbol_table
* symtab
)
1627 for (Warning_table::iterator p
= this->warnings_
.begin();
1628 p
!= this->warnings_
.end();
1631 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
1633 && sym
->source() == Symbol::FROM_OBJECT
1634 && sym
->object() == p
->second
.object
)
1636 sym
->set_has_warning();
1638 // Read the section contents to get the warning text. It
1639 // would be nicer if we only did this if we have to actually
1640 // issue a warning. Unfortunately, warnings are issued as
1641 // we relocate sections. That means that we can not lock
1642 // the object then, as we might try to issue the same
1643 // warning multiple times simultaneously.
1645 Task_locker_obj
<Object
> tl(*p
->second
.object
);
1646 const unsigned char* c
;
1648 c
= p
->second
.object
->section_contents(p
->second
.shndx
, &len
,
1650 p
->second
.set_text(reinterpret_cast<const char*>(c
), len
);
1656 // Issue a warning. This is called when we see a relocation against a
1657 // symbol for which has a warning.
1660 Warnings::issue_warning(const Symbol
* sym
, const std::string
& location
) const
1662 gold_assert(sym
->has_warning());
1663 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
1664 gold_assert(p
!= this->warnings_
.end());
1665 fprintf(stderr
, _("%s: %s: warning: %s\n"), program_name
, location
.c_str(),
1666 p
->second
.text
.c_str());
1669 // Instantiate the templates we need. We could use the configure
1670 // script to restrict this to only the ones needed for implemented
1673 #ifdef HAVE_TARGET_32_LITTLE
1676 Symbol_table::add_from_relobj
<32, false>(
1677 Sized_relobj
<32, false>* relobj
,
1678 const unsigned char* syms
,
1680 const char* sym_names
,
1681 size_t sym_name_size
,
1682 Symbol
** sympointers
);
1685 #ifdef HAVE_TARGET_32_BIG
1688 Symbol_table::add_from_relobj
<32, true>(
1689 Sized_relobj
<32, true>* relobj
,
1690 const unsigned char* syms
,
1692 const char* sym_names
,
1693 size_t sym_name_size
,
1694 Symbol
** sympointers
);
1697 #ifdef HAVE_TARGET_64_LITTLE
1700 Symbol_table::add_from_relobj
<64, false>(
1701 Sized_relobj
<64, false>* relobj
,
1702 const unsigned char* syms
,
1704 const char* sym_names
,
1705 size_t sym_name_size
,
1706 Symbol
** sympointers
);
1709 #ifdef HAVE_TARGET_64_BIG
1712 Symbol_table::add_from_relobj
<64, true>(
1713 Sized_relobj
<64, true>* relobj
,
1714 const unsigned char* syms
,
1716 const char* sym_names
,
1717 size_t sym_name_size
,
1718 Symbol
** sympointers
);
1721 #ifdef HAVE_TARGET_32_LITTLE
1724 Symbol_table::add_from_dynobj
<32, false>(
1725 Sized_dynobj
<32, false>* dynobj
,
1726 const unsigned char* syms
,
1728 const char* sym_names
,
1729 size_t sym_name_size
,
1730 const unsigned char* versym
,
1732 const std::vector
<const char*>* version_map
);
1735 #ifdef HAVE_TARGET_32_BIG
1738 Symbol_table::add_from_dynobj
<32, true>(
1739 Sized_dynobj
<32, true>* dynobj
,
1740 const unsigned char* syms
,
1742 const char* sym_names
,
1743 size_t sym_name_size
,
1744 const unsigned char* versym
,
1746 const std::vector
<const char*>* version_map
);
1749 #ifdef HAVE_TARGET_64_LITTLE
1752 Symbol_table::add_from_dynobj
<64, false>(
1753 Sized_dynobj
<64, false>* dynobj
,
1754 const unsigned char* syms
,
1756 const char* sym_names
,
1757 size_t sym_name_size
,
1758 const unsigned char* versym
,
1760 const std::vector
<const char*>* version_map
);
1763 #ifdef HAVE_TARGET_64_BIG
1766 Symbol_table::add_from_dynobj
<64, true>(
1767 Sized_dynobj
<64, true>* dynobj
,
1768 const unsigned char* syms
,
1770 const char* sym_names
,
1771 size_t sym_name_size
,
1772 const unsigned char* versym
,
1774 const std::vector
<const char*>* version_map
);
1777 } // End namespace gold.