ld/
[binutils.git] / bfd / elf32-m68hc1x.c
blob01529430a8f1157b1ac308e009180b8e0cfcb351
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf32-m68hc1x.h"
28 #include "elf/m68hc11.h"
29 #include "opcode/m68hc11.h"
32 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
33 ((struct elf32_m68hc11_stub_hash_entry *) \
34 bfd_hash_lookup ((table), (string), (create), (copy)))
36 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
37 (const char *stub_name,
38 asection *section,
39 struct m68hc11_elf_link_hash_table *htab);
41 static struct bfd_hash_entry *stub_hash_newfunc
42 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
44 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
45 const char* name, bfd_vma value,
46 asection* sec);
48 static bfd_boolean m68hc11_elf_export_one_stub
49 (struct bfd_hash_entry *gen_entry, void *in_arg);
51 static void scan_sections_for_abi (bfd*, asection*, PTR);
53 struct m68hc11_scan_param
55 struct m68hc11_page_info* pinfo;
56 bfd_boolean use_memory_banks;
60 /* Create a 68HC11/68HC12 ELF linker hash table. */
62 struct m68hc11_elf_link_hash_table*
63 m68hc11_elf_hash_table_create (bfd *abfd)
65 struct m68hc11_elf_link_hash_table *ret;
66 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
68 ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
69 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
70 return NULL;
72 memset (ret, 0, amt);
73 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
74 _bfd_elf_link_hash_newfunc))
76 free (ret);
77 return NULL;
80 /* Init the stub hash table too. */
81 amt = sizeof (struct bfd_hash_table);
82 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
83 if (ret->stub_hash_table == NULL)
85 free (ret);
86 return NULL;
88 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc))
89 return NULL;
91 ret->stub_bfd = NULL;
92 ret->stub_section = 0;
93 ret->add_stub_section = NULL;
94 ret->sym_sec.abfd = NULL;
96 return ret;
99 /* Free the derived linker hash table. */
101 void
102 m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
104 struct m68hc11_elf_link_hash_table *ret
105 = (struct m68hc11_elf_link_hash_table *) hash;
107 bfd_hash_table_free (ret->stub_hash_table);
108 free (ret->stub_hash_table);
109 _bfd_generic_link_hash_table_free (hash);
112 /* Assorted hash table functions. */
114 /* Initialize an entry in the stub hash table. */
116 static struct bfd_hash_entry *
117 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
118 const char *string)
120 /* Allocate the structure if it has not already been allocated by a
121 subclass. */
122 if (entry == NULL)
124 entry = bfd_hash_allocate (table,
125 sizeof (struct elf32_m68hc11_stub_hash_entry));
126 if (entry == NULL)
127 return entry;
130 /* Call the allocation method of the superclass. */
131 entry = bfd_hash_newfunc (entry, table, string);
132 if (entry != NULL)
134 struct elf32_m68hc11_stub_hash_entry *eh;
136 /* Initialize the local fields. */
137 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
138 eh->stub_sec = NULL;
139 eh->stub_offset = 0;
140 eh->target_value = 0;
141 eh->target_section = NULL;
144 return entry;
147 /* Add a new stub entry to the stub hash. Not all fields of the new
148 stub entry are initialised. */
150 static struct elf32_m68hc11_stub_hash_entry *
151 m68hc12_add_stub (const char *stub_name, asection *section,
152 struct m68hc11_elf_link_hash_table *htab)
154 struct elf32_m68hc11_stub_hash_entry *stub_entry;
156 /* Enter this entry into the linker stub hash table. */
157 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
158 TRUE, FALSE);
159 if (stub_entry == NULL)
161 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
162 section->owner, stub_name);
163 return NULL;
166 if (htab->stub_section == 0)
168 htab->stub_section = (*htab->add_stub_section) (".tramp",
169 htab->tramp_section);
172 stub_entry->stub_sec = htab->stub_section;
173 stub_entry->stub_offset = 0;
174 return stub_entry;
177 /* Hook called by the linker routine which adds symbols from an object
178 file. We use it for identify far symbols and force a loading of
179 the trampoline handler. */
181 bfd_boolean
182 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
183 Elf_Internal_Sym *sym,
184 const char **namep ATTRIBUTE_UNUSED,
185 flagword *flagsp ATTRIBUTE_UNUSED,
186 asection **secp ATTRIBUTE_UNUSED,
187 bfd_vma *valp ATTRIBUTE_UNUSED)
189 if (sym->st_other & STO_M68HC12_FAR)
191 struct elf_link_hash_entry *h;
193 h = (struct elf_link_hash_entry *)
194 bfd_link_hash_lookup (info->hash, "__far_trampoline",
195 FALSE, FALSE, FALSE);
196 if (h == NULL)
198 struct bfd_link_hash_entry* entry = NULL;
200 _bfd_generic_link_add_one_symbol (info, abfd,
201 "__far_trampoline",
202 BSF_GLOBAL,
203 bfd_und_section_ptr,
204 (bfd_vma) 0, (const char*) NULL,
205 FALSE, FALSE, &entry);
209 return TRUE;
212 /* External entry points for sizing and building linker stubs. */
214 /* Set up various things so that we can make a list of input sections
215 for each output section included in the link. Returns -1 on error,
216 0 when no stubs will be needed, and 1 on success. */
219 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
221 bfd *input_bfd;
222 unsigned int bfd_count;
223 int top_id, top_index;
224 asection *section;
225 asection **input_list, **list;
226 bfd_size_type amt;
227 asection *text_section;
228 struct m68hc11_elf_link_hash_table *htab;
230 htab = m68hc11_elf_hash_table (info);
232 if (htab->root.root.creator->flavour != bfd_target_elf_flavour)
233 return 0;
235 /* Count the number of input BFDs and find the top input section id.
236 Also search for an existing ".tramp" section so that we know
237 where generated trampolines must go. Default to ".text" if we
238 can't find it. */
239 htab->tramp_section = 0;
240 text_section = 0;
241 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
242 input_bfd != NULL;
243 input_bfd = input_bfd->link_next)
245 bfd_count += 1;
246 for (section = input_bfd->sections;
247 section != NULL;
248 section = section->next)
250 const char* name = bfd_get_section_name (input_bfd, section);
252 if (!strcmp (name, ".tramp"))
253 htab->tramp_section = section;
255 if (!strcmp (name, ".text"))
256 text_section = section;
258 if (top_id < section->id)
259 top_id = section->id;
262 htab->bfd_count = bfd_count;
263 if (htab->tramp_section == 0)
264 htab->tramp_section = text_section;
266 /* We can't use output_bfd->section_count here to find the top output
267 section index as some sections may have been removed, and
268 _bfd_strip_section_from_output doesn't renumber the indices. */
269 for (section = output_bfd->sections, top_index = 0;
270 section != NULL;
271 section = section->next)
273 if (top_index < section->index)
274 top_index = section->index;
277 htab->top_index = top_index;
278 amt = sizeof (asection *) * (top_index + 1);
279 input_list = (asection **) bfd_malloc (amt);
280 htab->input_list = input_list;
281 if (input_list == NULL)
282 return -1;
284 /* For sections we aren't interested in, mark their entries with a
285 value we can check later. */
286 list = input_list + top_index;
288 *list = bfd_abs_section_ptr;
289 while (list-- != input_list);
291 for (section = output_bfd->sections;
292 section != NULL;
293 section = section->next)
295 if ((section->flags & SEC_CODE) != 0)
296 input_list[section->index] = NULL;
299 return 1;
302 /* Determine and set the size of the stub section for a final link.
304 The basic idea here is to examine all the relocations looking for
305 PC-relative calls to a target that is unreachable with a "bl"
306 instruction. */
308 bfd_boolean
309 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
310 struct bfd_link_info *info,
311 asection * (*add_stub_section) (const char*, asection*))
313 bfd *input_bfd;
314 asection *section;
315 Elf_Internal_Sym *local_syms, **all_local_syms;
316 unsigned int bfd_indx, bfd_count;
317 bfd_size_type amt;
318 asection *stub_sec;
320 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
322 /* Stash our params away. */
323 htab->stub_bfd = stub_bfd;
324 htab->add_stub_section = add_stub_section;
326 /* Count the number of input BFDs and find the top input section id. */
327 for (input_bfd = info->input_bfds, bfd_count = 0;
328 input_bfd != NULL;
329 input_bfd = input_bfd->link_next)
331 bfd_count += 1;
334 /* We want to read in symbol extension records only once. To do this
335 we need to read in the local symbols in parallel and save them for
336 later use; so hold pointers to the local symbols in an array. */
337 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
338 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
339 if (all_local_syms == NULL)
340 return FALSE;
342 /* Walk over all the input BFDs, swapping in local symbols. */
343 for (input_bfd = info->input_bfds, bfd_indx = 0;
344 input_bfd != NULL;
345 input_bfd = input_bfd->link_next, bfd_indx++)
347 Elf_Internal_Shdr *symtab_hdr;
349 /* We'll need the symbol table in a second. */
350 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
351 if (symtab_hdr->sh_info == 0)
352 continue;
354 /* We need an array of the local symbols attached to the input bfd. */
355 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
356 if (local_syms == NULL)
358 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
359 symtab_hdr->sh_info, 0,
360 NULL, NULL, NULL);
361 /* Cache them for elf_link_input_bfd. */
362 symtab_hdr->contents = (unsigned char *) local_syms;
364 if (local_syms == NULL)
366 free (all_local_syms);
367 return FALSE;
370 all_local_syms[bfd_indx] = local_syms;
373 for (input_bfd = info->input_bfds, bfd_indx = 0;
374 input_bfd != NULL;
375 input_bfd = input_bfd->link_next, bfd_indx++)
377 Elf_Internal_Shdr *symtab_hdr;
378 Elf_Internal_Sym *local_syms;
379 struct elf_link_hash_entry ** sym_hashes;
381 sym_hashes = elf_sym_hashes (input_bfd);
383 /* We'll need the symbol table in a second. */
384 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
385 if (symtab_hdr->sh_info == 0)
386 continue;
388 local_syms = all_local_syms[bfd_indx];
390 /* Walk over each section attached to the input bfd. */
391 for (section = input_bfd->sections;
392 section != NULL;
393 section = section->next)
395 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
397 /* If there aren't any relocs, then there's nothing more
398 to do. */
399 if ((section->flags & SEC_RELOC) == 0
400 || section->reloc_count == 0)
401 continue;
403 /* If this section is a link-once section that will be
404 discarded, then don't create any stubs. */
405 if (section->output_section == NULL
406 || section->output_section->owner != output_bfd)
407 continue;
409 /* Get the relocs. */
410 internal_relocs
411 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
412 (Elf_Internal_Rela *) NULL,
413 info->keep_memory);
414 if (internal_relocs == NULL)
415 goto error_ret_free_local;
417 /* Now examine each relocation. */
418 irela = internal_relocs;
419 irelaend = irela + section->reloc_count;
420 for (; irela < irelaend; irela++)
422 unsigned int r_type, r_indx;
423 struct elf32_m68hc11_stub_hash_entry *stub_entry;
424 asection *sym_sec;
425 bfd_vma sym_value;
426 struct elf_link_hash_entry *hash;
427 const char *stub_name;
428 Elf_Internal_Sym *sym;
430 r_type = ELF32_R_TYPE (irela->r_info);
432 /* Only look at 16-bit relocs. */
433 if (r_type != (unsigned int) R_M68HC11_16)
434 continue;
436 /* Now determine the call target, its name, value,
437 section. */
438 r_indx = ELF32_R_SYM (irela->r_info);
439 if (r_indx < symtab_hdr->sh_info)
441 /* It's a local symbol. */
442 Elf_Internal_Shdr *hdr;
443 bfd_boolean is_far;
445 sym = local_syms + r_indx;
446 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
447 if (!is_far)
448 continue;
450 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
451 sym_sec = hdr->bfd_section;
452 stub_name = (bfd_elf_string_from_elf_section
453 (input_bfd, symtab_hdr->sh_link,
454 sym->st_name));
455 sym_value = sym->st_value;
456 hash = NULL;
458 else
460 /* It's an external symbol. */
461 int e_indx;
463 e_indx = r_indx - symtab_hdr->sh_info;
464 hash = (struct elf_link_hash_entry *)
465 (sym_hashes[e_indx]);
467 while (hash->root.type == bfd_link_hash_indirect
468 || hash->root.type == bfd_link_hash_warning)
469 hash = ((struct elf_link_hash_entry *)
470 hash->root.u.i.link);
472 if (hash->root.type == bfd_link_hash_defined
473 || hash->root.type == bfd_link_hash_defweak
474 || hash->root.type == bfd_link_hash_new)
476 if (!(hash->other & STO_M68HC12_FAR))
477 continue;
479 else if (hash->root.type == bfd_link_hash_undefweak)
481 continue;
483 else if (hash->root.type == bfd_link_hash_undefined)
485 continue;
487 else
489 bfd_set_error (bfd_error_bad_value);
490 goto error_ret_free_internal;
492 sym_sec = hash->root.u.def.section;
493 sym_value = hash->root.u.def.value;
494 stub_name = hash->root.root.string;
497 if (!stub_name)
498 goto error_ret_free_internal;
500 stub_entry = m68hc12_stub_hash_lookup
501 (htab->stub_hash_table,
502 stub_name,
503 FALSE, FALSE);
504 if (stub_entry == NULL)
506 if (add_stub_section == 0)
507 continue;
509 stub_entry = m68hc12_add_stub (stub_name, section, htab);
510 if (stub_entry == NULL)
512 error_ret_free_internal:
513 if (elf_section_data (section)->relocs == NULL)
514 free (internal_relocs);
515 goto error_ret_free_local;
519 stub_entry->target_value = sym_value;
520 stub_entry->target_section = sym_sec;
523 /* We're done with the internal relocs, free them. */
524 if (elf_section_data (section)->relocs == NULL)
525 free (internal_relocs);
529 if (add_stub_section)
531 /* OK, we've added some stubs. Find out the new size of the
532 stub sections. */
533 for (stub_sec = htab->stub_bfd->sections;
534 stub_sec != NULL;
535 stub_sec = stub_sec->next)
537 stub_sec->size = 0;
540 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
542 free (all_local_syms);
543 return TRUE;
545 error_ret_free_local:
546 free (all_local_syms);
547 return FALSE;
550 /* Export the trampoline addresses in the symbol table. */
551 static bfd_boolean
552 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
554 struct bfd_link_info *info;
555 struct m68hc11_elf_link_hash_table *htab;
556 struct elf32_m68hc11_stub_hash_entry *stub_entry;
557 char* name;
558 bfd_boolean result;
560 info = (struct bfd_link_info *) in_arg;
561 htab = m68hc11_elf_hash_table (info);
563 /* Massage our args to the form they really have. */
564 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
566 /* Generate the trampoline according to HC11 or HC12. */
567 result = (* htab->build_one_stub) (gen_entry, in_arg);
569 /* Make a printable name that does not conflict with the real function. */
570 name = alloca (strlen (stub_entry->root.string) + 16);
571 sprintf (name, "tramp.%s", stub_entry->root.string);
573 /* Export the symbol for debugging/disassembling. */
574 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
575 stub_entry->stub_offset,
576 stub_entry->stub_sec);
577 return result;
580 /* Export a symbol or set its value and section. */
581 static void
582 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
583 const char *name, bfd_vma value, asection *sec)
585 struct elf_link_hash_entry *h;
587 h = (struct elf_link_hash_entry *)
588 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
589 if (h == NULL)
591 _bfd_generic_link_add_one_symbol (info, abfd,
592 name,
593 BSF_GLOBAL,
594 sec,
595 value,
596 (const char*) NULL,
597 TRUE, FALSE, NULL);
599 else
601 h->root.type = bfd_link_hash_defined;
602 h->root.u.def.value = value;
603 h->root.u.def.section = sec;
608 /* Build all the stubs associated with the current output file. The
609 stubs are kept in a hash table attached to the main linker hash
610 table. This function is called via m68hc12elf_finish in the
611 linker. */
613 bfd_boolean
614 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
616 asection *stub_sec;
617 struct bfd_hash_table *table;
618 struct m68hc11_elf_link_hash_table *htab;
619 struct m68hc11_scan_param param;
621 m68hc11_elf_get_bank_parameters (info);
622 htab = m68hc11_elf_hash_table (info);
624 for (stub_sec = htab->stub_bfd->sections;
625 stub_sec != NULL;
626 stub_sec = stub_sec->next)
628 bfd_size_type size;
630 /* Allocate memory to hold the linker stubs. */
631 size = stub_sec->size;
632 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
633 if (stub_sec->contents == NULL && size != 0)
634 return FALSE;
635 stub_sec->size = 0;
638 /* Build the stubs as directed by the stub hash table. */
639 table = htab->stub_hash_table;
640 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
642 /* Scan the output sections to see if we use the memory banks.
643 If so, export the symbols that define how the memory banks
644 are mapped. This is used by gdb and the simulator to obtain
645 the information. It can be used by programs to burn the eprom
646 at the good addresses. */
647 param.use_memory_banks = FALSE;
648 param.pinfo = &htab->pinfo;
649 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
650 if (param.use_memory_banks)
652 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
653 htab->pinfo.bank_physical,
654 bfd_abs_section_ptr);
655 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
656 htab->pinfo.bank_virtual,
657 bfd_abs_section_ptr);
658 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
659 htab->pinfo.bank_size,
660 bfd_abs_section_ptr);
663 return TRUE;
666 void
667 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
669 unsigned i;
670 struct m68hc11_page_info *pinfo;
671 struct bfd_link_hash_entry *h;
673 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
674 if (pinfo->bank_param_initialized)
675 return;
677 pinfo->bank_virtual = M68HC12_BANK_VIRT;
678 pinfo->bank_mask = M68HC12_BANK_MASK;
679 pinfo->bank_physical = M68HC12_BANK_BASE;
680 pinfo->bank_shift = M68HC12_BANK_SHIFT;
681 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
683 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
684 FALSE, FALSE, TRUE);
685 if (h != (struct bfd_link_hash_entry*) NULL
686 && h->type == bfd_link_hash_defined)
687 pinfo->bank_physical = (h->u.def.value
688 + h->u.def.section->output_section->vma
689 + h->u.def.section->output_offset);
691 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
692 FALSE, FALSE, TRUE);
693 if (h != (struct bfd_link_hash_entry*) NULL
694 && h->type == bfd_link_hash_defined)
695 pinfo->bank_virtual = (h->u.def.value
696 + h->u.def.section->output_section->vma
697 + h->u.def.section->output_offset);
699 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
700 FALSE, FALSE, TRUE);
701 if (h != (struct bfd_link_hash_entry*) NULL
702 && h->type == bfd_link_hash_defined)
703 pinfo->bank_size = (h->u.def.value
704 + h->u.def.section->output_section->vma
705 + h->u.def.section->output_offset);
707 pinfo->bank_shift = 0;
708 for (i = pinfo->bank_size; i != 0; i >>= 1)
709 pinfo->bank_shift++;
710 pinfo->bank_shift--;
711 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
712 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
713 pinfo->bank_param_initialized = 1;
715 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
716 FALSE, TRUE);
717 if (h != (struct bfd_link_hash_entry*) NULL
718 && h->type == bfd_link_hash_defined)
719 pinfo->trampoline_addr = (h->u.def.value
720 + h->u.def.section->output_section->vma
721 + h->u.def.section->output_offset);
724 /* Return 1 if the address is in banked memory.
725 This can be applied to a virtual address and to a physical address. */
727 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
729 if (addr >= pinfo->bank_virtual)
730 return 1;
732 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
733 return 1;
735 return 0;
738 /* Return the physical address seen by the processor, taking
739 into account banked memory. */
740 bfd_vma
741 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
743 if (addr < pinfo->bank_virtual)
744 return addr;
746 /* Map the address to the memory bank. */
747 addr -= pinfo->bank_virtual;
748 addr &= pinfo->bank_mask;
749 addr += pinfo->bank_physical;
750 return addr;
753 /* Return the page number corresponding to an address in banked memory. */
754 bfd_vma
755 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
757 if (addr < pinfo->bank_virtual)
758 return 0;
760 /* Map the address to the memory bank. */
761 addr -= pinfo->bank_virtual;
762 addr >>= pinfo->bank_shift;
763 addr &= 0x0ff;
764 return addr;
767 /* This function is used for relocs which are only used for relaxing,
768 which the linker should otherwise ignore. */
770 bfd_reloc_status_type
771 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
772 arelent *reloc_entry,
773 asymbol *symbol ATTRIBUTE_UNUSED,
774 void *data ATTRIBUTE_UNUSED,
775 asection *input_section,
776 bfd *output_bfd,
777 char **error_message ATTRIBUTE_UNUSED)
779 if (output_bfd != NULL)
780 reloc_entry->address += input_section->output_offset;
781 return bfd_reloc_ok;
784 bfd_reloc_status_type
785 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
786 arelent *reloc_entry,
787 asymbol *symbol,
788 void *data ATTRIBUTE_UNUSED,
789 asection *input_section,
790 bfd *output_bfd,
791 char **error_message ATTRIBUTE_UNUSED)
793 if (output_bfd != (bfd *) NULL
794 && (symbol->flags & BSF_SECTION_SYM) == 0
795 && (! reloc_entry->howto->partial_inplace
796 || reloc_entry->addend == 0))
798 reloc_entry->address += input_section->output_offset;
799 return bfd_reloc_ok;
802 if (output_bfd != NULL)
803 return bfd_reloc_continue;
805 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
806 return bfd_reloc_outofrange;
808 abort();
811 asection *
812 elf32_m68hc11_gc_mark_hook (asection *sec,
813 struct bfd_link_info *info ATTRIBUTE_UNUSED,
814 Elf_Internal_Rela *rel,
815 struct elf_link_hash_entry *h,
816 Elf_Internal_Sym *sym)
818 if (h != NULL)
820 switch (ELF32_R_TYPE (rel->r_info))
822 default:
823 switch (h->root.type)
825 case bfd_link_hash_defined:
826 case bfd_link_hash_defweak:
827 return h->root.u.def.section;
829 case bfd_link_hash_common:
830 return h->root.u.c.p->section;
832 default:
833 break;
837 else
838 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
840 return NULL;
843 bfd_boolean
844 elf32_m68hc11_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
845 struct bfd_link_info *info ATTRIBUTE_UNUSED,
846 asection *sec ATTRIBUTE_UNUSED,
847 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
849 /* We don't use got and plt entries for 68hc11/68hc12. */
850 return TRUE;
853 /* Look through the relocs for a section during the first phase.
854 Since we don't do .gots or .plts, we just need to consider the
855 virtual table relocs for gc. */
857 bfd_boolean
858 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
859 asection *sec, const Elf_Internal_Rela *relocs)
861 Elf_Internal_Shdr * symtab_hdr;
862 struct elf_link_hash_entry ** sym_hashes;
863 struct elf_link_hash_entry ** sym_hashes_end;
864 const Elf_Internal_Rela * rel;
865 const Elf_Internal_Rela * rel_end;
867 if (info->relocatable)
868 return TRUE;
870 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
871 sym_hashes = elf_sym_hashes (abfd);
872 sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
873 if (!elf_bad_symtab (abfd))
874 sym_hashes_end -= symtab_hdr->sh_info;
876 rel_end = relocs + sec->reloc_count;
878 for (rel = relocs; rel < rel_end; rel++)
880 struct elf_link_hash_entry * h;
881 unsigned long r_symndx;
883 r_symndx = ELF32_R_SYM (rel->r_info);
885 if (r_symndx < symtab_hdr->sh_info)
886 h = NULL;
887 else
888 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
890 switch (ELF32_R_TYPE (rel->r_info))
892 /* This relocation describes the C++ object vtable hierarchy.
893 Reconstruct it for later use during GC. */
894 case R_M68HC11_GNU_VTINHERIT:
895 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
896 return FALSE;
897 break;
899 /* This relocation describes which C++ vtable entries are actually
900 used. Record for later use during GC. */
901 case R_M68HC11_GNU_VTENTRY:
902 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
903 return FALSE;
904 break;
908 return TRUE;
911 static bfd_boolean
912 m68hc11_get_relocation_value (bfd *input_bfd, struct bfd_link_info *info,
913 asection *input_section,
914 asection **local_sections,
915 Elf_Internal_Sym *local_syms,
916 Elf_Internal_Rela *rel,
917 const char **name,
918 bfd_vma *relocation, bfd_boolean *is_far)
920 Elf_Internal_Shdr *symtab_hdr;
921 struct elf_link_hash_entry **sym_hashes;
922 unsigned long r_symndx;
923 asection *sec;
924 struct elf_link_hash_entry *h;
925 Elf_Internal_Sym *sym;
926 const char* stub_name = 0;
928 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
929 sym_hashes = elf_sym_hashes (input_bfd);
931 r_symndx = ELF32_R_SYM (rel->r_info);
933 /* This is a final link. */
934 h = NULL;
935 sym = NULL;
936 sec = NULL;
937 if (r_symndx < symtab_hdr->sh_info)
939 sym = local_syms + r_symndx;
940 sec = local_sections[r_symndx];
941 *relocation = (sec->output_section->vma
942 + sec->output_offset
943 + sym->st_value);
944 *is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
945 if (*is_far)
946 stub_name = (bfd_elf_string_from_elf_section
947 (input_bfd, symtab_hdr->sh_link,
948 sym->st_name));
950 else
952 bfd_boolean unresolved_reloc, warned;
954 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
955 r_symndx, symtab_hdr, sym_hashes,
956 h, sec, *relocation, unresolved_reloc, warned);
958 *is_far = (h && (h->other & STO_M68HC12_FAR));
959 stub_name = h->root.root.string;
962 if (h != NULL)
963 *name = h->root.root.string;
964 else
966 *name = (bfd_elf_string_from_elf_section
967 (input_bfd, symtab_hdr->sh_link, sym->st_name));
968 if (*name == NULL || **name == '\0')
969 *name = bfd_section_name (input_bfd, sec);
972 if (*is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
974 struct elf32_m68hc11_stub_hash_entry* stub;
975 struct m68hc11_elf_link_hash_table *htab;
977 htab = m68hc11_elf_hash_table (info);
978 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
979 *name, FALSE, FALSE);
980 if (stub)
982 *relocation = stub->stub_offset
983 + stub->stub_sec->output_section->vma
984 + stub->stub_sec->output_offset;
985 *is_far = FALSE;
988 return TRUE;
991 /* Relocate a 68hc11/68hc12 ELF section. */
992 bfd_boolean
993 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
994 struct bfd_link_info *info,
995 bfd *input_bfd, asection *input_section,
996 bfd_byte *contents, Elf_Internal_Rela *relocs,
997 Elf_Internal_Sym *local_syms,
998 asection **local_sections)
1000 Elf_Internal_Shdr *symtab_hdr;
1001 struct elf_link_hash_entry **sym_hashes;
1002 Elf_Internal_Rela *rel, *relend;
1003 const char *name;
1004 struct m68hc11_page_info *pinfo;
1005 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
1007 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1008 sym_hashes = elf_sym_hashes (input_bfd);
1010 /* Get memory bank parameters. */
1011 m68hc11_elf_get_bank_parameters (info);
1012 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
1014 rel = relocs;
1015 relend = relocs + input_section->reloc_count;
1016 for (; rel < relend; rel++)
1018 int r_type;
1019 arelent arel;
1020 reloc_howto_type *howto;
1021 unsigned long r_symndx;
1022 Elf_Internal_Sym *sym;
1023 asection *sec;
1024 bfd_vma relocation;
1025 bfd_reloc_status_type r = bfd_reloc_undefined;
1026 bfd_vma phys_page;
1027 bfd_vma phys_addr;
1028 bfd_vma insn_addr;
1029 bfd_vma insn_page;
1030 bfd_boolean is_far;
1032 r_symndx = ELF32_R_SYM (rel->r_info);
1033 r_type = ELF32_R_TYPE (rel->r_info);
1035 if (r_type == R_M68HC11_GNU_VTENTRY
1036 || r_type == R_M68HC11_GNU_VTINHERIT )
1037 continue;
1039 if (info->relocatable)
1041 /* This is a relocatable link. We don't have to change
1042 anything, unless the reloc is against a section symbol,
1043 in which case we have to adjust according to where the
1044 section symbol winds up in the output section. */
1045 if (r_symndx < symtab_hdr->sh_info)
1047 sym = local_syms + r_symndx;
1048 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1050 sec = local_sections[r_symndx];
1051 rel->r_addend += sec->output_offset + sym->st_value;
1055 continue;
1057 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
1058 howto = arel.howto;
1060 m68hc11_get_relocation_value (input_bfd, info, input_section,
1061 local_sections, local_syms,
1062 rel, &name, &relocation, &is_far);
1064 /* Do the memory bank mapping. */
1065 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1066 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1067 switch (r_type)
1069 case R_M68HC11_24:
1070 /* Reloc used by 68HC12 call instruction. */
1071 bfd_put_16 (input_bfd, phys_addr,
1072 (bfd_byte*) contents + rel->r_offset);
1073 bfd_put_8 (input_bfd, phys_page,
1074 (bfd_byte*) contents + rel->r_offset + 2);
1075 r = bfd_reloc_ok;
1076 r_type = R_M68HC11_NONE;
1077 break;
1079 case R_M68HC11_NONE:
1080 r = bfd_reloc_ok;
1081 break;
1083 case R_M68HC11_LO16:
1084 /* Reloc generated by %addr(expr) gas to obtain the
1085 address as mapped in the memory bank window. */
1086 relocation = phys_addr;
1087 break;
1089 case R_M68HC11_PAGE:
1090 /* Reloc generated by %page(expr) gas to obtain the
1091 page number associated with the address. */
1092 relocation = phys_page;
1093 break;
1095 case R_M68HC11_16:
1096 /* Get virtual address of instruction having the relocation. */
1097 if (is_far)
1099 const char* msg;
1100 char* buf;
1101 msg = _("Reference to the far symbol `%s' using a wrong "
1102 "relocation may result in incorrect execution");
1103 buf = alloca (strlen (msg) + strlen (name) + 10);
1104 sprintf (buf, msg, name);
1106 (* info->callbacks->warning)
1107 (info, buf, name, input_bfd, NULL, rel->r_offset);
1110 /* Get virtual address of instruction having the relocation. */
1111 insn_addr = input_section->output_section->vma
1112 + input_section->output_offset
1113 + rel->r_offset;
1115 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1117 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1118 && m68hc11_addr_is_banked (pinfo, insn_addr)
1119 && phys_page != insn_page)
1121 const char* msg;
1122 char* buf;
1124 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1125 "as current banked address [%lx:%04lx] (%lx)");
1127 buf = alloca (strlen (msg) + 128);
1128 sprintf (buf, msg, phys_page, phys_addr,
1129 (long) (relocation + rel->r_addend),
1130 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1131 (long) (insn_addr));
1132 if (!((*info->callbacks->warning)
1133 (info, buf, name, input_bfd, input_section,
1134 rel->r_offset)))
1135 return FALSE;
1136 break;
1138 if (phys_page != 0 && insn_page == 0)
1140 const char* msg;
1141 char* buf;
1143 msg = _("reference to a banked address [%lx:%04lx] in the "
1144 "normal address space at %04lx");
1146 buf = alloca (strlen (msg) + 128);
1147 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1148 if (!((*info->callbacks->warning)
1149 (info, buf, name, input_bfd, input_section,
1150 insn_addr)))
1151 return FALSE;
1153 relocation = phys_addr;
1154 break;
1157 /* If this is a banked address use the phys_addr so that
1158 we stay in the banked window. */
1159 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1160 relocation = phys_addr;
1161 break;
1163 if (r_type != R_M68HC11_NONE)
1164 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1165 contents, rel->r_offset,
1166 relocation, rel->r_addend);
1168 if (r != bfd_reloc_ok)
1170 const char * msg = (const char *) 0;
1172 switch (r)
1174 case bfd_reloc_overflow:
1175 if (!((*info->callbacks->reloc_overflow)
1176 (info, name, howto->name, (bfd_vma) 0,
1177 input_bfd, input_section, rel->r_offset)))
1178 return FALSE;
1179 break;
1181 case bfd_reloc_undefined:
1182 if (!((*info->callbacks->undefined_symbol)
1183 (info, name, input_bfd, input_section,
1184 rel->r_offset, TRUE)))
1185 return FALSE;
1186 break;
1188 case bfd_reloc_outofrange:
1189 msg = _ ("internal error: out of range error");
1190 goto common_error;
1192 case bfd_reloc_notsupported:
1193 msg = _ ("internal error: unsupported relocation error");
1194 goto common_error;
1196 case bfd_reloc_dangerous:
1197 msg = _ ("internal error: dangerous error");
1198 goto common_error;
1200 default:
1201 msg = _ ("internal error: unknown error");
1202 /* fall through */
1204 common_error:
1205 if (!((*info->callbacks->warning)
1206 (info, msg, name, input_bfd, input_section,
1207 rel->r_offset)))
1208 return FALSE;
1209 break;
1214 return TRUE;
1219 /* Set and control ELF flags in ELF header. */
1221 bfd_boolean
1222 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1224 BFD_ASSERT (!elf_flags_init (abfd)
1225 || elf_elfheader (abfd)->e_flags == flags);
1227 elf_elfheader (abfd)->e_flags = flags;
1228 elf_flags_init (abfd) = TRUE;
1229 return TRUE;
1232 /* Merge backend specific data from an object file to the output
1233 object file when linking. */
1235 bfd_boolean
1236 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1238 flagword old_flags;
1239 flagword new_flags;
1240 bfd_boolean ok = TRUE;
1242 /* Check if we have the same endianess */
1243 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1244 return FALSE;
1246 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1247 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1248 return TRUE;
1250 new_flags = elf_elfheader (ibfd)->e_flags;
1251 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1252 old_flags = elf_elfheader (obfd)->e_flags;
1254 if (! elf_flags_init (obfd))
1256 elf_flags_init (obfd) = TRUE;
1257 elf_elfheader (obfd)->e_flags = new_flags;
1258 elf_elfheader (obfd)->e_ident[EI_CLASS]
1259 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1261 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1262 && bfd_get_arch_info (obfd)->the_default)
1264 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1265 bfd_get_mach (ibfd)))
1266 return FALSE;
1269 return TRUE;
1272 /* Check ABI compatibility. */
1273 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1275 (*_bfd_error_handler)
1276 (_("%B: linking files compiled for 16-bit integers (-mshort) "
1277 "and others for 32-bit integers"), ibfd);
1278 ok = FALSE;
1280 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1282 (*_bfd_error_handler)
1283 (_("%B: linking files compiled for 32-bit double (-fshort-double) "
1284 "and others for 64-bit double"), ibfd);
1285 ok = FALSE;
1288 /* Processor compatibility. */
1289 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1291 (*_bfd_error_handler)
1292 (_("%B: linking files compiled for HCS12 with "
1293 "others compiled for HC12"), ibfd);
1294 ok = FALSE;
1296 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1297 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1299 elf_elfheader (obfd)->e_flags = new_flags;
1301 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1302 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1304 /* Warn about any other mismatches */
1305 if (new_flags != old_flags)
1307 (*_bfd_error_handler)
1308 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1309 ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
1310 ok = FALSE;
1313 if (! ok)
1315 bfd_set_error (bfd_error_bad_value);
1316 return FALSE;
1319 return TRUE;
1322 bfd_boolean
1323 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1325 FILE *file = (FILE *) ptr;
1327 BFD_ASSERT (abfd != NULL && ptr != NULL);
1329 /* Print normal ELF private data. */
1330 _bfd_elf_print_private_bfd_data (abfd, ptr);
1332 /* xgettext:c-format */
1333 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1335 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1336 fprintf (file, _("[abi=32-bit int, "));
1337 else
1338 fprintf (file, _("[abi=16-bit int, "));
1340 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1341 fprintf (file, _("64-bit double, "));
1342 else
1343 fprintf (file, _("32-bit double, "));
1345 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1346 fprintf (file, _("cpu=HC11]"));
1347 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1348 fprintf (file, _("cpu=HCS12]"));
1349 else
1350 fprintf (file, _("cpu=HC12]"));
1352 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1353 fprintf (file, _(" [memory=bank-model]"));
1354 else
1355 fprintf (file, _(" [memory=flat]"));
1357 fputc ('\n', file);
1359 return TRUE;
1362 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1363 asection *asect, void *arg)
1365 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1367 if (asect->vma >= p->pinfo->bank_virtual)
1368 p->use_memory_banks = TRUE;
1371 /* Tweak the OSABI field of the elf header. */
1373 void
1374 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1376 struct m68hc11_scan_param param;
1378 if (link_info == 0)
1379 return;
1381 m68hc11_elf_get_bank_parameters (link_info);
1383 param.use_memory_banks = FALSE;
1384 param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
1385 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1386 if (param.use_memory_banks)
1388 Elf_Internal_Ehdr * i_ehdrp;
1390 i_ehdrp = elf_elfheader (abfd);
1391 i_ehdrp->e_flags |= E_M68HC12_BANKS;