1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
33 #include "libiberty.h"
35 #include "elfxx-mips.h"
38 /* Get the ECOFF swapping routines. */
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
46 /* This structure is used to hold .got entries while estimating got
50 /* The input bfd in which the symbol is defined. */
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
57 /* If abfd == NULL, an address that must be stored in the got. */
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
65 struct mips_elf_link_hash_entry
*h
;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
73 /* This structure is used to hold .got information when linking. */
77 /* The global symbol in the GOT with the lowest index in the dynamic
79 struct elf_link_hash_entry
*global_gotsym
;
80 /* The number of global .got entries. */
81 unsigned int global_gotno
;
82 /* The number of local .got entries. */
83 unsigned int local_gotno
;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno
;
86 /* A hash table holding members of the got. */
87 struct htab
*got_entries
;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info
*next
;
96 /* Map an input bfd to a got in a multi-got link. */
98 struct mips_elf_bfd2got_hash
{
100 struct mips_got_info
*g
;
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
106 struct mips_elf_got_per_bfd_arg
108 /* A hashtable that maps bfds to gots. */
110 /* The output bfd. */
112 /* The link information. */
113 struct bfd_link_info
*info
;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
117 struct mips_got_info
*primary
;
118 /* A non-primary got we're trying to merge with other input bfd's
120 struct mips_got_info
*current
;
121 /* The maximum number of got entries that can be addressed with a
123 unsigned int max_count
;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count
;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count
;
130 /* Another structure used to pass arguments for got entries traversal. */
132 struct mips_elf_set_global_got_offset_arg
134 struct mips_got_info
*g
;
136 unsigned int needed_relocs
;
137 struct bfd_link_info
*info
;
140 struct _mips_elf_section_data
142 struct bfd_elf_section_data elf
;
145 struct mips_got_info
*got_info
;
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
156 struct mips_elf_hash_sort_data
158 /* The symbol in the global GOT with the lowest dynamic symbol table
160 struct elf_link_hash_entry
*low
;
161 /* The least dynamic symbol table index corresponding to a symbol
163 long min_got_dynindx
;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary
168 long max_unref_got_dynindx
;
169 /* The greatest dynamic symbol table index not corresponding to a
170 symbol without a GOT entry. */
171 long max_non_got_dynindx
;
174 /* The MIPS ELF linker needs additional information for each symbol in
175 the global hash table. */
177 struct mips_elf_link_hash_entry
179 struct elf_link_hash_entry root
;
181 /* External symbol information. */
184 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
186 unsigned int possibly_dynamic_relocs
;
188 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
189 a readonly section. */
190 bfd_boolean readonly_reloc
;
192 /* The index of the first dynamic relocation (in the .rel.dyn
193 section) against this symbol. */
194 unsigned int min_dyn_reloc_index
;
196 /* We must not create a stub for a symbol that has relocations
197 related to taking the function's address, i.e. any but
198 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
200 bfd_boolean no_fn_stub
;
202 /* If there is a stub that 32 bit functions should use to call this
203 16 bit function, this points to the section containing the stub. */
206 /* Whether we need the fn_stub; this is set if this symbol appears
207 in any relocs other than a 16 bit call. */
208 bfd_boolean need_fn_stub
;
210 /* If there is a stub that 16 bit functions should use to call this
211 32 bit function, this points to the section containing the stub. */
214 /* This is like the call_stub field, but it is used if the function
215 being called returns a floating point value. */
216 asection
*call_fp_stub
;
218 /* Are we forced local? .*/
219 bfd_boolean forced_local
;
222 /* MIPS ELF linker hash table. */
224 struct mips_elf_link_hash_table
226 struct elf_link_hash_table root
;
228 /* We no longer use this. */
229 /* String section indices for the dynamic section symbols. */
230 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
232 /* The number of .rtproc entries. */
233 bfd_size_type procedure_count
;
234 /* The size of the .compact_rel section (if SGI_COMPAT). */
235 bfd_size_type compact_rel_size
;
236 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
237 entry is set to the address of __rld_obj_head as in IRIX5. */
238 bfd_boolean use_rld_obj_head
;
239 /* This is the value of the __rld_map or __rld_obj_head symbol. */
241 /* This is set if we see any mips16 stub sections. */
242 bfd_boolean mips16_stubs_seen
;
245 /* Structure used to pass information to mips_elf_output_extsym. */
250 struct bfd_link_info
*info
;
251 struct ecoff_debug_info
*debug
;
252 const struct ecoff_debug_swap
*swap
;
256 /* The names of the runtime procedure table symbols used on IRIX5. */
258 static const char * const mips_elf_dynsym_rtproc_names
[] =
261 "_procedure_string_table",
262 "_procedure_table_size",
266 /* These structures are used to generate the .compact_rel section on
271 unsigned long id1
; /* Always one? */
272 unsigned long num
; /* Number of compact relocation entries. */
273 unsigned long id2
; /* Always two? */
274 unsigned long offset
; /* The file offset of the first relocation. */
275 unsigned long reserved0
; /* Zero? */
276 unsigned long reserved1
; /* Zero? */
285 bfd_byte reserved0
[4];
286 bfd_byte reserved1
[4];
287 } Elf32_External_compact_rel
;
291 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
292 unsigned int rtype
: 4; /* Relocation types. See below. */
293 unsigned int dist2to
: 8;
294 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
295 unsigned long konst
; /* KONST field. See below. */
296 unsigned long vaddr
; /* VADDR to be relocated. */
301 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
302 unsigned int rtype
: 4; /* Relocation types. See below. */
303 unsigned int dist2to
: 8;
304 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
305 unsigned long konst
; /* KONST field. See below. */
313 } Elf32_External_crinfo
;
319 } Elf32_External_crinfo2
;
321 /* These are the constants used to swap the bitfields in a crinfo. */
323 #define CRINFO_CTYPE (0x1)
324 #define CRINFO_CTYPE_SH (31)
325 #define CRINFO_RTYPE (0xf)
326 #define CRINFO_RTYPE_SH (27)
327 #define CRINFO_DIST2TO (0xff)
328 #define CRINFO_DIST2TO_SH (19)
329 #define CRINFO_RELVADDR (0x7ffff)
330 #define CRINFO_RELVADDR_SH (0)
332 /* A compact relocation info has long (3 words) or short (2 words)
333 formats. A short format doesn't have VADDR field and relvaddr
334 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
335 #define CRF_MIPS_LONG 1
336 #define CRF_MIPS_SHORT 0
338 /* There are 4 types of compact relocation at least. The value KONST
339 has different meaning for each type:
342 CT_MIPS_REL32 Address in data
343 CT_MIPS_WORD Address in word (XXX)
344 CT_MIPS_GPHI_LO GP - vaddr
345 CT_MIPS_JMPAD Address to jump
348 #define CRT_MIPS_REL32 0xa
349 #define CRT_MIPS_WORD 0xb
350 #define CRT_MIPS_GPHI_LO 0xc
351 #define CRT_MIPS_JMPAD 0xd
353 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
354 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
355 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
356 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
358 /* The structure of the runtime procedure descriptor created by the
359 loader for use by the static exception system. */
361 typedef struct runtime_pdr
{
362 bfd_vma adr
; /* memory address of start of procedure */
363 long regmask
; /* save register mask */
364 long regoffset
; /* save register offset */
365 long fregmask
; /* save floating point register mask */
366 long fregoffset
; /* save floating point register offset */
367 long frameoffset
; /* frame size */
368 short framereg
; /* frame pointer register */
369 short pcreg
; /* offset or reg of return pc */
370 long irpss
; /* index into the runtime string table */
372 struct exception_info
*exception_info
;/* pointer to exception array */
374 #define cbRPDR sizeof (RPDR)
375 #define rpdNil ((pRPDR) 0)
377 static struct bfd_hash_entry
*mips_elf_link_hash_newfunc
378 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
379 static void ecoff_swap_rpdr_out
380 PARAMS ((bfd
*, const RPDR
*, struct rpdr_ext
*));
381 static bfd_boolean mips_elf_create_procedure_table
382 PARAMS ((PTR
, bfd
*, struct bfd_link_info
*, asection
*,
383 struct ecoff_debug_info
*));
384 static bfd_boolean mips_elf_check_mips16_stubs
385 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
386 static void bfd_mips_elf32_swap_gptab_in
387 PARAMS ((bfd
*, const Elf32_External_gptab
*, Elf32_gptab
*));
388 static void bfd_mips_elf32_swap_gptab_out
389 PARAMS ((bfd
*, const Elf32_gptab
*, Elf32_External_gptab
*));
390 static void bfd_elf32_swap_compact_rel_out
391 PARAMS ((bfd
*, const Elf32_compact_rel
*, Elf32_External_compact_rel
*));
392 static void bfd_elf32_swap_crinfo_out
393 PARAMS ((bfd
*, const Elf32_crinfo
*, Elf32_External_crinfo
*));
395 static void bfd_mips_elf_swap_msym_in
396 PARAMS ((bfd
*, const Elf32_External_Msym
*, Elf32_Internal_Msym
*));
398 static void bfd_mips_elf_swap_msym_out
399 PARAMS ((bfd
*, const Elf32_Internal_Msym
*, Elf32_External_Msym
*));
400 static int sort_dynamic_relocs
401 PARAMS ((const void *, const void *));
402 static int sort_dynamic_relocs_64
403 PARAMS ((const void *, const void *));
404 static bfd_boolean mips_elf_output_extsym
405 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
406 static int gptab_compare
PARAMS ((const void *, const void *));
407 static asection
* mips_elf_rel_dyn_section
PARAMS ((bfd
*, bfd_boolean
));
408 static asection
* mips_elf_got_section
PARAMS ((bfd
*, bfd_boolean
));
409 static struct mips_got_info
*mips_elf_got_info
410 PARAMS ((bfd
*, asection
**));
411 static bfd_vma mips_elf_local_got_index
412 PARAMS ((bfd
*, bfd
*, struct bfd_link_info
*, bfd_vma
));
413 static bfd_vma mips_elf_global_got_index
414 PARAMS ((bfd
*, bfd
*, struct elf_link_hash_entry
*));
415 static bfd_vma mips_elf_got_page
416 PARAMS ((bfd
*, bfd
*, struct bfd_link_info
*, bfd_vma
, bfd_vma
*));
417 static bfd_vma mips_elf_got16_entry
418 PARAMS ((bfd
*, bfd
*, struct bfd_link_info
*, bfd_vma
, bfd_boolean
));
419 static bfd_vma mips_elf_got_offset_from_index
420 PARAMS ((bfd
*, bfd
*, bfd
*, bfd_vma
));
421 static struct mips_got_entry
*mips_elf_create_local_got_entry
422 PARAMS ((bfd
*, bfd
*, struct mips_got_info
*, asection
*, bfd_vma
));
423 static bfd_boolean mips_elf_sort_hash_table
424 PARAMS ((struct bfd_link_info
*, unsigned long));
425 static bfd_boolean mips_elf_sort_hash_table_f
426 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
427 static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd
*, long, bfd_vma
, struct mips_got_info
*));
429 static bfd_boolean mips_elf_record_global_got_symbol
430 PARAMS ((struct elf_link_hash_entry
*, bfd
*, struct bfd_link_info
*,
431 struct mips_got_info
*));
432 static const Elf_Internal_Rela
*mips_elf_next_relocation
433 PARAMS ((bfd
*, unsigned int, const Elf_Internal_Rela
*,
434 const Elf_Internal_Rela
*));
435 static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd
*, const Elf_Internal_Rela
*, asection
**, bfd_boolean
));
437 static bfd_vma mips_elf_sign_extend
PARAMS ((bfd_vma
, int));
438 static bfd_boolean mips_elf_overflow_p
PARAMS ((bfd_vma
, int));
439 static bfd_vma mips_elf_high
PARAMS ((bfd_vma
));
440 static bfd_vma mips_elf_higher
PARAMS ((bfd_vma
));
441 static bfd_vma mips_elf_highest
PARAMS ((bfd_vma
));
442 static bfd_boolean mips_elf_create_compact_rel_section
443 PARAMS ((bfd
*, struct bfd_link_info
*));
444 static bfd_boolean mips_elf_create_got_section
445 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_boolean
));
446 static asection
*mips_elf_create_msym_section
448 static bfd_reloc_status_type mips_elf_calculate_relocation
449 PARAMS ((bfd
*, bfd
*, asection
*, struct bfd_link_info
*,
450 const Elf_Internal_Rela
*, bfd_vma
, reloc_howto_type
*,
451 Elf_Internal_Sym
*, asection
**, bfd_vma
*, const char **,
452 bfd_boolean
*, bfd_boolean
));
453 static bfd_vma mips_elf_obtain_contents
454 PARAMS ((reloc_howto_type
*, const Elf_Internal_Rela
*, bfd
*, bfd_byte
*));
455 static bfd_boolean mips_elf_perform_relocation
456 PARAMS ((struct bfd_link_info
*, reloc_howto_type
*,
457 const Elf_Internal_Rela
*, bfd_vma
, bfd
*, asection
*, bfd_byte
*,
459 static bfd_boolean mips_elf_stub_section_p
460 PARAMS ((bfd
*, asection
*));
461 static void mips_elf_allocate_dynamic_relocations
462 PARAMS ((bfd
*, unsigned int));
463 static bfd_boolean mips_elf_create_dynamic_relocation
464 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
465 struct mips_elf_link_hash_entry
*, asection
*,
466 bfd_vma
, bfd_vma
*, asection
*));
467 static void mips_set_isa_flags
PARAMS ((bfd
*));
468 static INLINE
char* elf_mips_abi_name
PARAMS ((bfd
*));
469 static void mips_elf_irix6_finish_dynamic_symbol
470 PARAMS ((bfd
*, const char *, Elf_Internal_Sym
*));
471 static bfd_boolean mips_mach_extends_p
PARAMS ((unsigned long, unsigned long));
472 static bfd_boolean mips_32bit_flags_p
PARAMS ((flagword
));
473 static INLINE hashval_t mips_elf_hash_bfd_vma
PARAMS ((bfd_vma
));
474 static hashval_t mips_elf_got_entry_hash
PARAMS ((const PTR
));
475 static int mips_elf_got_entry_eq
PARAMS ((const PTR
, const PTR
));
477 static bfd_boolean mips_elf_multi_got
478 PARAMS ((bfd
*, struct bfd_link_info
*, struct mips_got_info
*,
479 asection
*, bfd_size_type
));
480 static hashval_t mips_elf_multi_got_entry_hash
PARAMS ((const PTR
));
481 static int mips_elf_multi_got_entry_eq
PARAMS ((const PTR
, const PTR
));
482 static hashval_t mips_elf_bfd2got_entry_hash
PARAMS ((const PTR
));
483 static int mips_elf_bfd2got_entry_eq
PARAMS ((const PTR
, const PTR
));
484 static int mips_elf_make_got_per_bfd
PARAMS ((void **, void *));
485 static int mips_elf_merge_gots
PARAMS ((void **, void *));
486 static int mips_elf_set_global_got_offset
PARAMS ((void**, void *));
487 static int mips_elf_resolve_final_got_entry
PARAMS ((void**, void *));
488 static void mips_elf_resolve_final_got_entries
489 PARAMS ((struct mips_got_info
*));
490 static bfd_vma mips_elf_adjust_gp
491 PARAMS ((bfd
*, struct mips_got_info
*, bfd
*));
492 static struct mips_got_info
*mips_elf_got_for_ibfd
493 PARAMS ((struct mips_got_info
*, bfd
*));
495 /* This will be used when we sort the dynamic relocation records. */
496 static bfd
*reldyn_sorting_bfd
;
498 /* Nonzero if ABFD is using the N32 ABI. */
500 #define ABI_N32_P(abfd) \
501 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
503 /* Nonzero if ABFD is using the N64 ABI. */
504 #define ABI_64_P(abfd) \
505 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
507 /* Nonzero if ABFD is using NewABI conventions. */
508 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
510 /* The IRIX compatibility level we are striving for. */
511 #define IRIX_COMPAT(abfd) \
512 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
514 /* Whether we are trying to be compatible with IRIX at all. */
515 #define SGI_COMPAT(abfd) \
516 (IRIX_COMPAT (abfd) != ict_none)
518 /* The name of the options section. */
519 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
520 (ABI_64_P (abfd) ? ".MIPS.options" : ".options")
522 /* The name of the stub section. */
523 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
524 (ABI_64_P (abfd) ? ".MIPS.stubs" : ".stub")
526 /* The size of an external REL relocation. */
527 #define MIPS_ELF_REL_SIZE(abfd) \
528 (get_elf_backend_data (abfd)->s->sizeof_rel)
530 /* The size of an external dynamic table entry. */
531 #define MIPS_ELF_DYN_SIZE(abfd) \
532 (get_elf_backend_data (abfd)->s->sizeof_dyn)
534 /* The size of a GOT entry. */
535 #define MIPS_ELF_GOT_SIZE(abfd) \
536 (get_elf_backend_data (abfd)->s->arch_size / 8)
538 /* The size of a symbol-table entry. */
539 #define MIPS_ELF_SYM_SIZE(abfd) \
540 (get_elf_backend_data (abfd)->s->sizeof_sym)
542 /* The default alignment for sections, as a power of two. */
543 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
544 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
546 /* Get word-sized data. */
547 #define MIPS_ELF_GET_WORD(abfd, ptr) \
548 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
550 /* Put out word-sized data. */
551 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
553 ? bfd_put_64 (abfd, val, ptr) \
554 : bfd_put_32 (abfd, val, ptr))
556 /* Add a dynamic symbol table-entry. */
558 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
559 (ABI_64_P (elf_hash_table (info)->dynobj) \
560 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
561 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
563 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
564 (ABI_64_P (elf_hash_table (info)->dynobj) \
565 ? (abort (), FALSE) \
566 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
569 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
570 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
572 /* Determine whether the internal relocation of index REL_IDX is REL
573 (zero) or RELA (non-zero). The assumption is that, if there are
574 two relocation sections for this section, one of them is REL and
575 the other is RELA. If the index of the relocation we're testing is
576 in range for the first relocation section, check that the external
577 relocation size is that for RELA. It is also assumed that, if
578 rel_idx is not in range for the first section, and this first
579 section contains REL relocs, then the relocation is in the second
580 section, that is RELA. */
581 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
582 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
583 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
584 > (bfd_vma)(rel_idx)) \
585 == (elf_section_data (sec)->rel_hdr.sh_entsize \
586 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
587 : sizeof (Elf32_External_Rela))))
589 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
590 from smaller values. Start with zero, widen, *then* decrement. */
591 #define MINUS_ONE (((bfd_vma)0) - 1)
593 /* The number of local .got entries we reserve. */
594 #define MIPS_RESERVED_GOTNO (2)
596 /* The offset of $gp from the beginning of the .got section. */
597 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
599 /* The maximum size of the GOT for it to be addressable using 16-bit
601 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
603 /* Instructions which appear in a stub. For some reason the stub is
604 slightly different on an SGI system. */
605 #define STUB_LW(abfd) \
607 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
608 : 0x8f998010)) /* lw t9,0x8010(gp) */
609 #define STUB_MOVE(abfd) \
610 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
611 #define STUB_JALR 0x0320f809 /* jal t9 */
612 #define STUB_LI16(abfd) \
613 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
614 #define MIPS_FUNCTION_STUB_SIZE (16)
616 /* The name of the dynamic interpreter. This is put in the .interp
619 #define ELF_DYNAMIC_INTERPRETER(abfd) \
620 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
621 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
622 : "/usr/lib/libc.so.1")
625 #define MNAME(bfd,pre,pos) \
626 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
627 #define ELF_R_SYM(bfd, i) \
628 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
629 #define ELF_R_TYPE(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
631 #define ELF_R_INFO(bfd, s, t) \
632 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
634 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
635 #define ELF_R_SYM(bfd, i) \
637 #define ELF_R_TYPE(bfd, i) \
639 #define ELF_R_INFO(bfd, s, t) \
640 (ELF32_R_INFO (s, t))
643 /* The mips16 compiler uses a couple of special sections to handle
644 floating point arguments.
646 Section names that look like .mips16.fn.FNNAME contain stubs that
647 copy floating point arguments from the fp regs to the gp regs and
648 then jump to FNNAME. If any 32 bit function calls FNNAME, the
649 call should be redirected to the stub instead. If no 32 bit
650 function calls FNNAME, the stub should be discarded. We need to
651 consider any reference to the function, not just a call, because
652 if the address of the function is taken we will need the stub,
653 since the address might be passed to a 32 bit function.
655 Section names that look like .mips16.call.FNNAME contain stubs
656 that copy floating point arguments from the gp regs to the fp
657 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
658 then any 16 bit function that calls FNNAME should be redirected
659 to the stub instead. If FNNAME is not a 32 bit function, the
660 stub should be discarded.
662 .mips16.call.fp.FNNAME sections are similar, but contain stubs
663 which call FNNAME and then copy the return value from the fp regs
664 to the gp regs. These stubs store the return value in $18 while
665 calling FNNAME; any function which might call one of these stubs
666 must arrange to save $18 around the call. (This case is not
667 needed for 32 bit functions that call 16 bit functions, because
668 16 bit functions always return floating point values in both
671 Note that in all cases FNNAME might be defined statically.
672 Therefore, FNNAME is not used literally. Instead, the relocation
673 information will indicate which symbol the section is for.
675 We record any stubs that we find in the symbol table. */
677 #define FN_STUB ".mips16.fn."
678 #define CALL_STUB ".mips16.call."
679 #define CALL_FP_STUB ".mips16.call.fp."
681 /* Look up an entry in a MIPS ELF linker hash table. */
683 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
684 ((struct mips_elf_link_hash_entry *) \
685 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 /* Traverse a MIPS ELF linker hash table. */
690 #define mips_elf_link_hash_traverse(table, func, info) \
691 (elf_link_hash_traverse \
693 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
696 /* Get the MIPS ELF linker hash table from a link_info structure. */
698 #define mips_elf_hash_table(p) \
699 ((struct mips_elf_link_hash_table *) ((p)->hash))
701 /* Create an entry in a MIPS ELF linker hash table. */
703 static struct bfd_hash_entry
*
704 mips_elf_link_hash_newfunc (entry
, table
, string
)
705 struct bfd_hash_entry
*entry
;
706 struct bfd_hash_table
*table
;
709 struct mips_elf_link_hash_entry
*ret
=
710 (struct mips_elf_link_hash_entry
*) entry
;
712 /* Allocate the structure if it has not already been allocated by a
714 if (ret
== (struct mips_elf_link_hash_entry
*) NULL
)
715 ret
= ((struct mips_elf_link_hash_entry
*)
716 bfd_hash_allocate (table
,
717 sizeof (struct mips_elf_link_hash_entry
)));
718 if (ret
== (struct mips_elf_link_hash_entry
*) NULL
)
719 return (struct bfd_hash_entry
*) ret
;
721 /* Call the allocation method of the superclass. */
722 ret
= ((struct mips_elf_link_hash_entry
*)
723 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
725 if (ret
!= (struct mips_elf_link_hash_entry
*) NULL
)
727 /* Set local fields. */
728 memset (&ret
->esym
, 0, sizeof (EXTR
));
729 /* We use -2 as a marker to indicate that the information has
730 not been set. -1 means there is no associated ifd. */
732 ret
->possibly_dynamic_relocs
= 0;
733 ret
->readonly_reloc
= FALSE
;
734 ret
->min_dyn_reloc_index
= 0;
735 ret
->no_fn_stub
= FALSE
;
737 ret
->need_fn_stub
= FALSE
;
738 ret
->call_stub
= NULL
;
739 ret
->call_fp_stub
= NULL
;
740 ret
->forced_local
= FALSE
;
743 return (struct bfd_hash_entry
*) ret
;
747 _bfd_mips_elf_new_section_hook (abfd
, sec
)
751 struct _mips_elf_section_data
*sdata
;
752 bfd_size_type amt
= sizeof (*sdata
);
754 sdata
= (struct _mips_elf_section_data
*) bfd_zalloc (abfd
, amt
);
757 sec
->used_by_bfd
= (PTR
) sdata
;
759 return _bfd_elf_new_section_hook (abfd
, sec
);
762 /* Read ECOFF debugging information from a .mdebug section into a
763 ecoff_debug_info structure. */
766 _bfd_mips_elf_read_ecoff_info (abfd
, section
, debug
)
769 struct ecoff_debug_info
*debug
;
772 const struct ecoff_debug_swap
*swap
;
773 char *ext_hdr
= NULL
;
775 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
776 memset (debug
, 0, sizeof (*debug
));
778 ext_hdr
= (char *) bfd_malloc (swap
->external_hdr_size
);
779 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
782 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, (file_ptr
) 0,
783 swap
->external_hdr_size
))
786 symhdr
= &debug
->symbolic_header
;
787 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
789 /* The symbolic header contains absolute file offsets and sizes to
791 #define READ(ptr, offset, count, size, type) \
792 if (symhdr->count == 0) \
796 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
797 debug->ptr = (type) bfd_malloc (amt); \
798 if (debug->ptr == NULL) \
800 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
801 || bfd_bread (debug->ptr, amt, abfd) != amt) \
805 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
806 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, PTR
);
807 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, PTR
);
808 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, PTR
);
809 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, PTR
);
810 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
812 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
813 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
814 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, PTR
);
815 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, PTR
);
816 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, PTR
);
820 debug
->adjust
= NULL
;
827 if (debug
->line
!= NULL
)
829 if (debug
->external_dnr
!= NULL
)
830 free (debug
->external_dnr
);
831 if (debug
->external_pdr
!= NULL
)
832 free (debug
->external_pdr
);
833 if (debug
->external_sym
!= NULL
)
834 free (debug
->external_sym
);
835 if (debug
->external_opt
!= NULL
)
836 free (debug
->external_opt
);
837 if (debug
->external_aux
!= NULL
)
838 free (debug
->external_aux
);
839 if (debug
->ss
!= NULL
)
841 if (debug
->ssext
!= NULL
)
843 if (debug
->external_fdr
!= NULL
)
844 free (debug
->external_fdr
);
845 if (debug
->external_rfd
!= NULL
)
846 free (debug
->external_rfd
);
847 if (debug
->external_ext
!= NULL
)
848 free (debug
->external_ext
);
852 /* Swap RPDR (runtime procedure table entry) for output. */
855 ecoff_swap_rpdr_out (abfd
, in
, ex
)
860 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
861 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
862 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
863 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
864 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
865 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
867 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
868 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
870 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
872 H_PUT_S32 (abfd
, in
->exception_info
, ex
->p_exception_info
);
876 /* Create a runtime procedure table from the .mdebug section. */
879 mips_elf_create_procedure_table (handle
, abfd
, info
, s
, debug
)
882 struct bfd_link_info
*info
;
884 struct ecoff_debug_info
*debug
;
886 const struct ecoff_debug_swap
*swap
;
887 HDRR
*hdr
= &debug
->symbolic_header
;
889 struct rpdr_ext
*erp
;
891 struct pdr_ext
*epdr
;
892 struct sym_ext
*esym
;
897 unsigned long sindex
;
901 const char *no_name_func
= _("static procedure (no name)");
909 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
911 sindex
= strlen (no_name_func
) + 1;
915 size
= swap
->external_pdr_size
;
917 epdr
= (struct pdr_ext
*) bfd_malloc (size
* count
);
921 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (PTR
) epdr
))
924 size
= sizeof (RPDR
);
925 rp
= rpdr
= (RPDR
*) bfd_malloc (size
* count
);
929 size
= sizeof (char *);
930 sv
= (char **) bfd_malloc (size
* count
);
934 count
= hdr
->isymMax
;
935 size
= swap
->external_sym_size
;
936 esym
= (struct sym_ext
*) bfd_malloc (size
* count
);
940 if (! _bfd_ecoff_get_accumulated_sym (handle
, (PTR
) esym
))
944 ss
= (char *) bfd_malloc (count
);
947 if (! _bfd_ecoff_get_accumulated_ss (handle
, (PTR
) ss
))
951 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
953 (*swap
->swap_pdr_in
) (abfd
, (PTR
) (epdr
+ i
), &pdr
);
954 (*swap
->swap_sym_in
) (abfd
, (PTR
) &esym
[pdr
.isym
], &sym
);
956 rp
->regmask
= pdr
.regmask
;
957 rp
->regoffset
= pdr
.regoffset
;
958 rp
->fregmask
= pdr
.fregmask
;
959 rp
->fregoffset
= pdr
.fregoffset
;
960 rp
->frameoffset
= pdr
.frameoffset
;
961 rp
->framereg
= pdr
.framereg
;
962 rp
->pcreg
= pdr
.pcreg
;
964 sv
[i
] = ss
+ sym
.iss
;
965 sindex
+= strlen (sv
[i
]) + 1;
969 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
970 size
= BFD_ALIGN (size
, 16);
971 rtproc
= (PTR
) bfd_alloc (abfd
, size
);
974 mips_elf_hash_table (info
)->procedure_count
= 0;
978 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
980 erp
= (struct rpdr_ext
*) rtproc
;
981 memset (erp
, 0, sizeof (struct rpdr_ext
));
983 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
984 strcpy (str
, no_name_func
);
985 str
+= strlen (no_name_func
) + 1;
986 for (i
= 0; i
< count
; i
++)
988 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
990 str
+= strlen (sv
[i
]) + 1;
992 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
994 /* Set the size and contents of .rtproc section. */
996 s
->contents
= (bfd_byte
*) rtproc
;
998 /* Skip this section later on (I don't think this currently
999 matters, but someday it might). */
1000 s
->link_order_head
= (struct bfd_link_order
*) NULL
;
1029 /* Check the mips16 stubs for a particular symbol, and see if we can
1033 mips_elf_check_mips16_stubs (h
, data
)
1034 struct mips_elf_link_hash_entry
*h
;
1035 PTR data ATTRIBUTE_UNUSED
;
1037 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1038 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1040 if (h
->fn_stub
!= NULL
1041 && ! h
->need_fn_stub
)
1043 /* We don't need the fn_stub; the only references to this symbol
1044 are 16 bit calls. Clobber the size to 0 to prevent it from
1045 being included in the link. */
1046 h
->fn_stub
->_raw_size
= 0;
1047 h
->fn_stub
->_cooked_size
= 0;
1048 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1049 h
->fn_stub
->reloc_count
= 0;
1050 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1053 if (h
->call_stub
!= NULL
1054 && h
->root
.other
== STO_MIPS16
)
1056 /* We don't need the call_stub; this is a 16 bit function, so
1057 calls from other 16 bit functions are OK. Clobber the size
1058 to 0 to prevent it from being included in the link. */
1059 h
->call_stub
->_raw_size
= 0;
1060 h
->call_stub
->_cooked_size
= 0;
1061 h
->call_stub
->flags
&= ~SEC_RELOC
;
1062 h
->call_stub
->reloc_count
= 0;
1063 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1066 if (h
->call_fp_stub
!= NULL
1067 && h
->root
.other
== STO_MIPS16
)
1069 /* We don't need the call_stub; this is a 16 bit function, so
1070 calls from other 16 bit functions are OK. Clobber the size
1071 to 0 to prevent it from being included in the link. */
1072 h
->call_fp_stub
->_raw_size
= 0;
1073 h
->call_fp_stub
->_cooked_size
= 0;
1074 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1075 h
->call_fp_stub
->reloc_count
= 0;
1076 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1082 bfd_reloc_status_type
1083 _bfd_mips_elf_gprel16_with_gp (abfd
, symbol
, reloc_entry
, input_section
,
1084 relocateable
, data
, gp
)
1087 arelent
*reloc_entry
;
1088 asection
*input_section
;
1089 bfd_boolean relocateable
;
1097 if (bfd_is_com_section (symbol
->section
))
1100 relocation
= symbol
->value
;
1102 relocation
+= symbol
->section
->output_section
->vma
;
1103 relocation
+= symbol
->section
->output_offset
;
1105 if (reloc_entry
->address
> input_section
->_cooked_size
)
1106 return bfd_reloc_outofrange
;
1108 insn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
1110 /* Set val to the offset into the section or symbol. */
1111 if (reloc_entry
->howto
->src_mask
== 0)
1113 /* This case occurs with the 64-bit MIPS ELF ABI. */
1114 val
= reloc_entry
->addend
;
1118 val
= ((insn
& 0xffff) + reloc_entry
->addend
) & 0xffff;
1123 /* Adjust val for the final section location and GP value. If we
1124 are producing relocateable output, we don't want to do this for
1125 an external symbol. */
1127 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1128 val
+= relocation
- gp
;
1130 insn
= (insn
& ~0xffff) | (val
& 0xffff);
1131 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
1134 reloc_entry
->address
+= input_section
->output_offset
;
1136 else if ((long) val
>= 0x8000 || (long) val
< -0x8000)
1137 return bfd_reloc_overflow
;
1139 return bfd_reloc_ok
;
1142 /* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1146 bfd_mips_elf32_swap_gptab_in (abfd
, ex
, in
)
1148 const Elf32_External_gptab
*ex
;
1151 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
1152 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
1156 bfd_mips_elf32_swap_gptab_out (abfd
, in
, ex
)
1158 const Elf32_gptab
*in
;
1159 Elf32_External_gptab
*ex
;
1161 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
1162 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
1166 bfd_elf32_swap_compact_rel_out (abfd
, in
, ex
)
1168 const Elf32_compact_rel
*in
;
1169 Elf32_External_compact_rel
*ex
;
1171 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
1172 H_PUT_32 (abfd
, in
->num
, ex
->num
);
1173 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
1174 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
1175 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
1176 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
1180 bfd_elf32_swap_crinfo_out (abfd
, in
, ex
)
1182 const Elf32_crinfo
*in
;
1183 Elf32_External_crinfo
*ex
;
1187 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
1188 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
1189 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
1190 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
1191 H_PUT_32 (abfd
, l
, ex
->info
);
1192 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
1193 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
1197 /* Swap in an MSYM entry. */
1200 bfd_mips_elf_swap_msym_in (abfd
, ex
, in
)
1202 const Elf32_External_Msym
*ex
;
1203 Elf32_Internal_Msym
*in
;
1205 in
->ms_hash_value
= H_GET_32 (abfd
, ex
->ms_hash_value
);
1206 in
->ms_info
= H_GET_32 (abfd
, ex
->ms_info
);
1209 /* Swap out an MSYM entry. */
1212 bfd_mips_elf_swap_msym_out (abfd
, in
, ex
)
1214 const Elf32_Internal_Msym
*in
;
1215 Elf32_External_Msym
*ex
;
1217 H_PUT_32 (abfd
, in
->ms_hash_value
, ex
->ms_hash_value
);
1218 H_PUT_32 (abfd
, in
->ms_info
, ex
->ms_info
);
1221 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1226 bfd_mips_elf32_swap_reginfo_in (abfd
, ex
, in
)
1228 const Elf32_External_RegInfo
*ex
;
1231 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1232 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1233 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1234 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1235 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1236 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
1240 bfd_mips_elf32_swap_reginfo_out (abfd
, in
, ex
)
1242 const Elf32_RegInfo
*in
;
1243 Elf32_External_RegInfo
*ex
;
1245 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1246 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1247 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1248 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1249 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1250 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1253 /* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1260 bfd_mips_elf64_swap_reginfo_in (abfd
, ex
, in
)
1262 const Elf64_External_RegInfo
*ex
;
1263 Elf64_Internal_RegInfo
*in
;
1265 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1266 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
1267 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1268 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1269 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1270 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1271 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
1275 bfd_mips_elf64_swap_reginfo_out (abfd
, in
, ex
)
1277 const Elf64_Internal_RegInfo
*in
;
1278 Elf64_External_RegInfo
*ex
;
1280 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1281 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
1282 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1283 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1284 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1285 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1286 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1289 /* Swap in an options header. */
1292 bfd_mips_elf_swap_options_in (abfd
, ex
, in
)
1294 const Elf_External_Options
*ex
;
1295 Elf_Internal_Options
*in
;
1297 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
1298 in
->size
= H_GET_8 (abfd
, ex
->size
);
1299 in
->section
= H_GET_16 (abfd
, ex
->section
);
1300 in
->info
= H_GET_32 (abfd
, ex
->info
);
1303 /* Swap out an options header. */
1306 bfd_mips_elf_swap_options_out (abfd
, in
, ex
)
1308 const Elf_Internal_Options
*in
;
1309 Elf_External_Options
*ex
;
1311 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
1312 H_PUT_8 (abfd
, in
->size
, ex
->size
);
1313 H_PUT_16 (abfd
, in
->section
, ex
->section
);
1314 H_PUT_32 (abfd
, in
->info
, ex
->info
);
1317 /* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1321 sort_dynamic_relocs (arg1
, arg2
)
1325 Elf_Internal_Rela int_reloc1
;
1326 Elf_Internal_Rela int_reloc2
;
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
1331 return ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
1334 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1337 sort_dynamic_relocs_64 (arg1
, arg2
)
1341 Elf_Internal_Rela int_reloc1
[3];
1342 Elf_Internal_Rela int_reloc2
[3];
1344 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1345 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
1346 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1347 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
1349 return (ELF64_R_SYM (int_reloc1
[0].r_info
)
1350 - ELF64_R_SYM (int_reloc2
[0].r_info
));
1354 /* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1369 mips_elf_output_extsym (h
, data
)
1370 struct mips_elf_link_hash_entry
*h
;
1373 struct extsym_info
*einfo
= (struct extsym_info
*) data
;
1375 asection
*sec
, *output_section
;
1377 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1378 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1380 if (h
->root
.indx
== -2)
1382 else if (((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1383 || (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
1384 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
1385 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
1387 else if (einfo
->info
->strip
== strip_all
1388 || (einfo
->info
->strip
== strip_some
1389 && bfd_hash_lookup (einfo
->info
->keep_hash
,
1390 h
->root
.root
.root
.string
,
1391 FALSE
, FALSE
) == NULL
))
1399 if (h
->esym
.ifd
== -2)
1402 h
->esym
.cobol_main
= 0;
1403 h
->esym
.weakext
= 0;
1404 h
->esym
.reserved
= 0;
1405 h
->esym
.ifd
= ifdNil
;
1406 h
->esym
.asym
.value
= 0;
1407 h
->esym
.asym
.st
= stGlobal
;
1409 if (h
->root
.root
.type
== bfd_link_hash_undefined
1410 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
1414 /* Use undefined class. Also, set class and type for some
1416 name
= h
->root
.root
.root
.string
;
1417 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
1418 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
1420 h
->esym
.asym
.sc
= scData
;
1421 h
->esym
.asym
.st
= stLabel
;
1422 h
->esym
.asym
.value
= 0;
1424 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
1426 h
->esym
.asym
.sc
= scAbs
;
1427 h
->esym
.asym
.st
= stLabel
;
1428 h
->esym
.asym
.value
=
1429 mips_elf_hash_table (einfo
->info
)->procedure_count
;
1431 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
1433 h
->esym
.asym
.sc
= scAbs
;
1434 h
->esym
.asym
.st
= stLabel
;
1435 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
1438 h
->esym
.asym
.sc
= scUndefined
;
1440 else if (h
->root
.root
.type
!= bfd_link_hash_defined
1441 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
1442 h
->esym
.asym
.sc
= scAbs
;
1447 sec
= h
->root
.root
.u
.def
.section
;
1448 output_section
= sec
->output_section
;
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section
== NULL
)
1453 h
->esym
.asym
.sc
= scUndefined
;
1456 name
= bfd_section_name (output_section
->owner
, output_section
);
1458 if (strcmp (name
, ".text") == 0)
1459 h
->esym
.asym
.sc
= scText
;
1460 else if (strcmp (name
, ".data") == 0)
1461 h
->esym
.asym
.sc
= scData
;
1462 else if (strcmp (name
, ".sdata") == 0)
1463 h
->esym
.asym
.sc
= scSData
;
1464 else if (strcmp (name
, ".rodata") == 0
1465 || strcmp (name
, ".rdata") == 0)
1466 h
->esym
.asym
.sc
= scRData
;
1467 else if (strcmp (name
, ".bss") == 0)
1468 h
->esym
.asym
.sc
= scBss
;
1469 else if (strcmp (name
, ".sbss") == 0)
1470 h
->esym
.asym
.sc
= scSBss
;
1471 else if (strcmp (name
, ".init") == 0)
1472 h
->esym
.asym
.sc
= scInit
;
1473 else if (strcmp (name
, ".fini") == 0)
1474 h
->esym
.asym
.sc
= scFini
;
1476 h
->esym
.asym
.sc
= scAbs
;
1480 h
->esym
.asym
.reserved
= 0;
1481 h
->esym
.asym
.index
= indexNil
;
1484 if (h
->root
.root
.type
== bfd_link_hash_common
)
1485 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
1486 else if (h
->root
.root
.type
== bfd_link_hash_defined
1487 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1489 if (h
->esym
.asym
.sc
== scCommon
)
1490 h
->esym
.asym
.sc
= scBss
;
1491 else if (h
->esym
.asym
.sc
== scSCommon
)
1492 h
->esym
.asym
.sc
= scSBss
;
1494 sec
= h
->root
.root
.u
.def
.section
;
1495 output_section
= sec
->output_section
;
1496 if (output_section
!= NULL
)
1497 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
1498 + sec
->output_offset
1499 + output_section
->vma
);
1501 h
->esym
.asym
.value
= 0;
1503 else if ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
1505 struct mips_elf_link_hash_entry
*hd
= h
;
1506 bfd_boolean no_fn_stub
= h
->no_fn_stub
;
1508 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
1510 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
1511 no_fn_stub
= no_fn_stub
|| hd
->no_fn_stub
;
1516 /* Set type and value for a symbol with a function stub. */
1517 h
->esym
.asym
.st
= stProc
;
1518 sec
= hd
->root
.root
.u
.def
.section
;
1520 h
->esym
.asym
.value
= 0;
1523 output_section
= sec
->output_section
;
1524 if (output_section
!= NULL
)
1525 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
1526 + sec
->output_offset
1527 + output_section
->vma
);
1529 h
->esym
.asym
.value
= 0;
1537 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
1538 h
->root
.root
.root
.string
,
1541 einfo
->failed
= TRUE
;
1548 /* A comparison routine used to sort .gptab entries. */
1551 gptab_compare (p1
, p2
)
1555 const Elf32_gptab
*a1
= (const Elf32_gptab
*) p1
;
1556 const Elf32_gptab
*a2
= (const Elf32_gptab
*) p2
;
1558 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
1561 /* Functions to manage the got entry hash table. */
1563 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1566 static INLINE hashval_t
1567 mips_elf_hash_bfd_vma (addr
)
1571 return addr
+ (addr
>> 32);
1577 /* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1582 mips_elf_got_entry_hash (entry_
)
1585 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
1587 return entry
->symndx
1588 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
1590 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
1591 : entry
->d
.h
->root
.root
.root
.hash
));
1595 mips_elf_got_entry_eq (entry1
, entry2
)
1599 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
1600 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
1602 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
1603 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
1604 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
1605 : e1
->d
.h
== e2
->d
.h
);
1608 /* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1614 mips_elf_multi_got_entry_hash (entry_
)
1617 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
1619 return entry
->symndx
1621 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
1622 : entry
->symndx
>= 0
1624 + mips_elf_hash_bfd_vma (entry
->d
.addend
))
1625 : entry
->d
.h
->root
.root
.root
.hash
);
1629 mips_elf_multi_got_entry_eq (entry1
, entry2
)
1633 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
1634 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
1636 return e1
->symndx
== e2
->symndx
1637 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
1638 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
1639 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
1640 : e1
->d
.h
== e2
->d
.h
);
1643 /* Returns the dynamic relocation section for DYNOBJ. */
1646 mips_elf_rel_dyn_section (dynobj
, create_p
)
1648 bfd_boolean create_p
;
1650 static const char dname
[] = ".rel.dyn";
1653 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
1654 if (sreloc
== NULL
&& create_p
)
1656 sreloc
= bfd_make_section (dynobj
, dname
);
1658 || ! bfd_set_section_flags (dynobj
, sreloc
,
1663 | SEC_LINKER_CREATED
1665 || ! bfd_set_section_alignment (dynobj
, sreloc
,
1672 /* Returns the GOT section for ABFD. */
1675 mips_elf_got_section (abfd
, maybe_excluded
)
1677 bfd_boolean maybe_excluded
;
1679 asection
*sgot
= bfd_get_section_by_name (abfd
, ".got");
1681 || (! maybe_excluded
&& (sgot
->flags
& SEC_EXCLUDE
) != 0))
1686 /* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1690 static struct mips_got_info
*
1691 mips_elf_got_info (abfd
, sgotp
)
1696 struct mips_got_info
*g
;
1698 sgot
= mips_elf_got_section (abfd
, TRUE
);
1699 BFD_ASSERT (sgot
!= NULL
);
1700 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
1701 g
= mips_elf_section_data (sgot
)->u
.got_info
;
1702 BFD_ASSERT (g
!= NULL
);
1705 *sgotp
= (sgot
->flags
& SEC_EXCLUDE
) == 0 ? sgot
: NULL
;
1710 /* Returns the GOT offset at which the indicated address can be found.
1711 If there is not yet a GOT entry for this value, create one. Returns
1712 -1 if no satisfactory GOT offset can be found. */
1715 mips_elf_local_got_index (abfd
, ibfd
, info
, value
)
1717 struct bfd_link_info
*info
;
1721 struct mips_got_info
*g
;
1722 struct mips_got_entry
*entry
;
1724 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
1726 entry
= mips_elf_create_local_got_entry (abfd
, ibfd
, g
, sgot
, value
);
1728 return entry
->gotidx
;
1733 /* Returns the GOT index for the global symbol indicated by H. */
1736 mips_elf_global_got_index (abfd
, ibfd
, h
)
1738 struct elf_link_hash_entry
*h
;
1742 struct mips_got_info
*g
, *gg
;
1743 long global_got_dynindx
= 0;
1745 gg
= g
= mips_elf_got_info (abfd
, &sgot
);
1746 if (g
->bfd2got
&& ibfd
)
1748 struct mips_got_entry e
, *p
;
1750 BFD_ASSERT (h
->dynindx
>= 0);
1752 g
= mips_elf_got_for_ibfd (g
, ibfd
);
1757 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
1759 p
= (struct mips_got_entry
*) htab_find (g
->got_entries
, &e
);
1761 BFD_ASSERT (p
->gotidx
> 0);
1766 if (gg
->global_gotsym
!= NULL
)
1767 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
1769 /* Once we determine the global GOT entry with the lowest dynamic
1770 symbol table index, we must put all dynamic symbols with greater
1771 indices into the GOT. That makes it easy to calculate the GOT
1773 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
1774 index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
1775 * MIPS_ELF_GOT_SIZE (abfd
));
1776 BFD_ASSERT (index
< sgot
->_raw_size
);
1781 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1782 are supposed to be placed at small offsets in the GOT, i.e.,
1783 within 32KB of GP. Return the index into the GOT for this page,
1784 and store the offset from this entry to the desired address in
1785 OFFSETP, if it is non-NULL. */
1788 mips_elf_got_page (abfd
, ibfd
, info
, value
, offsetp
)
1790 struct bfd_link_info
*info
;
1795 struct mips_got_info
*g
;
1797 struct mips_got_entry
*entry
;
1799 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
1801 entry
= mips_elf_create_local_got_entry (abfd
, ibfd
, g
, sgot
,
1803 & (~(bfd_vma
)0xffff));
1808 index
= entry
->gotidx
;
1811 *offsetp
= value
- entry
->d
.address
;
1816 /* Find a GOT entry whose higher-order 16 bits are the same as those
1817 for value. Return the index into the GOT for this entry. */
1820 mips_elf_got16_entry (abfd
, ibfd
, info
, value
, external
)
1822 struct bfd_link_info
*info
;
1824 bfd_boolean external
;
1827 struct mips_got_info
*g
;
1828 struct mips_got_entry
*entry
;
1832 /* Although the ABI says that it is "the high-order 16 bits" that we
1833 want, it is really the %high value. The complete value is
1834 calculated with a `addiu' of a LO16 relocation, just as with a
1836 value
= mips_elf_high (value
) << 16;
1839 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
1841 entry
= mips_elf_create_local_got_entry (abfd
, ibfd
, g
, sgot
, value
);
1843 return entry
->gotidx
;
1848 /* Returns the offset for the entry at the INDEXth position
1852 mips_elf_got_offset_from_index (dynobj
, output_bfd
, input_bfd
, index
)
1860 struct mips_got_info
*g
;
1862 g
= mips_elf_got_info (dynobj
, &sgot
);
1863 gp
= _bfd_get_gp_value (output_bfd
)
1864 + mips_elf_adjust_gp (output_bfd
, g
, input_bfd
);
1866 return sgot
->output_section
->vma
+ sgot
->output_offset
+ index
- gp
;
1869 /* Create a local GOT entry for VALUE. Return the index of the entry,
1870 or -1 if it could not be created. */
1872 static struct mips_got_entry
*
1873 mips_elf_create_local_got_entry (abfd
, ibfd
, gg
, sgot
, value
)
1875 struct mips_got_info
*gg
;
1879 struct mips_got_entry entry
, **loc
;
1880 struct mips_got_info
*g
;
1884 entry
.d
.address
= value
;
1886 g
= mips_elf_got_for_ibfd (gg
, ibfd
);
1889 g
= mips_elf_got_for_ibfd (gg
, abfd
);
1890 BFD_ASSERT (g
!= NULL
);
1893 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
1898 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
1900 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
1905 memcpy (*loc
, &entry
, sizeof entry
);
1907 if (g
->assigned_gotno
>= g
->local_gotno
)
1909 (*loc
)->gotidx
= -1;
1910 /* We didn't allocate enough space in the GOT. */
1911 (*_bfd_error_handler
)
1912 (_("not enough GOT space for local GOT entries"));
1913 bfd_set_error (bfd_error_bad_value
);
1917 MIPS_ELF_PUT_WORD (abfd
, value
,
1918 (sgot
->contents
+ entry
.gotidx
));
1923 /* Sort the dynamic symbol table so that symbols that need GOT entries
1924 appear towards the end. This reduces the amount of GOT space
1925 required. MAX_LOCAL is used to set the number of local symbols
1926 known to be in the dynamic symbol table. During
1927 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1928 section symbols are added and the count is higher. */
1931 mips_elf_sort_hash_table (info
, max_local
)
1932 struct bfd_link_info
*info
;
1933 unsigned long max_local
;
1935 struct mips_elf_hash_sort_data hsd
;
1936 struct mips_got_info
*g
;
1939 dynobj
= elf_hash_table (info
)->dynobj
;
1941 g
= mips_elf_got_info (dynobj
, NULL
);
1944 hsd
.max_unref_got_dynindx
=
1945 hsd
.min_got_dynindx
= elf_hash_table (info
)->dynsymcount
1946 /* In the multi-got case, assigned_gotno of the master got_info
1947 indicate the number of entries that aren't referenced in the
1948 primary GOT, but that must have entries because there are
1949 dynamic relocations that reference it. Since they aren't
1950 referenced, we move them to the end of the GOT, so that they
1951 don't prevent other entries that are referenced from getting
1952 too large offsets. */
1953 - (g
->next
? g
->assigned_gotno
: 0);
1954 hsd
.max_non_got_dynindx
= max_local
;
1955 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
1956 elf_hash_table (info
)),
1957 mips_elf_sort_hash_table_f
,
1960 /* There should have been enough room in the symbol table to
1961 accommodate both the GOT and non-GOT symbols. */
1962 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
1963 BFD_ASSERT ((unsigned long)hsd
.max_unref_got_dynindx
1964 <= elf_hash_table (info
)->dynsymcount
);
1966 /* Now we know which dynamic symbol has the lowest dynamic symbol
1967 table index in the GOT. */
1968 g
->global_gotsym
= hsd
.low
;
1973 /* If H needs a GOT entry, assign it the highest available dynamic
1974 index. Otherwise, assign it the lowest available dynamic
1978 mips_elf_sort_hash_table_f (h
, data
)
1979 struct mips_elf_link_hash_entry
*h
;
1982 struct mips_elf_hash_sort_data
*hsd
1983 = (struct mips_elf_hash_sort_data
*) data
;
1985 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1986 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1988 /* Symbols without dynamic symbol table entries aren't interesting
1990 if (h
->root
.dynindx
== -1)
1993 /* Global symbols that need GOT entries that are not explicitly
1994 referenced are marked with got offset 2. Those that are
1995 referenced get a 1, and those that don't need GOT entries get
1997 if (h
->root
.got
.offset
== 2)
1999 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
2000 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2001 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
2003 else if (h
->root
.got
.offset
!= 1)
2004 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
2007 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
2008 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2014 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2015 symbol table index lower than any we've seen to date, record it for
2019 mips_elf_record_global_got_symbol (h
, abfd
, info
, g
)
2020 struct elf_link_hash_entry
*h
;
2022 struct bfd_link_info
*info
;
2023 struct mips_got_info
*g
;
2025 struct mips_got_entry entry
, **loc
;
2027 /* A global symbol in the GOT must also be in the dynamic symbol
2029 if (h
->dynindx
== -1)
2031 switch (ELF_ST_VISIBILITY (h
->other
))
2035 _bfd_mips_elf_hide_symbol (info
, h
, TRUE
);
2038 if (!bfd_elf32_link_record_dynamic_symbol (info
, h
))
2044 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
2046 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
2049 /* If we've already marked this entry as needing GOT space, we don't
2050 need to do it again. */
2054 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2060 memcpy (*loc
, &entry
, sizeof entry
);
2062 if (h
->got
.offset
!= MINUS_ONE
)
2065 /* By setting this to a value other than -1, we are indicating that
2066 there needs to be a GOT entry for H. Avoid using zero, as the
2067 generic ELF copy_indirect_symbol tests for <= 0. */
2073 /* Reserve space in G for a GOT entry containing the value of symbol
2074 SYMNDX in input bfd ABDF, plus ADDEND. */
2077 mips_elf_record_local_got_symbol (abfd
, symndx
, addend
, g
)
2081 struct mips_got_info
*g
;
2083 struct mips_got_entry entry
, **loc
;
2086 entry
.symndx
= symndx
;
2087 entry
.d
.addend
= addend
;
2088 loc
= (struct mips_got_entry
**)
2089 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
2094 entry
.gotidx
= g
->local_gotno
++;
2096 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2101 memcpy (*loc
, &entry
, sizeof entry
);
2106 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2109 mips_elf_bfd2got_entry_hash (entry_
)
2112 const struct mips_elf_bfd2got_hash
*entry
2113 = (struct mips_elf_bfd2got_hash
*)entry_
;
2115 return entry
->bfd
->id
;
2118 /* Check whether two hash entries have the same bfd. */
2121 mips_elf_bfd2got_entry_eq (entry1
, entry2
)
2125 const struct mips_elf_bfd2got_hash
*e1
2126 = (const struct mips_elf_bfd2got_hash
*)entry1
;
2127 const struct mips_elf_bfd2got_hash
*e2
2128 = (const struct mips_elf_bfd2got_hash
*)entry2
;
2130 return e1
->bfd
== e2
->bfd
;
2133 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2134 be the master GOT data. */
2136 static struct mips_got_info
*
2137 mips_elf_got_for_ibfd (g
, ibfd
)
2138 struct mips_got_info
*g
;
2141 struct mips_elf_bfd2got_hash e
, *p
;
2147 p
= (struct mips_elf_bfd2got_hash
*) htab_find (g
->bfd2got
, &e
);
2148 return p
? p
->g
: NULL
;
2151 /* Create one separate got for each bfd that has entries in the global
2152 got, such that we can tell how many local and global entries each
2156 mips_elf_make_got_per_bfd (entryp
, p
)
2160 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
2161 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
2162 htab_t bfd2got
= arg
->bfd2got
;
2163 struct mips_got_info
*g
;
2164 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
2167 /* Find the got_info for this GOT entry's input bfd. Create one if
2169 bfdgot_entry
.bfd
= entry
->abfd
;
2170 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
2171 bfdgot
= (struct mips_elf_bfd2got_hash
*)*bfdgotp
;
2177 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
2178 (arg
->obfd
, sizeof (struct mips_elf_bfd2got_hash
));
2188 bfdgot
->bfd
= entry
->abfd
;
2189 bfdgot
->g
= g
= (struct mips_got_info
*)
2190 bfd_alloc (arg
->obfd
, sizeof (struct mips_got_info
));
2197 g
->global_gotsym
= NULL
;
2198 g
->global_gotno
= 0;
2200 g
->assigned_gotno
= -1;
2201 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
2202 mips_elf_multi_got_entry_eq
,
2204 if (g
->got_entries
== NULL
)
2214 /* Insert the GOT entry in the bfd's got entry hash table. */
2215 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
2216 if (*entryp
!= NULL
)
2221 if (entry
->symndx
>= 0 || entry
->d
.h
->forced_local
)
2229 /* Attempt to merge gots of different input bfds. Try to use as much
2230 as possible of the primary got, since it doesn't require explicit
2231 dynamic relocations, but don't use bfds that would reference global
2232 symbols out of the addressable range. Failing the primary got,
2233 attempt to merge with the current got, or finish the current got
2234 and then make make the new got current. */
2237 mips_elf_merge_gots (bfd2got_
, p
)
2241 struct mips_elf_bfd2got_hash
*bfd2got
2242 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
2243 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
2244 unsigned int lcount
= bfd2got
->g
->local_gotno
;
2245 unsigned int gcount
= bfd2got
->g
->global_gotno
;
2246 unsigned int maxcnt
= arg
->max_count
;
2248 /* If we don't have a primary GOT and this is not too big, use it as
2249 a starting point for the primary GOT. */
2250 if (! arg
->primary
&& lcount
+ gcount
<= maxcnt
)
2252 arg
->primary
= bfd2got
->g
;
2253 arg
->primary_count
= lcount
+ gcount
;
2255 /* If it looks like we can merge this bfd's entries with those of
2256 the primary, merge them. The heuristics is conservative, but we
2257 don't have to squeeze it too hard. */
2258 else if (arg
->primary
2259 && (arg
->primary_count
+ lcount
+ gcount
) <= maxcnt
)
2261 struct mips_got_info
*g
= bfd2got
->g
;
2262 int old_lcount
= arg
->primary
->local_gotno
;
2263 int old_gcount
= arg
->primary
->global_gotno
;
2265 bfd2got
->g
= arg
->primary
;
2267 htab_traverse (g
->got_entries
,
2268 mips_elf_make_got_per_bfd
,
2270 if (arg
->obfd
== NULL
)
2273 htab_delete (g
->got_entries
);
2274 /* We don't have to worry about releasing memory of the actual
2275 got entries, since they're all in the master got_entries hash
2278 BFD_ASSERT (old_lcount
+ lcount
== arg
->primary
->local_gotno
);
2279 BFD_ASSERT (old_gcount
+ gcount
>= arg
->primary
->global_gotno
);
2281 arg
->primary_count
= arg
->primary
->local_gotno
2282 + arg
->primary
->global_gotno
;
2284 /* If we can merge with the last-created got, do it. */
2285 else if (arg
->current
2286 && arg
->current_count
+ lcount
+ gcount
<= maxcnt
)
2288 struct mips_got_info
*g
= bfd2got
->g
;
2289 int old_lcount
= arg
->current
->local_gotno
;
2290 int old_gcount
= arg
->current
->global_gotno
;
2292 bfd2got
->g
= arg
->current
;
2294 htab_traverse (g
->got_entries
,
2295 mips_elf_make_got_per_bfd
,
2297 if (arg
->obfd
== NULL
)
2300 htab_delete (g
->got_entries
);
2302 BFD_ASSERT (old_lcount
+ lcount
== arg
->current
->local_gotno
);
2303 BFD_ASSERT (old_gcount
+ gcount
>= arg
->current
->global_gotno
);
2305 arg
->current_count
= arg
->current
->local_gotno
2306 + arg
->current
->global_gotno
;
2308 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2309 fits; if it turns out that it doesn't, we'll get relocation
2310 overflows anyway. */
2313 bfd2got
->g
->next
= arg
->current
;
2314 arg
->current
= bfd2got
->g
;
2316 arg
->current_count
= lcount
+ gcount
;
2322 /* If passed a NULL mips_got_info in the argument, set the marker used
2323 to tell whether a global symbol needs a got entry (in the primary
2324 got) to the given VALUE.
2326 If passed a pointer G to a mips_got_info in the argument (it must
2327 not be the primary GOT), compute the offset from the beginning of
2328 the (primary) GOT section to the entry in G corresponding to the
2329 global symbol. G's assigned_gotno must contain the index of the
2330 first available global GOT entry in G. VALUE must contain the size
2331 of a GOT entry in bytes. For each global GOT entry that requires a
2332 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2333 marked as not elligible for lazy resolution through a function
2336 mips_elf_set_global_got_offset (entryp
, p
)
2340 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
2341 struct mips_elf_set_global_got_offset_arg
*arg
2342 = (struct mips_elf_set_global_got_offset_arg
*)p
;
2343 struct mips_got_info
*g
= arg
->g
;
2345 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1
2346 && entry
->d
.h
->root
.dynindx
!= -1)
2350 BFD_ASSERT (g
->global_gotsym
== NULL
);
2352 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
2353 /* We can't do lazy update of GOT entries for
2354 non-primary GOTs since the PLT entries don't use the
2355 right offsets, so punt at it for now. */
2356 entry
->d
.h
->no_fn_stub
= TRUE
;
2357 if (arg
->info
->shared
2358 || (elf_hash_table (arg
->info
)->dynamic_sections_created
2359 && ((entry
->d
.h
->root
.elf_link_hash_flags
2360 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
2361 && ((entry
->d
.h
->root
.elf_link_hash_flags
2362 & ELF_LINK_HASH_DEF_REGULAR
) == 0)))
2363 ++arg
->needed_relocs
;
2366 entry
->d
.h
->root
.got
.offset
= arg
->value
;
2372 /* Follow indirect and warning hash entries so that each got entry
2373 points to the final symbol definition. P must point to a pointer
2374 to the hash table we're traversing. Since this traversal may
2375 modify the hash table, we set this pointer to NULL to indicate
2376 we've made a potentially-destructive change to the hash table, so
2377 the traversal must be restarted. */
2379 mips_elf_resolve_final_got_entry (entryp
, p
)
2383 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
2384 htab_t got_entries
= *(htab_t
*)p
;
2386 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
2388 struct mips_elf_link_hash_entry
*h
= entry
->d
.h
;
2390 while (h
->root
.root
.type
== bfd_link_hash_indirect
2391 || h
->root
.root
.type
== bfd_link_hash_warning
)
2392 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2394 if (entry
->d
.h
== h
)
2399 /* If we can't find this entry with the new bfd hash, re-insert
2400 it, and get the traversal restarted. */
2401 if (! htab_find (got_entries
, entry
))
2403 htab_clear_slot (got_entries
, entryp
);
2404 entryp
= htab_find_slot (got_entries
, entry
, INSERT
);
2407 /* Abort the traversal, since the whole table may have
2408 moved, and leave it up to the parent to restart the
2410 *(htab_t
*)p
= NULL
;
2413 /* We might want to decrement the global_gotno count, but it's
2414 either too early or too late for that at this point. */
2420 /* Turn indirect got entries in a got_entries table into their final
2423 mips_elf_resolve_final_got_entries (g
)
2424 struct mips_got_info
*g
;
2430 got_entries
= g
->got_entries
;
2432 htab_traverse (got_entries
,
2433 mips_elf_resolve_final_got_entry
,
2436 while (got_entries
== NULL
);
2439 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2442 mips_elf_adjust_gp (abfd
, g
, ibfd
)
2444 struct mips_got_info
*g
;
2447 if (g
->bfd2got
== NULL
)
2450 g
= mips_elf_got_for_ibfd (g
, ibfd
);
2454 BFD_ASSERT (g
->next
);
2458 return (g
->local_gotno
+ g
->global_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
2461 /* Turn a single GOT that is too big for 16-bit addressing into
2462 a sequence of GOTs, each one 16-bit addressable. */
2465 mips_elf_multi_got (abfd
, info
, g
, got
, pages
)
2467 struct bfd_link_info
*info
;
2468 struct mips_got_info
*g
;
2470 bfd_size_type pages
;
2472 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
2473 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
2474 struct mips_got_info
*gg
;
2475 unsigned int assign
;
2477 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
2478 mips_elf_bfd2got_entry_eq
,
2480 if (g
->bfd2got
== NULL
)
2483 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
2484 got_per_bfd_arg
.obfd
= abfd
;
2485 got_per_bfd_arg
.info
= info
;
2487 /* Count how many GOT entries each input bfd requires, creating a
2488 map from bfd to got info while at that. */
2489 mips_elf_resolve_final_got_entries (g
);
2490 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
2491 if (got_per_bfd_arg
.obfd
== NULL
)
2494 got_per_bfd_arg
.current
= NULL
;
2495 got_per_bfd_arg
.primary
= NULL
;
2496 /* Taking out PAGES entries is a worst-case estimate. We could
2497 compute the maximum number of pages that each separate input bfd
2498 uses, but it's probably not worth it. */
2499 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (abfd
)
2500 / MIPS_ELF_GOT_SIZE (abfd
))
2501 - MIPS_RESERVED_GOTNO
- pages
);
2503 /* Try to merge the GOTs of input bfds together, as long as they
2504 don't seem to exceed the maximum GOT size, choosing one of them
2505 to be the primary GOT. */
2506 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
2507 if (got_per_bfd_arg
.obfd
== NULL
)
2510 /* If we find any suitable primary GOT, create an empty one. */
2511 if (got_per_bfd_arg
.primary
== NULL
)
2513 g
->next
= (struct mips_got_info
*)
2514 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
2515 if (g
->next
== NULL
)
2518 g
->next
->global_gotsym
= NULL
;
2519 g
->next
->global_gotno
= 0;
2520 g
->next
->local_gotno
= 0;
2521 g
->next
->assigned_gotno
= 0;
2522 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
2523 mips_elf_multi_got_entry_eq
,
2525 if (g
->next
->got_entries
== NULL
)
2527 g
->next
->bfd2got
= NULL
;
2530 g
->next
= got_per_bfd_arg
.primary
;
2531 g
->next
->next
= got_per_bfd_arg
.current
;
2533 /* GG is now the master GOT, and G is the primary GOT. */
2537 /* Map the output bfd to the primary got. That's what we're going
2538 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2539 didn't mark in check_relocs, and we want a quick way to find it.
2540 We can't just use gg->next because we're going to reverse the
2543 struct mips_elf_bfd2got_hash
*bfdgot
;
2546 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
2547 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
2554 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
2556 BFD_ASSERT (*bfdgotp
== NULL
);
2560 /* The IRIX dynamic linker requires every symbol that is referenced
2561 in a dynamic relocation to be present in the primary GOT, so
2562 arrange for them to appear after those that are actually
2565 GNU/Linux could very well do without it, but it would slow down
2566 the dynamic linker, since it would have to resolve every dynamic
2567 symbol referenced in other GOTs more than once, without help from
2568 the cache. Also, knowing that every external symbol has a GOT
2569 helps speed up the resolution of local symbols too, so GNU/Linux
2570 follows IRIX's practice.
2572 The number 2 is used by mips_elf_sort_hash_table_f to count
2573 global GOT symbols that are unreferenced in the primary GOT, with
2574 an initial dynamic index computed from gg->assigned_gotno, where
2575 the number of unreferenced global entries in the primary GOT is
2579 gg
->assigned_gotno
= gg
->global_gotno
- g
->global_gotno
;
2580 g
->global_gotno
= gg
->global_gotno
;
2581 set_got_offset_arg
.value
= 2;
2585 /* This could be used for dynamic linkers that don't optimize
2586 symbol resolution while applying relocations so as to use
2587 primary GOT entries or assuming the symbol is locally-defined.
2588 With this code, we assign lower dynamic indices to global
2589 symbols that are not referenced in the primary GOT, so that
2590 their entries can be omitted. */
2591 gg
->assigned_gotno
= 0;
2592 set_got_offset_arg
.value
= -1;
2595 /* Reorder dynamic symbols as described above (which behavior
2596 depends on the setting of VALUE). */
2597 set_got_offset_arg
.g
= NULL
;
2598 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
2599 &set_got_offset_arg
);
2600 set_got_offset_arg
.value
= 1;
2601 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
2602 &set_got_offset_arg
);
2603 if (! mips_elf_sort_hash_table (info
, 1))
2606 /* Now go through the GOTs assigning them offset ranges.
2607 [assigned_gotno, local_gotno[ will be set to the range of local
2608 entries in each GOT. We can then compute the end of a GOT by
2609 adding local_gotno to global_gotno. We reverse the list and make
2610 it circular since then we'll be able to quickly compute the
2611 beginning of a GOT, by computing the end of its predecessor. To
2612 avoid special cases for the primary GOT, while still preserving
2613 assertions that are valid for both single- and multi-got links,
2614 we arrange for the main got struct to have the right number of
2615 global entries, but set its local_gotno such that the initial
2616 offset of the primary GOT is zero. Remember that the primary GOT
2617 will become the last item in the circular linked list, so it
2618 points back to the master GOT. */
2619 gg
->local_gotno
= -g
->global_gotno
;
2620 gg
->global_gotno
= g
->global_gotno
;
2626 struct mips_got_info
*gn
;
2628 assign
+= MIPS_RESERVED_GOTNO
;
2629 g
->assigned_gotno
= assign
;
2630 g
->local_gotno
+= assign
+ pages
;
2631 assign
= g
->local_gotno
+ g
->global_gotno
;
2633 /* Take g out of the direct list, and push it onto the reversed
2634 list that gg points to. */
2642 got
->_raw_size
= (gg
->next
->local_gotno
2643 + gg
->next
->global_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
2649 /* Returns the first relocation of type r_type found, beginning with
2650 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2652 static const Elf_Internal_Rela
*
2653 mips_elf_next_relocation (abfd
, r_type
, relocation
, relend
)
2654 bfd
*abfd ATTRIBUTE_UNUSED
;
2655 unsigned int r_type
;
2656 const Elf_Internal_Rela
*relocation
;
2657 const Elf_Internal_Rela
*relend
;
2659 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2660 immediately following. However, for the IRIX6 ABI, the next
2661 relocation may be a composed relocation consisting of several
2662 relocations for the same address. In that case, the R_MIPS_LO16
2663 relocation may occur as one of these. We permit a similar
2664 extension in general, as that is useful for GCC. */
2665 while (relocation
< relend
)
2667 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
)
2673 /* We didn't find it. */
2674 bfd_set_error (bfd_error_bad_value
);
2678 /* Return whether a relocation is against a local symbol. */
2681 mips_elf_local_relocation_p (input_bfd
, relocation
, local_sections
,
2684 const Elf_Internal_Rela
*relocation
;
2685 asection
**local_sections
;
2686 bfd_boolean check_forced
;
2688 unsigned long r_symndx
;
2689 Elf_Internal_Shdr
*symtab_hdr
;
2690 struct mips_elf_link_hash_entry
*h
;
2693 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
2694 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2695 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
2697 if (r_symndx
< extsymoff
)
2699 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
2704 /* Look up the hash table to check whether the symbol
2705 was forced local. */
2706 h
= (struct mips_elf_link_hash_entry
*)
2707 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
2708 /* Find the real hash-table entry for this symbol. */
2709 while (h
->root
.root
.type
== bfd_link_hash_indirect
2710 || h
->root
.root
.type
== bfd_link_hash_warning
)
2711 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2712 if ((h
->root
.elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
2719 /* Sign-extend VALUE, which has the indicated number of BITS. */
2722 mips_elf_sign_extend (value
, bits
)
2726 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
2727 /* VALUE is negative. */
2728 value
|= ((bfd_vma
) - 1) << bits
;
2733 /* Return non-zero if the indicated VALUE has overflowed the maximum
2734 range expressable by a signed number with the indicated number of
2738 mips_elf_overflow_p (value
, bits
)
2742 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
2744 if (svalue
> (1 << (bits
- 1)) - 1)
2745 /* The value is too big. */
2747 else if (svalue
< -(1 << (bits
- 1)))
2748 /* The value is too small. */
2755 /* Calculate the %high function. */
2758 mips_elf_high (value
)
2761 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
2764 /* Calculate the %higher function. */
2767 mips_elf_higher (value
)
2768 bfd_vma value ATTRIBUTE_UNUSED
;
2771 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
2774 return (bfd_vma
) -1;
2778 /* Calculate the %highest function. */
2781 mips_elf_highest (value
)
2782 bfd_vma value ATTRIBUTE_UNUSED
;
2785 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2788 return (bfd_vma
) -1;
2792 /* Create the .compact_rel section. */
2795 mips_elf_create_compact_rel_section (abfd
, info
)
2797 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2800 register asection
*s
;
2802 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
2804 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
2807 s
= bfd_make_section (abfd
, ".compact_rel");
2809 || ! bfd_set_section_flags (abfd
, s
, flags
)
2810 || ! bfd_set_section_alignment (abfd
, s
,
2811 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
2814 s
->_raw_size
= sizeof (Elf32_External_compact_rel
);
2820 /* Create the .got section to hold the global offset table. */
2823 mips_elf_create_got_section (abfd
, info
, maybe_exclude
)
2825 struct bfd_link_info
*info
;
2826 bfd_boolean maybe_exclude
;
2829 register asection
*s
;
2830 struct elf_link_hash_entry
*h
;
2831 struct bfd_link_hash_entry
*bh
;
2832 struct mips_got_info
*g
;
2835 /* This function may be called more than once. */
2836 s
= mips_elf_got_section (abfd
, TRUE
);
2839 if (! maybe_exclude
)
2840 s
->flags
&= ~SEC_EXCLUDE
;
2844 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
2845 | SEC_LINKER_CREATED
);
2848 flags
|= SEC_EXCLUDE
;
2850 s
= bfd_make_section (abfd
, ".got");
2852 || ! bfd_set_section_flags (abfd
, s
, flags
)
2853 || ! bfd_set_section_alignment (abfd
, s
, 4))
2856 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2857 linker script because we don't want to define the symbol if we
2858 are not creating a global offset table. */
2860 if (! (_bfd_generic_link_add_one_symbol
2861 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
2862 (bfd_vma
) 0, (const char *) NULL
, FALSE
,
2863 get_elf_backend_data (abfd
)->collect
, &bh
)))
2866 h
= (struct elf_link_hash_entry
*) bh
;
2867 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
2868 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2869 h
->type
= STT_OBJECT
;
2872 && ! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2875 amt
= sizeof (struct mips_got_info
);
2876 g
= (struct mips_got_info
*) bfd_alloc (abfd
, amt
);
2879 g
->global_gotsym
= NULL
;
2880 g
->local_gotno
= MIPS_RESERVED_GOTNO
;
2881 g
->assigned_gotno
= MIPS_RESERVED_GOTNO
;
2884 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
2885 mips_elf_got_entry_eq
,
2887 if (g
->got_entries
== NULL
)
2889 mips_elf_section_data (s
)->u
.got_info
= g
;
2890 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
2891 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
2896 /* Returns the .msym section for ABFD, creating it if it does not
2897 already exist. Returns NULL to indicate error. */
2900 mips_elf_create_msym_section (abfd
)
2905 s
= bfd_get_section_by_name (abfd
, ".msym");
2908 s
= bfd_make_section (abfd
, ".msym");
2910 || !bfd_set_section_flags (abfd
, s
,
2914 | SEC_LINKER_CREATED
2916 || !bfd_set_section_alignment (abfd
, s
,
2917 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
2924 /* Calculate the value produced by the RELOCATION (which comes from
2925 the INPUT_BFD). The ADDEND is the addend to use for this
2926 RELOCATION; RELOCATION->R_ADDEND is ignored.
2928 The result of the relocation calculation is stored in VALUEP.
2929 REQUIRE_JALXP indicates whether or not the opcode used with this
2930 relocation must be JALX.
2932 This function returns bfd_reloc_continue if the caller need take no
2933 further action regarding this relocation, bfd_reloc_notsupported if
2934 something goes dramatically wrong, bfd_reloc_overflow if an
2935 overflow occurs, and bfd_reloc_ok to indicate success. */
2937 static bfd_reloc_status_type
2938 mips_elf_calculate_relocation (abfd
, input_bfd
, input_section
, info
,
2939 relocation
, addend
, howto
, local_syms
,
2940 local_sections
, valuep
, namep
,
2941 require_jalxp
, save_addend
)
2944 asection
*input_section
;
2945 struct bfd_link_info
*info
;
2946 const Elf_Internal_Rela
*relocation
;
2948 reloc_howto_type
*howto
;
2949 Elf_Internal_Sym
*local_syms
;
2950 asection
**local_sections
;
2953 bfd_boolean
*require_jalxp
;
2954 bfd_boolean save_addend
;
2956 /* The eventual value we will return. */
2958 /* The address of the symbol against which the relocation is
2961 /* The final GP value to be used for the relocatable, executable, or
2962 shared object file being produced. */
2963 bfd_vma gp
= MINUS_ONE
;
2964 /* The place (section offset or address) of the storage unit being
2967 /* The value of GP used to create the relocatable object. */
2968 bfd_vma gp0
= MINUS_ONE
;
2969 /* The offset into the global offset table at which the address of
2970 the relocation entry symbol, adjusted by the addend, resides
2971 during execution. */
2972 bfd_vma g
= MINUS_ONE
;
2973 /* The section in which the symbol referenced by the relocation is
2975 asection
*sec
= NULL
;
2976 struct mips_elf_link_hash_entry
*h
= NULL
;
2977 /* TRUE if the symbol referred to by this relocation is a local
2979 bfd_boolean local_p
, was_local_p
;
2980 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2981 bfd_boolean gp_disp_p
= FALSE
;
2982 Elf_Internal_Shdr
*symtab_hdr
;
2984 unsigned long r_symndx
;
2986 /* TRUE if overflow occurred during the calculation of the
2987 relocation value. */
2988 bfd_boolean overflowed_p
;
2989 /* TRUE if this relocation refers to a MIPS16 function. */
2990 bfd_boolean target_is_16_bit_code_p
= FALSE
;
2992 /* Parse the relocation. */
2993 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
2994 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
2995 p
= (input_section
->output_section
->vma
2996 + input_section
->output_offset
2997 + relocation
->r_offset
);
2999 /* Assume that there will be no overflow. */
3000 overflowed_p
= FALSE
;
3002 /* Figure out whether or not the symbol is local, and get the offset
3003 used in the array of hash table entries. */
3004 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3005 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
3006 local_sections
, FALSE
);
3007 was_local_p
= local_p
;
3008 if (! elf_bad_symtab (input_bfd
))
3009 extsymoff
= symtab_hdr
->sh_info
;
3012 /* The symbol table does not follow the rule that local symbols
3013 must come before globals. */
3017 /* Figure out the value of the symbol. */
3020 Elf_Internal_Sym
*sym
;
3022 sym
= local_syms
+ r_symndx
;
3023 sec
= local_sections
[r_symndx
];
3025 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3026 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
3027 || (sec
->flags
& SEC_MERGE
))
3028 symbol
+= sym
->st_value
;
3029 if ((sec
->flags
& SEC_MERGE
)
3030 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
3032 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
3034 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
3037 /* MIPS16 text labels should be treated as odd. */
3038 if (sym
->st_other
== STO_MIPS16
)
3041 /* Record the name of this symbol, for our caller. */
3042 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
3043 symtab_hdr
->sh_link
,
3046 *namep
= bfd_section_name (input_bfd
, sec
);
3048 target_is_16_bit_code_p
= (sym
->st_other
== STO_MIPS16
);
3052 /* For global symbols we look up the symbol in the hash-table. */
3053 h
= ((struct mips_elf_link_hash_entry
*)
3054 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
3055 /* Find the real hash-table entry for this symbol. */
3056 while (h
->root
.root
.type
== bfd_link_hash_indirect
3057 || h
->root
.root
.type
== bfd_link_hash_warning
)
3058 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3060 /* Record the name of this symbol, for our caller. */
3061 *namep
= h
->root
.root
.root
.string
;
3063 /* See if this is the special _gp_disp symbol. Note that such a
3064 symbol must always be a global symbol. */
3065 if (strcmp (h
->root
.root
.root
.string
, "_gp_disp") == 0
3066 && ! NEWABI_P (input_bfd
))
3068 /* Relocations against _gp_disp are permitted only with
3069 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3070 if (r_type
!= R_MIPS_HI16
&& r_type
!= R_MIPS_LO16
)
3071 return bfd_reloc_notsupported
;
3075 /* If this symbol is defined, calculate its address. Note that
3076 _gp_disp is a magic symbol, always implicitly defined by the
3077 linker, so it's inappropriate to check to see whether or not
3079 else if ((h
->root
.root
.type
== bfd_link_hash_defined
3080 || h
->root
.root
.type
== bfd_link_hash_defweak
)
3081 && h
->root
.root
.u
.def
.section
)
3083 sec
= h
->root
.root
.u
.def
.section
;
3084 if (sec
->output_section
)
3085 symbol
= (h
->root
.root
.u
.def
.value
3086 + sec
->output_section
->vma
3087 + sec
->output_offset
);
3089 symbol
= h
->root
.root
.u
.def
.value
;
3091 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
3092 /* We allow relocations against undefined weak symbols, giving
3093 it the value zero, so that you can undefined weak functions
3094 and check to see if they exist by looking at their
3097 else if (info
->shared
3098 && (!info
->symbolic
|| info
->allow_shlib_undefined
)
3099 && !info
->no_undefined
3100 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
3102 else if (strcmp (h
->root
.root
.root
.string
, "_DYNAMIC_LINK") == 0 ||
3103 strcmp (h
->root
.root
.root
.string
, "_DYNAMIC_LINKING") == 0)
3105 /* If this is a dynamic link, we should have created a
3106 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3107 in in _bfd_mips_elf_create_dynamic_sections.
3108 Otherwise, we should define the symbol with a value of 0.
3109 FIXME: It should probably get into the symbol table
3111 BFD_ASSERT (! info
->shared
);
3112 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
3117 if (! ((*info
->callbacks
->undefined_symbol
)
3118 (info
, h
->root
.root
.root
.string
, input_bfd
,
3119 input_section
, relocation
->r_offset
,
3120 (!info
->shared
|| info
->no_undefined
3121 || ELF_ST_VISIBILITY (h
->root
.other
)))))
3122 return bfd_reloc_undefined
;
3126 target_is_16_bit_code_p
= (h
->root
.other
== STO_MIPS16
);
3129 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3130 need to redirect the call to the stub, unless we're already *in*
3132 if (r_type
!= R_MIPS16_26
&& !info
->relocateable
3133 && ((h
!= NULL
&& h
->fn_stub
!= NULL
)
3134 || (local_p
&& elf_tdata (input_bfd
)->local_stubs
!= NULL
3135 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
3136 && !mips_elf_stub_section_p (input_bfd
, input_section
))
3138 /* This is a 32- or 64-bit call to a 16-bit function. We should
3139 have already noticed that we were going to need the
3142 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
3145 BFD_ASSERT (h
->need_fn_stub
);
3149 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3151 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3152 need to redirect the call to the stub. */
3153 else if (r_type
== R_MIPS16_26
&& !info
->relocateable
3155 && (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
)
3156 && !target_is_16_bit_code_p
)
3158 /* If both call_stub and call_fp_stub are defined, we can figure
3159 out which one to use by seeing which one appears in the input
3161 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
3166 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
3168 if (strncmp (bfd_get_section_name (input_bfd
, o
),
3169 CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
3171 sec
= h
->call_fp_stub
;
3178 else if (h
->call_stub
!= NULL
)
3181 sec
= h
->call_fp_stub
;
3183 BFD_ASSERT (sec
->_raw_size
> 0);
3184 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3187 /* Calls from 16-bit code to 32-bit code and vice versa require the
3188 special jalx instruction. */
3189 *require_jalxp
= (!info
->relocateable
3190 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
3191 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
3193 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
3194 local_sections
, TRUE
);
3196 /* If we haven't already determined the GOT offset, or the GP value,
3197 and we're going to need it, get it now. */
3202 case R_MIPS_GOT_DISP
:
3203 case R_MIPS_GOT_HI16
:
3204 case R_MIPS_CALL_HI16
:
3205 case R_MIPS_GOT_LO16
:
3206 case R_MIPS_CALL_LO16
:
3207 /* Find the index into the GOT where this value is located. */
3210 BFD_ASSERT (addend
== 0);
3211 g
= mips_elf_global_got_index (elf_hash_table (info
)->dynobj
,
3213 (struct elf_link_hash_entry
*) h
);
3214 if (! elf_hash_table(info
)->dynamic_sections_created
3216 && (info
->symbolic
|| h
->root
.dynindx
== -1)
3217 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
3219 /* This is a static link or a -Bsymbolic link. The
3220 symbol is defined locally, or was forced to be local.
3221 We must initialize this entry in the GOT. */
3222 bfd
*tmpbfd
= elf_hash_table (info
)->dynobj
;
3223 asection
*sgot
= mips_elf_got_section (tmpbfd
, FALSE
);
3224 MIPS_ELF_PUT_WORD (tmpbfd
, symbol
+ addend
, sgot
->contents
+ g
);
3227 else if (r_type
== R_MIPS_GOT16
|| r_type
== R_MIPS_CALL16
)
3228 /* There's no need to create a local GOT entry here; the
3229 calculation for a local GOT16 entry does not involve G. */
3233 g
= mips_elf_local_got_index (abfd
, input_bfd
,
3234 info
, symbol
+ addend
);
3236 return bfd_reloc_outofrange
;
3239 /* Convert GOT indices to actual offsets. */
3240 g
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
3241 abfd
, input_bfd
, g
);
3246 case R_MIPS16_GPREL
:
3247 case R_MIPS_GPREL16
:
3248 case R_MIPS_GPREL32
:
3249 case R_MIPS_LITERAL
:
3250 gp0
= _bfd_get_gp_value (input_bfd
);
3251 gp
= _bfd_get_gp_value (abfd
);
3252 if (elf_hash_table (info
)->dynobj
)
3253 gp
+= mips_elf_adjust_gp (abfd
,
3255 (elf_hash_table (info
)->dynobj
, NULL
),
3263 /* Figure out what kind of relocation is being performed. */
3267 return bfd_reloc_continue
;
3270 value
= symbol
+ mips_elf_sign_extend (addend
, 16);
3271 overflowed_p
= mips_elf_overflow_p (value
, 16);
3278 || (elf_hash_table (info
)->dynamic_sections_created
3280 && ((h
->root
.elf_link_hash_flags
3281 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
3282 && ((h
->root
.elf_link_hash_flags
3283 & ELF_LINK_HASH_DEF_REGULAR
) == 0)))
3285 && (input_section
->flags
& SEC_ALLOC
) != 0)
3287 /* If we're creating a shared library, or this relocation is
3288 against a symbol in a shared library, then we can't know
3289 where the symbol will end up. So, we create a relocation
3290 record in the output, and leave the job up to the dynamic
3293 if (!mips_elf_create_dynamic_relocation (abfd
,
3301 return bfd_reloc_undefined
;
3305 if (r_type
!= R_MIPS_REL32
)
3306 value
= symbol
+ addend
;
3310 value
&= howto
->dst_mask
;
3315 case R_MIPS_GNU_REL_LO16
:
3316 value
= symbol
+ addend
- p
;
3317 value
&= howto
->dst_mask
;
3320 case R_MIPS_GNU_REL16_S2
:
3321 value
= symbol
+ mips_elf_sign_extend (addend
<< 2, 18) - p
;
3322 overflowed_p
= mips_elf_overflow_p (value
, 18);
3323 value
= (value
>> 2) & howto
->dst_mask
;
3326 case R_MIPS_GNU_REL_HI16
:
3327 /* Instead of subtracting 'p' here, we should be subtracting the
3328 equivalent value for the LO part of the reloc, since the value
3329 here is relative to that address. Because that's not easy to do,
3330 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3331 the comment there for more information. */
3332 value
= mips_elf_high (addend
+ symbol
- p
);
3333 value
&= howto
->dst_mask
;
3337 /* The calculation for R_MIPS16_26 is just the same as for an
3338 R_MIPS_26. It's only the storage of the relocated field into
3339 the output file that's different. That's handled in
3340 mips_elf_perform_relocation. So, we just fall through to the
3341 R_MIPS_26 case here. */
3344 value
= (((addend
<< 2) | ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
3346 value
= (mips_elf_sign_extend (addend
<< 2, 28) + symbol
) >> 2;
3347 value
&= howto
->dst_mask
;
3353 value
= mips_elf_high (addend
+ symbol
);
3354 value
&= howto
->dst_mask
;
3358 value
= mips_elf_high (addend
+ gp
- p
);
3359 overflowed_p
= mips_elf_overflow_p (value
, 16);
3365 value
= (symbol
+ addend
) & howto
->dst_mask
;
3368 value
= addend
+ gp
- p
+ 4;
3369 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3370 for overflow. But, on, say, IRIX5, relocations against
3371 _gp_disp are normally generated from the .cpload
3372 pseudo-op. It generates code that normally looks like
3375 lui $gp,%hi(_gp_disp)
3376 addiu $gp,$gp,%lo(_gp_disp)
3379 Here $t9 holds the address of the function being called,
3380 as required by the MIPS ELF ABI. The R_MIPS_LO16
3381 relocation can easily overflow in this situation, but the
3382 R_MIPS_HI16 relocation will handle the overflow.
3383 Therefore, we consider this a bug in the MIPS ABI, and do
3384 not check for overflow here. */
3388 case R_MIPS_LITERAL
:
3389 /* Because we don't merge literal sections, we can handle this
3390 just like R_MIPS_GPREL16. In the long run, we should merge
3391 shared literals, and then we will need to additional work
3396 case R_MIPS16_GPREL
:
3397 /* The R_MIPS16_GPREL performs the same calculation as
3398 R_MIPS_GPREL16, but stores the relocated bits in a different
3399 order. We don't need to do anything special here; the
3400 differences are handled in mips_elf_perform_relocation. */
3401 case R_MIPS_GPREL16
:
3402 /* Only sign-extend the addend if it was extracted from the
3403 instruction. If the addend was separate, leave it alone,
3404 otherwise we may lose significant bits. */
3405 if (howto
->partial_inplace
)
3406 addend
= mips_elf_sign_extend (addend
, 16);
3407 value
= symbol
+ addend
- gp
;
3408 /* If the symbol was local, any earlier relocatable links will
3409 have adjusted its addend with the gp offset, so compensate
3410 for that now. Don't do it for symbols forced local in this
3411 link, though, since they won't have had the gp offset applied
3415 overflowed_p
= mips_elf_overflow_p (value
, 16);
3424 /* The special case is when the symbol is forced to be local. We
3425 need the full address in the GOT since no R_MIPS_LO16 relocation
3427 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
3428 local_sections
, FALSE
);
3429 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
3430 symbol
+ addend
, forced
);
3431 if (value
== MINUS_ONE
)
3432 return bfd_reloc_outofrange
;
3434 = mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
3435 abfd
, input_bfd
, value
);
3436 overflowed_p
= mips_elf_overflow_p (value
, 16);
3442 case R_MIPS_GOT_DISP
:
3444 overflowed_p
= mips_elf_overflow_p (value
, 16);
3447 case R_MIPS_GPREL32
:
3448 value
= (addend
+ symbol
+ gp0
- gp
);
3450 value
&= howto
->dst_mask
;
3454 value
= mips_elf_sign_extend (addend
, 16) + symbol
- p
;
3455 overflowed_p
= mips_elf_overflow_p (value
, 16);
3458 case R_MIPS_GOT_HI16
:
3459 case R_MIPS_CALL_HI16
:
3460 /* We're allowed to handle these two relocations identically.
3461 The dynamic linker is allowed to handle the CALL relocations
3462 differently by creating a lazy evaluation stub. */
3464 value
= mips_elf_high (value
);
3465 value
&= howto
->dst_mask
;
3468 case R_MIPS_GOT_LO16
:
3469 case R_MIPS_CALL_LO16
:
3470 value
= g
& howto
->dst_mask
;
3473 case R_MIPS_GOT_PAGE
:
3474 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
3475 if (value
== MINUS_ONE
)
3476 return bfd_reloc_outofrange
;
3477 value
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
3478 abfd
, input_bfd
, value
);
3479 overflowed_p
= mips_elf_overflow_p (value
, 16);
3482 case R_MIPS_GOT_OFST
:
3483 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
3484 overflowed_p
= mips_elf_overflow_p (value
, 16);
3488 value
= symbol
- addend
;
3489 value
&= howto
->dst_mask
;
3493 value
= mips_elf_higher (addend
+ symbol
);
3494 value
&= howto
->dst_mask
;
3497 case R_MIPS_HIGHEST
:
3498 value
= mips_elf_highest (addend
+ symbol
);
3499 value
&= howto
->dst_mask
;
3502 case R_MIPS_SCN_DISP
:
3503 value
= symbol
+ addend
- sec
->output_offset
;
3504 value
&= howto
->dst_mask
;
3509 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3510 hint; we could improve performance by honoring that hint. */
3511 return bfd_reloc_continue
;
3513 case R_MIPS_GNU_VTINHERIT
:
3514 case R_MIPS_GNU_VTENTRY
:
3515 /* We don't do anything with these at present. */
3516 return bfd_reloc_continue
;
3519 /* An unrecognized relocation type. */
3520 return bfd_reloc_notsupported
;
3523 /* Store the VALUE for our caller. */
3525 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
3528 /* Obtain the field relocated by RELOCATION. */
3531 mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
)
3532 reloc_howto_type
*howto
;
3533 const Elf_Internal_Rela
*relocation
;
3538 bfd_byte
*location
= contents
+ relocation
->r_offset
;
3540 /* Obtain the bytes. */
3541 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
3543 if ((ELF_R_TYPE (input_bfd
, relocation
->r_info
) == R_MIPS16_26
3544 || ELF_R_TYPE (input_bfd
, relocation
->r_info
) == R_MIPS16_GPREL
)
3545 && bfd_little_endian (input_bfd
))
3546 /* The two 16-bit words will be reversed on a little-endian system.
3547 See mips_elf_perform_relocation for more details. */
3548 x
= (((x
& 0xffff) << 16) | ((x
& 0xffff0000) >> 16));
3553 /* It has been determined that the result of the RELOCATION is the
3554 VALUE. Use HOWTO to place VALUE into the output file at the
3555 appropriate position. The SECTION is the section to which the
3556 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3557 for the relocation must be either JAL or JALX, and it is
3558 unconditionally converted to JALX.
3560 Returns FALSE if anything goes wrong. */
3563 mips_elf_perform_relocation (info
, howto
, relocation
, value
, input_bfd
,
3564 input_section
, contents
, require_jalx
)
3565 struct bfd_link_info
*info
;
3566 reloc_howto_type
*howto
;
3567 const Elf_Internal_Rela
*relocation
;
3570 asection
*input_section
;
3572 bfd_boolean require_jalx
;
3576 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
3578 /* Figure out where the relocation is occurring. */
3579 location
= contents
+ relocation
->r_offset
;
3581 /* Obtain the current value. */
3582 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
3584 /* Clear the field we are setting. */
3585 x
&= ~howto
->dst_mask
;
3587 /* If this is the R_MIPS16_26 relocation, we must store the
3588 value in a funny way. */
3589 if (r_type
== R_MIPS16_26
)
3591 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3592 Most mips16 instructions are 16 bits, but these instructions
3595 The format of these instructions is:
3597 +--------------+--------------------------------+
3598 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3599 +--------------+--------------------------------+
3601 +-----------------------------------------------+
3603 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3604 Note that the immediate value in the first word is swapped.
3606 When producing a relocateable object file, R_MIPS16_26 is
3607 handled mostly like R_MIPS_26. In particular, the addend is
3608 stored as a straight 26-bit value in a 32-bit instruction.
3609 (gas makes life simpler for itself by never adjusting a
3610 R_MIPS16_26 reloc to be against a section, so the addend is
3611 always zero). However, the 32 bit instruction is stored as 2
3612 16-bit values, rather than a single 32-bit value. In a
3613 big-endian file, the result is the same; in a little-endian
3614 file, the two 16-bit halves of the 32 bit value are swapped.
3615 This is so that a disassembler can recognize the jal
3618 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3619 instruction stored as two 16-bit values. The addend A is the
3620 contents of the targ26 field. The calculation is the same as
3621 R_MIPS_26. When storing the calculated value, reorder the
3622 immediate value as shown above, and don't forget to store the
3623 value as two 16-bit values.
3625 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3629 +--------+----------------------+
3633 +--------+----------------------+
3636 +----------+------+-------------+
3640 +----------+--------------------+
3641 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3642 ((sub1 << 16) | sub2)).
3644 When producing a relocateable object file, the calculation is
3645 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3646 When producing a fully linked file, the calculation is
3647 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3648 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3650 if (!info
->relocateable
)
3651 /* Shuffle the bits according to the formula above. */
3652 value
= (((value
& 0x1f0000) << 5)
3653 | ((value
& 0x3e00000) >> 5)
3654 | (value
& 0xffff));
3656 else if (r_type
== R_MIPS16_GPREL
)
3658 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3659 mode. A typical instruction will have a format like this:
3661 +--------------+--------------------------------+
3662 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3663 +--------------+--------------------------------+
3664 ! Major ! rx ! ry ! Imm 4:0 !
3665 +--------------+--------------------------------+
3667 EXTEND is the five bit value 11110. Major is the instruction
3670 This is handled exactly like R_MIPS_GPREL16, except that the
3671 addend is retrieved and stored as shown in this diagram; that
3672 is, the Imm fields above replace the V-rel16 field.
3674 All we need to do here is shuffle the bits appropriately. As
3675 above, the two 16-bit halves must be swapped on a
3676 little-endian system. */
3677 value
= (((value
& 0x7e0) << 16)
3678 | ((value
& 0xf800) << 5)
3682 /* Set the field. */
3683 x
|= (value
& howto
->dst_mask
);
3685 /* If required, turn JAL into JALX. */
3689 bfd_vma opcode
= x
>> 26;
3690 bfd_vma jalx_opcode
;
3692 /* Check to see if the opcode is already JAL or JALX. */
3693 if (r_type
== R_MIPS16_26
)
3695 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
3700 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
3704 /* If the opcode is not JAL or JALX, there's a problem. */
3707 (*_bfd_error_handler
)
3708 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3709 bfd_archive_filename (input_bfd
),
3710 input_section
->name
,
3711 (unsigned long) relocation
->r_offset
);
3712 bfd_set_error (bfd_error_bad_value
);
3716 /* Make this the JALX opcode. */
3717 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
3720 /* Swap the high- and low-order 16 bits on little-endian systems
3721 when doing a MIPS16 relocation. */
3722 if ((r_type
== R_MIPS16_GPREL
|| r_type
== R_MIPS16_26
)
3723 && bfd_little_endian (input_bfd
))
3724 x
= (((x
& 0xffff) << 16) | ((x
& 0xffff0000) >> 16));
3726 /* Put the value into the output. */
3727 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
3731 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3734 mips_elf_stub_section_p (abfd
, section
)
3735 bfd
*abfd ATTRIBUTE_UNUSED
;
3738 const char *name
= bfd_get_section_name (abfd
, section
);
3740 return (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0
3741 || strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
3742 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0);
3745 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3748 mips_elf_allocate_dynamic_relocations (abfd
, n
)
3754 s
= mips_elf_rel_dyn_section (abfd
, FALSE
);
3755 BFD_ASSERT (s
!= NULL
);
3757 if (s
->_raw_size
== 0)
3759 /* Make room for a null element. */
3760 s
->_raw_size
+= MIPS_ELF_REL_SIZE (abfd
);
3763 s
->_raw_size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
3766 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3767 is the original relocation, which is now being transformed into a
3768 dynamic relocation. The ADDENDP is adjusted if necessary; the
3769 caller should store the result in place of the original addend. */
3772 mips_elf_create_dynamic_relocation (output_bfd
, info
, rel
, h
, sec
,
3773 symbol
, addendp
, input_section
)
3775 struct bfd_link_info
*info
;
3776 const Elf_Internal_Rela
*rel
;
3777 struct mips_elf_link_hash_entry
*h
;
3781 asection
*input_section
;
3783 Elf_Internal_Rela outrel
[3];
3789 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
3790 dynobj
= elf_hash_table (info
)->dynobj
;
3791 sreloc
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
3792 BFD_ASSERT (sreloc
!= NULL
);
3793 BFD_ASSERT (sreloc
->contents
!= NULL
);
3794 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
3795 < sreloc
->_raw_size
);
3798 outrel
[0].r_offset
=
3799 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
3800 outrel
[1].r_offset
=
3801 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
3802 outrel
[2].r_offset
=
3803 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
3806 /* We begin by assuming that the offset for the dynamic relocation
3807 is the same as for the original relocation. We'll adjust this
3808 later to reflect the correct output offsets. */
3809 if (elf_section_data (input_section
)->sec_info_type
!= ELF_INFO_TYPE_STABS
)
3811 outrel
[1].r_offset
= rel
[1].r_offset
;
3812 outrel
[2].r_offset
= rel
[2].r_offset
;
3816 /* Except that in a stab section things are more complex.
3817 Because we compress stab information, the offset given in the
3818 relocation may not be the one we want; we must let the stabs
3819 machinery tell us the offset. */
3820 outrel
[1].r_offset
= outrel
[0].r_offset
;
3821 outrel
[2].r_offset
= outrel
[0].r_offset
;
3822 /* If we didn't need the relocation at all, this value will be
3824 if (outrel
[0].r_offset
== (bfd_vma
) -1)
3829 if (outrel
[0].r_offset
== (bfd_vma
) -1
3830 || outrel
[0].r_offset
== (bfd_vma
) -2)
3833 /* If we've decided to skip this relocation, just output an empty
3834 record. Note that R_MIPS_NONE == 0, so that this call to memset
3835 is a way of setting R_TYPE to R_MIPS_NONE. */
3837 memset (outrel
, 0, sizeof (Elf_Internal_Rela
) * 3);
3841 bfd_vma section_offset
;
3843 /* We must now calculate the dynamic symbol table index to use
3844 in the relocation. */
3846 && (! info
->symbolic
|| (h
->root
.elf_link_hash_flags
3847 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
3849 indx
= h
->root
.dynindx
;
3850 /* h->root.dynindx may be -1 if this symbol was marked to
3857 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
3859 else if (sec
== NULL
|| sec
->owner
== NULL
)
3861 bfd_set_error (bfd_error_bad_value
);
3866 indx
= elf_section_data (sec
->output_section
)->dynindx
;
3871 /* Figure out how far the target of the relocation is from
3872 the beginning of its section. */
3873 section_offset
= symbol
- sec
->output_section
->vma
;
3874 /* The relocation we're building is section-relative.
3875 Therefore, the original addend must be adjusted by the
3877 *addendp
+= section_offset
;
3878 /* Now, the relocation is just against the section. */
3879 symbol
= sec
->output_section
->vma
;
3882 /* If the relocation was previously an absolute relocation and
3883 this symbol will not be referred to by the relocation, we must
3884 adjust it by the value we give it in the dynamic symbol table.
3885 Otherwise leave the job up to the dynamic linker. */
3886 if (!indx
&& r_type
!= R_MIPS_REL32
)
3889 /* The relocation is always an REL32 relocation because we don't
3890 know where the shared library will wind up at load-time. */
3891 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
3893 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) 0,
3894 ABI_64_P (output_bfd
)
3897 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) 0,
3900 /* Adjust the output offset of the relocation to reference the
3901 correct location in the output file. */
3902 outrel
[0].r_offset
+= (input_section
->output_section
->vma
3903 + input_section
->output_offset
);
3904 outrel
[1].r_offset
+= (input_section
->output_section
->vma
3905 + input_section
->output_offset
);
3906 outrel
[2].r_offset
+= (input_section
->output_section
->vma
3907 + input_section
->output_offset
);
3910 /* Put the relocation back out. We have to use the special
3911 relocation outputter in the 64-bit case since the 64-bit
3912 relocation format is non-standard. */
3913 if (ABI_64_P (output_bfd
))
3915 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
3916 (output_bfd
, &outrel
[0],
3918 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
3921 bfd_elf32_swap_reloc_out
3922 (output_bfd
, &outrel
[0],
3923 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
3925 /* Record the index of the first relocation referencing H. This
3926 information is later emitted in the .msym section. */
3928 && (h
->min_dyn_reloc_index
== 0
3929 || sreloc
->reloc_count
< h
->min_dyn_reloc_index
))
3930 h
->min_dyn_reloc_index
= sreloc
->reloc_count
;
3932 /* We've now added another relocation. */
3933 ++sreloc
->reloc_count
;
3935 /* Make sure the output section is writable. The dynamic linker
3936 will be writing to it. */
3937 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
3940 /* On IRIX5, make an entry of compact relocation info. */
3941 if (! skip
&& IRIX_COMPAT (output_bfd
) == ict_irix5
)
3943 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
3948 Elf32_crinfo cptrel
;
3950 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
3951 cptrel
.vaddr
= (rel
->r_offset
3952 + input_section
->output_section
->vma
3953 + input_section
->output_offset
);
3954 if (r_type
== R_MIPS_REL32
)
3955 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
3957 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
3958 mips_elf_set_cr_dist2to (cptrel
, 0);
3959 cptrel
.konst
= *addendp
;
3961 cr
= (scpt
->contents
3962 + sizeof (Elf32_External_compact_rel
));
3963 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
3964 ((Elf32_External_crinfo
*) cr
3965 + scpt
->reloc_count
));
3966 ++scpt
->reloc_count
;
3973 /* Return the MACH for a MIPS e_flags value. */
3976 _bfd_elf_mips_mach (flags
)
3979 switch (flags
& EF_MIPS_MACH
)
3981 case E_MIPS_MACH_3900
:
3982 return bfd_mach_mips3900
;
3984 case E_MIPS_MACH_4010
:
3985 return bfd_mach_mips4010
;
3987 case E_MIPS_MACH_4100
:
3988 return bfd_mach_mips4100
;
3990 case E_MIPS_MACH_4111
:
3991 return bfd_mach_mips4111
;
3993 case E_MIPS_MACH_4120
:
3994 return bfd_mach_mips4120
;
3996 case E_MIPS_MACH_4650
:
3997 return bfd_mach_mips4650
;
3999 case E_MIPS_MACH_5400
:
4000 return bfd_mach_mips5400
;
4002 case E_MIPS_MACH_5500
:
4003 return bfd_mach_mips5500
;
4005 case E_MIPS_MACH_SB1
:
4006 return bfd_mach_mips_sb1
;
4009 switch (flags
& EF_MIPS_ARCH
)
4013 return bfd_mach_mips3000
;
4017 return bfd_mach_mips6000
;
4021 return bfd_mach_mips4000
;
4025 return bfd_mach_mips8000
;
4029 return bfd_mach_mips5
;
4032 case E_MIPS_ARCH_32
:
4033 return bfd_mach_mipsisa32
;
4036 case E_MIPS_ARCH_64
:
4037 return bfd_mach_mipsisa64
;
4040 case E_MIPS_ARCH_32R2
:
4041 return bfd_mach_mipsisa32r2
;
4049 /* Return printable name for ABI. */
4051 static INLINE
char *
4052 elf_mips_abi_name (abfd
)
4057 flags
= elf_elfheader (abfd
)->e_flags
;
4058 switch (flags
& EF_MIPS_ABI
)
4061 if (ABI_N32_P (abfd
))
4063 else if (ABI_64_P (abfd
))
4067 case E_MIPS_ABI_O32
:
4069 case E_MIPS_ABI_O64
:
4071 case E_MIPS_ABI_EABI32
:
4073 case E_MIPS_ABI_EABI64
:
4076 return "unknown abi";
4080 /* MIPS ELF uses two common sections. One is the usual one, and the
4081 other is for small objects. All the small objects are kept
4082 together, and then referenced via the gp pointer, which yields
4083 faster assembler code. This is what we use for the small common
4084 section. This approach is copied from ecoff.c. */
4085 static asection mips_elf_scom_section
;
4086 static asymbol mips_elf_scom_symbol
;
4087 static asymbol
*mips_elf_scom_symbol_ptr
;
4089 /* MIPS ELF also uses an acommon section, which represents an
4090 allocated common symbol which may be overridden by a
4091 definition in a shared library. */
4092 static asection mips_elf_acom_section
;
4093 static asymbol mips_elf_acom_symbol
;
4094 static asymbol
*mips_elf_acom_symbol_ptr
;
4096 /* Handle the special MIPS section numbers that a symbol may use.
4097 This is used for both the 32-bit and the 64-bit ABI. */
4100 _bfd_mips_elf_symbol_processing (abfd
, asym
)
4104 elf_symbol_type
*elfsym
;
4106 elfsym
= (elf_symbol_type
*) asym
;
4107 switch (elfsym
->internal_elf_sym
.st_shndx
)
4109 case SHN_MIPS_ACOMMON
:
4110 /* This section is used in a dynamically linked executable file.
4111 It is an allocated common section. The dynamic linker can
4112 either resolve these symbols to something in a shared
4113 library, or it can just leave them here. For our purposes,
4114 we can consider these symbols to be in a new section. */
4115 if (mips_elf_acom_section
.name
== NULL
)
4117 /* Initialize the acommon section. */
4118 mips_elf_acom_section
.name
= ".acommon";
4119 mips_elf_acom_section
.flags
= SEC_ALLOC
;
4120 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
4121 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
4122 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
4123 mips_elf_acom_symbol
.name
= ".acommon";
4124 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
4125 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
4126 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
4128 asym
->section
= &mips_elf_acom_section
;
4132 /* Common symbols less than the GP size are automatically
4133 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4134 if (asym
->value
> elf_gp_size (abfd
)
4135 || IRIX_COMPAT (abfd
) == ict_irix6
)
4138 case SHN_MIPS_SCOMMON
:
4139 if (mips_elf_scom_section
.name
== NULL
)
4141 /* Initialize the small common section. */
4142 mips_elf_scom_section
.name
= ".scommon";
4143 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
4144 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
4145 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
4146 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
4147 mips_elf_scom_symbol
.name
= ".scommon";
4148 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
4149 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
4150 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
4152 asym
->section
= &mips_elf_scom_section
;
4153 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
4156 case SHN_MIPS_SUNDEFINED
:
4157 asym
->section
= bfd_und_section_ptr
;
4160 #if 0 /* for SGI_COMPAT */
4162 asym
->section
= mips_elf_text_section_ptr
;
4166 asym
->section
= mips_elf_data_section_ptr
;
4172 /* Work over a section just before writing it out. This routine is
4173 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4174 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4178 _bfd_mips_elf_section_processing (abfd
, hdr
)
4180 Elf_Internal_Shdr
*hdr
;
4182 if (hdr
->sh_type
== SHT_MIPS_REGINFO
4183 && hdr
->sh_size
> 0)
4187 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
4188 BFD_ASSERT (hdr
->contents
== NULL
);
4191 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
4194 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
4195 if (bfd_bwrite (buf
, (bfd_size_type
) 4, abfd
) != 4)
4199 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
4200 && hdr
->bfd_section
!= NULL
4201 && mips_elf_section_data (hdr
->bfd_section
) != NULL
4202 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
4204 bfd_byte
*contents
, *l
, *lend
;
4206 /* We stored the section contents in the tdata field in the
4207 set_section_contents routine. We save the section contents
4208 so that we don't have to read them again.
4209 At this point we know that elf_gp is set, so we can look
4210 through the section contents to see if there is an
4211 ODK_REGINFO structure. */
4213 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
4215 lend
= contents
+ hdr
->sh_size
;
4216 while (l
+ sizeof (Elf_External_Options
) <= lend
)
4218 Elf_Internal_Options intopt
;
4220 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
4222 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
4229 + sizeof (Elf_External_Options
)
4230 + (sizeof (Elf64_External_RegInfo
) - 8)),
4233 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
4234 if (bfd_bwrite (buf
, (bfd_size_type
) 8, abfd
) != 8)
4237 else if (intopt
.kind
== ODK_REGINFO
)
4244 + sizeof (Elf_External_Options
)
4245 + (sizeof (Elf32_External_RegInfo
) - 4)),
4248 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
4249 if (bfd_bwrite (buf
, (bfd_size_type
) 4, abfd
) != 4)
4256 if (hdr
->bfd_section
!= NULL
)
4258 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
4260 if (strcmp (name
, ".sdata") == 0
4261 || strcmp (name
, ".lit8") == 0
4262 || strcmp (name
, ".lit4") == 0)
4264 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
4265 hdr
->sh_type
= SHT_PROGBITS
;
4267 else if (strcmp (name
, ".sbss") == 0)
4269 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
4270 hdr
->sh_type
= SHT_NOBITS
;
4272 else if (strcmp (name
, ".srdata") == 0)
4274 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
4275 hdr
->sh_type
= SHT_PROGBITS
;
4277 else if (strcmp (name
, ".compact_rel") == 0)
4280 hdr
->sh_type
= SHT_PROGBITS
;
4282 else if (strcmp (name
, ".rtproc") == 0)
4284 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
4286 unsigned int adjust
;
4288 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
4290 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
4298 /* Handle a MIPS specific section when reading an object file. This
4299 is called when elfcode.h finds a section with an unknown type.
4300 This routine supports both the 32-bit and 64-bit ELF ABI.
4302 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4306 _bfd_mips_elf_section_from_shdr (abfd
, hdr
, name
)
4308 Elf_Internal_Shdr
*hdr
;
4313 /* There ought to be a place to keep ELF backend specific flags, but
4314 at the moment there isn't one. We just keep track of the
4315 sections by their name, instead. Fortunately, the ABI gives
4316 suggested names for all the MIPS specific sections, so we will
4317 probably get away with this. */
4318 switch (hdr
->sh_type
)
4320 case SHT_MIPS_LIBLIST
:
4321 if (strcmp (name
, ".liblist") != 0)
4325 if (strcmp (name
, ".msym") != 0)
4328 case SHT_MIPS_CONFLICT
:
4329 if (strcmp (name
, ".conflict") != 0)
4332 case SHT_MIPS_GPTAB
:
4333 if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) != 0)
4336 case SHT_MIPS_UCODE
:
4337 if (strcmp (name
, ".ucode") != 0)
4340 case SHT_MIPS_DEBUG
:
4341 if (strcmp (name
, ".mdebug") != 0)
4343 flags
= SEC_DEBUGGING
;
4345 case SHT_MIPS_REGINFO
:
4346 if (strcmp (name
, ".reginfo") != 0
4347 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
4349 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
4351 case SHT_MIPS_IFACE
:
4352 if (strcmp (name
, ".MIPS.interfaces") != 0)
4355 case SHT_MIPS_CONTENT
:
4356 if (strncmp (name
, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4359 case SHT_MIPS_OPTIONS
:
4360 if (strcmp (name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) != 0)
4363 case SHT_MIPS_DWARF
:
4364 if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) != 0)
4367 case SHT_MIPS_SYMBOL_LIB
:
4368 if (strcmp (name
, ".MIPS.symlib") != 0)
4371 case SHT_MIPS_EVENTS
:
4372 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4373 && strncmp (name
, ".MIPS.post_rel",
4374 sizeof ".MIPS.post_rel" - 1) != 0)
4381 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
4386 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
4387 (bfd_get_section_flags (abfd
,
4393 /* FIXME: We should record sh_info for a .gptab section. */
4395 /* For a .reginfo section, set the gp value in the tdata information
4396 from the contents of this section. We need the gp value while
4397 processing relocs, so we just get it now. The .reginfo section
4398 is not used in the 64-bit MIPS ELF ABI. */
4399 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
4401 Elf32_External_RegInfo ext
;
4404 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, (PTR
) &ext
,
4406 (bfd_size_type
) sizeof ext
))
4408 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
4409 elf_gp (abfd
) = s
.ri_gp_value
;
4412 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4413 set the gp value based on what we find. We may see both
4414 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4415 they should agree. */
4416 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
4418 bfd_byte
*contents
, *l
, *lend
;
4420 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
4421 if (contents
== NULL
)
4423 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
4424 (file_ptr
) 0, hdr
->sh_size
))
4430 lend
= contents
+ hdr
->sh_size
;
4431 while (l
+ sizeof (Elf_External_Options
) <= lend
)
4433 Elf_Internal_Options intopt
;
4435 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
4437 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
4439 Elf64_Internal_RegInfo intreg
;
4441 bfd_mips_elf64_swap_reginfo_in
4443 ((Elf64_External_RegInfo
*)
4444 (l
+ sizeof (Elf_External_Options
))),
4446 elf_gp (abfd
) = intreg
.ri_gp_value
;
4448 else if (intopt
.kind
== ODK_REGINFO
)
4450 Elf32_RegInfo intreg
;
4452 bfd_mips_elf32_swap_reginfo_in
4454 ((Elf32_External_RegInfo
*)
4455 (l
+ sizeof (Elf_External_Options
))),
4457 elf_gp (abfd
) = intreg
.ri_gp_value
;
4467 /* Set the correct type for a MIPS ELF section. We do this by the
4468 section name, which is a hack, but ought to work. This routine is
4469 used by both the 32-bit and the 64-bit ABI. */
4472 _bfd_mips_elf_fake_sections (abfd
, hdr
, sec
)
4474 Elf_Internal_Shdr
*hdr
;
4477 register const char *name
;
4479 name
= bfd_get_section_name (abfd
, sec
);
4481 if (strcmp (name
, ".liblist") == 0)
4483 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
4484 hdr
->sh_info
= sec
->_raw_size
/ sizeof (Elf32_Lib
);
4485 /* The sh_link field is set in final_write_processing. */
4487 else if (strcmp (name
, ".conflict") == 0)
4488 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
4489 else if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0)
4491 hdr
->sh_type
= SHT_MIPS_GPTAB
;
4492 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
4493 /* The sh_info field is set in final_write_processing. */
4495 else if (strcmp (name
, ".ucode") == 0)
4496 hdr
->sh_type
= SHT_MIPS_UCODE
;
4497 else if (strcmp (name
, ".mdebug") == 0)
4499 hdr
->sh_type
= SHT_MIPS_DEBUG
;
4500 /* In a shared object on IRIX 5.3, the .mdebug section has an
4501 entsize of 0. FIXME: Does this matter? */
4502 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
4503 hdr
->sh_entsize
= 0;
4505 hdr
->sh_entsize
= 1;
4507 else if (strcmp (name
, ".reginfo") == 0)
4509 hdr
->sh_type
= SHT_MIPS_REGINFO
;
4510 /* In a shared object on IRIX 5.3, the .reginfo section has an
4511 entsize of 0x18. FIXME: Does this matter? */
4512 if (SGI_COMPAT (abfd
))
4514 if ((abfd
->flags
& DYNAMIC
) != 0)
4515 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
4517 hdr
->sh_entsize
= 1;
4520 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
4522 else if (SGI_COMPAT (abfd
)
4523 && (strcmp (name
, ".hash") == 0
4524 || strcmp (name
, ".dynamic") == 0
4525 || strcmp (name
, ".dynstr") == 0))
4527 if (SGI_COMPAT (abfd
))
4528 hdr
->sh_entsize
= 0;
4530 /* This isn't how the IRIX6 linker behaves. */
4531 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
4534 else if (strcmp (name
, ".got") == 0
4535 || strcmp (name
, ".srdata") == 0
4536 || strcmp (name
, ".sdata") == 0
4537 || strcmp (name
, ".sbss") == 0
4538 || strcmp (name
, ".lit4") == 0
4539 || strcmp (name
, ".lit8") == 0)
4540 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
4541 else if (strcmp (name
, ".MIPS.interfaces") == 0)
4543 hdr
->sh_type
= SHT_MIPS_IFACE
;
4544 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
4546 else if (strncmp (name
, ".MIPS.content", strlen (".MIPS.content")) == 0)
4548 hdr
->sh_type
= SHT_MIPS_CONTENT
;
4549 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
4550 /* The sh_info field is set in final_write_processing. */
4552 else if (strcmp (name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
4554 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
4555 hdr
->sh_entsize
= 1;
4556 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
4558 else if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) == 0)
4559 hdr
->sh_type
= SHT_MIPS_DWARF
;
4560 else if (strcmp (name
, ".MIPS.symlib") == 0)
4562 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
4563 /* The sh_link and sh_info fields are set in
4564 final_write_processing. */
4566 else if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4567 || strncmp (name
, ".MIPS.post_rel",
4568 sizeof ".MIPS.post_rel" - 1) == 0)
4570 hdr
->sh_type
= SHT_MIPS_EVENTS
;
4571 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
4572 /* The sh_link field is set in final_write_processing. */
4574 else if (strcmp (name
, ".msym") == 0)
4576 hdr
->sh_type
= SHT_MIPS_MSYM
;
4577 hdr
->sh_flags
|= SHF_ALLOC
;
4578 hdr
->sh_entsize
= 8;
4581 /* The generic elf_fake_sections will set up REL_HDR using the
4582 default kind of relocations. But, we may actually need both
4583 kinds of relocations, so we set up the second header here.
4585 This is not necessary for the O32 ABI since that only uses Elf32_Rel
4586 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
4587 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
4588 of the resulting empty .rela.<section> sections starts with
4589 sh_offset == object size, and ld doesn't allow that. While the check
4590 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
4591 avoided by not emitting those useless sections in the first place. */
4592 if (! SGI_COMPAT (abfd
) && ! NEWABI_P(abfd
)
4593 && (sec
->flags
& SEC_RELOC
) != 0)
4595 struct bfd_elf_section_data
*esd
;
4596 bfd_size_type amt
= sizeof (Elf_Internal_Shdr
);
4598 esd
= elf_section_data (sec
);
4599 BFD_ASSERT (esd
->rel_hdr2
== NULL
);
4600 esd
->rel_hdr2
= (Elf_Internal_Shdr
*) bfd_zalloc (abfd
, amt
);
4603 _bfd_elf_init_reloc_shdr (abfd
, esd
->rel_hdr2
, sec
, !sec
->use_rela_p
);
4609 /* Given a BFD section, try to locate the corresponding ELF section
4610 index. This is used by both the 32-bit and the 64-bit ABI.
4611 Actually, it's not clear to me that the 64-bit ABI supports these,
4612 but for non-PIC objects we will certainly want support for at least
4613 the .scommon section. */
4616 _bfd_mips_elf_section_from_bfd_section (abfd
, sec
, retval
)
4617 bfd
*abfd ATTRIBUTE_UNUSED
;
4621 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
4623 *retval
= SHN_MIPS_SCOMMON
;
4626 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
4628 *retval
= SHN_MIPS_ACOMMON
;
4634 /* Hook called by the linker routine which adds symbols from an object
4635 file. We must handle the special MIPS section numbers here. */
4638 _bfd_mips_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
4640 struct bfd_link_info
*info
;
4641 const Elf_Internal_Sym
*sym
;
4643 flagword
*flagsp ATTRIBUTE_UNUSED
;
4647 if (SGI_COMPAT (abfd
)
4648 && (abfd
->flags
& DYNAMIC
) != 0
4649 && strcmp (*namep
, "_rld_new_interface") == 0)
4651 /* Skip IRIX5 rld entry name. */
4656 switch (sym
->st_shndx
)
4659 /* Common symbols less than the GP size are automatically
4660 treated as SHN_MIPS_SCOMMON symbols. */
4661 if (sym
->st_size
> elf_gp_size (abfd
)
4662 || IRIX_COMPAT (abfd
) == ict_irix6
)
4665 case SHN_MIPS_SCOMMON
:
4666 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
4667 (*secp
)->flags
|= SEC_IS_COMMON
;
4668 *valp
= sym
->st_size
;
4672 /* This section is used in a shared object. */
4673 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
4675 asymbol
*elf_text_symbol
;
4676 asection
*elf_text_section
;
4677 bfd_size_type amt
= sizeof (asection
);
4679 elf_text_section
= bfd_zalloc (abfd
, amt
);
4680 if (elf_text_section
== NULL
)
4683 amt
= sizeof (asymbol
);
4684 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
4685 if (elf_text_symbol
== NULL
)
4688 /* Initialize the section. */
4690 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
4691 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
4693 elf_text_section
->symbol
= elf_text_symbol
;
4694 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
4696 elf_text_section
->name
= ".text";
4697 elf_text_section
->flags
= SEC_NO_FLAGS
;
4698 elf_text_section
->output_section
= NULL
;
4699 elf_text_section
->owner
= abfd
;
4700 elf_text_symbol
->name
= ".text";
4701 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
4702 elf_text_symbol
->section
= elf_text_section
;
4704 /* This code used to do *secp = bfd_und_section_ptr if
4705 info->shared. I don't know why, and that doesn't make sense,
4706 so I took it out. */
4707 *secp
= elf_tdata (abfd
)->elf_text_section
;
4710 case SHN_MIPS_ACOMMON
:
4711 /* Fall through. XXX Can we treat this as allocated data? */
4713 /* This section is used in a shared object. */
4714 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
4716 asymbol
*elf_data_symbol
;
4717 asection
*elf_data_section
;
4718 bfd_size_type amt
= sizeof (asection
);
4720 elf_data_section
= bfd_zalloc (abfd
, amt
);
4721 if (elf_data_section
== NULL
)
4724 amt
= sizeof (asymbol
);
4725 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
4726 if (elf_data_symbol
== NULL
)
4729 /* Initialize the section. */
4731 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
4732 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
4734 elf_data_section
->symbol
= elf_data_symbol
;
4735 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
4737 elf_data_section
->name
= ".data";
4738 elf_data_section
->flags
= SEC_NO_FLAGS
;
4739 elf_data_section
->output_section
= NULL
;
4740 elf_data_section
->owner
= abfd
;
4741 elf_data_symbol
->name
= ".data";
4742 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
4743 elf_data_symbol
->section
= elf_data_section
;
4745 /* This code used to do *secp = bfd_und_section_ptr if
4746 info->shared. I don't know why, and that doesn't make sense,
4747 so I took it out. */
4748 *secp
= elf_tdata (abfd
)->elf_data_section
;
4751 case SHN_MIPS_SUNDEFINED
:
4752 *secp
= bfd_und_section_ptr
;
4756 if (SGI_COMPAT (abfd
)
4758 && info
->hash
->creator
== abfd
->xvec
4759 && strcmp (*namep
, "__rld_obj_head") == 0)
4761 struct elf_link_hash_entry
*h
;
4762 struct bfd_link_hash_entry
*bh
;
4764 /* Mark __rld_obj_head as dynamic. */
4766 if (! (_bfd_generic_link_add_one_symbol
4767 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
,
4768 (bfd_vma
) *valp
, (const char *) NULL
, FALSE
,
4769 get_elf_backend_data (abfd
)->collect
, &bh
)))
4772 h
= (struct elf_link_hash_entry
*) bh
;
4773 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
4774 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
4775 h
->type
= STT_OBJECT
;
4777 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
4780 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
4783 /* If this is a mips16 text symbol, add 1 to the value to make it
4784 odd. This will cause something like .word SYM to come up with
4785 the right value when it is loaded into the PC. */
4786 if (sym
->st_other
== STO_MIPS16
)
4792 /* This hook function is called before the linker writes out a global
4793 symbol. We mark symbols as small common if appropriate. This is
4794 also where we undo the increment of the value for a mips16 symbol. */
4797 _bfd_mips_elf_link_output_symbol_hook (abfd
, info
, name
, sym
, input_sec
)
4798 bfd
*abfd ATTRIBUTE_UNUSED
;
4799 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
4800 const char *name ATTRIBUTE_UNUSED
;
4801 Elf_Internal_Sym
*sym
;
4802 asection
*input_sec
;
4804 /* If we see a common symbol, which implies a relocatable link, then
4805 if a symbol was small common in an input file, mark it as small
4806 common in the output file. */
4807 if (sym
->st_shndx
== SHN_COMMON
4808 && strcmp (input_sec
->name
, ".scommon") == 0)
4809 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
4811 if (sym
->st_other
== STO_MIPS16
4812 && (sym
->st_value
& 1) != 0)
4818 /* Functions for the dynamic linker. */
4820 /* Create dynamic sections when linking against a dynamic object. */
4823 _bfd_mips_elf_create_dynamic_sections (abfd
, info
)
4825 struct bfd_link_info
*info
;
4827 struct elf_link_hash_entry
*h
;
4828 struct bfd_link_hash_entry
*bh
;
4830 register asection
*s
;
4831 const char * const *namep
;
4833 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
4834 | SEC_LINKER_CREATED
| SEC_READONLY
);
4836 /* Mips ABI requests the .dynamic section to be read only. */
4837 s
= bfd_get_section_by_name (abfd
, ".dynamic");
4840 if (! bfd_set_section_flags (abfd
, s
, flags
))
4844 /* We need to create .got section. */
4845 if (! mips_elf_create_got_section (abfd
, info
, FALSE
))
4848 if (! mips_elf_rel_dyn_section (elf_hash_table (info
)->dynobj
, TRUE
))
4851 /* Create the .msym section on IRIX6. It is used by the dynamic
4852 linker to speed up dynamic relocations, and to avoid computing
4853 the ELF hash for symbols. */
4854 if (IRIX_COMPAT (abfd
) == ict_irix6
4855 && !mips_elf_create_msym_section (abfd
))
4858 /* Create .stub section. */
4859 if (bfd_get_section_by_name (abfd
,
4860 MIPS_ELF_STUB_SECTION_NAME (abfd
)) == NULL
)
4862 s
= bfd_make_section (abfd
, MIPS_ELF_STUB_SECTION_NAME (abfd
));
4864 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_CODE
)
4865 || ! bfd_set_section_alignment (abfd
, s
,
4866 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
4870 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
4872 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
4874 s
= bfd_make_section (abfd
, ".rld_map");
4876 || ! bfd_set_section_flags (abfd
, s
, flags
&~ (flagword
) SEC_READONLY
)
4877 || ! bfd_set_section_alignment (abfd
, s
,
4878 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
4882 /* On IRIX5, we adjust add some additional symbols and change the
4883 alignments of several sections. There is no ABI documentation
4884 indicating that this is necessary on IRIX6, nor any evidence that
4885 the linker takes such action. */
4886 if (IRIX_COMPAT (abfd
) == ict_irix5
)
4888 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
4891 if (! (_bfd_generic_link_add_one_symbol
4892 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
,
4893 (bfd_vma
) 0, (const char *) NULL
, FALSE
,
4894 get_elf_backend_data (abfd
)->collect
, &bh
)))
4897 h
= (struct elf_link_hash_entry
*) bh
;
4898 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
4899 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
4900 h
->type
= STT_SECTION
;
4902 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
4906 /* We need to create a .compact_rel section. */
4907 if (SGI_COMPAT (abfd
))
4909 if (!mips_elf_create_compact_rel_section (abfd
, info
))
4913 /* Change alignments of some sections. */
4914 s
= bfd_get_section_by_name (abfd
, ".hash");
4916 bfd_set_section_alignment (abfd
, s
, 4);
4917 s
= bfd_get_section_by_name (abfd
, ".dynsym");
4919 bfd_set_section_alignment (abfd
, s
, 4);
4920 s
= bfd_get_section_by_name (abfd
, ".dynstr");
4922 bfd_set_section_alignment (abfd
, s
, 4);
4923 s
= bfd_get_section_by_name (abfd
, ".reginfo");
4925 bfd_set_section_alignment (abfd
, s
, 4);
4926 s
= bfd_get_section_by_name (abfd
, ".dynamic");
4928 bfd_set_section_alignment (abfd
, s
, 4);
4935 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4937 if (!(_bfd_generic_link_add_one_symbol
4938 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
4939 (bfd_vma
) 0, (const char *) NULL
, FALSE
,
4940 get_elf_backend_data (abfd
)->collect
, &bh
)))
4943 h
= (struct elf_link_hash_entry
*) bh
;
4944 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
4945 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
4946 h
->type
= STT_SECTION
;
4948 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
4951 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
4953 /* __rld_map is a four byte word located in the .data section
4954 and is filled in by the rtld to contain a pointer to
4955 the _r_debug structure. Its symbol value will be set in
4956 _bfd_mips_elf_finish_dynamic_symbol. */
4957 s
= bfd_get_section_by_name (abfd
, ".rld_map");
4958 BFD_ASSERT (s
!= NULL
);
4960 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
4962 if (!(_bfd_generic_link_add_one_symbol
4963 (info
, abfd
, name
, BSF_GLOBAL
, s
,
4964 (bfd_vma
) 0, (const char *) NULL
, FALSE
,
4965 get_elf_backend_data (abfd
)->collect
, &bh
)))
4968 h
= (struct elf_link_hash_entry
*) bh
;
4969 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
4970 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
4971 h
->type
= STT_OBJECT
;
4973 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
4981 /* Look through the relocs for a section during the first phase, and
4982 allocate space in the global offset table. */
4985 _bfd_mips_elf_check_relocs (abfd
, info
, sec
, relocs
)
4987 struct bfd_link_info
*info
;
4989 const Elf_Internal_Rela
*relocs
;
4993 Elf_Internal_Shdr
*symtab_hdr
;
4994 struct elf_link_hash_entry
**sym_hashes
;
4995 struct mips_got_info
*g
;
4997 const Elf_Internal_Rela
*rel
;
4998 const Elf_Internal_Rela
*rel_end
;
5001 struct elf_backend_data
*bed
;
5003 if (info
->relocateable
)
5006 dynobj
= elf_hash_table (info
)->dynobj
;
5007 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5008 sym_hashes
= elf_sym_hashes (abfd
);
5009 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
5011 /* Check for the mips16 stub sections. */
5013 name
= bfd_get_section_name (abfd
, sec
);
5014 if (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0)
5016 unsigned long r_symndx
;
5018 /* Look at the relocation information to figure out which symbol
5021 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
5023 if (r_symndx
< extsymoff
5024 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
5028 /* This stub is for a local symbol. This stub will only be
5029 needed if there is some relocation in this BFD, other
5030 than a 16 bit function call, which refers to this symbol. */
5031 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5033 Elf_Internal_Rela
*sec_relocs
;
5034 const Elf_Internal_Rela
*r
, *rend
;
5036 /* We can ignore stub sections when looking for relocs. */
5037 if ((o
->flags
& SEC_RELOC
) == 0
5038 || o
->reloc_count
== 0
5039 || strncmp (bfd_get_section_name (abfd
, o
), FN_STUB
,
5040 sizeof FN_STUB
- 1) == 0
5041 || strncmp (bfd_get_section_name (abfd
, o
), CALL_STUB
,
5042 sizeof CALL_STUB
- 1) == 0
5043 || strncmp (bfd_get_section_name (abfd
, o
), CALL_FP_STUB
,
5044 sizeof CALL_FP_STUB
- 1) == 0)
5047 sec_relocs
= (MNAME(abfd
,_bfd_elf
,link_read_relocs
)
5048 (abfd
, o
, (PTR
) NULL
,
5049 (Elf_Internal_Rela
*) NULL
,
5050 info
->keep_memory
));
5051 if (sec_relocs
== NULL
)
5054 rend
= sec_relocs
+ o
->reloc_count
;
5055 for (r
= sec_relocs
; r
< rend
; r
++)
5056 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
5057 && ELF_R_TYPE (abfd
, r
->r_info
) != R_MIPS16_26
)
5060 if (elf_section_data (o
)->relocs
!= sec_relocs
)
5069 /* There is no non-call reloc for this stub, so we do
5070 not need it. Since this function is called before
5071 the linker maps input sections to output sections, we
5072 can easily discard it by setting the SEC_EXCLUDE
5074 sec
->flags
|= SEC_EXCLUDE
;
5078 /* Record this stub in an array of local symbol stubs for
5080 if (elf_tdata (abfd
)->local_stubs
== NULL
)
5082 unsigned long symcount
;
5086 if (elf_bad_symtab (abfd
))
5087 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
5089 symcount
= symtab_hdr
->sh_info
;
5090 amt
= symcount
* sizeof (asection
*);
5091 n
= (asection
**) bfd_zalloc (abfd
, amt
);
5094 elf_tdata (abfd
)->local_stubs
= n
;
5097 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
5099 /* We don't need to set mips16_stubs_seen in this case.
5100 That flag is used to see whether we need to look through
5101 the global symbol table for stubs. We don't need to set
5102 it here, because we just have a local stub. */
5106 struct mips_elf_link_hash_entry
*h
;
5108 h
= ((struct mips_elf_link_hash_entry
*)
5109 sym_hashes
[r_symndx
- extsymoff
]);
5111 /* H is the symbol this stub is for. */
5114 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
5117 else if (strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
5118 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
5120 unsigned long r_symndx
;
5121 struct mips_elf_link_hash_entry
*h
;
5124 /* Look at the relocation information to figure out which symbol
5127 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
5129 if (r_symndx
< extsymoff
5130 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
5132 /* This stub was actually built for a static symbol defined
5133 in the same file. We assume that all static symbols in
5134 mips16 code are themselves mips16, so we can simply
5135 discard this stub. Since this function is called before
5136 the linker maps input sections to output sections, we can
5137 easily discard it by setting the SEC_EXCLUDE flag. */
5138 sec
->flags
|= SEC_EXCLUDE
;
5142 h
= ((struct mips_elf_link_hash_entry
*)
5143 sym_hashes
[r_symndx
- extsymoff
]);
5145 /* H is the symbol this stub is for. */
5147 if (strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
5148 loc
= &h
->call_fp_stub
;
5150 loc
= &h
->call_stub
;
5152 /* If we already have an appropriate stub for this function, we
5153 don't need another one, so we can discard this one. Since
5154 this function is called before the linker maps input sections
5155 to output sections, we can easily discard it by setting the
5156 SEC_EXCLUDE flag. We can also discard this section if we
5157 happen to already know that this is a mips16 function; it is
5158 not necessary to check this here, as it is checked later, but
5159 it is slightly faster to check now. */
5160 if (*loc
!= NULL
|| h
->root
.other
== STO_MIPS16
)
5162 sec
->flags
|= SEC_EXCLUDE
;
5167 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
5177 sgot
= mips_elf_got_section (dynobj
, FALSE
);
5182 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
5183 g
= mips_elf_section_data (sgot
)->u
.got_info
;
5184 BFD_ASSERT (g
!= NULL
);
5189 bed
= get_elf_backend_data (abfd
);
5190 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
5191 for (rel
= relocs
; rel
< rel_end
; ++rel
)
5193 unsigned long r_symndx
;
5194 unsigned int r_type
;
5195 struct elf_link_hash_entry
*h
;
5197 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
5198 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
5200 if (r_symndx
< extsymoff
)
5202 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
5204 (*_bfd_error_handler
)
5205 (_("%s: Malformed reloc detected for section %s"),
5206 bfd_archive_filename (abfd
), name
);
5207 bfd_set_error (bfd_error_bad_value
);
5212 h
= sym_hashes
[r_symndx
- extsymoff
];
5214 /* This may be an indirect symbol created because of a version. */
5217 while (h
->root
.type
== bfd_link_hash_indirect
)
5218 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5222 /* Some relocs require a global offset table. */
5223 if (dynobj
== NULL
|| sgot
== NULL
)
5229 case R_MIPS_CALL_HI16
:
5230 case R_MIPS_CALL_LO16
:
5231 case R_MIPS_GOT_HI16
:
5232 case R_MIPS_GOT_LO16
:
5233 case R_MIPS_GOT_PAGE
:
5234 case R_MIPS_GOT_OFST
:
5235 case R_MIPS_GOT_DISP
:
5237 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
5238 if (! mips_elf_create_got_section (dynobj
, info
, FALSE
))
5240 g
= mips_elf_got_info (dynobj
, &sgot
);
5247 && (info
->shared
|| h
!= NULL
)
5248 && (sec
->flags
& SEC_ALLOC
) != 0)
5249 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
5257 if (!h
&& (r_type
== R_MIPS_CALL_LO16
5258 || r_type
== R_MIPS_GOT_LO16
5259 || r_type
== R_MIPS_GOT_DISP
))
5261 /* We may need a local GOT entry for this relocation. We
5262 don't count R_MIPS_GOT_PAGE because we can estimate the
5263 maximum number of pages needed by looking at the size of
5264 the segment. Similar comments apply to R_MIPS_GOT16 and
5265 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5266 R_MIPS_CALL_HI16 because these are always followed by an
5267 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5268 if (! mips_elf_record_local_got_symbol (abfd
, r_symndx
,
5278 (*_bfd_error_handler
)
5279 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5280 bfd_archive_filename (abfd
), (unsigned long) rel
->r_offset
);
5281 bfd_set_error (bfd_error_bad_value
);
5286 case R_MIPS_CALL_HI16
:
5287 case R_MIPS_CALL_LO16
:
5290 /* This symbol requires a global offset table entry. */
5291 if (! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
))
5294 /* We need a stub, not a plt entry for the undefined
5295 function. But we record it as if it needs plt. See
5296 elf_adjust_dynamic_symbol in elflink.h. */
5297 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
5303 case R_MIPS_GOT_HI16
:
5304 case R_MIPS_GOT_LO16
:
5305 case R_MIPS_GOT_DISP
:
5306 /* This symbol requires a global offset table entry. */
5307 if (h
&& ! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
))
5314 if ((info
->shared
|| h
!= NULL
)
5315 && (sec
->flags
& SEC_ALLOC
) != 0)
5319 sreloc
= mips_elf_rel_dyn_section (dynobj
, TRUE
);
5323 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5326 /* When creating a shared object, we must copy these
5327 reloc types into the output file as R_MIPS_REL32
5328 relocs. We make room for this reloc in the
5329 .rel.dyn reloc section. */
5330 mips_elf_allocate_dynamic_relocations (dynobj
, 1);
5331 if ((sec
->flags
& MIPS_READONLY_SECTION
)
5332 == MIPS_READONLY_SECTION
)
5333 /* We tell the dynamic linker that there are
5334 relocations against the text segment. */
5335 info
->flags
|= DF_TEXTREL
;
5339 struct mips_elf_link_hash_entry
*hmips
;
5341 /* We only need to copy this reloc if the symbol is
5342 defined in a dynamic object. */
5343 hmips
= (struct mips_elf_link_hash_entry
*) h
;
5344 ++hmips
->possibly_dynamic_relocs
;
5345 if ((sec
->flags
& MIPS_READONLY_SECTION
)
5346 == MIPS_READONLY_SECTION
)
5347 /* We need it to tell the dynamic linker if there
5348 are relocations against the text segment. */
5349 hmips
->readonly_reloc
= TRUE
;
5352 /* Even though we don't directly need a GOT entry for
5353 this symbol, a symbol must have a dynamic symbol
5354 table index greater that DT_MIPS_GOTSYM if there are
5355 dynamic relocations against it. */
5359 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
5360 if (! mips_elf_create_got_section (dynobj
, info
, TRUE
))
5362 g
= mips_elf_got_info (dynobj
, &sgot
);
5363 if (! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
))
5368 if (SGI_COMPAT (abfd
))
5369 mips_elf_hash_table (info
)->compact_rel_size
+=
5370 sizeof (Elf32_External_crinfo
);
5374 case R_MIPS_GPREL16
:
5375 case R_MIPS_LITERAL
:
5376 case R_MIPS_GPREL32
:
5377 if (SGI_COMPAT (abfd
))
5378 mips_elf_hash_table (info
)->compact_rel_size
+=
5379 sizeof (Elf32_External_crinfo
);
5382 /* This relocation describes the C++ object vtable hierarchy.
5383 Reconstruct it for later use during GC. */
5384 case R_MIPS_GNU_VTINHERIT
:
5385 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
5389 /* This relocation describes which C++ vtable entries are actually
5390 used. Record for later use during GC. */
5391 case R_MIPS_GNU_VTENTRY
:
5392 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
5400 /* We must not create a stub for a symbol that has relocations
5401 related to taking the function's address. */
5407 struct mips_elf_link_hash_entry
*mh
;
5409 mh
= (struct mips_elf_link_hash_entry
*) h
;
5410 mh
->no_fn_stub
= TRUE
;
5414 case R_MIPS_CALL_HI16
:
5415 case R_MIPS_CALL_LO16
:
5419 /* If this reloc is not a 16 bit call, and it has a global
5420 symbol, then we will need the fn_stub if there is one.
5421 References from a stub section do not count. */
5423 && r_type
!= R_MIPS16_26
5424 && strncmp (bfd_get_section_name (abfd
, sec
), FN_STUB
,
5425 sizeof FN_STUB
- 1) != 0
5426 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_STUB
,
5427 sizeof CALL_STUB
- 1) != 0
5428 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_FP_STUB
,
5429 sizeof CALL_FP_STUB
- 1) != 0)
5431 struct mips_elf_link_hash_entry
*mh
;
5433 mh
= (struct mips_elf_link_hash_entry
*) h
;
5434 mh
->need_fn_stub
= TRUE
;
5441 /* Adjust a symbol defined by a dynamic object and referenced by a
5442 regular object. The current definition is in some section of the
5443 dynamic object, but we're not including those sections. We have to
5444 change the definition to something the rest of the link can
5448 _bfd_mips_elf_adjust_dynamic_symbol (info
, h
)
5449 struct bfd_link_info
*info
;
5450 struct elf_link_hash_entry
*h
;
5453 struct mips_elf_link_hash_entry
*hmips
;
5456 dynobj
= elf_hash_table (info
)->dynobj
;
5458 /* Make sure we know what is going on here. */
5459 BFD_ASSERT (dynobj
!= NULL
5460 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
5461 || h
->weakdef
!= NULL
5462 || ((h
->elf_link_hash_flags
5463 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
5464 && (h
->elf_link_hash_flags
5465 & ELF_LINK_HASH_REF_REGULAR
) != 0
5466 && (h
->elf_link_hash_flags
5467 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
5469 /* If this symbol is defined in a dynamic object, we need to copy
5470 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5472 hmips
= (struct mips_elf_link_hash_entry
*) h
;
5473 if (! info
->relocateable
5474 && hmips
->possibly_dynamic_relocs
!= 0
5475 && (h
->root
.type
== bfd_link_hash_defweak
5476 || (h
->elf_link_hash_flags
5477 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
5479 mips_elf_allocate_dynamic_relocations (dynobj
,
5480 hmips
->possibly_dynamic_relocs
);
5481 if (hmips
->readonly_reloc
)
5482 /* We tell the dynamic linker that there are relocations
5483 against the text segment. */
5484 info
->flags
|= DF_TEXTREL
;
5487 /* For a function, create a stub, if allowed. */
5488 if (! hmips
->no_fn_stub
5489 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
5491 if (! elf_hash_table (info
)->dynamic_sections_created
)
5494 /* If this symbol is not defined in a regular file, then set
5495 the symbol to the stub location. This is required to make
5496 function pointers compare as equal between the normal
5497 executable and the shared library. */
5498 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
5500 /* We need .stub section. */
5501 s
= bfd_get_section_by_name (dynobj
,
5502 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
5503 BFD_ASSERT (s
!= NULL
);
5505 h
->root
.u
.def
.section
= s
;
5506 h
->root
.u
.def
.value
= s
->_raw_size
;
5508 /* XXX Write this stub address somewhere. */
5509 h
->plt
.offset
= s
->_raw_size
;
5511 /* Make room for this stub code. */
5512 s
->_raw_size
+= MIPS_FUNCTION_STUB_SIZE
;
5514 /* The last half word of the stub will be filled with the index
5515 of this symbol in .dynsym section. */
5519 else if ((h
->type
== STT_FUNC
)
5520 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
5522 /* This will set the entry for this symbol in the GOT to 0, and
5523 the dynamic linker will take care of this. */
5524 h
->root
.u
.def
.value
= 0;
5528 /* If this is a weak symbol, and there is a real definition, the
5529 processor independent code will have arranged for us to see the
5530 real definition first, and we can just use the same value. */
5531 if (h
->weakdef
!= NULL
)
5533 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
5534 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
5535 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
5536 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
5540 /* This is a reference to a symbol defined by a dynamic object which
5541 is not a function. */
5546 /* This function is called after all the input files have been read,
5547 and the input sections have been assigned to output sections. We
5548 check for any mips16 stub sections that we can discard. */
5551 _bfd_mips_elf_always_size_sections (output_bfd
, info
)
5553 struct bfd_link_info
*info
;
5559 struct mips_got_info
*g
;
5561 bfd_size_type loadable_size
= 0;
5562 bfd_size_type local_gotno
;
5565 /* The .reginfo section has a fixed size. */
5566 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
5568 bfd_set_section_size (output_bfd
, ri
,
5569 (bfd_size_type
) sizeof (Elf32_External_RegInfo
));
5571 if (! (info
->relocateable
5572 || ! mips_elf_hash_table (info
)->mips16_stubs_seen
))
5573 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
5574 mips_elf_check_mips16_stubs
,
5577 dynobj
= elf_hash_table (info
)->dynobj
;
5579 /* Relocatable links don't have it. */
5582 g
= mips_elf_got_info (dynobj
, &s
);
5586 /* Calculate the total loadable size of the output. That
5587 will give us the maximum number of GOT_PAGE entries
5589 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
5591 asection
*subsection
;
5593 for (subsection
= sub
->sections
;
5595 subsection
= subsection
->next
)
5597 if ((subsection
->flags
& SEC_ALLOC
) == 0)
5599 loadable_size
+= ((subsection
->_raw_size
+ 0xf)
5600 &~ (bfd_size_type
) 0xf);
5604 /* There has to be a global GOT entry for every symbol with
5605 a dynamic symbol table index of DT_MIPS_GOTSYM or
5606 higher. Therefore, it make sense to put those symbols
5607 that need GOT entries at the end of the symbol table. We
5609 if (! mips_elf_sort_hash_table (info
, 1))
5612 if (g
->global_gotsym
!= NULL
)
5613 i
= elf_hash_table (info
)->dynsymcount
- g
->global_gotsym
->dynindx
;
5615 /* If there are no global symbols, or none requiring
5616 relocations, then GLOBAL_GOTSYM will be NULL. */
5619 /* In the worst case, we'll get one stub per dynamic symbol, plus
5620 one to account for the dummy entry at the end required by IRIX
5622 loadable_size
+= MIPS_FUNCTION_STUB_SIZE
* (i
+ 1);
5624 /* Assume there are two loadable segments consisting of
5625 contiguous sections. Is 5 enough? */
5626 local_gotno
= (loadable_size
>> 16) + 5;
5628 g
->local_gotno
+= local_gotno
;
5629 s
->_raw_size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
5631 g
->global_gotno
= i
;
5632 s
->_raw_size
+= i
* MIPS_ELF_GOT_SIZE (output_bfd
);
5634 if (s
->_raw_size
> MIPS_ELF_GOT_MAX_SIZE (output_bfd
)
5635 && ! mips_elf_multi_got (output_bfd
, info
, g
, s
, local_gotno
))
5641 /* Set the sizes of the dynamic sections. */
5644 _bfd_mips_elf_size_dynamic_sections (output_bfd
, info
)
5646 struct bfd_link_info
*info
;
5650 bfd_boolean reltext
;
5652 dynobj
= elf_hash_table (info
)->dynobj
;
5653 BFD_ASSERT (dynobj
!= NULL
);
5655 if (elf_hash_table (info
)->dynamic_sections_created
)
5657 /* Set the contents of the .interp section to the interpreter. */
5660 s
= bfd_get_section_by_name (dynobj
, ".interp");
5661 BFD_ASSERT (s
!= NULL
);
5663 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
5665 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
5669 /* The check_relocs and adjust_dynamic_symbol entry points have
5670 determined the sizes of the various dynamic sections. Allocate
5673 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
5678 /* It's OK to base decisions on the section name, because none
5679 of the dynobj section names depend upon the input files. */
5680 name
= bfd_get_section_name (dynobj
, s
);
5682 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
5687 if (strncmp (name
, ".rel", 4) == 0)
5689 if (s
->_raw_size
== 0)
5691 /* We only strip the section if the output section name
5692 has the same name. Otherwise, there might be several
5693 input sections for this output section. FIXME: This
5694 code is probably not needed these days anyhow, since
5695 the linker now does not create empty output sections. */
5696 if (s
->output_section
!= NULL
5698 bfd_get_section_name (s
->output_section
->owner
,
5699 s
->output_section
)) == 0)
5704 const char *outname
;
5707 /* If this relocation section applies to a read only
5708 section, then we probably need a DT_TEXTREL entry.
5709 If the relocation section is .rel.dyn, we always
5710 assert a DT_TEXTREL entry rather than testing whether
5711 there exists a relocation to a read only section or
5713 outname
= bfd_get_section_name (output_bfd
,
5715 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
5717 && (target
->flags
& SEC_READONLY
) != 0
5718 && (target
->flags
& SEC_ALLOC
) != 0)
5719 || strcmp (outname
, ".rel.dyn") == 0)
5722 /* We use the reloc_count field as a counter if we need
5723 to copy relocs into the output file. */
5724 if (strcmp (name
, ".rel.dyn") != 0)
5727 /* If combreloc is enabled, elf_link_sort_relocs() will
5728 sort relocations, but in a different way than we do,
5729 and before we're done creating relocations. Also, it
5730 will move them around between input sections'
5731 relocation's contents, so our sorting would be
5732 broken, so don't let it run. */
5733 info
->combreloc
= 0;
5736 else if (strncmp (name
, ".got", 4) == 0)
5738 /* _bfd_mips_elf_always_size_sections() has already done
5739 most of the work, but some symbols may have been mapped
5740 to versions that we must now resolve in the got_entries
5742 struct mips_got_info
*gg
= mips_elf_got_info (dynobj
, NULL
);
5743 struct mips_got_info
*g
= gg
;
5744 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
5745 unsigned int needed_relocs
= 0;
5749 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (output_bfd
);
5750 set_got_offset_arg
.info
= info
;
5752 mips_elf_resolve_final_got_entries (gg
);
5753 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
5755 unsigned int save_assign
;
5757 mips_elf_resolve_final_got_entries (g
);
5759 /* Assign offsets to global GOT entries. */
5760 save_assign
= g
->assigned_gotno
;
5761 g
->assigned_gotno
= g
->local_gotno
;
5762 set_got_offset_arg
.g
= g
;
5763 set_got_offset_arg
.needed_relocs
= 0;
5764 htab_traverse (g
->got_entries
,
5765 mips_elf_set_global_got_offset
,
5766 &set_got_offset_arg
);
5767 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
5768 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
5769 <= g
->global_gotno
);
5771 g
->assigned_gotno
= save_assign
;
5774 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
5775 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
5776 + g
->next
->global_gotno
5777 + MIPS_RESERVED_GOTNO
);
5782 mips_elf_allocate_dynamic_relocations (dynobj
, needed_relocs
);
5785 else if (strcmp (name
, MIPS_ELF_STUB_SECTION_NAME (output_bfd
)) == 0)
5787 /* IRIX rld assumes that the function stub isn't at the end
5788 of .text section. So put a dummy. XXX */
5789 s
->_raw_size
+= MIPS_FUNCTION_STUB_SIZE
;
5791 else if (! info
->shared
5792 && ! mips_elf_hash_table (info
)->use_rld_obj_head
5793 && strncmp (name
, ".rld_map", 8) == 0)
5795 /* We add a room for __rld_map. It will be filled in by the
5796 rtld to contain a pointer to the _r_debug structure. */
5799 else if (SGI_COMPAT (output_bfd
)
5800 && strncmp (name
, ".compact_rel", 12) == 0)
5801 s
->_raw_size
+= mips_elf_hash_table (info
)->compact_rel_size
;
5802 else if (strcmp (name
, ".msym") == 0)
5803 s
->_raw_size
= (sizeof (Elf32_External_Msym
)
5804 * (elf_hash_table (info
)->dynsymcount
5805 + bfd_count_sections (output_bfd
)));
5806 else if (strncmp (name
, ".init", 5) != 0)
5808 /* It's not one of our sections, so don't allocate space. */
5814 _bfd_strip_section_from_output (info
, s
);
5818 /* Allocate memory for the section contents. */
5819 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
5820 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
5822 bfd_set_error (bfd_error_no_memory
);
5827 if (elf_hash_table (info
)->dynamic_sections_created
)
5829 /* Add some entries to the .dynamic section. We fill in the
5830 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
5831 must add the entries now so that we get the correct size for
5832 the .dynamic section. The DT_DEBUG entry is filled in by the
5833 dynamic linker and used by the debugger. */
5836 /* SGI object has the equivalence of DT_DEBUG in the
5837 DT_MIPS_RLD_MAP entry. */
5838 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
5840 if (!SGI_COMPAT (output_bfd
))
5842 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
5848 /* Shared libraries on traditional mips have DT_DEBUG. */
5849 if (!SGI_COMPAT (output_bfd
))
5851 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
5856 if (reltext
&& SGI_COMPAT (output_bfd
))
5857 info
->flags
|= DF_TEXTREL
;
5859 if ((info
->flags
& DF_TEXTREL
) != 0)
5861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
5865 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
5868 if (mips_elf_rel_dyn_section (dynobj
, FALSE
))
5870 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
5873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
5876 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
5880 if (SGI_COMPAT (output_bfd
))
5882 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_CONFLICTNO
, 0))
5886 if (SGI_COMPAT (output_bfd
))
5888 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LIBLISTNO
, 0))
5892 if (bfd_get_section_by_name (dynobj
, ".conflict") != NULL
)
5894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_CONFLICT
, 0))
5897 s
= bfd_get_section_by_name (dynobj
, ".liblist");
5898 BFD_ASSERT (s
!= NULL
);
5900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LIBLIST
, 0))
5904 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
5907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
5911 /* Time stamps in executable files are a bad idea. */
5912 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_TIME_STAMP
, 0))
5917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_ICHECKSUM
, 0))
5922 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_IVERSION
, 0))
5926 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
5929 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
5932 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
5935 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
5938 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
5941 if (IRIX_COMPAT (dynobj
) == ict_irix5
5942 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
5945 if (IRIX_COMPAT (dynobj
) == ict_irix6
5946 && (bfd_get_section_by_name
5947 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
5948 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
5951 if (bfd_get_section_by_name (dynobj
, ".msym")
5952 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_MSYM
, 0))
5959 /* Relocate a MIPS ELF section. */
5962 _bfd_mips_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
5963 contents
, relocs
, local_syms
, local_sections
)
5965 struct bfd_link_info
*info
;
5967 asection
*input_section
;
5969 Elf_Internal_Rela
*relocs
;
5970 Elf_Internal_Sym
*local_syms
;
5971 asection
**local_sections
;
5973 Elf_Internal_Rela
*rel
;
5974 const Elf_Internal_Rela
*relend
;
5976 bfd_boolean use_saved_addend_p
= FALSE
;
5977 struct elf_backend_data
*bed
;
5979 bed
= get_elf_backend_data (output_bfd
);
5980 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
5981 for (rel
= relocs
; rel
< relend
; ++rel
)
5985 reloc_howto_type
*howto
;
5986 bfd_boolean require_jalx
;
5987 /* TRUE if the relocation is a RELA relocation, rather than a
5989 bfd_boolean rela_relocation_p
= TRUE
;
5990 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
5991 const char * msg
= (const char *) NULL
;
5993 /* Find the relocation howto for this relocation. */
5994 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
5996 /* Some 32-bit code uses R_MIPS_64. In particular, people use
5997 64-bit code, but make sure all their addresses are in the
5998 lowermost or uppermost 32-bit section of the 64-bit address
5999 space. Thus, when they use an R_MIPS_64 they mean what is
6000 usually meant by R_MIPS_32, with the exception that the
6001 stored value is sign-extended to 64 bits. */
6002 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
6004 /* On big-endian systems, we need to lie about the position
6006 if (bfd_big_endian (input_bfd
))
6010 /* NewABI defaults to RELA relocations. */
6011 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
,
6012 NEWABI_P (input_bfd
)
6013 && (MIPS_RELOC_RELA_P
6014 (input_bfd
, input_section
,
6017 if (!use_saved_addend_p
)
6019 Elf_Internal_Shdr
*rel_hdr
;
6021 /* If these relocations were originally of the REL variety,
6022 we must pull the addend out of the field that will be
6023 relocated. Otherwise, we simply use the contents of the
6024 RELA relocation. To determine which flavor or relocation
6025 this is, we depend on the fact that the INPUT_SECTION's
6026 REL_HDR is read before its REL_HDR2. */
6027 rel_hdr
= &elf_section_data (input_section
)->rel_hdr
;
6028 if ((size_t) (rel
- relocs
)
6029 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
6030 rel_hdr
= elf_section_data (input_section
)->rel_hdr2
;
6031 if (rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (input_bfd
))
6033 /* Note that this is a REL relocation. */
6034 rela_relocation_p
= FALSE
;
6036 /* Get the addend, which is stored in the input file. */
6037 addend
= mips_elf_obtain_contents (howto
, rel
, input_bfd
,
6039 addend
&= howto
->src_mask
;
6040 addend
<<= howto
->rightshift
;
6042 /* For some kinds of relocations, the ADDEND is a
6043 combination of the addend stored in two different
6045 if (r_type
== R_MIPS_HI16
6046 || r_type
== R_MIPS_GNU_REL_HI16
6047 || (r_type
== R_MIPS_GOT16
6048 && mips_elf_local_relocation_p (input_bfd
, rel
,
6049 local_sections
, FALSE
)))
6052 const Elf_Internal_Rela
*lo16_relocation
;
6053 reloc_howto_type
*lo16_howto
;
6056 /* The combined value is the sum of the HI16 addend,
6057 left-shifted by sixteen bits, and the LO16
6058 addend, sign extended. (Usually, the code does
6059 a `lui' of the HI16 value, and then an `addiu' of
6062 Scan ahead to find a matching LO16 relocation. */
6063 if (r_type
== R_MIPS_GNU_REL_HI16
)
6064 lo
= R_MIPS_GNU_REL_LO16
;
6067 lo16_relocation
= mips_elf_next_relocation (input_bfd
, lo
,
6069 if (lo16_relocation
== NULL
)
6072 /* Obtain the addend kept there. */
6073 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, lo
, FALSE
);
6074 l
= mips_elf_obtain_contents (lo16_howto
, lo16_relocation
,
6075 input_bfd
, contents
);
6076 l
&= lo16_howto
->src_mask
;
6077 l
<<= lo16_howto
->rightshift
;
6078 l
= mips_elf_sign_extend (l
, 16);
6082 /* Compute the combined addend. */
6085 /* If PC-relative, subtract the difference between the
6086 address of the LO part of the reloc and the address of
6087 the HI part. The relocation is relative to the LO
6088 part, but mips_elf_calculate_relocation() doesn't
6089 know its address or the difference from the HI part, so
6090 we subtract that difference here. See also the
6091 comment in mips_elf_calculate_relocation(). */
6092 if (r_type
== R_MIPS_GNU_REL_HI16
)
6093 addend
-= (lo16_relocation
->r_offset
- rel
->r_offset
);
6095 else if (r_type
== R_MIPS16_GPREL
)
6097 /* The addend is scrambled in the object file. See
6098 mips_elf_perform_relocation for details on the
6100 addend
= (((addend
& 0x1f0000) >> 5)
6101 | ((addend
& 0x7e00000) >> 16)
6106 addend
= rel
->r_addend
;
6109 if (info
->relocateable
)
6111 Elf_Internal_Sym
*sym
;
6112 unsigned long r_symndx
;
6114 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
6115 && bfd_big_endian (input_bfd
))
6118 /* Since we're just relocating, all we need to do is copy
6119 the relocations back out to the object file, unless
6120 they're against a section symbol, in which case we need
6121 to adjust by the section offset, or unless they're GP
6122 relative in which case we need to adjust by the amount
6123 that we're adjusting GP in this relocateable object. */
6125 if (! mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
,
6127 /* There's nothing to do for non-local relocations. */
6130 if (r_type
== R_MIPS16_GPREL
6131 || r_type
== R_MIPS_GPREL16
6132 || r_type
== R_MIPS_GPREL32
6133 || r_type
== R_MIPS_LITERAL
)
6134 addend
-= (_bfd_get_gp_value (output_bfd
)
6135 - _bfd_get_gp_value (input_bfd
));
6137 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
6138 sym
= local_syms
+ r_symndx
;
6139 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
6140 /* Adjust the addend appropriately. */
6141 addend
+= local_sections
[r_symndx
]->output_offset
;
6143 if (howto
->partial_inplace
)
6145 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6146 then we only want to write out the high-order 16 bits.
6147 The subsequent R_MIPS_LO16 will handle the low-order bits.
6149 if (r_type
== R_MIPS_HI16
|| r_type
== R_MIPS_GOT16
6150 || r_type
== R_MIPS_GNU_REL_HI16
)
6151 addend
= mips_elf_high (addend
);
6152 else if (r_type
== R_MIPS_HIGHER
)
6153 addend
= mips_elf_higher (addend
);
6154 else if (r_type
== R_MIPS_HIGHEST
)
6155 addend
= mips_elf_highest (addend
);
6158 if (rela_relocation_p
)
6159 /* If this is a RELA relocation, just update the addend.
6160 We have to cast away constness for REL. */
6161 rel
->r_addend
= addend
;
6164 /* Otherwise, we have to write the value back out. Note
6165 that we use the source mask, rather than the
6166 destination mask because the place to which we are
6167 writing will be source of the addend in the final
6169 addend
>>= howto
->rightshift
;
6170 addend
&= howto
->src_mask
;
6172 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
6173 /* See the comment above about using R_MIPS_64 in the 32-bit
6174 ABI. Here, we need to update the addend. It would be
6175 possible to get away with just using the R_MIPS_32 reloc
6176 but for endianness. */
6182 if (addend
& ((bfd_vma
) 1 << 31))
6184 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
6191 /* If we don't know that we have a 64-bit type,
6192 do two separate stores. */
6193 if (bfd_big_endian (input_bfd
))
6195 /* Store the sign-bits (which are most significant)
6197 low_bits
= sign_bits
;
6203 high_bits
= sign_bits
;
6205 bfd_put_32 (input_bfd
, low_bits
,
6206 contents
+ rel
->r_offset
);
6207 bfd_put_32 (input_bfd
, high_bits
,
6208 contents
+ rel
->r_offset
+ 4);
6212 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
6213 input_bfd
, input_section
,
6218 /* Go on to the next relocation. */
6222 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6223 relocations for the same offset. In that case we are
6224 supposed to treat the output of each relocation as the addend
6226 if (rel
+ 1 < relend
6227 && rel
->r_offset
== rel
[1].r_offset
6228 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
6229 use_saved_addend_p
= TRUE
;
6231 use_saved_addend_p
= FALSE
;
6233 addend
>>= howto
->rightshift
;
6235 /* Figure out what value we are supposed to relocate. */
6236 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
6237 input_section
, info
, rel
,
6238 addend
, howto
, local_syms
,
6239 local_sections
, &value
,
6240 &name
, &require_jalx
,
6241 use_saved_addend_p
))
6243 case bfd_reloc_continue
:
6244 /* There's nothing to do. */
6247 case bfd_reloc_undefined
:
6248 /* mips_elf_calculate_relocation already called the
6249 undefined_symbol callback. There's no real point in
6250 trying to perform the relocation at this point, so we
6251 just skip ahead to the next relocation. */
6254 case bfd_reloc_notsupported
:
6255 msg
= _("internal error: unsupported relocation error");
6256 info
->callbacks
->warning
6257 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
6260 case bfd_reloc_overflow
:
6261 if (use_saved_addend_p
)
6262 /* Ignore overflow until we reach the last relocation for
6263 a given location. */
6267 BFD_ASSERT (name
!= NULL
);
6268 if (! ((*info
->callbacks
->reloc_overflow
)
6269 (info
, name
, howto
->name
, (bfd_vma
) 0,
6270 input_bfd
, input_section
, rel
->r_offset
)))
6283 /* If we've got another relocation for the address, keep going
6284 until we reach the last one. */
6285 if (use_saved_addend_p
)
6291 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
6292 /* See the comment above about using R_MIPS_64 in the 32-bit
6293 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6294 that calculated the right value. Now, however, we
6295 sign-extend the 32-bit result to 64-bits, and store it as a
6296 64-bit value. We are especially generous here in that we
6297 go to extreme lengths to support this usage on systems with
6298 only a 32-bit VMA. */
6304 if (value
& ((bfd_vma
) 1 << 31))
6306 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
6313 /* If we don't know that we have a 64-bit type,
6314 do two separate stores. */
6315 if (bfd_big_endian (input_bfd
))
6317 /* Undo what we did above. */
6319 /* Store the sign-bits (which are most significant)
6321 low_bits
= sign_bits
;
6327 high_bits
= sign_bits
;
6329 bfd_put_32 (input_bfd
, low_bits
,
6330 contents
+ rel
->r_offset
);
6331 bfd_put_32 (input_bfd
, high_bits
,
6332 contents
+ rel
->r_offset
+ 4);
6336 /* Actually perform the relocation. */
6337 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
6338 input_bfd
, input_section
,
6339 contents
, require_jalx
))
6346 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6347 adjust it appropriately now. */
6350 mips_elf_irix6_finish_dynamic_symbol (abfd
, name
, sym
)
6351 bfd
*abfd ATTRIBUTE_UNUSED
;
6353 Elf_Internal_Sym
*sym
;
6355 /* The linker script takes care of providing names and values for
6356 these, but we must place them into the right sections. */
6357 static const char* const text_section_symbols
[] = {
6360 "__dso_displacement",
6362 "__program_header_table",
6366 static const char* const data_section_symbols
[] = {
6374 const char* const *p
;
6377 for (i
= 0; i
< 2; ++i
)
6378 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
6381 if (strcmp (*p
, name
) == 0)
6383 /* All of these symbols are given type STT_SECTION by the
6385 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6387 /* The IRIX linker puts these symbols in special sections. */
6389 sym
->st_shndx
= SHN_MIPS_TEXT
;
6391 sym
->st_shndx
= SHN_MIPS_DATA
;
6397 /* Finish up dynamic symbol handling. We set the contents of various
6398 dynamic sections here. */
6401 _bfd_mips_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
6403 struct bfd_link_info
*info
;
6404 struct elf_link_hash_entry
*h
;
6405 Elf_Internal_Sym
*sym
;
6411 struct mips_got_info
*g
, *gg
;
6413 struct mips_elf_link_hash_entry
*mh
;
6415 dynobj
= elf_hash_table (info
)->dynobj
;
6416 gval
= sym
->st_value
;
6417 mh
= (struct mips_elf_link_hash_entry
*) h
;
6419 if (h
->plt
.offset
!= (bfd_vma
) -1)
6422 bfd_byte stub
[MIPS_FUNCTION_STUB_SIZE
];
6424 /* This symbol has a stub. Set it up. */
6426 BFD_ASSERT (h
->dynindx
!= -1);
6428 s
= bfd_get_section_by_name (dynobj
,
6429 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
6430 BFD_ASSERT (s
!= NULL
);
6432 /* FIXME: Can h->dynindex be more than 64K? */
6433 if (h
->dynindx
& 0xffff0000)
6436 /* Fill the stub. */
6437 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
);
6438 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ 4);
6439 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ 8);
6440 bfd_put_32 (output_bfd
, STUB_LI16 (output_bfd
) + h
->dynindx
, stub
+ 12);
6442 BFD_ASSERT (h
->plt
.offset
<= s
->_raw_size
);
6443 memcpy (s
->contents
+ h
->plt
.offset
, stub
, MIPS_FUNCTION_STUB_SIZE
);
6445 /* Mark the symbol as undefined. plt.offset != -1 occurs
6446 only for the referenced symbol. */
6447 sym
->st_shndx
= SHN_UNDEF
;
6449 /* The run-time linker uses the st_value field of the symbol
6450 to reset the global offset table entry for this external
6451 to its stub address when unlinking a shared object. */
6452 gval
= s
->output_section
->vma
+ s
->output_offset
+ h
->plt
.offset
;
6453 sym
->st_value
= gval
;
6456 BFD_ASSERT (h
->dynindx
!= -1
6457 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0);
6459 sgot
= mips_elf_got_section (dynobj
, FALSE
);
6460 BFD_ASSERT (sgot
!= NULL
);
6461 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
6462 g
= mips_elf_section_data (sgot
)->u
.got_info
;
6463 BFD_ASSERT (g
!= NULL
);
6465 /* Run through the global symbol table, creating GOT entries for all
6466 the symbols that need them. */
6467 if (g
->global_gotsym
!= NULL
6468 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
6474 value
= sym
->st_value
;
6477 /* For an entity defined in a shared object, this will be
6478 NULL. (For functions in shared objects for
6479 which we have created stubs, ST_VALUE will be non-NULL.
6480 That's because such the functions are now no longer defined
6481 in a shared object.) */
6483 if ((info
->shared
&& h
->root
.type
== bfd_link_hash_undefined
)
6484 || h
->root
.type
== bfd_link_hash_undefweak
)
6487 value
= h
->root
.u
.def
.value
;
6489 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
);
6490 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
6493 if (g
->next
&& h
->dynindx
!= -1)
6495 struct mips_got_entry e
, *p
;
6498 Elf_Internal_Rela rel
[3];
6503 e
.abfd
= output_bfd
;
6505 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
6508 || h
->root
.type
== bfd_link_hash_undefined
6509 || h
->root
.type
== bfd_link_hash_undefweak
)
6511 else if (sym
->st_value
)
6512 value
= sym
->st_value
;
6514 value
= h
->root
.u
.def
.value
;
6516 memset (rel
, 0, sizeof (rel
));
6517 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
6519 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
6522 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
6526 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
6528 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
6531 || (elf_hash_table (info
)->dynamic_sections_created
6533 && ((p
->d
.h
->root
.elf_link_hash_flags
6534 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
6535 && ((p
->d
.h
->root
.elf_link_hash_flags
6536 & ELF_LINK_HASH_DEF_REGULAR
) == 0)))
6537 && ! (mips_elf_create_dynamic_relocation
6538 (output_bfd
, info
, rel
,
6539 e
.d
.h
, NULL
, value
, &addend
, sgot
)))
6541 BFD_ASSERT (addend
== 0);
6546 /* Create a .msym entry, if appropriate. */
6547 smsym
= bfd_get_section_by_name (dynobj
, ".msym");
6550 Elf32_Internal_Msym msym
;
6552 msym
.ms_hash_value
= bfd_elf_hash (h
->root
.root
.string
);
6553 /* It is undocumented what the `1' indicates, but IRIX6 uses
6555 msym
.ms_info
= ELF32_MS_INFO (mh
->min_dyn_reloc_index
, 1);
6556 bfd_mips_elf_swap_msym_out
6558 ((Elf32_External_Msym
*) smsym
->contents
) + h
->dynindx
);
6561 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6562 name
= h
->root
.root
.string
;
6563 if (strcmp (name
, "_DYNAMIC") == 0
6564 || strcmp (name
, "_GLOBAL_OFFSET_TABLE_") == 0)
6565 sym
->st_shndx
= SHN_ABS
;
6566 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
6567 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
6569 sym
->st_shndx
= SHN_ABS
;
6570 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6573 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
6575 sym
->st_shndx
= SHN_ABS
;
6576 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6577 sym
->st_value
= elf_gp (output_bfd
);
6579 else if (SGI_COMPAT (output_bfd
))
6581 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
6582 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
6584 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6585 sym
->st_other
= STO_PROTECTED
;
6587 sym
->st_shndx
= SHN_MIPS_DATA
;
6589 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
6591 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6592 sym
->st_other
= STO_PROTECTED
;
6593 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
6594 sym
->st_shndx
= SHN_ABS
;
6596 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
6598 if (h
->type
== STT_FUNC
)
6599 sym
->st_shndx
= SHN_MIPS_TEXT
;
6600 else if (h
->type
== STT_OBJECT
)
6601 sym
->st_shndx
= SHN_MIPS_DATA
;
6605 /* Handle the IRIX6-specific symbols. */
6606 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
6607 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
6611 if (! mips_elf_hash_table (info
)->use_rld_obj_head
6612 && (strcmp (name
, "__rld_map") == 0
6613 || strcmp (name
, "__RLD_MAP") == 0))
6615 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
6616 BFD_ASSERT (s
!= NULL
);
6617 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
6618 bfd_put_32 (output_bfd
, (bfd_vma
) 0, s
->contents
);
6619 if (mips_elf_hash_table (info
)->rld_value
== 0)
6620 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
6622 else if (mips_elf_hash_table (info
)->use_rld_obj_head
6623 && strcmp (name
, "__rld_obj_head") == 0)
6625 /* IRIX6 does not use a .rld_map section. */
6626 if (IRIX_COMPAT (output_bfd
) == ict_irix5
6627 || IRIX_COMPAT (output_bfd
) == ict_none
)
6628 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
6630 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
6634 /* If this is a mips16 symbol, force the value to be even. */
6635 if (sym
->st_other
== STO_MIPS16
6636 && (sym
->st_value
& 1) != 0)
6642 /* Finish up the dynamic sections. */
6645 _bfd_mips_elf_finish_dynamic_sections (output_bfd
, info
)
6647 struct bfd_link_info
*info
;
6652 struct mips_got_info
*gg
, *g
;
6654 dynobj
= elf_hash_table (info
)->dynobj
;
6656 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
6658 sgot
= mips_elf_got_section (dynobj
, FALSE
);
6663 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
6664 gg
= mips_elf_section_data (sgot
)->u
.got_info
;
6665 BFD_ASSERT (gg
!= NULL
);
6666 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
6667 BFD_ASSERT (g
!= NULL
);
6670 if (elf_hash_table (info
)->dynamic_sections_created
)
6674 BFD_ASSERT (sdyn
!= NULL
);
6675 BFD_ASSERT (g
!= NULL
);
6677 for (b
= sdyn
->contents
;
6678 b
< sdyn
->contents
+ sdyn
->_raw_size
;
6679 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
6681 Elf_Internal_Dyn dyn
;
6685 bfd_boolean swap_out_p
;
6687 /* Read in the current dynamic entry. */
6688 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
6690 /* Assume that we're going to modify it and write it out. */
6696 s
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
6697 BFD_ASSERT (s
!= NULL
);
6698 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
6702 /* Rewrite DT_STRSZ. */
6704 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6710 case DT_MIPS_CONFLICT
:
6713 case DT_MIPS_LIBLIST
:
6716 s
= bfd_get_section_by_name (output_bfd
, name
);
6717 BFD_ASSERT (s
!= NULL
);
6718 dyn
.d_un
.d_ptr
= s
->vma
;
6721 case DT_MIPS_RLD_VERSION
:
6722 dyn
.d_un
.d_val
= 1; /* XXX */
6726 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
6729 case DT_MIPS_CONFLICTNO
:
6731 elemsize
= sizeof (Elf32_Conflict
);
6734 case DT_MIPS_LIBLISTNO
:
6736 elemsize
= sizeof (Elf32_Lib
);
6738 s
= bfd_get_section_by_name (output_bfd
, name
);
6741 if (s
->_cooked_size
!= 0)
6742 dyn
.d_un
.d_val
= s
->_cooked_size
/ elemsize
;
6744 dyn
.d_un
.d_val
= s
->_raw_size
/ elemsize
;
6750 case DT_MIPS_TIME_STAMP
:
6751 time ((time_t *) &dyn
.d_un
.d_val
);
6754 case DT_MIPS_ICHECKSUM
:
6759 case DT_MIPS_IVERSION
:
6764 case DT_MIPS_BASE_ADDRESS
:
6765 s
= output_bfd
->sections
;
6766 BFD_ASSERT (s
!= NULL
);
6767 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
6770 case DT_MIPS_LOCAL_GOTNO
:
6771 dyn
.d_un
.d_val
= g
->local_gotno
;
6774 case DT_MIPS_UNREFEXTNO
:
6775 /* The index into the dynamic symbol table which is the
6776 entry of the first external symbol that is not
6777 referenced within the same object. */
6778 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
6781 case DT_MIPS_GOTSYM
:
6782 if (gg
->global_gotsym
)
6784 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
6787 /* In case if we don't have global got symbols we default
6788 to setting DT_MIPS_GOTSYM to the same value as
6789 DT_MIPS_SYMTABNO, so we just fall through. */
6791 case DT_MIPS_SYMTABNO
:
6793 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
6794 s
= bfd_get_section_by_name (output_bfd
, name
);
6795 BFD_ASSERT (s
!= NULL
);
6797 if (s
->_cooked_size
!= 0)
6798 dyn
.d_un
.d_val
= s
->_cooked_size
/ elemsize
;
6800 dyn
.d_un
.d_val
= s
->_raw_size
/ elemsize
;
6803 case DT_MIPS_HIPAGENO
:
6804 dyn
.d_un
.d_val
= g
->local_gotno
- MIPS_RESERVED_GOTNO
;
6807 case DT_MIPS_RLD_MAP
:
6808 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
6811 case DT_MIPS_OPTIONS
:
6812 s
= (bfd_get_section_by_name
6813 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
6814 dyn
.d_un
.d_ptr
= s
->vma
;
6818 s
= (bfd_get_section_by_name (output_bfd
, ".msym"));
6819 dyn
.d_un
.d_ptr
= s
->vma
;
6828 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
6833 /* The first entry of the global offset table will be filled at
6834 runtime. The second entry will be used by some runtime loaders.
6835 This isn't the case of IRIX rld. */
6836 if (sgot
!= NULL
&& sgot
->_raw_size
> 0)
6838 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
6839 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0x80000000,
6840 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
6844 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
6845 = MIPS_ELF_GOT_SIZE (output_bfd
);
6847 /* Generate dynamic relocations for the non-primary gots. */
6848 if (gg
!= NULL
&& gg
->next
)
6850 Elf_Internal_Rela rel
[3];
6853 memset (rel
, 0, sizeof (rel
));
6854 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
6856 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
6858 bfd_vma index
= g
->next
->local_gotno
+ g
->next
->global_gotno
;
6860 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
6861 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
6862 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0x80000000, sgot
->contents
6863 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
6868 while (index
< g
->assigned_gotno
)
6870 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
6871 = index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
6872 if (!(mips_elf_create_dynamic_relocation
6873 (output_bfd
, info
, rel
, NULL
,
6874 bfd_abs_section_ptr
,
6877 BFD_ASSERT (addend
== 0);
6885 Elf32_compact_rel cpt
;
6887 /* ??? The section symbols for the output sections were set up in
6888 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
6889 symbols. Should we do so? */
6891 smsym
= bfd_get_section_by_name (dynobj
, ".msym");
6894 Elf32_Internal_Msym msym
;
6896 msym
.ms_hash_value
= 0;
6897 msym
.ms_info
= ELF32_MS_INFO (0, 1);
6899 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6901 long dynindx
= elf_section_data (s
)->dynindx
;
6903 bfd_mips_elf_swap_msym_out
6905 (((Elf32_External_Msym
*) smsym
->contents
)
6910 if (SGI_COMPAT (output_bfd
))
6912 /* Write .compact_rel section out. */
6913 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
6917 cpt
.num
= s
->reloc_count
;
6919 cpt
.offset
= (s
->output_section
->filepos
6920 + sizeof (Elf32_External_compact_rel
));
6923 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
6924 ((Elf32_External_compact_rel
*)
6927 /* Clean up a dummy stub function entry in .text. */
6928 s
= bfd_get_section_by_name (dynobj
,
6929 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
6932 file_ptr dummy_offset
;
6934 BFD_ASSERT (s
->_raw_size
>= MIPS_FUNCTION_STUB_SIZE
);
6935 dummy_offset
= s
->_raw_size
- MIPS_FUNCTION_STUB_SIZE
;
6936 memset (s
->contents
+ dummy_offset
, 0,
6937 MIPS_FUNCTION_STUB_SIZE
);
6942 /* We need to sort the entries of the dynamic relocation section. */
6944 s
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
6947 && s
->_raw_size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
6949 reldyn_sorting_bfd
= output_bfd
;
6951 if (ABI_64_P (output_bfd
))
6952 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
6953 (size_t) s
->reloc_count
- 1,
6954 sizeof (Elf64_Mips_External_Rel
), sort_dynamic_relocs_64
);
6956 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
6957 (size_t) s
->reloc_count
- 1,
6958 sizeof (Elf32_External_Rel
), sort_dynamic_relocs
);
6966 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
6969 mips_set_isa_flags (abfd
)
6974 switch (bfd_get_mach (abfd
))
6977 case bfd_mach_mips3000
:
6978 val
= E_MIPS_ARCH_1
;
6981 case bfd_mach_mips3900
:
6982 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
6985 case bfd_mach_mips6000
:
6986 val
= E_MIPS_ARCH_2
;
6989 case bfd_mach_mips4000
:
6990 case bfd_mach_mips4300
:
6991 case bfd_mach_mips4400
:
6992 case bfd_mach_mips4600
:
6993 val
= E_MIPS_ARCH_3
;
6996 case bfd_mach_mips4010
:
6997 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
7000 case bfd_mach_mips4100
:
7001 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
7004 case bfd_mach_mips4111
:
7005 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
7008 case bfd_mach_mips4120
:
7009 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
7012 case bfd_mach_mips4650
:
7013 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
7016 case bfd_mach_mips5400
:
7017 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
7020 case bfd_mach_mips5500
:
7021 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
7024 case bfd_mach_mips5000
:
7025 case bfd_mach_mips8000
:
7026 case bfd_mach_mips10000
:
7027 case bfd_mach_mips12000
:
7028 val
= E_MIPS_ARCH_4
;
7031 case bfd_mach_mips5
:
7032 val
= E_MIPS_ARCH_5
;
7035 case bfd_mach_mips_sb1
:
7036 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
7039 case bfd_mach_mipsisa32
:
7040 val
= E_MIPS_ARCH_32
;
7043 case bfd_mach_mipsisa64
:
7044 val
= E_MIPS_ARCH_64
;
7047 case bfd_mach_mipsisa32r2
:
7048 val
= E_MIPS_ARCH_32R2
;
7051 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
7052 elf_elfheader (abfd
)->e_flags
|= val
;
7057 /* The final processing done just before writing out a MIPS ELF object
7058 file. This gets the MIPS architecture right based on the machine
7059 number. This is used by both the 32-bit and the 64-bit ABI. */
7062 _bfd_mips_elf_final_write_processing (abfd
, linker
)
7064 bfd_boolean linker ATTRIBUTE_UNUSED
;
7067 Elf_Internal_Shdr
**hdrpp
;
7071 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7072 is nonzero. This is for compatibility with old objects, which used
7073 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7074 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
7075 mips_set_isa_flags (abfd
);
7077 /* Set the sh_info field for .gptab sections and other appropriate
7078 info for each special section. */
7079 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
7080 i
< elf_numsections (abfd
);
7083 switch ((*hdrpp
)->sh_type
)
7086 case SHT_MIPS_LIBLIST
:
7087 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
7089 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
7092 case SHT_MIPS_GPTAB
:
7093 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
7094 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
7095 BFD_ASSERT (name
!= NULL
7096 && strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0);
7097 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
7098 BFD_ASSERT (sec
!= NULL
);
7099 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
7102 case SHT_MIPS_CONTENT
:
7103 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
7104 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
7105 BFD_ASSERT (name
!= NULL
7106 && strncmp (name
, ".MIPS.content",
7107 sizeof ".MIPS.content" - 1) == 0);
7108 sec
= bfd_get_section_by_name (abfd
,
7109 name
+ sizeof ".MIPS.content" - 1);
7110 BFD_ASSERT (sec
!= NULL
);
7111 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
7114 case SHT_MIPS_SYMBOL_LIB
:
7115 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
7117 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
7118 sec
= bfd_get_section_by_name (abfd
, ".liblist");
7120 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
7123 case SHT_MIPS_EVENTS
:
7124 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
7125 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
7126 BFD_ASSERT (name
!= NULL
);
7127 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7128 sec
= bfd_get_section_by_name (abfd
,
7129 name
+ sizeof ".MIPS.events" - 1);
7132 BFD_ASSERT (strncmp (name
, ".MIPS.post_rel",
7133 sizeof ".MIPS.post_rel" - 1) == 0);
7134 sec
= bfd_get_section_by_name (abfd
,
7136 + sizeof ".MIPS.post_rel" - 1));
7138 BFD_ASSERT (sec
!= NULL
);
7139 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
7146 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7150 _bfd_mips_elf_additional_program_headers (abfd
)
7156 /* See if we need a PT_MIPS_REGINFO segment. */
7157 s
= bfd_get_section_by_name (abfd
, ".reginfo");
7158 if (s
&& (s
->flags
& SEC_LOAD
))
7161 /* See if we need a PT_MIPS_OPTIONS segment. */
7162 if (IRIX_COMPAT (abfd
) == ict_irix6
7163 && bfd_get_section_by_name (abfd
,
7164 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
7167 /* See if we need a PT_MIPS_RTPROC segment. */
7168 if (IRIX_COMPAT (abfd
) == ict_irix5
7169 && bfd_get_section_by_name (abfd
, ".dynamic")
7170 && bfd_get_section_by_name (abfd
, ".mdebug"))
7176 /* Modify the segment map for an IRIX5 executable. */
7179 _bfd_mips_elf_modify_segment_map (abfd
)
7183 struct elf_segment_map
*m
, **pm
;
7186 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7188 s
= bfd_get_section_by_name (abfd
, ".reginfo");
7189 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
7191 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7192 if (m
->p_type
== PT_MIPS_REGINFO
)
7197 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
7201 m
->p_type
= PT_MIPS_REGINFO
;
7205 /* We want to put it after the PHDR and INTERP segments. */
7206 pm
= &elf_tdata (abfd
)->segment_map
;
7208 && ((*pm
)->p_type
== PT_PHDR
7209 || (*pm
)->p_type
== PT_INTERP
))
7217 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7218 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7219 PT_OPTIONS segment immediately following the program header
7222 /* On non-IRIX6 new abi, we'll have already created a segment
7223 for this section, so don't create another. I'm not sure this
7224 is not also the case for IRIX 6, but I can't test it right
7226 && IRIX_COMPAT (abfd
) == ict_irix6
)
7228 for (s
= abfd
->sections
; s
; s
= s
->next
)
7229 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
7234 struct elf_segment_map
*options_segment
;
7236 /* Usually, there's a program header table. But, sometimes
7237 there's not (like when running the `ld' testsuite). So,
7238 if there's no program header table, we just put the
7239 options segment at the end. */
7240 for (pm
= &elf_tdata (abfd
)->segment_map
;
7243 if ((*pm
)->p_type
== PT_PHDR
)
7246 amt
= sizeof (struct elf_segment_map
);
7247 options_segment
= bfd_zalloc (abfd
, amt
);
7248 options_segment
->next
= *pm
;
7249 options_segment
->p_type
= PT_MIPS_OPTIONS
;
7250 options_segment
->p_flags
= PF_R
;
7251 options_segment
->p_flags_valid
= TRUE
;
7252 options_segment
->count
= 1;
7253 options_segment
->sections
[0] = s
;
7254 *pm
= options_segment
;
7259 if (IRIX_COMPAT (abfd
) == ict_irix5
)
7261 /* If there are .dynamic and .mdebug sections, we make a room
7262 for the RTPROC header. FIXME: Rewrite without section names. */
7263 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
7264 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
7265 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
7267 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7268 if (m
->p_type
== PT_MIPS_RTPROC
)
7273 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
7277 m
->p_type
= PT_MIPS_RTPROC
;
7279 s
= bfd_get_section_by_name (abfd
, ".rtproc");
7284 m
->p_flags_valid
= 1;
7292 /* We want to put it after the DYNAMIC segment. */
7293 pm
= &elf_tdata (abfd
)->segment_map
;
7294 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
7304 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7305 .dynstr, .dynsym, and .hash sections, and everything in
7307 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
7309 if ((*pm
)->p_type
== PT_DYNAMIC
)
7312 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
7314 /* For a normal mips executable the permissions for the PT_DYNAMIC
7315 segment are read, write and execute. We do that here since
7316 the code in elf.c sets only the read permission. This matters
7317 sometimes for the dynamic linker. */
7318 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
7320 m
->p_flags
= PF_R
| PF_W
| PF_X
;
7321 m
->p_flags_valid
= 1;
7325 && m
->count
== 1 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
7327 static const char *sec_names
[] =
7329 ".dynamic", ".dynstr", ".dynsym", ".hash"
7333 struct elf_segment_map
*n
;
7337 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
7339 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
7340 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
7346 sz
= s
->_cooked_size
;
7349 if (high
< s
->vma
+ sz
)
7355 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
7356 if ((s
->flags
& SEC_LOAD
) != 0
7359 + (s
->_cooked_size
!=
7360 0 ? s
->_cooked_size
: s
->_raw_size
)) <= high
))
7363 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
7364 n
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
7371 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
7373 if ((s
->flags
& SEC_LOAD
) != 0
7376 + (s
->_cooked_size
!= 0 ?
7377 s
->_cooked_size
: s
->_raw_size
)) <= high
))
7391 /* Return the section that should be marked against GC for a given
7395 _bfd_mips_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
)
7397 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
7398 Elf_Internal_Rela
*rel
;
7399 struct elf_link_hash_entry
*h
;
7400 Elf_Internal_Sym
*sym
;
7402 /* ??? Do mips16 stub sections need to be handled special? */
7406 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
7408 case R_MIPS_GNU_VTINHERIT
:
7409 case R_MIPS_GNU_VTENTRY
:
7413 switch (h
->root
.type
)
7415 case bfd_link_hash_defined
:
7416 case bfd_link_hash_defweak
:
7417 return h
->root
.u
.def
.section
;
7419 case bfd_link_hash_common
:
7420 return h
->root
.u
.c
.p
->section
;
7428 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
7433 /* Update the got entry reference counts for the section being removed. */
7436 _bfd_mips_elf_gc_sweep_hook (abfd
, info
, sec
, relocs
)
7437 bfd
*abfd ATTRIBUTE_UNUSED
;
7438 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
7439 asection
*sec ATTRIBUTE_UNUSED
;
7440 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
7443 Elf_Internal_Shdr
*symtab_hdr
;
7444 struct elf_link_hash_entry
**sym_hashes
;
7445 bfd_signed_vma
*local_got_refcounts
;
7446 const Elf_Internal_Rela
*rel
, *relend
;
7447 unsigned long r_symndx
;
7448 struct elf_link_hash_entry
*h
;
7450 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7451 sym_hashes
= elf_sym_hashes (abfd
);
7452 local_got_refcounts
= elf_local_got_refcounts (abfd
);
7454 relend
= relocs
+ sec
->reloc_count
;
7455 for (rel
= relocs
; rel
< relend
; rel
++)
7456 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
7460 case R_MIPS_CALL_HI16
:
7461 case R_MIPS_CALL_LO16
:
7462 case R_MIPS_GOT_HI16
:
7463 case R_MIPS_GOT_LO16
:
7464 case R_MIPS_GOT_DISP
:
7465 case R_MIPS_GOT_PAGE
:
7466 case R_MIPS_GOT_OFST
:
7467 /* ??? It would seem that the existing MIPS code does no sort
7468 of reference counting or whatnot on its GOT and PLT entries,
7469 so it is not possible to garbage collect them at this time. */
7480 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7481 hiding the old indirect symbol. Process additional relocation
7482 information. Also called for weakdefs, in which case we just let
7483 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7486 _bfd_mips_elf_copy_indirect_symbol (bed
, dir
, ind
)
7487 struct elf_backend_data
*bed
;
7488 struct elf_link_hash_entry
*dir
, *ind
;
7490 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
7492 _bfd_elf_link_hash_copy_indirect (bed
, dir
, ind
);
7494 if (ind
->root
.type
!= bfd_link_hash_indirect
)
7497 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
7498 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
7499 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
7500 if (indmips
->readonly_reloc
)
7501 dirmips
->readonly_reloc
= TRUE
;
7502 if (dirmips
->min_dyn_reloc_index
== 0
7503 || (indmips
->min_dyn_reloc_index
!= 0
7504 && indmips
->min_dyn_reloc_index
< dirmips
->min_dyn_reloc_index
))
7505 dirmips
->min_dyn_reloc_index
= indmips
->min_dyn_reloc_index
;
7506 if (indmips
->no_fn_stub
)
7507 dirmips
->no_fn_stub
= TRUE
;
7511 _bfd_mips_elf_hide_symbol (info
, entry
, force_local
)
7512 struct bfd_link_info
*info
;
7513 struct elf_link_hash_entry
*entry
;
7514 bfd_boolean force_local
;
7518 struct mips_got_info
*g
;
7519 struct mips_elf_link_hash_entry
*h
;
7521 h
= (struct mips_elf_link_hash_entry
*) entry
;
7522 if (h
->forced_local
)
7524 h
->forced_local
= TRUE
;
7526 dynobj
= elf_hash_table (info
)->dynobj
;
7527 got
= mips_elf_got_section (dynobj
, FALSE
);
7528 g
= mips_elf_section_data (got
)->u
.got_info
;
7532 struct mips_got_entry e
;
7533 struct mips_got_info
*gg
= g
;
7535 /* Since we're turning what used to be a global symbol into a
7536 local one, bump up the number of local entries of each GOT
7537 that had an entry for it. This will automatically decrease
7538 the number of global entries, since global_gotno is actually
7539 the upper limit of global entries. */
7544 for (g
= g
->next
; g
!= gg
; g
= g
->next
)
7545 if (htab_find (g
->got_entries
, &e
))
7547 BFD_ASSERT (g
->global_gotno
> 0);
7552 /* If this was a global symbol forced into the primary GOT, we
7553 no longer need an entry for it. We can't release the entry
7554 at this point, but we must at least stop counting it as one
7555 of the symbols that required a forced got entry. */
7556 if (h
->root
.got
.offset
== 2)
7558 BFD_ASSERT (gg
->assigned_gotno
> 0);
7559 gg
->assigned_gotno
--;
7562 else if (g
->global_gotno
== 0 && g
->global_gotsym
== NULL
)
7563 /* If we haven't got through GOT allocation yet, just bump up the
7564 number of local entries, as this symbol won't be counted as
7567 else if (h
->root
.got
.offset
== 1)
7569 /* If we're past non-multi-GOT allocation and this symbol had
7570 been marked for a global got entry, give it a local entry
7572 BFD_ASSERT (g
->global_gotno
> 0);
7577 _bfd_elf_link_hash_hide_symbol (info
, &h
->root
, force_local
);
7583 _bfd_mips_elf_discard_info (abfd
, cookie
, info
)
7585 struct elf_reloc_cookie
*cookie
;
7586 struct bfd_link_info
*info
;
7589 bfd_boolean ret
= FALSE
;
7590 unsigned char *tdata
;
7593 o
= bfd_get_section_by_name (abfd
, ".pdr");
7596 if (o
->_raw_size
== 0)
7598 if (o
->_raw_size
% PDR_SIZE
!= 0)
7600 if (o
->output_section
!= NULL
7601 && bfd_is_abs_section (o
->output_section
))
7604 tdata
= bfd_zmalloc (o
->_raw_size
/ PDR_SIZE
);
7608 cookie
->rels
= (MNAME(abfd
,_bfd_elf
,link_read_relocs
)
7609 (abfd
, o
, (PTR
) NULL
,
7610 (Elf_Internal_Rela
*) NULL
,
7611 info
->keep_memory
));
7618 cookie
->rel
= cookie
->rels
;
7619 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
7621 for (i
= 0, skip
= 0; i
< o
->_raw_size
; i
++)
7623 if (MNAME(abfd
,_bfd_elf
,reloc_symbol_deleted_p
) (i
* PDR_SIZE
, cookie
))
7632 mips_elf_section_data (o
)->u
.tdata
= tdata
;
7633 o
->_cooked_size
= o
->_raw_size
- skip
* PDR_SIZE
;
7639 if (! info
->keep_memory
)
7640 free (cookie
->rels
);
7646 _bfd_mips_elf_ignore_discarded_relocs (sec
)
7649 if (strcmp (sec
->name
, ".pdr") == 0)
7655 _bfd_mips_elf_write_section (output_bfd
, sec
, contents
)
7660 bfd_byte
*to
, *from
, *end
;
7663 if (strcmp (sec
->name
, ".pdr") != 0)
7666 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
7670 end
= contents
+ sec
->_raw_size
;
7671 for (from
= contents
, i
= 0;
7673 from
+= PDR_SIZE
, i
++)
7675 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
7678 memcpy (to
, from
, PDR_SIZE
);
7681 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
7682 (file_ptr
) sec
->output_offset
,
7687 /* MIPS ELF uses a special find_nearest_line routine in order the
7688 handle the ECOFF debugging information. */
7690 struct mips_elf_find_line
7692 struct ecoff_debug_info d
;
7693 struct ecoff_find_line i
;
7697 _bfd_mips_elf_find_nearest_line (abfd
, section
, symbols
, offset
, filename_ptr
,
7698 functionname_ptr
, line_ptr
)
7703 const char **filename_ptr
;
7704 const char **functionname_ptr
;
7705 unsigned int *line_ptr
;
7709 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7710 filename_ptr
, functionname_ptr
,
7714 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7715 filename_ptr
, functionname_ptr
,
7717 (unsigned) (ABI_64_P (abfd
) ? 8 : 0),
7718 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7721 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
7725 struct mips_elf_find_line
*fi
;
7726 const struct ecoff_debug_swap
* const swap
=
7727 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
7729 /* If we are called during a link, mips_elf_final_link may have
7730 cleared the SEC_HAS_CONTENTS field. We force it back on here
7731 if appropriate (which it normally will be). */
7732 origflags
= msec
->flags
;
7733 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
7734 msec
->flags
|= SEC_HAS_CONTENTS
;
7736 fi
= elf_tdata (abfd
)->find_line_info
;
7739 bfd_size_type external_fdr_size
;
7742 struct fdr
*fdr_ptr
;
7743 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
7745 fi
= (struct mips_elf_find_line
*) bfd_zalloc (abfd
, amt
);
7748 msec
->flags
= origflags
;
7752 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
7754 msec
->flags
= origflags
;
7758 /* Swap in the FDR information. */
7759 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
7760 fi
->d
.fdr
= (struct fdr
*) bfd_alloc (abfd
, amt
);
7761 if (fi
->d
.fdr
== NULL
)
7763 msec
->flags
= origflags
;
7766 external_fdr_size
= swap
->external_fdr_size
;
7767 fdr_ptr
= fi
->d
.fdr
;
7768 fraw_src
= (char *) fi
->d
.external_fdr
;
7769 fraw_end
= (fraw_src
7770 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
7771 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
7772 (*swap
->swap_fdr_in
) (abfd
, (PTR
) fraw_src
, fdr_ptr
);
7774 elf_tdata (abfd
)->find_line_info
= fi
;
7776 /* Note that we don't bother to ever free this information.
7777 find_nearest_line is either called all the time, as in
7778 objdump -l, so the information should be saved, or it is
7779 rarely called, as in ld error messages, so the memory
7780 wasted is unimportant. Still, it would probably be a
7781 good idea for free_cached_info to throw it away. */
7784 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
7785 &fi
->i
, filename_ptr
, functionname_ptr
,
7788 msec
->flags
= origflags
;
7792 msec
->flags
= origflags
;
7795 /* Fall back on the generic ELF find_nearest_line routine. */
7797 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
7798 filename_ptr
, functionname_ptr
,
7802 /* When are writing out the .options or .MIPS.options section,
7803 remember the bytes we are writing out, so that we can install the
7804 GP value in the section_processing routine. */
7807 _bfd_mips_elf_set_section_contents (abfd
, section
, location
, offset
, count
)
7812 bfd_size_type count
;
7814 if (strcmp (section
->name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
7818 if (elf_section_data (section
) == NULL
)
7820 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
7821 section
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
7822 if (elf_section_data (section
) == NULL
)
7825 c
= mips_elf_section_data (section
)->u
.tdata
;
7830 if (section
->_cooked_size
!= 0)
7831 size
= section
->_cooked_size
;
7833 size
= section
->_raw_size
;
7834 c
= (bfd_byte
*) bfd_zalloc (abfd
, size
);
7837 mips_elf_section_data (section
)->u
.tdata
= c
;
7840 memcpy (c
+ offset
, location
, (size_t) count
);
7843 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
7847 /* This is almost identical to bfd_generic_get_... except that some
7848 MIPS relocations need to be handled specially. Sigh. */
7851 _bfd_elf_mips_get_relocated_section_contents (abfd
, link_info
, link_order
,
7852 data
, relocateable
, symbols
)
7854 struct bfd_link_info
*link_info
;
7855 struct bfd_link_order
*link_order
;
7857 bfd_boolean relocateable
;
7860 /* Get enough memory to hold the stuff */
7861 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
7862 asection
*input_section
= link_order
->u
.indirect
.section
;
7864 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
7865 arelent
**reloc_vector
= NULL
;
7871 reloc_vector
= (arelent
**) bfd_malloc ((bfd_size_type
) reloc_size
);
7872 if (reloc_vector
== NULL
&& reloc_size
!= 0)
7875 /* read in the section */
7876 if (!bfd_get_section_contents (input_bfd
,
7880 input_section
->_raw_size
))
7883 /* We're not relaxing the section, so just copy the size info */
7884 input_section
->_cooked_size
= input_section
->_raw_size
;
7885 input_section
->reloc_done
= TRUE
;
7887 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
7891 if (reloc_count
< 0)
7894 if (reloc_count
> 0)
7899 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
7902 struct bfd_hash_entry
*h
;
7903 struct bfd_link_hash_entry
*lh
;
7904 /* Skip all this stuff if we aren't mixing formats. */
7905 if (abfd
&& input_bfd
7906 && abfd
->xvec
== input_bfd
->xvec
)
7910 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
7911 lh
= (struct bfd_link_hash_entry
*) h
;
7918 case bfd_link_hash_undefined
:
7919 case bfd_link_hash_undefweak
:
7920 case bfd_link_hash_common
:
7923 case bfd_link_hash_defined
:
7924 case bfd_link_hash_defweak
:
7926 gp
= lh
->u
.def
.value
;
7928 case bfd_link_hash_indirect
:
7929 case bfd_link_hash_warning
:
7931 /* @@FIXME ignoring warning for now */
7933 case bfd_link_hash_new
:
7942 for (parent
= reloc_vector
; *parent
!= (arelent
*) NULL
;
7945 char *error_message
= (char *) NULL
;
7946 bfd_reloc_status_type r
;
7948 /* Specific to MIPS: Deal with relocation types that require
7949 knowing the gp of the output bfd. */
7950 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
7951 if (bfd_is_abs_section (sym
->section
) && abfd
)
7953 /* The special_function wouldn't get called anyway. */
7957 /* The gp isn't there; let the special function code
7958 fall over on its own. */
7960 else if ((*parent
)->howto
->special_function
7961 == _bfd_mips_elf32_gprel16_reloc
)
7963 /* bypass special_function call */
7964 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
7965 input_section
, relocateable
,
7967 goto skip_bfd_perform_relocation
;
7969 /* end mips specific stuff */
7971 r
= bfd_perform_relocation (input_bfd
,
7975 relocateable
? abfd
: (bfd
*) NULL
,
7977 skip_bfd_perform_relocation
:
7981 asection
*os
= input_section
->output_section
;
7983 /* A partial link, so keep the relocs */
7984 os
->orelocation
[os
->reloc_count
] = *parent
;
7988 if (r
!= bfd_reloc_ok
)
7992 case bfd_reloc_undefined
:
7993 if (!((*link_info
->callbacks
->undefined_symbol
)
7994 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
7995 input_bfd
, input_section
, (*parent
)->address
,
7999 case bfd_reloc_dangerous
:
8000 BFD_ASSERT (error_message
!= (char *) NULL
);
8001 if (!((*link_info
->callbacks
->reloc_dangerous
)
8002 (link_info
, error_message
, input_bfd
, input_section
,
8003 (*parent
)->address
)))
8006 case bfd_reloc_overflow
:
8007 if (!((*link_info
->callbacks
->reloc_overflow
)
8008 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
8009 (*parent
)->howto
->name
, (*parent
)->addend
,
8010 input_bfd
, input_section
, (*parent
)->address
)))
8013 case bfd_reloc_outofrange
:
8022 if (reloc_vector
!= NULL
)
8023 free (reloc_vector
);
8027 if (reloc_vector
!= NULL
)
8028 free (reloc_vector
);
8032 /* Create a MIPS ELF linker hash table. */
8034 struct bfd_link_hash_table
*
8035 _bfd_mips_elf_link_hash_table_create (abfd
)
8038 struct mips_elf_link_hash_table
*ret
;
8039 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
8041 ret
= (struct mips_elf_link_hash_table
*) bfd_malloc (amt
);
8042 if (ret
== (struct mips_elf_link_hash_table
*) NULL
)
8045 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
8046 mips_elf_link_hash_newfunc
))
8053 /* We no longer use this. */
8054 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
8055 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
8057 ret
->procedure_count
= 0;
8058 ret
->compact_rel_size
= 0;
8059 ret
->use_rld_obj_head
= FALSE
;
8061 ret
->mips16_stubs_seen
= FALSE
;
8063 return &ret
->root
.root
;
8066 /* We need to use a special link routine to handle the .reginfo and
8067 the .mdebug sections. We need to merge all instances of these
8068 sections together, not write them all out sequentially. */
8071 _bfd_mips_elf_final_link (abfd
, info
)
8073 struct bfd_link_info
*info
;
8077 struct bfd_link_order
*p
;
8078 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
8079 asection
*rtproc_sec
;
8080 Elf32_RegInfo reginfo
;
8081 struct ecoff_debug_info debug
;
8082 const struct ecoff_debug_swap
*swap
8083 = get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
8084 HDRR
*symhdr
= &debug
.symbolic_header
;
8085 PTR mdebug_handle
= NULL
;
8091 static const char * const secname
[] =
8093 ".text", ".init", ".fini", ".data",
8094 ".rodata", ".sdata", ".sbss", ".bss"
8096 static const int sc
[] =
8098 scText
, scInit
, scFini
, scData
,
8099 scRData
, scSData
, scSBss
, scBss
8102 /* If all the things we linked together were PIC, but we're
8103 producing an executable (rather than a shared object), then the
8104 resulting file is CPIC (i.e., it calls PIC code.) */
8106 && !info
->relocateable
8107 && elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
8109 elf_elfheader (abfd
)->e_flags
&= ~EF_MIPS_PIC
;
8110 elf_elfheader (abfd
)->e_flags
|= EF_MIPS_CPIC
;
8113 /* We'd carefully arranged the dynamic symbol indices, and then the
8114 generic size_dynamic_sections renumbered them out from under us.
8115 Rather than trying somehow to prevent the renumbering, just do
8117 if (elf_hash_table (info
)->dynamic_sections_created
)
8121 struct mips_got_info
*g
;
8123 /* When we resort, we must tell mips_elf_sort_hash_table what
8124 the lowest index it may use is. That's the number of section
8125 symbols we're going to add. The generic ELF linker only
8126 adds these symbols when building a shared object. Note that
8127 we count the sections after (possibly) removing the .options
8129 if (! mips_elf_sort_hash_table (info
, (info
->shared
8130 ? bfd_count_sections (abfd
) + 1
8134 /* Make sure we didn't grow the global .got region. */
8135 dynobj
= elf_hash_table (info
)->dynobj
;
8136 got
= mips_elf_got_section (dynobj
, FALSE
);
8137 g
= mips_elf_section_data (got
)->u
.got_info
;
8139 if (g
->global_gotsym
!= NULL
)
8140 BFD_ASSERT ((elf_hash_table (info
)->dynsymcount
8141 - g
->global_gotsym
->dynindx
)
8142 <= g
->global_gotno
);
8146 /* We want to set the GP value for ld -r. */
8147 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8148 include it, even though we don't process it quite right. (Some
8149 entries are supposed to be merged.) Empirically, we seem to be
8150 better off including it then not. */
8151 if (IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
8152 for (secpp
= &abfd
->sections
; *secpp
!= NULL
; secpp
= &(*secpp
)->next
)
8154 if (strcmp ((*secpp
)->name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
8156 for (p
= (*secpp
)->link_order_head
; p
!= NULL
; p
= p
->next
)
8157 if (p
->type
== bfd_indirect_link_order
)
8158 p
->u
.indirect
.section
->flags
&= ~SEC_HAS_CONTENTS
;
8159 (*secpp
)->link_order_head
= NULL
;
8160 bfd_section_list_remove (abfd
, secpp
);
8161 --abfd
->section_count
;
8167 /* We include .MIPS.options, even though we don't process it quite right.
8168 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8169 to be better off including it than not. */
8170 for (secpp
= &abfd
->sections
; *secpp
!= NULL
; secpp
= &(*secpp
)->next
)
8172 if (strcmp ((*secpp
)->name
, ".MIPS.options") == 0)
8174 for (p
= (*secpp
)->link_order_head
; p
!= NULL
; p
= p
->next
)
8175 if (p
->type
== bfd_indirect_link_order
)
8176 p
->u
.indirect
.section
->flags
&=~ SEC_HAS_CONTENTS
;
8177 (*secpp
)->link_order_head
= NULL
;
8178 bfd_section_list_remove (abfd
, secpp
);
8179 --abfd
->section_count
;
8186 /* Get a value for the GP register. */
8187 if (elf_gp (abfd
) == 0)
8189 struct bfd_link_hash_entry
*h
;
8191 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
8192 if (h
!= (struct bfd_link_hash_entry
*) NULL
8193 && h
->type
== bfd_link_hash_defined
)
8194 elf_gp (abfd
) = (h
->u
.def
.value
8195 + h
->u
.def
.section
->output_section
->vma
8196 + h
->u
.def
.section
->output_offset
);
8197 else if (info
->relocateable
)
8199 bfd_vma lo
= MINUS_ONE
;
8201 /* Find the GP-relative section with the lowest offset. */
8202 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
8204 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
8207 /* And calculate GP relative to that. */
8208 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (abfd
);
8212 /* If the relocate_section function needs to do a reloc
8213 involving the GP value, it should make a reloc_dangerous
8214 callback to warn that GP is not defined. */
8218 /* Go through the sections and collect the .reginfo and .mdebug
8222 gptab_data_sec
= NULL
;
8223 gptab_bss_sec
= NULL
;
8224 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
8226 if (strcmp (o
->name
, ".reginfo") == 0)
8228 memset (®info
, 0, sizeof reginfo
);
8230 /* We have found the .reginfo section in the output file.
8231 Look through all the link_orders comprising it and merge
8232 the information together. */
8233 for (p
= o
->link_order_head
;
8234 p
!= (struct bfd_link_order
*) NULL
;
8237 asection
*input_section
;
8239 Elf32_External_RegInfo ext
;
8242 if (p
->type
!= bfd_indirect_link_order
)
8244 if (p
->type
== bfd_data_link_order
)
8249 input_section
= p
->u
.indirect
.section
;
8250 input_bfd
= input_section
->owner
;
8252 /* The linker emulation code has probably clobbered the
8253 size to be zero bytes. */
8254 if (input_section
->_raw_size
== 0)
8255 input_section
->_raw_size
= sizeof (Elf32_External_RegInfo
);
8257 if (! bfd_get_section_contents (input_bfd
, input_section
,
8260 (bfd_size_type
) sizeof ext
))
8263 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
8265 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
8266 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
8267 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
8268 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
8269 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
8271 /* ri_gp_value is set by the function
8272 mips_elf32_section_processing when the section is
8273 finally written out. */
8275 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8276 elf_link_input_bfd ignores this section. */
8277 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
8280 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8281 BFD_ASSERT(o
->_raw_size
== sizeof (Elf32_External_RegInfo
));
8283 /* Skip this section later on (I don't think this currently
8284 matters, but someday it might). */
8285 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
8290 if (strcmp (o
->name
, ".mdebug") == 0)
8292 struct extsym_info einfo
;
8295 /* We have found the .mdebug section in the output file.
8296 Look through all the link_orders comprising it and merge
8297 the information together. */
8298 symhdr
->magic
= swap
->sym_magic
;
8299 /* FIXME: What should the version stamp be? */
8301 symhdr
->ilineMax
= 0;
8305 symhdr
->isymMax
= 0;
8306 symhdr
->ioptMax
= 0;
8307 symhdr
->iauxMax
= 0;
8309 symhdr
->issExtMax
= 0;
8312 symhdr
->iextMax
= 0;
8314 /* We accumulate the debugging information itself in the
8315 debug_info structure. */
8317 debug
.external_dnr
= NULL
;
8318 debug
.external_pdr
= NULL
;
8319 debug
.external_sym
= NULL
;
8320 debug
.external_opt
= NULL
;
8321 debug
.external_aux
= NULL
;
8323 debug
.ssext
= debug
.ssext_end
= NULL
;
8324 debug
.external_fdr
= NULL
;
8325 debug
.external_rfd
= NULL
;
8326 debug
.external_ext
= debug
.external_ext_end
= NULL
;
8328 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
8329 if (mdebug_handle
== (PTR
) NULL
)
8333 esym
.cobol_main
= 0;
8337 esym
.asym
.iss
= issNil
;
8338 esym
.asym
.st
= stLocal
;
8339 esym
.asym
.reserved
= 0;
8340 esym
.asym
.index
= indexNil
;
8342 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
8344 esym
.asym
.sc
= sc
[i
];
8345 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
8348 esym
.asym
.value
= s
->vma
;
8349 last
= s
->vma
+ s
->_raw_size
;
8352 esym
.asym
.value
= last
;
8353 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
8358 for (p
= o
->link_order_head
;
8359 p
!= (struct bfd_link_order
*) NULL
;
8362 asection
*input_section
;
8364 const struct ecoff_debug_swap
*input_swap
;
8365 struct ecoff_debug_info input_debug
;
8369 if (p
->type
!= bfd_indirect_link_order
)
8371 if (p
->type
== bfd_data_link_order
)
8376 input_section
= p
->u
.indirect
.section
;
8377 input_bfd
= input_section
->owner
;
8379 if (bfd_get_flavour (input_bfd
) != bfd_target_elf_flavour
8380 || (get_elf_backend_data (input_bfd
)
8381 ->elf_backend_ecoff_debug_swap
) == NULL
)
8383 /* I don't know what a non MIPS ELF bfd would be
8384 doing with a .mdebug section, but I don't really
8385 want to deal with it. */
8389 input_swap
= (get_elf_backend_data (input_bfd
)
8390 ->elf_backend_ecoff_debug_swap
);
8392 BFD_ASSERT (p
->size
== input_section
->_raw_size
);
8394 /* The ECOFF linking code expects that we have already
8395 read in the debugging information and set up an
8396 ecoff_debug_info structure, so we do that now. */
8397 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
8401 if (! (bfd_ecoff_debug_accumulate
8402 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
8403 &input_debug
, input_swap
, info
)))
8406 /* Loop through the external symbols. For each one with
8407 interesting information, try to find the symbol in
8408 the linker global hash table and save the information
8409 for the output external symbols. */
8410 eraw_src
= input_debug
.external_ext
;
8411 eraw_end
= (eraw_src
8412 + (input_debug
.symbolic_header
.iextMax
8413 * input_swap
->external_ext_size
));
8415 eraw_src
< eraw_end
;
8416 eraw_src
+= input_swap
->external_ext_size
)
8420 struct mips_elf_link_hash_entry
*h
;
8422 (*input_swap
->swap_ext_in
) (input_bfd
, (PTR
) eraw_src
, &ext
);
8423 if (ext
.asym
.sc
== scNil
8424 || ext
.asym
.sc
== scUndefined
8425 || ext
.asym
.sc
== scSUndefined
)
8428 name
= input_debug
.ssext
+ ext
.asym
.iss
;
8429 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
8430 name
, FALSE
, FALSE
, TRUE
);
8431 if (h
== NULL
|| h
->esym
.ifd
!= -2)
8437 < input_debug
.symbolic_header
.ifdMax
);
8438 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
8444 /* Free up the information we just read. */
8445 free (input_debug
.line
);
8446 free (input_debug
.external_dnr
);
8447 free (input_debug
.external_pdr
);
8448 free (input_debug
.external_sym
);
8449 free (input_debug
.external_opt
);
8450 free (input_debug
.external_aux
);
8451 free (input_debug
.ss
);
8452 free (input_debug
.ssext
);
8453 free (input_debug
.external_fdr
);
8454 free (input_debug
.external_rfd
);
8455 free (input_debug
.external_ext
);
8457 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8458 elf_link_input_bfd ignores this section. */
8459 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
8462 if (SGI_COMPAT (abfd
) && info
->shared
)
8464 /* Create .rtproc section. */
8465 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
8466 if (rtproc_sec
== NULL
)
8468 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
8469 | SEC_LINKER_CREATED
| SEC_READONLY
);
8471 rtproc_sec
= bfd_make_section (abfd
, ".rtproc");
8472 if (rtproc_sec
== NULL
8473 || ! bfd_set_section_flags (abfd
, rtproc_sec
, flags
)
8474 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
8478 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
8484 /* Build the external symbol information. */
8487 einfo
.debug
= &debug
;
8489 einfo
.failed
= FALSE
;
8490 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8491 mips_elf_output_extsym
,
8496 /* Set the size of the .mdebug section. */
8497 o
->_raw_size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
8499 /* Skip this section later on (I don't think this currently
8500 matters, but someday it might). */
8501 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
8506 if (strncmp (o
->name
, ".gptab.", sizeof ".gptab." - 1) == 0)
8508 const char *subname
;
8511 Elf32_External_gptab
*ext_tab
;
8514 /* The .gptab.sdata and .gptab.sbss sections hold
8515 information describing how the small data area would
8516 change depending upon the -G switch. These sections
8517 not used in executables files. */
8518 if (! info
->relocateable
)
8520 for (p
= o
->link_order_head
;
8521 p
!= (struct bfd_link_order
*) NULL
;
8524 asection
*input_section
;
8526 if (p
->type
!= bfd_indirect_link_order
)
8528 if (p
->type
== bfd_data_link_order
)
8533 input_section
= p
->u
.indirect
.section
;
8535 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8536 elf_link_input_bfd ignores this section. */
8537 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
8540 /* Skip this section later on (I don't think this
8541 currently matters, but someday it might). */
8542 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
8544 /* Really remove the section. */
8545 for (secpp
= &abfd
->sections
;
8547 secpp
= &(*secpp
)->next
)
8549 bfd_section_list_remove (abfd
, secpp
);
8550 --abfd
->section_count
;
8555 /* There is one gptab for initialized data, and one for
8556 uninitialized data. */
8557 if (strcmp (o
->name
, ".gptab.sdata") == 0)
8559 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
8563 (*_bfd_error_handler
)
8564 (_("%s: illegal section name `%s'"),
8565 bfd_get_filename (abfd
), o
->name
);
8566 bfd_set_error (bfd_error_nonrepresentable_section
);
8570 /* The linker script always combines .gptab.data and
8571 .gptab.sdata into .gptab.sdata, and likewise for
8572 .gptab.bss and .gptab.sbss. It is possible that there is
8573 no .sdata or .sbss section in the output file, in which
8574 case we must change the name of the output section. */
8575 subname
= o
->name
+ sizeof ".gptab" - 1;
8576 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
8578 if (o
== gptab_data_sec
)
8579 o
->name
= ".gptab.data";
8581 o
->name
= ".gptab.bss";
8582 subname
= o
->name
+ sizeof ".gptab" - 1;
8583 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
8586 /* Set up the first entry. */
8588 amt
= c
* sizeof (Elf32_gptab
);
8589 tab
= (Elf32_gptab
*) bfd_malloc (amt
);
8592 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
8593 tab
[0].gt_header
.gt_unused
= 0;
8595 /* Combine the input sections. */
8596 for (p
= o
->link_order_head
;
8597 p
!= (struct bfd_link_order
*) NULL
;
8600 asection
*input_section
;
8604 bfd_size_type gpentry
;
8606 if (p
->type
!= bfd_indirect_link_order
)
8608 if (p
->type
== bfd_data_link_order
)
8613 input_section
= p
->u
.indirect
.section
;
8614 input_bfd
= input_section
->owner
;
8616 /* Combine the gptab entries for this input section one
8617 by one. We know that the input gptab entries are
8618 sorted by ascending -G value. */
8619 size
= bfd_section_size (input_bfd
, input_section
);
8621 for (gpentry
= sizeof (Elf32_External_gptab
);
8623 gpentry
+= sizeof (Elf32_External_gptab
))
8625 Elf32_External_gptab ext_gptab
;
8626 Elf32_gptab int_gptab
;
8632 if (! (bfd_get_section_contents
8633 (input_bfd
, input_section
, (PTR
) &ext_gptab
,
8635 (bfd_size_type
) sizeof (Elf32_External_gptab
))))
8641 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
8643 val
= int_gptab
.gt_entry
.gt_g_value
;
8644 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
8647 for (look
= 1; look
< c
; look
++)
8649 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
8650 tab
[look
].gt_entry
.gt_bytes
+= add
;
8652 if (tab
[look
].gt_entry
.gt_g_value
== val
)
8658 Elf32_gptab
*new_tab
;
8661 /* We need a new table entry. */
8662 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
8663 new_tab
= (Elf32_gptab
*) bfd_realloc ((PTR
) tab
, amt
);
8664 if (new_tab
== NULL
)
8670 tab
[c
].gt_entry
.gt_g_value
= val
;
8671 tab
[c
].gt_entry
.gt_bytes
= add
;
8673 /* Merge in the size for the next smallest -G
8674 value, since that will be implied by this new
8677 for (look
= 1; look
< c
; look
++)
8679 if (tab
[look
].gt_entry
.gt_g_value
< val
8681 || (tab
[look
].gt_entry
.gt_g_value
8682 > tab
[max
].gt_entry
.gt_g_value
)))
8686 tab
[c
].gt_entry
.gt_bytes
+=
8687 tab
[max
].gt_entry
.gt_bytes
;
8692 last
= int_gptab
.gt_entry
.gt_bytes
;
8695 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8696 elf_link_input_bfd ignores this section. */
8697 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
8700 /* The table must be sorted by -G value. */
8702 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
8704 /* Swap out the table. */
8705 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
8706 ext_tab
= (Elf32_External_gptab
*) bfd_alloc (abfd
, amt
);
8707 if (ext_tab
== NULL
)
8713 for (j
= 0; j
< c
; j
++)
8714 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
8717 o
->_raw_size
= c
* sizeof (Elf32_External_gptab
);
8718 o
->contents
= (bfd_byte
*) ext_tab
;
8720 /* Skip this section later on (I don't think this currently
8721 matters, but someday it might). */
8722 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
8726 /* Invoke the regular ELF backend linker to do all the work. */
8727 if (!MNAME(abfd
,bfd_elf
,bfd_final_link
) (abfd
, info
))
8730 /* Now write out the computed sections. */
8732 if (reginfo_sec
!= (asection
*) NULL
)
8734 Elf32_External_RegInfo ext
;
8736 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
8737 if (! bfd_set_section_contents (abfd
, reginfo_sec
, (PTR
) &ext
,
8739 (bfd_size_type
) sizeof ext
))
8743 if (mdebug_sec
!= (asection
*) NULL
)
8745 BFD_ASSERT (abfd
->output_has_begun
);
8746 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
8748 mdebug_sec
->filepos
))
8751 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
8754 if (gptab_data_sec
!= (asection
*) NULL
)
8756 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
8757 gptab_data_sec
->contents
,
8759 gptab_data_sec
->_raw_size
))
8763 if (gptab_bss_sec
!= (asection
*) NULL
)
8765 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
8766 gptab_bss_sec
->contents
,
8768 gptab_bss_sec
->_raw_size
))
8772 if (SGI_COMPAT (abfd
))
8774 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
8775 if (rtproc_sec
!= NULL
)
8777 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
8778 rtproc_sec
->contents
,
8780 rtproc_sec
->_raw_size
))
8788 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8790 struct mips_mach_extension
{
8791 unsigned long extension
, base
;
8795 /* An array describing how BFD machines relate to one another. The entries
8796 are ordered topologically with MIPS I extensions listed last. */
8798 static const struct mips_mach_extension mips_mach_extensions
[] = {
8799 /* MIPS64 extensions. */
8800 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
8802 /* MIPS V extensions. */
8803 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
8805 /* R10000 extensions. */
8806 { bfd_mach_mips12000
, bfd_mach_mips10000
},
8808 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8809 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8810 better to allow vr5400 and vr5500 code to be merged anyway, since
8811 many libraries will just use the core ISA. Perhaps we could add
8812 some sort of ASE flag if this ever proves a problem. */
8813 { bfd_mach_mips5500
, bfd_mach_mips5400
},
8814 { bfd_mach_mips5400
, bfd_mach_mips5000
},
8816 /* MIPS IV extensions. */
8817 { bfd_mach_mips5
, bfd_mach_mips8000
},
8818 { bfd_mach_mips10000
, bfd_mach_mips8000
},
8819 { bfd_mach_mips5000
, bfd_mach_mips8000
},
8821 /* VR4100 extensions. */
8822 { bfd_mach_mips4120
, bfd_mach_mips4100
},
8823 { bfd_mach_mips4111
, bfd_mach_mips4100
},
8825 /* MIPS III extensions. */
8826 { bfd_mach_mips8000
, bfd_mach_mips4000
},
8827 { bfd_mach_mips4650
, bfd_mach_mips4000
},
8828 { bfd_mach_mips4600
, bfd_mach_mips4000
},
8829 { bfd_mach_mips4400
, bfd_mach_mips4000
},
8830 { bfd_mach_mips4300
, bfd_mach_mips4000
},
8831 { bfd_mach_mips4100
, bfd_mach_mips4000
},
8832 { bfd_mach_mips4010
, bfd_mach_mips4000
},
8834 /* MIPS32 extensions. */
8835 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
8837 /* MIPS II extensions. */
8838 { bfd_mach_mips4000
, bfd_mach_mips6000
},
8839 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
8841 /* MIPS I extensions. */
8842 { bfd_mach_mips6000
, bfd_mach_mips3000
},
8843 { bfd_mach_mips3900
, bfd_mach_mips3000
}
8847 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8850 mips_mach_extends_p (base
, extension
)
8851 unsigned long base
, extension
;
8855 for (i
= 0; extension
!= base
&& i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
8856 if (extension
== mips_mach_extensions
[i
].extension
)
8857 extension
= mips_mach_extensions
[i
].base
;
8859 return extension
== base
;
8863 /* Return true if the given ELF header flags describe a 32-bit binary. */
8866 mips_32bit_flags_p (flags
)
8869 return ((flags
& EF_MIPS_32BITMODE
) != 0
8870 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
8871 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
8872 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
8873 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
8874 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
8875 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
8879 /* Merge backend specific data from an object file to the output
8880 object file when linking. */
8883 _bfd_mips_elf_merge_private_bfd_data (ibfd
, obfd
)
8890 bfd_boolean null_input_bfd
= TRUE
;
8893 /* Check if we have the same endianess */
8894 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
8897 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
8898 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
8901 new_flags
= elf_elfheader (ibfd
)->e_flags
;
8902 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
8903 old_flags
= elf_elfheader (obfd
)->e_flags
;
8905 if (! elf_flags_init (obfd
))
8907 elf_flags_init (obfd
) = TRUE
;
8908 elf_elfheader (obfd
)->e_flags
= new_flags
;
8909 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
8910 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
8912 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
8913 && bfd_get_arch_info (obfd
)->the_default
)
8915 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
8916 bfd_get_mach (ibfd
)))
8923 /* Check flag compatibility. */
8925 new_flags
&= ~EF_MIPS_NOREORDER
;
8926 old_flags
&= ~EF_MIPS_NOREORDER
;
8928 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8929 doesn't seem to matter. */
8930 new_flags
&= ~EF_MIPS_XGOT
;
8931 old_flags
&= ~EF_MIPS_XGOT
;
8933 if (new_flags
== old_flags
)
8936 /* Check to see if the input BFD actually contains any sections.
8937 If not, its flags may not have been initialised either, but it cannot
8938 actually cause any incompatibility. */
8939 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8941 /* Ignore synthetic sections and empty .text, .data and .bss sections
8942 which are automatically generated by gas. */
8943 if (strcmp (sec
->name
, ".reginfo")
8944 && strcmp (sec
->name
, ".mdebug")
8945 && ((!strcmp (sec
->name
, ".text")
8946 || !strcmp (sec
->name
, ".data")
8947 || !strcmp (sec
->name
, ".bss"))
8948 && sec
->_raw_size
!= 0))
8950 null_input_bfd
= FALSE
;
8959 if ((new_flags
& EF_MIPS_PIC
) != (old_flags
& EF_MIPS_PIC
))
8961 new_flags
&= ~EF_MIPS_PIC
;
8962 old_flags
&= ~EF_MIPS_PIC
;
8963 (*_bfd_error_handler
)
8964 (_("%s: linking PIC files with non-PIC files"),
8965 bfd_archive_filename (ibfd
));
8969 if ((new_flags
& EF_MIPS_CPIC
) != (old_flags
& EF_MIPS_CPIC
))
8971 new_flags
&= ~EF_MIPS_CPIC
;
8972 old_flags
&= ~EF_MIPS_CPIC
;
8973 (*_bfd_error_handler
)
8974 (_("%s: linking abicalls files with non-abicalls files"),
8975 bfd_archive_filename (ibfd
));
8979 /* Compare the ISAs. */
8980 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
8982 (*_bfd_error_handler
)
8983 (_("%s: linking 32-bit code with 64-bit code"),
8984 bfd_archive_filename (ibfd
));
8987 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
8989 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8990 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
8992 /* Copy the architecture info from IBFD to OBFD. Also copy
8993 the 32-bit flag (if set) so that we continue to recognise
8994 OBFD as a 32-bit binary. */
8995 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
8996 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
8997 elf_elfheader (obfd
)->e_flags
8998 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
9000 /* Copy across the ABI flags if OBFD doesn't use them
9001 and if that was what caused us to treat IBFD as 32-bit. */
9002 if ((old_flags
& EF_MIPS_ABI
) == 0
9003 && mips_32bit_flags_p (new_flags
)
9004 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
9005 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
9009 /* The ISAs aren't compatible. */
9010 (*_bfd_error_handler
)
9011 (_("%s: linking %s module with previous %s modules"),
9012 bfd_archive_filename (ibfd
),
9013 bfd_printable_name (ibfd
),
9014 bfd_printable_name (obfd
));
9019 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
9020 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
9022 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9023 does set EI_CLASS differently from any 32-bit ABI. */
9024 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
9025 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
9026 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
9028 /* Only error if both are set (to different values). */
9029 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
9030 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
9031 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
9033 (*_bfd_error_handler
)
9034 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9035 bfd_archive_filename (ibfd
),
9036 elf_mips_abi_name (ibfd
),
9037 elf_mips_abi_name (obfd
));
9040 new_flags
&= ~EF_MIPS_ABI
;
9041 old_flags
&= ~EF_MIPS_ABI
;
9044 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9045 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
9047 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
9049 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
9050 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
9053 /* Warn about any other mismatches */
9054 if (new_flags
!= old_flags
)
9056 (*_bfd_error_handler
)
9057 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9058 bfd_archive_filename (ibfd
), (unsigned long) new_flags
,
9059 (unsigned long) old_flags
);
9065 bfd_set_error (bfd_error_bad_value
);
9072 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9075 _bfd_mips_elf_set_private_flags (abfd
, flags
)
9079 BFD_ASSERT (!elf_flags_init (abfd
)
9080 || elf_elfheader (abfd
)->e_flags
== flags
);
9082 elf_elfheader (abfd
)->e_flags
= flags
;
9083 elf_flags_init (abfd
) = TRUE
;
9088 _bfd_mips_elf_print_private_bfd_data (abfd
, ptr
)
9092 FILE *file
= (FILE *) ptr
;
9094 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
9096 /* Print normal ELF private data. */
9097 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
9099 /* xgettext:c-format */
9100 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
9102 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
9103 fprintf (file
, _(" [abi=O32]"));
9104 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
9105 fprintf (file
, _(" [abi=O64]"));
9106 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
9107 fprintf (file
, _(" [abi=EABI32]"));
9108 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
9109 fprintf (file
, _(" [abi=EABI64]"));
9110 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
9111 fprintf (file
, _(" [abi unknown]"));
9112 else if (ABI_N32_P (abfd
))
9113 fprintf (file
, _(" [abi=N32]"));
9114 else if (ABI_64_P (abfd
))
9115 fprintf (file
, _(" [abi=64]"));
9117 fprintf (file
, _(" [no abi set]"));
9119 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
9120 fprintf (file
, _(" [mips1]"));
9121 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
9122 fprintf (file
, _(" [mips2]"));
9123 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
9124 fprintf (file
, _(" [mips3]"));
9125 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
9126 fprintf (file
, _(" [mips4]"));
9127 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
9128 fprintf (file
, _(" [mips5]"));
9129 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
9130 fprintf (file
, _(" [mips32]"));
9131 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
9132 fprintf (file
, _(" [mips64]"));
9133 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
9134 fprintf (file
, _(" [mips32r2]"));
9136 fprintf (file
, _(" [unknown ISA]"));
9138 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
9139 fprintf (file
, _(" [mdmx]"));
9141 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
9142 fprintf (file
, _(" [mips16]"));
9144 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
9145 fprintf (file
, _(" [32bitmode]"));
9147 fprintf (file
, _(" [not 32bitmode]"));