* doc/as.texinfo (Section, PushSection): Correct documentation
[binutils.git] / bfd / elf32-hppa.c
blob4c35bbe4ea32245942829c66bcd5c3339801c0f7
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004 Free Software Foundation, Inc.
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
49 /* We use two hash tables to hold information for linking PA ELF objects.
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
59 There are a number of different stubs generated by the linker.
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120 static const bfd_byte plt_stub[] =
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
144 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145 copying dynamic variables from a shared lib into an app's dynbss
146 section, and instead use a dynamic relocation to point into the
147 shared lib. */
148 #define ELIMINATE_COPY_RELOCS 1
150 enum elf32_hppa_stub_type {
151 hppa_stub_long_branch,
152 hppa_stub_long_branch_shared,
153 hppa_stub_import,
154 hppa_stub_import_shared,
155 hppa_stub_export,
156 hppa_stub_none
159 struct elf32_hppa_stub_hash_entry {
161 /* Base hash table entry structure. */
162 struct bfd_hash_entry root;
164 /* The stub section. */
165 asection *stub_sec;
167 /* Offset within stub_sec of the beginning of this stub. */
168 bfd_vma stub_offset;
170 /* Given the symbol's value and its section we can determine its final
171 value when building the stubs (so the stub knows where to jump. */
172 bfd_vma target_value;
173 asection *target_section;
175 enum elf32_hppa_stub_type stub_type;
177 /* The symbol table entry, if any, that this was derived from. */
178 struct elf32_hppa_link_hash_entry *h;
180 /* Where this stub is being called from, or, in the case of combined
181 stub sections, the first input section in the group. */
182 asection *id_sec;
185 struct elf32_hppa_link_hash_entry {
187 struct elf_link_hash_entry elf;
189 /* A pointer to the most recently used stub hash entry against this
190 symbol. */
191 struct elf32_hppa_stub_hash_entry *stub_cache;
193 /* Used to count relocations for delayed sizing of relocation
194 sections. */
195 struct elf32_hppa_dyn_reloc_entry {
197 /* Next relocation in the chain. */
198 struct elf32_hppa_dyn_reloc_entry *next;
200 /* The input section of the reloc. */
201 asection *sec;
203 /* Number of relocs copied in this section. */
204 bfd_size_type count;
206 #if RELATIVE_DYNRELOCS
207 /* Number of relative relocs copied for the input section. */
208 bfd_size_type relative_count;
209 #endif
210 } *dyn_relocs;
212 /* Set if this symbol is used by a plabel reloc. */
213 unsigned int plabel:1;
216 struct elf32_hppa_link_hash_table {
218 /* The main hash table. */
219 struct elf_link_hash_table elf;
221 /* The stub hash table. */
222 struct bfd_hash_table stub_hash_table;
224 /* Linker stub bfd. */
225 bfd *stub_bfd;
227 /* Linker call-backs. */
228 asection * (*add_stub_section) (const char *, asection *);
229 void (*layout_sections_again) (void);
231 /* Array to keep track of which stub sections have been created, and
232 information on stub grouping. */
233 struct map_stub {
234 /* This is the section to which stubs in the group will be
235 attached. */
236 asection *link_sec;
237 /* The stub section. */
238 asection *stub_sec;
239 } *stub_group;
241 /* Assorted information used by elf32_hppa_size_stubs. */
242 unsigned int bfd_count;
243 int top_index;
244 asection **input_list;
245 Elf_Internal_Sym **all_local_syms;
247 /* Short-cuts to get to dynamic linker sections. */
248 asection *sgot;
249 asection *srelgot;
250 asection *splt;
251 asection *srelplt;
252 asection *sdynbss;
253 asection *srelbss;
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base;
258 bfd_vma data_segment_base;
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace:1;
263 /* Flags set when various size branches are detected. Used to
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch:1;
266 unsigned int has_17bit_branch:1;
267 unsigned int has_22bit_branch:1;
269 /* Set if we need a .plt stub to support lazy dynamic linking. */
270 unsigned int need_plt_stub:1;
272 /* Small local sym to section mapping cache. */
273 struct sym_sec_cache sym_sec;
276 /* Various hash macros and functions. */
277 #define hppa_link_hash_table(p) \
278 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
280 #define hppa_stub_hash_lookup(table, string, create, copy) \
281 ((struct elf32_hppa_stub_hash_entry *) \
282 bfd_hash_lookup ((table), (string), (create), (copy)))
284 /* Assorted hash table functions. */
286 /* Initialize an entry in the stub hash table. */
288 static struct bfd_hash_entry *
289 stub_hash_newfunc (struct bfd_hash_entry *entry,
290 struct bfd_hash_table *table,
291 const char *string)
293 /* Allocate the structure if it has not already been allocated by a
294 subclass. */
295 if (entry == NULL)
297 entry = bfd_hash_allocate (table,
298 sizeof (struct elf32_hppa_stub_hash_entry));
299 if (entry == NULL)
300 return entry;
303 /* Call the allocation method of the superclass. */
304 entry = bfd_hash_newfunc (entry, table, string);
305 if (entry != NULL)
307 struct elf32_hppa_stub_hash_entry *eh;
309 /* Initialize the local fields. */
310 eh = (struct elf32_hppa_stub_hash_entry *) entry;
311 eh->stub_sec = NULL;
312 eh->stub_offset = 0;
313 eh->target_value = 0;
314 eh->target_section = NULL;
315 eh->stub_type = hppa_stub_long_branch;
316 eh->h = NULL;
317 eh->id_sec = NULL;
320 return entry;
323 /* Initialize an entry in the link hash table. */
325 static struct bfd_hash_entry *
326 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
327 struct bfd_hash_table *table,
328 const char *string)
330 /* Allocate the structure if it has not already been allocated by a
331 subclass. */
332 if (entry == NULL)
334 entry = bfd_hash_allocate (table,
335 sizeof (struct elf32_hppa_link_hash_entry));
336 if (entry == NULL)
337 return entry;
340 /* Call the allocation method of the superclass. */
341 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
342 if (entry != NULL)
344 struct elf32_hppa_link_hash_entry *eh;
346 /* Initialize the local fields. */
347 eh = (struct elf32_hppa_link_hash_entry *) entry;
348 eh->stub_cache = NULL;
349 eh->dyn_relocs = NULL;
350 eh->plabel = 0;
353 return entry;
356 /* Create the derived linker hash table. The PA ELF port uses the derived
357 hash table to keep information specific to the PA ELF linker (without
358 using static variables). */
360 static struct bfd_link_hash_table *
361 elf32_hppa_link_hash_table_create (bfd *abfd)
363 struct elf32_hppa_link_hash_table *ret;
364 bfd_size_type amt = sizeof (*ret);
366 ret = bfd_malloc (amt);
367 if (ret == NULL)
368 return NULL;
370 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
372 free (ret);
373 return NULL;
376 /* Init the stub hash table too. */
377 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
378 return NULL;
380 ret->stub_bfd = NULL;
381 ret->add_stub_section = NULL;
382 ret->layout_sections_again = NULL;
383 ret->stub_group = NULL;
384 ret->sgot = NULL;
385 ret->srelgot = NULL;
386 ret->splt = NULL;
387 ret->srelplt = NULL;
388 ret->sdynbss = NULL;
389 ret->srelbss = NULL;
390 ret->text_segment_base = (bfd_vma) -1;
391 ret->data_segment_base = (bfd_vma) -1;
392 ret->multi_subspace = 0;
393 ret->has_12bit_branch = 0;
394 ret->has_17bit_branch = 0;
395 ret->has_22bit_branch = 0;
396 ret->need_plt_stub = 0;
397 ret->sym_sec.abfd = NULL;
399 return &ret->elf.root;
402 /* Free the derived linker hash table. */
404 static void
405 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
407 struct elf32_hppa_link_hash_table *ret
408 = (struct elf32_hppa_link_hash_table *) hash;
410 bfd_hash_table_free (&ret->stub_hash_table);
411 _bfd_generic_link_hash_table_free (hash);
414 /* Build a name for an entry in the stub hash table. */
416 static char *
417 hppa_stub_name (const asection *input_section,
418 const asection *sym_sec,
419 const struct elf32_hppa_link_hash_entry *hash,
420 const Elf_Internal_Rela *rel)
422 char *stub_name;
423 bfd_size_type len;
425 if (hash)
427 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
428 stub_name = bfd_malloc (len);
429 if (stub_name != NULL)
431 sprintf (stub_name, "%08x_%s+%x",
432 input_section->id & 0xffffffff,
433 hash->elf.root.root.string,
434 (int) rel->r_addend & 0xffffffff);
437 else
439 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440 stub_name = bfd_malloc (len);
441 if (stub_name != NULL)
443 sprintf (stub_name, "%08x_%x:%x+%x",
444 input_section->id & 0xffffffff,
445 sym_sec->id & 0xffffffff,
446 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
447 (int) rel->r_addend & 0xffffffff);
450 return stub_name;
453 /* Look up an entry in the stub hash. Stub entries are cached because
454 creating the stub name takes a bit of time. */
456 static struct elf32_hppa_stub_hash_entry *
457 hppa_get_stub_entry (const asection *input_section,
458 const asection *sym_sec,
459 struct elf32_hppa_link_hash_entry *hash,
460 const Elf_Internal_Rela *rel,
461 struct elf32_hppa_link_hash_table *htab)
463 struct elf32_hppa_stub_hash_entry *stub_entry;
464 const asection *id_sec;
466 /* If this input section is part of a group of sections sharing one
467 stub section, then use the id of the first section in the group.
468 Stub names need to include a section id, as there may well be
469 more than one stub used to reach say, printf, and we need to
470 distinguish between them. */
471 id_sec = htab->stub_group[input_section->id].link_sec;
473 if (hash != NULL && hash->stub_cache != NULL
474 && hash->stub_cache->h == hash
475 && hash->stub_cache->id_sec == id_sec)
477 stub_entry = hash->stub_cache;
479 else
481 char *stub_name;
483 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
484 if (stub_name == NULL)
485 return NULL;
487 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
488 stub_name, FALSE, FALSE);
489 if (hash != NULL)
490 hash->stub_cache = stub_entry;
492 free (stub_name);
495 return stub_entry;
498 /* Add a new stub entry to the stub hash. Not all fields of the new
499 stub entry are initialised. */
501 static struct elf32_hppa_stub_hash_entry *
502 hppa_add_stub (const char *stub_name,
503 asection *section,
504 struct elf32_hppa_link_hash_table *htab)
506 asection *link_sec;
507 asection *stub_sec;
508 struct elf32_hppa_stub_hash_entry *stub_entry;
510 link_sec = htab->stub_group[section->id].link_sec;
511 stub_sec = htab->stub_group[section->id].stub_sec;
512 if (stub_sec == NULL)
514 stub_sec = htab->stub_group[link_sec->id].stub_sec;
515 if (stub_sec == NULL)
517 size_t namelen;
518 bfd_size_type len;
519 char *s_name;
521 namelen = strlen (link_sec->name);
522 len = namelen + sizeof (STUB_SUFFIX);
523 s_name = bfd_alloc (htab->stub_bfd, len);
524 if (s_name == NULL)
525 return NULL;
527 memcpy (s_name, link_sec->name, namelen);
528 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
529 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
530 if (stub_sec == NULL)
531 return NULL;
532 htab->stub_group[link_sec->id].stub_sec = stub_sec;
534 htab->stub_group[section->id].stub_sec = stub_sec;
537 /* Enter this entry into the linker stub hash table. */
538 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
539 TRUE, FALSE);
540 if (stub_entry == NULL)
542 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
543 bfd_archive_filename (section->owner),
544 stub_name);
545 return NULL;
548 stub_entry->stub_sec = stub_sec;
549 stub_entry->stub_offset = 0;
550 stub_entry->id_sec = link_sec;
551 return stub_entry;
554 /* Determine the type of stub needed, if any, for a call. */
556 static enum elf32_hppa_stub_type
557 hppa_type_of_stub (asection *input_sec,
558 const Elf_Internal_Rela *rel,
559 struct elf32_hppa_link_hash_entry *hash,
560 bfd_vma destination,
561 struct bfd_link_info *info)
563 bfd_vma location;
564 bfd_vma branch_offset;
565 bfd_vma max_branch_offset;
566 unsigned int r_type;
568 if (hash != NULL
569 && hash->elf.plt.offset != (bfd_vma) -1
570 && hash->elf.dynindx != -1
571 && !hash->plabel
572 && (info->shared
573 || !(hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
574 || hash->elf.root.type == bfd_link_hash_defweak))
576 /* We need an import stub. Decide between hppa_stub_import
577 and hppa_stub_import_shared later. */
578 return hppa_stub_import;
581 /* Determine where the call point is. */
582 location = (input_sec->output_offset
583 + input_sec->output_section->vma
584 + rel->r_offset);
586 branch_offset = destination - location - 8;
587 r_type = ELF32_R_TYPE (rel->r_info);
589 /* Determine if a long branch stub is needed. parisc branch offsets
590 are relative to the second instruction past the branch, ie. +8
591 bytes on from the branch instruction location. The offset is
592 signed and counts in units of 4 bytes. */
593 if (r_type == (unsigned int) R_PARISC_PCREL17F)
595 max_branch_offset = (1 << (17-1)) << 2;
597 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
599 max_branch_offset = (1 << (12-1)) << 2;
601 else /* R_PARISC_PCREL22F. */
603 max_branch_offset = (1 << (22-1)) << 2;
606 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
607 return hppa_stub_long_branch;
609 return hppa_stub_none;
612 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613 IN_ARG contains the link info pointer. */
615 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
616 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
618 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
619 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
620 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
622 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
623 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
624 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
625 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
627 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
628 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
630 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
631 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
632 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
633 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
635 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
636 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
637 #define NOP 0x08000240 /* nop */
638 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
639 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
640 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
642 #ifndef R19_STUBS
643 #define R19_STUBS 1
644 #endif
646 #if R19_STUBS
647 #define LDW_R1_DLT LDW_R1_R19
648 #else
649 #define LDW_R1_DLT LDW_R1_DP
650 #endif
652 static bfd_boolean
653 hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
655 struct elf32_hppa_stub_hash_entry *stub_entry;
656 struct bfd_link_info *info;
657 struct elf32_hppa_link_hash_table *htab;
658 asection *stub_sec;
659 bfd *stub_bfd;
660 bfd_byte *loc;
661 bfd_vma sym_value;
662 bfd_vma insn;
663 bfd_vma off;
664 int val;
665 int size;
667 /* Massage our args to the form they really have. */
668 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
669 info = in_arg;
671 htab = hppa_link_hash_table (info);
672 stub_sec = stub_entry->stub_sec;
674 /* Make a note of the offset within the stubs for this entry. */
675 stub_entry->stub_offset = stub_sec->size;
676 loc = stub_sec->contents + stub_entry->stub_offset;
678 stub_bfd = stub_sec->owner;
680 switch (stub_entry->stub_type)
682 case hppa_stub_long_branch:
683 /* Create the long branch. A long branch is formed with "ldil"
684 loading the upper bits of the target address into a register,
685 then branching with "be" which adds in the lower bits.
686 The "be" has its delay slot nullified. */
687 sym_value = (stub_entry->target_value
688 + stub_entry->target_section->output_offset
689 + stub_entry->target_section->output_section->vma);
691 val = hppa_field_adjust (sym_value, 0, e_lrsel);
692 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
693 bfd_put_32 (stub_bfd, insn, loc);
695 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
696 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
697 bfd_put_32 (stub_bfd, insn, loc + 4);
699 size = 8;
700 break;
702 case hppa_stub_long_branch_shared:
703 /* Branches are relative. This is where we are going to. */
704 sym_value = (stub_entry->target_value
705 + stub_entry->target_section->output_offset
706 + stub_entry->target_section->output_section->vma);
708 /* And this is where we are coming from, more or less. */
709 sym_value -= (stub_entry->stub_offset
710 + stub_sec->output_offset
711 + stub_sec->output_section->vma);
713 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
714 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
715 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
716 bfd_put_32 (stub_bfd, insn, loc + 4);
718 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
719 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
720 bfd_put_32 (stub_bfd, insn, loc + 8);
721 size = 12;
722 break;
724 case hppa_stub_import:
725 case hppa_stub_import_shared:
726 off = stub_entry->h->elf.plt.offset;
727 if (off >= (bfd_vma) -2)
728 abort ();
730 off &= ~ (bfd_vma) 1;
731 sym_value = (off
732 + htab->splt->output_offset
733 + htab->splt->output_section->vma
734 - elf_gp (htab->splt->output_section->owner));
736 insn = ADDIL_DP;
737 #if R19_STUBS
738 if (stub_entry->stub_type == hppa_stub_import_shared)
739 insn = ADDIL_R19;
740 #endif
741 val = hppa_field_adjust (sym_value, 0, e_lrsel),
742 insn = hppa_rebuild_insn ((int) insn, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc);
745 /* It is critical to use lrsel/rrsel here because we are using
746 two different offsets (+0 and +4) from sym_value. If we use
747 lsel/rsel then with unfortunate sym_values we will round
748 sym_value+4 up to the next 2k block leading to a mis-match
749 between the lsel and rsel value. */
750 val = hppa_field_adjust (sym_value, 0, e_rrsel);
751 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
754 if (htab->multi_subspace)
756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
757 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
758 bfd_put_32 (stub_bfd, insn, loc + 8);
760 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
761 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
762 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
763 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
765 size = 28;
767 else
769 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
770 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
771 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
772 bfd_put_32 (stub_bfd, insn, loc + 12);
774 size = 16;
777 break;
779 case hppa_stub_export:
780 /* Branches are relative. This is where we are going to. */
781 sym_value = (stub_entry->target_value
782 + stub_entry->target_section->output_offset
783 + stub_entry->target_section->output_section->vma);
785 /* And this is where we are coming from. */
786 sym_value -= (stub_entry->stub_offset
787 + stub_sec->output_offset
788 + stub_sec->output_section->vma);
790 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 && (!htab->has_22bit_branch
792 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
794 (*_bfd_error_handler)
795 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
796 bfd_archive_filename (stub_entry->target_section->owner),
797 stub_sec->name,
798 (long) stub_entry->stub_offset,
799 stub_entry->root.string);
800 bfd_set_error (bfd_error_bad_value);
801 return FALSE;
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
805 if (!htab->has_22bit_branch)
806 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
807 else
808 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
809 bfd_put_32 (stub_bfd, insn, loc);
811 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
812 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
813 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
814 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
815 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
817 /* Point the function symbol at the stub. */
818 stub_entry->h->elf.root.u.def.section = stub_sec;
819 stub_entry->h->elf.root.u.def.value = stub_sec->size;
821 size = 24;
822 break;
824 default:
825 BFD_FAIL ();
826 return FALSE;
829 stub_sec->size += size;
830 return TRUE;
833 #undef LDIL_R1
834 #undef BE_SR4_R1
835 #undef BL_R1
836 #undef ADDIL_R1
837 #undef DEPI_R1
838 #undef LDW_R1_R21
839 #undef LDW_R1_DLT
840 #undef LDW_R1_R19
841 #undef ADDIL_R19
842 #undef LDW_R1_DP
843 #undef LDSID_R21_R1
844 #undef MTSP_R1
845 #undef BE_SR0_R21
846 #undef STW_RP
847 #undef BV_R0_R21
848 #undef BL_RP
849 #undef NOP
850 #undef LDW_RP
851 #undef LDSID_RP_R1
852 #undef BE_SR0_RP
854 /* As above, but don't actually build the stub. Just bump offset so
855 we know stub section sizes. */
857 static bfd_boolean
858 hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
860 struct elf32_hppa_stub_hash_entry *stub_entry;
861 struct elf32_hppa_link_hash_table *htab;
862 int size;
864 /* Massage our args to the form they really have. */
865 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
866 htab = in_arg;
868 if (stub_entry->stub_type == hppa_stub_long_branch)
869 size = 8;
870 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
871 size = 12;
872 else if (stub_entry->stub_type == hppa_stub_export)
873 size = 24;
874 else /* hppa_stub_import or hppa_stub_import_shared. */
876 if (htab->multi_subspace)
877 size = 28;
878 else
879 size = 16;
882 stub_entry->stub_sec->size += size;
883 return TRUE;
886 /* Return nonzero if ABFD represents an HPPA ELF32 file.
887 Additionally we set the default architecture and machine. */
889 static bfd_boolean
890 elf32_hppa_object_p (bfd *abfd)
892 Elf_Internal_Ehdr * i_ehdrp;
893 unsigned int flags;
895 i_ehdrp = elf_elfheader (abfd);
896 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
898 /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 but the kernel produces corefiles with OSABI=SysV. */
900 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
901 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
902 return FALSE;
904 else
906 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
907 return FALSE;
910 flags = i_ehdrp->e_flags;
911 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
913 case EFA_PARISC_1_0:
914 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
915 case EFA_PARISC_1_1:
916 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
917 case EFA_PARISC_2_0:
918 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
919 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
920 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
922 return TRUE;
925 /* Create the .plt and .got sections, and set up our hash table
926 short-cuts to various dynamic sections. */
928 static bfd_boolean
929 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
931 struct elf32_hppa_link_hash_table *htab;
933 /* Don't try to create the .plt and .got twice. */
934 htab = hppa_link_hash_table (info);
935 if (htab->splt != NULL)
936 return TRUE;
938 /* Call the generic code to do most of the work. */
939 if (! _bfd_elf_create_dynamic_sections (abfd, info))
940 return FALSE;
942 htab->splt = bfd_get_section_by_name (abfd, ".plt");
943 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
945 htab->sgot = bfd_get_section_by_name (abfd, ".got");
946 htab->srelgot = bfd_make_section (abfd, ".rela.got");
947 if (htab->srelgot == NULL
948 || ! bfd_set_section_flags (abfd, htab->srelgot,
949 (SEC_ALLOC
950 | SEC_LOAD
951 | SEC_HAS_CONTENTS
952 | SEC_IN_MEMORY
953 | SEC_LINKER_CREATED
954 | SEC_READONLY))
955 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
956 return FALSE;
958 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
959 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
961 return TRUE;
964 /* Copy the extra info we tack onto an elf_link_hash_entry. */
966 static void
967 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
968 struct elf_link_hash_entry *dir,
969 struct elf_link_hash_entry *ind)
971 struct elf32_hppa_link_hash_entry *edir, *eind;
973 edir = (struct elf32_hppa_link_hash_entry *) dir;
974 eind = (struct elf32_hppa_link_hash_entry *) ind;
976 if (eind->dyn_relocs != NULL)
978 if (edir->dyn_relocs != NULL)
980 struct elf32_hppa_dyn_reloc_entry **pp;
981 struct elf32_hppa_dyn_reloc_entry *p;
983 if (ind->root.type == bfd_link_hash_indirect)
984 abort ();
986 /* Add reloc counts against the weak sym to the strong sym
987 list. Merge any entries against the same section. */
988 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
990 struct elf32_hppa_dyn_reloc_entry *q;
992 for (q = edir->dyn_relocs; q != NULL; q = q->next)
993 if (q->sec == p->sec)
995 #if RELATIVE_DYNRELOCS
996 q->relative_count += p->relative_count;
997 #endif
998 q->count += p->count;
999 *pp = p->next;
1000 break;
1002 if (q == NULL)
1003 pp = &p->next;
1005 *pp = edir->dyn_relocs;
1008 edir->dyn_relocs = eind->dyn_relocs;
1009 eind->dyn_relocs = NULL;
1012 if (ELIMINATE_COPY_RELOCS
1013 && ind->root.type != bfd_link_hash_indirect
1014 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
1015 /* If called to transfer flags for a weakdef during processing
1016 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
1017 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1018 dir->elf_link_hash_flags |=
1019 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1020 | ELF_LINK_HASH_REF_REGULAR
1021 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1022 | ELF_LINK_HASH_NEEDS_PLT));
1023 else
1024 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1027 /* Look through the relocs for a section during the first phase, and
1028 calculate needed space in the global offset table, procedure linkage
1029 table, and dynamic reloc sections. At this point we haven't
1030 necessarily read all the input files. */
1032 static bfd_boolean
1033 elf32_hppa_check_relocs (bfd *abfd,
1034 struct bfd_link_info *info,
1035 asection *sec,
1036 const Elf_Internal_Rela *relocs)
1038 Elf_Internal_Shdr *symtab_hdr;
1039 struct elf_link_hash_entry **sym_hashes;
1040 const Elf_Internal_Rela *rel;
1041 const Elf_Internal_Rela *rel_end;
1042 struct elf32_hppa_link_hash_table *htab;
1043 asection *sreloc;
1044 asection *stubreloc;
1046 if (info->relocatable)
1047 return TRUE;
1049 htab = hppa_link_hash_table (info);
1050 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1051 sym_hashes = elf_sym_hashes (abfd);
1052 sreloc = NULL;
1053 stubreloc = NULL;
1055 rel_end = relocs + sec->reloc_count;
1056 for (rel = relocs; rel < rel_end; rel++)
1058 enum {
1059 NEED_GOT = 1,
1060 NEED_PLT = 2,
1061 NEED_DYNREL = 4,
1062 PLT_PLABEL = 8
1065 unsigned int r_symndx, r_type;
1066 struct elf32_hppa_link_hash_entry *h;
1067 int need_entry;
1069 r_symndx = ELF32_R_SYM (rel->r_info);
1071 if (r_symndx < symtab_hdr->sh_info)
1072 h = NULL;
1073 else
1074 h = ((struct elf32_hppa_link_hash_entry *)
1075 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1077 r_type = ELF32_R_TYPE (rel->r_info);
1079 switch (r_type)
1081 case R_PARISC_DLTIND14F:
1082 case R_PARISC_DLTIND14R:
1083 case R_PARISC_DLTIND21L:
1084 /* This symbol requires a global offset table entry. */
1085 need_entry = NEED_GOT;
1086 break;
1088 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1089 case R_PARISC_PLABEL21L:
1090 case R_PARISC_PLABEL32:
1091 /* If the addend is non-zero, we break badly. */
1092 if (rel->r_addend != 0)
1093 abort ();
1095 /* If we are creating a shared library, then we need to
1096 create a PLT entry for all PLABELs, because PLABELs with
1097 local symbols may be passed via a pointer to another
1098 object. Additionally, output a dynamic relocation
1099 pointing to the PLT entry.
1100 For executables, the original 32-bit ABI allowed two
1101 different styles of PLABELs (function pointers): For
1102 global functions, the PLABEL word points into the .plt
1103 two bytes past a (function address, gp) pair, and for
1104 local functions the PLABEL points directly at the
1105 function. The magic +2 for the first type allows us to
1106 differentiate between the two. As you can imagine, this
1107 is a real pain when it comes to generating code to call
1108 functions indirectly or to compare function pointers.
1109 We avoid the mess by always pointing a PLABEL into the
1110 .plt, even for local functions. */
1111 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1112 break;
1114 case R_PARISC_PCREL12F:
1115 htab->has_12bit_branch = 1;
1116 goto branch_common;
1118 case R_PARISC_PCREL17C:
1119 case R_PARISC_PCREL17F:
1120 htab->has_17bit_branch = 1;
1121 goto branch_common;
1123 case R_PARISC_PCREL22F:
1124 htab->has_22bit_branch = 1;
1125 branch_common:
1126 /* Function calls might need to go through the .plt, and
1127 might require long branch stubs. */
1128 if (h == NULL)
1130 /* We know local syms won't need a .plt entry, and if
1131 they need a long branch stub we can't guarantee that
1132 we can reach the stub. So just flag an error later
1133 if we're doing a shared link and find we need a long
1134 branch stub. */
1135 continue;
1137 else
1139 /* Global symbols will need a .plt entry if they remain
1140 global, and in most cases won't need a long branch
1141 stub. Unfortunately, we have to cater for the case
1142 where a symbol is forced local by versioning, or due
1143 to symbolic linking, and we lose the .plt entry. */
1144 need_entry = NEED_PLT;
1145 if (h->elf.type == STT_PARISC_MILLI)
1146 need_entry = 0;
1148 break;
1150 case R_PARISC_SEGBASE: /* Used to set segment base. */
1151 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1152 case R_PARISC_PCREL14F: /* PC relative load/store. */
1153 case R_PARISC_PCREL14R:
1154 case R_PARISC_PCREL17R: /* External branches. */
1155 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1156 case R_PARISC_PCREL32:
1157 /* We don't need to propagate the relocation if linking a
1158 shared object since these are section relative. */
1159 continue;
1161 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1162 case R_PARISC_DPREL14R:
1163 case R_PARISC_DPREL21L:
1164 if (info->shared)
1166 (*_bfd_error_handler)
1167 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1168 bfd_archive_filename (abfd),
1169 elf_hppa_howto_table[r_type].name);
1170 bfd_set_error (bfd_error_bad_value);
1171 return FALSE;
1173 /* Fall through. */
1175 case R_PARISC_DIR17F: /* Used for external branches. */
1176 case R_PARISC_DIR17R:
1177 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1178 case R_PARISC_DIR14R:
1179 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1180 #if 0
1181 /* Help debug shared library creation. Any of the above
1182 relocs can be used in shared libs, but they may cause
1183 pages to become unshared. */
1184 if (info->shared)
1186 (*_bfd_error_handler)
1187 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1188 bfd_archive_filename (abfd),
1189 elf_hppa_howto_table[r_type].name);
1191 /* Fall through. */
1192 #endif
1194 case R_PARISC_DIR32: /* .word relocs. */
1195 /* We may want to output a dynamic relocation later. */
1196 need_entry = NEED_DYNREL;
1197 break;
1199 /* This relocation describes the C++ object vtable hierarchy.
1200 Reconstruct it for later use during GC. */
1201 case R_PARISC_GNU_VTINHERIT:
1202 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &h->elf, rel->r_offset))
1203 return FALSE;
1204 continue;
1206 /* This relocation describes which C++ vtable entries are actually
1207 used. Record for later use during GC. */
1208 case R_PARISC_GNU_VTENTRY:
1209 if (!bfd_elf_gc_record_vtentry (abfd, sec, &h->elf, rel->r_addend))
1210 return FALSE;
1211 continue;
1213 default:
1214 continue;
1217 /* Now carry out our orders. */
1218 if (need_entry & NEED_GOT)
1220 /* Allocate space for a GOT entry, as well as a dynamic
1221 relocation for this entry. */
1222 if (htab->sgot == NULL)
1224 if (htab->elf.dynobj == NULL)
1225 htab->elf.dynobj = abfd;
1226 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1227 return FALSE;
1230 if (h != NULL)
1232 h->elf.got.refcount += 1;
1234 else
1236 bfd_signed_vma *local_got_refcounts;
1238 /* This is a global offset table entry for a local symbol. */
1239 local_got_refcounts = elf_local_got_refcounts (abfd);
1240 if (local_got_refcounts == NULL)
1242 bfd_size_type size;
1244 /* Allocate space for local got offsets and local
1245 plt offsets. Done this way to save polluting
1246 elf_obj_tdata with another target specific
1247 pointer. */
1248 size = symtab_hdr->sh_info;
1249 size *= 2 * sizeof (bfd_signed_vma);
1250 local_got_refcounts = bfd_zalloc (abfd, size);
1251 if (local_got_refcounts == NULL)
1252 return FALSE;
1253 elf_local_got_refcounts (abfd) = local_got_refcounts;
1255 local_got_refcounts[r_symndx] += 1;
1259 if (need_entry & NEED_PLT)
1261 /* If we are creating a shared library, and this is a reloc
1262 against a weak symbol or a global symbol in a dynamic
1263 object, then we will be creating an import stub and a
1264 .plt entry for the symbol. Similarly, on a normal link
1265 to symbols defined in a dynamic object we'll need the
1266 import stub and a .plt entry. We don't know yet whether
1267 the symbol is defined or not, so make an entry anyway and
1268 clean up later in adjust_dynamic_symbol. */
1269 if ((sec->flags & SEC_ALLOC) != 0)
1271 if (h != NULL)
1273 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1274 h->elf.plt.refcount += 1;
1276 /* If this .plt entry is for a plabel, mark it so
1277 that adjust_dynamic_symbol will keep the entry
1278 even if it appears to be local. */
1279 if (need_entry & PLT_PLABEL)
1280 h->plabel = 1;
1282 else if (need_entry & PLT_PLABEL)
1284 bfd_signed_vma *local_got_refcounts;
1285 bfd_signed_vma *local_plt_refcounts;
1287 local_got_refcounts = elf_local_got_refcounts (abfd);
1288 if (local_got_refcounts == NULL)
1290 bfd_size_type size;
1292 /* Allocate space for local got offsets and local
1293 plt offsets. */
1294 size = symtab_hdr->sh_info;
1295 size *= 2 * sizeof (bfd_signed_vma);
1296 local_got_refcounts = bfd_zalloc (abfd, size);
1297 if (local_got_refcounts == NULL)
1298 return FALSE;
1299 elf_local_got_refcounts (abfd) = local_got_refcounts;
1301 local_plt_refcounts = (local_got_refcounts
1302 + symtab_hdr->sh_info);
1303 local_plt_refcounts[r_symndx] += 1;
1308 if (need_entry & NEED_DYNREL)
1310 /* Flag this symbol as having a non-got, non-plt reference
1311 so that we generate copy relocs if it turns out to be
1312 dynamic. */
1313 if (h != NULL && !info->shared)
1314 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1316 /* If we are creating a shared library then we need to copy
1317 the reloc into the shared library. However, if we are
1318 linking with -Bsymbolic, we need only copy absolute
1319 relocs or relocs against symbols that are not defined in
1320 an object we are including in the link. PC- or DP- or
1321 DLT-relative relocs against any local sym or global sym
1322 with DEF_REGULAR set, can be discarded. At this point we
1323 have not seen all the input files, so it is possible that
1324 DEF_REGULAR is not set now but will be set later (it is
1325 never cleared). We account for that possibility below by
1326 storing information in the dyn_relocs field of the
1327 hash table entry.
1329 A similar situation to the -Bsymbolic case occurs when
1330 creating shared libraries and symbol visibility changes
1331 render the symbol local.
1333 As it turns out, all the relocs we will be creating here
1334 are absolute, so we cannot remove them on -Bsymbolic
1335 links or visibility changes anyway. A STUB_REL reloc
1336 is absolute too, as in that case it is the reloc in the
1337 stub we will be creating, rather than copying the PCREL
1338 reloc in the branch.
1340 If on the other hand, we are creating an executable, we
1341 may need to keep relocations for symbols satisfied by a
1342 dynamic library if we manage to avoid copy relocs for the
1343 symbol. */
1344 if ((info->shared
1345 && (sec->flags & SEC_ALLOC) != 0
1346 && (IS_ABSOLUTE_RELOC (r_type)
1347 || (h != NULL
1348 && (!info->symbolic
1349 || h->elf.root.type == bfd_link_hash_defweak
1350 || (h->elf.elf_link_hash_flags
1351 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1352 || (ELIMINATE_COPY_RELOCS
1353 && !info->shared
1354 && (sec->flags & SEC_ALLOC) != 0
1355 && h != NULL
1356 && (h->elf.root.type == bfd_link_hash_defweak
1357 || (h->elf.elf_link_hash_flags
1358 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1360 struct elf32_hppa_dyn_reloc_entry *p;
1361 struct elf32_hppa_dyn_reloc_entry **head;
1363 /* Create a reloc section in dynobj and make room for
1364 this reloc. */
1365 if (sreloc == NULL)
1367 char *name;
1368 bfd *dynobj;
1370 name = (bfd_elf_string_from_elf_section
1371 (abfd,
1372 elf_elfheader (abfd)->e_shstrndx,
1373 elf_section_data (sec)->rel_hdr.sh_name));
1374 if (name == NULL)
1376 (*_bfd_error_handler)
1377 (_("Could not find relocation section for %s"),
1378 sec->name);
1379 bfd_set_error (bfd_error_bad_value);
1380 return FALSE;
1383 if (htab->elf.dynobj == NULL)
1384 htab->elf.dynobj = abfd;
1386 dynobj = htab->elf.dynobj;
1387 sreloc = bfd_get_section_by_name (dynobj, name);
1388 if (sreloc == NULL)
1390 flagword flags;
1392 sreloc = bfd_make_section (dynobj, name);
1393 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1394 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1395 if ((sec->flags & SEC_ALLOC) != 0)
1396 flags |= SEC_ALLOC | SEC_LOAD;
1397 if (sreloc == NULL
1398 || !bfd_set_section_flags (dynobj, sreloc, flags)
1399 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1400 return FALSE;
1403 elf_section_data (sec)->sreloc = sreloc;
1406 /* If this is a global symbol, we count the number of
1407 relocations we need for this symbol. */
1408 if (h != NULL)
1410 head = &h->dyn_relocs;
1412 else
1414 /* Track dynamic relocs needed for local syms too.
1415 We really need local syms available to do this
1416 easily. Oh well. */
1418 asection *s;
1419 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1420 sec, r_symndx);
1421 if (s == NULL)
1422 return FALSE;
1424 head = ((struct elf32_hppa_dyn_reloc_entry **)
1425 &elf_section_data (s)->local_dynrel);
1428 p = *head;
1429 if (p == NULL || p->sec != sec)
1431 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
1432 if (p == NULL)
1433 return FALSE;
1434 p->next = *head;
1435 *head = p;
1436 p->sec = sec;
1437 p->count = 0;
1438 #if RELATIVE_DYNRELOCS
1439 p->relative_count = 0;
1440 #endif
1443 p->count += 1;
1444 #if RELATIVE_DYNRELOCS
1445 if (!IS_ABSOLUTE_RELOC (rtype))
1446 p->relative_count += 1;
1447 #endif
1452 return TRUE;
1455 /* Return the section that should be marked against garbage collection
1456 for a given relocation. */
1458 static asection *
1459 elf32_hppa_gc_mark_hook (asection *sec,
1460 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1461 Elf_Internal_Rela *rel,
1462 struct elf_link_hash_entry *h,
1463 Elf_Internal_Sym *sym)
1465 if (h != NULL)
1467 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1469 case R_PARISC_GNU_VTINHERIT:
1470 case R_PARISC_GNU_VTENTRY:
1471 break;
1473 default:
1474 switch (h->root.type)
1476 case bfd_link_hash_defined:
1477 case bfd_link_hash_defweak:
1478 return h->root.u.def.section;
1480 case bfd_link_hash_common:
1481 return h->root.u.c.p->section;
1483 default:
1484 break;
1488 else
1489 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1491 return NULL;
1494 /* Update the got and plt entry reference counts for the section being
1495 removed. */
1497 static bfd_boolean
1498 elf32_hppa_gc_sweep_hook (bfd *abfd,
1499 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1500 asection *sec,
1501 const Elf_Internal_Rela *relocs)
1503 Elf_Internal_Shdr *symtab_hdr;
1504 struct elf_link_hash_entry **sym_hashes;
1505 bfd_signed_vma *local_got_refcounts;
1506 bfd_signed_vma *local_plt_refcounts;
1507 const Elf_Internal_Rela *rel, *relend;
1509 elf_section_data (sec)->local_dynrel = NULL;
1511 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1512 sym_hashes = elf_sym_hashes (abfd);
1513 local_got_refcounts = elf_local_got_refcounts (abfd);
1514 local_plt_refcounts = local_got_refcounts;
1515 if (local_plt_refcounts != NULL)
1516 local_plt_refcounts += symtab_hdr->sh_info;
1518 relend = relocs + sec->reloc_count;
1519 for (rel = relocs; rel < relend; rel++)
1521 unsigned long r_symndx;
1522 unsigned int r_type;
1523 struct elf_link_hash_entry *h = NULL;
1525 r_symndx = ELF32_R_SYM (rel->r_info);
1526 if (r_symndx >= symtab_hdr->sh_info)
1528 struct elf32_hppa_link_hash_entry *eh;
1529 struct elf32_hppa_dyn_reloc_entry **pp;
1530 struct elf32_hppa_dyn_reloc_entry *p;
1532 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1533 eh = (struct elf32_hppa_link_hash_entry *) h;
1535 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1536 if (p->sec == sec)
1538 /* Everything must go for SEC. */
1539 *pp = p->next;
1540 break;
1544 r_type = ELF32_R_TYPE (rel->r_info);
1545 switch (r_type)
1547 case R_PARISC_DLTIND14F:
1548 case R_PARISC_DLTIND14R:
1549 case R_PARISC_DLTIND21L:
1550 if (h != NULL)
1552 if (h->got.refcount > 0)
1553 h->got.refcount -= 1;
1555 else if (local_got_refcounts != NULL)
1557 if (local_got_refcounts[r_symndx] > 0)
1558 local_got_refcounts[r_symndx] -= 1;
1560 break;
1562 case R_PARISC_PCREL12F:
1563 case R_PARISC_PCREL17C:
1564 case R_PARISC_PCREL17F:
1565 case R_PARISC_PCREL22F:
1566 if (h != NULL)
1568 if (h->plt.refcount > 0)
1569 h->plt.refcount -= 1;
1571 break;
1573 case R_PARISC_PLABEL14R:
1574 case R_PARISC_PLABEL21L:
1575 case R_PARISC_PLABEL32:
1576 if (h != NULL)
1578 if (h->plt.refcount > 0)
1579 h->plt.refcount -= 1;
1581 else if (local_plt_refcounts != NULL)
1583 if (local_plt_refcounts[r_symndx] > 0)
1584 local_plt_refcounts[r_symndx] -= 1;
1586 break;
1588 default:
1589 break;
1593 return TRUE;
1596 /* Our own version of hide_symbol, so that we can keep plt entries for
1597 plabels. */
1599 static void
1600 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1601 struct elf_link_hash_entry *h,
1602 bfd_boolean force_local)
1604 if (force_local)
1606 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1607 if (h->dynindx != -1)
1609 h->dynindx = -1;
1610 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1611 h->dynstr_index);
1615 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1617 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1618 h->plt.offset = (bfd_vma) -1;
1622 /* Adjust a symbol defined by a dynamic object and referenced by a
1623 regular object. The current definition is in some section of the
1624 dynamic object, but we're not including those sections. We have to
1625 change the definition to something the rest of the link can
1626 understand. */
1628 static bfd_boolean
1629 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1630 struct elf_link_hash_entry *h)
1632 struct elf32_hppa_link_hash_table *htab;
1633 asection *s;
1634 unsigned int power_of_two;
1636 /* If this is a function, put it in the procedure linkage table. We
1637 will fill in the contents of the procedure linkage table later. */
1638 if (h->type == STT_FUNC
1639 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1641 if (h->plt.refcount <= 0
1642 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1643 && h->root.type != bfd_link_hash_defweak
1644 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1645 && (!info->shared || info->symbolic)))
1647 /* The .plt entry is not needed when:
1648 a) Garbage collection has removed all references to the
1649 symbol, or
1650 b) We know for certain the symbol is defined in this
1651 object, and it's not a weak definition, nor is the symbol
1652 used by a plabel relocation. Either this object is the
1653 application or we are doing a shared symbolic link. */
1655 h->plt.offset = (bfd_vma) -1;
1656 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1659 return TRUE;
1661 else
1662 h->plt.offset = (bfd_vma) -1;
1664 /* If this is a weak symbol, and there is a real definition, the
1665 processor independent code will have arranged for us to see the
1666 real definition first, and we can just use the same value. */
1667 if (h->weakdef != NULL)
1669 if (h->weakdef->root.type != bfd_link_hash_defined
1670 && h->weakdef->root.type != bfd_link_hash_defweak)
1671 abort ();
1672 h->root.u.def.section = h->weakdef->root.u.def.section;
1673 h->root.u.def.value = h->weakdef->root.u.def.value;
1674 if (ELIMINATE_COPY_RELOCS)
1675 h->elf_link_hash_flags
1676 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1677 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
1678 return TRUE;
1681 /* This is a reference to a symbol defined by a dynamic object which
1682 is not a function. */
1684 /* If we are creating a shared library, we must presume that the
1685 only references to the symbol are via the global offset table.
1686 For such cases we need not do anything here; the relocations will
1687 be handled correctly by relocate_section. */
1688 if (info->shared)
1689 return TRUE;
1691 /* If there are no references to this symbol that do not use the
1692 GOT, we don't need to generate a copy reloc. */
1693 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1694 return TRUE;
1696 if (ELIMINATE_COPY_RELOCS)
1698 struct elf32_hppa_link_hash_entry *eh;
1699 struct elf32_hppa_dyn_reloc_entry *p;
1701 eh = (struct elf32_hppa_link_hash_entry *) h;
1702 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1704 s = p->sec->output_section;
1705 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1706 break;
1709 /* If we didn't find any dynamic relocs in read-only sections, then
1710 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1711 if (p == NULL)
1713 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1714 return TRUE;
1718 /* We must allocate the symbol in our .dynbss section, which will
1719 become part of the .bss section of the executable. There will be
1720 an entry for this symbol in the .dynsym section. The dynamic
1721 object will contain position independent code, so all references
1722 from the dynamic object to this symbol will go through the global
1723 offset table. The dynamic linker will use the .dynsym entry to
1724 determine the address it must put in the global offset table, so
1725 both the dynamic object and the regular object will refer to the
1726 same memory location for the variable. */
1728 htab = hppa_link_hash_table (info);
1730 /* We must generate a COPY reloc to tell the dynamic linker to
1731 copy the initial value out of the dynamic object and into the
1732 runtime process image. */
1733 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1735 htab->srelbss->size += sizeof (Elf32_External_Rela);
1736 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1739 /* We need to figure out the alignment required for this symbol. I
1740 have no idea how other ELF linkers handle this. */
1742 power_of_two = bfd_log2 (h->size);
1743 if (power_of_two > 3)
1744 power_of_two = 3;
1746 /* Apply the required alignment. */
1747 s = htab->sdynbss;
1748 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1749 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1751 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1752 return FALSE;
1755 /* Define the symbol as being at this point in the section. */
1756 h->root.u.def.section = s;
1757 h->root.u.def.value = s->size;
1759 /* Increment the section size to make room for the symbol. */
1760 s->size += h->size;
1762 return TRUE;
1765 /* Allocate space in the .plt for entries that won't have relocations.
1766 ie. plabel entries. */
1768 static bfd_boolean
1769 allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
1771 struct bfd_link_info *info;
1772 struct elf32_hppa_link_hash_table *htab;
1773 asection *s;
1775 if (h->root.type == bfd_link_hash_indirect)
1776 return TRUE;
1778 if (h->root.type == bfd_link_hash_warning)
1779 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1781 info = inf;
1782 htab = hppa_link_hash_table (info);
1783 if (htab->elf.dynamic_sections_created
1784 && h->plt.refcount > 0)
1786 /* Make sure this symbol is output as a dynamic symbol.
1787 Undefined weak syms won't yet be marked as dynamic. */
1788 if (h->dynindx == -1
1789 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1790 && h->type != STT_PARISC_MILLI)
1792 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1793 return FALSE;
1796 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
1798 /* Allocate these later. From this point on, h->plabel
1799 means that the plt entry is only used by a plabel.
1800 We'll be using a normal plt entry for this symbol, so
1801 clear the plabel indicator. */
1802 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1804 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1806 /* Make an entry in the .plt section for plabel references
1807 that won't have a .plt entry for other reasons. */
1808 s = htab->splt;
1809 h->plt.offset = s->size;
1810 s->size += PLT_ENTRY_SIZE;
1812 else
1814 /* No .plt entry needed. */
1815 h->plt.offset = (bfd_vma) -1;
1816 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1819 else
1821 h->plt.offset = (bfd_vma) -1;
1822 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1825 return TRUE;
1828 /* Allocate space in .plt, .got and associated reloc sections for
1829 global syms. */
1831 static bfd_boolean
1832 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1834 struct bfd_link_info *info;
1835 struct elf32_hppa_link_hash_table *htab;
1836 asection *s;
1837 struct elf32_hppa_link_hash_entry *eh;
1838 struct elf32_hppa_dyn_reloc_entry *p;
1840 if (h->root.type == bfd_link_hash_indirect)
1841 return TRUE;
1843 if (h->root.type == bfd_link_hash_warning)
1844 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1846 info = inf;
1847 htab = hppa_link_hash_table (info);
1848 if (htab->elf.dynamic_sections_created
1849 && h->plt.offset != (bfd_vma) -1
1850 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
1852 /* Make an entry in the .plt section. */
1853 s = htab->splt;
1854 h->plt.offset = s->size;
1855 s->size += PLT_ENTRY_SIZE;
1857 /* We also need to make an entry in the .rela.plt section. */
1858 htab->srelplt->size += sizeof (Elf32_External_Rela);
1859 htab->need_plt_stub = 1;
1862 if (h->got.refcount > 0)
1864 /* Make sure this symbol is output as a dynamic symbol.
1865 Undefined weak syms won't yet be marked as dynamic. */
1866 if (h->dynindx == -1
1867 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1868 && h->type != STT_PARISC_MILLI)
1870 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1871 return FALSE;
1874 s = htab->sgot;
1875 h->got.offset = s->size;
1876 s->size += GOT_ENTRY_SIZE;
1877 if (htab->elf.dynamic_sections_created
1878 && (info->shared
1879 || (h->dynindx != -1
1880 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
1882 htab->srelgot->size += sizeof (Elf32_External_Rela);
1885 else
1886 h->got.offset = (bfd_vma) -1;
1888 eh = (struct elf32_hppa_link_hash_entry *) h;
1889 if (eh->dyn_relocs == NULL)
1890 return TRUE;
1892 /* If this is a -Bsymbolic shared link, then we need to discard all
1893 space allocated for dynamic pc-relative relocs against symbols
1894 defined in a regular object. For the normal shared case, discard
1895 space for relocs that have become local due to symbol visibility
1896 changes. */
1897 if (info->shared)
1899 #if RELATIVE_DYNRELOCS
1900 if (SYMBOL_CALLS_LOCAL (info, h))
1902 struct elf32_hppa_dyn_reloc_entry **pp;
1904 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1906 p->count -= p->relative_count;
1907 p->relative_count = 0;
1908 if (p->count == 0)
1909 *pp = p->next;
1910 else
1911 pp = &p->next;
1914 #endif
1916 /* Also discard relocs on undefined weak syms with non-default
1917 visibility. */
1918 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1919 && h->root.type == bfd_link_hash_undefweak)
1920 eh->dyn_relocs = NULL;
1922 else
1924 /* For the non-shared case, discard space for relocs against
1925 symbols which turn out to need copy relocs or are not
1926 dynamic. */
1927 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1928 && ((ELIMINATE_COPY_RELOCS
1929 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1930 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1931 || (htab->elf.dynamic_sections_created
1932 && (h->root.type == bfd_link_hash_undefweak
1933 || h->root.type == bfd_link_hash_undefined))))
1935 /* Make sure this symbol is output as a dynamic symbol.
1936 Undefined weak syms won't yet be marked as dynamic. */
1937 if (h->dynindx == -1
1938 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1939 && h->type != STT_PARISC_MILLI)
1941 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1942 return FALSE;
1945 /* If that succeeded, we know we'll be keeping all the
1946 relocs. */
1947 if (h->dynindx != -1)
1948 goto keep;
1951 eh->dyn_relocs = NULL;
1952 return TRUE;
1954 keep: ;
1957 /* Finally, allocate space. */
1958 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1960 asection *sreloc = elf_section_data (p->sec)->sreloc;
1961 sreloc->size += p->count * sizeof (Elf32_External_Rela);
1964 return TRUE;
1967 /* This function is called via elf_link_hash_traverse to force
1968 millicode symbols local so they do not end up as globals in the
1969 dynamic symbol table. We ought to be able to do this in
1970 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
1971 for all dynamic symbols. Arguably, this is a bug in
1972 elf_adjust_dynamic_symbol. */
1974 static bfd_boolean
1975 clobber_millicode_symbols (struct elf_link_hash_entry *h,
1976 struct bfd_link_info *info)
1978 if (h->root.type == bfd_link_hash_warning)
1979 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1981 if (h->type == STT_PARISC_MILLI
1982 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1984 elf32_hppa_hide_symbol (info, h, TRUE);
1986 return TRUE;
1989 /* Find any dynamic relocs that apply to read-only sections. */
1991 static bfd_boolean
1992 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1994 struct elf32_hppa_link_hash_entry *eh;
1995 struct elf32_hppa_dyn_reloc_entry *p;
1997 if (h->root.type == bfd_link_hash_warning)
1998 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2000 eh = (struct elf32_hppa_link_hash_entry *) h;
2001 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2003 asection *s = p->sec->output_section;
2005 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2007 struct bfd_link_info *info = inf;
2009 info->flags |= DF_TEXTREL;
2011 /* Not an error, just cut short the traversal. */
2012 return FALSE;
2015 return TRUE;
2018 /* Set the sizes of the dynamic sections. */
2020 static bfd_boolean
2021 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2022 struct bfd_link_info *info)
2024 struct elf32_hppa_link_hash_table *htab;
2025 bfd *dynobj;
2026 bfd *ibfd;
2027 asection *s;
2028 bfd_boolean relocs;
2030 htab = hppa_link_hash_table (info);
2031 dynobj = htab->elf.dynobj;
2032 if (dynobj == NULL)
2033 abort ();
2035 if (htab->elf.dynamic_sections_created)
2037 /* Set the contents of the .interp section to the interpreter. */
2038 if (info->executable)
2040 s = bfd_get_section_by_name (dynobj, ".interp");
2041 if (s == NULL)
2042 abort ();
2043 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2044 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2047 /* Force millicode symbols local. */
2048 elf_link_hash_traverse (&htab->elf,
2049 clobber_millicode_symbols,
2050 info);
2053 /* Set up .got and .plt offsets for local syms, and space for local
2054 dynamic relocs. */
2055 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2057 bfd_signed_vma *local_got;
2058 bfd_signed_vma *end_local_got;
2059 bfd_signed_vma *local_plt;
2060 bfd_signed_vma *end_local_plt;
2061 bfd_size_type locsymcount;
2062 Elf_Internal_Shdr *symtab_hdr;
2063 asection *srel;
2065 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2066 continue;
2068 for (s = ibfd->sections; s != NULL; s = s->next)
2070 struct elf32_hppa_dyn_reloc_entry *p;
2072 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2073 elf_section_data (s)->local_dynrel);
2074 p != NULL;
2075 p = p->next)
2077 if (!bfd_is_abs_section (p->sec)
2078 && bfd_is_abs_section (p->sec->output_section))
2080 /* Input section has been discarded, either because
2081 it is a copy of a linkonce section or due to
2082 linker script /DISCARD/, so we'll be discarding
2083 the relocs too. */
2085 else if (p->count != 0)
2087 srel = elf_section_data (p->sec)->sreloc;
2088 srel->size += p->count * sizeof (Elf32_External_Rela);
2089 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2090 info->flags |= DF_TEXTREL;
2095 local_got = elf_local_got_refcounts (ibfd);
2096 if (!local_got)
2097 continue;
2099 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2100 locsymcount = symtab_hdr->sh_info;
2101 end_local_got = local_got + locsymcount;
2102 s = htab->sgot;
2103 srel = htab->srelgot;
2104 for (; local_got < end_local_got; ++local_got)
2106 if (*local_got > 0)
2108 *local_got = s->size;
2109 s->size += GOT_ENTRY_SIZE;
2110 if (info->shared)
2111 srel->size += sizeof (Elf32_External_Rela);
2113 else
2114 *local_got = (bfd_vma) -1;
2117 local_plt = end_local_got;
2118 end_local_plt = local_plt + locsymcount;
2119 if (! htab->elf.dynamic_sections_created)
2121 /* Won't be used, but be safe. */
2122 for (; local_plt < end_local_plt; ++local_plt)
2123 *local_plt = (bfd_vma) -1;
2125 else
2127 s = htab->splt;
2128 srel = htab->srelplt;
2129 for (; local_plt < end_local_plt; ++local_plt)
2131 if (*local_plt > 0)
2133 *local_plt = s->size;
2134 s->size += PLT_ENTRY_SIZE;
2135 if (info->shared)
2136 srel->size += sizeof (Elf32_External_Rela);
2138 else
2139 *local_plt = (bfd_vma) -1;
2144 /* Do all the .plt entries without relocs first. The dynamic linker
2145 uses the last .plt reloc to find the end of the .plt (and hence
2146 the start of the .got) for lazy linking. */
2147 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
2149 /* Allocate global sym .plt and .got entries, and space for global
2150 sym dynamic relocs. */
2151 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2153 /* The check_relocs and adjust_dynamic_symbol entry points have
2154 determined the sizes of the various dynamic sections. Allocate
2155 memory for them. */
2156 relocs = FALSE;
2157 for (s = dynobj->sections; s != NULL; s = s->next)
2159 if ((s->flags & SEC_LINKER_CREATED) == 0)
2160 continue;
2162 if (s == htab->splt)
2164 if (htab->need_plt_stub)
2166 /* Make space for the plt stub at the end of the .plt
2167 section. We want this stub right at the end, up
2168 against the .got section. */
2169 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2170 int pltalign = bfd_section_alignment (dynobj, s);
2171 bfd_size_type mask;
2173 if (gotalign > pltalign)
2174 bfd_set_section_alignment (dynobj, s, gotalign);
2175 mask = ((bfd_size_type) 1 << gotalign) - 1;
2176 s->size = (s->size + sizeof (plt_stub) + mask) & ~mask;
2179 else if (s == htab->sgot)
2181 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2183 if (s->size != 0)
2185 /* Remember whether there are any reloc sections other
2186 than .rela.plt. */
2187 if (s != htab->srelplt)
2188 relocs = TRUE;
2190 /* We use the reloc_count field as a counter if we need
2191 to copy relocs into the output file. */
2192 s->reloc_count = 0;
2195 else
2197 /* It's not one of our sections, so don't allocate space. */
2198 continue;
2201 if (s->size == 0)
2203 /* If we don't need this section, strip it from the
2204 output file. This is mostly to handle .rela.bss and
2205 .rela.plt. We must create both sections in
2206 create_dynamic_sections, because they must be created
2207 before the linker maps input sections to output
2208 sections. The linker does that before
2209 adjust_dynamic_symbol is called, and it is that
2210 function which decides whether anything needs to go
2211 into these sections. */
2212 _bfd_strip_section_from_output (info, s);
2213 continue;
2216 /* Allocate memory for the section contents. Zero it, because
2217 we may not fill in all the reloc sections. */
2218 s->contents = bfd_zalloc (dynobj, s->size);
2219 if (s->contents == NULL && s->size != 0)
2220 return FALSE;
2223 if (htab->elf.dynamic_sections_created)
2225 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2226 actually has nothing to do with the PLT, it is how we
2227 communicate the LTP value of a load module to the dynamic
2228 linker. */
2229 #define add_dynamic_entry(TAG, VAL) \
2230 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2232 if (!add_dynamic_entry (DT_PLTGOT, 0))
2233 return FALSE;
2235 /* Add some entries to the .dynamic section. We fill in the
2236 values later, in elf32_hppa_finish_dynamic_sections, but we
2237 must add the entries now so that we get the correct size for
2238 the .dynamic section. The DT_DEBUG entry is filled in by the
2239 dynamic linker and used by the debugger. */
2240 if (!info->shared)
2242 if (!add_dynamic_entry (DT_DEBUG, 0))
2243 return FALSE;
2246 if (htab->srelplt->size != 0)
2248 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2249 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2250 || !add_dynamic_entry (DT_JMPREL, 0))
2251 return FALSE;
2254 if (relocs)
2256 if (!add_dynamic_entry (DT_RELA, 0)
2257 || !add_dynamic_entry (DT_RELASZ, 0)
2258 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2259 return FALSE;
2261 /* If any dynamic relocs apply to a read-only section,
2262 then we need a DT_TEXTREL entry. */
2263 if ((info->flags & DF_TEXTREL) == 0)
2264 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2266 if ((info->flags & DF_TEXTREL) != 0)
2268 if (!add_dynamic_entry (DT_TEXTREL, 0))
2269 return FALSE;
2273 #undef add_dynamic_entry
2275 return TRUE;
2278 /* External entry points for sizing and building linker stubs. */
2280 /* Set up various things so that we can make a list of input sections
2281 for each output section included in the link. Returns -1 on error,
2282 0 when no stubs will be needed, and 1 on success. */
2285 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2287 bfd *input_bfd;
2288 unsigned int bfd_count;
2289 int top_id, top_index;
2290 asection *section;
2291 asection **input_list, **list;
2292 bfd_size_type amt;
2293 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2295 /* Count the number of input BFDs and find the top input section id. */
2296 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2297 input_bfd != NULL;
2298 input_bfd = input_bfd->link_next)
2300 bfd_count += 1;
2301 for (section = input_bfd->sections;
2302 section != NULL;
2303 section = section->next)
2305 if (top_id < section->id)
2306 top_id = section->id;
2309 htab->bfd_count = bfd_count;
2311 amt = sizeof (struct map_stub) * (top_id + 1);
2312 htab->stub_group = bfd_zmalloc (amt);
2313 if (htab->stub_group == NULL)
2314 return -1;
2316 /* We can't use output_bfd->section_count here to find the top output
2317 section index as some sections may have been removed, and
2318 _bfd_strip_section_from_output doesn't renumber the indices. */
2319 for (section = output_bfd->sections, top_index = 0;
2320 section != NULL;
2321 section = section->next)
2323 if (top_index < section->index)
2324 top_index = section->index;
2327 htab->top_index = top_index;
2328 amt = sizeof (asection *) * (top_index + 1);
2329 input_list = bfd_malloc (amt);
2330 htab->input_list = input_list;
2331 if (input_list == NULL)
2332 return -1;
2334 /* For sections we aren't interested in, mark their entries with a
2335 value we can check later. */
2336 list = input_list + top_index;
2338 *list = bfd_abs_section_ptr;
2339 while (list-- != input_list);
2341 for (section = output_bfd->sections;
2342 section != NULL;
2343 section = section->next)
2345 if ((section->flags & SEC_CODE) != 0)
2346 input_list[section->index] = NULL;
2349 return 1;
2352 /* The linker repeatedly calls this function for each input section,
2353 in the order that input sections are linked into output sections.
2354 Build lists of input sections to determine groupings between which
2355 we may insert linker stubs. */
2357 void
2358 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2360 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2362 if (isec->output_section->index <= htab->top_index)
2364 asection **list = htab->input_list + isec->output_section->index;
2365 if (*list != bfd_abs_section_ptr)
2367 /* Steal the link_sec pointer for our list. */
2368 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2369 /* This happens to make the list in reverse order,
2370 which is what we want. */
2371 PREV_SEC (isec) = *list;
2372 *list = isec;
2377 /* See whether we can group stub sections together. Grouping stub
2378 sections may result in fewer stubs. More importantly, we need to
2379 put all .init* and .fini* stubs at the beginning of the .init or
2380 .fini output sections respectively, because glibc splits the
2381 _init and _fini functions into multiple parts. Putting a stub in
2382 the middle of a function is not a good idea. */
2384 static void
2385 group_sections (struct elf32_hppa_link_hash_table *htab,
2386 bfd_size_type stub_group_size,
2387 bfd_boolean stubs_always_before_branch)
2389 asection **list = htab->input_list + htab->top_index;
2392 asection *tail = *list;
2393 if (tail == bfd_abs_section_ptr)
2394 continue;
2395 while (tail != NULL)
2397 asection *curr;
2398 asection *prev;
2399 bfd_size_type total;
2400 bfd_boolean big_sec;
2402 curr = tail;
2403 total = tail->size;
2404 big_sec = total >= stub_group_size;
2406 while ((prev = PREV_SEC (curr)) != NULL
2407 && ((total += curr->output_offset - prev->output_offset)
2408 < stub_group_size))
2409 curr = prev;
2411 /* OK, the size from the start of CURR to the end is less
2412 than 240000 bytes and thus can be handled by one stub
2413 section. (or the tail section is itself larger than
2414 240000 bytes, in which case we may be toast.)
2415 We should really be keeping track of the total size of
2416 stubs added here, as stubs contribute to the final output
2417 section size. That's a little tricky, and this way will
2418 only break if stubs added total more than 22144 bytes, or
2419 2768 long branch stubs. It seems unlikely for more than
2420 2768 different functions to be called, especially from
2421 code only 240000 bytes long. This limit used to be
2422 250000, but c++ code tends to generate lots of little
2423 functions, and sometimes violated the assumption. */
2426 prev = PREV_SEC (tail);
2427 /* Set up this stub group. */
2428 htab->stub_group[tail->id].link_sec = curr;
2430 while (tail != curr && (tail = prev) != NULL);
2432 /* But wait, there's more! Input sections up to 240000
2433 bytes before the stub section can be handled by it too.
2434 Don't do this if we have a really large section after the
2435 stubs, as adding more stubs increases the chance that
2436 branches may not reach into the stub section. */
2437 if (!stubs_always_before_branch && !big_sec)
2439 total = 0;
2440 while (prev != NULL
2441 && ((total += tail->output_offset - prev->output_offset)
2442 < stub_group_size))
2444 tail = prev;
2445 prev = PREV_SEC (tail);
2446 htab->stub_group[tail->id].link_sec = curr;
2449 tail = prev;
2452 while (list-- != htab->input_list);
2453 free (htab->input_list);
2454 #undef PREV_SEC
2457 /* Read in all local syms for all input bfds, and create hash entries
2458 for export stubs if we are building a multi-subspace shared lib.
2459 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2461 static int
2462 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2464 unsigned int bfd_indx;
2465 Elf_Internal_Sym *local_syms, **all_local_syms;
2466 int stub_changed = 0;
2467 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2469 /* We want to read in symbol extension records only once. To do this
2470 we need to read in the local symbols in parallel and save them for
2471 later use; so hold pointers to the local symbols in an array. */
2472 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2473 all_local_syms = bfd_zmalloc (amt);
2474 htab->all_local_syms = all_local_syms;
2475 if (all_local_syms == NULL)
2476 return -1;
2478 /* Walk over all the input BFDs, swapping in local symbols.
2479 If we are creating a shared library, create hash entries for the
2480 export stubs. */
2481 for (bfd_indx = 0;
2482 input_bfd != NULL;
2483 input_bfd = input_bfd->link_next, bfd_indx++)
2485 Elf_Internal_Shdr *symtab_hdr;
2487 /* We'll need the symbol table in a second. */
2488 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2489 if (symtab_hdr->sh_info == 0)
2490 continue;
2492 /* We need an array of the local symbols attached to the input bfd. */
2493 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2494 if (local_syms == NULL)
2496 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2497 symtab_hdr->sh_info, 0,
2498 NULL, NULL, NULL);
2499 /* Cache them for elf_link_input_bfd. */
2500 symtab_hdr->contents = (unsigned char *) local_syms;
2502 if (local_syms == NULL)
2503 return -1;
2505 all_local_syms[bfd_indx] = local_syms;
2507 if (info->shared && htab->multi_subspace)
2509 struct elf_link_hash_entry **sym_hashes;
2510 struct elf_link_hash_entry **end_hashes;
2511 unsigned int symcount;
2513 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2514 - symtab_hdr->sh_info);
2515 sym_hashes = elf_sym_hashes (input_bfd);
2516 end_hashes = sym_hashes + symcount;
2518 /* Look through the global syms for functions; We need to
2519 build export stubs for all globally visible functions. */
2520 for (; sym_hashes < end_hashes; sym_hashes++)
2522 struct elf32_hppa_link_hash_entry *hash;
2524 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2526 while (hash->elf.root.type == bfd_link_hash_indirect
2527 || hash->elf.root.type == bfd_link_hash_warning)
2528 hash = ((struct elf32_hppa_link_hash_entry *)
2529 hash->elf.root.u.i.link);
2531 /* At this point in the link, undefined syms have been
2532 resolved, so we need to check that the symbol was
2533 defined in this BFD. */
2534 if ((hash->elf.root.type == bfd_link_hash_defined
2535 || hash->elf.root.type == bfd_link_hash_defweak)
2536 && hash->elf.type == STT_FUNC
2537 && hash->elf.root.u.def.section->output_section != NULL
2538 && (hash->elf.root.u.def.section->output_section->owner
2539 == output_bfd)
2540 && hash->elf.root.u.def.section->owner == input_bfd
2541 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2542 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2543 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2545 asection *sec;
2546 const char *stub_name;
2547 struct elf32_hppa_stub_hash_entry *stub_entry;
2549 sec = hash->elf.root.u.def.section;
2550 stub_name = hash->elf.root.root.string;
2551 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2552 stub_name,
2553 FALSE, FALSE);
2554 if (stub_entry == NULL)
2556 stub_entry = hppa_add_stub (stub_name, sec, htab);
2557 if (!stub_entry)
2558 return -1;
2560 stub_entry->target_value = hash->elf.root.u.def.value;
2561 stub_entry->target_section = hash->elf.root.u.def.section;
2562 stub_entry->stub_type = hppa_stub_export;
2563 stub_entry->h = hash;
2564 stub_changed = 1;
2566 else
2568 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2569 bfd_archive_filename (input_bfd),
2570 stub_name);
2577 return stub_changed;
2580 /* Determine and set the size of the stub section for a final link.
2582 The basic idea here is to examine all the relocations looking for
2583 PC-relative calls to a target that is unreachable with a "bl"
2584 instruction. */
2586 bfd_boolean
2587 elf32_hppa_size_stubs
2588 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2589 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2590 asection * (*add_stub_section) (const char *, asection *),
2591 void (*layout_sections_again) (void))
2593 bfd_size_type stub_group_size;
2594 bfd_boolean stubs_always_before_branch;
2595 bfd_boolean stub_changed;
2596 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2598 /* Stash our params away. */
2599 htab->stub_bfd = stub_bfd;
2600 htab->multi_subspace = multi_subspace;
2601 htab->add_stub_section = add_stub_section;
2602 htab->layout_sections_again = layout_sections_again;
2603 stubs_always_before_branch = group_size < 0;
2604 if (group_size < 0)
2605 stub_group_size = -group_size;
2606 else
2607 stub_group_size = group_size;
2608 if (stub_group_size == 1)
2610 /* Default values. */
2611 if (stubs_always_before_branch)
2613 stub_group_size = 7680000;
2614 if (htab->has_17bit_branch || htab->multi_subspace)
2615 stub_group_size = 240000;
2616 if (htab->has_12bit_branch)
2617 stub_group_size = 7500;
2619 else
2621 stub_group_size = 6971392;
2622 if (htab->has_17bit_branch || htab->multi_subspace)
2623 stub_group_size = 217856;
2624 if (htab->has_12bit_branch)
2625 stub_group_size = 6808;
2629 group_sections (htab, stub_group_size, stubs_always_before_branch);
2631 switch (get_local_syms (output_bfd, info->input_bfds, info))
2633 default:
2634 if (htab->all_local_syms)
2635 goto error_ret_free_local;
2636 return FALSE;
2638 case 0:
2639 stub_changed = FALSE;
2640 break;
2642 case 1:
2643 stub_changed = TRUE;
2644 break;
2647 while (1)
2649 bfd *input_bfd;
2650 unsigned int bfd_indx;
2651 asection *stub_sec;
2653 for (input_bfd = info->input_bfds, bfd_indx = 0;
2654 input_bfd != NULL;
2655 input_bfd = input_bfd->link_next, bfd_indx++)
2657 Elf_Internal_Shdr *symtab_hdr;
2658 asection *section;
2659 Elf_Internal_Sym *local_syms;
2661 /* We'll need the symbol table in a second. */
2662 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2663 if (symtab_hdr->sh_info == 0)
2664 continue;
2666 local_syms = htab->all_local_syms[bfd_indx];
2668 /* Walk over each section attached to the input bfd. */
2669 for (section = input_bfd->sections;
2670 section != NULL;
2671 section = section->next)
2673 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2675 /* If there aren't any relocs, then there's nothing more
2676 to do. */
2677 if ((section->flags & SEC_RELOC) == 0
2678 || section->reloc_count == 0)
2679 continue;
2681 /* If this section is a link-once section that will be
2682 discarded, then don't create any stubs. */
2683 if (section->output_section == NULL
2684 || section->output_section->owner != output_bfd)
2685 continue;
2687 /* Get the relocs. */
2688 internal_relocs
2689 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2690 info->keep_memory);
2691 if (internal_relocs == NULL)
2692 goto error_ret_free_local;
2694 /* Now examine each relocation. */
2695 irela = internal_relocs;
2696 irelaend = irela + section->reloc_count;
2697 for (; irela < irelaend; irela++)
2699 unsigned int r_type, r_indx;
2700 enum elf32_hppa_stub_type stub_type;
2701 struct elf32_hppa_stub_hash_entry *stub_entry;
2702 asection *sym_sec;
2703 bfd_vma sym_value;
2704 bfd_vma destination;
2705 struct elf32_hppa_link_hash_entry *hash;
2706 char *stub_name;
2707 const asection *id_sec;
2709 r_type = ELF32_R_TYPE (irela->r_info);
2710 r_indx = ELF32_R_SYM (irela->r_info);
2712 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2714 bfd_set_error (bfd_error_bad_value);
2715 error_ret_free_internal:
2716 if (elf_section_data (section)->relocs == NULL)
2717 free (internal_relocs);
2718 goto error_ret_free_local;
2721 /* Only look for stubs on call instructions. */
2722 if (r_type != (unsigned int) R_PARISC_PCREL12F
2723 && r_type != (unsigned int) R_PARISC_PCREL17F
2724 && r_type != (unsigned int) R_PARISC_PCREL22F)
2725 continue;
2727 /* Now determine the call target, its name, value,
2728 section. */
2729 sym_sec = NULL;
2730 sym_value = 0;
2731 destination = 0;
2732 hash = NULL;
2733 if (r_indx < symtab_hdr->sh_info)
2735 /* It's a local symbol. */
2736 Elf_Internal_Sym *sym;
2737 Elf_Internal_Shdr *hdr;
2739 sym = local_syms + r_indx;
2740 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2741 sym_sec = hdr->bfd_section;
2742 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2743 sym_value = sym->st_value;
2744 destination = (sym_value + irela->r_addend
2745 + sym_sec->output_offset
2746 + sym_sec->output_section->vma);
2748 else
2750 /* It's an external symbol. */
2751 int e_indx;
2753 e_indx = r_indx - symtab_hdr->sh_info;
2754 hash = ((struct elf32_hppa_link_hash_entry *)
2755 elf_sym_hashes (input_bfd)[e_indx]);
2757 while (hash->elf.root.type == bfd_link_hash_indirect
2758 || hash->elf.root.type == bfd_link_hash_warning)
2759 hash = ((struct elf32_hppa_link_hash_entry *)
2760 hash->elf.root.u.i.link);
2762 if (hash->elf.root.type == bfd_link_hash_defined
2763 || hash->elf.root.type == bfd_link_hash_defweak)
2765 sym_sec = hash->elf.root.u.def.section;
2766 sym_value = hash->elf.root.u.def.value;
2767 if (sym_sec->output_section != NULL)
2768 destination = (sym_value + irela->r_addend
2769 + sym_sec->output_offset
2770 + sym_sec->output_section->vma);
2772 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2774 if (! info->shared)
2775 continue;
2777 else if (hash->elf.root.type == bfd_link_hash_undefined)
2779 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2780 && (ELF_ST_VISIBILITY (hash->elf.other)
2781 == STV_DEFAULT)
2782 && hash->elf.type != STT_PARISC_MILLI))
2783 continue;
2785 else
2787 bfd_set_error (bfd_error_bad_value);
2788 goto error_ret_free_internal;
2792 /* Determine what (if any) linker stub is needed. */
2793 stub_type = hppa_type_of_stub (section, irela, hash,
2794 destination, info);
2795 if (stub_type == hppa_stub_none)
2796 continue;
2798 /* Support for grouping stub sections. */
2799 id_sec = htab->stub_group[section->id].link_sec;
2801 /* Get the name of this stub. */
2802 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2803 if (!stub_name)
2804 goto error_ret_free_internal;
2806 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2807 stub_name,
2808 FALSE, FALSE);
2809 if (stub_entry != NULL)
2811 /* The proper stub has already been created. */
2812 free (stub_name);
2813 continue;
2816 stub_entry = hppa_add_stub (stub_name, section, htab);
2817 if (stub_entry == NULL)
2819 free (stub_name);
2820 goto error_ret_free_internal;
2823 stub_entry->target_value = sym_value;
2824 stub_entry->target_section = sym_sec;
2825 stub_entry->stub_type = stub_type;
2826 if (info->shared)
2828 if (stub_type == hppa_stub_import)
2829 stub_entry->stub_type = hppa_stub_import_shared;
2830 else if (stub_type == hppa_stub_long_branch)
2831 stub_entry->stub_type = hppa_stub_long_branch_shared;
2833 stub_entry->h = hash;
2834 stub_changed = TRUE;
2837 /* We're done with the internal relocs, free them. */
2838 if (elf_section_data (section)->relocs == NULL)
2839 free (internal_relocs);
2843 if (!stub_changed)
2844 break;
2846 /* OK, we've added some stubs. Find out the new size of the
2847 stub sections. */
2848 for (stub_sec = htab->stub_bfd->sections;
2849 stub_sec != NULL;
2850 stub_sec = stub_sec->next)
2851 stub_sec->size = 0;
2853 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
2855 /* Ask the linker to do its stuff. */
2856 (*htab->layout_sections_again) ();
2857 stub_changed = FALSE;
2860 free (htab->all_local_syms);
2861 return TRUE;
2863 error_ret_free_local:
2864 free (htab->all_local_syms);
2865 return FALSE;
2868 /* For a final link, this function is called after we have sized the
2869 stubs to provide a value for __gp. */
2871 bfd_boolean
2872 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2874 struct bfd_link_hash_entry *h;
2875 asection *sec = NULL;
2876 bfd_vma gp_val = 0;
2877 struct elf32_hppa_link_hash_table *htab;
2879 htab = hppa_link_hash_table (info);
2880 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
2882 if (h != NULL
2883 && (h->type == bfd_link_hash_defined
2884 || h->type == bfd_link_hash_defweak))
2886 gp_val = h->u.def.value;
2887 sec = h->u.def.section;
2889 else
2891 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2892 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2894 /* Choose to point our LTP at, in this order, one of .plt, .got,
2895 or .data, if these sections exist. In the case of choosing
2896 .plt try to make the LTP ideal for addressing anywhere in the
2897 .plt or .got with a 14 bit signed offset. Typically, the end
2898 of the .plt is the start of the .got, so choose .plt + 0x2000
2899 if either the .plt or .got is larger than 0x2000. If both
2900 the .plt and .got are smaller than 0x2000, choose the end of
2901 the .plt section. */
2902 sec = splt;
2903 if (sec != NULL)
2905 gp_val = sec->size;
2906 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
2908 gp_val = 0x2000;
2911 else
2913 sec = sgot;
2914 if (sec != NULL)
2916 /* We know we don't have a .plt. If .got is large,
2917 offset our LTP. */
2918 if (sec->size > 0x2000)
2919 gp_val = 0x2000;
2921 else
2923 /* No .plt or .got. Who cares what the LTP is? */
2924 sec = bfd_get_section_by_name (abfd, ".data");
2928 if (h != NULL)
2930 h->type = bfd_link_hash_defined;
2931 h->u.def.value = gp_val;
2932 if (sec != NULL)
2933 h->u.def.section = sec;
2934 else
2935 h->u.def.section = bfd_abs_section_ptr;
2939 if (sec != NULL && sec->output_section != NULL)
2940 gp_val += sec->output_section->vma + sec->output_offset;
2942 elf_gp (abfd) = gp_val;
2943 return TRUE;
2946 /* Build all the stubs associated with the current output file. The
2947 stubs are kept in a hash table attached to the main linker hash
2948 table. We also set up the .plt entries for statically linked PIC
2949 functions here. This function is called via hppaelf_finish in the
2950 linker. */
2952 bfd_boolean
2953 elf32_hppa_build_stubs (struct bfd_link_info *info)
2955 asection *stub_sec;
2956 struct bfd_hash_table *table;
2957 struct elf32_hppa_link_hash_table *htab;
2959 htab = hppa_link_hash_table (info);
2961 for (stub_sec = htab->stub_bfd->sections;
2962 stub_sec != NULL;
2963 stub_sec = stub_sec->next)
2965 bfd_size_type size;
2967 /* Allocate memory to hold the linker stubs. */
2968 size = stub_sec->size;
2969 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2970 if (stub_sec->contents == NULL && size != 0)
2971 return FALSE;
2972 stub_sec->size = 0;
2975 /* Build the stubs as directed by the stub hash table. */
2976 table = &htab->stub_hash_table;
2977 bfd_hash_traverse (table, hppa_build_one_stub, info);
2979 return TRUE;
2982 /* Perform a final link. */
2984 static bfd_boolean
2985 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2987 /* Invoke the regular ELF linker to do all the work. */
2988 if (!bfd_elf_final_link (abfd, info))
2989 return FALSE;
2991 /* If we're producing a final executable, sort the contents of the
2992 unwind section. */
2993 return elf_hppa_sort_unwind (abfd);
2996 /* Record the lowest address for the data and text segments. */
2998 static void
2999 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3000 asection *section,
3001 void *data)
3003 struct elf32_hppa_link_hash_table *htab;
3005 htab = (struct elf32_hppa_link_hash_table *) data;
3007 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3009 bfd_vma value = section->vma - section->filepos;
3011 if ((section->flags & SEC_READONLY) != 0)
3013 if (value < htab->text_segment_base)
3014 htab->text_segment_base = value;
3016 else
3018 if (value < htab->data_segment_base)
3019 htab->data_segment_base = value;
3024 /* Perform a relocation as part of a final link. */
3026 static bfd_reloc_status_type
3027 final_link_relocate (asection *input_section,
3028 bfd_byte *contents,
3029 const Elf_Internal_Rela *rel,
3030 bfd_vma value,
3031 struct elf32_hppa_link_hash_table *htab,
3032 asection *sym_sec,
3033 struct elf32_hppa_link_hash_entry *h,
3034 struct bfd_link_info *info)
3036 int insn;
3037 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3038 unsigned int orig_r_type = r_type;
3039 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3040 int r_format = howto->bitsize;
3041 enum hppa_reloc_field_selector_type_alt r_field;
3042 bfd *input_bfd = input_section->owner;
3043 bfd_vma offset = rel->r_offset;
3044 bfd_vma max_branch_offset = 0;
3045 bfd_byte *hit_data = contents + offset;
3046 bfd_signed_vma addend = rel->r_addend;
3047 bfd_vma location;
3048 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3049 int val;
3051 if (r_type == R_PARISC_NONE)
3052 return bfd_reloc_ok;
3054 insn = bfd_get_32 (input_bfd, hit_data);
3056 /* Find out where we are and where we're going. */
3057 location = (offset +
3058 input_section->output_offset +
3059 input_section->output_section->vma);
3061 /* If we are not building a shared library, convert DLTIND relocs to
3062 DPREL relocs. */
3063 if (!info->shared)
3065 switch (r_type)
3067 case R_PARISC_DLTIND21L:
3068 r_type = R_PARISC_DPREL21L;
3069 break;
3071 case R_PARISC_DLTIND14R:
3072 r_type = R_PARISC_DPREL14R;
3073 break;
3075 case R_PARISC_DLTIND14F:
3076 r_type = R_PARISC_DPREL14F;
3077 break;
3081 switch (r_type)
3083 case R_PARISC_PCREL12F:
3084 case R_PARISC_PCREL17F:
3085 case R_PARISC_PCREL22F:
3086 /* If this call should go via the plt, find the import stub in
3087 the stub hash. */
3088 if (sym_sec == NULL
3089 || sym_sec->output_section == NULL
3090 || (h != NULL
3091 && h->elf.plt.offset != (bfd_vma) -1
3092 && h->elf.dynindx != -1
3093 && !h->plabel
3094 && (info->shared
3095 || !(h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
3096 || h->elf.root.type == bfd_link_hash_defweak)))
3098 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3099 h, rel, htab);
3100 if (stub_entry != NULL)
3102 value = (stub_entry->stub_offset
3103 + stub_entry->stub_sec->output_offset
3104 + stub_entry->stub_sec->output_section->vma);
3105 addend = 0;
3107 else if (sym_sec == NULL && h != NULL
3108 && h->elf.root.type == bfd_link_hash_undefweak)
3110 /* It's OK if undefined weak. Calls to undefined weak
3111 symbols behave as if the "called" function
3112 immediately returns. We can thus call to a weak
3113 function without first checking whether the function
3114 is defined. */
3115 value = location;
3116 addend = 8;
3118 else
3119 return bfd_reloc_undefined;
3121 /* Fall thru. */
3123 case R_PARISC_PCREL21L:
3124 case R_PARISC_PCREL17C:
3125 case R_PARISC_PCREL17R:
3126 case R_PARISC_PCREL14R:
3127 case R_PARISC_PCREL14F:
3128 case R_PARISC_PCREL32:
3129 /* Make it a pc relative offset. */
3130 value -= location;
3131 addend -= 8;
3132 break;
3134 case R_PARISC_DPREL21L:
3135 case R_PARISC_DPREL14R:
3136 case R_PARISC_DPREL14F:
3137 /* Convert instructions that use the linkage table pointer (r19) to
3138 instructions that use the global data pointer (dp). This is the
3139 most efficient way of using PIC code in an incomplete executable,
3140 but the user must follow the standard runtime conventions for
3141 accessing data for this to work. */
3142 if (orig_r_type == R_PARISC_DLTIND21L)
3144 /* Convert addil instructions if the original reloc was a
3145 DLTIND21L. GCC sometimes uses a register other than r19 for
3146 the operation, so we must convert any addil instruction
3147 that uses this relocation. */
3148 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3149 insn = ADDIL_DP;
3150 else
3151 /* We must have a ldil instruction. It's too hard to find
3152 and convert the associated add instruction, so issue an
3153 error. */
3154 (*_bfd_error_handler)
3155 (_("%s(%s+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3156 bfd_archive_filename (input_bfd),
3157 input_section->name,
3158 (long) rel->r_offset,
3159 howto->name,
3160 insn);
3162 else if (orig_r_type == R_PARISC_DLTIND14F)
3164 /* This must be a format 1 load/store. Change the base
3165 register to dp. */
3166 insn = (insn & 0xfc1ffff) | (27 << 21);
3169 /* For all the DP relative relocations, we need to examine the symbol's
3170 section. If it has no section or if it's a code section, then
3171 "data pointer relative" makes no sense. In that case we don't
3172 adjust the "value", and for 21 bit addil instructions, we change the
3173 source addend register from %dp to %r0. This situation commonly
3174 arises for undefined weak symbols and when a variable's "constness"
3175 is declared differently from the way the variable is defined. For
3176 instance: "extern int foo" with foo defined as "const int foo". */
3177 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3179 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3180 == (((int) OP_ADDIL << 26) | (27 << 21)))
3182 insn &= ~ (0x1f << 21);
3183 #if 0 /* debug them. */
3184 (*_bfd_error_handler)
3185 (_("%s(%s+0x%lx): fixing %s"),
3186 bfd_archive_filename (input_bfd),
3187 input_section->name,
3188 (long) rel->r_offset,
3189 howto->name);
3190 #endif
3192 /* Now try to make things easy for the dynamic linker. */
3194 break;
3196 /* Fall thru. */
3198 case R_PARISC_DLTIND21L:
3199 case R_PARISC_DLTIND14R:
3200 case R_PARISC_DLTIND14F:
3201 value -= elf_gp (input_section->output_section->owner);
3202 break;
3204 case R_PARISC_SEGREL32:
3205 if ((sym_sec->flags & SEC_CODE) != 0)
3206 value -= htab->text_segment_base;
3207 else
3208 value -= htab->data_segment_base;
3209 break;
3211 default:
3212 break;
3215 switch (r_type)
3217 case R_PARISC_DIR32:
3218 case R_PARISC_DIR14F:
3219 case R_PARISC_DIR17F:
3220 case R_PARISC_PCREL17C:
3221 case R_PARISC_PCREL14F:
3222 case R_PARISC_PCREL32:
3223 case R_PARISC_DPREL14F:
3224 case R_PARISC_PLABEL32:
3225 case R_PARISC_DLTIND14F:
3226 case R_PARISC_SEGBASE:
3227 case R_PARISC_SEGREL32:
3228 r_field = e_fsel;
3229 break;
3231 case R_PARISC_DLTIND21L:
3232 case R_PARISC_PCREL21L:
3233 case R_PARISC_PLABEL21L:
3234 r_field = e_lsel;
3235 break;
3237 case R_PARISC_DIR21L:
3238 case R_PARISC_DPREL21L:
3239 r_field = e_lrsel;
3240 break;
3242 case R_PARISC_PCREL17R:
3243 case R_PARISC_PCREL14R:
3244 case R_PARISC_PLABEL14R:
3245 case R_PARISC_DLTIND14R:
3246 r_field = e_rsel;
3247 break;
3249 case R_PARISC_DIR17R:
3250 case R_PARISC_DIR14R:
3251 case R_PARISC_DPREL14R:
3252 r_field = e_rrsel;
3253 break;
3255 case R_PARISC_PCREL12F:
3256 case R_PARISC_PCREL17F:
3257 case R_PARISC_PCREL22F:
3258 r_field = e_fsel;
3260 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3262 max_branch_offset = (1 << (17-1)) << 2;
3264 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3266 max_branch_offset = (1 << (12-1)) << 2;
3268 else
3270 max_branch_offset = (1 << (22-1)) << 2;
3273 /* sym_sec is NULL on undefined weak syms or when shared on
3274 undefined syms. We've already checked for a stub for the
3275 shared undefined case. */
3276 if (sym_sec == NULL)
3277 break;
3279 /* If the branch is out of reach, then redirect the
3280 call to the local stub for this function. */
3281 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3283 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3284 h, rel, htab);
3285 if (stub_entry == NULL)
3286 return bfd_reloc_undefined;
3288 /* Munge up the value and addend so that we call the stub
3289 rather than the procedure directly. */
3290 value = (stub_entry->stub_offset
3291 + stub_entry->stub_sec->output_offset
3292 + stub_entry->stub_sec->output_section->vma
3293 - location);
3294 addend = -8;
3296 break;
3298 /* Something we don't know how to handle. */
3299 default:
3300 return bfd_reloc_notsupported;
3303 /* Make sure we can reach the stub. */
3304 if (max_branch_offset != 0
3305 && value + addend + max_branch_offset >= 2*max_branch_offset)
3307 (*_bfd_error_handler)
3308 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3309 bfd_archive_filename (input_bfd),
3310 input_section->name,
3311 (long) rel->r_offset,
3312 stub_entry->root.string);
3313 bfd_set_error (bfd_error_bad_value);
3314 return bfd_reloc_notsupported;
3317 val = hppa_field_adjust (value, addend, r_field);
3319 switch (r_type)
3321 case R_PARISC_PCREL12F:
3322 case R_PARISC_PCREL17C:
3323 case R_PARISC_PCREL17F:
3324 case R_PARISC_PCREL17R:
3325 case R_PARISC_PCREL22F:
3326 case R_PARISC_DIR17F:
3327 case R_PARISC_DIR17R:
3328 /* This is a branch. Divide the offset by four.
3329 Note that we need to decide whether it's a branch or
3330 otherwise by inspecting the reloc. Inspecting insn won't
3331 work as insn might be from a .word directive. */
3332 val >>= 2;
3333 break;
3335 default:
3336 break;
3339 insn = hppa_rebuild_insn (insn, val, r_format);
3341 /* Update the instruction word. */
3342 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3343 return bfd_reloc_ok;
3346 /* Relocate an HPPA ELF section. */
3348 static bfd_boolean
3349 elf32_hppa_relocate_section (bfd *output_bfd,
3350 struct bfd_link_info *info,
3351 bfd *input_bfd,
3352 asection *input_section,
3353 bfd_byte *contents,
3354 Elf_Internal_Rela *relocs,
3355 Elf_Internal_Sym *local_syms,
3356 asection **local_sections)
3358 bfd_vma *local_got_offsets;
3359 struct elf32_hppa_link_hash_table *htab;
3360 Elf_Internal_Shdr *symtab_hdr;
3361 Elf_Internal_Rela *rel;
3362 Elf_Internal_Rela *relend;
3364 if (info->relocatable)
3365 return TRUE;
3367 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3369 htab = hppa_link_hash_table (info);
3370 local_got_offsets = elf_local_got_offsets (input_bfd);
3372 rel = relocs;
3373 relend = relocs + input_section->reloc_count;
3374 for (; rel < relend; rel++)
3376 unsigned int r_type;
3377 reloc_howto_type *howto;
3378 unsigned int r_symndx;
3379 struct elf32_hppa_link_hash_entry *h;
3380 Elf_Internal_Sym *sym;
3381 asection *sym_sec;
3382 bfd_vma relocation;
3383 bfd_reloc_status_type r;
3384 const char *sym_name;
3385 bfd_boolean plabel;
3386 bfd_boolean warned_undef;
3388 r_type = ELF32_R_TYPE (rel->r_info);
3389 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3391 bfd_set_error (bfd_error_bad_value);
3392 return FALSE;
3394 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3395 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3396 continue;
3398 /* This is a final link. */
3399 r_symndx = ELF32_R_SYM (rel->r_info);
3400 h = NULL;
3401 sym = NULL;
3402 sym_sec = NULL;
3403 warned_undef = FALSE;
3404 if (r_symndx < symtab_hdr->sh_info)
3406 /* This is a local symbol, h defaults to NULL. */
3407 sym = local_syms + r_symndx;
3408 sym_sec = local_sections[r_symndx];
3409 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3411 else
3413 struct elf_link_hash_entry *hh;
3414 bfd_boolean unresolved_reloc;
3415 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3417 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3418 r_symndx, symtab_hdr, sym_hashes,
3419 hh, sym_sec, relocation,
3420 unresolved_reloc, warned_undef);
3422 if (relocation == 0
3423 && hh->root.type != bfd_link_hash_defined
3424 && hh->root.type != bfd_link_hash_defweak
3425 && hh->root.type != bfd_link_hash_undefweak)
3427 if (info->unresolved_syms_in_objects == RM_IGNORE
3428 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3429 && hh->type == STT_PARISC_MILLI)
3431 if (! info->callbacks->undefined_symbol
3432 (info, hh->root.root.string, input_bfd,
3433 input_section, rel->r_offset, FALSE))
3434 return FALSE;
3435 warned_undef = TRUE;
3438 h = (struct elf32_hppa_link_hash_entry *) hh;
3441 /* Do any required modifications to the relocation value, and
3442 determine what types of dynamic info we need to output, if
3443 any. */
3444 plabel = 0;
3445 switch (r_type)
3447 case R_PARISC_DLTIND14F:
3448 case R_PARISC_DLTIND14R:
3449 case R_PARISC_DLTIND21L:
3451 bfd_vma off;
3452 bfd_boolean do_got = 0;
3454 /* Relocation is to the entry for this symbol in the
3455 global offset table. */
3456 if (h != NULL)
3458 bfd_boolean dyn;
3460 off = h->elf.got.offset;
3461 dyn = htab->elf.dynamic_sections_created;
3462 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3463 &h->elf))
3465 /* If we aren't going to call finish_dynamic_symbol,
3466 then we need to handle initialisation of the .got
3467 entry and create needed relocs here. Since the
3468 offset must always be a multiple of 4, we use the
3469 least significant bit to record whether we have
3470 initialised it already. */
3471 if ((off & 1) != 0)
3472 off &= ~1;
3473 else
3475 h->elf.got.offset |= 1;
3476 do_got = 1;
3480 else
3482 /* Local symbol case. */
3483 if (local_got_offsets == NULL)
3484 abort ();
3486 off = local_got_offsets[r_symndx];
3488 /* The offset must always be a multiple of 4. We use
3489 the least significant bit to record whether we have
3490 already generated the necessary reloc. */
3491 if ((off & 1) != 0)
3492 off &= ~1;
3493 else
3495 local_got_offsets[r_symndx] |= 1;
3496 do_got = 1;
3500 if (do_got)
3502 if (info->shared)
3504 /* Output a dynamic relocation for this GOT entry.
3505 In this case it is relative to the base of the
3506 object because the symbol index is zero. */
3507 Elf_Internal_Rela outrel;
3508 bfd_byte *loc;
3509 asection *s = htab->srelgot;
3511 outrel.r_offset = (off
3512 + htab->sgot->output_offset
3513 + htab->sgot->output_section->vma);
3514 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3515 outrel.r_addend = relocation;
3516 loc = s->contents;
3517 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3518 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3520 else
3521 bfd_put_32 (output_bfd, relocation,
3522 htab->sgot->contents + off);
3525 if (off >= (bfd_vma) -2)
3526 abort ();
3528 /* Add the base of the GOT to the relocation value. */
3529 relocation = (off
3530 + htab->sgot->output_offset
3531 + htab->sgot->output_section->vma);
3533 break;
3535 case R_PARISC_SEGREL32:
3536 /* If this is the first SEGREL relocation, then initialize
3537 the segment base values. */
3538 if (htab->text_segment_base == (bfd_vma) -1)
3539 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3540 break;
3542 case R_PARISC_PLABEL14R:
3543 case R_PARISC_PLABEL21L:
3544 case R_PARISC_PLABEL32:
3545 if (htab->elf.dynamic_sections_created)
3547 bfd_vma off;
3548 bfd_boolean do_plt = 0;
3550 /* If we have a global symbol with a PLT slot, then
3551 redirect this relocation to it. */
3552 if (h != NULL)
3554 off = h->elf.plt.offset;
3555 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3556 &h->elf))
3558 /* In a non-shared link, adjust_dynamic_symbols
3559 isn't called for symbols forced local. We
3560 need to write out the plt entry here. */
3561 if ((off & 1) != 0)
3562 off &= ~1;
3563 else
3565 h->elf.plt.offset |= 1;
3566 do_plt = 1;
3570 else
3572 bfd_vma *local_plt_offsets;
3574 if (local_got_offsets == NULL)
3575 abort ();
3577 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3578 off = local_plt_offsets[r_symndx];
3580 /* As for the local .got entry case, we use the last
3581 bit to record whether we've already initialised
3582 this local .plt entry. */
3583 if ((off & 1) != 0)
3584 off &= ~1;
3585 else
3587 local_plt_offsets[r_symndx] |= 1;
3588 do_plt = 1;
3592 if (do_plt)
3594 if (info->shared)
3596 /* Output a dynamic IPLT relocation for this
3597 PLT entry. */
3598 Elf_Internal_Rela outrel;
3599 bfd_byte *loc;
3600 asection *s = htab->srelplt;
3602 outrel.r_offset = (off
3603 + htab->splt->output_offset
3604 + htab->splt->output_section->vma);
3605 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3606 outrel.r_addend = relocation;
3607 loc = s->contents;
3608 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3609 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3611 else
3613 bfd_put_32 (output_bfd,
3614 relocation,
3615 htab->splt->contents + off);
3616 bfd_put_32 (output_bfd,
3617 elf_gp (htab->splt->output_section->owner),
3618 htab->splt->contents + off + 4);
3622 if (off >= (bfd_vma) -2)
3623 abort ();
3625 /* PLABELs contain function pointers. Relocation is to
3626 the entry for the function in the .plt. The magic +2
3627 offset signals to $$dyncall that the function pointer
3628 is in the .plt and thus has a gp pointer too.
3629 Exception: Undefined PLABELs should have a value of
3630 zero. */
3631 if (h == NULL
3632 || (h->elf.root.type != bfd_link_hash_undefweak
3633 && h->elf.root.type != bfd_link_hash_undefined))
3635 relocation = (off
3636 + htab->splt->output_offset
3637 + htab->splt->output_section->vma
3638 + 2);
3640 plabel = 1;
3642 /* Fall through and possibly emit a dynamic relocation. */
3644 case R_PARISC_DIR17F:
3645 case R_PARISC_DIR17R:
3646 case R_PARISC_DIR14F:
3647 case R_PARISC_DIR14R:
3648 case R_PARISC_DIR21L:
3649 case R_PARISC_DPREL14F:
3650 case R_PARISC_DPREL14R:
3651 case R_PARISC_DPREL21L:
3652 case R_PARISC_DIR32:
3653 /* r_symndx will be zero only for relocs against symbols
3654 from removed linkonce sections, or sections discarded by
3655 a linker script. */
3656 if (r_symndx == 0
3657 || (input_section->flags & SEC_ALLOC) == 0)
3658 break;
3660 /* The reloc types handled here and this conditional
3661 expression must match the code in ..check_relocs and
3662 allocate_dynrelocs. ie. We need exactly the same condition
3663 as in ..check_relocs, with some extra conditions (dynindx
3664 test in this case) to cater for relocs removed by
3665 allocate_dynrelocs. If you squint, the non-shared test
3666 here does indeed match the one in ..check_relocs, the
3667 difference being that here we test DEF_DYNAMIC as well as
3668 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3669 which is why we can't use just that test here.
3670 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3671 there all files have not been loaded. */
3672 if ((info->shared
3673 && (h == NULL
3674 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3675 || h->elf.root.type != bfd_link_hash_undefweak)
3676 && (IS_ABSOLUTE_RELOC (r_type)
3677 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
3678 || (!info->shared
3679 && h != NULL
3680 && h->elf.dynindx != -1
3681 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3682 && ((ELIMINATE_COPY_RELOCS
3683 && (h->elf.elf_link_hash_flags
3684 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3685 && (h->elf.elf_link_hash_flags
3686 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3687 || h->elf.root.type == bfd_link_hash_undefweak
3688 || h->elf.root.type == bfd_link_hash_undefined)))
3690 Elf_Internal_Rela outrel;
3691 bfd_boolean skip;
3692 asection *sreloc;
3693 bfd_byte *loc;
3695 /* When generating a shared object, these relocations
3696 are copied into the output file to be resolved at run
3697 time. */
3699 outrel.r_addend = rel->r_addend;
3700 outrel.r_offset =
3701 _bfd_elf_section_offset (output_bfd, info, input_section,
3702 rel->r_offset);
3703 skip = (outrel.r_offset == (bfd_vma) -1
3704 || outrel.r_offset == (bfd_vma) -2);
3705 outrel.r_offset += (input_section->output_offset
3706 + input_section->output_section->vma);
3708 if (skip)
3710 memset (&outrel, 0, sizeof (outrel));
3712 else if (h != NULL
3713 && h->elf.dynindx != -1
3714 && (plabel
3715 || !IS_ABSOLUTE_RELOC (r_type)
3716 || !info->shared
3717 || !info->symbolic
3718 || (h->elf.elf_link_hash_flags
3719 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3721 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3723 else /* It's a local symbol, or one marked to become local. */
3725 int indx = 0;
3727 /* Add the absolute offset of the symbol. */
3728 outrel.r_addend += relocation;
3730 /* Global plabels need to be processed by the
3731 dynamic linker so that functions have at most one
3732 fptr. For this reason, we need to differentiate
3733 between global and local plabels, which we do by
3734 providing the function symbol for a global plabel
3735 reloc, and no symbol for local plabels. */
3736 if (! plabel
3737 && sym_sec != NULL
3738 && sym_sec->output_section != NULL
3739 && ! bfd_is_abs_section (sym_sec))
3741 /* Skip this relocation if the output section has
3742 been discarded. */
3743 if (bfd_is_abs_section (sym_sec->output_section))
3744 break;
3746 indx = elf_section_data (sym_sec->output_section)->dynindx;
3747 /* We are turning this relocation into one
3748 against a section symbol, so subtract out the
3749 output section's address but not the offset
3750 of the input section in the output section. */
3751 outrel.r_addend -= sym_sec->output_section->vma;
3754 outrel.r_info = ELF32_R_INFO (indx, r_type);
3756 #if 0
3757 /* EH info can cause unaligned DIR32 relocs.
3758 Tweak the reloc type for the dynamic linker. */
3759 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3760 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3761 R_PARISC_DIR32U);
3762 #endif
3763 sreloc = elf_section_data (input_section)->sreloc;
3764 if (sreloc == NULL)
3765 abort ();
3767 loc = sreloc->contents;
3768 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3769 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3771 break;
3773 default:
3774 break;
3777 r = final_link_relocate (input_section, contents, rel, relocation,
3778 htab, sym_sec, h, info);
3780 if (r == bfd_reloc_ok)
3781 continue;
3783 if (h != NULL)
3784 sym_name = h->elf.root.root.string;
3785 else
3787 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3788 symtab_hdr->sh_link,
3789 sym->st_name);
3790 if (sym_name == NULL)
3791 return FALSE;
3792 if (*sym_name == '\0')
3793 sym_name = bfd_section_name (input_bfd, sym_sec);
3796 howto = elf_hppa_howto_table + r_type;
3798 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3800 if (r == bfd_reloc_notsupported || !warned_undef)
3802 (*_bfd_error_handler)
3803 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3804 bfd_archive_filename (input_bfd),
3805 input_section->name,
3806 (long) rel->r_offset,
3807 howto->name,
3808 sym_name);
3809 bfd_set_error (bfd_error_bad_value);
3810 return FALSE;
3813 else
3815 if (!((*info->callbacks->reloc_overflow)
3816 (info, sym_name, howto->name, 0, input_bfd, input_section,
3817 rel->r_offset)))
3818 return FALSE;
3822 return TRUE;
3825 /* Finish up dynamic symbol handling. We set the contents of various
3826 dynamic sections here. */
3828 static bfd_boolean
3829 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3830 struct bfd_link_info *info,
3831 struct elf_link_hash_entry *h,
3832 Elf_Internal_Sym *sym)
3834 struct elf32_hppa_link_hash_table *htab;
3835 Elf_Internal_Rela rel;
3836 bfd_byte *loc;
3838 htab = hppa_link_hash_table (info);
3840 if (h->plt.offset != (bfd_vma) -1)
3842 bfd_vma value;
3844 if (h->plt.offset & 1)
3845 abort ();
3847 /* This symbol has an entry in the procedure linkage table. Set
3848 it up.
3850 The format of a plt entry is
3851 <funcaddr>
3852 <__gp>
3854 value = 0;
3855 if (h->root.type == bfd_link_hash_defined
3856 || h->root.type == bfd_link_hash_defweak)
3858 value = h->root.u.def.value;
3859 if (h->root.u.def.section->output_section != NULL)
3860 value += (h->root.u.def.section->output_offset
3861 + h->root.u.def.section->output_section->vma);
3864 /* Create a dynamic IPLT relocation for this entry. */
3865 rel.r_offset = (h->plt.offset
3866 + htab->splt->output_offset
3867 + htab->splt->output_section->vma);
3868 if (h->dynindx != -1)
3870 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3871 rel.r_addend = 0;
3873 else
3875 /* This symbol has been marked to become local, and is
3876 used by a plabel so must be kept in the .plt. */
3877 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3878 rel.r_addend = value;
3881 loc = htab->srelplt->contents;
3882 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3883 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc);
3885 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3887 /* Mark the symbol as undefined, rather than as defined in
3888 the .plt section. Leave the value alone. */
3889 sym->st_shndx = SHN_UNDEF;
3893 if (h->got.offset != (bfd_vma) -1)
3895 /* This symbol has an entry in the global offset table. Set it
3896 up. */
3898 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3899 + htab->sgot->output_offset
3900 + htab->sgot->output_section->vma);
3902 /* If this is a -Bsymbolic link and the symbol is defined
3903 locally or was forced to be local because of a version file,
3904 we just want to emit a RELATIVE reloc. The entry in the
3905 global offset table will already have been initialized in the
3906 relocate_section function. */
3907 if (info->shared
3908 && (info->symbolic || h->dynindx == -1)
3909 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3911 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3912 rel.r_addend = (h->root.u.def.value
3913 + h->root.u.def.section->output_offset
3914 + h->root.u.def.section->output_section->vma);
3916 else
3918 if ((h->got.offset & 1) != 0)
3919 abort ();
3920 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
3921 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3922 rel.r_addend = 0;
3925 loc = htab->srelgot->contents;
3926 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3927 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3930 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3932 asection *s;
3934 /* This symbol needs a copy reloc. Set it up. */
3936 if (! (h->dynindx != -1
3937 && (h->root.type == bfd_link_hash_defined
3938 || h->root.type == bfd_link_hash_defweak)))
3939 abort ();
3941 s = htab->srelbss;
3943 rel.r_offset = (h->root.u.def.value
3944 + h->root.u.def.section->output_offset
3945 + h->root.u.def.section->output_section->vma);
3946 rel.r_addend = 0;
3947 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
3948 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3949 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3952 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3953 if (h->root.root.string[0] == '_'
3954 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3955 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
3957 sym->st_shndx = SHN_ABS;
3960 return TRUE;
3963 /* Used to decide how to sort relocs in an optimal manner for the
3964 dynamic linker, before writing them out. */
3966 static enum elf_reloc_type_class
3967 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
3969 if (ELF32_R_SYM (rela->r_info) == 0)
3970 return reloc_class_relative;
3972 switch ((int) ELF32_R_TYPE (rela->r_info))
3974 case R_PARISC_IPLT:
3975 return reloc_class_plt;
3976 case R_PARISC_COPY:
3977 return reloc_class_copy;
3978 default:
3979 return reloc_class_normal;
3983 /* Finish up the dynamic sections. */
3985 static bfd_boolean
3986 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
3987 struct bfd_link_info *info)
3989 bfd *dynobj;
3990 struct elf32_hppa_link_hash_table *htab;
3991 asection *sdyn;
3993 htab = hppa_link_hash_table (info);
3994 dynobj = htab->elf.dynobj;
3996 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3998 if (htab->elf.dynamic_sections_created)
4000 Elf32_External_Dyn *dyncon, *dynconend;
4002 if (sdyn == NULL)
4003 abort ();
4005 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4006 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4007 for (; dyncon < dynconend; dyncon++)
4009 Elf_Internal_Dyn dyn;
4010 asection *s;
4012 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4014 switch (dyn.d_tag)
4016 default:
4017 continue;
4019 case DT_PLTGOT:
4020 /* Use PLTGOT to set the GOT register. */
4021 dyn.d_un.d_ptr = elf_gp (output_bfd);
4022 break;
4024 case DT_JMPREL:
4025 s = htab->srelplt;
4026 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4027 break;
4029 case DT_PLTRELSZ:
4030 s = htab->srelplt;
4031 dyn.d_un.d_val = s->size;
4032 break;
4034 case DT_RELASZ:
4035 /* Don't count procedure linkage table relocs in the
4036 overall reloc count. */
4037 s = htab->srelplt;
4038 if (s == NULL)
4039 continue;
4040 dyn.d_un.d_val -= s->size;
4041 break;
4043 case DT_RELA:
4044 /* We may not be using the standard ELF linker script.
4045 If .rela.plt is the first .rela section, we adjust
4046 DT_RELA to not include it. */
4047 s = htab->srelplt;
4048 if (s == NULL)
4049 continue;
4050 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4051 continue;
4052 dyn.d_un.d_ptr += s->size;
4053 break;
4056 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4060 if (htab->sgot != NULL && htab->sgot->size != 0)
4062 /* Fill in the first entry in the global offset table.
4063 We use it to point to our dynamic section, if we have one. */
4064 bfd_put_32 (output_bfd,
4065 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4066 htab->sgot->contents);
4068 /* The second entry is reserved for use by the dynamic linker. */
4069 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4071 /* Set .got entry size. */
4072 elf_section_data (htab->sgot->output_section)
4073 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4076 if (htab->splt != NULL && htab->splt->size != 0)
4078 /* Set plt entry size. */
4079 elf_section_data (htab->splt->output_section)
4080 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4082 if (htab->need_plt_stub)
4084 /* Set up the .plt stub. */
4085 memcpy (htab->splt->contents
4086 + htab->splt->size - sizeof (plt_stub),
4087 plt_stub, sizeof (plt_stub));
4089 if ((htab->splt->output_offset
4090 + htab->splt->output_section->vma
4091 + htab->splt->size)
4092 != (htab->sgot->output_offset
4093 + htab->sgot->output_section->vma))
4095 (*_bfd_error_handler)
4096 (_(".got section not immediately after .plt section"));
4097 return FALSE;
4102 return TRUE;
4105 /* Tweak the OSABI field of the elf header. */
4107 static void
4108 elf32_hppa_post_process_headers (bfd *abfd,
4109 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4111 Elf_Internal_Ehdr * i_ehdrp;
4113 i_ehdrp = elf_elfheader (abfd);
4115 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4117 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4119 else
4121 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4125 /* Called when writing out an object file to decide the type of a
4126 symbol. */
4127 static int
4128 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4130 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4131 return STT_PARISC_MILLI;
4132 else
4133 return type;
4136 /* Misc BFD support code. */
4137 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4138 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4139 #define elf_info_to_howto elf_hppa_info_to_howto
4140 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4142 /* Stuff for the BFD linker. */
4143 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4144 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4145 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4146 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4147 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4148 #define elf_backend_check_relocs elf32_hppa_check_relocs
4149 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4150 #define elf_backend_fake_sections elf_hppa_fake_sections
4151 #define elf_backend_relocate_section elf32_hppa_relocate_section
4152 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4153 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4154 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4155 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4156 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4157 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4158 #define elf_backend_object_p elf32_hppa_object_p
4159 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4160 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4161 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4162 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4164 #define elf_backend_can_gc_sections 1
4165 #define elf_backend_can_refcount 1
4166 #define elf_backend_plt_alignment 2
4167 #define elf_backend_want_got_plt 0
4168 #define elf_backend_plt_readonly 0
4169 #define elf_backend_want_plt_sym 0
4170 #define elf_backend_got_header_size 8
4171 #define elf_backend_rela_normal 1
4173 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4174 #define TARGET_BIG_NAME "elf32-hppa"
4175 #define ELF_ARCH bfd_arch_hppa
4176 #define ELF_MACHINE_CODE EM_PARISC
4177 #define ELF_MAXPAGESIZE 0x1000
4179 #include "elf32-target.h"
4181 #undef TARGET_BIG_SYM
4182 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4183 #undef TARGET_BIG_NAME
4184 #define TARGET_BIG_NAME "elf32-hppa-linux"
4186 #define INCLUDED_TARGET_FILE 1
4187 #include "elf32-target.h"