* elf32-spu.c (spu_elf_check_vma): Do not reset auto_overlay
[binutils.git] / gold / layout.cc
blobdf74df36c5039deb05bf327b11bf2678ea231edc
1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "layout.h"
50 #include "plugin.h"
52 namespace gold
55 // Layout_task_runner methods.
57 // Lay out the sections. This is called after all the input objects
58 // have been read.
60 void
61 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
63 off_t file_size = this->layout_->finalize(this->input_objects_,
64 this->symtab_,
65 this->target_,
66 task);
68 // Now we know the final size of the output file and we know where
69 // each piece of information goes.
71 if (this->mapfile_ != NULL)
73 this->mapfile_->print_discarded_sections(this->input_objects_);
74 this->layout_->print_to_mapfile(this->mapfile_);
77 Output_file* of = new Output_file(parameters->options().output_file_name());
78 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
79 of->set_is_temporary();
80 of->open(file_size);
82 // Queue up the final set of tasks.
83 gold::queue_final_tasks(this->options_, this->input_objects_,
84 this->symtab_, this->layout_, workqueue, of);
87 // Layout methods.
89 Layout::Layout(const General_options& options, Script_options* script_options)
90 : options_(options),
91 script_options_(script_options),
92 namepool_(),
93 sympool_(),
94 dynpool_(),
95 signatures_(),
96 section_name_map_(),
97 segment_list_(),
98 section_list_(),
99 unattached_section_list_(),
100 sections_are_attached_(false),
101 special_output_list_(),
102 section_headers_(NULL),
103 tls_segment_(NULL),
104 relro_segment_(NULL),
105 symtab_section_(NULL),
106 symtab_xindex_(NULL),
107 dynsym_section_(NULL),
108 dynsym_xindex_(NULL),
109 dynamic_section_(NULL),
110 dynamic_data_(NULL),
111 eh_frame_section_(NULL),
112 eh_frame_data_(NULL),
113 added_eh_frame_data_(false),
114 eh_frame_hdr_section_(NULL),
115 build_id_note_(NULL),
116 debug_abbrev_(NULL),
117 debug_info_(NULL),
118 group_signatures_(),
119 output_file_size_(-1),
120 input_requires_executable_stack_(false),
121 input_with_gnu_stack_note_(false),
122 input_without_gnu_stack_note_(false),
123 has_static_tls_(false),
124 any_postprocessing_sections_(false)
126 // Make space for more than enough segments for a typical file.
127 // This is just for efficiency--it's OK if we wind up needing more.
128 this->segment_list_.reserve(12);
130 // We expect two unattached Output_data objects: the file header and
131 // the segment headers.
132 this->special_output_list_.reserve(2);
135 // Hash a key we use to look up an output section mapping.
137 size_t
138 Layout::Hash_key::operator()(const Layout::Key& k) const
140 return k.first + k.second.first + k.second.second;
143 // Returns whether the given section is in the list of
144 // debug-sections-used-by-some-version-of-gdb. Currently,
145 // we've checked versions of gdb up to and including 6.7.1.
147 static const char* gdb_sections[] =
148 { ".debug_abbrev",
149 // ".debug_aranges", // not used by gdb as of 6.7.1
150 ".debug_frame",
151 ".debug_info",
152 ".debug_line",
153 ".debug_loc",
154 ".debug_macinfo",
155 // ".debug_pubnames", // not used by gdb as of 6.7.1
156 ".debug_ranges",
157 ".debug_str",
160 static const char* lines_only_debug_sections[] =
161 { ".debug_abbrev",
162 // ".debug_aranges", // not used by gdb as of 6.7.1
163 // ".debug_frame",
164 ".debug_info",
165 ".debug_line",
166 // ".debug_loc",
167 // ".debug_macinfo",
168 // ".debug_pubnames", // not used by gdb as of 6.7.1
169 // ".debug_ranges",
170 ".debug_str",
173 static inline bool
174 is_gdb_debug_section(const char* str)
176 // We can do this faster: binary search or a hashtable. But why bother?
177 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
178 if (strcmp(str, gdb_sections[i]) == 0)
179 return true;
180 return false;
183 static inline bool
184 is_lines_only_debug_section(const char* str)
186 // We can do this faster: binary search or a hashtable. But why bother?
187 for (size_t i = 0;
188 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
189 ++i)
190 if (strcmp(str, lines_only_debug_sections[i]) == 0)
191 return true;
192 return false;
195 // Whether to include this section in the link.
197 template<int size, bool big_endian>
198 bool
199 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
200 const elfcpp::Shdr<size, big_endian>& shdr)
202 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
203 return false;
205 switch (shdr.get_sh_type())
207 case elfcpp::SHT_NULL:
208 case elfcpp::SHT_SYMTAB:
209 case elfcpp::SHT_DYNSYM:
210 case elfcpp::SHT_HASH:
211 case elfcpp::SHT_DYNAMIC:
212 case elfcpp::SHT_SYMTAB_SHNDX:
213 return false;
215 case elfcpp::SHT_STRTAB:
216 // Discard the sections which have special meanings in the ELF
217 // ABI. Keep others (e.g., .stabstr). We could also do this by
218 // checking the sh_link fields of the appropriate sections.
219 return (strcmp(name, ".dynstr") != 0
220 && strcmp(name, ".strtab") != 0
221 && strcmp(name, ".shstrtab") != 0);
223 case elfcpp::SHT_RELA:
224 case elfcpp::SHT_REL:
225 case elfcpp::SHT_GROUP:
226 // If we are emitting relocations these should be handled
227 // elsewhere.
228 gold_assert(!parameters->options().relocatable()
229 && !parameters->options().emit_relocs());
230 return false;
232 case elfcpp::SHT_PROGBITS:
233 if (parameters->options().strip_debug()
234 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
236 if (is_debug_info_section(name))
237 return false;
239 if (parameters->options().strip_debug_non_line()
240 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
242 // Debugging sections can only be recognized by name.
243 if (is_prefix_of(".debug", name)
244 && !is_lines_only_debug_section(name))
245 return false;
247 if (parameters->options().strip_debug_gdb()
248 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
250 // Debugging sections can only be recognized by name.
251 if (is_prefix_of(".debug", name)
252 && !is_gdb_debug_section(name))
253 return false;
255 if (parameters->options().strip_lto_sections()
256 && !parameters->options().relocatable()
257 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
259 // Ignore LTO sections containing intermediate code.
260 if (is_prefix_of(".gnu.lto_", name))
261 return false;
263 return true;
265 default:
266 return true;
270 // Return an output section named NAME, or NULL if there is none.
272 Output_section*
273 Layout::find_output_section(const char* name) const
275 for (Section_list::const_iterator p = this->section_list_.begin();
276 p != this->section_list_.end();
277 ++p)
278 if (strcmp((*p)->name(), name) == 0)
279 return *p;
280 return NULL;
283 // Return an output segment of type TYPE, with segment flags SET set
284 // and segment flags CLEAR clear. Return NULL if there is none.
286 Output_segment*
287 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
288 elfcpp::Elf_Word clear) const
290 for (Segment_list::const_iterator p = this->segment_list_.begin();
291 p != this->segment_list_.end();
292 ++p)
293 if (static_cast<elfcpp::PT>((*p)->type()) == type
294 && ((*p)->flags() & set) == set
295 && ((*p)->flags() & clear) == 0)
296 return *p;
297 return NULL;
300 // Return the output section to use for section NAME with type TYPE
301 // and section flags FLAGS. NAME must be canonicalized in the string
302 // pool, and NAME_KEY is the key.
304 Output_section*
305 Layout::get_output_section(const char* name, Stringpool::Key name_key,
306 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
308 elfcpp::Elf_Xword lookup_flags = flags;
310 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
311 // read-write with read-only sections. Some other ELF linkers do
312 // not do this. FIXME: Perhaps there should be an option
313 // controlling this.
314 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
316 const Key key(name_key, std::make_pair(type, lookup_flags));
317 const std::pair<Key, Output_section*> v(key, NULL);
318 std::pair<Section_name_map::iterator, bool> ins(
319 this->section_name_map_.insert(v));
321 if (!ins.second)
322 return ins.first->second;
323 else
325 // This is the first time we've seen this name/type/flags
326 // combination. For compatibility with the GNU linker, we
327 // combine sections with contents and zero flags with sections
328 // with non-zero flags. This is a workaround for cases where
329 // assembler code forgets to set section flags. FIXME: Perhaps
330 // there should be an option to control this.
331 Output_section* os = NULL;
333 if (type == elfcpp::SHT_PROGBITS)
335 if (flags == 0)
337 Output_section* same_name = this->find_output_section(name);
338 if (same_name != NULL
339 && same_name->type() == elfcpp::SHT_PROGBITS
340 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
341 os = same_name;
343 else if ((flags & elfcpp::SHF_TLS) == 0)
345 elfcpp::Elf_Xword zero_flags = 0;
346 const Key zero_key(name_key, std::make_pair(type, zero_flags));
347 Section_name_map::iterator p =
348 this->section_name_map_.find(zero_key);
349 if (p != this->section_name_map_.end())
350 os = p->second;
354 if (os == NULL)
355 os = this->make_output_section(name, type, flags);
356 ins.first->second = os;
357 return os;
361 // Pick the output section to use for section NAME, in input file
362 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
363 // linker created section. IS_INPUT_SECTION is true if we are
364 // choosing an output section for an input section found in a input
365 // file. This will return NULL if the input section should be
366 // discarded.
368 Output_section*
369 Layout::choose_output_section(const Relobj* relobj, const char* name,
370 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
371 bool is_input_section)
373 // We should not see any input sections after we have attached
374 // sections to segments.
375 gold_assert(!is_input_section || !this->sections_are_attached_);
377 // Some flags in the input section should not be automatically
378 // copied to the output section.
379 flags &= ~ (elfcpp::SHF_INFO_LINK
380 | elfcpp::SHF_LINK_ORDER
381 | elfcpp::SHF_GROUP
382 | elfcpp::SHF_MERGE
383 | elfcpp::SHF_STRINGS);
385 if (this->script_options_->saw_sections_clause())
387 // We are using a SECTIONS clause, so the output section is
388 // chosen based only on the name.
390 Script_sections* ss = this->script_options_->script_sections();
391 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
392 Output_section** output_section_slot;
393 name = ss->output_section_name(file_name, name, &output_section_slot);
394 if (name == NULL)
396 // The SECTIONS clause says to discard this input section.
397 return NULL;
400 // If this is an orphan section--one not mentioned in the linker
401 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
402 // default processing below.
404 if (output_section_slot != NULL)
406 if (*output_section_slot != NULL)
407 return *output_section_slot;
409 // We don't put sections found in the linker script into
410 // SECTION_NAME_MAP_. That keeps us from getting confused
411 // if an orphan section is mapped to a section with the same
412 // name as one in the linker script.
414 name = this->namepool_.add(name, false, NULL);
416 Output_section* os = this->make_output_section(name, type, flags);
417 os->set_found_in_sections_clause();
418 *output_section_slot = os;
419 return os;
423 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
425 // Turn NAME from the name of the input section into the name of the
426 // output section.
428 size_t len = strlen(name);
429 if (is_input_section
430 && !this->script_options_->saw_sections_clause()
431 && !parameters->options().relocatable())
432 name = Layout::output_section_name(name, &len);
434 Stringpool::Key name_key;
435 name = this->namepool_.add_with_length(name, len, true, &name_key);
437 // Find or make the output section. The output section is selected
438 // based on the section name, type, and flags.
439 return this->get_output_section(name, name_key, type, flags);
442 // Return the output section to use for input section SHNDX, with name
443 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
444 // index of a relocation section which applies to this section, or 0
445 // if none, or -1U if more than one. RELOC_TYPE is the type of the
446 // relocation section if there is one. Set *OFF to the offset of this
447 // input section without the output section. Return NULL if the
448 // section should be discarded. Set *OFF to -1 if the section
449 // contents should not be written directly to the output file, but
450 // will instead receive special handling.
452 template<int size, bool big_endian>
453 Output_section*
454 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
455 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
456 unsigned int reloc_shndx, unsigned int, off_t* off)
458 *off = 0;
460 if (!this->include_section(object, name, shdr))
461 return NULL;
463 Output_section* os;
465 // In a relocatable link a grouped section must not be combined with
466 // any other sections.
467 if (parameters->options().relocatable()
468 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
470 name = this->namepool_.add(name, true, NULL);
471 os = this->make_output_section(name, shdr.get_sh_type(),
472 shdr.get_sh_flags());
474 else
476 os = this->choose_output_section(object, name, shdr.get_sh_type(),
477 shdr.get_sh_flags(), true);
478 if (os == NULL)
479 return NULL;
482 // By default the GNU linker sorts input sections whose names match
483 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
484 // are sorted by name. This is used to implement constructor
485 // priority ordering. We are compatible.
486 if (!this->script_options_->saw_sections_clause()
487 && (is_prefix_of(".ctors.", name)
488 || is_prefix_of(".dtors.", name)
489 || is_prefix_of(".init_array.", name)
490 || is_prefix_of(".fini_array.", name)))
491 os->set_must_sort_attached_input_sections();
493 // FIXME: Handle SHF_LINK_ORDER somewhere.
495 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
496 this->script_options_->saw_sections_clause());
498 return os;
501 // Handle a relocation section when doing a relocatable link.
503 template<int size, bool big_endian>
504 Output_section*
505 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
506 unsigned int,
507 const elfcpp::Shdr<size, big_endian>& shdr,
508 Output_section* data_section,
509 Relocatable_relocs* rr)
511 gold_assert(parameters->options().relocatable()
512 || parameters->options().emit_relocs());
514 int sh_type = shdr.get_sh_type();
516 std::string name;
517 if (sh_type == elfcpp::SHT_REL)
518 name = ".rel";
519 else if (sh_type == elfcpp::SHT_RELA)
520 name = ".rela";
521 else
522 gold_unreachable();
523 name += data_section->name();
525 Output_section* os = this->choose_output_section(object, name.c_str(),
526 sh_type,
527 shdr.get_sh_flags(),
528 false);
530 os->set_should_link_to_symtab();
531 os->set_info_section(data_section);
533 Output_section_data* posd;
534 if (sh_type == elfcpp::SHT_REL)
536 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
537 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
538 size,
539 big_endian>(rr);
541 else if (sh_type == elfcpp::SHT_RELA)
543 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
544 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
545 size,
546 big_endian>(rr);
548 else
549 gold_unreachable();
551 os->add_output_section_data(posd);
552 rr->set_output_data(posd);
554 return os;
557 // Handle a group section when doing a relocatable link.
559 template<int size, bool big_endian>
560 void
561 Layout::layout_group(Symbol_table* symtab,
562 Sized_relobj<size, big_endian>* object,
563 unsigned int,
564 const char* group_section_name,
565 const char* signature,
566 const elfcpp::Shdr<size, big_endian>& shdr,
567 elfcpp::Elf_Word flags,
568 std::vector<unsigned int>* shndxes)
570 gold_assert(parameters->options().relocatable());
571 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
572 group_section_name = this->namepool_.add(group_section_name, true, NULL);
573 Output_section* os = this->make_output_section(group_section_name,
574 elfcpp::SHT_GROUP,
575 shdr.get_sh_flags());
577 // We need to find a symbol with the signature in the symbol table.
578 // If we don't find one now, we need to look again later.
579 Symbol* sym = symtab->lookup(signature, NULL);
580 if (sym != NULL)
581 os->set_info_symndx(sym);
582 else
584 // We will wind up using a symbol whose name is the signature.
585 // So just put the signature in the symbol name pool to save it.
586 signature = symtab->canonicalize_name(signature);
587 this->group_signatures_.push_back(Group_signature(os, signature));
590 os->set_should_link_to_symtab();
591 os->set_entsize(4);
593 section_size_type entry_count =
594 convert_to_section_size_type(shdr.get_sh_size() / 4);
595 Output_section_data* posd =
596 new Output_data_group<size, big_endian>(object, entry_count, flags,
597 shndxes);
598 os->add_output_section_data(posd);
601 // Special GNU handling of sections name .eh_frame. They will
602 // normally hold exception frame data as defined by the C++ ABI
603 // (http://codesourcery.com/cxx-abi/).
605 template<int size, bool big_endian>
606 Output_section*
607 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
608 const unsigned char* symbols,
609 off_t symbols_size,
610 const unsigned char* symbol_names,
611 off_t symbol_names_size,
612 unsigned int shndx,
613 const elfcpp::Shdr<size, big_endian>& shdr,
614 unsigned int reloc_shndx, unsigned int reloc_type,
615 off_t* off)
617 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
618 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
620 const char* const name = ".eh_frame";
621 Output_section* os = this->choose_output_section(object,
622 name,
623 elfcpp::SHT_PROGBITS,
624 elfcpp::SHF_ALLOC,
625 false);
626 if (os == NULL)
627 return NULL;
629 if (this->eh_frame_section_ == NULL)
631 this->eh_frame_section_ = os;
632 this->eh_frame_data_ = new Eh_frame();
634 if (this->options_.eh_frame_hdr())
636 Output_section* hdr_os =
637 this->choose_output_section(NULL,
638 ".eh_frame_hdr",
639 elfcpp::SHT_PROGBITS,
640 elfcpp::SHF_ALLOC,
641 false);
643 if (hdr_os != NULL)
645 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
646 this->eh_frame_data_);
647 hdr_os->add_output_section_data(hdr_posd);
649 hdr_os->set_after_input_sections();
651 if (!this->script_options_->saw_phdrs_clause())
653 Output_segment* hdr_oseg;
654 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
655 elfcpp::PF_R);
656 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
659 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
664 gold_assert(this->eh_frame_section_ == os);
666 if (this->eh_frame_data_->add_ehframe_input_section(object,
667 symbols,
668 symbols_size,
669 symbol_names,
670 symbol_names_size,
671 shndx,
672 reloc_shndx,
673 reloc_type))
675 os->update_flags_for_input_section(shdr.get_sh_flags());
677 // We found a .eh_frame section we are going to optimize, so now
678 // we can add the set of optimized sections to the output
679 // section. We need to postpone adding this until we've found a
680 // section we can optimize so that the .eh_frame section in
681 // crtbegin.o winds up at the start of the output section.
682 if (!this->added_eh_frame_data_)
684 os->add_output_section_data(this->eh_frame_data_);
685 this->added_eh_frame_data_ = true;
687 *off = -1;
689 else
691 // We couldn't handle this .eh_frame section for some reason.
692 // Add it as a normal section.
693 bool saw_sections_clause = this->script_options_->saw_sections_clause();
694 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
695 saw_sections_clause);
698 return os;
701 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
702 // the output section.
704 Output_section*
705 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
706 elfcpp::Elf_Xword flags,
707 Output_section_data* posd)
709 Output_section* os = this->choose_output_section(NULL, name, type, flags,
710 false);
711 if (os != NULL)
712 os->add_output_section_data(posd);
713 return os;
716 // Map section flags to segment flags.
718 elfcpp::Elf_Word
719 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
721 elfcpp::Elf_Word ret = elfcpp::PF_R;
722 if ((flags & elfcpp::SHF_WRITE) != 0)
723 ret |= elfcpp::PF_W;
724 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
725 ret |= elfcpp::PF_X;
726 return ret;
729 // Sometimes we compress sections. This is typically done for
730 // sections that are not part of normal program execution (such as
731 // .debug_* sections), and where the readers of these sections know
732 // how to deal with compressed sections. (To make it easier for them,
733 // we will rename the ouput section in such cases from .foo to
734 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
735 // doesn't say for certain whether we'll compress -- it depends on
736 // commandline options as well -- just whether this section is a
737 // candidate for compression.
739 static bool
740 is_compressible_debug_section(const char* secname)
742 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
745 // Make a new Output_section, and attach it to segments as
746 // appropriate.
748 Output_section*
749 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
750 elfcpp::Elf_Xword flags)
752 Output_section* os;
753 if ((flags & elfcpp::SHF_ALLOC) == 0
754 && strcmp(this->options_.compress_debug_sections(), "none") != 0
755 && is_compressible_debug_section(name))
756 os = new Output_compressed_section(&this->options_, name, type, flags);
758 else if ((flags & elfcpp::SHF_ALLOC) == 0
759 && this->options_.strip_debug_non_line()
760 && strcmp(".debug_abbrev", name) == 0)
762 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
763 name, type, flags);
764 if (this->debug_info_)
765 this->debug_info_->set_abbreviations(this->debug_abbrev_);
767 else if ((flags & elfcpp::SHF_ALLOC) == 0
768 && this->options_.strip_debug_non_line()
769 && strcmp(".debug_info", name) == 0)
771 os = this->debug_info_ = new Output_reduced_debug_info_section(
772 name, type, flags);
773 if (this->debug_abbrev_)
774 this->debug_info_->set_abbreviations(this->debug_abbrev_);
776 else
777 os = new Output_section(name, type, flags);
779 this->section_list_.push_back(os);
781 // The GNU linker by default sorts some sections by priority, so we
782 // do the same. We need to know that this might happen before we
783 // attach any input sections.
784 if (!this->script_options_->saw_sections_clause()
785 && (strcmp(name, ".ctors") == 0
786 || strcmp(name, ".dtors") == 0
787 || strcmp(name, ".init_array") == 0
788 || strcmp(name, ".fini_array") == 0))
789 os->set_may_sort_attached_input_sections();
791 // With -z relro, we have to recognize the special sections by name.
792 // There is no other way.
793 if (!this->script_options_->saw_sections_clause()
794 && parameters->options().relro()
795 && type == elfcpp::SHT_PROGBITS
796 && (flags & elfcpp::SHF_ALLOC) != 0
797 && (flags & elfcpp::SHF_WRITE) != 0)
799 if (strcmp(name, ".data.rel.ro") == 0)
800 os->set_is_relro();
801 else if (strcmp(name, ".data.rel.ro.local") == 0)
803 os->set_is_relro();
804 os->set_is_relro_local();
808 // If we have already attached the sections to segments, then we
809 // need to attach this one now. This happens for sections created
810 // directly by the linker.
811 if (this->sections_are_attached_)
812 this->attach_section_to_segment(os);
814 return os;
817 // Attach output sections to segments. This is called after we have
818 // seen all the input sections.
820 void
821 Layout::attach_sections_to_segments()
823 for (Section_list::iterator p = this->section_list_.begin();
824 p != this->section_list_.end();
825 ++p)
826 this->attach_section_to_segment(*p);
828 this->sections_are_attached_ = true;
831 // Attach an output section to a segment.
833 void
834 Layout::attach_section_to_segment(Output_section* os)
836 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
837 this->unattached_section_list_.push_back(os);
838 else
839 this->attach_allocated_section_to_segment(os);
842 // Attach an allocated output section to a segment.
844 void
845 Layout::attach_allocated_section_to_segment(Output_section* os)
847 elfcpp::Elf_Xword flags = os->flags();
848 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
850 if (parameters->options().relocatable())
851 return;
853 // If we have a SECTIONS clause, we can't handle the attachment to
854 // segments until after we've seen all the sections.
855 if (this->script_options_->saw_sections_clause())
856 return;
858 gold_assert(!this->script_options_->saw_phdrs_clause());
860 // This output section goes into a PT_LOAD segment.
862 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
864 // In general the only thing we really care about for PT_LOAD
865 // segments is whether or not they are writable, so that is how we
866 // search for them. People who need segments sorted on some other
867 // basis will have to use a linker script.
869 Segment_list::const_iterator p;
870 for (p = this->segment_list_.begin();
871 p != this->segment_list_.end();
872 ++p)
874 if ((*p)->type() == elfcpp::PT_LOAD
875 && (parameters->options().omagic()
876 || ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W)))
878 // If -Tbss was specified, we need to separate the data
879 // and BSS segments.
880 if (this->options_.user_set_Tbss())
882 if ((os->type() == elfcpp::SHT_NOBITS)
883 == (*p)->has_any_data_sections())
884 continue;
887 (*p)->add_output_section(os, seg_flags);
888 break;
892 if (p == this->segment_list_.end())
894 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
895 seg_flags);
896 oseg->add_output_section(os, seg_flags);
899 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
900 // segment.
901 if (os->type() == elfcpp::SHT_NOTE)
903 // See if we already have an equivalent PT_NOTE segment.
904 for (p = this->segment_list_.begin();
905 p != segment_list_.end();
906 ++p)
908 if ((*p)->type() == elfcpp::PT_NOTE
909 && (((*p)->flags() & elfcpp::PF_W)
910 == (seg_flags & elfcpp::PF_W)))
912 (*p)->add_output_section(os, seg_flags);
913 break;
917 if (p == this->segment_list_.end())
919 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
920 seg_flags);
921 oseg->add_output_section(os, seg_flags);
925 // If we see a loadable SHF_TLS section, we create a PT_TLS
926 // segment. There can only be one such segment.
927 if ((flags & elfcpp::SHF_TLS) != 0)
929 if (this->tls_segment_ == NULL)
930 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
931 this->tls_segment_->add_output_section(os, seg_flags);
934 // If -z relro is in effect, and we see a relro section, we create a
935 // PT_GNU_RELRO segment. There can only be one such segment.
936 if (os->is_relro() && parameters->options().relro())
938 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
939 if (this->relro_segment_ == NULL)
940 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
941 this->relro_segment_->add_output_section(os, seg_flags);
945 // Make an output section for a script.
947 Output_section*
948 Layout::make_output_section_for_script(const char* name)
950 name = this->namepool_.add(name, false, NULL);
951 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
952 elfcpp::SHF_ALLOC);
953 os->set_found_in_sections_clause();
954 return os;
957 // Return the number of segments we expect to see.
959 size_t
960 Layout::expected_segment_count() const
962 size_t ret = this->segment_list_.size();
964 // If we didn't see a SECTIONS clause in a linker script, we should
965 // already have the complete list of segments. Otherwise we ask the
966 // SECTIONS clause how many segments it expects, and add in the ones
967 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
969 if (!this->script_options_->saw_sections_clause())
970 return ret;
971 else
973 const Script_sections* ss = this->script_options_->script_sections();
974 return ret + ss->expected_segment_count(this);
978 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
979 // is whether we saw a .note.GNU-stack section in the object file.
980 // GNU_STACK_FLAGS is the section flags. The flags give the
981 // protection required for stack memory. We record this in an
982 // executable as a PT_GNU_STACK segment. If an object file does not
983 // have a .note.GNU-stack segment, we must assume that it is an old
984 // object. On some targets that will force an executable stack.
986 void
987 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
989 if (!seen_gnu_stack)
990 this->input_without_gnu_stack_note_ = true;
991 else
993 this->input_with_gnu_stack_note_ = true;
994 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
995 this->input_requires_executable_stack_ = true;
999 // Create the dynamic sections which are needed before we read the
1000 // relocs.
1002 void
1003 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1005 if (parameters->doing_static_link())
1006 return;
1008 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1009 elfcpp::SHT_DYNAMIC,
1010 (elfcpp::SHF_ALLOC
1011 | elfcpp::SHF_WRITE),
1012 false);
1013 this->dynamic_section_->set_is_relro();
1015 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1016 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1017 elfcpp::STV_HIDDEN, 0, false, false);
1019 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1021 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1024 // For each output section whose name can be represented as C symbol,
1025 // define __start and __stop symbols for the section. This is a GNU
1026 // extension.
1028 void
1029 Layout::define_section_symbols(Symbol_table* symtab)
1031 for (Section_list::const_iterator p = this->section_list_.begin();
1032 p != this->section_list_.end();
1033 ++p)
1035 const char* const name = (*p)->name();
1036 if (name[strspn(name,
1037 ("0123456789"
1038 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1039 "abcdefghijklmnopqrstuvwxyz"
1040 "_"))]
1041 == '\0')
1043 const std::string name_string(name);
1044 const std::string start_name("__start_" + name_string);
1045 const std::string stop_name("__stop_" + name_string);
1047 symtab->define_in_output_data(start_name.c_str(),
1048 NULL, // version
1050 0, // value
1051 0, // symsize
1052 elfcpp::STT_NOTYPE,
1053 elfcpp::STB_GLOBAL,
1054 elfcpp::STV_DEFAULT,
1055 0, // nonvis
1056 false, // offset_is_from_end
1057 true); // only_if_ref
1059 symtab->define_in_output_data(stop_name.c_str(),
1060 NULL, // version
1062 0, // value
1063 0, // symsize
1064 elfcpp::STT_NOTYPE,
1065 elfcpp::STB_GLOBAL,
1066 elfcpp::STV_DEFAULT,
1067 0, // nonvis
1068 true, // offset_is_from_end
1069 true); // only_if_ref
1074 // Define symbols for group signatures.
1076 void
1077 Layout::define_group_signatures(Symbol_table* symtab)
1079 for (Group_signatures::iterator p = this->group_signatures_.begin();
1080 p != this->group_signatures_.end();
1081 ++p)
1083 Symbol* sym = symtab->lookup(p->signature, NULL);
1084 if (sym != NULL)
1085 p->section->set_info_symndx(sym);
1086 else
1088 // Force the name of the group section to the group
1089 // signature, and use the group's section symbol as the
1090 // signature symbol.
1091 if (strcmp(p->section->name(), p->signature) != 0)
1093 const char* name = this->namepool_.add(p->signature,
1094 true, NULL);
1095 p->section->set_name(name);
1097 p->section->set_needs_symtab_index();
1098 p->section->set_info_section_symndx(p->section);
1102 this->group_signatures_.clear();
1105 // Find the first read-only PT_LOAD segment, creating one if
1106 // necessary.
1108 Output_segment*
1109 Layout::find_first_load_seg()
1111 for (Segment_list::const_iterator p = this->segment_list_.begin();
1112 p != this->segment_list_.end();
1113 ++p)
1115 if ((*p)->type() == elfcpp::PT_LOAD
1116 && ((*p)->flags() & elfcpp::PF_R) != 0
1117 && (parameters->options().omagic()
1118 || ((*p)->flags() & elfcpp::PF_W) == 0))
1119 return *p;
1122 gold_assert(!this->script_options_->saw_phdrs_clause());
1124 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1125 elfcpp::PF_R);
1126 return load_seg;
1129 // Finalize the layout. When this is called, we have created all the
1130 // output sections and all the output segments which are based on
1131 // input sections. We have several things to do, and we have to do
1132 // them in the right order, so that we get the right results correctly
1133 // and efficiently.
1135 // 1) Finalize the list of output segments and create the segment
1136 // table header.
1138 // 2) Finalize the dynamic symbol table and associated sections.
1140 // 3) Determine the final file offset of all the output segments.
1142 // 4) Determine the final file offset of all the SHF_ALLOC output
1143 // sections.
1145 // 5) Create the symbol table sections and the section name table
1146 // section.
1148 // 6) Finalize the symbol table: set symbol values to their final
1149 // value and make a final determination of which symbols are going
1150 // into the output symbol table.
1152 // 7) Create the section table header.
1154 // 8) Determine the final file offset of all the output sections which
1155 // are not SHF_ALLOC, including the section table header.
1157 // 9) Finalize the ELF file header.
1159 // This function returns the size of the output file.
1161 off_t
1162 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1163 Target* target, const Task* task)
1165 target->finalize_sections(this);
1167 this->count_local_symbols(task, input_objects);
1169 this->create_gold_note();
1170 this->create_executable_stack_info(target);
1171 this->create_build_id();
1173 Output_segment* phdr_seg = NULL;
1174 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1176 // There was a dynamic object in the link. We need to create
1177 // some information for the dynamic linker.
1179 // Create the PT_PHDR segment which will hold the program
1180 // headers.
1181 if (!this->script_options_->saw_phdrs_clause())
1182 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1184 // Create the dynamic symbol table, including the hash table.
1185 Output_section* dynstr;
1186 std::vector<Symbol*> dynamic_symbols;
1187 unsigned int local_dynamic_count;
1188 Versions versions(*this->script_options()->version_script_info(),
1189 &this->dynpool_);
1190 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1191 &local_dynamic_count, &dynamic_symbols,
1192 &versions);
1194 // Create the .interp section to hold the name of the
1195 // interpreter, and put it in a PT_INTERP segment.
1196 if (!parameters->options().shared())
1197 this->create_interp(target);
1199 // Finish the .dynamic section to hold the dynamic data, and put
1200 // it in a PT_DYNAMIC segment.
1201 this->finish_dynamic_section(input_objects, symtab);
1203 // We should have added everything we need to the dynamic string
1204 // table.
1205 this->dynpool_.set_string_offsets();
1207 // Create the version sections. We can't do this until the
1208 // dynamic string table is complete.
1209 this->create_version_sections(&versions, symtab, local_dynamic_count,
1210 dynamic_symbols, dynstr);
1213 // If there is a SECTIONS clause, put all the input sections into
1214 // the required order.
1215 Output_segment* load_seg;
1216 if (this->script_options_->saw_sections_clause())
1217 load_seg = this->set_section_addresses_from_script(symtab);
1218 else if (parameters->options().relocatable())
1219 load_seg = NULL;
1220 else
1221 load_seg = this->find_first_load_seg();
1223 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
1224 load_seg = NULL;
1226 gold_assert(phdr_seg == NULL || load_seg != NULL);
1228 // Lay out the segment headers.
1229 Output_segment_headers* segment_headers;
1230 if (parameters->options().relocatable())
1231 segment_headers = NULL;
1232 else
1234 segment_headers = new Output_segment_headers(this->segment_list_);
1235 if (load_seg != NULL)
1236 load_seg->add_initial_output_data(segment_headers);
1237 if (phdr_seg != NULL)
1238 phdr_seg->add_initial_output_data(segment_headers);
1241 // Lay out the file header.
1242 Output_file_header* file_header;
1243 file_header = new Output_file_header(target, symtab, segment_headers,
1244 this->options_.entry());
1245 if (load_seg != NULL)
1246 load_seg->add_initial_output_data(file_header);
1248 this->special_output_list_.push_back(file_header);
1249 if (segment_headers != NULL)
1250 this->special_output_list_.push_back(segment_headers);
1252 if (this->script_options_->saw_phdrs_clause()
1253 && !parameters->options().relocatable())
1255 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1256 // clause in a linker script.
1257 Script_sections* ss = this->script_options_->script_sections();
1258 ss->put_headers_in_phdrs(file_header, segment_headers);
1261 // We set the output section indexes in set_segment_offsets and
1262 // set_section_indexes.
1263 unsigned int shndx = 1;
1265 // Set the file offsets of all the segments, and all the sections
1266 // they contain.
1267 off_t off;
1268 if (!parameters->options().relocatable())
1269 off = this->set_segment_offsets(target, load_seg, &shndx);
1270 else
1271 off = this->set_relocatable_section_offsets(file_header, &shndx);
1273 // Set the file offsets of all the non-data sections we've seen so
1274 // far which don't have to wait for the input sections. We need
1275 // this in order to finalize local symbols in non-allocated
1276 // sections.
1277 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1279 // Set the section indexes of all unallocated sections seen so far,
1280 // in case any of them are somehow referenced by a symbol.
1281 shndx = this->set_section_indexes(shndx);
1283 // Create the symbol table sections.
1284 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1285 if (!parameters->doing_static_link())
1286 this->assign_local_dynsym_offsets(input_objects);
1288 // Process any symbol assignments from a linker script. This must
1289 // be called after the symbol table has been finalized.
1290 this->script_options_->finalize_symbols(symtab, this);
1292 // Create the .shstrtab section.
1293 Output_section* shstrtab_section = this->create_shstrtab();
1295 // Set the file offsets of the rest of the non-data sections which
1296 // don't have to wait for the input sections.
1297 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1299 // Now that all sections have been created, set the section indexes
1300 // for any sections which haven't been done yet.
1301 shndx = this->set_section_indexes(shndx);
1303 // Create the section table header.
1304 this->create_shdrs(shstrtab_section, &off);
1306 // If there are no sections which require postprocessing, we can
1307 // handle the section names now, and avoid a resize later.
1308 if (!this->any_postprocessing_sections_)
1309 off = this->set_section_offsets(off,
1310 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1312 file_header->set_section_info(this->section_headers_, shstrtab_section);
1314 // Now we know exactly where everything goes in the output file
1315 // (except for non-allocated sections which require postprocessing).
1316 Output_data::layout_complete();
1318 this->output_file_size_ = off;
1320 return off;
1323 // Create a note header following the format defined in the ELF ABI.
1324 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1325 // descriptor. ALLOCATE is true if the section should be allocated in
1326 // memory. This returns the new note section. It sets
1327 // *TRAILING_PADDING to the number of trailing zero bytes required.
1329 Output_section*
1330 Layout::create_note(const char* name, int note_type, size_t descsz,
1331 bool allocate, size_t* trailing_padding)
1333 // Authorities all agree that the values in a .note field should
1334 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1335 // they differ on what the alignment is for 64-bit binaries.
1336 // The GABI says unambiguously they take 8-byte alignment:
1337 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1338 // Other documentation says alignment should always be 4 bytes:
1339 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1340 // GNU ld and GNU readelf both support the latter (at least as of
1341 // version 2.16.91), and glibc always generates the latter for
1342 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1343 // here.
1344 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1345 const int size = parameters->target().get_size();
1346 #else
1347 const int size = 32;
1348 #endif
1350 // The contents of the .note section.
1351 size_t namesz = strlen(name) + 1;
1352 size_t aligned_namesz = align_address(namesz, size / 8);
1353 size_t aligned_descsz = align_address(descsz, size / 8);
1355 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1357 unsigned char* buffer = new unsigned char[notehdrsz];
1358 memset(buffer, 0, notehdrsz);
1360 bool is_big_endian = parameters->target().is_big_endian();
1362 if (size == 32)
1364 if (!is_big_endian)
1366 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1367 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1368 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1370 else
1372 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1373 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1374 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1377 else if (size == 64)
1379 if (!is_big_endian)
1381 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1382 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1383 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1385 else
1387 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1388 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1389 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1392 else
1393 gold_unreachable();
1395 memcpy(buffer + 3 * (size / 8), name, namesz);
1397 const char* note_name = this->namepool_.add(".note", false, NULL);
1398 elfcpp::Elf_Xword flags = 0;
1399 if (allocate)
1400 flags = elfcpp::SHF_ALLOC;
1401 Output_section* os = this->make_output_section(note_name,
1402 elfcpp::SHT_NOTE,
1403 flags);
1404 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1405 size / 8,
1406 "** note header");
1407 os->add_output_section_data(posd);
1409 *trailing_padding = aligned_descsz - descsz;
1411 return os;
1414 // For an executable or shared library, create a note to record the
1415 // version of gold used to create the binary.
1417 void
1418 Layout::create_gold_note()
1420 if (parameters->options().relocatable())
1421 return;
1423 std::string desc = std::string("gold ") + gold::get_version_string();
1425 size_t trailing_padding;
1426 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1427 desc.size(), false, &trailing_padding);
1429 Output_section_data* posd = new Output_data_const(desc, 4);
1430 os->add_output_section_data(posd);
1432 if (trailing_padding > 0)
1434 posd = new Output_data_zero_fill(trailing_padding, 0);
1435 os->add_output_section_data(posd);
1439 // Record whether the stack should be executable. This can be set
1440 // from the command line using the -z execstack or -z noexecstack
1441 // options. Otherwise, if any input file has a .note.GNU-stack
1442 // section with the SHF_EXECINSTR flag set, the stack should be
1443 // executable. Otherwise, if at least one input file a
1444 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1445 // section, we use the target default for whether the stack should be
1446 // executable. Otherwise, we don't generate a stack note. When
1447 // generating a object file, we create a .note.GNU-stack section with
1448 // the appropriate marking. When generating an executable or shared
1449 // library, we create a PT_GNU_STACK segment.
1451 void
1452 Layout::create_executable_stack_info(const Target* target)
1454 bool is_stack_executable;
1455 if (this->options_.is_execstack_set())
1456 is_stack_executable = this->options_.is_stack_executable();
1457 else if (!this->input_with_gnu_stack_note_)
1458 return;
1459 else
1461 if (this->input_requires_executable_stack_)
1462 is_stack_executable = true;
1463 else if (this->input_without_gnu_stack_note_)
1464 is_stack_executable = target->is_default_stack_executable();
1465 else
1466 is_stack_executable = false;
1469 if (parameters->options().relocatable())
1471 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1472 elfcpp::Elf_Xword flags = 0;
1473 if (is_stack_executable)
1474 flags |= elfcpp::SHF_EXECINSTR;
1475 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1477 else
1479 if (this->script_options_->saw_phdrs_clause())
1480 return;
1481 int flags = elfcpp::PF_R | elfcpp::PF_W;
1482 if (is_stack_executable)
1483 flags |= elfcpp::PF_X;
1484 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1488 // If --build-id was used, set up the build ID note.
1490 void
1491 Layout::create_build_id()
1493 if (!parameters->options().user_set_build_id())
1494 return;
1496 const char* style = parameters->options().build_id();
1497 if (strcmp(style, "none") == 0)
1498 return;
1500 // Set DESCSZ to the size of the note descriptor. When possible,
1501 // set DESC to the note descriptor contents.
1502 size_t descsz;
1503 std::string desc;
1504 if (strcmp(style, "md5") == 0)
1505 descsz = 128 / 8;
1506 else if (strcmp(style, "sha1") == 0)
1507 descsz = 160 / 8;
1508 else if (strcmp(style, "uuid") == 0)
1510 const size_t uuidsz = 128 / 8;
1512 char buffer[uuidsz];
1513 memset(buffer, 0, uuidsz);
1515 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1516 if (descriptor < 0)
1517 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1518 strerror(errno));
1519 else
1521 ssize_t got = ::read(descriptor, buffer, uuidsz);
1522 release_descriptor(descriptor, true);
1523 if (got < 0)
1524 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1525 else if (static_cast<size_t>(got) != uuidsz)
1526 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1527 uuidsz, got);
1530 desc.assign(buffer, uuidsz);
1531 descsz = uuidsz;
1533 else if (strncmp(style, "0x", 2) == 0)
1535 hex_init();
1536 const char* p = style + 2;
1537 while (*p != '\0')
1539 if (hex_p(p[0]) && hex_p(p[1]))
1541 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1542 desc += c;
1543 p += 2;
1545 else if (*p == '-' || *p == ':')
1546 ++p;
1547 else
1548 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1549 style);
1551 descsz = desc.size();
1553 else
1554 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1556 // Create the note.
1557 size_t trailing_padding;
1558 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1559 descsz, true, &trailing_padding);
1561 if (!desc.empty())
1563 // We know the value already, so we fill it in now.
1564 gold_assert(desc.size() == descsz);
1566 Output_section_data* posd = new Output_data_const(desc, 4);
1567 os->add_output_section_data(posd);
1569 if (trailing_padding != 0)
1571 posd = new Output_data_zero_fill(trailing_padding, 0);
1572 os->add_output_section_data(posd);
1575 else
1577 // We need to compute a checksum after we have completed the
1578 // link.
1579 gold_assert(trailing_padding == 0);
1580 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1581 os->add_output_section_data(this->build_id_note_);
1582 os->set_after_input_sections();
1586 // Return whether SEG1 should be before SEG2 in the output file. This
1587 // is based entirely on the segment type and flags. When this is
1588 // called the segment addresses has normally not yet been set.
1590 bool
1591 Layout::segment_precedes(const Output_segment* seg1,
1592 const Output_segment* seg2)
1594 elfcpp::Elf_Word type1 = seg1->type();
1595 elfcpp::Elf_Word type2 = seg2->type();
1597 // The single PT_PHDR segment is required to precede any loadable
1598 // segment. We simply make it always first.
1599 if (type1 == elfcpp::PT_PHDR)
1601 gold_assert(type2 != elfcpp::PT_PHDR);
1602 return true;
1604 if (type2 == elfcpp::PT_PHDR)
1605 return false;
1607 // The single PT_INTERP segment is required to precede any loadable
1608 // segment. We simply make it always second.
1609 if (type1 == elfcpp::PT_INTERP)
1611 gold_assert(type2 != elfcpp::PT_INTERP);
1612 return true;
1614 if (type2 == elfcpp::PT_INTERP)
1615 return false;
1617 // We then put PT_LOAD segments before any other segments.
1618 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1619 return true;
1620 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1621 return false;
1623 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1624 // segment, because that is where the dynamic linker expects to find
1625 // it (this is just for efficiency; other positions would also work
1626 // correctly).
1627 if (type1 == elfcpp::PT_TLS
1628 && type2 != elfcpp::PT_TLS
1629 && type2 != elfcpp::PT_GNU_RELRO)
1630 return false;
1631 if (type2 == elfcpp::PT_TLS
1632 && type1 != elfcpp::PT_TLS
1633 && type1 != elfcpp::PT_GNU_RELRO)
1634 return true;
1636 // We put the PT_GNU_RELRO segment last, because that is where the
1637 // dynamic linker expects to find it (as with PT_TLS, this is just
1638 // for efficiency).
1639 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1640 return false;
1641 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1642 return true;
1644 const elfcpp::Elf_Word flags1 = seg1->flags();
1645 const elfcpp::Elf_Word flags2 = seg2->flags();
1647 // The order of non-PT_LOAD segments is unimportant. We simply sort
1648 // by the numeric segment type and flags values. There should not
1649 // be more than one segment with the same type and flags.
1650 if (type1 != elfcpp::PT_LOAD)
1652 if (type1 != type2)
1653 return type1 < type2;
1654 gold_assert(flags1 != flags2);
1655 return flags1 < flags2;
1658 // If the addresses are set already, sort by load address.
1659 if (seg1->are_addresses_set())
1661 if (!seg2->are_addresses_set())
1662 return true;
1664 unsigned int section_count1 = seg1->output_section_count();
1665 unsigned int section_count2 = seg2->output_section_count();
1666 if (section_count1 == 0 && section_count2 > 0)
1667 return true;
1668 if (section_count1 > 0 && section_count2 == 0)
1669 return false;
1671 uint64_t paddr1 = seg1->first_section_load_address();
1672 uint64_t paddr2 = seg2->first_section_load_address();
1673 if (paddr1 != paddr2)
1674 return paddr1 < paddr2;
1676 else if (seg2->are_addresses_set())
1677 return false;
1679 // We sort PT_LOAD segments based on the flags. Readonly segments
1680 // come before writable segments. Then writable segments with data
1681 // come before writable segments without data. Then executable
1682 // segments come before non-executable segments. Then the unlikely
1683 // case of a non-readable segment comes before the normal case of a
1684 // readable segment. If there are multiple segments with the same
1685 // type and flags, we require that the address be set, and we sort
1686 // by virtual address and then physical address.
1687 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1688 return (flags1 & elfcpp::PF_W) == 0;
1689 if ((flags1 & elfcpp::PF_W) != 0
1690 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1691 return seg1->has_any_data_sections();
1692 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1693 return (flags1 & elfcpp::PF_X) != 0;
1694 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1695 return (flags1 & elfcpp::PF_R) == 0;
1697 // We shouldn't get here--we shouldn't create segments which we
1698 // can't distinguish.
1699 gold_unreachable();
1702 // Set the file offsets of all the segments, and all the sections they
1703 // contain. They have all been created. LOAD_SEG must be be laid out
1704 // first. Return the offset of the data to follow.
1706 off_t
1707 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1708 unsigned int *pshndx)
1710 // Sort them into the final order.
1711 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1712 Layout::Compare_segments());
1714 // Find the PT_LOAD segments, and set their addresses and offsets
1715 // and their section's addresses and offsets.
1716 uint64_t addr;
1717 if (this->options_.user_set_Ttext())
1718 addr = this->options_.Ttext();
1719 else if (parameters->options().shared())
1720 addr = 0;
1721 else
1722 addr = target->default_text_segment_address();
1723 off_t off = 0;
1725 // If LOAD_SEG is NULL, then the file header and segment headers
1726 // will not be loadable. But they still need to be at offset 0 in
1727 // the file. Set their offsets now.
1728 if (load_seg == NULL)
1730 for (Data_list::iterator p = this->special_output_list_.begin();
1731 p != this->special_output_list_.end();
1732 ++p)
1734 off = align_address(off, (*p)->addralign());
1735 (*p)->set_address_and_file_offset(0, off);
1736 off += (*p)->data_size();
1740 const bool check_sections = parameters->options().check_sections();
1741 Output_segment* last_load_segment = NULL;
1743 bool was_readonly = false;
1744 for (Segment_list::iterator p = this->segment_list_.begin();
1745 p != this->segment_list_.end();
1746 ++p)
1748 if ((*p)->type() == elfcpp::PT_LOAD)
1750 if (load_seg != NULL && load_seg != *p)
1751 gold_unreachable();
1752 load_seg = NULL;
1754 bool are_addresses_set = (*p)->are_addresses_set();
1755 if (are_addresses_set)
1757 // When it comes to setting file offsets, we care about
1758 // the physical address.
1759 addr = (*p)->paddr();
1761 else if (this->options_.user_set_Tdata()
1762 && ((*p)->flags() & elfcpp::PF_W) != 0
1763 && (!this->options_.user_set_Tbss()
1764 || (*p)->has_any_data_sections()))
1766 addr = this->options_.Tdata();
1767 are_addresses_set = true;
1769 else if (this->options_.user_set_Tbss()
1770 && ((*p)->flags() & elfcpp::PF_W) != 0
1771 && !(*p)->has_any_data_sections())
1773 addr = this->options_.Tbss();
1774 are_addresses_set = true;
1777 uint64_t orig_addr = addr;
1778 uint64_t orig_off = off;
1780 uint64_t aligned_addr = 0;
1781 uint64_t abi_pagesize = target->abi_pagesize();
1782 uint64_t common_pagesize = target->common_pagesize();
1784 if (!parameters->options().nmagic()
1785 && !parameters->options().omagic())
1786 (*p)->set_minimum_p_align(common_pagesize);
1788 if (are_addresses_set)
1790 if (!parameters->options().nmagic()
1791 && !parameters->options().omagic())
1793 // Adjust the file offset to the same address modulo
1794 // the page size.
1795 uint64_t unsigned_off = off;
1796 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1797 | (addr & (abi_pagesize - 1)));
1798 if (aligned_off < unsigned_off)
1799 aligned_off += abi_pagesize;
1800 off = aligned_off;
1803 else
1805 // If the last segment was readonly, and this one is
1806 // not, then skip the address forward one page,
1807 // maintaining the same position within the page. This
1808 // lets us store both segments overlapping on a single
1809 // page in the file, but the loader will put them on
1810 // different pages in memory.
1812 addr = align_address(addr, (*p)->maximum_alignment());
1813 aligned_addr = addr;
1815 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1817 if ((addr & (abi_pagesize - 1)) != 0)
1818 addr = addr + abi_pagesize;
1821 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1824 unsigned int shndx_hold = *pshndx;
1825 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1826 &off, pshndx);
1828 // Now that we know the size of this segment, we may be able
1829 // to save a page in memory, at the cost of wasting some
1830 // file space, by instead aligning to the start of a new
1831 // page. Here we use the real machine page size rather than
1832 // the ABI mandated page size.
1834 if (!are_addresses_set && aligned_addr != addr)
1836 uint64_t first_off = (common_pagesize
1837 - (aligned_addr
1838 & (common_pagesize - 1)));
1839 uint64_t last_off = new_addr & (common_pagesize - 1);
1840 if (first_off > 0
1841 && last_off > 0
1842 && ((aligned_addr & ~ (common_pagesize - 1))
1843 != (new_addr & ~ (common_pagesize - 1)))
1844 && first_off + last_off <= common_pagesize)
1846 *pshndx = shndx_hold;
1847 addr = align_address(aligned_addr, common_pagesize);
1848 addr = align_address(addr, (*p)->maximum_alignment());
1849 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1850 new_addr = (*p)->set_section_addresses(this, true, addr,
1851 &off, pshndx);
1855 addr = new_addr;
1857 if (((*p)->flags() & elfcpp::PF_W) == 0)
1858 was_readonly = true;
1860 // Implement --check-sections. We know that the segments
1861 // are sorted by LMA.
1862 if (check_sections && last_load_segment != NULL)
1864 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
1865 if (last_load_segment->paddr() + last_load_segment->memsz()
1866 > (*p)->paddr())
1868 unsigned long long lb1 = last_load_segment->paddr();
1869 unsigned long long le1 = lb1 + last_load_segment->memsz();
1870 unsigned long long lb2 = (*p)->paddr();
1871 unsigned long long le2 = lb2 + (*p)->memsz();
1872 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
1873 "[0x%llx -> 0x%llx]"),
1874 lb1, le1, lb2, le2);
1877 last_load_segment = *p;
1881 // Handle the non-PT_LOAD segments, setting their offsets from their
1882 // section's offsets.
1883 for (Segment_list::iterator p = this->segment_list_.begin();
1884 p != this->segment_list_.end();
1885 ++p)
1887 if ((*p)->type() != elfcpp::PT_LOAD)
1888 (*p)->set_offset();
1891 // Set the TLS offsets for each section in the PT_TLS segment.
1892 if (this->tls_segment_ != NULL)
1893 this->tls_segment_->set_tls_offsets();
1895 return off;
1898 // Set the offsets of all the allocated sections when doing a
1899 // relocatable link. This does the same jobs as set_segment_offsets,
1900 // only for a relocatable link.
1902 off_t
1903 Layout::set_relocatable_section_offsets(Output_data* file_header,
1904 unsigned int *pshndx)
1906 off_t off = 0;
1908 file_header->set_address_and_file_offset(0, 0);
1909 off += file_header->data_size();
1911 for (Section_list::iterator p = this->section_list_.begin();
1912 p != this->section_list_.end();
1913 ++p)
1915 // We skip unallocated sections here, except that group sections
1916 // have to come first.
1917 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1918 && (*p)->type() != elfcpp::SHT_GROUP)
1919 continue;
1921 off = align_address(off, (*p)->addralign());
1923 // The linker script might have set the address.
1924 if (!(*p)->is_address_valid())
1925 (*p)->set_address(0);
1926 (*p)->set_file_offset(off);
1927 (*p)->finalize_data_size();
1928 off += (*p)->data_size();
1930 (*p)->set_out_shndx(*pshndx);
1931 ++*pshndx;
1934 return off;
1937 // Set the file offset of all the sections not associated with a
1938 // segment.
1940 off_t
1941 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1943 for (Section_list::iterator p = this->unattached_section_list_.begin();
1944 p != this->unattached_section_list_.end();
1945 ++p)
1947 // The symtab section is handled in create_symtab_sections.
1948 if (*p == this->symtab_section_)
1949 continue;
1951 // If we've already set the data size, don't set it again.
1952 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1953 continue;
1955 if (pass == BEFORE_INPUT_SECTIONS_PASS
1956 && (*p)->requires_postprocessing())
1958 (*p)->create_postprocessing_buffer();
1959 this->any_postprocessing_sections_ = true;
1962 if (pass == BEFORE_INPUT_SECTIONS_PASS
1963 && (*p)->after_input_sections())
1964 continue;
1965 else if (pass == POSTPROCESSING_SECTIONS_PASS
1966 && (!(*p)->after_input_sections()
1967 || (*p)->type() == elfcpp::SHT_STRTAB))
1968 continue;
1969 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1970 && (!(*p)->after_input_sections()
1971 || (*p)->type() != elfcpp::SHT_STRTAB))
1972 continue;
1974 off = align_address(off, (*p)->addralign());
1975 (*p)->set_file_offset(off);
1976 (*p)->finalize_data_size();
1977 off += (*p)->data_size();
1979 // At this point the name must be set.
1980 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1981 this->namepool_.add((*p)->name(), false, NULL);
1983 return off;
1986 // Set the section indexes of all the sections not associated with a
1987 // segment.
1989 unsigned int
1990 Layout::set_section_indexes(unsigned int shndx)
1992 for (Section_list::iterator p = this->unattached_section_list_.begin();
1993 p != this->unattached_section_list_.end();
1994 ++p)
1996 if (!(*p)->has_out_shndx())
1998 (*p)->set_out_shndx(shndx);
1999 ++shndx;
2002 return shndx;
2005 // Set the section addresses according to the linker script. This is
2006 // only called when we see a SECTIONS clause. This returns the
2007 // program segment which should hold the file header and segment
2008 // headers, if any. It will return NULL if they should not be in a
2009 // segment.
2011 Output_segment*
2012 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2014 Script_sections* ss = this->script_options_->script_sections();
2015 gold_assert(ss->saw_sections_clause());
2017 // Place each orphaned output section in the script.
2018 for (Section_list::iterator p = this->section_list_.begin();
2019 p != this->section_list_.end();
2020 ++p)
2022 if (!(*p)->found_in_sections_clause())
2023 ss->place_orphan(*p);
2026 return this->script_options_->set_section_addresses(symtab, this);
2029 // Count the local symbols in the regular symbol table and the dynamic
2030 // symbol table, and build the respective string pools.
2032 void
2033 Layout::count_local_symbols(const Task* task,
2034 const Input_objects* input_objects)
2036 // First, figure out an upper bound on the number of symbols we'll
2037 // be inserting into each pool. This helps us create the pools with
2038 // the right size, to avoid unnecessary hashtable resizing.
2039 unsigned int symbol_count = 0;
2040 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2041 p != input_objects->relobj_end();
2042 ++p)
2043 symbol_count += (*p)->local_symbol_count();
2045 // Go from "upper bound" to "estimate." We overcount for two
2046 // reasons: we double-count symbols that occur in more than one
2047 // object file, and we count symbols that are dropped from the
2048 // output. Add it all together and assume we overcount by 100%.
2049 symbol_count /= 2;
2051 // We assume all symbols will go into both the sympool and dynpool.
2052 this->sympool_.reserve(symbol_count);
2053 this->dynpool_.reserve(symbol_count);
2055 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2056 p != input_objects->relobj_end();
2057 ++p)
2059 Task_lock_obj<Object> tlo(task, *p);
2060 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2064 // Create the symbol table sections. Here we also set the final
2065 // values of the symbols. At this point all the loadable sections are
2066 // fully laid out. SHNUM is the number of sections so far.
2068 void
2069 Layout::create_symtab_sections(const Input_objects* input_objects,
2070 Symbol_table* symtab,
2071 unsigned int shnum,
2072 off_t* poff)
2074 int symsize;
2075 unsigned int align;
2076 if (parameters->target().get_size() == 32)
2078 symsize = elfcpp::Elf_sizes<32>::sym_size;
2079 align = 4;
2081 else if (parameters->target().get_size() == 64)
2083 symsize = elfcpp::Elf_sizes<64>::sym_size;
2084 align = 8;
2086 else
2087 gold_unreachable();
2089 off_t off = *poff;
2090 off = align_address(off, align);
2091 off_t startoff = off;
2093 // Save space for the dummy symbol at the start of the section. We
2094 // never bother to write this out--it will just be left as zero.
2095 off += symsize;
2096 unsigned int local_symbol_index = 1;
2098 // Add STT_SECTION symbols for each Output section which needs one.
2099 for (Section_list::iterator p = this->section_list_.begin();
2100 p != this->section_list_.end();
2101 ++p)
2103 if (!(*p)->needs_symtab_index())
2104 (*p)->set_symtab_index(-1U);
2105 else
2107 (*p)->set_symtab_index(local_symbol_index);
2108 ++local_symbol_index;
2109 off += symsize;
2113 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2114 p != input_objects->relobj_end();
2115 ++p)
2117 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2118 off);
2119 off += (index - local_symbol_index) * symsize;
2120 local_symbol_index = index;
2123 unsigned int local_symcount = local_symbol_index;
2124 gold_assert(local_symcount * symsize == off - startoff);
2126 off_t dynoff;
2127 size_t dyn_global_index;
2128 size_t dyncount;
2129 if (this->dynsym_section_ == NULL)
2131 dynoff = 0;
2132 dyn_global_index = 0;
2133 dyncount = 0;
2135 else
2137 dyn_global_index = this->dynsym_section_->info();
2138 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2139 dynoff = this->dynsym_section_->offset() + locsize;
2140 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2141 gold_assert(static_cast<off_t>(dyncount * symsize)
2142 == this->dynsym_section_->data_size() - locsize);
2145 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2146 &this->sympool_, &local_symcount);
2148 if (!parameters->options().strip_all())
2150 this->sympool_.set_string_offsets();
2152 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2153 Output_section* osymtab = this->make_output_section(symtab_name,
2154 elfcpp::SHT_SYMTAB,
2156 this->symtab_section_ = osymtab;
2158 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2159 align,
2160 "** symtab");
2161 osymtab->add_output_section_data(pos);
2163 // We generate a .symtab_shndx section if we have more than
2164 // SHN_LORESERVE sections. Technically it is possible that we
2165 // don't need one, because it is possible that there are no
2166 // symbols in any of sections with indexes larger than
2167 // SHN_LORESERVE. That is probably unusual, though, and it is
2168 // easier to always create one than to compute section indexes
2169 // twice (once here, once when writing out the symbols).
2170 if (shnum >= elfcpp::SHN_LORESERVE)
2172 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2173 false, NULL);
2174 Output_section* osymtab_xindex =
2175 this->make_output_section(symtab_xindex_name,
2176 elfcpp::SHT_SYMTAB_SHNDX, 0);
2178 size_t symcount = (off - startoff) / symsize;
2179 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2181 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2183 osymtab_xindex->set_link_section(osymtab);
2184 osymtab_xindex->set_addralign(4);
2185 osymtab_xindex->set_entsize(4);
2187 osymtab_xindex->set_after_input_sections();
2189 // This tells the driver code to wait until the symbol table
2190 // has written out before writing out the postprocessing
2191 // sections, including the .symtab_shndx section.
2192 this->any_postprocessing_sections_ = true;
2195 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2196 Output_section* ostrtab = this->make_output_section(strtab_name,
2197 elfcpp::SHT_STRTAB,
2200 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2201 ostrtab->add_output_section_data(pstr);
2203 osymtab->set_file_offset(startoff);
2204 osymtab->finalize_data_size();
2205 osymtab->set_link_section(ostrtab);
2206 osymtab->set_info(local_symcount);
2207 osymtab->set_entsize(symsize);
2209 *poff = off;
2213 // Create the .shstrtab section, which holds the names of the
2214 // sections. At the time this is called, we have created all the
2215 // output sections except .shstrtab itself.
2217 Output_section*
2218 Layout::create_shstrtab()
2220 // FIXME: We don't need to create a .shstrtab section if we are
2221 // stripping everything.
2223 const char* name = this->namepool_.add(".shstrtab", false, NULL);
2225 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2227 // We can't write out this section until we've set all the section
2228 // names, and we don't set the names of compressed output sections
2229 // until relocations are complete.
2230 os->set_after_input_sections();
2232 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2233 os->add_output_section_data(posd);
2235 return os;
2238 // Create the section headers. SIZE is 32 or 64. OFF is the file
2239 // offset.
2241 void
2242 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2244 Output_section_headers* oshdrs;
2245 oshdrs = new Output_section_headers(this,
2246 &this->segment_list_,
2247 &this->section_list_,
2248 &this->unattached_section_list_,
2249 &this->namepool_,
2250 shstrtab_section);
2251 off_t off = align_address(*poff, oshdrs->addralign());
2252 oshdrs->set_address_and_file_offset(0, off);
2253 off += oshdrs->data_size();
2254 *poff = off;
2255 this->section_headers_ = oshdrs;
2258 // Count the allocated sections.
2260 size_t
2261 Layout::allocated_output_section_count() const
2263 size_t section_count = 0;
2264 for (Segment_list::const_iterator p = this->segment_list_.begin();
2265 p != this->segment_list_.end();
2266 ++p)
2267 section_count += (*p)->output_section_count();
2268 return section_count;
2271 // Create the dynamic symbol table.
2273 void
2274 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2275 Symbol_table* symtab,
2276 Output_section **pdynstr,
2277 unsigned int* plocal_dynamic_count,
2278 std::vector<Symbol*>* pdynamic_symbols,
2279 Versions* pversions)
2281 // Count all the symbols in the dynamic symbol table, and set the
2282 // dynamic symbol indexes.
2284 // Skip symbol 0, which is always all zeroes.
2285 unsigned int index = 1;
2287 // Add STT_SECTION symbols for each Output section which needs one.
2288 for (Section_list::iterator p = this->section_list_.begin();
2289 p != this->section_list_.end();
2290 ++p)
2292 if (!(*p)->needs_dynsym_index())
2293 (*p)->set_dynsym_index(-1U);
2294 else
2296 (*p)->set_dynsym_index(index);
2297 ++index;
2301 // Count the local symbols that need to go in the dynamic symbol table,
2302 // and set the dynamic symbol indexes.
2303 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2304 p != input_objects->relobj_end();
2305 ++p)
2307 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2308 index = new_index;
2311 unsigned int local_symcount = index;
2312 *plocal_dynamic_count = local_symcount;
2314 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2315 &this->dynpool_, pversions);
2317 int symsize;
2318 unsigned int align;
2319 const int size = parameters->target().get_size();
2320 if (size == 32)
2322 symsize = elfcpp::Elf_sizes<32>::sym_size;
2323 align = 4;
2325 else if (size == 64)
2327 symsize = elfcpp::Elf_sizes<64>::sym_size;
2328 align = 8;
2330 else
2331 gold_unreachable();
2333 // Create the dynamic symbol table section.
2335 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2336 elfcpp::SHT_DYNSYM,
2337 elfcpp::SHF_ALLOC,
2338 false);
2340 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2341 align,
2342 "** dynsym");
2343 dynsym->add_output_section_data(odata);
2345 dynsym->set_info(local_symcount);
2346 dynsym->set_entsize(symsize);
2347 dynsym->set_addralign(align);
2349 this->dynsym_section_ = dynsym;
2351 Output_data_dynamic* const odyn = this->dynamic_data_;
2352 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2353 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2355 // If there are more than SHN_LORESERVE allocated sections, we
2356 // create a .dynsym_shndx section. It is possible that we don't
2357 // need one, because it is possible that there are no dynamic
2358 // symbols in any of the sections with indexes larger than
2359 // SHN_LORESERVE. This is probably unusual, though, and at this
2360 // time we don't know the actual section indexes so it is
2361 // inconvenient to check.
2362 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2364 Output_section* dynsym_xindex =
2365 this->choose_output_section(NULL, ".dynsym_shndx",
2366 elfcpp::SHT_SYMTAB_SHNDX,
2367 elfcpp::SHF_ALLOC,
2368 false);
2370 this->dynsym_xindex_ = new Output_symtab_xindex(index);
2372 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2374 dynsym_xindex->set_link_section(dynsym);
2375 dynsym_xindex->set_addralign(4);
2376 dynsym_xindex->set_entsize(4);
2378 dynsym_xindex->set_after_input_sections();
2380 // This tells the driver code to wait until the symbol table has
2381 // written out before writing out the postprocessing sections,
2382 // including the .dynsym_shndx section.
2383 this->any_postprocessing_sections_ = true;
2386 // Create the dynamic string table section.
2388 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2389 elfcpp::SHT_STRTAB,
2390 elfcpp::SHF_ALLOC,
2391 false);
2393 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2394 dynstr->add_output_section_data(strdata);
2396 dynsym->set_link_section(dynstr);
2397 this->dynamic_section_->set_link_section(dynstr);
2399 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2400 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2402 *pdynstr = dynstr;
2404 // Create the hash tables.
2406 if (strcmp(parameters->options().hash_style(), "sysv") == 0
2407 || strcmp(parameters->options().hash_style(), "both") == 0)
2409 unsigned char* phash;
2410 unsigned int hashlen;
2411 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2412 &phash, &hashlen);
2414 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2415 elfcpp::SHT_HASH,
2416 elfcpp::SHF_ALLOC,
2417 false);
2419 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2420 hashlen,
2421 align,
2422 "** hash");
2423 hashsec->add_output_section_data(hashdata);
2425 hashsec->set_link_section(dynsym);
2426 hashsec->set_entsize(4);
2428 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2431 if (strcmp(parameters->options().hash_style(), "gnu") == 0
2432 || strcmp(parameters->options().hash_style(), "both") == 0)
2434 unsigned char* phash;
2435 unsigned int hashlen;
2436 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2437 &phash, &hashlen);
2439 Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2440 elfcpp::SHT_GNU_HASH,
2441 elfcpp::SHF_ALLOC,
2442 false);
2444 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2445 hashlen,
2446 align,
2447 "** hash");
2448 hashsec->add_output_section_data(hashdata);
2450 hashsec->set_link_section(dynsym);
2451 hashsec->set_entsize(4);
2453 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2457 // Assign offsets to each local portion of the dynamic symbol table.
2459 void
2460 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2462 Output_section* dynsym = this->dynsym_section_;
2463 gold_assert(dynsym != NULL);
2465 off_t off = dynsym->offset();
2467 // Skip the dummy symbol at the start of the section.
2468 off += dynsym->entsize();
2470 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2471 p != input_objects->relobj_end();
2472 ++p)
2474 unsigned int count = (*p)->set_local_dynsym_offset(off);
2475 off += count * dynsym->entsize();
2479 // Create the version sections.
2481 void
2482 Layout::create_version_sections(const Versions* versions,
2483 const Symbol_table* symtab,
2484 unsigned int local_symcount,
2485 const std::vector<Symbol*>& dynamic_symbols,
2486 const Output_section* dynstr)
2488 if (!versions->any_defs() && !versions->any_needs())
2489 return;
2491 switch (parameters->size_and_endianness())
2493 #ifdef HAVE_TARGET_32_LITTLE
2494 case Parameters::TARGET_32_LITTLE:
2495 this->sized_create_version_sections<32, false>(versions, symtab,
2496 local_symcount,
2497 dynamic_symbols, dynstr);
2498 break;
2499 #endif
2500 #ifdef HAVE_TARGET_32_BIG
2501 case Parameters::TARGET_32_BIG:
2502 this->sized_create_version_sections<32, true>(versions, symtab,
2503 local_symcount,
2504 dynamic_symbols, dynstr);
2505 break;
2506 #endif
2507 #ifdef HAVE_TARGET_64_LITTLE
2508 case Parameters::TARGET_64_LITTLE:
2509 this->sized_create_version_sections<64, false>(versions, symtab,
2510 local_symcount,
2511 dynamic_symbols, dynstr);
2512 break;
2513 #endif
2514 #ifdef HAVE_TARGET_64_BIG
2515 case Parameters::TARGET_64_BIG:
2516 this->sized_create_version_sections<64, true>(versions, symtab,
2517 local_symcount,
2518 dynamic_symbols, dynstr);
2519 break;
2520 #endif
2521 default:
2522 gold_unreachable();
2526 // Create the version sections, sized version.
2528 template<int size, bool big_endian>
2529 void
2530 Layout::sized_create_version_sections(
2531 const Versions* versions,
2532 const Symbol_table* symtab,
2533 unsigned int local_symcount,
2534 const std::vector<Symbol*>& dynamic_symbols,
2535 const Output_section* dynstr)
2537 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2538 elfcpp::SHT_GNU_versym,
2539 elfcpp::SHF_ALLOC,
2540 false);
2542 unsigned char* vbuf;
2543 unsigned int vsize;
2544 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2545 local_symcount,
2546 dynamic_symbols,
2547 &vbuf, &vsize);
2549 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2550 "** versions");
2552 vsec->add_output_section_data(vdata);
2553 vsec->set_entsize(2);
2554 vsec->set_link_section(this->dynsym_section_);
2556 Output_data_dynamic* const odyn = this->dynamic_data_;
2557 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2559 if (versions->any_defs())
2561 Output_section* vdsec;
2562 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2563 elfcpp::SHT_GNU_verdef,
2564 elfcpp::SHF_ALLOC,
2565 false);
2567 unsigned char* vdbuf;
2568 unsigned int vdsize;
2569 unsigned int vdentries;
2570 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2571 &vdsize, &vdentries);
2573 Output_section_data* vddata =
2574 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2576 vdsec->add_output_section_data(vddata);
2577 vdsec->set_link_section(dynstr);
2578 vdsec->set_info(vdentries);
2580 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2581 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2584 if (versions->any_needs())
2586 Output_section* vnsec;
2587 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2588 elfcpp::SHT_GNU_verneed,
2589 elfcpp::SHF_ALLOC,
2590 false);
2592 unsigned char* vnbuf;
2593 unsigned int vnsize;
2594 unsigned int vnentries;
2595 versions->need_section_contents<size, big_endian>(&this->dynpool_,
2596 &vnbuf, &vnsize,
2597 &vnentries);
2599 Output_section_data* vndata =
2600 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2602 vnsec->add_output_section_data(vndata);
2603 vnsec->set_link_section(dynstr);
2604 vnsec->set_info(vnentries);
2606 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2607 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2611 // Create the .interp section and PT_INTERP segment.
2613 void
2614 Layout::create_interp(const Target* target)
2616 const char* interp = this->options_.dynamic_linker();
2617 if (interp == NULL)
2619 interp = target->dynamic_linker();
2620 gold_assert(interp != NULL);
2623 size_t len = strlen(interp) + 1;
2625 Output_section_data* odata = new Output_data_const(interp, len, 1);
2627 Output_section* osec = this->choose_output_section(NULL, ".interp",
2628 elfcpp::SHT_PROGBITS,
2629 elfcpp::SHF_ALLOC,
2630 false);
2631 osec->add_output_section_data(odata);
2633 if (!this->script_options_->saw_phdrs_clause())
2635 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2636 elfcpp::PF_R);
2637 oseg->add_output_section(osec, elfcpp::PF_R);
2641 // Finish the .dynamic section and PT_DYNAMIC segment.
2643 void
2644 Layout::finish_dynamic_section(const Input_objects* input_objects,
2645 const Symbol_table* symtab)
2647 if (!this->script_options_->saw_phdrs_clause())
2649 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2650 (elfcpp::PF_R
2651 | elfcpp::PF_W));
2652 oseg->add_output_section(this->dynamic_section_,
2653 elfcpp::PF_R | elfcpp::PF_W);
2656 Output_data_dynamic* const odyn = this->dynamic_data_;
2658 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2659 p != input_objects->dynobj_end();
2660 ++p)
2662 // FIXME: Handle --as-needed.
2663 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2666 if (parameters->options().shared())
2668 const char* soname = this->options_.soname();
2669 if (soname != NULL)
2670 odyn->add_string(elfcpp::DT_SONAME, soname);
2673 // FIXME: Support --init and --fini.
2674 Symbol* sym = symtab->lookup("_init");
2675 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2676 odyn->add_symbol(elfcpp::DT_INIT, sym);
2678 sym = symtab->lookup("_fini");
2679 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2680 odyn->add_symbol(elfcpp::DT_FINI, sym);
2682 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2684 // Add a DT_RPATH entry if needed.
2685 const General_options::Dir_list& rpath(this->options_.rpath());
2686 if (!rpath.empty())
2688 std::string rpath_val;
2689 for (General_options::Dir_list::const_iterator p = rpath.begin();
2690 p != rpath.end();
2691 ++p)
2693 if (rpath_val.empty())
2694 rpath_val = p->name();
2695 else
2697 // Eliminate duplicates.
2698 General_options::Dir_list::const_iterator q;
2699 for (q = rpath.begin(); q != p; ++q)
2700 if (q->name() == p->name())
2701 break;
2702 if (q == p)
2704 rpath_val += ':';
2705 rpath_val += p->name();
2710 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2711 if (parameters->options().enable_new_dtags())
2712 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2715 // Look for text segments that have dynamic relocations.
2716 bool have_textrel = false;
2717 if (!this->script_options_->saw_sections_clause())
2719 for (Segment_list::const_iterator p = this->segment_list_.begin();
2720 p != this->segment_list_.end();
2721 ++p)
2723 if (((*p)->flags() & elfcpp::PF_W) == 0
2724 && (*p)->dynamic_reloc_count() > 0)
2726 have_textrel = true;
2727 break;
2731 else
2733 // We don't know the section -> segment mapping, so we are
2734 // conservative and just look for readonly sections with
2735 // relocations. If those sections wind up in writable segments,
2736 // then we have created an unnecessary DT_TEXTREL entry.
2737 for (Section_list::const_iterator p = this->section_list_.begin();
2738 p != this->section_list_.end();
2739 ++p)
2741 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2742 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2743 && ((*p)->dynamic_reloc_count() > 0))
2745 have_textrel = true;
2746 break;
2751 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2752 // post-link tools can easily modify these flags if desired.
2753 unsigned int flags = 0;
2754 if (have_textrel)
2756 // Add a DT_TEXTREL for compatibility with older loaders.
2757 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2758 flags |= elfcpp::DF_TEXTREL;
2760 if (parameters->options().shared() && this->has_static_tls())
2761 flags |= elfcpp::DF_STATIC_TLS;
2762 if (parameters->options().origin())
2763 flags |= elfcpp::DF_ORIGIN;
2764 odyn->add_constant(elfcpp::DT_FLAGS, flags);
2766 flags = 0;
2767 if (parameters->options().initfirst())
2768 flags |= elfcpp::DF_1_INITFIRST;
2769 if (parameters->options().interpose())
2770 flags |= elfcpp::DF_1_INTERPOSE;
2771 if (parameters->options().loadfltr())
2772 flags |= elfcpp::DF_1_LOADFLTR;
2773 if (parameters->options().nodefaultlib())
2774 flags |= elfcpp::DF_1_NODEFLIB;
2775 if (parameters->options().nodelete())
2776 flags |= elfcpp::DF_1_NODELETE;
2777 if (parameters->options().nodlopen())
2778 flags |= elfcpp::DF_1_NOOPEN;
2779 if (parameters->options().nodump())
2780 flags |= elfcpp::DF_1_NODUMP;
2781 if (!parameters->options().shared())
2782 flags &= ~(elfcpp::DF_1_INITFIRST
2783 | elfcpp::DF_1_NODELETE
2784 | elfcpp::DF_1_NOOPEN);
2785 if (parameters->options().origin())
2786 flags |= elfcpp::DF_1_ORIGIN;
2787 if (flags)
2788 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2791 // The mapping of .gnu.linkonce section names to real section names.
2793 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2794 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2796 MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2797 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Before "d".
2798 MAPPING_INIT("t", ".text"),
2799 MAPPING_INIT("r", ".rodata"),
2800 MAPPING_INIT("d", ".data"),
2801 MAPPING_INIT("b", ".bss"),
2802 MAPPING_INIT("s", ".sdata"),
2803 MAPPING_INIT("sb", ".sbss"),
2804 MAPPING_INIT("s2", ".sdata2"),
2805 MAPPING_INIT("sb2", ".sbss2"),
2806 MAPPING_INIT("wi", ".debug_info"),
2807 MAPPING_INIT("td", ".tdata"),
2808 MAPPING_INIT("tb", ".tbss"),
2809 MAPPING_INIT("lr", ".lrodata"),
2810 MAPPING_INIT("l", ".ldata"),
2811 MAPPING_INIT("lb", ".lbss"),
2813 #undef MAPPING_INIT
2815 const int Layout::linkonce_mapping_count =
2816 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2818 // Return the name of the output section to use for a .gnu.linkonce
2819 // section. This is based on the default ELF linker script of the old
2820 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2821 // to ".text". Set *PLEN to the length of the name. *PLEN is
2822 // initialized to the length of NAME.
2824 const char*
2825 Layout::linkonce_output_name(const char* name, size_t *plen)
2827 const char* s = name + sizeof(".gnu.linkonce") - 1;
2828 if (*s != '.')
2829 return name;
2830 ++s;
2831 const Linkonce_mapping* plm = linkonce_mapping;
2832 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2834 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2836 *plen = plm->tolen;
2837 return plm->to;
2840 return name;
2843 // Choose the output section name to use given an input section name.
2844 // Set *PLEN to the length of the name. *PLEN is initialized to the
2845 // length of NAME.
2847 const char*
2848 Layout::output_section_name(const char* name, size_t* plen)
2850 if (Layout::is_linkonce(name))
2852 // .gnu.linkonce sections are laid out as though they were named
2853 // for the sections are placed into.
2854 return Layout::linkonce_output_name(name, plen);
2857 // gcc 4.3 generates the following sorts of section names when it
2858 // needs a section name specific to a function:
2859 // .text.FN
2860 // .rodata.FN
2861 // .sdata2.FN
2862 // .data.FN
2863 // .data.rel.FN
2864 // .data.rel.local.FN
2865 // .data.rel.ro.FN
2866 // .data.rel.ro.local.FN
2867 // .sdata.FN
2868 // .bss.FN
2869 // .sbss.FN
2870 // .tdata.FN
2871 // .tbss.FN
2873 // The GNU linker maps all of those to the part before the .FN,
2874 // except that .data.rel.local.FN is mapped to .data, and
2875 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2876 // beginning with .data.rel.ro.local are grouped together.
2878 // For an anonymous namespace, the string FN can contain a '.'.
2880 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2881 // GNU linker maps to .rodata.
2883 // The .data.rel.ro sections enable a security feature triggered by
2884 // the -z relro option. Section which need to be relocated at
2885 // program startup time but which may be readonly after startup are
2886 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2887 // segment. The dynamic linker will make that segment writable,
2888 // perform relocations, and then make it read-only. FIXME: We do
2889 // not yet implement this optimization.
2891 // It is hard to handle this in a principled way.
2893 // These are the rules we follow:
2895 // If the section name has no initial '.', or no dot other than an
2896 // initial '.', we use the name unchanged (i.e., "mysection" and
2897 // ".text" are unchanged).
2899 // If the name starts with ".data.rel.ro.local" we use
2900 // ".data.rel.ro.local".
2902 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2904 // Otherwise, we drop the second '.' and everything that comes after
2905 // it (i.e., ".text.XXX" becomes ".text").
2907 const char* s = name;
2908 if (*s != '.')
2909 return name;
2910 ++s;
2911 const char* sdot = strchr(s, '.');
2912 if (sdot == NULL)
2913 return name;
2915 const char* const data_rel_ro_local = ".data.rel.ro.local";
2916 if (strncmp(name, data_rel_ro_local, strlen(data_rel_ro_local)) == 0)
2918 *plen = strlen(data_rel_ro_local);
2919 return data_rel_ro_local;
2922 const char* const data_rel_ro = ".data.rel.ro";
2923 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2925 *plen = strlen(data_rel_ro);
2926 return data_rel_ro;
2929 *plen = sdot - name;
2930 return name;
2933 // Check if a comdat group or .gnu.linkonce section with the given
2934 // NAME is selected for the link. If there is already a section,
2935 // *KEPT_SECTION is set to point to the signature and the function
2936 // returns false. Otherwise, the CANDIDATE signature is recorded for
2937 // this NAME in the layout object, *KEPT_SECTION is set to the
2938 // internal copy and the function return false. In some cases, with
2939 // CANDIDATE->GROUP_ being false, KEPT_SECTION can point back to
2940 // CANDIDATE.
2942 bool
2943 Layout::find_or_add_kept_section(const std::string name,
2944 Kept_section* candidate,
2945 Kept_section** kept_section)
2947 std::pair<Signatures::iterator, bool> ins(
2948 this->signatures_.insert(std::make_pair(name, *candidate)));
2950 if (kept_section)
2951 *kept_section = &ins.first->second;
2952 if (ins.second)
2954 // This is the first time we've seen this signature.
2955 return true;
2958 if (ins.first->second.is_group)
2960 // We've already seen a real section group with this signature.
2961 // If the kept group is from a plugin object, and we're in
2962 // the replacement phase, accept the new one as a replacement.
2963 if (ins.first->second.object == NULL
2964 && parameters->options().plugins()->in_replacement_phase())
2966 ins.first->second = *candidate;
2967 return true;
2969 return false;
2971 else if (candidate->is_group)
2973 // This is a real section group, and we've already seen a
2974 // linkonce section with this signature. Record that we've seen
2975 // a section group, and don't include this section group.
2976 ins.first->second.is_group = true;
2977 return false;
2979 else
2981 // We've already seen a linkonce section and this is a linkonce
2982 // section. These don't block each other--this may be the same
2983 // symbol name with different section types.
2984 *kept_section = candidate;
2985 return true;
2989 // Find the given comdat signature, and return the object and section
2990 // index of the kept group.
2991 Relobj*
2992 Layout::find_kept_object(const std::string& signature,
2993 unsigned int* pshndx) const
2995 Signatures::const_iterator p = this->signatures_.find(signature);
2996 if (p == this->signatures_.end())
2997 return NULL;
2998 if (pshndx != NULL)
2999 *pshndx = p->second.shndx;
3000 return p->second.object;
3003 // Store the allocated sections into the section list.
3005 void
3006 Layout::get_allocated_sections(Section_list* section_list) const
3008 for (Section_list::const_iterator p = this->section_list_.begin();
3009 p != this->section_list_.end();
3010 ++p)
3011 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3012 section_list->push_back(*p);
3015 // Create an output segment.
3017 Output_segment*
3018 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3020 gold_assert(!parameters->options().relocatable());
3021 Output_segment* oseg = new Output_segment(type, flags);
3022 this->segment_list_.push_back(oseg);
3024 if (type == elfcpp::PT_TLS)
3025 this->tls_segment_ = oseg;
3026 else if (type == elfcpp::PT_GNU_RELRO)
3027 this->relro_segment_ = oseg;
3029 return oseg;
3032 // Write out the Output_sections. Most won't have anything to write,
3033 // since most of the data will come from input sections which are
3034 // handled elsewhere. But some Output_sections do have Output_data.
3036 void
3037 Layout::write_output_sections(Output_file* of) const
3039 for (Section_list::const_iterator p = this->section_list_.begin();
3040 p != this->section_list_.end();
3041 ++p)
3043 if (!(*p)->after_input_sections())
3044 (*p)->write(of);
3048 // Write out data not associated with a section or the symbol table.
3050 void
3051 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3053 if (!parameters->options().strip_all())
3055 const Output_section* symtab_section = this->symtab_section_;
3056 for (Section_list::const_iterator p = this->section_list_.begin();
3057 p != this->section_list_.end();
3058 ++p)
3060 if ((*p)->needs_symtab_index())
3062 gold_assert(symtab_section != NULL);
3063 unsigned int index = (*p)->symtab_index();
3064 gold_assert(index > 0 && index != -1U);
3065 off_t off = (symtab_section->offset()
3066 + index * symtab_section->entsize());
3067 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3072 const Output_section* dynsym_section = this->dynsym_section_;
3073 for (Section_list::const_iterator p = this->section_list_.begin();
3074 p != this->section_list_.end();
3075 ++p)
3077 if ((*p)->needs_dynsym_index())
3079 gold_assert(dynsym_section != NULL);
3080 unsigned int index = (*p)->dynsym_index();
3081 gold_assert(index > 0 && index != -1U);
3082 off_t off = (dynsym_section->offset()
3083 + index * dynsym_section->entsize());
3084 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3088 // Write out the Output_data which are not in an Output_section.
3089 for (Data_list::const_iterator p = this->special_output_list_.begin();
3090 p != this->special_output_list_.end();
3091 ++p)
3092 (*p)->write(of);
3095 // Write out the Output_sections which can only be written after the
3096 // input sections are complete.
3098 void
3099 Layout::write_sections_after_input_sections(Output_file* of)
3101 // Determine the final section offsets, and thus the final output
3102 // file size. Note we finalize the .shstrab last, to allow the
3103 // after_input_section sections to modify their section-names before
3104 // writing.
3105 if (this->any_postprocessing_sections_)
3107 off_t off = this->output_file_size_;
3108 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3110 // Now that we've finalized the names, we can finalize the shstrab.
3111 off =
3112 this->set_section_offsets(off,
3113 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3115 if (off > this->output_file_size_)
3117 of->resize(off);
3118 this->output_file_size_ = off;
3122 for (Section_list::const_iterator p = this->section_list_.begin();
3123 p != this->section_list_.end();
3124 ++p)
3126 if ((*p)->after_input_sections())
3127 (*p)->write(of);
3130 this->section_headers_->write(of);
3133 // If the build ID requires computing a checksum, do so here, and
3134 // write it out. We compute a checksum over the entire file because
3135 // that is simplest.
3137 void
3138 Layout::write_build_id(Output_file* of) const
3140 if (this->build_id_note_ == NULL)
3141 return;
3143 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3145 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3146 this->build_id_note_->data_size());
3148 const char* style = parameters->options().build_id();
3149 if (strcmp(style, "sha1") == 0)
3151 sha1_ctx ctx;
3152 sha1_init_ctx(&ctx);
3153 sha1_process_bytes(iv, this->output_file_size_, &ctx);
3154 sha1_finish_ctx(&ctx, ov);
3156 else if (strcmp(style, "md5") == 0)
3158 md5_ctx ctx;
3159 md5_init_ctx(&ctx);
3160 md5_process_bytes(iv, this->output_file_size_, &ctx);
3161 md5_finish_ctx(&ctx, ov);
3163 else
3164 gold_unreachable();
3166 of->write_output_view(this->build_id_note_->offset(),
3167 this->build_id_note_->data_size(),
3168 ov);
3170 of->free_input_view(0, this->output_file_size_, iv);
3173 // Write out a binary file. This is called after the link is
3174 // complete. IN is the temporary output file we used to generate the
3175 // ELF code. We simply walk through the segments, read them from
3176 // their file offset in IN, and write them to their load address in
3177 // the output file. FIXME: with a bit more work, we could support
3178 // S-records and/or Intel hex format here.
3180 void
3181 Layout::write_binary(Output_file* in) const
3183 gold_assert(this->options_.oformat_enum()
3184 == General_options::OBJECT_FORMAT_BINARY);
3186 // Get the size of the binary file.
3187 uint64_t max_load_address = 0;
3188 for (Segment_list::const_iterator p = this->segment_list_.begin();
3189 p != this->segment_list_.end();
3190 ++p)
3192 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3194 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3195 if (max_paddr > max_load_address)
3196 max_load_address = max_paddr;
3200 Output_file out(parameters->options().output_file_name());
3201 out.open(max_load_address);
3203 for (Segment_list::const_iterator p = this->segment_list_.begin();
3204 p != this->segment_list_.end();
3205 ++p)
3207 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3209 const unsigned char* vin = in->get_input_view((*p)->offset(),
3210 (*p)->filesz());
3211 unsigned char* vout = out.get_output_view((*p)->paddr(),
3212 (*p)->filesz());
3213 memcpy(vout, vin, (*p)->filesz());
3214 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3215 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3219 out.close();
3222 // Print the output sections to the map file.
3224 void
3225 Layout::print_to_mapfile(Mapfile* mapfile) const
3227 for (Segment_list::const_iterator p = this->segment_list_.begin();
3228 p != this->segment_list_.end();
3229 ++p)
3230 (*p)->print_sections_to_mapfile(mapfile);
3233 // Print statistical information to stderr. This is used for --stats.
3235 void
3236 Layout::print_stats() const
3238 this->namepool_.print_stats("section name pool");
3239 this->sympool_.print_stats("output symbol name pool");
3240 this->dynpool_.print_stats("dynamic name pool");
3242 for (Section_list::const_iterator p = this->section_list_.begin();
3243 p != this->section_list_.end();
3244 ++p)
3245 (*p)->print_merge_stats();
3248 // Write_sections_task methods.
3250 // We can always run this task.
3252 Task_token*
3253 Write_sections_task::is_runnable()
3255 return NULL;
3258 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3259 // when finished.
3261 void
3262 Write_sections_task::locks(Task_locker* tl)
3264 tl->add(this, this->output_sections_blocker_);
3265 tl->add(this, this->final_blocker_);
3268 // Run the task--write out the data.
3270 void
3271 Write_sections_task::run(Workqueue*)
3273 this->layout_->write_output_sections(this->of_);
3276 // Write_data_task methods.
3278 // We can always run this task.
3280 Task_token*
3281 Write_data_task::is_runnable()
3283 return NULL;
3286 // We need to unlock FINAL_BLOCKER when finished.
3288 void
3289 Write_data_task::locks(Task_locker* tl)
3291 tl->add(this, this->final_blocker_);
3294 // Run the task--write out the data.
3296 void
3297 Write_data_task::run(Workqueue*)
3299 this->layout_->write_data(this->symtab_, this->of_);
3302 // Write_symbols_task methods.
3304 // We can always run this task.
3306 Task_token*
3307 Write_symbols_task::is_runnable()
3309 return NULL;
3312 // We need to unlock FINAL_BLOCKER when finished.
3314 void
3315 Write_symbols_task::locks(Task_locker* tl)
3317 tl->add(this, this->final_blocker_);
3320 // Run the task--write out the symbols.
3322 void
3323 Write_symbols_task::run(Workqueue*)
3325 this->symtab_->write_globals(this->sympool_, this->dynpool_,
3326 this->layout_->symtab_xindex(),
3327 this->layout_->dynsym_xindex(), this->of_);
3330 // Write_after_input_sections_task methods.
3332 // We can only run this task after the input sections have completed.
3334 Task_token*
3335 Write_after_input_sections_task::is_runnable()
3337 if (this->input_sections_blocker_->is_blocked())
3338 return this->input_sections_blocker_;
3339 return NULL;
3342 // We need to unlock FINAL_BLOCKER when finished.
3344 void
3345 Write_after_input_sections_task::locks(Task_locker* tl)
3347 tl->add(this, this->final_blocker_);
3350 // Run the task.
3352 void
3353 Write_after_input_sections_task::run(Workqueue*)
3355 this->layout_->write_sections_after_input_sections(this->of_);
3358 // Close_task_runner methods.
3360 // Run the task--close the file.
3362 void
3363 Close_task_runner::run(Workqueue*, const Task*)
3365 // If we need to compute a checksum for the BUILD if, we do so here.
3366 this->layout_->write_build_id(this->of_);
3368 // If we've been asked to create a binary file, we do so here.
3369 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3370 this->layout_->write_binary(this->of_);
3372 this->of_->close();
3375 // Instantiate the templates we need. We could use the configure
3376 // script to restrict this to only the ones for implemented targets.
3378 #ifdef HAVE_TARGET_32_LITTLE
3379 template
3380 Output_section*
3381 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3382 const char* name,
3383 const elfcpp::Shdr<32, false>& shdr,
3384 unsigned int, unsigned int, off_t*);
3385 #endif
3387 #ifdef HAVE_TARGET_32_BIG
3388 template
3389 Output_section*
3390 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3391 const char* name,
3392 const elfcpp::Shdr<32, true>& shdr,
3393 unsigned int, unsigned int, off_t*);
3394 #endif
3396 #ifdef HAVE_TARGET_64_LITTLE
3397 template
3398 Output_section*
3399 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3400 const char* name,
3401 const elfcpp::Shdr<64, false>& shdr,
3402 unsigned int, unsigned int, off_t*);
3403 #endif
3405 #ifdef HAVE_TARGET_64_BIG
3406 template
3407 Output_section*
3408 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3409 const char* name,
3410 const elfcpp::Shdr<64, true>& shdr,
3411 unsigned int, unsigned int, off_t*);
3412 #endif
3414 #ifdef HAVE_TARGET_32_LITTLE
3415 template
3416 Output_section*
3417 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3418 unsigned int reloc_shndx,
3419 const elfcpp::Shdr<32, false>& shdr,
3420 Output_section* data_section,
3421 Relocatable_relocs* rr);
3422 #endif
3424 #ifdef HAVE_TARGET_32_BIG
3425 template
3426 Output_section*
3427 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3428 unsigned int reloc_shndx,
3429 const elfcpp::Shdr<32, true>& shdr,
3430 Output_section* data_section,
3431 Relocatable_relocs* rr);
3432 #endif
3434 #ifdef HAVE_TARGET_64_LITTLE
3435 template
3436 Output_section*
3437 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3438 unsigned int reloc_shndx,
3439 const elfcpp::Shdr<64, false>& shdr,
3440 Output_section* data_section,
3441 Relocatable_relocs* rr);
3442 #endif
3444 #ifdef HAVE_TARGET_64_BIG
3445 template
3446 Output_section*
3447 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3448 unsigned int reloc_shndx,
3449 const elfcpp::Shdr<64, true>& shdr,
3450 Output_section* data_section,
3451 Relocatable_relocs* rr);
3452 #endif
3454 #ifdef HAVE_TARGET_32_LITTLE
3455 template
3456 void
3457 Layout::layout_group<32, false>(Symbol_table* symtab,
3458 Sized_relobj<32, false>* object,
3459 unsigned int,
3460 const char* group_section_name,
3461 const char* signature,
3462 const elfcpp::Shdr<32, false>& shdr,
3463 elfcpp::Elf_Word flags,
3464 std::vector<unsigned int>* shndxes);
3465 #endif
3467 #ifdef HAVE_TARGET_32_BIG
3468 template
3469 void
3470 Layout::layout_group<32, true>(Symbol_table* symtab,
3471 Sized_relobj<32, true>* object,
3472 unsigned int,
3473 const char* group_section_name,
3474 const char* signature,
3475 const elfcpp::Shdr<32, true>& shdr,
3476 elfcpp::Elf_Word flags,
3477 std::vector<unsigned int>* shndxes);
3478 #endif
3480 #ifdef HAVE_TARGET_64_LITTLE
3481 template
3482 void
3483 Layout::layout_group<64, false>(Symbol_table* symtab,
3484 Sized_relobj<64, false>* object,
3485 unsigned int,
3486 const char* group_section_name,
3487 const char* signature,
3488 const elfcpp::Shdr<64, false>& shdr,
3489 elfcpp::Elf_Word flags,
3490 std::vector<unsigned int>* shndxes);
3491 #endif
3493 #ifdef HAVE_TARGET_64_BIG
3494 template
3495 void
3496 Layout::layout_group<64, true>(Symbol_table* symtab,
3497 Sized_relobj<64, true>* object,
3498 unsigned int,
3499 const char* group_section_name,
3500 const char* signature,
3501 const elfcpp::Shdr<64, true>& shdr,
3502 elfcpp::Elf_Word flags,
3503 std::vector<unsigned int>* shndxes);
3504 #endif
3506 #ifdef HAVE_TARGET_32_LITTLE
3507 template
3508 Output_section*
3509 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3510 const unsigned char* symbols,
3511 off_t symbols_size,
3512 const unsigned char* symbol_names,
3513 off_t symbol_names_size,
3514 unsigned int shndx,
3515 const elfcpp::Shdr<32, false>& shdr,
3516 unsigned int reloc_shndx,
3517 unsigned int reloc_type,
3518 off_t* off);
3519 #endif
3521 #ifdef HAVE_TARGET_32_BIG
3522 template
3523 Output_section*
3524 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3525 const unsigned char* symbols,
3526 off_t symbols_size,
3527 const unsigned char* symbol_names,
3528 off_t symbol_names_size,
3529 unsigned int shndx,
3530 const elfcpp::Shdr<32, true>& shdr,
3531 unsigned int reloc_shndx,
3532 unsigned int reloc_type,
3533 off_t* off);
3534 #endif
3536 #ifdef HAVE_TARGET_64_LITTLE
3537 template
3538 Output_section*
3539 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3540 const unsigned char* symbols,
3541 off_t symbols_size,
3542 const unsigned char* symbol_names,
3543 off_t symbol_names_size,
3544 unsigned int shndx,
3545 const elfcpp::Shdr<64, false>& shdr,
3546 unsigned int reloc_shndx,
3547 unsigned int reloc_type,
3548 off_t* off);
3549 #endif
3551 #ifdef HAVE_TARGET_64_BIG
3552 template
3553 Output_section*
3554 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3555 const unsigned char* symbols,
3556 off_t symbols_size,
3557 const unsigned char* symbol_names,
3558 off_t symbol_names_size,
3559 unsigned int shndx,
3560 const elfcpp::Shdr<64, true>& shdr,
3561 unsigned int reloc_shndx,
3562 unsigned int reloc_type,
3563 off_t* off);
3564 #endif
3566 } // End namespace gold.