1 // output.h -- manage the output file for gold -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "reloc-types.h"
37 class General_options
;
41 class Output_merge_base
;
43 class Relocatable_relocs
;
45 template<int size
, bool big_endian
>
47 template<int size
, bool big_endian
>
50 // This class specifies an input section. It is used as a key type
53 class Input_section_specifier
56 Input_section_specifier(const Relobj
* relobj
, unsigned int shndx
)
57 : relobj_(relobj
), shndx_(shndx
)
60 // Return Relobj of this.
63 { return this->relobj_
; }
65 // Return section index of this.
68 { return this->shndx_
; }
70 // Whether this equals to another specifier ISS.
72 eq(const Input_section_specifier
& iss
) const
73 { return this->relobj_
== iss
.relobj_
&& this->shndx_
== iss
.shndx_
; }
75 // Compute a hash value of this.
79 return (gold::string_hash
<char>(this->relobj_
->name().c_str())
83 // Functors for containers.
87 operator()(const Input_section_specifier
& iss1
,
88 const Input_section_specifier
& iss2
) const
89 { return iss1
.eq(iss2
); }
95 operator()(const Input_section_specifier
& iss
) const
96 { return iss
.hash_value(); }
101 const Relobj
* relobj_
;
106 // An abtract class for data which has to go into the output file.
111 explicit Output_data()
112 : address_(0), data_size_(0), offset_(-1),
113 is_address_valid_(false), is_data_size_valid_(false),
114 is_offset_valid_(false), is_data_size_fixed_(false),
115 dynamic_reloc_count_(0)
121 // Return the address. For allocated sections, this is only valid
122 // after Layout::finalize is finished.
126 gold_assert(this->is_address_valid_
);
127 return this->address_
;
130 // Return the size of the data. For allocated sections, this must
131 // be valid after Layout::finalize calls set_address, but need not
132 // be valid before then.
136 gold_assert(this->is_data_size_valid_
);
137 return this->data_size_
;
140 // Return true if data size is fixed.
142 is_data_size_fixed() const
143 { return this->is_data_size_fixed_
; }
145 // Return the file offset. This is only valid after
146 // Layout::finalize is finished. For some non-allocated sections,
147 // it may not be valid until near the end of the link.
151 gold_assert(this->is_offset_valid_
);
152 return this->offset_
;
155 // Reset the address and file offset. This essentially disables the
156 // sanity testing about duplicate and unknown settings.
158 reset_address_and_file_offset()
160 this->is_address_valid_
= false;
161 this->is_offset_valid_
= false;
162 if (!this->is_data_size_fixed_
)
163 this->is_data_size_valid_
= false;
164 this->do_reset_address_and_file_offset();
167 // Return true if address and file offset already have reset values. In
168 // other words, calling reset_address_and_file_offset will not change them.
170 address_and_file_offset_have_reset_values() const
171 { return this->do_address_and_file_offset_have_reset_values(); }
173 // Return the required alignment.
176 { return this->do_addralign(); }
178 // Return whether this has a load address.
180 has_load_address() const
181 { return this->do_has_load_address(); }
183 // Return the load address.
186 { return this->do_load_address(); }
188 // Return whether this is an Output_section.
191 { return this->do_is_section(); }
193 // Return whether this is an Output_section of the specified type.
195 is_section_type(elfcpp::Elf_Word stt
) const
196 { return this->do_is_section_type(stt
); }
198 // Return whether this is an Output_section with the specified flag
201 is_section_flag_set(elfcpp::Elf_Xword shf
) const
202 { return this->do_is_section_flag_set(shf
); }
204 // Return the output section that this goes in, if there is one.
207 { return this->do_output_section(); }
209 const Output_section
*
210 output_section() const
211 { return this->do_output_section(); }
213 // Return the output section index, if there is an output section.
216 { return this->do_out_shndx(); }
218 // Set the output section index, if this is an output section.
220 set_out_shndx(unsigned int shndx
)
221 { this->do_set_out_shndx(shndx
); }
223 // Set the address and file offset of this data, and finalize the
224 // size of the data. This is called during Layout::finalize for
225 // allocated sections.
227 set_address_and_file_offset(uint64_t addr
, off_t off
)
229 this->set_address(addr
);
230 this->set_file_offset(off
);
231 this->finalize_data_size();
236 set_address(uint64_t addr
)
238 gold_assert(!this->is_address_valid_
);
239 this->address_
= addr
;
240 this->is_address_valid_
= true;
243 // Set the file offset.
245 set_file_offset(off_t off
)
247 gold_assert(!this->is_offset_valid_
);
249 this->is_offset_valid_
= true;
252 // Finalize the data size.
256 if (!this->is_data_size_valid_
)
258 // Tell the child class to set the data size.
259 this->set_final_data_size();
260 gold_assert(this->is_data_size_valid_
);
264 // Set the TLS offset. Called only for SHT_TLS sections.
266 set_tls_offset(uint64_t tls_base
)
267 { this->do_set_tls_offset(tls_base
); }
269 // Return the TLS offset, relative to the base of the TLS segment.
270 // Valid only for SHT_TLS sections.
273 { return this->do_tls_offset(); }
275 // Write the data to the output file. This is called after
276 // Layout::finalize is complete.
278 write(Output_file
* file
)
279 { this->do_write(file
); }
281 // This is called by Layout::finalize to note that the sizes of
282 // allocated sections must now be fixed.
285 { Output_data::allocated_sizes_are_fixed
= true; }
287 // Used to check that layout has been done.
290 { return Output_data::allocated_sizes_are_fixed
; }
292 // Count the number of dynamic relocations applied to this section.
295 { ++this->dynamic_reloc_count_
; }
297 // Return the number of dynamic relocations applied to this section.
299 dynamic_reloc_count() const
300 { return this->dynamic_reloc_count_
; }
302 // Whether the address is valid.
304 is_address_valid() const
305 { return this->is_address_valid_
; }
307 // Whether the file offset is valid.
309 is_offset_valid() const
310 { return this->is_offset_valid_
; }
312 // Whether the data size is valid.
314 is_data_size_valid() const
315 { return this->is_data_size_valid_
; }
317 // Print information to the map file.
319 print_to_mapfile(Mapfile
* mapfile
) const
320 { return this->do_print_to_mapfile(mapfile
); }
323 // Functions that child classes may or in some cases must implement.
325 // Write the data to the output file.
327 do_write(Output_file
*) = 0;
329 // Return the required alignment.
331 do_addralign() const = 0;
333 // Return whether this has a load address.
335 do_has_load_address() const
338 // Return the load address.
340 do_load_address() const
341 { gold_unreachable(); }
343 // Return whether this is an Output_section.
345 do_is_section() const
348 // Return whether this is an Output_section of the specified type.
349 // This only needs to be implement by Output_section.
351 do_is_section_type(elfcpp::Elf_Word
) const
354 // Return whether this is an Output_section with the specific flag
355 // set. This only needs to be implemented by Output_section.
357 do_is_section_flag_set(elfcpp::Elf_Xword
) const
360 // Return the output section, if there is one.
361 virtual Output_section
*
365 virtual const Output_section
*
366 do_output_section() const
369 // Return the output section index, if there is an output section.
372 { gold_unreachable(); }
374 // Set the output section index, if this is an output section.
376 do_set_out_shndx(unsigned int)
377 { gold_unreachable(); }
379 // This is a hook for derived classes to set the data size. This is
380 // called by finalize_data_size, normally called during
381 // Layout::finalize, when the section address is set.
383 set_final_data_size()
384 { gold_unreachable(); }
386 // A hook for resetting the address and file offset.
388 do_reset_address_and_file_offset()
391 // Return true if address and file offset already have reset values. In
392 // other words, calling reset_address_and_file_offset will not change them.
393 // A child class overriding do_reset_address_and_file_offset may need to
394 // also override this.
396 do_address_and_file_offset_have_reset_values() const
397 { return !this->is_address_valid_
&& !this->is_offset_valid_
; }
399 // Set the TLS offset. Called only for SHT_TLS sections.
401 do_set_tls_offset(uint64_t)
402 { gold_unreachable(); }
404 // Return the TLS offset, relative to the base of the TLS segment.
405 // Valid only for SHT_TLS sections.
407 do_tls_offset() const
408 { gold_unreachable(); }
410 // Print to the map file. This only needs to be implemented by
411 // classes which may appear in a PT_LOAD segment.
413 do_print_to_mapfile(Mapfile
*) const
414 { gold_unreachable(); }
416 // Functions that child classes may call.
418 // Reset the address. The Output_section class needs this when an
419 // SHF_ALLOC input section is added to an output section which was
420 // formerly not SHF_ALLOC.
422 mark_address_invalid()
423 { this->is_address_valid_
= false; }
425 // Set the size of the data.
427 set_data_size(off_t data_size
)
429 gold_assert(!this->is_data_size_valid_
430 && !this->is_data_size_fixed_
);
431 this->data_size_
= data_size
;
432 this->is_data_size_valid_
= true;
435 // Fix the data size. Once it is fixed, it cannot be changed
436 // and the data size remains always valid.
440 gold_assert(this->is_data_size_valid_
);
441 this->is_data_size_fixed_
= true;
444 // Get the current data size--this is for the convenience of
445 // sections which build up their size over time.
447 current_data_size_for_child() const
448 { return this->data_size_
; }
450 // Set the current data size--this is for the convenience of
451 // sections which build up their size over time.
453 set_current_data_size_for_child(off_t data_size
)
455 gold_assert(!this->is_data_size_valid_
);
456 this->data_size_
= data_size
;
459 // Return default alignment for the target size.
463 // Return default alignment for a specified size--32 or 64.
465 default_alignment_for_size(int size
);
468 Output_data(const Output_data
&);
469 Output_data
& operator=(const Output_data
&);
471 // This is used for verification, to make sure that we don't try to
472 // change any sizes of allocated sections after we set the section
474 static bool allocated_sizes_are_fixed
;
476 // Memory address in output file.
478 // Size of data in output file.
480 // File offset of contents in output file.
482 // Whether address_ is valid.
483 bool is_address_valid_
;
484 // Whether data_size_ is valid.
485 bool is_data_size_valid_
;
486 // Whether offset_ is valid.
487 bool is_offset_valid_
;
488 // Whether data size is fixed.
489 bool is_data_size_fixed_
;
490 // Count of dynamic relocations applied to this section.
491 unsigned int dynamic_reloc_count_
;
494 // Output the section headers.
496 class Output_section_headers
: public Output_data
499 Output_section_headers(const Layout
*,
500 const Layout::Segment_list
*,
501 const Layout::Section_list
*,
502 const Layout::Section_list
*,
504 const Output_section
*);
507 // Write the data to the file.
509 do_write(Output_file
*);
511 // Return the required alignment.
514 { return Output_data::default_alignment(); }
516 // Write to a map file.
518 do_print_to_mapfile(Mapfile
* mapfile
) const
519 { mapfile
->print_output_data(this, _("** section headers")); }
521 // Set final data size.
523 set_final_data_size()
524 { this->set_data_size(this->do_size()); }
527 // Write the data to the file with the right size and endianness.
528 template<int size
, bool big_endian
>
530 do_sized_write(Output_file
*);
532 // Compute data size.
536 const Layout
* layout_
;
537 const Layout::Segment_list
* segment_list_
;
538 const Layout::Section_list
* section_list_
;
539 const Layout::Section_list
* unattached_section_list_
;
540 const Stringpool
* secnamepool_
;
541 const Output_section
* shstrtab_section_
;
544 // Output the segment headers.
546 class Output_segment_headers
: public Output_data
549 Output_segment_headers(const Layout::Segment_list
& segment_list
);
552 // Write the data to the file.
554 do_write(Output_file
*);
556 // Return the required alignment.
559 { return Output_data::default_alignment(); }
561 // Write to a map file.
563 do_print_to_mapfile(Mapfile
* mapfile
) const
564 { mapfile
->print_output_data(this, _("** segment headers")); }
566 // Set final data size.
568 set_final_data_size()
569 { this->set_data_size(this->do_size()); }
572 // Write the data to the file with the right size and endianness.
573 template<int size
, bool big_endian
>
575 do_sized_write(Output_file
*);
577 // Compute the current size.
581 const Layout::Segment_list
& segment_list_
;
584 // Output the ELF file header.
586 class Output_file_header
: public Output_data
589 Output_file_header(const Target
*,
591 const Output_segment_headers
*,
594 // Add information about the section headers. We lay out the ELF
595 // file header before we create the section headers.
596 void set_section_info(const Output_section_headers
*,
597 const Output_section
* shstrtab
);
600 // Write the data to the file.
602 do_write(Output_file
*);
604 // Return the required alignment.
607 { return Output_data::default_alignment(); }
609 // Write to a map file.
611 do_print_to_mapfile(Mapfile
* mapfile
) const
612 { mapfile
->print_output_data(this, _("** file header")); }
614 // Set final data size.
616 set_final_data_size(void)
617 { this->set_data_size(this->do_size()); }
620 // Write the data to the file with the right size and endianness.
621 template<int size
, bool big_endian
>
623 do_sized_write(Output_file
*);
625 // Return the value to use for the entry address.
627 typename
elfcpp::Elf_types
<size
>::Elf_Addr
630 // Compute the current data size.
634 const Target
* target_
;
635 const Symbol_table
* symtab_
;
636 const Output_segment_headers
* segment_header_
;
637 const Output_section_headers
* section_header_
;
638 const Output_section
* shstrtab_
;
642 // Output sections are mainly comprised of input sections. However,
643 // there are cases where we have data to write out which is not in an
644 // input section. Output_section_data is used in such cases. This is
645 // an abstract base class.
647 class Output_section_data
: public Output_data
650 Output_section_data(off_t data_size
, uint64_t addralign
,
651 bool is_data_size_fixed
)
652 : Output_data(), output_section_(NULL
), addralign_(addralign
)
654 this->set_data_size(data_size
);
655 if (is_data_size_fixed
)
656 this->fix_data_size();
659 Output_section_data(uint64_t addralign
)
660 : Output_data(), output_section_(NULL
), addralign_(addralign
)
663 // Return the output section.
664 const Output_section
*
665 output_section() const
666 { return this->output_section_
; }
668 // Record the output section.
670 set_output_section(Output_section
* os
);
672 // Add an input section, for SHF_MERGE sections. This returns true
673 // if the section was handled.
675 add_input_section(Relobj
* object
, unsigned int shndx
)
676 { return this->do_add_input_section(object
, shndx
); }
678 // Given an input OBJECT, an input section index SHNDX within that
679 // object, and an OFFSET relative to the start of that input
680 // section, return whether or not the corresponding offset within
681 // the output section is known. If this function returns true, it
682 // sets *POUTPUT to the output offset. The value -1 indicates that
683 // this input offset is being discarded.
685 output_offset(const Relobj
* object
, unsigned int shndx
,
686 section_offset_type offset
,
687 section_offset_type
*poutput
) const
688 { return this->do_output_offset(object
, shndx
, offset
, poutput
); }
690 // Return whether this is the merge section for the input section
691 // SHNDX in OBJECT. This should return true when output_offset
692 // would return true for some values of OFFSET.
694 is_merge_section_for(const Relobj
* object
, unsigned int shndx
) const
695 { return this->do_is_merge_section_for(object
, shndx
); }
697 // Write the contents to a buffer. This is used for sections which
698 // require postprocessing, such as compression.
700 write_to_buffer(unsigned char* buffer
)
701 { this->do_write_to_buffer(buffer
); }
703 // Print merge stats to stderr. This should only be called for
704 // SHF_MERGE sections.
706 print_merge_stats(const char* section_name
)
707 { this->do_print_merge_stats(section_name
); }
710 // The child class must implement do_write.
712 // The child class may implement specific adjustments to the output
715 do_adjust_output_section(Output_section
*)
718 // May be implemented by child class. Return true if the section
721 do_add_input_section(Relobj
*, unsigned int)
722 { gold_unreachable(); }
724 // The child class may implement output_offset.
726 do_output_offset(const Relobj
*, unsigned int, section_offset_type
,
727 section_offset_type
*) const
730 // The child class may implement is_merge_section_for.
732 do_is_merge_section_for(const Relobj
*, unsigned int) const
735 // The child class may implement write_to_buffer. Most child
736 // classes can not appear in a compressed section, and they do not
739 do_write_to_buffer(unsigned char*)
740 { gold_unreachable(); }
742 // Print merge statistics.
744 do_print_merge_stats(const char*)
745 { gold_unreachable(); }
747 // Return the required alignment.
750 { return this->addralign_
; }
752 // Return the output section.
755 { return this->output_section_
; }
757 const Output_section
*
758 do_output_section() const
759 { return this->output_section_
; }
761 // Return the section index of the output section.
763 do_out_shndx() const;
765 // Set the alignment.
767 set_addralign(uint64_t addralign
);
770 // The output section for this section.
771 Output_section
* output_section_
;
772 // The required alignment.
776 // Some Output_section_data classes build up their data step by step,
777 // rather than all at once. This class provides an interface for
780 class Output_section_data_build
: public Output_section_data
783 Output_section_data_build(uint64_t addralign
)
784 : Output_section_data(addralign
)
787 // Get the current data size.
789 current_data_size() const
790 { return this->current_data_size_for_child(); }
792 // Set the current data size.
794 set_current_data_size(off_t data_size
)
795 { this->set_current_data_size_for_child(data_size
); }
798 // Set the final data size.
800 set_final_data_size()
801 { this->set_data_size(this->current_data_size_for_child()); }
804 // A simple case of Output_data in which we have constant data to
807 class Output_data_const
: public Output_section_data
810 Output_data_const(const std::string
& data
, uint64_t addralign
)
811 : Output_section_data(data
.size(), addralign
, true), data_(data
)
814 Output_data_const(const char* p
, off_t len
, uint64_t addralign
)
815 : Output_section_data(len
, addralign
, true), data_(p
, len
)
818 Output_data_const(const unsigned char* p
, off_t len
, uint64_t addralign
)
819 : Output_section_data(len
, addralign
, true),
820 data_(reinterpret_cast<const char*>(p
), len
)
824 // Write the data to the output file.
826 do_write(Output_file
*);
828 // Write the data to a buffer.
830 do_write_to_buffer(unsigned char* buffer
)
831 { memcpy(buffer
, this->data_
.data(), this->data_
.size()); }
833 // Write to a map file.
835 do_print_to_mapfile(Mapfile
* mapfile
) const
836 { mapfile
->print_output_data(this, _("** fill")); }
842 // Another version of Output_data with constant data, in which the
843 // buffer is allocated by the caller.
845 class Output_data_const_buffer
: public Output_section_data
848 Output_data_const_buffer(const unsigned char* p
, off_t len
,
849 uint64_t addralign
, const char* map_name
)
850 : Output_section_data(len
, addralign
, true),
851 p_(p
), map_name_(map_name
)
855 // Write the data the output file.
857 do_write(Output_file
*);
859 // Write the data to a buffer.
861 do_write_to_buffer(unsigned char* buffer
)
862 { memcpy(buffer
, this->p_
, this->data_size()); }
864 // Write to a map file.
866 do_print_to_mapfile(Mapfile
* mapfile
) const
867 { mapfile
->print_output_data(this, _(this->map_name_
)); }
870 // The data to output.
871 const unsigned char* p_
;
872 // Name to use in a map file. Maps are a rarely used feature, but
873 // the space usage is minor as aren't very many of these objects.
874 const char* map_name_
;
877 // A place holder for a fixed amount of data written out via some
880 class Output_data_fixed_space
: public Output_section_data
883 Output_data_fixed_space(off_t data_size
, uint64_t addralign
,
884 const char* map_name
)
885 : Output_section_data(data_size
, addralign
, true),
890 // Write out the data--the actual data must be written out
893 do_write(Output_file
*)
896 // Write to a map file.
898 do_print_to_mapfile(Mapfile
* mapfile
) const
899 { mapfile
->print_output_data(this, _(this->map_name_
)); }
902 // Name to use in a map file. Maps are a rarely used feature, but
903 // the space usage is minor as aren't very many of these objects.
904 const char* map_name_
;
907 // A place holder for variable sized data written out via some other
910 class Output_data_space
: public Output_section_data_build
913 explicit Output_data_space(uint64_t addralign
, const char* map_name
)
914 : Output_section_data_build(addralign
),
918 // Set the alignment.
920 set_space_alignment(uint64_t align
)
921 { this->set_addralign(align
); }
924 // Write out the data--the actual data must be written out
927 do_write(Output_file
*)
930 // Write to a map file.
932 do_print_to_mapfile(Mapfile
* mapfile
) const
933 { mapfile
->print_output_data(this, _(this->map_name_
)); }
936 // Name to use in a map file. Maps are a rarely used feature, but
937 // the space usage is minor as aren't very many of these objects.
938 const char* map_name_
;
941 // Fill fixed space with zeroes. This is just like
942 // Output_data_fixed_space, except that the map name is known.
944 class Output_data_zero_fill
: public Output_section_data
947 Output_data_zero_fill(off_t data_size
, uint64_t addralign
)
948 : Output_section_data(data_size
, addralign
, true)
952 // There is no data to write out.
954 do_write(Output_file
*)
957 // Write to a map file.
959 do_print_to_mapfile(Mapfile
* mapfile
) const
960 { mapfile
->print_output_data(this, "** zero fill"); }
963 // A string table which goes into an output section.
965 class Output_data_strtab
: public Output_section_data
968 Output_data_strtab(Stringpool
* strtab
)
969 : Output_section_data(1), strtab_(strtab
)
973 // This is called to set the address and file offset. Here we make
974 // sure that the Stringpool is finalized.
976 set_final_data_size();
978 // Write out the data.
980 do_write(Output_file
*);
982 // Write the data to a buffer.
984 do_write_to_buffer(unsigned char* buffer
)
985 { this->strtab_
->write_to_buffer(buffer
, this->data_size()); }
987 // Write to a map file.
989 do_print_to_mapfile(Mapfile
* mapfile
) const
990 { mapfile
->print_output_data(this, _("** string table")); }
996 // This POD class is used to represent a single reloc in the output
997 // file. This could be a private class within Output_data_reloc, but
998 // the templatization is complex enough that I broke it out into a
999 // separate class. The class is templatized on either elfcpp::SHT_REL
1000 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
1001 // relocation or an ordinary relocation.
1003 // A relocation can be against a global symbol, a local symbol, a
1004 // local section symbol, an output section, or the undefined symbol at
1005 // index 0. We represent the latter by using a NULL global symbol.
1007 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1010 template<bool dynamic
, int size
, bool big_endian
>
1011 class Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>
1014 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
1015 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Addend
;
1017 static const Address invalid_address
= static_cast<Address
>(0) - 1;
1019 // An uninitialized entry. We need this because we want to put
1020 // instances of this class into an STL container.
1022 : local_sym_index_(INVALID_CODE
)
1025 // We have a bunch of different constructors. They come in pairs
1026 // depending on how the address of the relocation is specified. It
1027 // can either be an offset in an Output_data or an offset in an
1030 // A reloc against a global symbol.
1032 Output_reloc(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1033 Address address
, bool is_relative
);
1035 Output_reloc(Symbol
* gsym
, unsigned int type
,
1036 Sized_relobj
<size
, big_endian
>* relobj
,
1037 unsigned int shndx
, Address address
, bool is_relative
);
1039 // A reloc against a local symbol or local section symbol.
1041 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1042 unsigned int local_sym_index
, unsigned int type
,
1043 Output_data
* od
, Address address
, bool is_relative
,
1044 bool is_section_symbol
);
1046 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1047 unsigned int local_sym_index
, unsigned int type
,
1048 unsigned int shndx
, Address address
, bool is_relative
,
1049 bool is_section_symbol
);
1051 // A reloc against the STT_SECTION symbol of an output section.
1053 Output_reloc(Output_section
* os
, unsigned int type
, Output_data
* od
,
1056 Output_reloc(Output_section
* os
, unsigned int type
,
1057 Sized_relobj
<size
, big_endian
>* relobj
,
1058 unsigned int shndx
, Address address
);
1060 // An absolute relocation with no symbol.
1062 Output_reloc(unsigned int type
, Output_data
* od
, Address address
);
1064 Output_reloc(unsigned int type
, Sized_relobj
<size
, big_endian
>* relobj
,
1065 unsigned int shndx
, Address address
);
1067 // A target specific relocation. The target will be called to get
1068 // the symbol index, passing ARG. The type and offset will be set
1069 // as for other relocation types.
1071 Output_reloc(unsigned int type
, void* arg
, Output_data
* od
,
1074 Output_reloc(unsigned int type
, void* arg
,
1075 Sized_relobj
<size
, big_endian
>* relobj
,
1076 unsigned int shndx
, Address address
);
1078 // Return the reloc type.
1081 { return this->type_
; }
1083 // Return whether this is a RELATIVE relocation.
1086 { return this->is_relative_
; }
1088 // Return whether this is against a local section symbol.
1090 is_local_section_symbol() const
1092 return (this->local_sym_index_
!= GSYM_CODE
1093 && this->local_sym_index_
!= SECTION_CODE
1094 && this->local_sym_index_
!= INVALID_CODE
1095 && this->local_sym_index_
!= TARGET_CODE
1096 && this->is_section_symbol_
);
1099 // Return whether this is a target specific relocation.
1101 is_target_specific() const
1102 { return this->local_sym_index_
== TARGET_CODE
; }
1104 // Return the argument to pass to the target for a target specific
1109 gold_assert(this->local_sym_index_
== TARGET_CODE
);
1110 return this->u1_
.arg
;
1113 // For a local section symbol, return the offset of the input
1114 // section within the output section. ADDEND is the addend being
1115 // applied to the input section.
1117 local_section_offset(Addend addend
) const;
1119 // Get the value of the symbol referred to by a Rel relocation when
1120 // we are adding the given ADDEND.
1122 symbol_value(Addend addend
) const;
1124 // Write the reloc entry to an output view.
1126 write(unsigned char* pov
) const;
1128 // Write the offset and info fields to Write_rel.
1129 template<typename Write_rel
>
1130 void write_rel(Write_rel
*) const;
1132 // This is used when sorting dynamic relocs. Return -1 to sort this
1133 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1135 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
1138 // Return whether this reloc should be sorted before the argument
1139 // when sorting dynamic relocs.
1141 sort_before(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>&
1143 { return this->compare(r2
) < 0; }
1146 // Record that we need a dynamic symbol index.
1148 set_needs_dynsym_index();
1150 // Return the symbol index.
1152 get_symbol_index() const;
1154 // Return the output address.
1156 get_address() const;
1158 // Codes for local_sym_index_.
1167 // Invalid uninitialized entry.
1173 // For a local symbol or local section symbol
1174 // (this->local_sym_index_ >= 0), the object. We will never
1175 // generate a relocation against a local symbol in a dynamic
1176 // object; that doesn't make sense. And our callers will always
1177 // be templatized, so we use Sized_relobj here.
1178 Sized_relobj
<size
, big_endian
>* relobj
;
1179 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1180 // symbol. If this is NULL, it indicates a relocation against the
1181 // undefined 0 symbol.
1183 // For a relocation against an output section
1184 // (this->local_sym_index_ == SECTION_CODE), the output section.
1186 // For a target specific relocation, an argument to pass to the
1192 // If this->shndx_ is not INVALID CODE, the object which holds the
1193 // input section being used to specify the reloc address.
1194 Sized_relobj
<size
, big_endian
>* relobj
;
1195 // If this->shndx_ is INVALID_CODE, the output data being used to
1196 // specify the reloc address. This may be NULL if the reloc
1197 // address is absolute.
1200 // The address offset within the input section or the Output_data.
1202 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1203 // relocation against an output section, or TARGET_CODE for a target
1204 // specific relocation, or INVALID_CODE for an uninitialized value.
1205 // Otherwise, for a local symbol (this->is_section_symbol_ is
1206 // false), the local symbol index. For a local section symbol
1207 // (this->is_section_symbol_ is true), the section index in the
1209 unsigned int local_sym_index_
;
1210 // The reloc type--a processor specific code.
1211 unsigned int type_
: 30;
1212 // True if the relocation is a RELATIVE relocation.
1213 bool is_relative_
: 1;
1214 // True if the relocation is against a section symbol.
1215 bool is_section_symbol_
: 1;
1216 // If the reloc address is an input section in an object, the
1217 // section index. This is INVALID_CODE if the reloc address is
1218 // specified in some other way.
1219 unsigned int shndx_
;
1222 // The SHT_RELA version of Output_reloc<>. This is just derived from
1223 // the SHT_REL version of Output_reloc, but it adds an addend.
1225 template<bool dynamic
, int size
, bool big_endian
>
1226 class Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>
1229 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
1230 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Addend
;
1232 // An uninitialized entry.
1237 // A reloc against a global symbol.
1239 Output_reloc(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1240 Address address
, Addend addend
, bool is_relative
)
1241 : rel_(gsym
, type
, od
, address
, is_relative
), addend_(addend
)
1244 Output_reloc(Symbol
* gsym
, unsigned int type
,
1245 Sized_relobj
<size
, big_endian
>* relobj
,
1246 unsigned int shndx
, Address address
, Addend addend
,
1248 : rel_(gsym
, type
, relobj
, shndx
, address
, is_relative
), addend_(addend
)
1251 // A reloc against a local symbol.
1253 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1254 unsigned int local_sym_index
, unsigned int type
,
1255 Output_data
* od
, Address address
,
1256 Addend addend
, bool is_relative
, bool is_section_symbol
)
1257 : rel_(relobj
, local_sym_index
, type
, od
, address
, is_relative
,
1262 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1263 unsigned int local_sym_index
, unsigned int type
,
1264 unsigned int shndx
, Address address
,
1265 Addend addend
, bool is_relative
, bool is_section_symbol
)
1266 : rel_(relobj
, local_sym_index
, type
, shndx
, address
, is_relative
,
1271 // A reloc against the STT_SECTION symbol of an output section.
1273 Output_reloc(Output_section
* os
, unsigned int type
, Output_data
* od
,
1274 Address address
, Addend addend
)
1275 : rel_(os
, type
, od
, address
), addend_(addend
)
1278 Output_reloc(Output_section
* os
, unsigned int type
,
1279 Sized_relobj
<size
, big_endian
>* relobj
,
1280 unsigned int shndx
, Address address
, Addend addend
)
1281 : rel_(os
, type
, relobj
, shndx
, address
), addend_(addend
)
1284 // An absolute relocation with no symbol.
1286 Output_reloc(unsigned int type
, Output_data
* od
, Address address
,
1288 : rel_(type
, od
, address
), addend_(addend
)
1291 Output_reloc(unsigned int type
, Sized_relobj
<size
, big_endian
>* relobj
,
1292 unsigned int shndx
, Address address
, Addend addend
)
1293 : rel_(type
, relobj
, shndx
, address
), addend_(addend
)
1296 // A target specific relocation. The target will be called to get
1297 // the symbol index and the addend, passing ARG. The type and
1298 // offset will be set as for other relocation types.
1300 Output_reloc(unsigned int type
, void* arg
, Output_data
* od
,
1301 Address address
, Addend addend
)
1302 : rel_(type
, arg
, od
, address
), addend_(addend
)
1305 Output_reloc(unsigned int type
, void* arg
,
1306 Sized_relobj
<size
, big_endian
>* relobj
,
1307 unsigned int shndx
, Address address
, Addend addend
)
1308 : rel_(type
, arg
, relobj
, shndx
, address
), addend_(addend
)
1311 // Return whether this is a RELATIVE relocation.
1314 { return this->rel_
.is_relative(); }
1316 // Write the reloc entry to an output view.
1318 write(unsigned char* pov
) const;
1320 // Return whether this reloc should be sorted before the argument
1321 // when sorting dynamic relocs.
1323 sort_before(const Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>&
1326 int i
= this->rel_
.compare(r2
.rel_
);
1332 return this->addend_
< r2
.addend_
;
1337 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
> rel_
;
1342 // Output_data_reloc_generic is a non-template base class for
1343 // Output_data_reloc_base. This gives the generic code a way to hold
1344 // a pointer to a reloc section.
1346 class Output_data_reloc_generic
: public Output_section_data_build
1349 Output_data_reloc_generic(int size
, bool sort_relocs
)
1350 : Output_section_data_build(Output_data::default_alignment_for_size(size
)),
1351 relative_reloc_count_(0), sort_relocs_(sort_relocs
)
1354 // Return the number of relative relocs in this section.
1356 relative_reloc_count() const
1357 { return this->relative_reloc_count_
; }
1359 // Whether we should sort the relocs.
1362 { return this->sort_relocs_
; }
1365 // Note that we've added another relative reloc.
1367 bump_relative_reloc_count()
1368 { ++this->relative_reloc_count_
; }
1371 // The number of relative relocs added to this section. This is to
1372 // support DT_RELCOUNT.
1373 size_t relative_reloc_count_
;
1374 // Whether to sort the relocations when writing them out, to make
1375 // the dynamic linker more efficient.
1379 // Output_data_reloc is used to manage a section containing relocs.
1380 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1381 // indicates whether this is a dynamic relocation or a normal
1382 // relocation. Output_data_reloc_base is a base class.
1383 // Output_data_reloc is the real class, which we specialize based on
1386 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1387 class Output_data_reloc_base
: public Output_data_reloc_generic
1390 typedef Output_reloc
<sh_type
, dynamic
, size
, big_endian
> Output_reloc_type
;
1391 typedef typename
Output_reloc_type::Address Address
;
1392 static const int reloc_size
=
1393 Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
;
1395 // Construct the section.
1396 Output_data_reloc_base(bool sort_relocs
)
1397 : Output_data_reloc_generic(size
, sort_relocs
)
1401 // Write out the data.
1403 do_write(Output_file
*);
1405 // Set the entry size and the link.
1407 do_adjust_output_section(Output_section
*os
);
1409 // Write to a map file.
1411 do_print_to_mapfile(Mapfile
* mapfile
) const
1413 mapfile
->print_output_data(this,
1415 ? _("** dynamic relocs")
1419 // Add a relocation entry.
1421 add(Output_data
*od
, const Output_reloc_type
& reloc
)
1423 this->relocs_
.push_back(reloc
);
1424 this->set_current_data_size(this->relocs_
.size() * reloc_size
);
1425 od
->add_dynamic_reloc();
1426 if (reloc
.is_relative())
1427 this->bump_relative_reloc_count();
1431 typedef std::vector
<Output_reloc_type
> Relocs
;
1433 // The class used to sort the relocations.
1434 struct Sort_relocs_comparison
1437 operator()(const Output_reloc_type
& r1
, const Output_reloc_type
& r2
) const
1438 { return r1
.sort_before(r2
); }
1441 // The relocations in this section.
1445 // The class which callers actually create.
1447 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1448 class Output_data_reloc
;
1450 // The SHT_REL version of Output_data_reloc.
1452 template<bool dynamic
, int size
, bool big_endian
>
1453 class Output_data_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>
1454 : public Output_data_reloc_base
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>
1457 typedef Output_data_reloc_base
<elfcpp::SHT_REL
, dynamic
, size
,
1461 typedef typename
Base::Output_reloc_type Output_reloc_type
;
1462 typedef typename
Output_reloc_type::Address Address
;
1464 Output_data_reloc(bool sr
)
1465 : Output_data_reloc_base
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>(sr
)
1468 // Add a reloc against a global symbol.
1471 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
, Address address
)
1472 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, false)); }
1475 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1476 Sized_relobj
<size
, big_endian
>* relobj
,
1477 unsigned int shndx
, Address address
)
1478 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1481 // These are to simplify the Copy_relocs class.
1484 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
, Address address
,
1487 gold_assert(addend
== 0);
1488 this->add_global(gsym
, type
, od
, address
);
1492 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1493 Sized_relobj
<size
, big_endian
>* relobj
,
1494 unsigned int shndx
, Address address
, Address addend
)
1496 gold_assert(addend
== 0);
1497 this->add_global(gsym
, type
, od
, relobj
, shndx
, address
);
1500 // Add a RELATIVE reloc against a global symbol. The final relocation
1501 // will not reference the symbol.
1504 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1506 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, true)); }
1509 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1510 Sized_relobj
<size
, big_endian
>* relobj
,
1511 unsigned int shndx
, Address address
)
1513 this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1517 // Add a reloc against a local symbol.
1520 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1521 unsigned int local_sym_index
, unsigned int type
,
1522 Output_data
* od
, Address address
)
1524 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
,
1525 address
, false, false));
1529 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1530 unsigned int local_sym_index
, unsigned int type
,
1531 Output_data
* od
, unsigned int shndx
, Address address
)
1533 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1534 address
, false, false));
1537 // Add a RELATIVE reloc against a local symbol.
1540 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1541 unsigned int local_sym_index
, unsigned int type
,
1542 Output_data
* od
, Address address
)
1544 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
,
1545 address
, true, false));
1549 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1550 unsigned int local_sym_index
, unsigned int type
,
1551 Output_data
* od
, unsigned int shndx
, Address address
)
1553 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1554 address
, true, false));
1557 // Add a reloc against a local section symbol. This will be
1558 // converted into a reloc against the STT_SECTION symbol of the
1562 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1563 unsigned int input_shndx
, unsigned int type
,
1564 Output_data
* od
, Address address
)
1566 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, od
,
1567 address
, false, true));
1571 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1572 unsigned int input_shndx
, unsigned int type
,
1573 Output_data
* od
, unsigned int shndx
, Address address
)
1575 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, shndx
,
1576 address
, false, true));
1579 // A reloc against the STT_SECTION symbol of an output section.
1580 // OS is the Output_section that the relocation refers to; OD is
1581 // the Output_data object being relocated.
1584 add_output_section(Output_section
* os
, unsigned int type
,
1585 Output_data
* od
, Address address
)
1586 { this->add(od
, Output_reloc_type(os
, type
, od
, address
)); }
1589 add_output_section(Output_section
* os
, unsigned int type
, Output_data
* od
,
1590 Sized_relobj
<size
, big_endian
>* relobj
,
1591 unsigned int shndx
, Address address
)
1592 { this->add(od
, Output_reloc_type(os
, type
, relobj
, shndx
, address
)); }
1594 // Add an absolute relocation.
1597 add_absolute(unsigned int type
, Output_data
* od
, Address address
)
1598 { this->add(od
, Output_reloc_type(type
, od
, address
)); }
1601 add_absolute(unsigned int type
, Output_data
* od
,
1602 Sized_relobj
<size
, big_endian
>* relobj
,
1603 unsigned int shndx
, Address address
)
1604 { this->add(od
, Output_reloc_type(type
, relobj
, shndx
, address
)); }
1606 // Add a target specific relocation. A target which calls this must
1607 // define the reloc_symbol_index and reloc_addend virtual functions.
1610 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
1612 { this->add(od
, Output_reloc_type(type
, arg
, od
, address
)); }
1615 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
1616 Sized_relobj
<size
, big_endian
>* relobj
,
1617 unsigned int shndx
, Address address
)
1618 { this->add(od
, Output_reloc_type(type
, arg
, relobj
, shndx
, address
)); }
1621 // The SHT_RELA version of Output_data_reloc.
1623 template<bool dynamic
, int size
, bool big_endian
>
1624 class Output_data_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>
1625 : public Output_data_reloc_base
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>
1628 typedef Output_data_reloc_base
<elfcpp::SHT_RELA
, dynamic
, size
,
1632 typedef typename
Base::Output_reloc_type Output_reloc_type
;
1633 typedef typename
Output_reloc_type::Address Address
;
1634 typedef typename
Output_reloc_type::Addend Addend
;
1636 Output_data_reloc(bool sr
)
1637 : Output_data_reloc_base
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>(sr
)
1640 // Add a reloc against a global symbol.
1643 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1644 Address address
, Addend addend
)
1645 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, addend
,
1649 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1650 Sized_relobj
<size
, big_endian
>* relobj
,
1651 unsigned int shndx
, Address address
,
1653 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1656 // Add a RELATIVE reloc against a global symbol. The final output
1657 // relocation will not reference the symbol, but we must keep the symbol
1658 // information long enough to set the addend of the relocation correctly
1659 // when it is written.
1662 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1663 Address address
, Addend addend
)
1664 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, addend
, true)); }
1667 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1668 Sized_relobj
<size
, big_endian
>* relobj
,
1669 unsigned int shndx
, Address address
, Addend addend
)
1670 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1673 // Add a reloc against a local symbol.
1676 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1677 unsigned int local_sym_index
, unsigned int type
,
1678 Output_data
* od
, Address address
, Addend addend
)
1680 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
, address
,
1681 addend
, false, false));
1685 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1686 unsigned int local_sym_index
, unsigned int type
,
1687 Output_data
* od
, unsigned int shndx
, Address address
,
1690 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1691 address
, addend
, false, false));
1694 // Add a RELATIVE reloc against a local symbol.
1697 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1698 unsigned int local_sym_index
, unsigned int type
,
1699 Output_data
* od
, Address address
, Addend addend
)
1701 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
, address
,
1702 addend
, true, false));
1706 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1707 unsigned int local_sym_index
, unsigned int type
,
1708 Output_data
* od
, unsigned int shndx
, Address address
,
1711 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1712 address
, addend
, true, false));
1715 // Add a reloc against a local section symbol. This will be
1716 // converted into a reloc against the STT_SECTION symbol of the
1720 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1721 unsigned int input_shndx
, unsigned int type
,
1722 Output_data
* od
, Address address
, Addend addend
)
1724 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, od
, address
,
1725 addend
, false, true));
1729 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1730 unsigned int input_shndx
, unsigned int type
,
1731 Output_data
* od
, unsigned int shndx
, Address address
,
1734 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, shndx
,
1735 address
, addend
, false, true));
1738 // A reloc against the STT_SECTION symbol of an output section.
1741 add_output_section(Output_section
* os
, unsigned int type
, Output_data
* od
,
1742 Address address
, Addend addend
)
1743 { this->add(os
, Output_reloc_type(os
, type
, od
, address
, addend
)); }
1746 add_output_section(Output_section
* os
, unsigned int type
,
1747 Sized_relobj
<size
, big_endian
>* relobj
,
1748 unsigned int shndx
, Address address
, Addend addend
)
1749 { this->add(os
, Output_reloc_type(os
, type
, relobj
, shndx
, address
,
1752 // Add an absolute relocation.
1755 add_absolute(unsigned int type
, Output_data
* od
, Address address
,
1757 { this->add(od
, Output_reloc_type(type
, od
, address
, addend
)); }
1760 add_absolute(unsigned int type
, Output_data
* od
,
1761 Sized_relobj
<size
, big_endian
>* relobj
,
1762 unsigned int shndx
, Address address
, Addend addend
)
1763 { this->add(od
, Output_reloc_type(type
, relobj
, shndx
, address
, addend
)); }
1765 // Add a target specific relocation. A target which calls this must
1766 // define the reloc_symbol_index and reloc_addend virtual functions.
1769 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
1770 Address address
, Addend addend
)
1771 { this->add(od
, Output_reloc_type(type
, arg
, od
, address
, addend
)); }
1774 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
1775 Sized_relobj
<size
, big_endian
>* relobj
,
1776 unsigned int shndx
, Address address
, Addend addend
)
1778 this->add(od
, Output_reloc_type(type
, arg
, relobj
, shndx
, address
,
1783 // Output_relocatable_relocs represents a relocation section in a
1784 // relocatable link. The actual data is written out in the target
1785 // hook relocate_for_relocatable. This just saves space for it.
1787 template<int sh_type
, int size
, bool big_endian
>
1788 class Output_relocatable_relocs
: public Output_section_data
1791 Output_relocatable_relocs(Relocatable_relocs
* rr
)
1792 : Output_section_data(Output_data::default_alignment_for_size(size
)),
1797 set_final_data_size();
1799 // Write out the data. There is nothing to do here.
1801 do_write(Output_file
*)
1804 // Write to a map file.
1806 do_print_to_mapfile(Mapfile
* mapfile
) const
1807 { mapfile
->print_output_data(this, _("** relocs")); }
1810 // The relocs associated with this input section.
1811 Relocatable_relocs
* rr_
;
1814 // Handle a GROUP section.
1816 template<int size
, bool big_endian
>
1817 class Output_data_group
: public Output_section_data
1820 // The constructor clears *INPUT_SHNDXES.
1821 Output_data_group(Sized_relobj
<size
, big_endian
>* relobj
,
1822 section_size_type entry_count
,
1823 elfcpp::Elf_Word flags
,
1824 std::vector
<unsigned int>* input_shndxes
);
1827 do_write(Output_file
*);
1829 // Write to a map file.
1831 do_print_to_mapfile(Mapfile
* mapfile
) const
1832 { mapfile
->print_output_data(this, _("** group")); }
1834 // Set final data size.
1836 set_final_data_size()
1837 { this->set_data_size((this->input_shndxes_
.size() + 1) * 4); }
1840 // The input object.
1841 Sized_relobj
<size
, big_endian
>* relobj_
;
1842 // The group flag word.
1843 elfcpp::Elf_Word flags_
;
1844 // The section indexes of the input sections in this group.
1845 std::vector
<unsigned int> input_shndxes_
;
1848 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1849 // for one symbol--either a global symbol or a local symbol in an
1850 // object. The target specific code adds entries to the GOT as
1853 template<int size
, bool big_endian
>
1854 class Output_data_got
: public Output_section_data_build
1857 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Valtype
;
1858 typedef Output_data_reloc
<elfcpp::SHT_REL
, true, size
, big_endian
> Rel_dyn
;
1859 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, big_endian
> Rela_dyn
;
1862 : Output_section_data_build(Output_data::default_alignment_for_size(size
)),
1866 // Add an entry for a global symbol to the GOT. Return true if this
1867 // is a new GOT entry, false if the symbol was already in the GOT.
1869 add_global(Symbol
* gsym
, unsigned int got_type
);
1871 // Add an entry for a global symbol to the GOT, and add a dynamic
1872 // relocation of type R_TYPE for the GOT entry.
1874 add_global_with_rel(Symbol
* gsym
, unsigned int got_type
,
1875 Rel_dyn
* rel_dyn
, unsigned int r_type
);
1878 add_global_with_rela(Symbol
* gsym
, unsigned int got_type
,
1879 Rela_dyn
* rela_dyn
, unsigned int r_type
);
1881 // Add a pair of entries for a global symbol to the GOT, and add
1882 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1884 add_global_pair_with_rel(Symbol
* gsym
, unsigned int got_type
,
1885 Rel_dyn
* rel_dyn
, unsigned int r_type_1
,
1886 unsigned int r_type_2
);
1889 add_global_pair_with_rela(Symbol
* gsym
, unsigned int got_type
,
1890 Rela_dyn
* rela_dyn
, unsigned int r_type_1
,
1891 unsigned int r_type_2
);
1893 // Add an entry for a local symbol to the GOT. This returns true if
1894 // this is a new GOT entry, false if the symbol already has a GOT
1897 add_local(Sized_relobj
<size
, big_endian
>* object
, unsigned int sym_index
,
1898 unsigned int got_type
);
1900 // Add an entry for a local symbol to the GOT, and add a dynamic
1901 // relocation of type R_TYPE for the GOT entry.
1903 add_local_with_rel(Sized_relobj
<size
, big_endian
>* object
,
1904 unsigned int sym_index
, unsigned int got_type
,
1905 Rel_dyn
* rel_dyn
, unsigned int r_type
);
1908 add_local_with_rela(Sized_relobj
<size
, big_endian
>* object
,
1909 unsigned int sym_index
, unsigned int got_type
,
1910 Rela_dyn
* rela_dyn
, unsigned int r_type
);
1912 // Add a pair of entries for a local symbol to the GOT, and add
1913 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1915 add_local_pair_with_rel(Sized_relobj
<size
, big_endian
>* object
,
1916 unsigned int sym_index
, unsigned int shndx
,
1917 unsigned int got_type
, Rel_dyn
* rel_dyn
,
1918 unsigned int r_type_1
, unsigned int r_type_2
);
1921 add_local_pair_with_rela(Sized_relobj
<size
, big_endian
>* object
,
1922 unsigned int sym_index
, unsigned int shndx
,
1923 unsigned int got_type
, Rela_dyn
* rela_dyn
,
1924 unsigned int r_type_1
, unsigned int r_type_2
);
1926 // Add a constant to the GOT. This returns the offset of the new
1927 // entry from the start of the GOT.
1929 add_constant(Valtype constant
)
1931 this->entries_
.push_back(Got_entry(constant
));
1932 this->set_got_size();
1933 return this->last_got_offset();
1937 // Write out the GOT table.
1939 do_write(Output_file
*);
1941 // Write to a map file.
1943 do_print_to_mapfile(Mapfile
* mapfile
) const
1944 { mapfile
->print_output_data(this, _("** GOT")); }
1947 // This POD class holds a single GOT entry.
1951 // Create a zero entry.
1953 : local_sym_index_(CONSTANT_CODE
)
1954 { this->u_
.constant
= 0; }
1956 // Create a global symbol entry.
1957 explicit Got_entry(Symbol
* gsym
)
1958 : local_sym_index_(GSYM_CODE
)
1959 { this->u_
.gsym
= gsym
; }
1961 // Create a local symbol entry.
1962 Got_entry(Sized_relobj
<size
, big_endian
>* object
,
1963 unsigned int local_sym_index
)
1964 : local_sym_index_(local_sym_index
)
1966 gold_assert(local_sym_index
!= GSYM_CODE
1967 && local_sym_index
!= CONSTANT_CODE
);
1968 this->u_
.object
= object
;
1971 // Create a constant entry. The constant is a host value--it will
1972 // be swapped, if necessary, when it is written out.
1973 explicit Got_entry(Valtype constant
)
1974 : local_sym_index_(CONSTANT_CODE
)
1975 { this->u_
.constant
= constant
; }
1977 // Write the GOT entry to an output view.
1979 write(unsigned char* pov
) const;
1990 // For a local symbol, the object.
1991 Sized_relobj
<size
, big_endian
>* object
;
1992 // For a global symbol, the symbol.
1994 // For a constant, the constant.
1997 // For a local symbol, the local symbol index. This is GSYM_CODE
1998 // for a global symbol, or CONSTANT_CODE for a constant.
1999 unsigned int local_sym_index_
;
2002 typedef std::vector
<Got_entry
> Got_entries
;
2004 // Return the offset into the GOT of GOT entry I.
2006 got_offset(unsigned int i
) const
2007 { return i
* (size
/ 8); }
2009 // Return the offset into the GOT of the last entry added.
2011 last_got_offset() const
2012 { return this->got_offset(this->entries_
.size() - 1); }
2014 // Set the size of the section.
2017 { this->set_current_data_size(this->got_offset(this->entries_
.size())); }
2019 // The list of GOT entries.
2020 Got_entries entries_
;
2023 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2026 class Output_data_dynamic
: public Output_section_data
2029 Output_data_dynamic(Stringpool
* pool
)
2030 : Output_section_data(Output_data::default_alignment()),
2031 entries_(), pool_(pool
)
2034 // Add a new dynamic entry with a fixed numeric value.
2036 add_constant(elfcpp::DT tag
, unsigned int val
)
2037 { this->add_entry(Dynamic_entry(tag
, val
)); }
2039 // Add a new dynamic entry with the address of output data.
2041 add_section_address(elfcpp::DT tag
, const Output_data
* od
)
2042 { this->add_entry(Dynamic_entry(tag
, od
, false)); }
2044 // Add a new dynamic entry with the address of output data
2045 // plus a constant offset.
2047 add_section_plus_offset(elfcpp::DT tag
, const Output_data
* od
,
2048 unsigned int offset
)
2049 { this->add_entry(Dynamic_entry(tag
, od
, offset
)); }
2051 // Add a new dynamic entry with the size of output data.
2053 add_section_size(elfcpp::DT tag
, const Output_data
* od
)
2054 { this->add_entry(Dynamic_entry(tag
, od
, true)); }
2056 // Add a new dynamic entry with the address of a symbol.
2058 add_symbol(elfcpp::DT tag
, const Symbol
* sym
)
2059 { this->add_entry(Dynamic_entry(tag
, sym
)); }
2061 // Add a new dynamic entry with a string.
2063 add_string(elfcpp::DT tag
, const char* str
)
2064 { this->add_entry(Dynamic_entry(tag
, this->pool_
->add(str
, true, NULL
))); }
2067 add_string(elfcpp::DT tag
, const std::string
& str
)
2068 { this->add_string(tag
, str
.c_str()); }
2071 // Adjust the output section to set the entry size.
2073 do_adjust_output_section(Output_section
*);
2075 // Set the final data size.
2077 set_final_data_size();
2079 // Write out the dynamic entries.
2081 do_write(Output_file
*);
2083 // Write to a map file.
2085 do_print_to_mapfile(Mapfile
* mapfile
) const
2086 { mapfile
->print_output_data(this, _("** dynamic")); }
2089 // This POD class holds a single dynamic entry.
2093 // Create an entry with a fixed numeric value.
2094 Dynamic_entry(elfcpp::DT tag
, unsigned int val
)
2095 : tag_(tag
), offset_(DYNAMIC_NUMBER
)
2096 { this->u_
.val
= val
; }
2098 // Create an entry with the size or address of a section.
2099 Dynamic_entry(elfcpp::DT tag
, const Output_data
* od
, bool section_size
)
2101 offset_(section_size
2102 ? DYNAMIC_SECTION_SIZE
2103 : DYNAMIC_SECTION_ADDRESS
)
2104 { this->u_
.od
= od
; }
2106 // Create an entry with the address of a section plus a constant offset.
2107 Dynamic_entry(elfcpp::DT tag
, const Output_data
* od
, unsigned int offset
)
2110 { this->u_
.od
= od
; }
2112 // Create an entry with the address of a symbol.
2113 Dynamic_entry(elfcpp::DT tag
, const Symbol
* sym
)
2114 : tag_(tag
), offset_(DYNAMIC_SYMBOL
)
2115 { this->u_
.sym
= sym
; }
2117 // Create an entry with a string.
2118 Dynamic_entry(elfcpp::DT tag
, const char* str
)
2119 : tag_(tag
), offset_(DYNAMIC_STRING
)
2120 { this->u_
.str
= str
; }
2122 // Return the tag of this entry.
2125 { return this->tag_
; }
2127 // Write the dynamic entry to an output view.
2128 template<int size
, bool big_endian
>
2130 write(unsigned char* pov
, const Stringpool
*) const;
2133 // Classification is encoded in the OFFSET field.
2137 DYNAMIC_SECTION_ADDRESS
= 0,
2139 DYNAMIC_NUMBER
= -1U,
2141 DYNAMIC_SECTION_SIZE
= -2U,
2143 DYNAMIC_SYMBOL
= -3U,
2145 DYNAMIC_STRING
= -4U
2146 // Any other value indicates a section address plus OFFSET.
2151 // For DYNAMIC_NUMBER.
2153 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2154 const Output_data
* od
;
2155 // For DYNAMIC_SYMBOL.
2157 // For DYNAMIC_STRING.
2162 // The type of entry (Classification) or offset within a section.
2163 unsigned int offset_
;
2166 // Add an entry to the list.
2168 add_entry(const Dynamic_entry
& entry
)
2169 { this->entries_
.push_back(entry
); }
2171 // Sized version of write function.
2172 template<int size
, bool big_endian
>
2174 sized_write(Output_file
* of
);
2176 // The type of the list of entries.
2177 typedef std::vector
<Dynamic_entry
> Dynamic_entries
;
2180 Dynamic_entries entries_
;
2181 // The pool used for strings.
2185 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2186 // which may be required if the object file has more than
2187 // SHN_LORESERVE sections.
2189 class Output_symtab_xindex
: public Output_section_data
2192 Output_symtab_xindex(size_t symcount
)
2193 : Output_section_data(symcount
* 4, 4, true),
2197 // Add an entry: symbol number SYMNDX has section SHNDX.
2199 add(unsigned int symndx
, unsigned int shndx
)
2200 { this->entries_
.push_back(std::make_pair(symndx
, shndx
)); }
2204 do_write(Output_file
*);
2206 // Write to a map file.
2208 do_print_to_mapfile(Mapfile
* mapfile
) const
2209 { mapfile
->print_output_data(this, _("** symtab xindex")); }
2212 template<bool big_endian
>
2214 endian_do_write(unsigned char*);
2216 // It is likely that most symbols will not require entries. Rather
2217 // than keep a vector for all symbols, we keep pairs of symbol index
2218 // and section index.
2219 typedef std::vector
<std::pair
<unsigned int, unsigned int> > Xindex_entries
;
2221 // The entries we need.
2222 Xindex_entries entries_
;
2225 // A relaxed input section.
2226 class Output_relaxed_input_section
: public Output_section_data_build
2229 // We would like to call relobj->section_addralign(shndx) to get the
2230 // alignment but we do not want the constructor to fail. So callers
2231 // are repsonsible for ensuring that.
2232 Output_relaxed_input_section(Relobj
* relobj
, unsigned int shndx
,
2234 : Output_section_data_build(addralign
), relobj_(relobj
), shndx_(shndx
)
2237 // Return the Relobj of this relaxed input section.
2240 { return this->relobj_
; }
2242 // Return the section index of this relaxed input section.
2245 { return this->shndx_
; }
2249 unsigned int shndx_
;
2252 // An output section. We don't expect to have too many output
2253 // sections, so we don't bother to do a template on the size.
2255 class Output_section
: public Output_data
2258 // Create an output section, giving the name, type, and flags.
2259 Output_section(const char* name
, elfcpp::Elf_Word
, elfcpp::Elf_Xword
);
2260 virtual ~Output_section();
2262 // Add a new input section SHNDX, named NAME, with header SHDR, from
2263 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2264 // which applies to this section, or 0 if none, or -1 if more than
2265 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2266 // in a linker script; in that case we need to keep track of input
2267 // sections associated with an output section. Return the offset
2268 // within the output section.
2269 template<int size
, bool big_endian
>
2271 add_input_section(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
2273 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2274 unsigned int reloc_shndx
, bool have_sections_script
);
2276 // Add generated data POSD to this output section.
2278 add_output_section_data(Output_section_data
* posd
);
2280 // Add a relaxed input section PORIS to this output section.
2282 add_relaxed_input_section(Output_relaxed_input_section
* poris
);
2284 // Return the section name.
2287 { return this->name_
; }
2289 // Return the section type.
2292 { return this->type_
; }
2294 // Return the section flags.
2297 { return this->flags_
; }
2299 // Update the output section flags based on input section flags.
2301 update_flags_for_input_section(elfcpp::Elf_Xword flags
);
2303 // Return the entsize field.
2306 { return this->entsize_
; }
2308 // Set the entsize field.
2310 set_entsize(uint64_t v
);
2312 // Set the load address.
2314 set_load_address(uint64_t load_address
)
2316 this->load_address_
= load_address
;
2317 this->has_load_address_
= true;
2320 // Set the link field to the output section index of a section.
2322 set_link_section(const Output_data
* od
)
2324 gold_assert(this->link_
== 0
2325 && !this->should_link_to_symtab_
2326 && !this->should_link_to_dynsym_
);
2327 this->link_section_
= od
;
2330 // Set the link field to a constant.
2332 set_link(unsigned int v
)
2334 gold_assert(this->link_section_
== NULL
2335 && !this->should_link_to_symtab_
2336 && !this->should_link_to_dynsym_
);
2340 // Record that this section should link to the normal symbol table.
2342 set_should_link_to_symtab()
2344 gold_assert(this->link_section_
== NULL
2346 && !this->should_link_to_dynsym_
);
2347 this->should_link_to_symtab_
= true;
2350 // Record that this section should link to the dynamic symbol table.
2352 set_should_link_to_dynsym()
2354 gold_assert(this->link_section_
== NULL
2356 && !this->should_link_to_symtab_
);
2357 this->should_link_to_dynsym_
= true;
2360 // Return the info field.
2364 gold_assert(this->info_section_
== NULL
2365 && this->info_symndx_
== NULL
);
2369 // Set the info field to the output section index of a section.
2371 set_info_section(const Output_section
* os
)
2373 gold_assert((this->info_section_
== NULL
2374 || (this->info_section_
== os
2375 && this->info_uses_section_index_
))
2376 && this->info_symndx_
== NULL
2377 && this->info_
== 0);
2378 this->info_section_
= os
;
2379 this->info_uses_section_index_
= true;
2382 // Set the info field to the symbol table index of a symbol.
2384 set_info_symndx(const Symbol
* sym
)
2386 gold_assert(this->info_section_
== NULL
2387 && (this->info_symndx_
== NULL
2388 || this->info_symndx_
== sym
)
2389 && this->info_
== 0);
2390 this->info_symndx_
= sym
;
2393 // Set the info field to the symbol table index of a section symbol.
2395 set_info_section_symndx(const Output_section
* os
)
2397 gold_assert((this->info_section_
== NULL
2398 || (this->info_section_
== os
2399 && !this->info_uses_section_index_
))
2400 && this->info_symndx_
== NULL
2401 && this->info_
== 0);
2402 this->info_section_
= os
;
2403 this->info_uses_section_index_
= false;
2406 // Set the info field to a constant.
2408 set_info(unsigned int v
)
2410 gold_assert(this->info_section_
== NULL
2411 && this->info_symndx_
== NULL
2412 && (this->info_
== 0
2413 || this->info_
== v
));
2417 // Set the addralign field.
2419 set_addralign(uint64_t v
)
2420 { this->addralign_
= v
; }
2422 // Whether the output section index has been set.
2424 has_out_shndx() const
2425 { return this->out_shndx_
!= -1U; }
2427 // Indicate that we need a symtab index.
2429 set_needs_symtab_index()
2430 { this->needs_symtab_index_
= true; }
2432 // Return whether we need a symtab index.
2434 needs_symtab_index() const
2435 { return this->needs_symtab_index_
; }
2437 // Get the symtab index.
2439 symtab_index() const
2441 gold_assert(this->symtab_index_
!= 0);
2442 return this->symtab_index_
;
2445 // Set the symtab index.
2447 set_symtab_index(unsigned int index
)
2449 gold_assert(index
!= 0);
2450 this->symtab_index_
= index
;
2453 // Indicate that we need a dynsym index.
2455 set_needs_dynsym_index()
2456 { this->needs_dynsym_index_
= true; }
2458 // Return whether we need a dynsym index.
2460 needs_dynsym_index() const
2461 { return this->needs_dynsym_index_
; }
2463 // Get the dynsym index.
2465 dynsym_index() const
2467 gold_assert(this->dynsym_index_
!= 0);
2468 return this->dynsym_index_
;
2471 // Set the dynsym index.
2473 set_dynsym_index(unsigned int index
)
2475 gold_assert(index
!= 0);
2476 this->dynsym_index_
= index
;
2479 // Return whether the input sections sections attachd to this output
2480 // section may require sorting. This is used to handle constructor
2481 // priorities compatibly with GNU ld.
2483 may_sort_attached_input_sections() const
2484 { return this->may_sort_attached_input_sections_
; }
2486 // Record that the input sections attached to this output section
2487 // may require sorting.
2489 set_may_sort_attached_input_sections()
2490 { this->may_sort_attached_input_sections_
= true; }
2492 // Return whether the input sections attached to this output section
2493 // require sorting. This is used to handle constructor priorities
2494 // compatibly with GNU ld.
2496 must_sort_attached_input_sections() const
2497 { return this->must_sort_attached_input_sections_
; }
2499 // Record that the input sections attached to this output section
2502 set_must_sort_attached_input_sections()
2503 { this->must_sort_attached_input_sections_
= true; }
2505 // Return whether this section holds relro data--data which has
2506 // dynamic relocations but which may be marked read-only after the
2507 // dynamic relocations have been completed.
2510 { return this->is_relro_
; }
2512 // Record that this section holds relro data.
2515 { this->is_relro_
= true; }
2517 // Record that this section does not hold relro data.
2520 { this->is_relro_
= false; }
2522 // True if this section holds relro local data--relro data for which
2523 // the dynamic relocations are all RELATIVE relocations.
2525 is_relro_local() const
2526 { return this->is_relro_local_
; }
2528 // Record that this section holds relro local data.
2530 set_is_relro_local()
2531 { this->is_relro_local_
= true; }
2533 // True if this must be the last relro section.
2535 is_last_relro() const
2536 { return this->is_last_relro_
; }
2538 // Record that this must be the last relro section.
2542 gold_assert(this->is_relro_
);
2543 this->is_last_relro_
= true;
2546 // True if this must be the first section following the relro sections.
2548 is_first_non_relro() const
2550 gold_assert(!this->is_relro_
);
2551 return this->is_first_non_relro_
;
2554 // Record that this must be the first non-relro section.
2556 set_is_first_non_relro()
2558 gold_assert(!this->is_relro_
);
2559 this->is_first_non_relro_
= true;
2562 // True if this is a small section: a section which holds small
2565 is_small_section() const
2566 { return this->is_small_section_
; }
2568 // Record that this is a small section.
2570 set_is_small_section()
2571 { this->is_small_section_
= true; }
2573 // True if this is a large section: a section which holds large
2576 is_large_section() const
2577 { return this->is_large_section_
; }
2579 // Record that this is a large section.
2581 set_is_large_section()
2582 { this->is_large_section_
= true; }
2584 // True if this is a large data (not BSS) section.
2586 is_large_data_section()
2587 { return this->is_large_section_
&& this->type_
!= elfcpp::SHT_NOBITS
; }
2589 // True if this is the .interp section which goes into the PT_INTERP
2593 { return this->is_interp_
; }
2595 // Record that this is the interp section.
2598 { this->is_interp_
= true; }
2600 // True if this is a section used by the dynamic linker.
2602 is_dynamic_linker_section() const
2603 { return this->is_dynamic_linker_section_
; }
2605 // Record that this is a section used by the dynamic linker.
2607 set_is_dynamic_linker_section()
2608 { this->is_dynamic_linker_section_
= true; }
2610 // Return whether this section should be written after all the input
2611 // sections are complete.
2613 after_input_sections() const
2614 { return this->after_input_sections_
; }
2616 // Record that this section should be written after all the input
2617 // sections are complete.
2619 set_after_input_sections()
2620 { this->after_input_sections_
= true; }
2622 // Return whether this section requires postprocessing after all
2623 // relocations have been applied.
2625 requires_postprocessing() const
2626 { return this->requires_postprocessing_
; }
2628 // If a section requires postprocessing, return the buffer to use.
2630 postprocessing_buffer() const
2632 gold_assert(this->postprocessing_buffer_
!= NULL
);
2633 return this->postprocessing_buffer_
;
2636 // If a section requires postprocessing, create the buffer to use.
2638 create_postprocessing_buffer();
2640 // If a section requires postprocessing, this is the size of the
2641 // buffer to which relocations should be applied.
2643 postprocessing_buffer_size() const
2644 { return this->current_data_size_for_child(); }
2646 // Modify the section name. This is only permitted for an
2647 // unallocated section, and only before the size has been finalized.
2648 // Otherwise the name will not get into Layout::namepool_.
2650 set_name(const char* newname
)
2652 gold_assert((this->flags_
& elfcpp::SHF_ALLOC
) == 0);
2653 gold_assert(!this->is_data_size_valid());
2654 this->name_
= newname
;
2657 // Return whether the offset OFFSET in the input section SHNDX in
2658 // object OBJECT is being included in the link.
2660 is_input_address_mapped(const Relobj
* object
, unsigned int shndx
,
2661 off_t offset
) const;
2663 // Return the offset within the output section of OFFSET relative to
2664 // the start of input section SHNDX in object OBJECT.
2666 output_offset(const Relobj
* object
, unsigned int shndx
,
2667 section_offset_type offset
) const;
2669 // Return the output virtual address of OFFSET relative to the start
2670 // of input section SHNDX in object OBJECT.
2672 output_address(const Relobj
* object
, unsigned int shndx
,
2673 off_t offset
) const;
2675 // Look for the merged section for input section SHNDX in object
2676 // OBJECT. If found, return true, and set *ADDR to the address of
2677 // the start of the merged section. This is not necessary the
2678 // output offset corresponding to input offset 0 in the section,
2679 // since the section may be mapped arbitrarily.
2681 find_starting_output_address(const Relobj
* object
, unsigned int shndx
,
2682 uint64_t* addr
) const;
2684 // Record that this output section was found in the SECTIONS clause
2685 // of a linker script.
2687 set_found_in_sections_clause()
2688 { this->found_in_sections_clause_
= true; }
2690 // Return whether this output section was found in the SECTIONS
2691 // clause of a linker script.
2693 found_in_sections_clause() const
2694 { return this->found_in_sections_clause_
; }
2696 // Write the section header into *OPHDR.
2697 template<int size
, bool big_endian
>
2699 write_header(const Layout
*, const Stringpool
*,
2700 elfcpp::Shdr_write
<size
, big_endian
>*) const;
2702 // The next few calls are for linker script support.
2704 // We need to export the input sections to linker scripts. Previously
2705 // we export a pair of Relobj pointer and section index. We now need to
2706 // handle relaxed input sections as well. So we use this class.
2707 class Simple_input_section
2710 static const unsigned int invalid_shndx
= static_cast<unsigned int>(-1);
2713 Simple_input_section(Relobj
*relobj
, unsigned int shndx
)
2716 gold_assert(shndx
!= invalid_shndx
);
2717 this->u_
.relobj
= relobj
;
2720 Simple_input_section(Output_relaxed_input_section
* section
)
2721 : shndx_(invalid_shndx
)
2722 { this->u_
.relaxed_input_section
= section
; }
2724 // Whether this is a relaxed section.
2726 is_relaxed_input_section() const
2727 { return this->shndx_
== invalid_shndx
; }
2729 // Return object of an input section.
2733 return ((this->shndx_
!= invalid_shndx
)
2735 : this->u_
.relaxed_input_section
->relobj());
2738 // Return index of an input section.
2742 return ((this->shndx_
!= invalid_shndx
)
2744 : this->u_
.relaxed_input_section
->shndx());
2747 // Return the Output_relaxed_input_section object of a relaxed section.
2748 Output_relaxed_input_section
*
2749 relaxed_input_section() const
2751 gold_assert(this->shndx_
== invalid_shndx
);
2752 return this->u_
.relaxed_input_section
;
2756 // Pointer to either an Relobj or an Output_relaxed_input_section.
2760 Output_relaxed_input_section
* relaxed_input_section
;
2762 // Section index for an non-relaxed section or invalid_shndx for
2763 // a relaxed section.
2764 unsigned int shndx_
;
2767 // Store the list of input sections for this Output_section into the
2768 // list passed in. This removes the input sections, leaving only
2769 // any Output_section_data elements. This returns the size of those
2770 // Output_section_data elements. ADDRESS is the address of this
2771 // output section. FILL is the fill value to use, in case there are
2772 // any spaces between the remaining Output_section_data elements.
2774 get_input_sections(uint64_t address
, const std::string
& fill
,
2775 std::list
<Simple_input_section
>*);
2777 // Add an input section from a script.
2779 add_input_section_for_script(const Simple_input_section
& input_section
,
2780 off_t data_size
, uint64_t addralign
);
2782 // Set the current size of the output section.
2784 set_current_data_size(off_t size
)
2785 { this->set_current_data_size_for_child(size
); }
2787 // Get the current size of the output section.
2789 current_data_size() const
2790 { return this->current_data_size_for_child(); }
2792 // End of linker script support.
2794 // Save states before doing section layout.
2795 // This is used for relaxation.
2799 // Restore states prior to section layout.
2803 // Convert existing input sections to relaxed input sections.
2805 convert_input_sections_to_relaxed_sections(
2806 const std::vector
<Output_relaxed_input_section
*>& sections
);
2808 // Find a relaxed input section to an input section in OBJECT
2809 // with index SHNDX. Return NULL if none is found.
2810 const Output_relaxed_input_section
*
2811 find_relaxed_input_section(const Relobj
* object
, unsigned int shndx
) const;
2813 // Print merge statistics to stderr.
2815 print_merge_stats();
2818 // Return the output section--i.e., the object itself.
2823 const Output_section
*
2824 do_output_section() const
2827 // Return the section index in the output file.
2829 do_out_shndx() const
2831 gold_assert(this->out_shndx_
!= -1U);
2832 return this->out_shndx_
;
2835 // Set the output section index.
2837 do_set_out_shndx(unsigned int shndx
)
2839 gold_assert(this->out_shndx_
== -1U || this->out_shndx_
== shndx
);
2840 this->out_shndx_
= shndx
;
2843 // Set the final data size of the Output_section. For a typical
2844 // Output_section, there is nothing to do, but if there are any
2845 // Output_section_data objects we need to set their final addresses
2848 set_final_data_size();
2850 // Reset the address and file offset.
2852 do_reset_address_and_file_offset();
2854 // Return true if address and file offset already have reset values. In
2855 // other words, calling reset_address_and_file_offset will not change them.
2857 do_address_and_file_offset_have_reset_values() const;
2859 // Write the data to the file. For a typical Output_section, this
2860 // does nothing: the data is written out by calling Object::Relocate
2861 // on each input object. But if there are any Output_section_data
2862 // objects we do need to write them out here.
2864 do_write(Output_file
*);
2866 // Return the address alignment--function required by parent class.
2868 do_addralign() const
2869 { return this->addralign_
; }
2871 // Return whether there is a load address.
2873 do_has_load_address() const
2874 { return this->has_load_address_
; }
2876 // Return the load address.
2878 do_load_address() const
2880 gold_assert(this->has_load_address_
);
2881 return this->load_address_
;
2884 // Return whether this is an Output_section.
2886 do_is_section() const
2889 // Return whether this is a section of the specified type.
2891 do_is_section_type(elfcpp::Elf_Word type
) const
2892 { return this->type_
== type
; }
2894 // Return whether the specified section flag is set.
2896 do_is_section_flag_set(elfcpp::Elf_Xword flag
) const
2897 { return (this->flags_
& flag
) != 0; }
2899 // Set the TLS offset. Called only for SHT_TLS sections.
2901 do_set_tls_offset(uint64_t tls_base
);
2903 // Return the TLS offset, relative to the base of the TLS segment.
2904 // Valid only for SHT_TLS sections.
2906 do_tls_offset() const
2907 { return this->tls_offset_
; }
2909 // This may be implemented by a child class.
2911 do_finalize_name(Layout
*)
2914 // Print to the map file.
2916 do_print_to_mapfile(Mapfile
*) const;
2918 // Record that this section requires postprocessing after all
2919 // relocations have been applied. This is called by a child class.
2921 set_requires_postprocessing()
2923 this->requires_postprocessing_
= true;
2924 this->after_input_sections_
= true;
2927 // Write all the data of an Output_section into the postprocessing
2930 write_to_postprocessing_buffer();
2932 // In some cases we need to keep a list of the input sections
2933 // associated with this output section. We only need the list if we
2934 // might have to change the offsets of the input section within the
2935 // output section after we add the input section. The ordinary
2936 // input sections will be written out when we process the object
2937 // file, and as such we don't need to track them here. We do need
2938 // to track Output_section_data objects here. We store instances of
2939 // this structure in a std::vector, so it must be a POD. There can
2940 // be many instances of this structure, so we use a union to save
2946 : shndx_(0), p2align_(0)
2948 this->u1_
.data_size
= 0;
2949 this->u2_
.object
= NULL
;
2952 // For an ordinary input section.
2953 Input_section(Relobj
* object
, unsigned int shndx
, off_t data_size
,
2956 p2align_(ffsll(static_cast<long long>(addralign
)))
2958 gold_assert(shndx
!= OUTPUT_SECTION_CODE
2959 && shndx
!= MERGE_DATA_SECTION_CODE
2960 && shndx
!= MERGE_STRING_SECTION_CODE
2961 && shndx
!= RELAXED_INPUT_SECTION_CODE
);
2962 this->u1_
.data_size
= data_size
;
2963 this->u2_
.object
= object
;
2966 // For a non-merge output section.
2967 Input_section(Output_section_data
* posd
)
2968 : shndx_(OUTPUT_SECTION_CODE
), p2align_(0)
2970 this->u1_
.data_size
= 0;
2971 this->u2_
.posd
= posd
;
2974 // For a merge section.
2975 Input_section(Output_section_data
* posd
, bool is_string
, uint64_t entsize
)
2977 ? MERGE_STRING_SECTION_CODE
2978 : MERGE_DATA_SECTION_CODE
),
2981 this->u1_
.entsize
= entsize
;
2982 this->u2_
.posd
= posd
;
2985 // For a relaxed input section.
2986 Input_section(Output_relaxed_input_section
*psection
)
2987 : shndx_(RELAXED_INPUT_SECTION_CODE
), p2align_(0)
2989 this->u1_
.data_size
= 0;
2990 this->u2_
.poris
= psection
;
2993 // The required alignment.
2997 if (!this->is_input_section())
2998 return this->u2_
.posd
->addralign();
2999 return (this->p2align_
== 0
3001 : static_cast<uint64_t>(1) << (this->p2align_
- 1));
3004 // Return the required size.
3008 // Whether this is an input section.
3010 is_input_section() const
3012 return (this->shndx_
!= OUTPUT_SECTION_CODE
3013 && this->shndx_
!= MERGE_DATA_SECTION_CODE
3014 && this->shndx_
!= MERGE_STRING_SECTION_CODE
3015 && this->shndx_
!= RELAXED_INPUT_SECTION_CODE
);
3018 // Return whether this is a merge section which matches the
3021 is_merge_section(bool is_string
, uint64_t entsize
,
3022 uint64_t addralign
) const
3024 return (this->shndx_
== (is_string
3025 ? MERGE_STRING_SECTION_CODE
3026 : MERGE_DATA_SECTION_CODE
)
3027 && this->u1_
.entsize
== entsize
3028 && this->addralign() == addralign
);
3031 // Return whether this is a relaxed input section.
3033 is_relaxed_input_section() const
3034 { return this->shndx_
== RELAXED_INPUT_SECTION_CODE
; }
3036 // Return whether this is a generic Output_section_data.
3038 is_output_section_data() const
3040 return this->shndx_
== OUTPUT_SECTION_CODE
;
3043 // Return the object for an input section.
3047 if (this->is_input_section())
3048 return this->u2_
.object
;
3049 else if (this->is_relaxed_input_section())
3050 return this->u2_
.poris
->relobj();
3055 // Return the input section index for an input section.
3059 if (this->is_input_section())
3060 return this->shndx_
;
3061 else if (this->is_relaxed_input_section())
3062 return this->u2_
.poris
->shndx();
3067 // For non-input-sections, return the associated Output_section_data
3069 Output_section_data
*
3070 output_section_data() const
3072 gold_assert(!this->is_input_section());
3073 return this->u2_
.posd
;
3076 // Return the Output_relaxed_input_section object.
3077 Output_relaxed_input_section
*
3078 relaxed_input_section() const
3080 gold_assert(this->is_relaxed_input_section());
3081 return this->u2_
.poris
;
3084 // Set the output section.
3086 set_output_section(Output_section
* os
)
3088 gold_assert(!this->is_input_section());
3089 Output_section_data
*posd
=
3090 this->is_relaxed_input_section() ? this->u2_
.poris
: this->u2_
.posd
;
3091 posd
->set_output_section(os
);
3094 // Set the address and file offset. This is called during
3095 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3096 // the enclosing section.
3098 set_address_and_file_offset(uint64_t address
, off_t file_offset
,
3099 off_t section_file_offset
);
3101 // Reset the address and file offset.
3103 reset_address_and_file_offset();
3105 // Finalize the data size.
3107 finalize_data_size();
3109 // Add an input section, for SHF_MERGE sections.
3111 add_input_section(Relobj
* object
, unsigned int shndx
)
3113 gold_assert(this->shndx_
== MERGE_DATA_SECTION_CODE
3114 || this->shndx_
== MERGE_STRING_SECTION_CODE
);
3115 return this->u2_
.posd
->add_input_section(object
, shndx
);
3118 // Given an input OBJECT, an input section index SHNDX within that
3119 // object, and an OFFSET relative to the start of that input
3120 // section, return whether or not the output offset is known. If
3121 // this function returns true, it sets *POUTPUT to the offset in
3122 // the output section, relative to the start of the input section
3123 // in the output section. *POUTPUT may be different from OFFSET
3124 // for a merged section.
3126 output_offset(const Relobj
* object
, unsigned int shndx
,
3127 section_offset_type offset
,
3128 section_offset_type
*poutput
) const;
3130 // Return whether this is the merge section for the input section
3133 is_merge_section_for(const Relobj
* object
, unsigned int shndx
) const;
3135 // Write out the data. This does nothing for an input section.
3137 write(Output_file
*);
3139 // Write the data to a buffer. This does nothing for an input
3142 write_to_buffer(unsigned char*);
3144 // Print to a map file.
3146 print_to_mapfile(Mapfile
*) const;
3148 // Print statistics about merge sections to stderr.
3150 print_merge_stats(const char* section_name
)
3152 if (this->shndx_
== MERGE_DATA_SECTION_CODE
3153 || this->shndx_
== MERGE_STRING_SECTION_CODE
)
3154 this->u2_
.posd
->print_merge_stats(section_name
);
3158 // Code values which appear in shndx_. If the value is not one of
3159 // these codes, it is the input section index in the object file.
3162 // An Output_section_data.
3163 OUTPUT_SECTION_CODE
= -1U,
3164 // An Output_section_data for an SHF_MERGE section with
3165 // SHF_STRINGS not set.
3166 MERGE_DATA_SECTION_CODE
= -2U,
3167 // An Output_section_data for an SHF_MERGE section with
3169 MERGE_STRING_SECTION_CODE
= -3U,
3170 // An Output_section_data for a relaxed input section.
3171 RELAXED_INPUT_SECTION_CODE
= -4U
3174 // For an ordinary input section, this is the section index in the
3175 // input file. For an Output_section_data, this is
3176 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3177 // MERGE_STRING_SECTION_CODE.
3178 unsigned int shndx_
;
3179 // The required alignment, stored as a power of 2.
3180 unsigned int p2align_
;
3183 // For an ordinary input section, the section size.
3185 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3186 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3192 // For an ordinary input section, the object which holds the
3195 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3196 // MERGE_STRING_SECTION_CODE, the data.
3197 Output_section_data
* posd
;
3198 // For RELAXED_INPUT_SECTION_CODE, the data.
3199 Output_relaxed_input_section
* poris
;
3203 typedef std::vector
<Input_section
> Input_section_list
;
3205 // Allow a child class to access the input sections.
3206 const Input_section_list
&
3207 input_sections() const
3208 { return this->input_sections_
; }
3211 // We only save enough information to undo the effects of section layout.
3212 class Checkpoint_output_section
3215 Checkpoint_output_section(uint64_t addralign
, elfcpp::Elf_Xword flags
,
3216 const Input_section_list
& input_sections
,
3217 off_t first_input_offset
,
3218 bool attached_input_sections_are_sorted
)
3219 : addralign_(addralign
), flags_(flags
),
3220 input_sections_(input_sections
),
3221 input_sections_size_(input_sections_
.size()),
3222 input_sections_copy_(), first_input_offset_(first_input_offset
),
3223 attached_input_sections_are_sorted_(attached_input_sections_are_sorted
)
3227 ~Checkpoint_output_section()
3230 // Return the address alignment.
3233 { return this->addralign_
; }
3235 // Return the section flags.
3238 { return this->flags_
; }
3240 // Return a reference to the input section list copy.
3243 { return &this->input_sections_copy_
; }
3245 // Return the size of input_sections at the time when checkpoint is
3248 input_sections_size() const
3249 { return this->input_sections_size_
; }
3251 // Whether input sections are copied.
3253 input_sections_saved() const
3254 { return this->input_sections_copy_
.size() == this->input_sections_size_
; }
3257 first_input_offset() const
3258 { return this->first_input_offset_
; }
3261 attached_input_sections_are_sorted() const
3262 { return this->attached_input_sections_are_sorted_
; }
3264 // Save input sections.
3266 save_input_sections()
3268 this->input_sections_copy_
.reserve(this->input_sections_size_
);
3269 this->input_sections_copy_
.clear();
3270 Input_section_list::const_iterator p
= this->input_sections_
.begin();
3271 gold_assert(this->input_sections_size_
>= this->input_sections_
.size());
3272 for(size_t i
= 0; i
< this->input_sections_size_
; i
++, ++p
)
3273 this->input_sections_copy_
.push_back(*p
);
3277 // The section alignment.
3278 uint64_t addralign_
;
3279 // The section flags.
3280 elfcpp::Elf_Xword flags_
;
3281 // Reference to the input sections to be checkpointed.
3282 const Input_section_list
& input_sections_
;
3283 // Size of the checkpointed portion of input_sections_;
3284 size_t input_sections_size_
;
3285 // Copy of input sections.
3286 Input_section_list input_sections_copy_
;
3287 // The offset of the first entry in input_sections_.
3288 off_t first_input_offset_
;
3289 // True if the input sections attached to this output section have
3290 // already been sorted.
3291 bool attached_input_sections_are_sorted_
;
3294 // This class is used to sort the input sections.
3295 class Input_section_sort_entry
;
3297 // This is the sort comparison function.
3298 struct Input_section_sort_compare
3301 operator()(const Input_section_sort_entry
&,
3302 const Input_section_sort_entry
&) const;
3305 // Fill data. This is used to fill in data between input sections.
3306 // It is also used for data statements (BYTE, WORD, etc.) in linker
3307 // scripts. When we have to keep track of the input sections, we
3308 // can use an Output_data_const, but we don't want to have to keep
3309 // track of input sections just to implement fills.
3313 Fill(off_t section_offset
, off_t length
)
3314 : section_offset_(section_offset
),
3315 length_(convert_to_section_size_type(length
))
3318 // Return section offset.
3320 section_offset() const
3321 { return this->section_offset_
; }
3323 // Return fill length.
3326 { return this->length_
; }
3329 // The offset within the output section.
3330 off_t section_offset_
;
3331 // The length of the space to fill.
3332 section_size_type length_
;
3335 typedef std::vector
<Fill
> Fill_list
;
3337 // This class describes properties of merge data sections. It is used
3338 // as a key type for maps.
3339 class Merge_section_properties
3342 Merge_section_properties(bool is_string
, uint64_t entsize
,
3344 : is_string_(is_string
), entsize_(entsize
), addralign_(addralign
)
3347 // Whether this equals to another Merge_section_properties MSP.
3349 eq(const Merge_section_properties
& msp
) const
3351 return ((this->is_string_
== msp
.is_string_
)
3352 && (this->entsize_
== msp
.entsize_
)
3353 && (this->addralign_
== msp
.addralign_
));
3356 // Compute a hash value for this using 64-bit FNV-1a hash.
3360 uint64_t h
= 14695981039346656037ULL; // FNV offset basis.
3361 uint64_t prime
= 1099511628211ULL;
3362 h
= (h
^ static_cast<uint64_t>(this->is_string_
)) * prime
;
3363 h
= (h
^ static_cast<uint64_t>(this->entsize_
)) * prime
;
3364 h
= (h
^ static_cast<uint64_t>(this->addralign_
)) * prime
;
3368 // Functors for associative containers.
3372 operator()(const Merge_section_properties
& msp1
,
3373 const Merge_section_properties
& msp2
) const
3374 { return msp1
.eq(msp2
); }
3380 operator()(const Merge_section_properties
& msp
) const
3381 { return msp
.hash_value(); }
3385 // Whether this merge data section is for strings.
3387 // Entsize of this merge data section.
3389 // Address alignment.
3390 uint64_t addralign_
;
3393 // Map that link Merge_section_properties to Output_merge_base.
3394 typedef Unordered_map
<Merge_section_properties
, Output_merge_base
*,
3395 Merge_section_properties::hash
,
3396 Merge_section_properties::equal_to
>
3397 Merge_section_by_properties_map
;
3399 // Map that link Input_section_specifier to Output_section_data.
3400 typedef Unordered_map
<Input_section_specifier
, Output_section_data
*,
3401 Input_section_specifier::hash
,
3402 Input_section_specifier::equal_to
>
3403 Output_section_data_by_input_section_map
;
3405 // Map that link Input_section_specifier to Output_relaxed_input_section.
3406 typedef Unordered_map
<Input_section_specifier
, Output_relaxed_input_section
*,
3407 Input_section_specifier::hash
,
3408 Input_section_specifier::equal_to
>
3409 Output_relaxed_input_section_by_input_section_map
;
3411 // Map used during relaxation of existing sections. This map
3412 // an input section specifier to an input section list index.
3413 // We assume that Input_section_list is a vector.
3414 typedef Unordered_map
<Input_section_specifier
, size_t,
3415 Input_section_specifier::hash
,
3416 Input_section_specifier::equal_to
>
3419 // Add a new output section by Input_section.
3421 add_output_section_data(Input_section
*);
3423 // Add an SHF_MERGE input section. Returns true if the section was
3426 add_merge_input_section(Relobj
* object
, unsigned int shndx
, uint64_t flags
,
3427 uint64_t entsize
, uint64_t addralign
);
3429 // Add an output SHF_MERGE section POSD to this output section.
3430 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3431 // ENTSIZE is the entity size. This returns the entry added to
3434 add_output_merge_section(Output_section_data
* posd
, bool is_string
,
3437 // Sort the attached input sections.
3439 sort_attached_input_sections();
3441 // Find the merge section into which an input section with index SHNDX in
3442 // OBJECT has been added. Return NULL if none found.
3443 Output_section_data
*
3444 find_merge_section(const Relobj
* object
, unsigned int shndx
) const;
3446 // Build a relaxation map.
3448 build_relaxation_map(
3449 const Input_section_list
& input_sections
,
3451 Relaxation_map
* map
) const;
3453 // Convert input sections in an input section list into relaxed sections.
3455 convert_input_sections_in_list_to_relaxed_sections(
3456 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
,
3457 const Relaxation_map
& map
,
3458 Input_section_list
* input_sections
);
3460 // Most of these fields are only valid after layout.
3462 // The name of the section. This will point into a Stringpool.
3464 // The section address is in the parent class.
3465 // The section alignment.
3466 uint64_t addralign_
;
3467 // The section entry size.
3469 // The load address. This is only used when using a linker script
3470 // with a SECTIONS clause. The has_load_address_ field indicates
3471 // whether this field is valid.
3472 uint64_t load_address_
;
3473 // The file offset is in the parent class.
3474 // Set the section link field to the index of this section.
3475 const Output_data
* link_section_
;
3476 // If link_section_ is NULL, this is the link field.
3478 // Set the section info field to the index of this section.
3479 const Output_section
* info_section_
;
3480 // If info_section_ is NULL, set the info field to the symbol table
3481 // index of this symbol.
3482 const Symbol
* info_symndx_
;
3483 // If info_section_ and info_symndx_ are NULL, this is the section
3486 // The section type.
3487 const elfcpp::Elf_Word type_
;
3488 // The section flags.
3489 elfcpp::Elf_Xword flags_
;
3490 // The section index.
3491 unsigned int out_shndx_
;
3492 // If there is a STT_SECTION for this output section in the normal
3493 // symbol table, this is the symbol index. This starts out as zero.
3494 // It is initialized in Layout::finalize() to be the index, or -1U
3495 // if there isn't one.
3496 unsigned int symtab_index_
;
3497 // If there is a STT_SECTION for this output section in the dynamic
3498 // symbol table, this is the symbol index. This starts out as zero.
3499 // It is initialized in Layout::finalize() to be the index, or -1U
3500 // if there isn't one.
3501 unsigned int dynsym_index_
;
3502 // The input sections. This will be empty in cases where we don't
3503 // need to keep track of them.
3504 Input_section_list input_sections_
;
3505 // The offset of the first entry in input_sections_.
3506 off_t first_input_offset_
;
3507 // The fill data. This is separate from input_sections_ because we
3508 // often will need fill sections without needing to keep track of
3511 // If the section requires postprocessing, this buffer holds the
3512 // section contents during relocation.
3513 unsigned char* postprocessing_buffer_
;
3514 // Whether this output section needs a STT_SECTION symbol in the
3515 // normal symbol table. This will be true if there is a relocation
3517 bool needs_symtab_index_
: 1;
3518 // Whether this output section needs a STT_SECTION symbol in the
3519 // dynamic symbol table. This will be true if there is a dynamic
3520 // relocation which needs it.
3521 bool needs_dynsym_index_
: 1;
3522 // Whether the link field of this output section should point to the
3523 // normal symbol table.
3524 bool should_link_to_symtab_
: 1;
3525 // Whether the link field of this output section should point to the
3526 // dynamic symbol table.
3527 bool should_link_to_dynsym_
: 1;
3528 // Whether this section should be written after all the input
3529 // sections are complete.
3530 bool after_input_sections_
: 1;
3531 // Whether this section requires post processing after all
3532 // relocations have been applied.
3533 bool requires_postprocessing_
: 1;
3534 // Whether an input section was mapped to this output section
3535 // because of a SECTIONS clause in a linker script.
3536 bool found_in_sections_clause_
: 1;
3537 // Whether this section has an explicitly specified load address.
3538 bool has_load_address_
: 1;
3539 // True if the info_section_ field means the section index of the
3540 // section, false if it means the symbol index of the corresponding
3542 bool info_uses_section_index_
: 1;
3543 // True if the input sections attached to this output section may
3545 bool may_sort_attached_input_sections_
: 1;
3546 // True if the input sections attached to this output section must
3548 bool must_sort_attached_input_sections_
: 1;
3549 // True if the input sections attached to this output section have
3550 // already been sorted.
3551 bool attached_input_sections_are_sorted_
: 1;
3552 // True if this section holds relro data.
3554 // True if this section holds relro local data.
3555 bool is_relro_local_
: 1;
3556 // True if this must be the last relro section.
3557 bool is_last_relro_
: 1;
3558 // True if this must be the first section after the relro sections.
3559 bool is_first_non_relro_
: 1;
3560 // True if this is a small section.
3561 bool is_small_section_
: 1;
3562 // True if this is a large section.
3563 bool is_large_section_
: 1;
3564 // True if this is the .interp section going into the PT_INTERP
3566 bool is_interp_
: 1;
3567 // True if this is section is read by the dynamic linker.
3568 bool is_dynamic_linker_section_
: 1;
3569 // Whether code-fills are generated at write.
3570 bool generate_code_fills_at_write_
: 1;
3571 // Whether the entry size field should be zero.
3572 bool is_entsize_zero_
: 1;
3573 // For SHT_TLS sections, the offset of this section relative to the base
3574 // of the TLS segment.
3575 uint64_t tls_offset_
;
3576 // Saved checkpoint.
3577 Checkpoint_output_section
* checkpoint_
;
3578 // Map from input sections to merge sections.
3579 Output_section_data_by_input_section_map merge_section_map_
;
3580 // Map from merge section properties to merge_sections;
3581 Merge_section_by_properties_map merge_section_by_properties_map_
;
3582 // Map from input sections to relaxed input sections. This is mutable
3583 // because it is updated lazily. We may need to update it in a
3584 // const qualified method.
3585 mutable Output_relaxed_input_section_by_input_section_map
3586 relaxed_input_section_map_
;
3587 // Whether relaxed_input_section_map_ is valid.
3588 mutable bool is_relaxed_input_section_map_valid_
;
3591 // An output segment. PT_LOAD segments are built from collections of
3592 // output sections. Other segments typically point within PT_LOAD
3593 // segments, and are built directly as needed.
3595 // NOTE: We want to use the copy constructor for this class. During
3596 // relaxation, we may try built the segments multiple times. We do
3597 // that by copying the original segment list before lay-out, doing
3598 // a trial lay-out and roll-back to the saved copied if we need to
3599 // to the lay-out again.
3601 class Output_segment
3604 // Create an output segment, specifying the type and flags.
3605 Output_segment(elfcpp::Elf_Word
, elfcpp::Elf_Word
);
3607 // Return the virtual address.
3610 { return this->vaddr_
; }
3612 // Return the physical address.
3615 { return this->paddr_
; }
3617 // Return the segment type.
3620 { return this->type_
; }
3622 // Return the segment flags.
3625 { return this->flags_
; }
3627 // Return the memory size.
3630 { return this->memsz_
; }
3632 // Return the file size.
3635 { return this->filesz_
; }
3637 // Return the file offset.
3640 { return this->offset_
; }
3642 // Whether this is a segment created to hold large data sections.
3644 is_large_data_segment() const
3645 { return this->is_large_data_segment_
; }
3647 // Record that this is a segment created to hold large data
3650 set_is_large_data_segment()
3651 { this->is_large_data_segment_
= true; }
3653 // Return the maximum alignment of the Output_data.
3655 maximum_alignment();
3657 // Add the Output_section OS to this segment. SEG_FLAGS is the
3658 // segment flags to use. DO_SORT is true if we should sort the
3659 // placement of the input section for more efficient generated code.
3661 add_output_section(Output_section
* os
, elfcpp::Elf_Word seg_flags
,
3664 // Remove an Output_section from this segment. It is an error if it
3667 remove_output_section(Output_section
* os
);
3669 // Add an Output_data (which need not be an Output_section) to the
3670 // start of this segment.
3672 add_initial_output_data(Output_data
*);
3674 // Return true if this segment has any sections which hold actual
3675 // data, rather than being a BSS section.
3677 has_any_data_sections() const
3678 { return !this->output_data_
.empty(); }
3680 // Return the number of dynamic relocations applied to this segment.
3682 dynamic_reloc_count() const;
3684 // Return the address of the first section.
3686 first_section_load_address() const;
3688 // Return whether the addresses have been set already.
3690 are_addresses_set() const
3691 { return this->are_addresses_set_
; }
3693 // Set the addresses.
3695 set_addresses(uint64_t vaddr
, uint64_t paddr
)
3697 this->vaddr_
= vaddr
;
3698 this->paddr_
= paddr
;
3699 this->are_addresses_set_
= true;
3702 // Update the flags for the flags of an output section added to this
3705 update_flags_for_output_section(elfcpp::Elf_Xword flags
)
3707 // The ELF ABI specifies that a PT_TLS segment should always have
3708 // PF_R as the flags.
3709 if (this->type() != elfcpp::PT_TLS
)
3710 this->flags_
|= flags
;
3713 // Set the segment flags. This is only used if we have a PHDRS
3714 // clause which explicitly specifies the flags.
3716 set_flags(elfcpp::Elf_Word flags
)
3717 { this->flags_
= flags
; }
3719 // Set the address of the segment to ADDR and the offset to *POFF
3720 // and set the addresses and offsets of all contained output
3721 // sections accordingly. Set the section indexes of all contained
3722 // output sections starting with *PSHNDX. If RESET is true, first
3723 // reset the addresses of the contained sections. Return the
3724 // address of the immediately following segment. Update *POFF and
3725 // *PSHNDX. This should only be called for a PT_LOAD segment.
3727 set_section_addresses(const Layout
*, bool reset
, uint64_t addr
,
3728 unsigned int increase_relro
, off_t
* poff
,
3729 unsigned int* pshndx
);
3731 // Set the minimum alignment of this segment. This may be adjusted
3732 // upward based on the section alignments.
3734 set_minimum_p_align(uint64_t align
)
3735 { this->min_p_align_
= align
; }
3737 // Set the offset of this segment based on the section. This should
3738 // only be called for a non-PT_LOAD segment.
3740 set_offset(unsigned int increase
);
3742 // Set the TLS offsets of the sections contained in the PT_TLS segment.
3746 // Return the number of output sections.
3748 output_section_count() const;
3750 // Return the section attached to the list segment with the lowest
3751 // load address. This is used when handling a PHDRS clause in a
3754 section_with_lowest_load_address() const;
3756 // Write the segment header into *OPHDR.
3757 template<int size
, bool big_endian
>
3759 write_header(elfcpp::Phdr_write
<size
, big_endian
>*);
3761 // Write the section headers of associated sections into V.
3762 template<int size
, bool big_endian
>
3764 write_section_headers(const Layout
*, const Stringpool
*, unsigned char* v
,
3765 unsigned int* pshndx
) const;
3767 // Print the output sections in the map file.
3769 print_sections_to_mapfile(Mapfile
*) const;
3772 typedef std::list
<Output_data
*> Output_data_list
;
3774 // Find the maximum alignment in an Output_data_list.
3776 maximum_alignment_list(const Output_data_list
*);
3778 // Return whether the first data section is a relro section.
3780 is_first_section_relro() const;
3782 // Set the section addresses in an Output_data_list.
3784 set_section_list_addresses(const Layout
*, bool reset
, Output_data_list
*,
3785 uint64_t addr
, off_t
* poff
, unsigned int* pshndx
,
3788 // Return the number of Output_sections in an Output_data_list.
3790 output_section_count_list(const Output_data_list
*) const;
3792 // Return the number of dynamic relocs in an Output_data_list.
3794 dynamic_reloc_count_list(const Output_data_list
*) const;
3796 // Find the section with the lowest load address in an
3797 // Output_data_list.
3799 lowest_load_address_in_list(const Output_data_list
* pdl
,
3800 Output_section
** found
,
3801 uint64_t* found_lma
) const;
3803 // Write the section headers in the list into V.
3804 template<int size
, bool big_endian
>
3806 write_section_headers_list(const Layout
*, const Stringpool
*,
3807 const Output_data_list
*, unsigned char* v
,
3808 unsigned int* pshdx
) const;
3810 // Print a section list to the mapfile.
3812 print_section_list_to_mapfile(Mapfile
*, const Output_data_list
*) const;
3814 // NOTE: We want to use the copy constructor. Currently, shallow copy
3815 // works for us so we do not need to write our own copy constructor.
3817 // The list of output data with contents attached to this segment.
3818 Output_data_list output_data_
;
3819 // The list of output data without contents attached to this segment.
3820 Output_data_list output_bss_
;
3821 // The segment virtual address.
3823 // The segment physical address.
3825 // The size of the segment in memory.
3827 // The maximum section alignment. The is_max_align_known_ field
3828 // indicates whether this has been finalized.
3829 uint64_t max_align_
;
3830 // The required minimum value for the p_align field. This is used
3831 // for PT_LOAD segments. Note that this does not mean that
3832 // addresses should be aligned to this value; it means the p_paddr
3833 // and p_vaddr fields must be congruent modulo this value. For
3834 // non-PT_LOAD segments, the dynamic linker works more efficiently
3835 // if the p_align field has the more conventional value, although it
3836 // can align as needed.
3837 uint64_t min_p_align_
;
3838 // The offset of the segment data within the file.
3840 // The size of the segment data in the file.
3842 // The segment type;
3843 elfcpp::Elf_Word type_
;
3844 // The segment flags.
3845 elfcpp::Elf_Word flags_
;
3846 // Whether we have finalized max_align_.
3847 bool is_max_align_known_
: 1;
3848 // Whether vaddr and paddr were set by a linker script.
3849 bool are_addresses_set_
: 1;
3850 // Whether this segment holds large data sections.
3851 bool is_large_data_segment_
: 1;
3854 // This class represents the output file.
3859 Output_file(const char* name
);
3861 // Indicate that this is a temporary file which should not be
3865 { this->is_temporary_
= true; }
3867 // Try to open an existing file. Returns false if the file doesn't
3868 // exist, has a size of 0 or can't be mmaped. This method is
3871 open_for_modification();
3873 // Open the output file. FILE_SIZE is the final size of the file.
3874 // If the file already exists, it is deleted/truncated. This method
3875 // is thread-unsafe.
3877 open(off_t file_size
);
3879 // Resize the output file. This method is thread-unsafe.
3881 resize(off_t file_size
);
3883 // Close the output file (flushing all buffered data) and make sure
3884 // there are no errors. This method is thread-unsafe.
3888 // Return the size of this file.
3891 { return this->file_size_
; }
3893 // Return the name of this file.
3896 { return this->name_
; }
3898 // We currently always use mmap which makes the view handling quite
3899 // simple. In the future we may support other approaches.
3901 // Write data to the output file.
3903 write(off_t offset
, const void* data
, size_t len
)
3904 { memcpy(this->base_
+ offset
, data
, len
); }
3906 // Get a buffer to use to write to the file, given the offset into
3907 // the file and the size.
3909 get_output_view(off_t start
, size_t size
)
3911 gold_assert(start
>= 0
3912 && start
+ static_cast<off_t
>(size
) <= this->file_size_
);
3913 return this->base_
+ start
;
3916 // VIEW must have been returned by get_output_view. Write the
3917 // buffer to the file, passing in the offset and the size.
3919 write_output_view(off_t
, size_t, unsigned char*)
3922 // Get a read/write buffer. This is used when we want to write part
3923 // of the file, read it in, and write it again.
3925 get_input_output_view(off_t start
, size_t size
)
3926 { return this->get_output_view(start
, size
); }
3928 // Write a read/write buffer back to the file.
3930 write_input_output_view(off_t
, size_t, unsigned char*)
3933 // Get a read buffer. This is used when we just want to read part
3934 // of the file back it in.
3935 const unsigned char*
3936 get_input_view(off_t start
, size_t size
)
3937 { return this->get_output_view(start
, size
); }
3939 // Release a read bfufer.
3941 free_input_view(off_t
, size_t, const unsigned char*)
3945 // Map the file into memory or, if that fails, allocate anonymous
3950 // Allocate anonymous memory for the file.
3954 // Map the file into memory.
3958 // Unmap the file from memory (and flush to disk buffers).
3968 // Base of file mapped into memory.
3969 unsigned char* base_
;
3970 // True iff base_ points to a memory buffer rather than an output file.
3971 bool map_is_anonymous_
;
3972 // True if this is a temporary file which should not be output.
3976 } // End namespace gold.
3978 #endif // !defined(GOLD_OUTPUT_H)