1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h"
36 #include "parameters.h"
40 #include "script-sections.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
48 #include "descriptors.h"
50 #include "incremental.h"
56 // Layout::Relaxation_debug_check methods.
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64 const Layout::Section_list
& sections
,
65 const Layout::Data_list
& special_outputs
)
67 for(Layout::Section_list::const_iterator p
= sections
.begin();
70 gold_assert((*p
)->address_and_file_offset_have_reset_values());
72 for(Layout::Data_list::const_iterator p
= special_outputs
.begin();
73 p
!= special_outputs
.end();
75 gold_assert((*p
)->address_and_file_offset_have_reset_values());
78 // Save information of SECTIONS for checking later.
81 Layout::Relaxation_debug_check::read_sections(
82 const Layout::Section_list
& sections
)
84 for(Layout::Section_list::const_iterator p
= sections
.begin();
88 Output_section
* os
= *p
;
90 info
.output_section
= os
;
91 info
.address
= os
->is_address_valid() ? os
->address() : 0;
92 info
.data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
93 info
.offset
= os
->is_offset_valid()? os
->offset() : -1 ;
94 this->section_infos_
.push_back(info
);
98 // Verify SECTIONS using previously recorded information.
101 Layout::Relaxation_debug_check::verify_sections(
102 const Layout::Section_list
& sections
)
105 for(Layout::Section_list::const_iterator p
= sections
.begin();
109 Output_section
* os
= *p
;
110 uint64_t address
= os
->is_address_valid() ? os
->address() : 0;
111 off_t data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
112 off_t offset
= os
->is_offset_valid()? os
->offset() : -1 ;
114 if (i
>= this->section_infos_
.size())
116 gold_fatal("Section_info of %s missing.\n", os
->name());
118 const Section_info
& info
= this->section_infos_
[i
];
119 if (os
!= info
.output_section
)
120 gold_fatal("Section order changed. Expecting %s but see %s\n",
121 info
.output_section
->name(), os
->name());
122 if (address
!= info
.address
123 || data_size
!= info
.data_size
124 || offset
!= info
.offset
)
125 gold_fatal("Section %s changed.\n", os
->name());
129 // Layout_task_runner methods.
131 // Lay out the sections. This is called after all the input objects
135 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
137 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
142 // Now we know the final size of the output file and we know where
143 // each piece of information goes.
145 if (this->mapfile_
!= NULL
)
147 this->mapfile_
->print_discarded_sections(this->input_objects_
);
148 this->layout_
->print_to_mapfile(this->mapfile_
);
151 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
152 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
153 of
->set_is_temporary();
156 // Queue up the final set of tasks.
157 gold::queue_final_tasks(this->options_
, this->input_objects_
,
158 this->symtab_
, this->layout_
, workqueue
, of
);
163 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
164 : number_of_input_files_(number_of_input_files
),
165 script_options_(script_options
),
173 unattached_section_list_(),
174 special_output_list_(),
175 section_headers_(NULL
),
177 relro_segment_(NULL
),
179 symtab_section_(NULL
),
180 symtab_xindex_(NULL
),
181 dynsym_section_(NULL
),
182 dynsym_xindex_(NULL
),
183 dynamic_section_(NULL
),
184 dynamic_symbol_(NULL
),
186 eh_frame_section_(NULL
),
187 eh_frame_data_(NULL
),
188 added_eh_frame_data_(false),
189 eh_frame_hdr_section_(NULL
),
190 build_id_note_(NULL
),
194 output_file_size_(-1),
195 have_added_input_section_(false),
196 sections_are_attached_(false),
197 input_requires_executable_stack_(false),
198 input_with_gnu_stack_note_(false),
199 input_without_gnu_stack_note_(false),
200 has_static_tls_(false),
201 any_postprocessing_sections_(false),
202 resized_signatures_(false),
203 have_stabstr_section_(false),
204 incremental_inputs_(NULL
),
205 record_output_section_data_from_script_(false),
206 script_output_section_data_list_(),
207 segment_states_(NULL
),
208 relaxation_debug_check_(NULL
)
210 // Make space for more than enough segments for a typical file.
211 // This is just for efficiency--it's OK if we wind up needing more.
212 this->segment_list_
.reserve(12);
214 // We expect two unattached Output_data objects: the file header and
215 // the segment headers.
216 this->special_output_list_
.reserve(2);
218 // Initialize structure needed for an incremental build.
219 if (parameters
->options().incremental())
220 this->incremental_inputs_
= new Incremental_inputs
;
222 // The section name pool is worth optimizing in all cases, because
223 // it is small, but there are often overlaps due to .rel sections.
224 this->namepool_
.set_optimize();
227 // Hash a key we use to look up an output section mapping.
230 Layout::Hash_key::operator()(const Layout::Key
& k
) const
232 return k
.first
+ k
.second
.first
+ k
.second
.second
;
235 // Returns whether the given section is in the list of
236 // debug-sections-used-by-some-version-of-gdb. Currently,
237 // we've checked versions of gdb up to and including 6.7.1.
239 static const char* gdb_sections
[] =
241 // ".debug_aranges", // not used by gdb as of 6.7.1
247 // ".debug_pubnames", // not used by gdb as of 6.7.1
252 static const char* lines_only_debug_sections
[] =
254 // ".debug_aranges", // not used by gdb as of 6.7.1
260 // ".debug_pubnames", // not used by gdb as of 6.7.1
266 is_gdb_debug_section(const char* str
)
268 // We can do this faster: binary search or a hashtable. But why bother?
269 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
270 if (strcmp(str
, gdb_sections
[i
]) == 0)
276 is_lines_only_debug_section(const char* str
)
278 // We can do this faster: binary search or a hashtable. But why bother?
280 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
282 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
287 // Whether to include this section in the link.
289 template<int size
, bool big_endian
>
291 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
292 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
294 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
297 switch (shdr
.get_sh_type())
299 case elfcpp::SHT_NULL
:
300 case elfcpp::SHT_SYMTAB
:
301 case elfcpp::SHT_DYNSYM
:
302 case elfcpp::SHT_HASH
:
303 case elfcpp::SHT_DYNAMIC
:
304 case elfcpp::SHT_SYMTAB_SHNDX
:
307 case elfcpp::SHT_STRTAB
:
308 // Discard the sections which have special meanings in the ELF
309 // ABI. Keep others (e.g., .stabstr). We could also do this by
310 // checking the sh_link fields of the appropriate sections.
311 return (strcmp(name
, ".dynstr") != 0
312 && strcmp(name
, ".strtab") != 0
313 && strcmp(name
, ".shstrtab") != 0);
315 case elfcpp::SHT_RELA
:
316 case elfcpp::SHT_REL
:
317 case elfcpp::SHT_GROUP
:
318 // If we are emitting relocations these should be handled
320 gold_assert(!parameters
->options().relocatable()
321 && !parameters
->options().emit_relocs());
324 case elfcpp::SHT_PROGBITS
:
325 if (parameters
->options().strip_debug()
326 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
328 if (is_debug_info_section(name
))
331 if (parameters
->options().strip_debug_non_line()
332 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
334 // Debugging sections can only be recognized by name.
335 if (is_prefix_of(".debug", name
)
336 && !is_lines_only_debug_section(name
))
339 if (parameters
->options().strip_debug_gdb()
340 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
342 // Debugging sections can only be recognized by name.
343 if (is_prefix_of(".debug", name
)
344 && !is_gdb_debug_section(name
))
347 if (parameters
->options().strip_lto_sections()
348 && !parameters
->options().relocatable()
349 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
351 // Ignore LTO sections containing intermediate code.
352 if (is_prefix_of(".gnu.lto_", name
))
355 // The GNU linker strips .gnu_debuglink sections, so we do too.
356 // This is a feature used to keep debugging information in
358 if (strcmp(name
, ".gnu_debuglink") == 0)
367 // Return an output section named NAME, or NULL if there is none.
370 Layout::find_output_section(const char* name
) const
372 for (Section_list::const_iterator p
= this->section_list_
.begin();
373 p
!= this->section_list_
.end();
375 if (strcmp((*p
)->name(), name
) == 0)
380 // Return an output segment of type TYPE, with segment flags SET set
381 // and segment flags CLEAR clear. Return NULL if there is none.
384 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
385 elfcpp::Elf_Word clear
) const
387 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
388 p
!= this->segment_list_
.end();
390 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
391 && ((*p
)->flags() & set
) == set
392 && ((*p
)->flags() & clear
) == 0)
397 // Return the output section to use for section NAME with type TYPE
398 // and section flags FLAGS. NAME must be canonicalized in the string
399 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
400 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
401 // is used by the dynamic linker. IS_RELRO is true for a relro
402 // section. IS_LAST_RELRO is true for the last relro section.
403 // IS_FIRST_NON_RELRO is true for the first non-relro section.
406 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
407 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
408 bool is_interp
, bool is_dynamic_linker_section
,
409 bool is_relro
, bool is_last_relro
,
410 bool is_first_non_relro
)
412 elfcpp::Elf_Xword lookup_flags
= flags
;
414 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
415 // read-write with read-only sections. Some other ELF linkers do
416 // not do this. FIXME: Perhaps there should be an option
418 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
420 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
421 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
422 std::pair
<Section_name_map::iterator
, bool> ins(
423 this->section_name_map_
.insert(v
));
426 return ins
.first
->second
;
429 // This is the first time we've seen this name/type/flags
430 // combination. For compatibility with the GNU linker, we
431 // combine sections with contents and zero flags with sections
432 // with non-zero flags. This is a workaround for cases where
433 // assembler code forgets to set section flags. FIXME: Perhaps
434 // there should be an option to control this.
435 Output_section
* os
= NULL
;
437 if (type
== elfcpp::SHT_PROGBITS
)
441 Output_section
* same_name
= this->find_output_section(name
);
442 if (same_name
!= NULL
443 && same_name
->type() == elfcpp::SHT_PROGBITS
444 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
447 else if ((flags
& elfcpp::SHF_TLS
) == 0)
449 elfcpp::Elf_Xword zero_flags
= 0;
450 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
451 Section_name_map::iterator p
=
452 this->section_name_map_
.find(zero_key
);
453 if (p
!= this->section_name_map_
.end())
459 os
= this->make_output_section(name
, type
, flags
, is_interp
,
460 is_dynamic_linker_section
, is_relro
,
461 is_last_relro
, is_first_non_relro
);
462 ins
.first
->second
= os
;
467 // Pick the output section to use for section NAME, in input file
468 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
469 // linker created section. IS_INPUT_SECTION is true if we are
470 // choosing an output section for an input section found in a input
471 // file. IS_INTERP is true if this is the .interp section.
472 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
473 // dynamic linker. IS_RELRO is true for a relro section.
474 // IS_LAST_RELRO is true for the last relro section.
475 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
476 // will return NULL if the input section should be discarded.
479 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
480 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
481 bool is_input_section
, bool is_interp
,
482 bool is_dynamic_linker_section
, bool is_relro
,
483 bool is_last_relro
, bool is_first_non_relro
)
485 // We should not see any input sections after we have attached
486 // sections to segments.
487 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
489 // Some flags in the input section should not be automatically
490 // copied to the output section.
491 flags
&= ~ (elfcpp::SHF_INFO_LINK
492 | elfcpp::SHF_LINK_ORDER
495 | elfcpp::SHF_STRINGS
);
497 if (this->script_options_
->saw_sections_clause())
499 // We are using a SECTIONS clause, so the output section is
500 // chosen based only on the name.
502 Script_sections
* ss
= this->script_options_
->script_sections();
503 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
504 Output_section
** output_section_slot
;
505 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
);
508 // The SECTIONS clause says to discard this input section.
512 // If this is an orphan section--one not mentioned in the linker
513 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
514 // default processing below.
516 if (output_section_slot
!= NULL
)
518 if (*output_section_slot
!= NULL
)
520 (*output_section_slot
)->update_flags_for_input_section(flags
);
521 return *output_section_slot
;
524 // We don't put sections found in the linker script into
525 // SECTION_NAME_MAP_. That keeps us from getting confused
526 // if an orphan section is mapped to a section with the same
527 // name as one in the linker script.
529 name
= this->namepool_
.add(name
, false, NULL
);
532 this->make_output_section(name
, type
, flags
, is_interp
,
533 is_dynamic_linker_section
, is_relro
,
534 is_last_relro
, is_first_non_relro
);
535 os
->set_found_in_sections_clause();
536 *output_section_slot
= os
;
541 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
543 // Turn NAME from the name of the input section into the name of the
546 size_t len
= strlen(name
);
548 && !this->script_options_
->saw_sections_clause()
549 && !parameters
->options().relocatable())
550 name
= Layout::output_section_name(name
, &len
);
552 Stringpool::Key name_key
;
553 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
555 // Find or make the output section. The output section is selected
556 // based on the section name, type, and flags.
557 return this->get_output_section(name
, name_key
, type
, flags
, is_interp
,
558 is_dynamic_linker_section
, is_relro
,
559 is_last_relro
, is_first_non_relro
);
562 // Return the output section to use for input section SHNDX, with name
563 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
564 // index of a relocation section which applies to this section, or 0
565 // if none, or -1U if more than one. RELOC_TYPE is the type of the
566 // relocation section if there is one. Set *OFF to the offset of this
567 // input section without the output section. Return NULL if the
568 // section should be discarded. Set *OFF to -1 if the section
569 // contents should not be written directly to the output file, but
570 // will instead receive special handling.
572 template<int size
, bool big_endian
>
574 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
575 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
576 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
580 if (!this->include_section(object
, name
, shdr
))
585 // In a relocatable link a grouped section must not be combined with
586 // any other sections.
587 if (parameters
->options().relocatable()
588 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
590 name
= this->namepool_
.add(name
, true, NULL
);
591 os
= this->make_output_section(name
, shdr
.get_sh_type(),
592 shdr
.get_sh_flags(), false, false,
593 false, false, false);
597 os
= this->choose_output_section(object
, name
, shdr
.get_sh_type(),
598 shdr
.get_sh_flags(), true, false,
599 false, false, false, false);
604 // By default the GNU linker sorts input sections whose names match
605 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
606 // are sorted by name. This is used to implement constructor
607 // priority ordering. We are compatible.
608 if (!this->script_options_
->saw_sections_clause()
609 && (is_prefix_of(".ctors.", name
)
610 || is_prefix_of(".dtors.", name
)
611 || is_prefix_of(".init_array.", name
)
612 || is_prefix_of(".fini_array.", name
)))
613 os
->set_must_sort_attached_input_sections();
615 // FIXME: Handle SHF_LINK_ORDER somewhere.
617 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
618 this->script_options_
->saw_sections_clause());
619 this->have_added_input_section_
= true;
624 // Handle a relocation section when doing a relocatable link.
626 template<int size
, bool big_endian
>
628 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
630 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
631 Output_section
* data_section
,
632 Relocatable_relocs
* rr
)
634 gold_assert(parameters
->options().relocatable()
635 || parameters
->options().emit_relocs());
637 int sh_type
= shdr
.get_sh_type();
640 if (sh_type
== elfcpp::SHT_REL
)
642 else if (sh_type
== elfcpp::SHT_RELA
)
646 name
+= data_section
->name();
648 Output_section
* os
= this->choose_output_section(object
, name
.c_str(),
652 false, false, false);
654 os
->set_should_link_to_symtab();
655 os
->set_info_section(data_section
);
657 Output_section_data
* posd
;
658 if (sh_type
== elfcpp::SHT_REL
)
660 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
661 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
665 else if (sh_type
== elfcpp::SHT_RELA
)
667 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
668 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
675 os
->add_output_section_data(posd
);
676 rr
->set_output_data(posd
);
681 // Handle a group section when doing a relocatable link.
683 template<int size
, bool big_endian
>
685 Layout::layout_group(Symbol_table
* symtab
,
686 Sized_relobj
<size
, big_endian
>* object
,
688 const char* group_section_name
,
689 const char* signature
,
690 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
691 elfcpp::Elf_Word flags
,
692 std::vector
<unsigned int>* shndxes
)
694 gold_assert(parameters
->options().relocatable());
695 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
696 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
697 Output_section
* os
= this->make_output_section(group_section_name
,
703 // We need to find a symbol with the signature in the symbol table.
704 // If we don't find one now, we need to look again later.
705 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
707 os
->set_info_symndx(sym
);
710 // Reserve some space to minimize reallocations.
711 if (this->group_signatures_
.empty())
712 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
714 // We will wind up using a symbol whose name is the signature.
715 // So just put the signature in the symbol name pool to save it.
716 signature
= symtab
->canonicalize_name(signature
);
717 this->group_signatures_
.push_back(Group_signature(os
, signature
));
720 os
->set_should_link_to_symtab();
723 section_size_type entry_count
=
724 convert_to_section_size_type(shdr
.get_sh_size() / 4);
725 Output_section_data
* posd
=
726 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
728 os
->add_output_section_data(posd
);
731 // Special GNU handling of sections name .eh_frame. They will
732 // normally hold exception frame data as defined by the C++ ABI
733 // (http://codesourcery.com/cxx-abi/).
735 template<int size
, bool big_endian
>
737 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
738 const unsigned char* symbols
,
740 const unsigned char* symbol_names
,
741 off_t symbol_names_size
,
743 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
744 unsigned int reloc_shndx
, unsigned int reloc_type
,
747 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
748 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
750 const char* const name
= ".eh_frame";
751 Output_section
* os
= this->choose_output_section(object
,
753 elfcpp::SHT_PROGBITS
,
756 false, false, false);
760 if (this->eh_frame_section_
== NULL
)
762 this->eh_frame_section_
= os
;
763 this->eh_frame_data_
= new Eh_frame();
765 if (parameters
->options().eh_frame_hdr())
767 Output_section
* hdr_os
=
768 this->choose_output_section(NULL
,
770 elfcpp::SHT_PROGBITS
,
773 false, false, false);
777 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
778 this->eh_frame_data_
);
779 hdr_os
->add_output_section_data(hdr_posd
);
781 hdr_os
->set_after_input_sections();
783 if (!this->script_options_
->saw_phdrs_clause())
785 Output_segment
* hdr_oseg
;
786 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
788 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
, false);
791 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
796 gold_assert(this->eh_frame_section_
== os
);
798 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
807 os
->update_flags_for_input_section(shdr
.get_sh_flags());
809 // We found a .eh_frame section we are going to optimize, so now
810 // we can add the set of optimized sections to the output
811 // section. We need to postpone adding this until we've found a
812 // section we can optimize so that the .eh_frame section in
813 // crtbegin.o winds up at the start of the output section.
814 if (!this->added_eh_frame_data_
)
816 os
->add_output_section_data(this->eh_frame_data_
);
817 this->added_eh_frame_data_
= true;
823 // We couldn't handle this .eh_frame section for some reason.
824 // Add it as a normal section.
825 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
826 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
827 saw_sections_clause
);
828 this->have_added_input_section_
= true;
834 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
835 // the output section.
838 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
839 elfcpp::Elf_Xword flags
,
840 Output_section_data
* posd
,
841 bool is_dynamic_linker_section
,
842 bool is_relro
, bool is_last_relro
,
843 bool is_first_non_relro
)
845 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
847 is_dynamic_linker_section
,
848 is_relro
, is_last_relro
,
851 os
->add_output_section_data(posd
);
855 // Map section flags to segment flags.
858 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
860 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
861 if ((flags
& elfcpp::SHF_WRITE
) != 0)
863 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
868 // Sometimes we compress sections. This is typically done for
869 // sections that are not part of normal program execution (such as
870 // .debug_* sections), and where the readers of these sections know
871 // how to deal with compressed sections. This routine doesn't say for
872 // certain whether we'll compress -- it depends on commandline options
873 // as well -- just whether this section is a candidate for compression.
874 // (The Output_compressed_section class decides whether to compress
875 // a given section, and picks the name of the compressed section.)
878 is_compressible_debug_section(const char* secname
)
880 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
883 // Make a new Output_section, and attach it to segments as
884 // appropriate. IS_INTERP is true if this is the .interp section.
885 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
886 // dynamic linker. IS_RELRO is true if this is a relro section.
887 // IS_LAST_RELRO is true if this is the last relro section.
888 // IS_FIRST_NON_RELRO is true if this is the first non relro section.
891 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
892 elfcpp::Elf_Xword flags
, bool is_interp
,
893 bool is_dynamic_linker_section
, bool is_relro
,
894 bool is_last_relro
, bool is_first_non_relro
)
897 if ((flags
& elfcpp::SHF_ALLOC
) == 0
898 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
899 && is_compressible_debug_section(name
))
900 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
902 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
903 && parameters
->options().strip_debug_non_line()
904 && strcmp(".debug_abbrev", name
) == 0)
906 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
908 if (this->debug_info_
)
909 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
911 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
912 && parameters
->options().strip_debug_non_line()
913 && strcmp(".debug_info", name
) == 0)
915 os
= this->debug_info_
= new Output_reduced_debug_info_section(
917 if (this->debug_abbrev_
)
918 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
922 // FIXME: const_cast is ugly.
923 Target
* target
= const_cast<Target
*>(¶meters
->target());
924 os
= target
->make_output_section(name
, type
, flags
);
929 if (is_dynamic_linker_section
)
930 os
->set_is_dynamic_linker_section();
934 os
->set_is_last_relro();
935 if (is_first_non_relro
)
936 os
->set_is_first_non_relro();
938 parameters
->target().new_output_section(os
);
940 this->section_list_
.push_back(os
);
942 // The GNU linker by default sorts some sections by priority, so we
943 // do the same. We need to know that this might happen before we
944 // attach any input sections.
945 if (!this->script_options_
->saw_sections_clause()
946 && (strcmp(name
, ".ctors") == 0
947 || strcmp(name
, ".dtors") == 0
948 || strcmp(name
, ".init_array") == 0
949 || strcmp(name
, ".fini_array") == 0))
950 os
->set_may_sort_attached_input_sections();
952 // With -z relro, we have to recognize the special sections by name.
953 // There is no other way.
954 if (!this->script_options_
->saw_sections_clause()
955 && parameters
->options().relro()
956 && type
== elfcpp::SHT_PROGBITS
957 && (flags
& elfcpp::SHF_ALLOC
) != 0
958 && (flags
& elfcpp::SHF_WRITE
) != 0)
960 if (strcmp(name
, ".data.rel.ro") == 0)
962 else if (strcmp(name
, ".data.rel.ro.local") == 0)
965 os
->set_is_relro_local();
969 // Check for .stab*str sections, as .stab* sections need to link to
971 if (type
== elfcpp::SHT_STRTAB
972 && !this->have_stabstr_section_
973 && strncmp(name
, ".stab", 5) == 0
974 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
975 this->have_stabstr_section_
= true;
977 // If we have already attached the sections to segments, then we
978 // need to attach this one now. This happens for sections created
979 // directly by the linker.
980 if (this->sections_are_attached_
)
981 this->attach_section_to_segment(os
);
986 // Attach output sections to segments. This is called after we have
987 // seen all the input sections.
990 Layout::attach_sections_to_segments()
992 for (Section_list::iterator p
= this->section_list_
.begin();
993 p
!= this->section_list_
.end();
995 this->attach_section_to_segment(*p
);
997 this->sections_are_attached_
= true;
1000 // Attach an output section to a segment.
1003 Layout::attach_section_to_segment(Output_section
* os
)
1005 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
1006 this->unattached_section_list_
.push_back(os
);
1008 this->attach_allocated_section_to_segment(os
);
1011 // Attach an allocated output section to a segment.
1014 Layout::attach_allocated_section_to_segment(Output_section
* os
)
1016 elfcpp::Elf_Xword flags
= os
->flags();
1017 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
1019 if (parameters
->options().relocatable())
1022 // If we have a SECTIONS clause, we can't handle the attachment to
1023 // segments until after we've seen all the sections.
1024 if (this->script_options_
->saw_sections_clause())
1027 gold_assert(!this->script_options_
->saw_phdrs_clause());
1029 // This output section goes into a PT_LOAD segment.
1031 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
1033 // Check for --section-start.
1035 bool is_address_set
= parameters
->options().section_start(os
->name(), &addr
);
1037 // In general the only thing we really care about for PT_LOAD
1038 // segments is whether or not they are writable, so that is how we
1039 // search for them. Large data sections also go into their own
1040 // PT_LOAD segment. People who need segments sorted on some other
1041 // basis will have to use a linker script.
1043 Segment_list::const_iterator p
;
1044 for (p
= this->segment_list_
.begin();
1045 p
!= this->segment_list_
.end();
1048 if ((*p
)->type() != elfcpp::PT_LOAD
)
1050 if (!parameters
->options().omagic()
1051 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
1053 // If -Tbss was specified, we need to separate the data and BSS
1055 if (parameters
->options().user_set_Tbss())
1057 if ((os
->type() == elfcpp::SHT_NOBITS
)
1058 == (*p
)->has_any_data_sections())
1061 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
1066 if ((*p
)->are_addresses_set())
1069 (*p
)->add_initial_output_data(os
);
1070 (*p
)->update_flags_for_output_section(seg_flags
);
1071 (*p
)->set_addresses(addr
, addr
);
1075 (*p
)->add_output_section(os
, seg_flags
, true);
1079 if (p
== this->segment_list_
.end())
1081 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
1083 if (os
->is_large_data_section())
1084 oseg
->set_is_large_data_segment();
1085 oseg
->add_output_section(os
, seg_flags
, true);
1087 oseg
->set_addresses(addr
, addr
);
1090 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1092 if (os
->type() == elfcpp::SHT_NOTE
)
1094 // See if we already have an equivalent PT_NOTE segment.
1095 for (p
= this->segment_list_
.begin();
1096 p
!= segment_list_
.end();
1099 if ((*p
)->type() == elfcpp::PT_NOTE
1100 && (((*p
)->flags() & elfcpp::PF_W
)
1101 == (seg_flags
& elfcpp::PF_W
)))
1103 (*p
)->add_output_section(os
, seg_flags
, false);
1108 if (p
== this->segment_list_
.end())
1110 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
1112 oseg
->add_output_section(os
, seg_flags
, false);
1116 // If we see a loadable SHF_TLS section, we create a PT_TLS
1117 // segment. There can only be one such segment.
1118 if ((flags
& elfcpp::SHF_TLS
) != 0)
1120 if (this->tls_segment_
== NULL
)
1121 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
1122 this->tls_segment_
->add_output_section(os
, seg_flags
, false);
1125 // If -z relro is in effect, and we see a relro section, we create a
1126 // PT_GNU_RELRO segment. There can only be one such segment.
1127 if (os
->is_relro() && parameters
->options().relro())
1129 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
1130 if (this->relro_segment_
== NULL
)
1131 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
1132 this->relro_segment_
->add_output_section(os
, seg_flags
, false);
1136 // Make an output section for a script.
1139 Layout::make_output_section_for_script(const char* name
)
1141 name
= this->namepool_
.add(name
, false, NULL
);
1142 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
1143 elfcpp::SHF_ALLOC
, false,
1144 false, false, false, false);
1145 os
->set_found_in_sections_clause();
1149 // Return the number of segments we expect to see.
1152 Layout::expected_segment_count() const
1154 size_t ret
= this->segment_list_
.size();
1156 // If we didn't see a SECTIONS clause in a linker script, we should
1157 // already have the complete list of segments. Otherwise we ask the
1158 // SECTIONS clause how many segments it expects, and add in the ones
1159 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1161 if (!this->script_options_
->saw_sections_clause())
1165 const Script_sections
* ss
= this->script_options_
->script_sections();
1166 return ret
+ ss
->expected_segment_count(this);
1170 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1171 // is whether we saw a .note.GNU-stack section in the object file.
1172 // GNU_STACK_FLAGS is the section flags. The flags give the
1173 // protection required for stack memory. We record this in an
1174 // executable as a PT_GNU_STACK segment. If an object file does not
1175 // have a .note.GNU-stack segment, we must assume that it is an old
1176 // object. On some targets that will force an executable stack.
1179 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
1181 if (!seen_gnu_stack
)
1182 this->input_without_gnu_stack_note_
= true;
1185 this->input_with_gnu_stack_note_
= true;
1186 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1187 this->input_requires_executable_stack_
= true;
1191 // Create automatic note sections.
1194 Layout::create_notes()
1196 this->create_gold_note();
1197 this->create_executable_stack_info();
1198 this->create_build_id();
1201 // Create the dynamic sections which are needed before we read the
1205 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1207 if (parameters
->doing_static_link())
1210 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1211 elfcpp::SHT_DYNAMIC
,
1213 | elfcpp::SHF_WRITE
),
1215 true, false, false);
1217 this->dynamic_symbol_
=
1218 symtab
->define_in_output_data("_DYNAMIC", NULL
, Symbol_table::PREDEFINED
,
1219 this->dynamic_section_
, 0, 0,
1220 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1221 elfcpp::STV_HIDDEN
, 0, false, false);
1223 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1225 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1228 // For each output section whose name can be represented as C symbol,
1229 // define __start and __stop symbols for the section. This is a GNU
1233 Layout::define_section_symbols(Symbol_table
* symtab
)
1235 for (Section_list::const_iterator p
= this->section_list_
.begin();
1236 p
!= this->section_list_
.end();
1239 const char* const name
= (*p
)->name();
1240 if (is_cident(name
))
1242 const std::string
name_string(name
);
1243 const std::string
start_name(cident_section_start_prefix
1245 const std::string
stop_name(cident_section_stop_prefix
1248 symtab
->define_in_output_data(start_name
.c_str(),
1250 Symbol_table::PREDEFINED
,
1256 elfcpp::STV_DEFAULT
,
1258 false, // offset_is_from_end
1259 true); // only_if_ref
1261 symtab
->define_in_output_data(stop_name
.c_str(),
1263 Symbol_table::PREDEFINED
,
1269 elfcpp::STV_DEFAULT
,
1271 true, // offset_is_from_end
1272 true); // only_if_ref
1277 // Define symbols for group signatures.
1280 Layout::define_group_signatures(Symbol_table
* symtab
)
1282 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1283 p
!= this->group_signatures_
.end();
1286 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1288 p
->section
->set_info_symndx(sym
);
1291 // Force the name of the group section to the group
1292 // signature, and use the group's section symbol as the
1293 // signature symbol.
1294 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1296 const char* name
= this->namepool_
.add(p
->signature
,
1298 p
->section
->set_name(name
);
1300 p
->section
->set_needs_symtab_index();
1301 p
->section
->set_info_section_symndx(p
->section
);
1305 this->group_signatures_
.clear();
1308 // Find the first read-only PT_LOAD segment, creating one if
1312 Layout::find_first_load_seg()
1314 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1315 p
!= this->segment_list_
.end();
1318 if ((*p
)->type() == elfcpp::PT_LOAD
1319 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1320 && (parameters
->options().omagic()
1321 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1325 gold_assert(!this->script_options_
->saw_phdrs_clause());
1327 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1332 // Save states of all current output segments. Store saved states
1333 // in SEGMENT_STATES.
1336 Layout::save_segments(Segment_states
* segment_states
)
1338 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1339 p
!= this->segment_list_
.end();
1342 Output_segment
* segment
= *p
;
1344 Output_segment
* copy
= new Output_segment(*segment
);
1345 (*segment_states
)[segment
] = copy
;
1349 // Restore states of output segments and delete any segment not found in
1353 Layout::restore_segments(const Segment_states
* segment_states
)
1355 // Go through the segment list and remove any segment added in the
1357 this->tls_segment_
= NULL
;
1358 this->relro_segment_
= NULL
;
1359 Segment_list::iterator list_iter
= this->segment_list_
.begin();
1360 while (list_iter
!= this->segment_list_
.end())
1362 Output_segment
* segment
= *list_iter
;
1363 Segment_states::const_iterator states_iter
=
1364 segment_states
->find(segment
);
1365 if (states_iter
!= segment_states
->end())
1367 const Output_segment
* copy
= states_iter
->second
;
1368 // Shallow copy to restore states.
1371 // Also fix up TLS and RELRO segment pointers as appropriate.
1372 if (segment
->type() == elfcpp::PT_TLS
)
1373 this->tls_segment_
= segment
;
1374 else if (segment
->type() == elfcpp::PT_GNU_RELRO
)
1375 this->relro_segment_
= segment
;
1381 list_iter
= this->segment_list_
.erase(list_iter
);
1382 // This is a segment created during section layout. It should be
1383 // safe to remove it since we should have removed all pointers to it.
1389 // Clean up after relaxation so that sections can be laid out again.
1392 Layout::clean_up_after_relaxation()
1394 // Restore the segments to point state just prior to the relaxation loop.
1395 Script_sections
* script_section
= this->script_options_
->script_sections();
1396 script_section
->release_segments();
1397 this->restore_segments(this->segment_states_
);
1399 // Reset section addresses and file offsets
1400 for (Section_list::iterator p
= this->section_list_
.begin();
1401 p
!= this->section_list_
.end();
1404 (*p
)->reset_address_and_file_offset();
1405 (*p
)->restore_states();
1408 // Reset special output object address and file offsets.
1409 for (Data_list::iterator p
= this->special_output_list_
.begin();
1410 p
!= this->special_output_list_
.end();
1412 (*p
)->reset_address_and_file_offset();
1414 // A linker script may have created some output section data objects.
1415 // They are useless now.
1416 for (Output_section_data_list::const_iterator p
=
1417 this->script_output_section_data_list_
.begin();
1418 p
!= this->script_output_section_data_list_
.end();
1421 this->script_output_section_data_list_
.clear();
1424 // Prepare for relaxation.
1427 Layout::prepare_for_relaxation()
1429 // Create an relaxation debug check if in debugging mode.
1430 if (is_debugging_enabled(DEBUG_RELAXATION
))
1431 this->relaxation_debug_check_
= new Relaxation_debug_check();
1433 // Save segment states.
1434 this->segment_states_
= new Segment_states();
1435 this->save_segments(this->segment_states_
);
1437 for(Section_list::const_iterator p
= this->section_list_
.begin();
1438 p
!= this->section_list_
.end();
1440 (*p
)->save_states();
1442 if (is_debugging_enabled(DEBUG_RELAXATION
))
1443 this->relaxation_debug_check_
->check_output_data_for_reset_values(
1444 this->section_list_
, this->special_output_list_
);
1446 // Also enable recording of output section data from scripts.
1447 this->record_output_section_data_from_script_
= true;
1450 // Relaxation loop body: If target has no relaxation, this runs only once
1451 // Otherwise, the target relaxation hook is called at the end of
1452 // each iteration. If the hook returns true, it means re-layout of
1453 // section is required.
1455 // The number of segments created by a linking script without a PHDRS
1456 // clause may be affected by section sizes and alignments. There is
1457 // a remote chance that relaxation causes different number of PT_LOAD
1458 // segments are created and sections are attached to different segments.
1459 // Therefore, we always throw away all segments created during section
1460 // layout. In order to be able to restart the section layout, we keep
1461 // a copy of the segment list right before the relaxation loop and use
1462 // that to restore the segments.
1464 // PASS is the current relaxation pass number.
1465 // SYMTAB is a symbol table.
1466 // PLOAD_SEG is the address of a pointer for the load segment.
1467 // PHDR_SEG is a pointer to the PHDR segment.
1468 // SEGMENT_HEADERS points to the output segment header.
1469 // FILE_HEADER points to the output file header.
1470 // PSHNDX is the address to store the output section index.
1473 Layout::relaxation_loop_body(
1476 Symbol_table
* symtab
,
1477 Output_segment
** pload_seg
,
1478 Output_segment
* phdr_seg
,
1479 Output_segment_headers
* segment_headers
,
1480 Output_file_header
* file_header
,
1481 unsigned int* pshndx
)
1483 // If this is not the first iteration, we need to clean up after
1484 // relaxation so that we can lay out the sections again.
1486 this->clean_up_after_relaxation();
1488 // If there is a SECTIONS clause, put all the input sections into
1489 // the required order.
1490 Output_segment
* load_seg
;
1491 if (this->script_options_
->saw_sections_clause())
1492 load_seg
= this->set_section_addresses_from_script(symtab
);
1493 else if (parameters
->options().relocatable())
1496 load_seg
= this->find_first_load_seg();
1498 if (parameters
->options().oformat_enum()
1499 != General_options::OBJECT_FORMAT_ELF
)
1502 // If the user set the address of the text segment, that may not be
1503 // compatible with putting the segment headers and file headers into
1505 if (parameters
->options().user_set_Ttext())
1508 gold_assert(phdr_seg
== NULL
1510 || this->script_options_
->saw_sections_clause());
1512 // If the address of the load segment we found has been set by
1513 // --section-start rather than by a script, then we don't want to
1514 // use it for the file and segment headers.
1515 if (load_seg
!= NULL
1516 && load_seg
->are_addresses_set()
1517 && !this->script_options_
->saw_sections_clause())
1520 // Lay out the segment headers.
1521 if (!parameters
->options().relocatable())
1523 gold_assert(segment_headers
!= NULL
);
1524 if (load_seg
!= NULL
)
1525 load_seg
->add_initial_output_data(segment_headers
);
1526 if (phdr_seg
!= NULL
)
1527 phdr_seg
->add_initial_output_data(segment_headers
);
1530 // Lay out the file header.
1531 if (load_seg
!= NULL
)
1532 load_seg
->add_initial_output_data(file_header
);
1534 if (this->script_options_
->saw_phdrs_clause()
1535 && !parameters
->options().relocatable())
1537 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1538 // clause in a linker script.
1539 Script_sections
* ss
= this->script_options_
->script_sections();
1540 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1543 // We set the output section indexes in set_segment_offsets and
1544 // set_section_indexes.
1547 // Set the file offsets of all the segments, and all the sections
1550 if (!parameters
->options().relocatable())
1551 off
= this->set_segment_offsets(target
, load_seg
, pshndx
);
1553 off
= this->set_relocatable_section_offsets(file_header
, pshndx
);
1555 // Verify that the dummy relaxation does not change anything.
1556 if (is_debugging_enabled(DEBUG_RELAXATION
))
1559 this->relaxation_debug_check_
->read_sections(this->section_list_
);
1561 this->relaxation_debug_check_
->verify_sections(this->section_list_
);
1564 *pload_seg
= load_seg
;
1568 // Finalize the layout. When this is called, we have created all the
1569 // output sections and all the output segments which are based on
1570 // input sections. We have several things to do, and we have to do
1571 // them in the right order, so that we get the right results correctly
1574 // 1) Finalize the list of output segments and create the segment
1577 // 2) Finalize the dynamic symbol table and associated sections.
1579 // 3) Determine the final file offset of all the output segments.
1581 // 4) Determine the final file offset of all the SHF_ALLOC output
1584 // 5) Create the symbol table sections and the section name table
1587 // 6) Finalize the symbol table: set symbol values to their final
1588 // value and make a final determination of which symbols are going
1589 // into the output symbol table.
1591 // 7) Create the section table header.
1593 // 8) Determine the final file offset of all the output sections which
1594 // are not SHF_ALLOC, including the section table header.
1596 // 9) Finalize the ELF file header.
1598 // This function returns the size of the output file.
1601 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1602 Target
* target
, const Task
* task
)
1604 target
->finalize_sections(this, input_objects
, symtab
);
1606 this->count_local_symbols(task
, input_objects
);
1608 this->link_stabs_sections();
1610 Output_segment
* phdr_seg
= NULL
;
1611 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1613 // There was a dynamic object in the link. We need to create
1614 // some information for the dynamic linker.
1616 // Create the PT_PHDR segment which will hold the program
1618 if (!this->script_options_
->saw_phdrs_clause())
1619 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1621 // Create the dynamic symbol table, including the hash table.
1622 Output_section
* dynstr
;
1623 std::vector
<Symbol
*> dynamic_symbols
;
1624 unsigned int local_dynamic_count
;
1625 Versions
versions(*this->script_options()->version_script_info(),
1627 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1628 &local_dynamic_count
, &dynamic_symbols
,
1631 // Create the .interp section to hold the name of the
1632 // interpreter, and put it in a PT_INTERP segment.
1633 if (!parameters
->options().shared())
1634 this->create_interp(target
);
1636 // Finish the .dynamic section to hold the dynamic data, and put
1637 // it in a PT_DYNAMIC segment.
1638 this->finish_dynamic_section(input_objects
, symtab
);
1640 // We should have added everything we need to the dynamic string
1642 this->dynpool_
.set_string_offsets();
1644 // Create the version sections. We can't do this until the
1645 // dynamic string table is complete.
1646 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1647 dynamic_symbols
, dynstr
);
1649 // Set the size of the _DYNAMIC symbol. We can't do this until
1650 // after we call create_version_sections.
1651 this->set_dynamic_symbol_size(symtab
);
1654 if (this->incremental_inputs_
)
1656 this->incremental_inputs_
->finalize();
1657 this->create_incremental_info_sections();
1660 // Create segment headers.
1661 Output_segment_headers
* segment_headers
=
1662 (parameters
->options().relocatable()
1664 : new Output_segment_headers(this->segment_list_
));
1666 // Lay out the file header.
1667 Output_file_header
* file_header
1668 = new Output_file_header(target
, symtab
, segment_headers
,
1669 parameters
->options().entry());
1671 this->special_output_list_
.push_back(file_header
);
1672 if (segment_headers
!= NULL
)
1673 this->special_output_list_
.push_back(segment_headers
);
1675 // Find approriate places for orphan output sections if we are using
1677 if (this->script_options_
->saw_sections_clause())
1678 this->place_orphan_sections_in_script();
1680 Output_segment
* load_seg
;
1685 // Take a snapshot of the section layout as needed.
1686 if (target
->may_relax())
1687 this->prepare_for_relaxation();
1689 // Run the relaxation loop to lay out sections.
1692 off
= this->relaxation_loop_body(pass
, target
, symtab
, &load_seg
,
1693 phdr_seg
, segment_headers
, file_header
,
1697 while (target
->may_relax()
1698 && target
->relax(pass
, input_objects
, symtab
, this));
1700 // Set the file offsets of all the non-data sections we've seen so
1701 // far which don't have to wait for the input sections. We need
1702 // this in order to finalize local symbols in non-allocated
1704 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1706 // Set the section indexes of all unallocated sections seen so far,
1707 // in case any of them are somehow referenced by a symbol.
1708 shndx
= this->set_section_indexes(shndx
);
1710 // Create the symbol table sections.
1711 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1712 if (!parameters
->doing_static_link())
1713 this->assign_local_dynsym_offsets(input_objects
);
1715 // Process any symbol assignments from a linker script. This must
1716 // be called after the symbol table has been finalized.
1717 this->script_options_
->finalize_symbols(symtab
, this);
1719 // Create the .shstrtab section.
1720 Output_section
* shstrtab_section
= this->create_shstrtab();
1722 // Set the file offsets of the rest of the non-data sections which
1723 // don't have to wait for the input sections.
1724 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1726 // Now that all sections have been created, set the section indexes
1727 // for any sections which haven't been done yet.
1728 shndx
= this->set_section_indexes(shndx
);
1730 // Create the section table header.
1731 this->create_shdrs(shstrtab_section
, &off
);
1733 // If there are no sections which require postprocessing, we can
1734 // handle the section names now, and avoid a resize later.
1735 if (!this->any_postprocessing_sections_
)
1736 off
= this->set_section_offsets(off
,
1737 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1739 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1741 // Now we know exactly where everything goes in the output file
1742 // (except for non-allocated sections which require postprocessing).
1743 Output_data::layout_complete();
1745 this->output_file_size_
= off
;
1750 // Create a note header following the format defined in the ELF ABI.
1751 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1752 // of the section to create, DESCSZ is the size of the descriptor.
1753 // ALLOCATE is true if the section should be allocated in memory.
1754 // This returns the new note section. It sets *TRAILING_PADDING to
1755 // the number of trailing zero bytes required.
1758 Layout::create_note(const char* name
, int note_type
,
1759 const char* section_name
, size_t descsz
,
1760 bool allocate
, size_t* trailing_padding
)
1762 // Authorities all agree that the values in a .note field should
1763 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1764 // they differ on what the alignment is for 64-bit binaries.
1765 // The GABI says unambiguously they take 8-byte alignment:
1766 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1767 // Other documentation says alignment should always be 4 bytes:
1768 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1769 // GNU ld and GNU readelf both support the latter (at least as of
1770 // version 2.16.91), and glibc always generates the latter for
1771 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1773 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1774 const int size
= parameters
->target().get_size();
1776 const int size
= 32;
1779 // The contents of the .note section.
1780 size_t namesz
= strlen(name
) + 1;
1781 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1782 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1784 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1786 unsigned char* buffer
= new unsigned char[notehdrsz
];
1787 memset(buffer
, 0, notehdrsz
);
1789 bool is_big_endian
= parameters
->target().is_big_endian();
1795 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1796 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1797 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1801 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1802 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1803 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1806 else if (size
== 64)
1810 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1811 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1812 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1816 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1817 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1818 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1824 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1826 elfcpp::Elf_Xword flags
= 0;
1828 flags
= elfcpp::SHF_ALLOC
;
1829 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
1831 flags
, false, false,
1832 false, false, false, false);
1836 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1839 os
->add_output_section_data(posd
);
1841 *trailing_padding
= aligned_descsz
- descsz
;
1846 // For an executable or shared library, create a note to record the
1847 // version of gold used to create the binary.
1850 Layout::create_gold_note()
1852 if (parameters
->options().relocatable())
1855 std::string desc
= std::string("gold ") + gold::get_version_string();
1857 size_t trailing_padding
;
1858 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
1859 ".note.gnu.gold-version", desc
.size(),
1860 false, &trailing_padding
);
1864 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1865 os
->add_output_section_data(posd
);
1867 if (trailing_padding
> 0)
1869 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1870 os
->add_output_section_data(posd
);
1874 // Record whether the stack should be executable. This can be set
1875 // from the command line using the -z execstack or -z noexecstack
1876 // options. Otherwise, if any input file has a .note.GNU-stack
1877 // section with the SHF_EXECINSTR flag set, the stack should be
1878 // executable. Otherwise, if at least one input file a
1879 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1880 // section, we use the target default for whether the stack should be
1881 // executable. Otherwise, we don't generate a stack note. When
1882 // generating a object file, we create a .note.GNU-stack section with
1883 // the appropriate marking. When generating an executable or shared
1884 // library, we create a PT_GNU_STACK segment.
1887 Layout::create_executable_stack_info()
1889 bool is_stack_executable
;
1890 if (parameters
->options().is_execstack_set())
1891 is_stack_executable
= parameters
->options().is_stack_executable();
1892 else if (!this->input_with_gnu_stack_note_
)
1896 if (this->input_requires_executable_stack_
)
1897 is_stack_executable
= true;
1898 else if (this->input_without_gnu_stack_note_
)
1899 is_stack_executable
=
1900 parameters
->target().is_default_stack_executable();
1902 is_stack_executable
= false;
1905 if (parameters
->options().relocatable())
1907 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
1908 elfcpp::Elf_Xword flags
= 0;
1909 if (is_stack_executable
)
1910 flags
|= elfcpp::SHF_EXECINSTR
;
1911 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
, false,
1912 false, false, false, false);
1916 if (this->script_options_
->saw_phdrs_clause())
1918 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
1919 if (is_stack_executable
)
1920 flags
|= elfcpp::PF_X
;
1921 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
1925 // If --build-id was used, set up the build ID note.
1928 Layout::create_build_id()
1930 if (!parameters
->options().user_set_build_id())
1933 const char* style
= parameters
->options().build_id();
1934 if (strcmp(style
, "none") == 0)
1937 // Set DESCSZ to the size of the note descriptor. When possible,
1938 // set DESC to the note descriptor contents.
1941 if (strcmp(style
, "md5") == 0)
1943 else if (strcmp(style
, "sha1") == 0)
1945 else if (strcmp(style
, "uuid") == 0)
1947 const size_t uuidsz
= 128 / 8;
1949 char buffer
[uuidsz
];
1950 memset(buffer
, 0, uuidsz
);
1952 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
1954 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1958 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
1959 release_descriptor(descriptor
, true);
1961 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
1962 else if (static_cast<size_t>(got
) != uuidsz
)
1963 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1967 desc
.assign(buffer
, uuidsz
);
1970 else if (strncmp(style
, "0x", 2) == 0)
1973 const char* p
= style
+ 2;
1976 if (hex_p(p
[0]) && hex_p(p
[1]))
1978 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
1982 else if (*p
== '-' || *p
== ':')
1985 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1988 descsz
= desc
.size();
1991 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
1994 size_t trailing_padding
;
1995 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
1996 ".note.gnu.build-id", descsz
, true,
2003 // We know the value already, so we fill it in now.
2004 gold_assert(desc
.size() == descsz
);
2006 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2007 os
->add_output_section_data(posd
);
2009 if (trailing_padding
!= 0)
2011 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2012 os
->add_output_section_data(posd
);
2017 // We need to compute a checksum after we have completed the
2019 gold_assert(trailing_padding
== 0);
2020 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
2021 os
->add_output_section_data(this->build_id_note_
);
2025 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2026 // field of the former should point to the latter. I'm not sure who
2027 // started this, but the GNU linker does it, and some tools depend
2031 Layout::link_stabs_sections()
2033 if (!this->have_stabstr_section_
)
2036 for (Section_list::iterator p
= this->section_list_
.begin();
2037 p
!= this->section_list_
.end();
2040 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
2043 const char* name
= (*p
)->name();
2044 if (strncmp(name
, ".stab", 5) != 0)
2047 size_t len
= strlen(name
);
2048 if (strcmp(name
+ len
- 3, "str") != 0)
2051 std::string
stab_name(name
, len
- 3);
2052 Output_section
* stab_sec
;
2053 stab_sec
= this->find_output_section(stab_name
.c_str());
2054 if (stab_sec
!= NULL
)
2055 stab_sec
->set_link_section(*p
);
2059 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2060 // for the next run of incremental linking to check what has changed.
2063 Layout::create_incremental_info_sections()
2065 gold_assert(this->incremental_inputs_
!= NULL
);
2067 // Add the .gnu_incremental_inputs section.
2068 const char *incremental_inputs_name
=
2069 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
2070 Output_section
* inputs_os
=
2071 this->make_output_section(incremental_inputs_name
,
2072 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0,
2073 false, false, false, false, false);
2074 Output_section_data
* posd
=
2075 this->incremental_inputs_
->create_incremental_inputs_section_data();
2076 inputs_os
->add_output_section_data(posd
);
2078 // Add the .gnu_incremental_strtab section.
2079 const char *incremental_strtab_name
=
2080 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
2081 Output_section
* strtab_os
= this->make_output_section(incremental_strtab_name
,
2084 false, false, false);
2085 Output_data_strtab
* strtab_data
=
2086 new Output_data_strtab(this->incremental_inputs_
->get_stringpool());
2087 strtab_os
->add_output_section_data(strtab_data
);
2089 inputs_os
->set_link_section(strtab_data
);
2092 // Return whether SEG1 should be before SEG2 in the output file. This
2093 // is based entirely on the segment type and flags. When this is
2094 // called the segment addresses has normally not yet been set.
2097 Layout::segment_precedes(const Output_segment
* seg1
,
2098 const Output_segment
* seg2
)
2100 elfcpp::Elf_Word type1
= seg1
->type();
2101 elfcpp::Elf_Word type2
= seg2
->type();
2103 // The single PT_PHDR segment is required to precede any loadable
2104 // segment. We simply make it always first.
2105 if (type1
== elfcpp::PT_PHDR
)
2107 gold_assert(type2
!= elfcpp::PT_PHDR
);
2110 if (type2
== elfcpp::PT_PHDR
)
2113 // The single PT_INTERP segment is required to precede any loadable
2114 // segment. We simply make it always second.
2115 if (type1
== elfcpp::PT_INTERP
)
2117 gold_assert(type2
!= elfcpp::PT_INTERP
);
2120 if (type2
== elfcpp::PT_INTERP
)
2123 // We then put PT_LOAD segments before any other segments.
2124 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
2126 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
2129 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2130 // segment, because that is where the dynamic linker expects to find
2131 // it (this is just for efficiency; other positions would also work
2133 if (type1
== elfcpp::PT_TLS
2134 && type2
!= elfcpp::PT_TLS
2135 && type2
!= elfcpp::PT_GNU_RELRO
)
2137 if (type2
== elfcpp::PT_TLS
2138 && type1
!= elfcpp::PT_TLS
2139 && type1
!= elfcpp::PT_GNU_RELRO
)
2142 // We put the PT_GNU_RELRO segment last, because that is where the
2143 // dynamic linker expects to find it (as with PT_TLS, this is just
2145 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
2147 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
2150 const elfcpp::Elf_Word flags1
= seg1
->flags();
2151 const elfcpp::Elf_Word flags2
= seg2
->flags();
2153 // The order of non-PT_LOAD segments is unimportant. We simply sort
2154 // by the numeric segment type and flags values. There should not
2155 // be more than one segment with the same type and flags.
2156 if (type1
!= elfcpp::PT_LOAD
)
2159 return type1
< type2
;
2160 gold_assert(flags1
!= flags2
);
2161 return flags1
< flags2
;
2164 // If the addresses are set already, sort by load address.
2165 if (seg1
->are_addresses_set())
2167 if (!seg2
->are_addresses_set())
2170 unsigned int section_count1
= seg1
->output_section_count();
2171 unsigned int section_count2
= seg2
->output_section_count();
2172 if (section_count1
== 0 && section_count2
> 0)
2174 if (section_count1
> 0 && section_count2
== 0)
2177 uint64_t paddr1
= seg1
->first_section_load_address();
2178 uint64_t paddr2
= seg2
->first_section_load_address();
2179 if (paddr1
!= paddr2
)
2180 return paddr1
< paddr2
;
2182 else if (seg2
->are_addresses_set())
2185 // A segment which holds large data comes after a segment which does
2186 // not hold large data.
2187 if (seg1
->is_large_data_segment())
2189 if (!seg2
->is_large_data_segment())
2192 else if (seg2
->is_large_data_segment())
2195 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2196 // segments come before writable segments. Then writable segments
2197 // with data come before writable segments without data. Then
2198 // executable segments come before non-executable segments. Then
2199 // the unlikely case of a non-readable segment comes before the
2200 // normal case of a readable segment. If there are multiple
2201 // segments with the same type and flags, we require that the
2202 // address be set, and we sort by virtual address and then physical
2204 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
2205 return (flags1
& elfcpp::PF_W
) == 0;
2206 if ((flags1
& elfcpp::PF_W
) != 0
2207 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
2208 return seg1
->has_any_data_sections();
2209 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
2210 return (flags1
& elfcpp::PF_X
) != 0;
2211 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
2212 return (flags1
& elfcpp::PF_R
) == 0;
2214 // We shouldn't get here--we shouldn't create segments which we
2215 // can't distinguish.
2219 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2222 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
2224 uint64_t unsigned_off
= off
;
2225 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
2226 | (addr
& (abi_pagesize
- 1)));
2227 if (aligned_off
< unsigned_off
)
2228 aligned_off
+= abi_pagesize
;
2232 // Set the file offsets of all the segments, and all the sections they
2233 // contain. They have all been created. LOAD_SEG must be be laid out
2234 // first. Return the offset of the data to follow.
2237 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
2238 unsigned int *pshndx
)
2240 // Sort them into the final order.
2241 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
2242 Layout::Compare_segments());
2244 // Find the PT_LOAD segments, and set their addresses and offsets
2245 // and their section's addresses and offsets.
2247 if (parameters
->options().user_set_Ttext())
2248 addr
= parameters
->options().Ttext();
2249 else if (parameters
->options().output_is_position_independent())
2252 addr
= target
->default_text_segment_address();
2255 // If LOAD_SEG is NULL, then the file header and segment headers
2256 // will not be loadable. But they still need to be at offset 0 in
2257 // the file. Set their offsets now.
2258 if (load_seg
== NULL
)
2260 for (Data_list::iterator p
= this->special_output_list_
.begin();
2261 p
!= this->special_output_list_
.end();
2264 off
= align_address(off
, (*p
)->addralign());
2265 (*p
)->set_address_and_file_offset(0, off
);
2266 off
+= (*p
)->data_size();
2270 unsigned int increase_relro
= this->increase_relro_
;
2271 if (this->script_options_
->saw_sections_clause())
2274 const bool check_sections
= parameters
->options().check_sections();
2275 Output_segment
* last_load_segment
= NULL
;
2277 bool was_readonly
= false;
2278 for (Segment_list::iterator p
= this->segment_list_
.begin();
2279 p
!= this->segment_list_
.end();
2282 if ((*p
)->type() == elfcpp::PT_LOAD
)
2284 if (load_seg
!= NULL
&& load_seg
!= *p
)
2288 bool are_addresses_set
= (*p
)->are_addresses_set();
2289 if (are_addresses_set
)
2291 // When it comes to setting file offsets, we care about
2292 // the physical address.
2293 addr
= (*p
)->paddr();
2295 else if (parameters
->options().user_set_Tdata()
2296 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2297 && (!parameters
->options().user_set_Tbss()
2298 || (*p
)->has_any_data_sections()))
2300 addr
= parameters
->options().Tdata();
2301 are_addresses_set
= true;
2303 else if (parameters
->options().user_set_Tbss()
2304 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2305 && !(*p
)->has_any_data_sections())
2307 addr
= parameters
->options().Tbss();
2308 are_addresses_set
= true;
2311 uint64_t orig_addr
= addr
;
2312 uint64_t orig_off
= off
;
2314 uint64_t aligned_addr
= 0;
2315 uint64_t abi_pagesize
= target
->abi_pagesize();
2316 uint64_t common_pagesize
= target
->common_pagesize();
2318 if (!parameters
->options().nmagic()
2319 && !parameters
->options().omagic())
2320 (*p
)->set_minimum_p_align(common_pagesize
);
2322 if (!are_addresses_set
)
2324 // If the last segment was readonly, and this one is
2325 // not, then skip the address forward one page,
2326 // maintaining the same position within the page. This
2327 // lets us store both segments overlapping on a single
2328 // page in the file, but the loader will put them on
2329 // different pages in memory.
2331 addr
= align_address(addr
, (*p
)->maximum_alignment());
2332 aligned_addr
= addr
;
2334 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
2336 if ((addr
& (abi_pagesize
- 1)) != 0)
2337 addr
= addr
+ abi_pagesize
;
2340 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2343 if (!parameters
->options().nmagic()
2344 && !parameters
->options().omagic())
2345 off
= align_file_offset(off
, addr
, abi_pagesize
);
2346 else if (load_seg
== NULL
)
2348 // This is -N or -n with a section script which prevents
2349 // us from using a load segment. We need to ensure that
2350 // the file offset is aligned to the alignment of the
2351 // segment. This is because the linker script
2352 // implicitly assumed a zero offset. If we don't align
2353 // here, then the alignment of the sections in the
2354 // linker script may not match the alignment of the
2355 // sections in the set_section_addresses call below,
2356 // causing an error about dot moving backward.
2357 off
= align_address(off
, (*p
)->maximum_alignment());
2360 unsigned int shndx_hold
= *pshndx
;
2361 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
2365 // Now that we know the size of this segment, we may be able
2366 // to save a page in memory, at the cost of wasting some
2367 // file space, by instead aligning to the start of a new
2368 // page. Here we use the real machine page size rather than
2369 // the ABI mandated page size.
2371 if (!are_addresses_set
&& aligned_addr
!= addr
)
2373 uint64_t first_off
= (common_pagesize
2375 & (common_pagesize
- 1)));
2376 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
2379 && ((aligned_addr
& ~ (common_pagesize
- 1))
2380 != (new_addr
& ~ (common_pagesize
- 1)))
2381 && first_off
+ last_off
<= common_pagesize
)
2383 *pshndx
= shndx_hold
;
2384 addr
= align_address(aligned_addr
, common_pagesize
);
2385 addr
= align_address(addr
, (*p
)->maximum_alignment());
2386 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2387 off
= align_file_offset(off
, addr
, abi_pagesize
);
2388 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
2396 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
2397 was_readonly
= true;
2399 // Implement --check-sections. We know that the segments
2400 // are sorted by LMA.
2401 if (check_sections
&& last_load_segment
!= NULL
)
2403 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
2404 if (last_load_segment
->paddr() + last_load_segment
->memsz()
2407 unsigned long long lb1
= last_load_segment
->paddr();
2408 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
2409 unsigned long long lb2
= (*p
)->paddr();
2410 unsigned long long le2
= lb2
+ (*p
)->memsz();
2411 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2412 "[0x%llx -> 0x%llx]"),
2413 lb1
, le1
, lb2
, le2
);
2416 last_load_segment
= *p
;
2420 // Handle the non-PT_LOAD segments, setting their offsets from their
2421 // section's offsets.
2422 for (Segment_list::iterator p
= this->segment_list_
.begin();
2423 p
!= this->segment_list_
.end();
2426 if ((*p
)->type() != elfcpp::PT_LOAD
)
2427 (*p
)->set_offset((*p
)->type() == elfcpp::PT_GNU_RELRO
2432 // Set the TLS offsets for each section in the PT_TLS segment.
2433 if (this->tls_segment_
!= NULL
)
2434 this->tls_segment_
->set_tls_offsets();
2439 // Set the offsets of all the allocated sections when doing a
2440 // relocatable link. This does the same jobs as set_segment_offsets,
2441 // only for a relocatable link.
2444 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
2445 unsigned int *pshndx
)
2449 file_header
->set_address_and_file_offset(0, 0);
2450 off
+= file_header
->data_size();
2452 for (Section_list::iterator p
= this->section_list_
.begin();
2453 p
!= this->section_list_
.end();
2456 // We skip unallocated sections here, except that group sections
2457 // have to come first.
2458 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
2459 && (*p
)->type() != elfcpp::SHT_GROUP
)
2462 off
= align_address(off
, (*p
)->addralign());
2464 // The linker script might have set the address.
2465 if (!(*p
)->is_address_valid())
2466 (*p
)->set_address(0);
2467 (*p
)->set_file_offset(off
);
2468 (*p
)->finalize_data_size();
2469 off
+= (*p
)->data_size();
2471 (*p
)->set_out_shndx(*pshndx
);
2478 // Set the file offset of all the sections not associated with a
2482 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
2484 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2485 p
!= this->unattached_section_list_
.end();
2488 // The symtab section is handled in create_symtab_sections.
2489 if (*p
== this->symtab_section_
)
2492 // If we've already set the data size, don't set it again.
2493 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
2496 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2497 && (*p
)->requires_postprocessing())
2499 (*p
)->create_postprocessing_buffer();
2500 this->any_postprocessing_sections_
= true;
2503 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2504 && (*p
)->after_input_sections())
2506 else if (pass
== POSTPROCESSING_SECTIONS_PASS
2507 && (!(*p
)->after_input_sections()
2508 || (*p
)->type() == elfcpp::SHT_STRTAB
))
2510 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2511 && (!(*p
)->after_input_sections()
2512 || (*p
)->type() != elfcpp::SHT_STRTAB
))
2515 off
= align_address(off
, (*p
)->addralign());
2516 (*p
)->set_file_offset(off
);
2517 (*p
)->finalize_data_size();
2518 off
+= (*p
)->data_size();
2520 // At this point the name must be set.
2521 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
2522 this->namepool_
.add((*p
)->name(), false, NULL
);
2527 // Set the section indexes of all the sections not associated with a
2531 Layout::set_section_indexes(unsigned int shndx
)
2533 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2534 p
!= this->unattached_section_list_
.end();
2537 if (!(*p
)->has_out_shndx())
2539 (*p
)->set_out_shndx(shndx
);
2546 // Set the section addresses according to the linker script. This is
2547 // only called when we see a SECTIONS clause. This returns the
2548 // program segment which should hold the file header and segment
2549 // headers, if any. It will return NULL if they should not be in a
2553 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2555 Script_sections
* ss
= this->script_options_
->script_sections();
2556 gold_assert(ss
->saw_sections_clause());
2557 return this->script_options_
->set_section_addresses(symtab
, this);
2560 // Place the orphan sections in the linker script.
2563 Layout::place_orphan_sections_in_script()
2565 Script_sections
* ss
= this->script_options_
->script_sections();
2566 gold_assert(ss
->saw_sections_clause());
2568 // Place each orphaned output section in the script.
2569 for (Section_list::iterator p
= this->section_list_
.begin();
2570 p
!= this->section_list_
.end();
2573 if (!(*p
)->found_in_sections_clause())
2574 ss
->place_orphan(*p
);
2578 // Count the local symbols in the regular symbol table and the dynamic
2579 // symbol table, and build the respective string pools.
2582 Layout::count_local_symbols(const Task
* task
,
2583 const Input_objects
* input_objects
)
2585 // First, figure out an upper bound on the number of symbols we'll
2586 // be inserting into each pool. This helps us create the pools with
2587 // the right size, to avoid unnecessary hashtable resizing.
2588 unsigned int symbol_count
= 0;
2589 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2590 p
!= input_objects
->relobj_end();
2592 symbol_count
+= (*p
)->local_symbol_count();
2594 // Go from "upper bound" to "estimate." We overcount for two
2595 // reasons: we double-count symbols that occur in more than one
2596 // object file, and we count symbols that are dropped from the
2597 // output. Add it all together and assume we overcount by 100%.
2600 // We assume all symbols will go into both the sympool and dynpool.
2601 this->sympool_
.reserve(symbol_count
);
2602 this->dynpool_
.reserve(symbol_count
);
2604 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2605 p
!= input_objects
->relobj_end();
2608 Task_lock_obj
<Object
> tlo(task
, *p
);
2609 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2613 // Create the symbol table sections. Here we also set the final
2614 // values of the symbols. At this point all the loadable sections are
2615 // fully laid out. SHNUM is the number of sections so far.
2618 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2619 Symbol_table
* symtab
,
2625 if (parameters
->target().get_size() == 32)
2627 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2630 else if (parameters
->target().get_size() == 64)
2632 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2639 off
= align_address(off
, align
);
2640 off_t startoff
= off
;
2642 // Save space for the dummy symbol at the start of the section. We
2643 // never bother to write this out--it will just be left as zero.
2645 unsigned int local_symbol_index
= 1;
2647 // Add STT_SECTION symbols for each Output section which needs one.
2648 for (Section_list::iterator p
= this->section_list_
.begin();
2649 p
!= this->section_list_
.end();
2652 if (!(*p
)->needs_symtab_index())
2653 (*p
)->set_symtab_index(-1U);
2656 (*p
)->set_symtab_index(local_symbol_index
);
2657 ++local_symbol_index
;
2662 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2663 p
!= input_objects
->relobj_end();
2666 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2668 off
+= (index
- local_symbol_index
) * symsize
;
2669 local_symbol_index
= index
;
2672 unsigned int local_symcount
= local_symbol_index
;
2673 gold_assert(static_cast<off_t
>(local_symcount
* symsize
) == off
- startoff
);
2676 size_t dyn_global_index
;
2678 if (this->dynsym_section_
== NULL
)
2681 dyn_global_index
= 0;
2686 dyn_global_index
= this->dynsym_section_
->info();
2687 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2688 dynoff
= this->dynsym_section_
->offset() + locsize
;
2689 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2690 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2691 == this->dynsym_section_
->data_size() - locsize
);
2694 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2695 &this->sympool_
, &local_symcount
);
2697 if (!parameters
->options().strip_all())
2699 this->sympool_
.set_string_offsets();
2701 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2702 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2705 false, false, false);
2706 this->symtab_section_
= osymtab
;
2708 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2711 osymtab
->add_output_section_data(pos
);
2713 // We generate a .symtab_shndx section if we have more than
2714 // SHN_LORESERVE sections. Technically it is possible that we
2715 // don't need one, because it is possible that there are no
2716 // symbols in any of sections with indexes larger than
2717 // SHN_LORESERVE. That is probably unusual, though, and it is
2718 // easier to always create one than to compute section indexes
2719 // twice (once here, once when writing out the symbols).
2720 if (shnum
>= elfcpp::SHN_LORESERVE
)
2722 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
2724 Output_section
* osymtab_xindex
=
2725 this->make_output_section(symtab_xindex_name
,
2726 elfcpp::SHT_SYMTAB_SHNDX
, 0, false,
2727 false, false, false, false);
2729 size_t symcount
= (off
- startoff
) / symsize
;
2730 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
2732 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
2734 osymtab_xindex
->set_link_section(osymtab
);
2735 osymtab_xindex
->set_addralign(4);
2736 osymtab_xindex
->set_entsize(4);
2738 osymtab_xindex
->set_after_input_sections();
2740 // This tells the driver code to wait until the symbol table
2741 // has written out before writing out the postprocessing
2742 // sections, including the .symtab_shndx section.
2743 this->any_postprocessing_sections_
= true;
2746 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
2747 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
2750 false, false, false);
2752 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
2753 ostrtab
->add_output_section_data(pstr
);
2755 osymtab
->set_file_offset(startoff
);
2756 osymtab
->finalize_data_size();
2757 osymtab
->set_link_section(ostrtab
);
2758 osymtab
->set_info(local_symcount
);
2759 osymtab
->set_entsize(symsize
);
2765 // Create the .shstrtab section, which holds the names of the
2766 // sections. At the time this is called, we have created all the
2767 // output sections except .shstrtab itself.
2770 Layout::create_shstrtab()
2772 // FIXME: We don't need to create a .shstrtab section if we are
2773 // stripping everything.
2775 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2777 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0,
2778 false, false, false, false,
2781 if (strcmp(parameters
->options().compress_debug_sections(), "none") != 0)
2783 // We can't write out this section until we've set all the
2784 // section names, and we don't set the names of compressed
2785 // output sections until relocations are complete. FIXME: With
2786 // the current names we use, this is unnecessary.
2787 os
->set_after_input_sections();
2790 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2791 os
->add_output_section_data(posd
);
2796 // Create the section headers. SIZE is 32 or 64. OFF is the file
2800 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
2802 Output_section_headers
* oshdrs
;
2803 oshdrs
= new Output_section_headers(this,
2804 &this->segment_list_
,
2805 &this->section_list_
,
2806 &this->unattached_section_list_
,
2809 off_t off
= align_address(*poff
, oshdrs
->addralign());
2810 oshdrs
->set_address_and_file_offset(0, off
);
2811 off
+= oshdrs
->data_size();
2813 this->section_headers_
= oshdrs
;
2816 // Count the allocated sections.
2819 Layout::allocated_output_section_count() const
2821 size_t section_count
= 0;
2822 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2823 p
!= this->segment_list_
.end();
2825 section_count
+= (*p
)->output_section_count();
2826 return section_count
;
2829 // Create the dynamic symbol table.
2832 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2833 Symbol_table
* symtab
,
2834 Output_section
**pdynstr
,
2835 unsigned int* plocal_dynamic_count
,
2836 std::vector
<Symbol
*>* pdynamic_symbols
,
2837 Versions
* pversions
)
2839 // Count all the symbols in the dynamic symbol table, and set the
2840 // dynamic symbol indexes.
2842 // Skip symbol 0, which is always all zeroes.
2843 unsigned int index
= 1;
2845 // Add STT_SECTION symbols for each Output section which needs one.
2846 for (Section_list::iterator p
= this->section_list_
.begin();
2847 p
!= this->section_list_
.end();
2850 if (!(*p
)->needs_dynsym_index())
2851 (*p
)->set_dynsym_index(-1U);
2854 (*p
)->set_dynsym_index(index
);
2859 // Count the local symbols that need to go in the dynamic symbol table,
2860 // and set the dynamic symbol indexes.
2861 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2862 p
!= input_objects
->relobj_end();
2865 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
2869 unsigned int local_symcount
= index
;
2870 *plocal_dynamic_count
= local_symcount
;
2872 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
2873 &this->dynpool_
, pversions
);
2877 const int size
= parameters
->target().get_size();
2880 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2883 else if (size
== 64)
2885 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2891 // Create the dynamic symbol table section.
2893 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
2897 false, false, false);
2899 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
2902 dynsym
->add_output_section_data(odata
);
2904 dynsym
->set_info(local_symcount
);
2905 dynsym
->set_entsize(symsize
);
2906 dynsym
->set_addralign(align
);
2908 this->dynsym_section_
= dynsym
;
2910 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2911 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
2912 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
2914 // If there are more than SHN_LORESERVE allocated sections, we
2915 // create a .dynsym_shndx section. It is possible that we don't
2916 // need one, because it is possible that there are no dynamic
2917 // symbols in any of the sections with indexes larger than
2918 // SHN_LORESERVE. This is probably unusual, though, and at this
2919 // time we don't know the actual section indexes so it is
2920 // inconvenient to check.
2921 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
2923 Output_section
* dynsym_xindex
=
2924 this->choose_output_section(NULL
, ".dynsym_shndx",
2925 elfcpp::SHT_SYMTAB_SHNDX
,
2927 false, false, true, false, false, false);
2929 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
2931 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
2933 dynsym_xindex
->set_link_section(dynsym
);
2934 dynsym_xindex
->set_addralign(4);
2935 dynsym_xindex
->set_entsize(4);
2937 dynsym_xindex
->set_after_input_sections();
2939 // This tells the driver code to wait until the symbol table has
2940 // written out before writing out the postprocessing sections,
2941 // including the .dynsym_shndx section.
2942 this->any_postprocessing_sections_
= true;
2945 // Create the dynamic string table section.
2947 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
2951 false, false, false);
2953 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
2954 dynstr
->add_output_section_data(strdata
);
2956 dynsym
->set_link_section(dynstr
);
2957 this->dynamic_section_
->set_link_section(dynstr
);
2959 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
2960 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
2964 // Create the hash tables.
2966 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
2967 || strcmp(parameters
->options().hash_style(), "both") == 0)
2969 unsigned char* phash
;
2970 unsigned int hashlen
;
2971 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
2974 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
2981 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2985 hashsec
->add_output_section_data(hashdata
);
2987 hashsec
->set_link_section(dynsym
);
2988 hashsec
->set_entsize(4);
2990 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
2993 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
2994 || strcmp(parameters
->options().hash_style(), "both") == 0)
2996 unsigned char* phash
;
2997 unsigned int hashlen
;
2998 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
3001 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
3002 elfcpp::SHT_GNU_HASH
,
3008 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3012 hashsec
->add_output_section_data(hashdata
);
3014 hashsec
->set_link_section(dynsym
);
3016 // For a 64-bit target, the entries in .gnu.hash do not have a
3017 // uniform size, so we only set the entry size for a 32-bit
3019 if (parameters
->target().get_size() == 32)
3020 hashsec
->set_entsize(4);
3022 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
3026 // Assign offsets to each local portion of the dynamic symbol table.
3029 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
3031 Output_section
* dynsym
= this->dynsym_section_
;
3032 gold_assert(dynsym
!= NULL
);
3034 off_t off
= dynsym
->offset();
3036 // Skip the dummy symbol at the start of the section.
3037 off
+= dynsym
->entsize();
3039 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3040 p
!= input_objects
->relobj_end();
3043 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
3044 off
+= count
* dynsym
->entsize();
3048 // Create the version sections.
3051 Layout::create_version_sections(const Versions
* versions
,
3052 const Symbol_table
* symtab
,
3053 unsigned int local_symcount
,
3054 const std::vector
<Symbol
*>& dynamic_symbols
,
3055 const Output_section
* dynstr
)
3057 if (!versions
->any_defs() && !versions
->any_needs())
3060 switch (parameters
->size_and_endianness())
3062 #ifdef HAVE_TARGET_32_LITTLE
3063 case Parameters::TARGET_32_LITTLE
:
3064 this->sized_create_version_sections
<32, false>(versions
, symtab
,
3066 dynamic_symbols
, dynstr
);
3069 #ifdef HAVE_TARGET_32_BIG
3070 case Parameters::TARGET_32_BIG
:
3071 this->sized_create_version_sections
<32, true>(versions
, symtab
,
3073 dynamic_symbols
, dynstr
);
3076 #ifdef HAVE_TARGET_64_LITTLE
3077 case Parameters::TARGET_64_LITTLE
:
3078 this->sized_create_version_sections
<64, false>(versions
, symtab
,
3080 dynamic_symbols
, dynstr
);
3083 #ifdef HAVE_TARGET_64_BIG
3084 case Parameters::TARGET_64_BIG
:
3085 this->sized_create_version_sections
<64, true>(versions
, symtab
,
3087 dynamic_symbols
, dynstr
);
3095 // Create the version sections, sized version.
3097 template<int size
, bool big_endian
>
3099 Layout::sized_create_version_sections(
3100 const Versions
* versions
,
3101 const Symbol_table
* symtab
,
3102 unsigned int local_symcount
,
3103 const std::vector
<Symbol
*>& dynamic_symbols
,
3104 const Output_section
* dynstr
)
3106 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
3107 elfcpp::SHT_GNU_versym
,
3110 false, false, false);
3112 unsigned char* vbuf
;
3114 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
3119 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
3122 vsec
->add_output_section_data(vdata
);
3123 vsec
->set_entsize(2);
3124 vsec
->set_link_section(this->dynsym_section_
);
3126 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3127 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
3129 if (versions
->any_defs())
3131 Output_section
* vdsec
;
3132 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
3133 elfcpp::SHT_GNU_verdef
,
3135 false, false, true, false, false,
3138 unsigned char* vdbuf
;
3139 unsigned int vdsize
;
3140 unsigned int vdentries
;
3141 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
3142 &vdsize
, &vdentries
);
3144 Output_section_data
* vddata
=
3145 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
3147 vdsec
->add_output_section_data(vddata
);
3148 vdsec
->set_link_section(dynstr
);
3149 vdsec
->set_info(vdentries
);
3151 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
3152 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
3155 if (versions
->any_needs())
3157 Output_section
* vnsec
;
3158 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
3159 elfcpp::SHT_GNU_verneed
,
3161 false, false, true, false, false,
3164 unsigned char* vnbuf
;
3165 unsigned int vnsize
;
3166 unsigned int vnentries
;
3167 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
3171 Output_section_data
* vndata
=
3172 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
3174 vnsec
->add_output_section_data(vndata
);
3175 vnsec
->set_link_section(dynstr
);
3176 vnsec
->set_info(vnentries
);
3178 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
3179 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
3183 // Create the .interp section and PT_INTERP segment.
3186 Layout::create_interp(const Target
* target
)
3188 const char* interp
= parameters
->options().dynamic_linker();
3191 interp
= target
->dynamic_linker();
3192 gold_assert(interp
!= NULL
);
3195 size_t len
= strlen(interp
) + 1;
3197 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
3199 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
3200 elfcpp::SHT_PROGBITS
,
3203 false, false, false);
3204 osec
->add_output_section_data(odata
);
3206 if (!this->script_options_
->saw_phdrs_clause())
3208 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
3210 oseg
->add_output_section(osec
, elfcpp::PF_R
, false);
3214 // Add dynamic tags for the PLT and the dynamic relocs. This is
3215 // called by the target-specific code. This does nothing if not doing
3218 // USE_REL is true for REL relocs rather than RELA relocs.
3220 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3222 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3223 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3224 // some targets have multiple reloc sections in PLT_REL.
3226 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3227 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3229 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3233 Layout::add_target_dynamic_tags(bool use_rel
, const Output_data
* plt_got
,
3234 const Output_data
* plt_rel
,
3235 const Output_data_reloc_generic
* dyn_rel
,
3238 Output_data_dynamic
* odyn
= this->dynamic_data_
;
3242 if (plt_got
!= NULL
&& plt_got
->output_section() != NULL
)
3243 odyn
->add_section_address(elfcpp::DT_PLTGOT
, plt_got
);
3245 if (plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
)
3247 odyn
->add_section_size(elfcpp::DT_PLTRELSZ
, plt_rel
->output_section());
3248 odyn
->add_section_address(elfcpp::DT_JMPREL
, plt_rel
->output_section());
3249 odyn
->add_constant(elfcpp::DT_PLTREL
,
3250 use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
);
3253 if (dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
)
3255 odyn
->add_section_address(use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
,
3257 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3259 const int size
= parameters
->target().get_size();
3264 rel_tag
= elfcpp::DT_RELENT
;
3266 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 32, false>::reloc_size
;
3267 else if (size
== 64)
3268 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 64, false>::reloc_size
;
3274 rel_tag
= elfcpp::DT_RELAENT
;
3276 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 32, false>::reloc_size
;
3277 else if (size
== 64)
3278 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 64, false>::reloc_size
;
3282 odyn
->add_constant(rel_tag
, rel_size
);
3284 if (parameters
->options().combreloc())
3286 size_t c
= dyn_rel
->relative_reloc_count();
3288 odyn
->add_constant((use_rel
3289 ? elfcpp::DT_RELCOUNT
3290 : elfcpp::DT_RELACOUNT
),
3295 if (add_debug
&& !parameters
->options().shared())
3297 // The value of the DT_DEBUG tag is filled in by the dynamic
3298 // linker at run time, and used by the debugger.
3299 odyn
->add_constant(elfcpp::DT_DEBUG
, 0);
3303 // Finish the .dynamic section and PT_DYNAMIC segment.
3306 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
3307 const Symbol_table
* symtab
)
3309 if (!this->script_options_
->saw_phdrs_clause())
3311 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
3314 oseg
->add_output_section(this->dynamic_section_
,
3315 elfcpp::PF_R
| elfcpp::PF_W
,
3319 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3321 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
3322 p
!= input_objects
->dynobj_end();
3325 if (!(*p
)->is_needed()
3326 && (*p
)->input_file()->options().as_needed())
3328 // This dynamic object was linked with --as-needed, but it
3333 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
3336 if (parameters
->options().shared())
3338 const char* soname
= parameters
->options().soname();
3340 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
3343 Symbol
* sym
= symtab
->lookup(parameters
->options().init());
3344 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3345 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
3347 sym
= symtab
->lookup(parameters
->options().fini());
3348 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3349 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
3351 // Look for .init_array, .preinit_array and .fini_array by checking
3353 for(Layout::Section_list::const_iterator p
= this->section_list_
.begin();
3354 p
!= this->section_list_
.end();
3356 switch((*p
)->type())
3358 case elfcpp::SHT_FINI_ARRAY
:
3359 odyn
->add_section_address(elfcpp::DT_FINI_ARRAY
, *p
);
3360 odyn
->add_section_size(elfcpp::DT_FINI_ARRAYSZ
, *p
);
3362 case elfcpp::SHT_INIT_ARRAY
:
3363 odyn
->add_section_address(elfcpp::DT_INIT_ARRAY
, *p
);
3364 odyn
->add_section_size(elfcpp::DT_INIT_ARRAYSZ
, *p
);
3366 case elfcpp::SHT_PREINIT_ARRAY
:
3367 odyn
->add_section_address(elfcpp::DT_PREINIT_ARRAY
, *p
);
3368 odyn
->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ
, *p
);
3374 // Add a DT_RPATH entry if needed.
3375 const General_options::Dir_list
& rpath(parameters
->options().rpath());
3378 std::string rpath_val
;
3379 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
3383 if (rpath_val
.empty())
3384 rpath_val
= p
->name();
3387 // Eliminate duplicates.
3388 General_options::Dir_list::const_iterator q
;
3389 for (q
= rpath
.begin(); q
!= p
; ++q
)
3390 if (q
->name() == p
->name())
3395 rpath_val
+= p
->name();
3400 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
3401 if (parameters
->options().enable_new_dtags())
3402 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
3405 // Look for text segments that have dynamic relocations.
3406 bool have_textrel
= false;
3407 if (!this->script_options_
->saw_sections_clause())
3409 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3410 p
!= this->segment_list_
.end();
3413 if (((*p
)->flags() & elfcpp::PF_W
) == 0
3414 && (*p
)->dynamic_reloc_count() > 0)
3416 have_textrel
= true;
3423 // We don't know the section -> segment mapping, so we are
3424 // conservative and just look for readonly sections with
3425 // relocations. If those sections wind up in writable segments,
3426 // then we have created an unnecessary DT_TEXTREL entry.
3427 for (Section_list::const_iterator p
= this->section_list_
.begin();
3428 p
!= this->section_list_
.end();
3431 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
3432 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
3433 && ((*p
)->dynamic_reloc_count() > 0))
3435 have_textrel
= true;
3441 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3442 // post-link tools can easily modify these flags if desired.
3443 unsigned int flags
= 0;
3446 // Add a DT_TEXTREL for compatibility with older loaders.
3447 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
3448 flags
|= elfcpp::DF_TEXTREL
;
3450 if (parameters
->options().text())
3451 gold_error(_("read-only segment has dynamic relocations"));
3452 else if (parameters
->options().warn_shared_textrel()
3453 && parameters
->options().shared())
3454 gold_warning(_("shared library text segment is not shareable"));
3456 if (parameters
->options().shared() && this->has_static_tls())
3457 flags
|= elfcpp::DF_STATIC_TLS
;
3458 if (parameters
->options().origin())
3459 flags
|= elfcpp::DF_ORIGIN
;
3460 if (parameters
->options().Bsymbolic())
3462 flags
|= elfcpp::DF_SYMBOLIC
;
3463 // Add DT_SYMBOLIC for compatibility with older loaders.
3464 odyn
->add_constant(elfcpp::DT_SYMBOLIC
, 0);
3466 if (parameters
->options().now())
3467 flags
|= elfcpp::DF_BIND_NOW
;
3468 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
3471 if (parameters
->options().initfirst())
3472 flags
|= elfcpp::DF_1_INITFIRST
;
3473 if (parameters
->options().interpose())
3474 flags
|= elfcpp::DF_1_INTERPOSE
;
3475 if (parameters
->options().loadfltr())
3476 flags
|= elfcpp::DF_1_LOADFLTR
;
3477 if (parameters
->options().nodefaultlib())
3478 flags
|= elfcpp::DF_1_NODEFLIB
;
3479 if (parameters
->options().nodelete())
3480 flags
|= elfcpp::DF_1_NODELETE
;
3481 if (parameters
->options().nodlopen())
3482 flags
|= elfcpp::DF_1_NOOPEN
;
3483 if (parameters
->options().nodump())
3484 flags
|= elfcpp::DF_1_NODUMP
;
3485 if (!parameters
->options().shared())
3486 flags
&= ~(elfcpp::DF_1_INITFIRST
3487 | elfcpp::DF_1_NODELETE
3488 | elfcpp::DF_1_NOOPEN
);
3489 if (parameters
->options().origin())
3490 flags
|= elfcpp::DF_1_ORIGIN
;
3491 if (parameters
->options().now())
3492 flags
|= elfcpp::DF_1_NOW
;
3494 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
3497 // Set the size of the _DYNAMIC symbol table to be the size of the
3501 Layout::set_dynamic_symbol_size(const Symbol_table
* symtab
)
3503 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3504 odyn
->finalize_data_size();
3505 off_t data_size
= odyn
->data_size();
3506 const int size
= parameters
->target().get_size();
3508 symtab
->get_sized_symbol
<32>(this->dynamic_symbol_
)->set_symsize(data_size
);
3509 else if (size
== 64)
3510 symtab
->get_sized_symbol
<64>(this->dynamic_symbol_
)->set_symsize(data_size
);
3515 // The mapping of input section name prefixes to output section names.
3516 // In some cases one prefix is itself a prefix of another prefix; in
3517 // such a case the longer prefix must come first. These prefixes are
3518 // based on the GNU linker default ELF linker script.
3520 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3521 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
3523 MAPPING_INIT(".text.", ".text"),
3524 MAPPING_INIT(".ctors.", ".ctors"),
3525 MAPPING_INIT(".dtors.", ".dtors"),
3526 MAPPING_INIT(".rodata.", ".rodata"),
3527 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3528 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3529 MAPPING_INIT(".data.", ".data"),
3530 MAPPING_INIT(".bss.", ".bss"),
3531 MAPPING_INIT(".tdata.", ".tdata"),
3532 MAPPING_INIT(".tbss.", ".tbss"),
3533 MAPPING_INIT(".init_array.", ".init_array"),
3534 MAPPING_INIT(".fini_array.", ".fini_array"),
3535 MAPPING_INIT(".sdata.", ".sdata"),
3536 MAPPING_INIT(".sbss.", ".sbss"),
3537 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3538 // differently depending on whether it is creating a shared library.
3539 MAPPING_INIT(".sdata2.", ".sdata"),
3540 MAPPING_INIT(".sbss2.", ".sbss"),
3541 MAPPING_INIT(".lrodata.", ".lrodata"),
3542 MAPPING_INIT(".ldata.", ".ldata"),
3543 MAPPING_INIT(".lbss.", ".lbss"),
3544 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3545 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3546 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3547 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3548 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3549 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3550 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3551 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3552 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3553 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3554 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3555 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3556 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3557 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3558 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3559 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3560 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3561 MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
3562 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3563 MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
3564 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3568 const int Layout::section_name_mapping_count
=
3569 (sizeof(Layout::section_name_mapping
)
3570 / sizeof(Layout::section_name_mapping
[0]));
3572 // Choose the output section name to use given an input section name.
3573 // Set *PLEN to the length of the name. *PLEN is initialized to the
3577 Layout::output_section_name(const char* name
, size_t* plen
)
3579 // gcc 4.3 generates the following sorts of section names when it
3580 // needs a section name specific to a function:
3586 // .data.rel.local.FN
3588 // .data.rel.ro.local.FN
3595 // The GNU linker maps all of those to the part before the .FN,
3596 // except that .data.rel.local.FN is mapped to .data, and
3597 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3598 // beginning with .data.rel.ro.local are grouped together.
3600 // For an anonymous namespace, the string FN can contain a '.'.
3602 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3603 // GNU linker maps to .rodata.
3605 // The .data.rel.ro sections are used with -z relro. The sections
3606 // are recognized by name. We use the same names that the GNU
3607 // linker does for these sections.
3609 // It is hard to handle this in a principled way, so we don't even
3610 // try. We use a table of mappings. If the input section name is
3611 // not found in the table, we simply use it as the output section
3614 const Section_name_mapping
* psnm
= section_name_mapping
;
3615 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
3617 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
3619 *plen
= psnm
->tolen
;
3627 // Check if a comdat group or .gnu.linkonce section with the given
3628 // NAME is selected for the link. If there is already a section,
3629 // *KEPT_SECTION is set to point to the existing section and the
3630 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3631 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3632 // *KEPT_SECTION is set to the internal copy and the function returns
3636 Layout::find_or_add_kept_section(const std::string
& name
,
3641 Kept_section
** kept_section
)
3643 // It's normal to see a couple of entries here, for the x86 thunk
3644 // sections. If we see more than a few, we're linking a C++
3645 // program, and we resize to get more space to minimize rehashing.
3646 if (this->signatures_
.size() > 4
3647 && !this->resized_signatures_
)
3649 reserve_unordered_map(&this->signatures_
,
3650 this->number_of_input_files_
* 64);
3651 this->resized_signatures_
= true;
3654 Kept_section candidate
;
3655 std::pair
<Signatures::iterator
, bool> ins
=
3656 this->signatures_
.insert(std::make_pair(name
, candidate
));
3658 if (kept_section
!= NULL
)
3659 *kept_section
= &ins
.first
->second
;
3662 // This is the first time we've seen this signature.
3663 ins
.first
->second
.set_object(object
);
3664 ins
.first
->second
.set_shndx(shndx
);
3666 ins
.first
->second
.set_is_comdat();
3668 ins
.first
->second
.set_is_group_name();
3672 // We have already seen this signature.
3674 if (ins
.first
->second
.is_group_name())
3676 // We've already seen a real section group with this signature.
3677 // If the kept group is from a plugin object, and we're in the
3678 // replacement phase, accept the new one as a replacement.
3679 if (ins
.first
->second
.object() == NULL
3680 && parameters
->options().plugins()->in_replacement_phase())
3682 ins
.first
->second
.set_object(object
);
3683 ins
.first
->second
.set_shndx(shndx
);
3688 else if (is_group_name
)
3690 // This is a real section group, and we've already seen a
3691 // linkonce section with this signature. Record that we've seen
3692 // a section group, and don't include this section group.
3693 ins
.first
->second
.set_is_group_name();
3698 // We've already seen a linkonce section and this is a linkonce
3699 // section. These don't block each other--this may be the same
3700 // symbol name with different section types.
3705 // Store the allocated sections into the section list.
3708 Layout::get_allocated_sections(Section_list
* section_list
) const
3710 for (Section_list::const_iterator p
= this->section_list_
.begin();
3711 p
!= this->section_list_
.end();
3713 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
3714 section_list
->push_back(*p
);
3717 // Create an output segment.
3720 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3722 gold_assert(!parameters
->options().relocatable());
3723 Output_segment
* oseg
= new Output_segment(type
, flags
);
3724 this->segment_list_
.push_back(oseg
);
3726 if (type
== elfcpp::PT_TLS
)
3727 this->tls_segment_
= oseg
;
3728 else if (type
== elfcpp::PT_GNU_RELRO
)
3729 this->relro_segment_
= oseg
;
3734 // Write out the Output_sections. Most won't have anything to write,
3735 // since most of the data will come from input sections which are
3736 // handled elsewhere. But some Output_sections do have Output_data.
3739 Layout::write_output_sections(Output_file
* of
) const
3741 for (Section_list::const_iterator p
= this->section_list_
.begin();
3742 p
!= this->section_list_
.end();
3745 if (!(*p
)->after_input_sections())
3750 // Write out data not associated with a section or the symbol table.
3753 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
3755 if (!parameters
->options().strip_all())
3757 const Output_section
* symtab_section
= this->symtab_section_
;
3758 for (Section_list::const_iterator p
= this->section_list_
.begin();
3759 p
!= this->section_list_
.end();
3762 if ((*p
)->needs_symtab_index())
3764 gold_assert(symtab_section
!= NULL
);
3765 unsigned int index
= (*p
)->symtab_index();
3766 gold_assert(index
> 0 && index
!= -1U);
3767 off_t off
= (symtab_section
->offset()
3768 + index
* symtab_section
->entsize());
3769 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
3774 const Output_section
* dynsym_section
= this->dynsym_section_
;
3775 for (Section_list::const_iterator p
= this->section_list_
.begin();
3776 p
!= this->section_list_
.end();
3779 if ((*p
)->needs_dynsym_index())
3781 gold_assert(dynsym_section
!= NULL
);
3782 unsigned int index
= (*p
)->dynsym_index();
3783 gold_assert(index
> 0 && index
!= -1U);
3784 off_t off
= (dynsym_section
->offset()
3785 + index
* dynsym_section
->entsize());
3786 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
3790 // Write out the Output_data which are not in an Output_section.
3791 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
3792 p
!= this->special_output_list_
.end();
3797 // Write out the Output_sections which can only be written after the
3798 // input sections are complete.
3801 Layout::write_sections_after_input_sections(Output_file
* of
)
3803 // Determine the final section offsets, and thus the final output
3804 // file size. Note we finalize the .shstrab last, to allow the
3805 // after_input_section sections to modify their section-names before
3807 if (this->any_postprocessing_sections_
)
3809 off_t off
= this->output_file_size_
;
3810 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
3812 // Now that we've finalized the names, we can finalize the shstrab.
3814 this->set_section_offsets(off
,
3815 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3817 if (off
> this->output_file_size_
)
3820 this->output_file_size_
= off
;
3824 for (Section_list::const_iterator p
= this->section_list_
.begin();
3825 p
!= this->section_list_
.end();
3828 if ((*p
)->after_input_sections())
3832 this->section_headers_
->write(of
);
3835 // If the build ID requires computing a checksum, do so here, and
3836 // write it out. We compute a checksum over the entire file because
3837 // that is simplest.
3840 Layout::write_build_id(Output_file
* of
) const
3842 if (this->build_id_note_
== NULL
)
3845 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
3847 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
3848 this->build_id_note_
->data_size());
3850 const char* style
= parameters
->options().build_id();
3851 if (strcmp(style
, "sha1") == 0)
3854 sha1_init_ctx(&ctx
);
3855 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
3856 sha1_finish_ctx(&ctx
, ov
);
3858 else if (strcmp(style
, "md5") == 0)
3862 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
3863 md5_finish_ctx(&ctx
, ov
);
3868 of
->write_output_view(this->build_id_note_
->offset(),
3869 this->build_id_note_
->data_size(),
3872 of
->free_input_view(0, this->output_file_size_
, iv
);
3875 // Write out a binary file. This is called after the link is
3876 // complete. IN is the temporary output file we used to generate the
3877 // ELF code. We simply walk through the segments, read them from
3878 // their file offset in IN, and write them to their load address in
3879 // the output file. FIXME: with a bit more work, we could support
3880 // S-records and/or Intel hex format here.
3883 Layout::write_binary(Output_file
* in
) const
3885 gold_assert(parameters
->options().oformat_enum()
3886 == General_options::OBJECT_FORMAT_BINARY
);
3888 // Get the size of the binary file.
3889 uint64_t max_load_address
= 0;
3890 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3891 p
!= this->segment_list_
.end();
3894 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3896 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
3897 if (max_paddr
> max_load_address
)
3898 max_load_address
= max_paddr
;
3902 Output_file
out(parameters
->options().output_file_name());
3903 out
.open(max_load_address
);
3905 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3906 p
!= this->segment_list_
.end();
3909 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3911 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
3913 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
3915 memcpy(vout
, vin
, (*p
)->filesz());
3916 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
3917 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
3924 // Print the output sections to the map file.
3927 Layout::print_to_mapfile(Mapfile
* mapfile
) const
3929 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3930 p
!= this->segment_list_
.end();
3932 (*p
)->print_sections_to_mapfile(mapfile
);
3935 // Print statistical information to stderr. This is used for --stats.
3938 Layout::print_stats() const
3940 this->namepool_
.print_stats("section name pool");
3941 this->sympool_
.print_stats("output symbol name pool");
3942 this->dynpool_
.print_stats("dynamic name pool");
3944 for (Section_list::const_iterator p
= this->section_list_
.begin();
3945 p
!= this->section_list_
.end();
3947 (*p
)->print_merge_stats();
3950 // Write_sections_task methods.
3952 // We can always run this task.
3955 Write_sections_task::is_runnable()
3960 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3964 Write_sections_task::locks(Task_locker
* tl
)
3966 tl
->add(this, this->output_sections_blocker_
);
3967 tl
->add(this, this->final_blocker_
);
3970 // Run the task--write out the data.
3973 Write_sections_task::run(Workqueue
*)
3975 this->layout_
->write_output_sections(this->of_
);
3978 // Write_data_task methods.
3980 // We can always run this task.
3983 Write_data_task::is_runnable()
3988 // We need to unlock FINAL_BLOCKER when finished.
3991 Write_data_task::locks(Task_locker
* tl
)
3993 tl
->add(this, this->final_blocker_
);
3996 // Run the task--write out the data.
3999 Write_data_task::run(Workqueue
*)
4001 this->layout_
->write_data(this->symtab_
, this->of_
);
4004 // Write_symbols_task methods.
4006 // We can always run this task.
4009 Write_symbols_task::is_runnable()
4014 // We need to unlock FINAL_BLOCKER when finished.
4017 Write_symbols_task::locks(Task_locker
* tl
)
4019 tl
->add(this, this->final_blocker_
);
4022 // Run the task--write out the symbols.
4025 Write_symbols_task::run(Workqueue
*)
4027 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
4028 this->layout_
->symtab_xindex(),
4029 this->layout_
->dynsym_xindex(), this->of_
);
4032 // Write_after_input_sections_task methods.
4034 // We can only run this task after the input sections have completed.
4037 Write_after_input_sections_task::is_runnable()
4039 if (this->input_sections_blocker_
->is_blocked())
4040 return this->input_sections_blocker_
;
4044 // We need to unlock FINAL_BLOCKER when finished.
4047 Write_after_input_sections_task::locks(Task_locker
* tl
)
4049 tl
->add(this, this->final_blocker_
);
4055 Write_after_input_sections_task::run(Workqueue
*)
4057 this->layout_
->write_sections_after_input_sections(this->of_
);
4060 // Close_task_runner methods.
4062 // Run the task--close the file.
4065 Close_task_runner::run(Workqueue
*, const Task
*)
4067 // If we need to compute a checksum for the BUILD if, we do so here.
4068 this->layout_
->write_build_id(this->of_
);
4070 // If we've been asked to create a binary file, we do so here.
4071 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
4072 this->layout_
->write_binary(this->of_
);
4077 // Instantiate the templates we need. We could use the configure
4078 // script to restrict this to only the ones for implemented targets.
4080 #ifdef HAVE_TARGET_32_LITTLE
4083 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
4085 const elfcpp::Shdr
<32, false>& shdr
,
4086 unsigned int, unsigned int, off_t
*);
4089 #ifdef HAVE_TARGET_32_BIG
4092 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
4094 const elfcpp::Shdr
<32, true>& shdr
,
4095 unsigned int, unsigned int, off_t
*);
4098 #ifdef HAVE_TARGET_64_LITTLE
4101 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
4103 const elfcpp::Shdr
<64, false>& shdr
,
4104 unsigned int, unsigned int, off_t
*);
4107 #ifdef HAVE_TARGET_64_BIG
4110 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
4112 const elfcpp::Shdr
<64, true>& shdr
,
4113 unsigned int, unsigned int, off_t
*);
4116 #ifdef HAVE_TARGET_32_LITTLE
4119 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
4120 unsigned int reloc_shndx
,
4121 const elfcpp::Shdr
<32, false>& shdr
,
4122 Output_section
* data_section
,
4123 Relocatable_relocs
* rr
);
4126 #ifdef HAVE_TARGET_32_BIG
4129 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
4130 unsigned int reloc_shndx
,
4131 const elfcpp::Shdr
<32, true>& shdr
,
4132 Output_section
* data_section
,
4133 Relocatable_relocs
* rr
);
4136 #ifdef HAVE_TARGET_64_LITTLE
4139 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
4140 unsigned int reloc_shndx
,
4141 const elfcpp::Shdr
<64, false>& shdr
,
4142 Output_section
* data_section
,
4143 Relocatable_relocs
* rr
);
4146 #ifdef HAVE_TARGET_64_BIG
4149 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
4150 unsigned int reloc_shndx
,
4151 const elfcpp::Shdr
<64, true>& shdr
,
4152 Output_section
* data_section
,
4153 Relocatable_relocs
* rr
);
4156 #ifdef HAVE_TARGET_32_LITTLE
4159 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
4160 Sized_relobj
<32, false>* object
,
4162 const char* group_section_name
,
4163 const char* signature
,
4164 const elfcpp::Shdr
<32, false>& shdr
,
4165 elfcpp::Elf_Word flags
,
4166 std::vector
<unsigned int>* shndxes
);
4169 #ifdef HAVE_TARGET_32_BIG
4172 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
4173 Sized_relobj
<32, true>* object
,
4175 const char* group_section_name
,
4176 const char* signature
,
4177 const elfcpp::Shdr
<32, true>& shdr
,
4178 elfcpp::Elf_Word flags
,
4179 std::vector
<unsigned int>* shndxes
);
4182 #ifdef HAVE_TARGET_64_LITTLE
4185 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
4186 Sized_relobj
<64, false>* object
,
4188 const char* group_section_name
,
4189 const char* signature
,
4190 const elfcpp::Shdr
<64, false>& shdr
,
4191 elfcpp::Elf_Word flags
,
4192 std::vector
<unsigned int>* shndxes
);
4195 #ifdef HAVE_TARGET_64_BIG
4198 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
4199 Sized_relobj
<64, true>* object
,
4201 const char* group_section_name
,
4202 const char* signature
,
4203 const elfcpp::Shdr
<64, true>& shdr
,
4204 elfcpp::Elf_Word flags
,
4205 std::vector
<unsigned int>* shndxes
);
4208 #ifdef HAVE_TARGET_32_LITTLE
4211 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
4212 const unsigned char* symbols
,
4214 const unsigned char* symbol_names
,
4215 off_t symbol_names_size
,
4217 const elfcpp::Shdr
<32, false>& shdr
,
4218 unsigned int reloc_shndx
,
4219 unsigned int reloc_type
,
4223 #ifdef HAVE_TARGET_32_BIG
4226 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
4227 const unsigned char* symbols
,
4229 const unsigned char* symbol_names
,
4230 off_t symbol_names_size
,
4232 const elfcpp::Shdr
<32, true>& shdr
,
4233 unsigned int reloc_shndx
,
4234 unsigned int reloc_type
,
4238 #ifdef HAVE_TARGET_64_LITTLE
4241 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
4242 const unsigned char* symbols
,
4244 const unsigned char* symbol_names
,
4245 off_t symbol_names_size
,
4247 const elfcpp::Shdr
<64, false>& shdr
,
4248 unsigned int reloc_shndx
,
4249 unsigned int reloc_type
,
4253 #ifdef HAVE_TARGET_64_BIG
4256 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
4257 const unsigned char* symbols
,
4259 const unsigned char* symbol_names
,
4260 off_t symbol_names_size
,
4262 const elfcpp::Shdr
<64, true>& shdr
,
4263 unsigned int reloc_shndx
,
4264 unsigned int reloc_type
,
4268 } // End namespace gold.