1 // dynobj.cc -- dynamic object support for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
42 Dynobj::Dynobj(const std::string
& name
, Input_file
* input_file
, off_t offset
)
43 : Object(name
, input_file
, true, offset
),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET
)
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_
= this->input_file()->found_name();
53 if (this->offset() != 0)
55 std::string::size_type open_paren
= this->name().find('(');
56 std::string::size_type close_paren
= this->name().find(')');
57 if (open_paren
!= std::string::npos
&& close_paren
!= std::string::npos
)
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_
= this->name().substr(open_paren
+ 1,
61 close_paren
- (open_paren
+ 1));
66 // Class Sized_dynobj.
68 template<int size
, bool big_endian
>
69 Sized_dynobj
<size
, big_endian
>::Sized_dynobj(
70 const std::string
& name
,
71 Input_file
* input_file
,
73 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
74 : Dynobj(name
, input_file
, offset
),
75 elf_file_(this, ehdr
),
84 template<int size
, bool big_endian
>
86 Sized_dynobj
<size
, big_endian
>::setup()
88 const unsigned int shnum
= this->elf_file_
.shnum();
89 this->set_shnum(shnum
);
92 // Find the SHT_DYNSYM section and the various version sections, and
93 // the dynamic section, given the section headers.
95 template<int size
, bool big_endian
>
97 Sized_dynobj
<size
, big_endian
>::find_dynsym_sections(
98 const unsigned char* pshdrs
,
99 unsigned int* pversym_shndx
,
100 unsigned int* pverdef_shndx
,
101 unsigned int* pverneed_shndx
,
102 unsigned int* pdynamic_shndx
)
104 *pversym_shndx
= -1U;
105 *pverdef_shndx
= -1U;
106 *pverneed_shndx
= -1U;
107 *pdynamic_shndx
= -1U;
109 unsigned int symtab_shndx
= 0;
110 unsigned int xindex_shndx
= 0;
111 unsigned int xindex_link
= 0;
112 const unsigned int shnum
= this->shnum();
113 const unsigned char* p
= pshdrs
;
114 for (unsigned int i
= 0; i
< shnum
; ++i
, p
+= This::shdr_size
)
116 typename
This::Shdr
shdr(p
);
119 switch (shdr
.get_sh_type())
121 case elfcpp::SHT_DYNSYM
:
122 this->dynsym_shndx_
= i
;
123 if (xindex_shndx
> 0 && xindex_link
== i
)
125 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
126 xindex
->read_symtab_xindex
<size
, big_endian
>(this, xindex_shndx
,
128 this->set_xindex(xindex
);
132 case elfcpp::SHT_SYMTAB
:
136 case elfcpp::SHT_GNU_versym
:
139 case elfcpp::SHT_GNU_verdef
:
142 case elfcpp::SHT_GNU_verneed
:
145 case elfcpp::SHT_DYNAMIC
:
148 case elfcpp::SHT_SYMTAB_SHNDX
:
150 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
151 if (xindex_link
== this->dynsym_shndx_
)
153 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
154 xindex
->read_symtab_xindex
<size
, big_endian
>(this, xindex_shndx
,
156 this->set_xindex(xindex
);
169 this->error(_("unexpected duplicate type %u section: %u, %u"),
170 shdr
.get_sh_type(), *pi
, i
);
175 // If there is no dynamic symbol table, use the normal symbol table.
176 // On some SVR4 systems, a shared library is stored in an archive.
177 // The version stored in the archive only has a normal symbol table.
178 // It has an SONAME entry which points to another copy in the file
179 // system which has a dynamic symbol table as usual. This is way of
180 // addressing the issues which glibc addresses using GROUP with
182 if (this->dynsym_shndx_
== -1U && symtab_shndx
!= 0)
184 this->dynsym_shndx_
= symtab_shndx
;
185 if (xindex_shndx
> 0 && xindex_link
== symtab_shndx
)
187 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
188 xindex
->read_symtab_xindex
<size
, big_endian
>(this, xindex_shndx
,
190 this->set_xindex(xindex
);
195 // Read the contents of section SHNDX. PSHDRS points to the section
196 // headers. TYPE is the expected section type. LINK is the expected
197 // section link. Store the data in *VIEW and *VIEW_SIZE. The
198 // section's sh_info field is stored in *VIEW_INFO.
200 template<int size
, bool big_endian
>
202 Sized_dynobj
<size
, big_endian
>::read_dynsym_section(
203 const unsigned char* pshdrs
,
208 section_size_type
* view_size
,
209 unsigned int* view_info
)
219 typename
This::Shdr
shdr(pshdrs
+ shndx
* This::shdr_size
);
221 gold_assert(shdr
.get_sh_type() == type
);
223 if (this->adjust_shndx(shdr
.get_sh_link()) != link
)
224 this->error(_("unexpected link in section %u header: %u != %u"),
225 shndx
, this->adjust_shndx(shdr
.get_sh_link()), link
);
227 *view
= this->get_lasting_view(shdr
.get_sh_offset(), shdr
.get_sh_size(),
229 *view_size
= convert_to_section_size_type(shdr
.get_sh_size());
230 *view_info
= shdr
.get_sh_info();
233 // Read the dynamic tags. Set the soname field if this shared object
234 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
235 // the section headers. DYNAMIC_SHNDX is the section index of the
236 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
237 // section index and contents of a string table which may be the one
238 // associated with the SHT_DYNAMIC section.
240 template<int size
, bool big_endian
>
242 Sized_dynobj
<size
, big_endian
>::read_dynamic(const unsigned char* pshdrs
,
243 unsigned int dynamic_shndx
,
244 unsigned int strtab_shndx
,
245 const unsigned char* strtabu
,
248 typename
This::Shdr
dynamicshdr(pshdrs
+ dynamic_shndx
* This::shdr_size
);
249 gold_assert(dynamicshdr
.get_sh_type() == elfcpp::SHT_DYNAMIC
);
251 const off_t dynamic_size
= dynamicshdr
.get_sh_size();
252 const unsigned char* pdynamic
= this->get_view(dynamicshdr
.get_sh_offset(),
253 dynamic_size
, true, false);
255 const unsigned int link
= this->adjust_shndx(dynamicshdr
.get_sh_link());
256 if (link
!= strtab_shndx
)
258 if (link
>= this->shnum())
260 this->error(_("DYNAMIC section %u link out of range: %u"),
261 dynamic_shndx
, link
);
265 typename
This::Shdr
strtabshdr(pshdrs
+ link
* This::shdr_size
);
266 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
268 this->error(_("DYNAMIC section %u link %u is not a strtab"),
269 dynamic_shndx
, link
);
273 strtab_size
= strtabshdr
.get_sh_size();
274 strtabu
= this->get_view(strtabshdr
.get_sh_offset(), strtab_size
, false,
278 const char* const strtab
= reinterpret_cast<const char*>(strtabu
);
280 for (const unsigned char* p
= pdynamic
;
281 p
< pdynamic
+ dynamic_size
;
284 typename
This::Dyn
dyn(p
);
286 switch (dyn
.get_d_tag())
288 case elfcpp::DT_NULL
:
289 // We should always see DT_NULL at the end of the dynamic
293 case elfcpp::DT_SONAME
:
295 off_t val
= dyn
.get_d_val();
296 if (val
>= strtab_size
)
297 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
298 static_cast<long long>(val
),
299 static_cast<long long>(strtab_size
));
301 this->set_soname_string(strtab
+ val
);
305 case elfcpp::DT_NEEDED
:
307 off_t val
= dyn
.get_d_val();
308 if (val
>= strtab_size
)
309 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
310 static_cast<long long>(val
),
311 static_cast<long long>(strtab_size
));
313 this->add_needed(strtab
+ val
);
322 this->error(_("missing DT_NULL in dynamic segment"));
325 // Read the symbols and sections from a dynamic object. We read the
326 // dynamic symbols, not the normal symbols.
328 template<int size
, bool big_endian
>
330 Sized_dynobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
332 this->read_section_data(&this->elf_file_
, sd
);
334 const unsigned char* const pshdrs
= sd
->section_headers
->data();
336 unsigned int versym_shndx
;
337 unsigned int verdef_shndx
;
338 unsigned int verneed_shndx
;
339 unsigned int dynamic_shndx
;
340 this->find_dynsym_sections(pshdrs
, &versym_shndx
, &verdef_shndx
,
341 &verneed_shndx
, &dynamic_shndx
);
343 unsigned int strtab_shndx
= -1U;
346 sd
->symbols_size
= 0;
347 sd
->external_symbols_offset
= 0;
348 sd
->symbol_names
= NULL
;
349 sd
->symbol_names_size
= 0;
356 sd
->verneed_size
= 0;
357 sd
->verneed_info
= 0;
359 if (this->dynsym_shndx_
!= -1U)
361 // Get the dynamic symbols.
362 typename
This::Shdr
dynsymshdr(pshdrs
363 + this->dynsym_shndx_
* This::shdr_size
);
365 sd
->symbols
= this->get_lasting_view(dynsymshdr
.get_sh_offset(),
366 dynsymshdr
.get_sh_size(), true,
369 convert_to_section_size_type(dynsymshdr
.get_sh_size());
371 // Get the symbol names.
372 strtab_shndx
= this->adjust_shndx(dynsymshdr
.get_sh_link());
373 if (strtab_shndx
>= this->shnum())
375 this->error(_("invalid dynamic symbol table name index: %u"),
379 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
380 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
382 this->error(_("dynamic symbol table name section "
383 "has wrong type: %u"),
384 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
388 sd
->symbol_names
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
389 strtabshdr
.get_sh_size(),
391 sd
->symbol_names_size
=
392 convert_to_section_size_type(strtabshdr
.get_sh_size());
394 // Get the version information.
397 this->read_dynsym_section(pshdrs
, versym_shndx
, elfcpp::SHT_GNU_versym
,
399 &sd
->versym
, &sd
->versym_size
, &dummy
);
401 // We require that the version definition and need section link
402 // to the same string table as the dynamic symbol table. This
403 // is not a technical requirement, but it always happens in
404 // practice. We could change this if necessary.
406 this->read_dynsym_section(pshdrs
, verdef_shndx
, elfcpp::SHT_GNU_verdef
,
407 strtab_shndx
, &sd
->verdef
, &sd
->verdef_size
,
410 this->read_dynsym_section(pshdrs
, verneed_shndx
, elfcpp::SHT_GNU_verneed
,
411 strtab_shndx
, &sd
->verneed
, &sd
->verneed_size
,
415 // Read the SHT_DYNAMIC section to find whether this shared object
416 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
417 // doesn't really have anything to do with reading the symbols, but
418 // this is a convenient place to do it.
419 if (dynamic_shndx
!= -1U)
420 this->read_dynamic(pshdrs
, dynamic_shndx
, strtab_shndx
,
421 (sd
->symbol_names
== NULL
423 : sd
->symbol_names
->data()),
424 sd
->symbol_names_size
);
427 // Return the Xindex structure to use for object with lots of
430 template<int size
, bool big_endian
>
432 Sized_dynobj
<size
, big_endian
>::do_initialize_xindex()
434 gold_assert(this->dynsym_shndx_
!= -1U);
435 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
436 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->dynsym_shndx_
);
440 // Lay out the input sections for a dynamic object. We don't want to
441 // include sections from a dynamic object, so all that we actually do
442 // here is check for .gnu.warning and .note.GNU-split-stack sections.
444 template<int size
, bool big_endian
>
446 Sized_dynobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
448 Read_symbols_data
* sd
)
450 const unsigned int shnum
= this->shnum();
454 // Get the section headers.
455 const unsigned char* pshdrs
= sd
->section_headers
->data();
457 // Get the section names.
458 const unsigned char* pnamesu
= sd
->section_names
->data();
459 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
461 // Skip the first, dummy, section.
462 pshdrs
+= This::shdr_size
;
463 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
465 typename
This::Shdr
shdr(pshdrs
);
467 if (shdr
.get_sh_name() >= sd
->section_names_size
)
469 this->error(_("bad section name offset for section %u: %lu"),
470 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
474 const char* name
= pnames
+ shdr
.get_sh_name();
476 this->handle_gnu_warning_section(name
, i
, symtab
);
477 this->handle_split_stack_section(name
);
480 delete sd
->section_headers
;
481 sd
->section_headers
= NULL
;
482 delete sd
->section_names
;
483 sd
->section_names
= NULL
;
486 // Add an entry to the vector mapping version numbers to version
489 template<int size
, bool big_endian
>
491 Sized_dynobj
<size
, big_endian
>::set_version_map(
492 Version_map
* version_map
,
494 const char* name
) const
496 if (ndx
>= version_map
->size())
497 version_map
->resize(ndx
+ 1);
498 if ((*version_map
)[ndx
] != NULL
)
499 this->error(_("duplicate definition for version %u"), ndx
);
500 (*version_map
)[ndx
] = name
;
503 // Add mappings for the version definitions to VERSION_MAP.
505 template<int size
, bool big_endian
>
507 Sized_dynobj
<size
, big_endian
>::make_verdef_map(
508 Read_symbols_data
* sd
,
509 Version_map
* version_map
) const
511 if (sd
->verdef
== NULL
)
514 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
515 section_size_type names_size
= sd
->symbol_names_size
;
517 const unsigned char* pverdef
= sd
->verdef
->data();
518 section_size_type verdef_size
= sd
->verdef_size
;
519 const unsigned int count
= sd
->verdef_info
;
521 const unsigned char* p
= pverdef
;
522 for (unsigned int i
= 0; i
< count
; ++i
)
524 elfcpp::Verdef
<size
, big_endian
> verdef(p
);
526 if (verdef
.get_vd_version() != elfcpp::VER_DEF_CURRENT
)
528 this->error(_("unexpected verdef version %u"),
529 verdef
.get_vd_version());
533 const section_size_type vd_ndx
= verdef
.get_vd_ndx();
535 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
538 // The first Verdaux holds the name of this version. Subsequent
539 // ones are versions that this one depends upon, which we don't
541 const section_size_type vd_cnt
= verdef
.get_vd_cnt();
544 this->error(_("verdef vd_cnt field too small: %u"),
545 static_cast<unsigned int>(vd_cnt
));
549 const section_size_type vd_aux
= verdef
.get_vd_aux();
550 if ((p
- pverdef
) + vd_aux
>= verdef_size
)
552 this->error(_("verdef vd_aux field out of range: %u"),
553 static_cast<unsigned int>(vd_aux
));
557 const unsigned char* pvda
= p
+ vd_aux
;
558 elfcpp::Verdaux
<size
, big_endian
> verdaux(pvda
);
560 const section_size_type vda_name
= verdaux
.get_vda_name();
561 if (vda_name
>= names_size
)
563 this->error(_("verdaux vda_name field out of range: %u"),
564 static_cast<unsigned int>(vda_name
));
568 this->set_version_map(version_map
, vd_ndx
, names
+ vda_name
);
570 const section_size_type vd_next
= verdef
.get_vd_next();
571 if ((p
- pverdef
) + vd_next
>= verdef_size
)
573 this->error(_("verdef vd_next field out of range: %u"),
574 static_cast<unsigned int>(vd_next
));
582 // Add mappings for the required versions to VERSION_MAP.
584 template<int size
, bool big_endian
>
586 Sized_dynobj
<size
, big_endian
>::make_verneed_map(
587 Read_symbols_data
* sd
,
588 Version_map
* version_map
) const
590 if (sd
->verneed
== NULL
)
593 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
594 section_size_type names_size
= sd
->symbol_names_size
;
596 const unsigned char* pverneed
= sd
->verneed
->data();
597 const section_size_type verneed_size
= sd
->verneed_size
;
598 const unsigned int count
= sd
->verneed_info
;
600 const unsigned char* p
= pverneed
;
601 for (unsigned int i
= 0; i
< count
; ++i
)
603 elfcpp::Verneed
<size
, big_endian
> verneed(p
);
605 if (verneed
.get_vn_version() != elfcpp::VER_NEED_CURRENT
)
607 this->error(_("unexpected verneed version %u"),
608 verneed
.get_vn_version());
612 const section_size_type vn_aux
= verneed
.get_vn_aux();
614 if ((p
- pverneed
) + vn_aux
>= verneed_size
)
616 this->error(_("verneed vn_aux field out of range: %u"),
617 static_cast<unsigned int>(vn_aux
));
621 const unsigned int vn_cnt
= verneed
.get_vn_cnt();
622 const unsigned char* pvna
= p
+ vn_aux
;
623 for (unsigned int j
= 0; j
< vn_cnt
; ++j
)
625 elfcpp::Vernaux
<size
, big_endian
> vernaux(pvna
);
627 const unsigned int vna_name
= vernaux
.get_vna_name();
628 if (vna_name
>= names_size
)
630 this->error(_("vernaux vna_name field out of range: %u"),
631 static_cast<unsigned int>(vna_name
));
635 this->set_version_map(version_map
, vernaux
.get_vna_other(),
638 const section_size_type vna_next
= vernaux
.get_vna_next();
639 if ((pvna
- pverneed
) + vna_next
>= verneed_size
)
641 this->error(_("verneed vna_next field out of range: %u"),
642 static_cast<unsigned int>(vna_next
));
649 const section_size_type vn_next
= verneed
.get_vn_next();
650 if ((p
- pverneed
) + vn_next
>= verneed_size
)
652 this->error(_("verneed vn_next field out of range: %u"),
653 static_cast<unsigned int>(vn_next
));
661 // Create a vector mapping version numbers to version strings.
663 template<int size
, bool big_endian
>
665 Sized_dynobj
<size
, big_endian
>::make_version_map(
666 Read_symbols_data
* sd
,
667 Version_map
* version_map
) const
669 if (sd
->verdef
== NULL
&& sd
->verneed
== NULL
)
672 // A guess at the maximum version number we will see. If this is
673 // wrong we will be less efficient but still correct.
674 version_map
->reserve(sd
->verdef_info
+ sd
->verneed_info
* 10);
676 this->make_verdef_map(sd
, version_map
);
677 this->make_verneed_map(sd
, version_map
);
680 // Add the dynamic symbols to the symbol table.
682 template<int size
, bool big_endian
>
684 Sized_dynobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
685 Read_symbols_data
* sd
,
688 if (sd
->symbols
== NULL
)
690 gold_assert(sd
->symbol_names
== NULL
);
691 gold_assert(sd
->versym
== NULL
&& sd
->verdef
== NULL
692 && sd
->verneed
== NULL
);
696 const int sym_size
= This::sym_size
;
697 const size_t symcount
= sd
->symbols_size
/ sym_size
;
698 gold_assert(sd
->external_symbols_offset
== 0);
699 if (symcount
* sym_size
!= sd
->symbols_size
)
701 this->error(_("size of dynamic symbols is not multiple of symbol size"));
705 Version_map version_map
;
706 this->make_version_map(sd
, &version_map
);
708 // If printing symbol counts or a cross reference table, we want to
710 if (parameters
->options().user_set_print_symbol_counts()
711 || parameters
->options().cref())
713 this->symbols_
= new Symbols();
714 this->symbols_
->resize(symcount
);
717 const char* sym_names
=
718 reinterpret_cast<const char*>(sd
->symbol_names
->data());
719 symtab
->add_from_dynobj(this, sd
->symbols
->data(), symcount
,
720 sym_names
, sd
->symbol_names_size
,
723 : sd
->versym
->data()),
727 &this->defined_count_
);
731 delete sd
->symbol_names
;
732 sd
->symbol_names
= NULL
;
733 if (sd
->versym
!= NULL
)
738 if (sd
->verdef
!= NULL
)
743 if (sd
->verneed
!= NULL
)
749 // This is normally the last time we will read any data from this
751 this->clear_view_cache_marks();
754 // Get symbol counts.
756 template<int size
, bool big_endian
>
758 Sized_dynobj
<size
, big_endian
>::do_get_global_symbol_counts(
763 *defined
= this->defined_count_
;
765 for (typename
Symbols::const_iterator p
= this->symbols_
->begin();
766 p
!= this->symbols_
->end();
769 && (*p
)->source() == Symbol::FROM_OBJECT
770 && (*p
)->object() == this
771 && (*p
)->is_defined()
772 && (*p
)->dynsym_index() != -1U)
777 // Given a vector of hash codes, compute the number of hash buckets to
781 Dynobj::compute_bucket_count(const std::vector
<uint32_t>& hashcodes
,
782 bool for_gnu_hash_table
)
784 // FIXME: Implement optional hash table optimization.
786 // Array used to determine the number of hash table buckets to use
787 // based on the number of symbols there are. If there are fewer
788 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
789 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
790 // use more than 262147 buckets. This is straight from the old GNU
792 static const unsigned int buckets
[] =
794 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
795 16411, 32771, 65537, 131101, 262147
797 const int buckets_count
= sizeof buckets
/ sizeof buckets
[0];
799 unsigned int symcount
= hashcodes
.size();
800 unsigned int ret
= 1;
801 const double full_fraction
802 = 1.0 - parameters
->options().hash_bucket_empty_fraction();
803 for (int i
= 0; i
< buckets_count
; ++i
)
805 if (symcount
< buckets
[i
] * full_fraction
)
810 if (for_gnu_hash_table
&& ret
< 2)
816 // The standard ELF hash function. This hash function must not
817 // change, as the dynamic linker uses it also.
820 Dynobj::elf_hash(const char* name
)
822 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
825 while ((c
= *nameu
++) != '\0')
828 uint32_t g
= h
& 0xf0000000;
832 // The ELF ABI says h &= ~g, but using xor is equivalent in
833 // this case (since g was set from h) and may save one
841 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
842 // DYNSYMS is a vector with all the global dynamic symbols.
843 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
847 Dynobj::create_elf_hash_table(const std::vector
<Symbol
*>& dynsyms
,
848 unsigned int local_dynsym_count
,
849 unsigned char** pphash
,
850 unsigned int* phashlen
)
852 unsigned int dynsym_count
= dynsyms
.size();
854 // Get the hash values for all the symbols.
855 std::vector
<uint32_t> dynsym_hashvals(dynsym_count
);
856 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
857 dynsym_hashvals
[i
] = Dynobj::elf_hash(dynsyms
[i
]->name());
859 const unsigned int bucketcount
=
860 Dynobj::compute_bucket_count(dynsym_hashvals
, false);
862 std::vector
<uint32_t> bucket(bucketcount
);
863 std::vector
<uint32_t> chain(local_dynsym_count
+ dynsym_count
);
865 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
867 unsigned int dynsym_index
= dynsyms
[i
]->dynsym_index();
868 unsigned int bucketpos
= dynsym_hashvals
[i
] % bucketcount
;
869 chain
[dynsym_index
] = bucket
[bucketpos
];
870 bucket
[bucketpos
] = dynsym_index
;
873 unsigned int hashlen
= ((2
878 unsigned char* phash
= new unsigned char[hashlen
];
880 if (parameters
->target().is_big_endian())
882 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
883 Dynobj::sized_create_elf_hash_table
<true>(bucket
, chain
, phash
,
891 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
892 Dynobj::sized_create_elf_hash_table
<false>(bucket
, chain
, phash
,
903 // Fill in an ELF hash table.
905 template<bool big_endian
>
907 Dynobj::sized_create_elf_hash_table(const std::vector
<uint32_t>& bucket
,
908 const std::vector
<uint32_t>& chain
,
909 unsigned char* phash
,
910 unsigned int hashlen
)
912 unsigned char* p
= phash
;
914 const unsigned int bucketcount
= bucket
.size();
915 const unsigned int chaincount
= chain
.size();
917 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucketcount
);
919 elfcpp::Swap
<32, big_endian
>::writeval(p
, chaincount
);
922 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
924 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucket
[i
]);
928 for (unsigned int i
= 0; i
< chaincount
; ++i
)
930 elfcpp::Swap
<32, big_endian
>::writeval(p
, chain
[i
]);
934 gold_assert(static_cast<unsigned int>(p
- phash
) == hashlen
);
937 // The hash function used for the GNU hash table. This hash function
938 // must not change, as the dynamic linker uses it also.
941 Dynobj::gnu_hash(const char* name
)
943 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
946 while ((c
= *nameu
++) != '\0')
947 h
= (h
<< 5) + h
+ c
;
951 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
952 // tables are an extension to ELF which are recognized by the GNU
953 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
954 // TARGET is the target. DYNSYMS is a vector with all the global
955 // symbols which will be going into the dynamic symbol table.
956 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
960 Dynobj::create_gnu_hash_table(const std::vector
<Symbol
*>& dynsyms
,
961 unsigned int local_dynsym_count
,
962 unsigned char** pphash
,
963 unsigned int* phashlen
)
965 const unsigned int count
= dynsyms
.size();
967 // Sort the dynamic symbols into two vectors. Symbols which we do
968 // not want to put into the hash table we store into
969 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
970 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
971 // and records the hash codes.
973 std::vector
<Symbol
*> unhashed_dynsyms
;
974 unhashed_dynsyms
.reserve(count
);
976 std::vector
<Symbol
*> hashed_dynsyms
;
977 hashed_dynsyms
.reserve(count
);
979 std::vector
<uint32_t> dynsym_hashvals
;
980 dynsym_hashvals
.reserve(count
);
982 for (unsigned int i
= 0; i
< count
; ++i
)
984 Symbol
* sym
= dynsyms
[i
];
986 if (!sym
->needs_dynsym_value()
987 && (sym
->is_undefined()
988 || sym
->is_from_dynobj()
989 || sym
->is_forced_local()))
990 unhashed_dynsyms
.push_back(sym
);
993 hashed_dynsyms
.push_back(sym
);
994 dynsym_hashvals
.push_back(Dynobj::gnu_hash(sym
->name()));
998 // Put the unhashed symbols at the start of the global portion of
999 // the dynamic symbol table.
1000 const unsigned int unhashed_count
= unhashed_dynsyms
.size();
1001 unsigned int unhashed_dynsym_index
= local_dynsym_count
;
1002 for (unsigned int i
= 0; i
< unhashed_count
; ++i
)
1004 unhashed_dynsyms
[i
]->set_dynsym_index(unhashed_dynsym_index
);
1005 ++unhashed_dynsym_index
;
1008 // For the actual data generation we call out to a templatized
1010 int size
= parameters
->target().get_size();
1011 bool big_endian
= parameters
->target().is_big_endian();
1016 #ifdef HAVE_TARGET_32_BIG
1017 Dynobj::sized_create_gnu_hash_table
<32, true>(hashed_dynsyms
,
1019 unhashed_dynsym_index
,
1028 #ifdef HAVE_TARGET_32_LITTLE
1029 Dynobj::sized_create_gnu_hash_table
<32, false>(hashed_dynsyms
,
1031 unhashed_dynsym_index
,
1039 else if (size
== 64)
1043 #ifdef HAVE_TARGET_64_BIG
1044 Dynobj::sized_create_gnu_hash_table
<64, true>(hashed_dynsyms
,
1046 unhashed_dynsym_index
,
1055 #ifdef HAVE_TARGET_64_LITTLE
1056 Dynobj::sized_create_gnu_hash_table
<64, false>(hashed_dynsyms
,
1058 unhashed_dynsym_index
,
1070 // Create the actual data for a GNU hash table. This is just a copy
1071 // of the code from the old GNU linker.
1073 template<int size
, bool big_endian
>
1075 Dynobj::sized_create_gnu_hash_table(
1076 const std::vector
<Symbol
*>& hashed_dynsyms
,
1077 const std::vector
<uint32_t>& dynsym_hashvals
,
1078 unsigned int unhashed_dynsym_count
,
1079 unsigned char** pphash
,
1080 unsigned int* phashlen
)
1082 if (hashed_dynsyms
.empty())
1084 // Special case for the empty hash table.
1085 unsigned int hashlen
= 5 * 4 + size
/ 8;
1086 unsigned char* phash
= new unsigned char[hashlen
];
1087 // One empty bucket.
1088 elfcpp::Swap
<32, big_endian
>::writeval(phash
, 1);
1089 // Symbol index above unhashed symbols.
1090 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, unhashed_dynsym_count
);
1091 // One word for bitmask.
1092 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, 1);
1093 // Only bloom filter.
1094 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, 0);
1096 elfcpp::Swap
<size
, big_endian
>::writeval(phash
+ 16, 0);
1097 // No hashes in only bucket.
1098 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 16 + size
/ 8, 0);
1100 *phashlen
= hashlen
;
1106 const unsigned int bucketcount
=
1107 Dynobj::compute_bucket_count(dynsym_hashvals
, true);
1109 const unsigned int nsyms
= hashed_dynsyms
.size();
1111 uint32_t maskbitslog2
= 1;
1112 uint32_t x
= nsyms
>> 1;
1118 if (maskbitslog2
< 3)
1120 else if (((1U << (maskbitslog2
- 2)) & nsyms
) != 0)
1130 if (maskbitslog2
== 5)
1134 uint32_t mask
= (1U << shift1
) - 1U;
1135 uint32_t shift2
= maskbitslog2
;
1136 uint32_t maskbits
= 1U << maskbitslog2
;
1137 uint32_t maskwords
= 1U << (maskbitslog2
- shift1
);
1139 typedef typename
elfcpp::Elf_types
<size
>::Elf_WXword Word
;
1140 std::vector
<Word
> bitmask(maskwords
);
1141 std::vector
<uint32_t> counts(bucketcount
);
1142 std::vector
<uint32_t> indx(bucketcount
);
1143 uint32_t symindx
= unhashed_dynsym_count
;
1145 // Count the number of times each hash bucket is used.
1146 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1147 ++counts
[dynsym_hashvals
[i
] % bucketcount
];
1149 unsigned int cnt
= symindx
;
1150 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1156 unsigned int hashlen
= (4 + bucketcount
+ nsyms
) * 4;
1157 hashlen
+= maskbits
/ 8;
1158 unsigned char* phash
= new unsigned char[hashlen
];
1160 elfcpp::Swap
<32, big_endian
>::writeval(phash
, bucketcount
);
1161 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, symindx
);
1162 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, maskwords
);
1163 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, shift2
);
1165 unsigned char* p
= phash
+ 16 + maskbits
/ 8;
1166 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1169 elfcpp::Swap
<32, big_endian
>::writeval(p
, 0);
1171 elfcpp::Swap
<32, big_endian
>::writeval(p
, indx
[i
]);
1175 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1177 Symbol
* sym
= hashed_dynsyms
[i
];
1178 uint32_t hashval
= dynsym_hashvals
[i
];
1180 unsigned int bucket
= hashval
% bucketcount
;
1181 unsigned int val
= ((hashval
>> shift1
)
1182 & ((maskbits
>> shift1
) - 1));
1183 bitmask
[val
] |= (static_cast<Word
>(1U)) << (hashval
& mask
);
1184 bitmask
[val
] |= (static_cast<Word
>(1U)) << ((hashval
>> shift2
) & mask
);
1185 val
= hashval
& ~ 1U;
1186 if (counts
[bucket
] == 1)
1188 // Last element terminates the chain.
1191 elfcpp::Swap
<32, big_endian
>::writeval(p
+ (indx
[bucket
] - symindx
) * 4,
1195 sym
->set_dynsym_index(indx
[bucket
]);
1200 for (unsigned int i
= 0; i
< maskwords
; ++i
)
1202 elfcpp::Swap
<size
, big_endian
>::writeval(p
, bitmask
[i
]);
1206 *phashlen
= hashlen
;
1212 // Write this definition to a buffer for the output section.
1214 template<int size
, bool big_endian
>
1216 Verdef::write(const Stringpool
* dynpool
, bool is_last
, unsigned char* pb
) const
1218 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1219 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1221 elfcpp::Verdef_write
<size
, big_endian
> vd(pb
);
1222 vd
.set_vd_version(elfcpp::VER_DEF_CURRENT
);
1223 vd
.set_vd_flags((this->is_base_
? elfcpp::VER_FLG_BASE
: 0)
1224 | (this->is_weak_
? elfcpp::VER_FLG_WEAK
: 0));
1225 vd
.set_vd_ndx(this->index());
1226 vd
.set_vd_cnt(1 + this->deps_
.size());
1227 vd
.set_vd_hash(Dynobj::elf_hash(this->name()));
1228 vd
.set_vd_aux(verdef_size
);
1229 vd
.set_vd_next(is_last
1231 : verdef_size
+ (1 + this->deps_
.size()) * verdaux_size
);
1234 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1235 vda
.set_vda_name(dynpool
->get_offset(this->name()));
1236 vda
.set_vda_next(this->deps_
.empty() ? 0 : verdaux_size
);
1239 Deps::const_iterator p
;
1241 for (p
= this->deps_
.begin(), i
= 0;
1242 p
!= this->deps_
.end();
1245 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1246 vda
.set_vda_name(dynpool
->get_offset(*p
));
1247 vda
.set_vda_next(i
+ 1 >= this->deps_
.size() ? 0 : verdaux_size
);
1258 for (Need_versions::iterator p
= this->need_versions_
.begin();
1259 p
!= this->need_versions_
.end();
1264 // Add a new version to this file reference.
1267 Verneed::add_name(const char* name
)
1269 Verneed_version
* vv
= new Verneed_version(name
);
1270 this->need_versions_
.push_back(vv
);
1274 // Set the version indexes starting at INDEX.
1277 Verneed::finalize(unsigned int index
)
1279 for (Need_versions::iterator p
= this->need_versions_
.begin();
1280 p
!= this->need_versions_
.end();
1283 (*p
)->set_index(index
);
1289 // Write this list of referenced versions to a buffer for the output
1292 template<int size
, bool big_endian
>
1294 Verneed::write(const Stringpool
* dynpool
, bool is_last
,
1295 unsigned char* pb
) const
1297 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1298 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1300 elfcpp::Verneed_write
<size
, big_endian
> vn(pb
);
1301 vn
.set_vn_version(elfcpp::VER_NEED_CURRENT
);
1302 vn
.set_vn_cnt(this->need_versions_
.size());
1303 vn
.set_vn_file(dynpool
->get_offset(this->filename()));
1304 vn
.set_vn_aux(verneed_size
);
1305 vn
.set_vn_next(is_last
1307 : verneed_size
+ this->need_versions_
.size() * vernaux_size
);
1310 Need_versions::const_iterator p
;
1312 for (p
= this->need_versions_
.begin(), i
= 0;
1313 p
!= this->need_versions_
.end();
1316 elfcpp::Vernaux_write
<size
, big_endian
> vna(pb
);
1317 vna
.set_vna_hash(Dynobj::elf_hash((*p
)->version()));
1318 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1319 vna
.set_vna_flags(0);
1320 vna
.set_vna_other((*p
)->index());
1321 vna
.set_vna_name(dynpool
->get_offset((*p
)->version()));
1322 vna
.set_vna_next(i
+ 1 >= this->need_versions_
.size()
1331 // Versions methods.
1333 Versions::Versions(const Version_script_info
& version_script
,
1334 Stringpool
* dynpool
)
1335 : defs_(), needs_(), version_table_(),
1336 is_finalized_(false), version_script_(version_script
),
1337 needs_base_version_(parameters
->options().shared())
1339 if (!this->version_script_
.empty())
1341 // Parse the version script, and insert each declared version into
1342 // defs_ and version_table_.
1343 std::vector
<std::string
> versions
= this->version_script_
.get_versions();
1345 if (this->needs_base_version_
&& !versions
.empty())
1346 this->define_base_version(dynpool
);
1348 for (size_t k
= 0; k
< versions
.size(); ++k
)
1350 Stringpool::Key version_key
;
1351 const char* version
= dynpool
->add(versions
[k
].c_str(),
1352 true, &version_key
);
1353 Verdef
* const vd
= new Verdef(
1355 this->version_script_
.get_dependencies(version
),
1356 false, false, false);
1357 this->defs_
.push_back(vd
);
1358 Key
key(version_key
, 0);
1359 this->version_table_
.insert(std::make_pair(key
, vd
));
1364 Versions::~Versions()
1366 for (Defs::iterator p
= this->defs_
.begin();
1367 p
!= this->defs_
.end();
1371 for (Needs::iterator p
= this->needs_
.begin();
1372 p
!= this->needs_
.end();
1377 // Define the base version of a shared library. The base version definition
1378 // must be the first entry in defs_. We insert it lazily so that defs_ is
1379 // empty if no symbol versioning is used. Then layout can just drop the
1380 // version sections.
1383 Versions::define_base_version(Stringpool
* dynpool
)
1385 // If we do any versioning at all, we always need a base version, so
1386 // define that first. Nothing explicitly declares itself as part of base,
1387 // so it doesn't need to be in version_table_.
1388 gold_assert(this->defs_
.empty());
1389 const char* name
= parameters
->options().soname();
1391 name
= parameters
->options().output_file_name();
1392 name
= dynpool
->add(name
, false, NULL
);
1393 Verdef
* vdbase
= new Verdef(name
, std::vector
<std::string
>(),
1395 this->defs_
.push_back(vdbase
);
1396 this->needs_base_version_
= false;
1399 // Return the dynamic object which a symbol refers to.
1402 Versions::get_dynobj_for_sym(const Symbol_table
* symtab
,
1403 const Symbol
* sym
) const
1405 if (sym
->is_copied_from_dynobj())
1406 return symtab
->get_copy_source(sym
);
1409 Object
* object
= sym
->object();
1410 gold_assert(object
->is_dynamic());
1411 return static_cast<Dynobj
*>(object
);
1415 // Record version information for a symbol going into the dynamic
1419 Versions::record_version(const Symbol_table
* symtab
,
1420 Stringpool
* dynpool
, const Symbol
* sym
)
1422 gold_assert(!this->is_finalized_
);
1423 gold_assert(sym
->version() != NULL
);
1425 Stringpool::Key version_key
;
1426 const char* version
= dynpool
->add(sym
->version(), false, &version_key
);
1428 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1430 if (parameters
->options().shared())
1431 this->add_def(sym
, version
, version_key
);
1435 // This is a version reference.
1436 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1437 this->add_need(dynpool
, dynobj
->soname(), version
, version_key
);
1441 // We've found a symbol SYM defined in version VERSION.
1444 Versions::add_def(const Symbol
* sym
, const char* version
,
1445 Stringpool::Key version_key
)
1447 Key
k(version_key
, 0);
1448 Version_base
* const vbnull
= NULL
;
1449 std::pair
<Version_table::iterator
, bool> ins
=
1450 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1454 // We already have an entry for this version.
1455 Version_base
* vb
= ins
.first
->second
;
1457 // We have now seen a symbol in this version, so it is not
1459 gold_assert(vb
!= NULL
);
1464 // If we are creating a shared object, it is an error to
1465 // find a definition of a symbol with a version which is not
1466 // in the version script.
1467 if (parameters
->options().shared())
1468 gold_error(_("symbol %s has undefined version %s"),
1469 sym
->demangled_name().c_str(), version
);
1471 // We only insert a base version for shared library.
1472 gold_assert(!this->needs_base_version_
);
1474 // When creating a regular executable, automatically define
1476 Verdef
* vd
= new Verdef(version
, std::vector
<std::string
>(),
1477 false, false, false);
1478 this->defs_
.push_back(vd
);
1479 ins
.first
->second
= vd
;
1483 // Add a reference to version NAME in file FILENAME.
1486 Versions::add_need(Stringpool
* dynpool
, const char* filename
, const char* name
,
1487 Stringpool::Key name_key
)
1489 Stringpool::Key filename_key
;
1490 filename
= dynpool
->add(filename
, true, &filename_key
);
1492 Key
k(name_key
, filename_key
);
1493 Version_base
* const vbnull
= NULL
;
1494 std::pair
<Version_table::iterator
, bool> ins
=
1495 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1499 // We already have an entry for this filename/version.
1503 // See whether we already have this filename. We don't expect many
1504 // version references, so we just do a linear search. This could be
1505 // replaced by a hash table.
1507 for (Needs::iterator p
= this->needs_
.begin();
1508 p
!= this->needs_
.end();
1511 if ((*p
)->filename() == filename
)
1520 // Create base version definition lazily for shared library.
1521 if (this->needs_base_version_
)
1522 this->define_base_version(dynpool
);
1524 // We have a new filename.
1525 vn
= new Verneed(filename
);
1526 this->needs_
.push_back(vn
);
1529 ins
.first
->second
= vn
->add_name(name
);
1532 // Set the version indexes. Create a new dynamic version symbol for
1533 // each new version definition.
1536 Versions::finalize(Symbol_table
* symtab
, unsigned int dynsym_index
,
1537 std::vector
<Symbol
*>* syms
)
1539 gold_assert(!this->is_finalized_
);
1541 unsigned int vi
= 1;
1543 for (Defs::iterator p
= this->defs_
.begin();
1544 p
!= this->defs_
.end();
1547 (*p
)->set_index(vi
);
1550 // Create a version symbol if necessary.
1551 if (!(*p
)->is_symbol_created())
1553 Symbol
* vsym
= symtab
->define_as_constant((*p
)->name(),
1555 Symbol_table::PREDEFINED
,
1559 elfcpp::STV_DEFAULT
, 0,
1561 vsym
->set_needs_dynsym_entry();
1562 vsym
->set_dynsym_index(dynsym_index
);
1563 vsym
->set_is_default();
1565 syms
->push_back(vsym
);
1566 // The name is already in the dynamic pool.
1570 // Index 1 is used for global symbols.
1573 gold_assert(this->defs_
.empty());
1577 for (Needs::iterator p
= this->needs_
.begin();
1578 p
!= this->needs_
.end();
1580 vi
= (*p
)->finalize(vi
);
1582 this->is_finalized_
= true;
1584 return dynsym_index
;
1587 // Return the version index to use for a symbol. This does two hash
1588 // table lookups: one in DYNPOOL and one in this->version_table_.
1589 // Another approach alternative would be store a pointer in SYM, which
1590 // would increase the size of the symbol table. Or perhaps we could
1591 // use a hash table from dynamic symbol pointer values to Version_base
1595 Versions::version_index(const Symbol_table
* symtab
, const Stringpool
* dynpool
,
1596 const Symbol
* sym
) const
1598 Stringpool::Key version_key
;
1599 const char* version
= dynpool
->find(sym
->version(), &version_key
);
1600 gold_assert(version
!= NULL
);
1603 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1605 if (!parameters
->options().shared())
1606 return elfcpp::VER_NDX_GLOBAL
;
1607 k
= Key(version_key
, 0);
1611 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1613 Stringpool::Key filename_key
;
1614 const char* filename
= dynpool
->find(dynobj
->soname(), &filename_key
);
1615 gold_assert(filename
!= NULL
);
1617 k
= Key(version_key
, filename_key
);
1620 Version_table::const_iterator p
= this->version_table_
.find(k
);
1621 gold_assert(p
!= this->version_table_
.end());
1623 return p
->second
->index();
1626 // Return an allocated buffer holding the contents of the symbol
1629 template<int size
, bool big_endian
>
1631 Versions::symbol_section_contents(const Symbol_table
* symtab
,
1632 const Stringpool
* dynpool
,
1633 unsigned int local_symcount
,
1634 const std::vector
<Symbol
*>& syms
,
1636 unsigned int* psize
) const
1638 gold_assert(this->is_finalized_
);
1640 unsigned int sz
= (local_symcount
+ syms
.size()) * 2;
1641 unsigned char* pbuf
= new unsigned char[sz
];
1643 for (unsigned int i
= 0; i
< local_symcount
; ++i
)
1644 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ i
* 2,
1645 elfcpp::VER_NDX_LOCAL
);
1647 for (std::vector
<Symbol
*>::const_iterator p
= syms
.begin();
1651 unsigned int version_index
;
1652 const char* version
= (*p
)->version();
1653 if (version
!= NULL
)
1654 version_index
= this->version_index(symtab
, dynpool
, *p
);
1657 if ((*p
)->is_defined() && !(*p
)->is_from_dynobj())
1658 version_index
= elfcpp::VER_NDX_GLOBAL
;
1660 version_index
= elfcpp::VER_NDX_LOCAL
;
1662 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1664 if ((*p
)->version() != NULL
&& !(*p
)->is_default())
1665 version_index
|= elfcpp::VERSYM_HIDDEN
;
1666 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ (*p
)->dynsym_index() * 2,
1674 // Return an allocated buffer holding the contents of the version
1675 // definition section.
1677 template<int size
, bool big_endian
>
1679 Versions::def_section_contents(const Stringpool
* dynpool
,
1680 unsigned char** pp
, unsigned int* psize
,
1681 unsigned int* pentries
) const
1683 gold_assert(this->is_finalized_
);
1684 gold_assert(!this->defs_
.empty());
1686 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1687 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1689 unsigned int sz
= 0;
1690 for (Defs::const_iterator p
= this->defs_
.begin();
1691 p
!= this->defs_
.end();
1694 sz
+= verdef_size
+ verdaux_size
;
1695 sz
+= (*p
)->count_dependencies() * verdaux_size
;
1698 unsigned char* pbuf
= new unsigned char[sz
];
1700 unsigned char* pb
= pbuf
;
1701 Defs::const_iterator p
;
1703 for (p
= this->defs_
.begin(), i
= 0;
1704 p
!= this->defs_
.end();
1706 pb
= (*p
)->write
<size
, big_endian
>(dynpool
,
1707 i
+ 1 >= this->defs_
.size(),
1710 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1714 *pentries
= this->defs_
.size();
1717 // Return an allocated buffer holding the contents of the version
1718 // reference section.
1720 template<int size
, bool big_endian
>
1722 Versions::need_section_contents(const Stringpool
* dynpool
,
1723 unsigned char** pp
, unsigned int *psize
,
1724 unsigned int *pentries
) const
1726 gold_assert(this->is_finalized_
);
1727 gold_assert(!this->needs_
.empty());
1729 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1730 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1732 unsigned int sz
= 0;
1733 for (Needs::const_iterator p
= this->needs_
.begin();
1734 p
!= this->needs_
.end();
1738 sz
+= (*p
)->count_versions() * vernaux_size
;
1741 unsigned char* pbuf
= new unsigned char[sz
];
1743 unsigned char* pb
= pbuf
;
1744 Needs::const_iterator p
;
1746 for (p
= this->needs_
.begin(), i
= 0;
1747 p
!= this->needs_
.end();
1749 pb
= (*p
)->write
<size
, big_endian
>(dynpool
,
1750 i
+ 1 >= this->needs_
.size(),
1753 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1757 *pentries
= this->needs_
.size();
1760 // Instantiate the templates we need. We could use the configure
1761 // script to restrict this to only the ones for implemented targets.
1763 #ifdef HAVE_TARGET_32_LITTLE
1765 class Sized_dynobj
<32, false>;
1768 #ifdef HAVE_TARGET_32_BIG
1770 class Sized_dynobj
<32, true>;
1773 #ifdef HAVE_TARGET_64_LITTLE
1775 class Sized_dynobj
<64, false>;
1778 #ifdef HAVE_TARGET_64_BIG
1780 class Sized_dynobj
<64, true>;
1783 #ifdef HAVE_TARGET_32_LITTLE
1786 Versions::symbol_section_contents
<32, false>(
1787 const Symbol_table
*,
1790 const std::vector
<Symbol
*>&,
1792 unsigned int*) const;
1795 #ifdef HAVE_TARGET_32_BIG
1798 Versions::symbol_section_contents
<32, true>(
1799 const Symbol_table
*,
1802 const std::vector
<Symbol
*>&,
1804 unsigned int*) const;
1807 #ifdef HAVE_TARGET_64_LITTLE
1810 Versions::symbol_section_contents
<64, false>(
1811 const Symbol_table
*,
1814 const std::vector
<Symbol
*>&,
1816 unsigned int*) const;
1819 #ifdef HAVE_TARGET_64_BIG
1822 Versions::symbol_section_contents
<64, true>(
1823 const Symbol_table
*,
1826 const std::vector
<Symbol
*>&,
1828 unsigned int*) const;
1831 #ifdef HAVE_TARGET_32_LITTLE
1834 Versions::def_section_contents
<32, false>(
1838 unsigned int*) const;
1841 #ifdef HAVE_TARGET_32_BIG
1844 Versions::def_section_contents
<32, true>(
1848 unsigned int*) const;
1851 #ifdef HAVE_TARGET_64_LITTLE
1854 Versions::def_section_contents
<64, false>(
1858 unsigned int*) const;
1861 #ifdef HAVE_TARGET_64_BIG
1864 Versions::def_section_contents
<64, true>(
1868 unsigned int*) const;
1871 #ifdef HAVE_TARGET_32_LITTLE
1874 Versions::need_section_contents
<32, false>(
1878 unsigned int*) const;
1881 #ifdef HAVE_TARGET_32_BIG
1884 Versions::need_section_contents
<32, true>(
1888 unsigned int*) const;
1891 #ifdef HAVE_TARGET_64_LITTLE
1894 Versions::need_section_contents
<64, false>(
1898 unsigned int*) const;
1901 #ifdef HAVE_TARGET_64_BIG
1904 Versions::need_section_contents
<64, true>(
1908 unsigned int*) const;
1911 } // End namespace gold.