1 // dwarf_reader.cc -- parse dwarf2/3 debug information
3 // Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
28 #include "elfcpp_swap.h"
31 #include "parameters.h"
33 #include "dwarf_reader.h"
37 // Read an unsigned LEB128 number. Each byte contains 7 bits of
38 // information, plus one bit saying whether the number continues or
42 read_unsigned_LEB_128(const unsigned char* buffer
, size_t* len
)
46 unsigned int shift
= 0;
51 if (num_read
>= 64 / 7)
53 gold_warning(_("Unusually large LEB128 decoded, "
54 "debug information may be corrupted"));
59 result
|= (static_cast<uint64_t>(byte
& 0x7f)) << shift
;
69 // Read a signed LEB128 number. These are like regular LEB128
70 // numbers, except the last byte may have a sign bit set.
73 read_signed_LEB_128(const unsigned char* buffer
, size_t* len
)
82 if (num_read
>= 64 / 7)
84 gold_warning(_("Unusually large LEB128 decoded, "
85 "debug information may be corrupted"));
90 result
|= (static_cast<uint64_t>(byte
& 0x7f) << shift
);
95 if ((shift
< 8 * static_cast<int>(sizeof(result
))) && (byte
& 0x40))
96 result
|= -((static_cast<int64_t>(1)) << shift
);
101 // This is the format of a DWARF2/3 line state machine that we process
102 // opcodes using. There is no need for anything outside the lineinfo
103 // processor to know how this works.
105 struct LineStateMachine
111 unsigned int shndx
; // the section address refers to
112 bool is_stmt
; // stmt means statement.
118 ResetLineStateMachine(struct LineStateMachine
* lsm
, bool default_is_stmt
)
125 lsm
->is_stmt
= default_is_stmt
;
126 lsm
->basic_block
= false;
127 lsm
->end_sequence
= false;
130 template<int size
, bool big_endian
>
131 Sized_dwarf_line_info
<size
, big_endian
>::Sized_dwarf_line_info(Object
* object
,
132 unsigned int read_shndx
)
133 : data_valid_(false), buffer_(NULL
), symtab_buffer_(NULL
),
134 directories_(), files_(), current_header_index_(-1)
136 unsigned int debug_shndx
;
137 for (debug_shndx
= 0; debug_shndx
< object
->shnum(); ++debug_shndx
)
138 // FIXME: do this more efficiently: section_name() isn't super-fast
139 if (object
->section_name(debug_shndx
) == ".debug_line")
141 section_size_type buffer_size
;
142 this->buffer_
= object
->section_contents(debug_shndx
, &buffer_size
,
144 this->buffer_end_
= this->buffer_
+ buffer_size
;
147 if (this->buffer_
== NULL
)
150 // Find the relocation section for ".debug_line".
151 // We expect these for relobjs (.o's) but not dynobjs (.so's).
152 bool got_relocs
= false;
153 for (unsigned int reloc_shndx
= 0;
154 reloc_shndx
< object
->shnum();
157 unsigned int reloc_sh_type
= object
->section_type(reloc_shndx
);
158 if ((reloc_sh_type
== elfcpp::SHT_REL
159 || reloc_sh_type
== elfcpp::SHT_RELA
)
160 && object
->section_info(reloc_shndx
) == debug_shndx
)
162 got_relocs
= this->track_relocs_
.initialize(object
, reloc_shndx
,
168 // Finally, we need the symtab section to interpret the relocs.
171 unsigned int symtab_shndx
;
172 for (symtab_shndx
= 0; symtab_shndx
< object
->shnum(); ++symtab_shndx
)
173 if (object
->section_type(symtab_shndx
) == elfcpp::SHT_SYMTAB
)
175 this->symtab_buffer_
= object
->section_contents(
176 symtab_shndx
, &this->symtab_buffer_size_
, false);
179 if (this->symtab_buffer_
== NULL
)
183 // Now that we have successfully read all the data, parse the debug
185 this->data_valid_
= true;
186 this->read_line_mappings(object
, read_shndx
);
189 // Read the DWARF header.
191 template<int size
, bool big_endian
>
193 Sized_dwarf_line_info
<size
, big_endian
>::read_header_prolog(
194 const unsigned char* lineptr
)
196 uint32_t initial_length
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(lineptr
);
199 // In DWARF2/3, if the initial length is all 1 bits, then the offset
200 // size is 8 and we need to read the next 8 bytes for the real length.
201 if (initial_length
== 0xffffffff)
203 header_
.offset_size
= 8;
204 initial_length
= elfcpp::Swap_unaligned
<64, big_endian
>::readval(lineptr
);
208 header_
.offset_size
= 4;
210 header_
.total_length
= initial_length
;
212 gold_assert(lineptr
+ header_
.total_length
<= buffer_end_
);
214 header_
.version
= elfcpp::Swap_unaligned
<16, big_endian
>::readval(lineptr
);
217 if (header_
.offset_size
== 4)
218 header_
.prologue_length
= elfcpp::Swap_unaligned
<32, big_endian
>::readval(lineptr
);
220 header_
.prologue_length
= elfcpp::Swap_unaligned
<64, big_endian
>::readval(lineptr
);
221 lineptr
+= header_
.offset_size
;
223 header_
.min_insn_length
= *lineptr
;
226 header_
.default_is_stmt
= *lineptr
;
229 header_
.line_base
= *reinterpret_cast<const signed char*>(lineptr
);
232 header_
.line_range
= *lineptr
;
235 header_
.opcode_base
= *lineptr
;
238 header_
.std_opcode_lengths
.reserve(header_
.opcode_base
+ 1);
239 header_
.std_opcode_lengths
[0] = 0;
240 for (int i
= 1; i
< header_
.opcode_base
; i
++)
242 header_
.std_opcode_lengths
[i
] = *lineptr
;
249 // The header for a debug_line section is mildly complicated, because
250 // the line info is very tightly encoded.
252 template<int size
, bool big_endian
>
254 Sized_dwarf_line_info
<size
, big_endian
>::read_header_tables(
255 const unsigned char* lineptr
)
257 ++this->current_header_index_
;
259 // Create a new directories_ entry and a new files_ entry for our new
260 // header. We initialize each with a single empty element, because
261 // dwarf indexes directory and filenames starting at 1.
262 gold_assert(static_cast<int>(this->directories_
.size())
263 == this->current_header_index_
);
264 gold_assert(static_cast<int>(this->files_
.size())
265 == this->current_header_index_
);
266 this->directories_
.push_back(std::vector
<std::string
>(1));
267 this->files_
.push_back(std::vector
<std::pair
<int, std::string
> >(1));
269 // It is legal for the directory entry table to be empty.
275 const char* dirname
= reinterpret_cast<const char*>(lineptr
);
277 == static_cast<int>(this->directories_
.back().size()));
278 this->directories_
.back().push_back(dirname
);
279 lineptr
+= this->directories_
.back().back().size() + 1;
285 // It is also legal for the file entry table to be empty.
292 const char* filename
= reinterpret_cast<const char*>(lineptr
);
293 lineptr
+= strlen(filename
) + 1;
295 uint64_t dirindex
= read_unsigned_LEB_128(lineptr
, &len
);
298 if (dirindex
>= this->directories_
.back().size())
300 int dirindexi
= static_cast<int>(dirindex
);
302 read_unsigned_LEB_128(lineptr
, &len
); // mod_time
305 read_unsigned_LEB_128(lineptr
, &len
); // filelength
308 gold_assert(fileindex
309 == static_cast<int>(this->files_
.back().size()));
310 this->files_
.back().push_back(std::make_pair(dirindexi
, filename
));
319 // Process a single opcode in the .debug.line structure.
321 // Templating on size and big_endian would yield more efficient (and
322 // simpler) code, but would bloat the binary. Speed isn't important
325 template<int size
, bool big_endian
>
327 Sized_dwarf_line_info
<size
, big_endian
>::process_one_opcode(
328 const unsigned char* start
, struct LineStateMachine
* lsm
, size_t* len
)
332 unsigned char opcode
= *start
;
336 // If the opcode is great than the opcode_base, it is a special
337 // opcode. Most line programs consist mainly of special opcodes.
338 if (opcode
>= header_
.opcode_base
)
340 opcode
-= header_
.opcode_base
;
341 const int advance_address
= ((opcode
/ header_
.line_range
)
342 * header_
.min_insn_length
);
343 lsm
->address
+= advance_address
;
345 const int advance_line
= ((opcode
% header_
.line_range
)
346 + header_
.line_base
);
347 lsm
->line_num
+= advance_line
;
348 lsm
->basic_block
= true;
353 // Otherwise, we have the regular opcodes
356 case elfcpp::DW_LNS_copy
:
357 lsm
->basic_block
= false;
361 case elfcpp::DW_LNS_advance_pc
:
363 const uint64_t advance_address
364 = read_unsigned_LEB_128(start
, &templen
);
366 lsm
->address
+= header_
.min_insn_length
* advance_address
;
370 case elfcpp::DW_LNS_advance_line
:
372 const uint64_t advance_line
= read_signed_LEB_128(start
, &templen
);
374 lsm
->line_num
+= advance_line
;
378 case elfcpp::DW_LNS_set_file
:
380 const uint64_t fileno
= read_unsigned_LEB_128(start
, &templen
);
382 lsm
->file_num
= fileno
;
386 case elfcpp::DW_LNS_set_column
:
388 const uint64_t colno
= read_unsigned_LEB_128(start
, &templen
);
390 lsm
->column_num
= colno
;
394 case elfcpp::DW_LNS_negate_stmt
:
395 lsm
->is_stmt
= !lsm
->is_stmt
;
398 case elfcpp::DW_LNS_set_basic_block
:
399 lsm
->basic_block
= true;
402 case elfcpp::DW_LNS_fixed_advance_pc
:
405 advance_address
= elfcpp::Swap_unaligned
<16, big_endian
>::readval(start
);
407 lsm
->address
+= advance_address
;
411 case elfcpp::DW_LNS_const_add_pc
:
413 const int advance_address
= (header_
.min_insn_length
414 * ((255 - header_
.opcode_base
)
415 / header_
.line_range
));
416 lsm
->address
+= advance_address
;
420 case elfcpp::DW_LNS_extended_op
:
422 const uint64_t extended_op_len
423 = read_unsigned_LEB_128(start
, &templen
);
425 oplen
+= templen
+ extended_op_len
;
427 const unsigned char extended_op
= *start
;
432 case elfcpp::DW_LNE_end_sequence
:
433 // This means that the current byte is the one immediately
434 // after a set of instructions. Record the current line
435 // for up to one less than the current address.
437 lsm
->end_sequence
= true;
441 case elfcpp::DW_LNE_set_address
:
443 lsm
->address
= elfcpp::Swap_unaligned
<size
, big_endian
>::readval(start
);
444 typename
Reloc_map::const_iterator it
445 = reloc_map_
.find(start
- this->buffer_
);
446 if (it
!= reloc_map_
.end())
449 lsm
->address
+= it
->second
.second
;
450 lsm
->shndx
= it
->second
.first
;
454 // If we're a normal .o file, with relocs, every
455 // set_address should have an associated relocation.
456 if (this->input_is_relobj())
457 this->data_valid_
= false;
461 case elfcpp::DW_LNE_define_file
:
463 const char* filename
= reinterpret_cast<const char*>(start
);
464 templen
= strlen(filename
) + 1;
467 uint64_t dirindex
= read_unsigned_LEB_128(start
, &templen
);
470 if (dirindex
>= this->directories_
.back().size())
472 int dirindexi
= static_cast<int>(dirindex
);
474 read_unsigned_LEB_128(start
, &templen
); // mod_time
477 read_unsigned_LEB_128(start
, &templen
); // filelength
480 this->files_
.back().push_back(std::make_pair(dirindexi
,
490 // Ignore unknown opcode silently
491 for (int i
= 0; i
< header_
.std_opcode_lengths
[opcode
]; i
++)
494 read_unsigned_LEB_128(start
, &templen
);
505 // Read the debug information at LINEPTR and store it in the line
508 template<int size
, bool big_endian
>
510 Sized_dwarf_line_info
<size
, big_endian
>::read_lines(unsigned const char* lineptr
,
513 struct LineStateMachine lsm
;
515 // LENGTHSTART is the place the length field is based on. It is the
516 // point in the header after the initial length field.
517 const unsigned char* lengthstart
= buffer_
;
519 // In 64 bit dwarf, the initial length is 12 bytes, because of the
520 // 0xffffffff at the start.
521 if (header_
.offset_size
== 8)
526 while (lineptr
< lengthstart
+ header_
.total_length
)
528 ResetLineStateMachine(&lsm
, header_
.default_is_stmt
);
529 while (!lsm
.end_sequence
)
532 bool add_line
= this->process_one_opcode(lineptr
, &lsm
, &oplength
);
534 && (shndx
== -1U || lsm
.shndx
== -1U || shndx
== lsm
.shndx
))
536 Offset_to_lineno_entry entry
537 = { lsm
.address
, this->current_header_index_
,
538 lsm
.file_num
, lsm
.line_num
};
539 line_number_map_
[lsm
.shndx
].push_back(entry
);
545 return lengthstart
+ header_
.total_length
;
548 // Looks in the symtab to see what section a symbol is in.
550 template<int size
, bool big_endian
>
552 Sized_dwarf_line_info
<size
, big_endian
>::symbol_section(
555 typename
elfcpp::Elf_types
<size
>::Elf_Addr
* value
,
558 const int symsize
= elfcpp::Elf_sizes
<size
>::sym_size
;
559 gold_assert(sym
* symsize
< this->symtab_buffer_size_
);
560 elfcpp::Sym
<size
, big_endian
> elfsym(this->symtab_buffer_
+ sym
* symsize
);
561 *value
= elfsym
.get_st_value();
562 return object
->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
565 // Read the relocations into a Reloc_map.
567 template<int size
, bool big_endian
>
569 Sized_dwarf_line_info
<size
, big_endian
>::read_relocs(Object
* object
)
571 if (this->symtab_buffer_
== NULL
)
574 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
;
576 while ((reloc_offset
= this->track_relocs_
.next_offset()) != -1)
578 const unsigned int sym
= this->track_relocs_
.next_symndx();
581 const unsigned int shndx
= this->symbol_section(object
, sym
, &value
,
584 // There is no reason to record non-ordinary section indexes, or
585 // SHN_UNDEF, because they will never match the real section.
586 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
587 this->reloc_map_
[reloc_offset
] = std::make_pair(shndx
, value
);
589 this->track_relocs_
.advance(reloc_offset
+ 1);
593 // Read the line number info.
595 template<int size
, bool big_endian
>
597 Sized_dwarf_line_info
<size
, big_endian
>::read_line_mappings(Object
* object
,
600 gold_assert(this->data_valid_
== true);
602 this->read_relocs(object
);
603 while (this->buffer_
< this->buffer_end_
)
605 const unsigned char* lineptr
= this->buffer_
;
606 lineptr
= this->read_header_prolog(lineptr
);
607 lineptr
= this->read_header_tables(lineptr
);
608 lineptr
= this->read_lines(lineptr
, shndx
);
609 this->buffer_
= lineptr
;
612 // Sort the lines numbers, so addr2line can use binary search.
613 for (typename
Lineno_map::iterator it
= line_number_map_
.begin();
614 it
!= line_number_map_
.end();
616 // Each vector needs to be sorted by offset.
617 std::sort(it
->second
.begin(), it
->second
.end());
620 // Some processing depends on whether the input is a .o file or not.
621 // For instance, .o files have relocs, and have .debug_lines
622 // information on a per section basis. .so files, on the other hand,
623 // lack relocs, and offsets are unique, so we can ignore the section
626 template<int size
, bool big_endian
>
628 Sized_dwarf_line_info
<size
, big_endian
>::input_is_relobj()
630 // Only .o files have relocs and the symtab buffer that goes with them.
631 return this->symtab_buffer_
!= NULL
;
634 // Given an Offset_to_lineno_entry vector, and an offset, figure out
635 // if the offset points into a function according to the vector (see
636 // comments below for the algorithm). If it does, return an iterator
637 // into the vector that points to the line-number that contains that
638 // offset. If not, it returns vector::end().
640 static std::vector
<Offset_to_lineno_entry
>::const_iterator
641 offset_to_iterator(const std::vector
<Offset_to_lineno_entry
>* offsets
,
644 const Offset_to_lineno_entry lookup_key
= { offset
, 0, 0, 0 };
646 // lower_bound() returns the smallest offset which is >= lookup_key.
647 // If no offset in offsets is >= lookup_key, returns end().
648 std::vector
<Offset_to_lineno_entry
>::const_iterator it
649 = std::lower_bound(offsets
->begin(), offsets
->end(), lookup_key
);
651 // This code is easiest to understand with a concrete example.
652 // Here's a possible offsets array:
653 // {{offset = 3211, header_num = 0, file_num = 1, line_num = 16}, // 0
654 // {offset = 3224, header_num = 0, file_num = 1, line_num = 20}, // 1
655 // {offset = 3226, header_num = 0, file_num = 1, line_num = 22}, // 2
656 // {offset = 3231, header_num = 0, file_num = 1, line_num = 25}, // 3
657 // {offset = 3232, header_num = 0, file_num = 1, line_num = -1}, // 4
658 // {offset = 3232, header_num = 0, file_num = 1, line_num = 65}, // 5
659 // {offset = 3235, header_num = 0, file_num = 1, line_num = 66}, // 6
660 // {offset = 3236, header_num = 0, file_num = 1, line_num = -1}, // 7
661 // {offset = 5764, header_num = 0, file_num = 1, line_num = 47}, // 8
662 // {offset = 5765, header_num = 0, file_num = 1, line_num = 48}, // 9
663 // {offset = 5767, header_num = 0, file_num = 1, line_num = 49}, // 10
664 // {offset = 5768, header_num = 0, file_num = 1, line_num = 50}, // 11
665 // {offset = 5773, header_num = 0, file_num = 1, line_num = -1}, // 12
666 // {offset = 5787, header_num = 1, file_num = 1, line_num = 19}, // 13
667 // {offset = 5790, header_num = 1, file_num = 1, line_num = 20}, // 14
668 // {offset = 5793, header_num = 1, file_num = 1, line_num = 67}, // 15
669 // {offset = 5793, header_num = 1, file_num = 1, line_num = -1}, // 16
670 // {offset = 5795, header_num = 1, file_num = 1, line_num = 68}, // 17
671 // {offset = 5798, header_num = 1, file_num = 1, line_num = -1}, // 18
672 // The entries with line_num == -1 mark the end of a function: the
673 // associated offset is one past the last instruction in the
674 // function. This can correspond to the beginning of the next
675 // function (as is true for offset 3232); alternately, there can be
676 // a gap between the end of one function and the start of the next
677 // (as is true for some others, most obviously from 3236->5764).
679 // Case 1: lookup_key has offset == 10. lower_bound returns
680 // offsets[0]. Since it's not an exact match and we're
681 // at the beginning of offsets, we return end() (invalid).
682 // Case 2: lookup_key has offset 10000. lower_bound returns
683 // offset[19] (end()). We return end() (invalid).
684 // Case 3: lookup_key has offset == 3211. lower_bound matches
685 // offsets[0] exactly, and that's the entry we return.
686 // Case 4: lookup_key has offset == 3232. lower_bound returns
687 // offsets[4]. That's an exact match, but indicates
688 // end-of-function. We check if offsets[5] is also an
689 // exact match but not end-of-function. It is, so we
690 // return offsets[5].
691 // Case 5: lookup_key has offset == 3214. lower_bound returns
692 // offsets[1]. Since it's not an exact match, we back
693 // up to the offset that's < lookup_key, offsets[0].
694 // We note offsets[0] is a valid entry (not end-of-function),
695 // so that's the entry we return.
696 // Case 6: lookup_key has offset == 4000. lower_bound returns
697 // offsets[8]. Since it's not an exact match, we back
698 // up to offsets[7]. Since offsets[7] indicates
699 // end-of-function, we know lookup_key is between
700 // functions, so we return end() (not a valid offset).
701 // Case 7: lookup_key has offset == 5794. lower_bound returns
702 // offsets[17]. Since it's not an exact match, we back
703 // up to offsets[15]. Note we back up to the *first*
704 // entry with offset 5793, not just offsets[17-1].
705 // We note offsets[15] is a valid entry, so we return it.
706 // If offsets[15] had had line_num == -1, we would have
707 // checked offsets[16]. The reason for this is that
708 // 15 and 16 can be in an arbitrary order, since we sort
709 // only by offset. (Note it doesn't help to use line_number
710 // as a secondary sort key, since sometimes we want the -1
711 // to be first and sometimes we want it to be last.)
713 // This deals with cases (1) and (2).
714 if ((it
== offsets
->begin() && offset
< it
->offset
)
715 || it
== offsets
->end())
716 return offsets
->end();
718 // This deals with cases (3) and (4).
719 if (offset
== it
->offset
)
721 while (it
!= offsets
->end()
722 && it
->offset
== offset
723 && it
->line_num
== -1)
725 if (it
== offsets
->end() || it
->offset
!= offset
)
726 return offsets
->end();
731 // This handles the first part of case (7) -- we back up to the
732 // *first* entry that has the offset that's behind us.
733 gold_assert(it
!= offsets
->begin());
734 std::vector
<Offset_to_lineno_entry
>::const_iterator range_end
= it
;
736 const off_t range_value
= it
->offset
;
737 while (it
!= offsets
->begin() && (it
-1)->offset
== range_value
)
740 // This handles cases (5), (6), and (7): if any entry in the
741 // equal_range [it, range_end) has a line_num != -1, it's a valid
742 // match. If not, we're not in a function.
743 for (; it
!= range_end
; ++it
)
744 if (it
->line_num
!= -1)
746 return offsets
->end();
749 // Return a string for a file name and line number.
751 template<int size
, bool big_endian
>
753 Sized_dwarf_line_info
<size
, big_endian
>::do_addr2line(unsigned int shndx
,
756 if (this->data_valid_
== false)
759 const std::vector
<Offset_to_lineno_entry
>* offsets
;
760 // If we do not have reloc information, then our input is a .so or
761 // some similar data structure where all the information is held in
762 // the offset. In that case, we ignore the input shndx.
763 if (this->input_is_relobj())
764 offsets
= &this->line_number_map_
[shndx
];
766 offsets
= &this->line_number_map_
[-1U];
767 if (offsets
->empty())
770 typename
std::vector
<Offset_to_lineno_entry
>::const_iterator it
771 = offset_to_iterator(offsets
, offset
);
772 if (it
== offsets
->end())
775 // Convert the file_num + line_num into a string.
778 gold_assert(it
->header_num
< static_cast<int>(this->files_
.size()));
779 gold_assert(it
->file_num
780 < static_cast<int>(this->files_
[it
->header_num
].size()));
781 const std::pair
<int, std::string
>& filename_pair
782 = this->files_
[it
->header_num
][it
->file_num
];
783 const std::string
& filename
= filename_pair
.second
;
785 gold_assert(it
->header_num
< static_cast<int>(this->directories_
.size()));
786 gold_assert(filename_pair
.first
787 < static_cast<int>(this->directories_
[it
->header_num
].size()));
788 const std::string
& dirname
789 = this->directories_
[it
->header_num
][filename_pair
.first
];
791 if (!dirname
.empty())
800 char buffer
[64]; // enough to hold a line number
801 snprintf(buffer
, sizeof(buffer
), "%d", it
->line_num
);
808 // Dwarf_line_info routines.
810 static unsigned int next_generation_count
= 0;
812 struct Addr2line_cache_entry
816 Dwarf_line_info
* dwarf_line_info
;
817 unsigned int generation_count
;
818 unsigned int access_count
;
820 Addr2line_cache_entry(Object
* o
, unsigned int s
, Dwarf_line_info
* d
)
821 : object(o
), shndx(s
), dwarf_line_info(d
),
822 generation_count(next_generation_count
), access_count(0)
824 if (next_generation_count
< (1U << 31))
825 ++next_generation_count
;
828 // We expect this cache to be small, so don't bother with a hashtable
829 // or priority queue or anything: just use a simple vector.
830 static std::vector
<Addr2line_cache_entry
> addr2line_cache
;
833 Dwarf_line_info::one_addr2line(Object
* object
,
834 unsigned int shndx
, off_t offset
,
837 Dwarf_line_info
* lineinfo
= NULL
;
838 std::vector
<Addr2line_cache_entry
>::iterator it
;
840 // First, check the cache. If we hit, update the counts.
841 for (it
= addr2line_cache
.begin(); it
!= addr2line_cache
.end(); ++it
)
843 if (it
->object
== object
&& it
->shndx
== shndx
)
845 lineinfo
= it
->dwarf_line_info
;
846 it
->generation_count
= next_generation_count
;
847 // We cap generation_count at 2^31 -1 to avoid overflow.
848 if (next_generation_count
< (1U << 31))
849 ++next_generation_count
;
850 // We cap access_count at 31 so 2^access_count doesn't overflow
851 if (it
->access_count
< 31)
857 // If we don't hit the cache, create a new object and insert into the
859 if (lineinfo
== NULL
)
861 switch (parameters
->size_and_endianness())
863 #ifdef HAVE_TARGET_32_LITTLE
864 case Parameters::TARGET_32_LITTLE
:
865 lineinfo
= new Sized_dwarf_line_info
<32, false>(object
, shndx
); break;
867 #ifdef HAVE_TARGET_32_BIG
868 case Parameters::TARGET_32_BIG
:
869 lineinfo
= new Sized_dwarf_line_info
<32, true>(object
, shndx
); break;
871 #ifdef HAVE_TARGET_64_LITTLE
872 case Parameters::TARGET_64_LITTLE
:
873 lineinfo
= new Sized_dwarf_line_info
<64, false>(object
, shndx
); break;
875 #ifdef HAVE_TARGET_64_BIG
876 case Parameters::TARGET_64_BIG
:
877 lineinfo
= new Sized_dwarf_line_info
<64, true>(object
, shndx
); break;
882 addr2line_cache
.push_back(Addr2line_cache_entry(object
, shndx
, lineinfo
));
885 // Now that we have our object, figure out the answer
886 std::string retval
= lineinfo
->addr2line(shndx
, offset
);
888 // Finally, if our cache has grown too big, delete old objects. We
889 // assume the common (probably only) case is deleting only one object.
890 // We use a pretty simple scheme to evict: function of LRU and MFU.
891 while (addr2line_cache
.size() > cache_size
)
893 unsigned int lowest_score
= ~0U;
894 std::vector
<Addr2line_cache_entry
>::iterator lowest
895 = addr2line_cache
.end();
896 for (it
= addr2line_cache
.begin(); it
!= addr2line_cache
.end(); ++it
)
898 const unsigned int score
= (it
->generation_count
899 + (1U << it
->access_count
));
900 if (score
< lowest_score
)
902 lowest_score
= score
;
906 if (lowest
!= addr2line_cache
.end())
908 delete lowest
->dwarf_line_info
;
909 addr2line_cache
.erase(lowest
);
917 Dwarf_line_info::clear_addr2line_cache()
919 for (std::vector
<Addr2line_cache_entry
>::iterator it
= addr2line_cache
.begin();
920 it
!= addr2line_cache
.end();
922 delete it
->dwarf_line_info
;
923 addr2line_cache
.clear();
926 #ifdef HAVE_TARGET_32_LITTLE
928 class Sized_dwarf_line_info
<32, false>;
931 #ifdef HAVE_TARGET_32_BIG
933 class Sized_dwarf_line_info
<32, true>;
936 #ifdef HAVE_TARGET_64_LITTLE
938 class Sized_dwarf_line_info
<64, false>;
941 #ifdef HAVE_TARGET_64_BIG
943 class Sized_dwarf_line_info
<64, true>;
946 } // End namespace gold.