* configure.tgt (sparc64-*-linux-gnu*): Add elf32_sparc into
[binutils.git] / bfd / coff-h8300.c
blobd0287b7799566098a74ebaff142e52d4542e344f
1 /* BFD back-end for Hitachi H8/300 COFF binaries.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation, Inc.
4 Written by Steve Chamberlain, <sac@cygnus.com>.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27 #include "coff/h8300.h"
28 #include "coff/internal.h"
29 #include "libcoff.h"
31 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
33 /* We derive a hash table from the basic BFD hash table to
34 hold entries in the function vector. Aside from the
35 info stored by the basic hash table, we need the offset
36 of a particular entry within the hash table as well as
37 the offset where we'll add the next entry. */
39 struct funcvec_hash_entry
41 /* The basic hash table entry. */
42 struct bfd_hash_entry root;
44 /* The offset within the vectors section where
45 this entry lives. */
46 bfd_vma offset;
49 struct funcvec_hash_table
51 /* The basic hash table. */
52 struct bfd_hash_table root;
54 bfd *abfd;
56 /* Offset at which we'll add the next entry. */
57 unsigned int offset;
60 static struct bfd_hash_entry *
61 funcvec_hash_newfunc
62 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
64 static boolean
65 funcvec_hash_table_init
66 PARAMS ((struct funcvec_hash_table *, bfd *,
67 struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *,
68 struct bfd_hash_table *,
69 const char *))));
71 /* To lookup a value in the function vector hash table. */
72 #define funcvec_hash_lookup(table, string, create, copy) \
73 ((struct funcvec_hash_entry *) \
74 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
76 /* The derived h8300 COFF linker table. Note it's derived from
77 the generic linker hash table, not the COFF backend linker hash
78 table! We use this to attach additional data structures we
79 need while linking on the h8300. */
80 struct h8300_coff_link_hash_table
82 /* The main hash table. */
83 struct generic_link_hash_table root;
85 /* Section for the vectors table. This gets attached to a
86 random input bfd, we keep it here for easy access. */
87 asection *vectors_sec;
89 /* Hash table of the functions we need to enter into the function
90 vector. */
91 struct funcvec_hash_table *funcvec_hash_table;
94 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create
95 PARAMS ((bfd *));
97 /* Get the H8/300 COFF linker hash table from a link_info structure. */
99 #define h8300_coff_hash_table(p) \
100 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
102 /* Initialize fields within a funcvec hash table entry. Called whenever
103 a new entry is added to the funcvec hash table. */
105 static struct bfd_hash_entry *
106 funcvec_hash_newfunc (entry, gen_table, string)
107 struct bfd_hash_entry *entry;
108 struct bfd_hash_table *gen_table;
109 const char *string;
111 struct funcvec_hash_entry *ret;
112 struct funcvec_hash_table *table;
114 ret = (struct funcvec_hash_entry *) entry;
115 table = (struct funcvec_hash_table *) gen_table;
117 /* Allocate the structure if it has not already been allocated by a
118 subclass. */
119 if (ret == NULL)
120 ret = ((struct funcvec_hash_entry *)
121 bfd_hash_allocate (gen_table,
122 sizeof (struct funcvec_hash_entry)));
123 if (ret == NULL)
124 return NULL;
126 /* Call the allocation method of the superclass. */
127 ret = ((struct funcvec_hash_entry *)
128 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
130 if (ret == NULL)
131 return NULL;
133 /* Note where this entry will reside in the function vector table. */
134 ret->offset = table->offset;
136 /* Bump the offset at which we store entries in the function
137 vector. We'd like to bump up the size of the vectors section,
138 but it's not easily available here. */
139 if (bfd_get_mach (table->abfd) == bfd_mach_h8300)
140 table->offset += 2;
141 else if (bfd_get_mach (table->abfd) == bfd_mach_h8300h
142 || bfd_get_mach (table->abfd) == bfd_mach_h8300s)
143 table->offset += 4;
144 else
145 return NULL;
147 /* Everything went OK. */
148 return (struct bfd_hash_entry *) ret;
151 /* Initialize the function vector hash table. */
153 static boolean
154 funcvec_hash_table_init (table, abfd, newfunc)
155 struct funcvec_hash_table *table;
156 bfd *abfd;
157 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
158 struct bfd_hash_table *,
159 const char *));
161 /* Initialize our local fields, then call the generic initialization
162 routine. */
163 table->offset = 0;
164 table->abfd = abfd;
165 return (bfd_hash_table_init (&table->root, newfunc));
168 /* Create the derived linker hash table. We use a derived hash table
169 basically to hold "static" information during an h8/300 coff link
170 without using static variables. */
172 static struct bfd_link_hash_table *
173 h8300_coff_link_hash_table_create (abfd)
174 bfd *abfd;
176 struct h8300_coff_link_hash_table *ret;
177 ret = ((struct h8300_coff_link_hash_table *)
178 bfd_alloc (abfd, sizeof (struct h8300_coff_link_hash_table)));
179 if (ret == NULL)
180 return NULL;
181 if (!_bfd_link_hash_table_init (&ret->root.root, abfd, _bfd_generic_link_hash_newfunc))
183 bfd_release (abfd, ret);
184 return NULL;
187 /* Initialize our data. */
188 ret->vectors_sec = NULL;
189 ret->funcvec_hash_table = NULL;
191 /* OK. Everything's intialized, return the base pointer. */
192 return &ret->root.root;
195 /* Special handling for H8/300 relocs.
196 We only come here for pcrel stuff and return normally if not an -r link.
197 When doing -r, we can't do any arithmetic for the pcrel stuff, because
198 the code in reloc.c assumes that we can manipulate the targets of
199 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
200 which means that the gap after the instruction may not be enough to
201 contain the offset required for the branch, so we have to use only
202 the addend until the final link. */
204 static bfd_reloc_status_type
205 special (abfd, reloc_entry, symbol, data, input_section, output_bfd,
206 error_message)
207 bfd *abfd ATTRIBUTE_UNUSED;
208 arelent *reloc_entry ATTRIBUTE_UNUSED;
209 asymbol *symbol ATTRIBUTE_UNUSED;
210 PTR data ATTRIBUTE_UNUSED;
211 asection *input_section ATTRIBUTE_UNUSED;
212 bfd *output_bfd;
213 char **error_message ATTRIBUTE_UNUSED;
215 if (output_bfd == (bfd *) NULL)
216 return bfd_reloc_continue;
218 /* Adjust the reloc address to that in the output section. */
219 reloc_entry->address += input_section->output_offset;
220 return bfd_reloc_ok;
223 static reloc_howto_type howto_table[] =
225 HOWTO (R_RELBYTE, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "8", false, 0x000000ff, 0x000000ff, false),
226 HOWTO (R_RELWORD, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "16", false, 0x0000ffff, 0x0000ffff, false),
227 HOWTO (R_RELLONG, 0, 2, 32, false, 0, complain_overflow_bitfield, special, "32", false, 0xffffffff, 0xffffffff, false),
228 HOWTO (R_PCRBYTE, 0, 0, 8, true, 0, complain_overflow_signed, special, "DISP8", false, 0x000000ff, 0x000000ff, true),
229 HOWTO (R_PCRWORD, 0, 1, 16, true, 0, complain_overflow_signed, special, "DISP16", false, 0x0000ffff, 0x0000ffff, true),
230 HOWTO (R_PCRLONG, 0, 2, 32, true, 0, complain_overflow_signed, special, "DISP32", false, 0xffffffff, 0xffffffff, true),
231 HOWTO (R_MOV16B1, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", false, 0x0000ffff, 0x0000ffff, false),
232 HOWTO (R_MOV16B2, 0, 1, 8, false, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", false, 0x000000ff, 0x000000ff, false),
233 HOWTO (R_JMP1, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "16/pcrel", false, 0x0000ffff, 0x0000ffff, false),
234 HOWTO (R_JMP2, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "pcrecl/16", false, 0x000000ff, 0x000000ff, false),
235 HOWTO (R_JMPL1, 0, 2, 32, false, 0, complain_overflow_bitfield, special, "24/pcrell", false, 0x00ffffff, 0x00ffffff, false),
236 HOWTO (R_JMPL2, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "pc8/24", false, 0x000000ff, 0x000000ff, false),
237 HOWTO (R_MOV24B1, 0, 1, 32, false, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", false, 0xffffffff, 0xffffffff, false),
238 HOWTO (R_MOV24B2, 0, 1, 8, false, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", false, 0x0000ffff, 0x0000ffff, false),
240 /* An indirect reference to a function. This causes the function's address
241 to be added to the function vector in lo-mem and puts the address of
242 the function vector's entry in the jsr instruction. */
243 HOWTO (R_MEM_INDIRECT, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "8/indirect", false, 0x000000ff, 0x000000ff, false),
245 /* Internal reloc for relaxing. This is created when a 16bit pc-relative
246 branch is turned into an 8bit pc-relative branch. */
247 HOWTO (R_PCRWORD_B, 0, 0, 8, true, 0, complain_overflow_bitfield, special, "relaxed bCC:16", false, 0x000000ff, 0x000000ff, false),
249 HOWTO (R_MOVL1, 0, 2, 32, false, 0, complain_overflow_bitfield,special, "32/24 relaxable move", false, 0xffffffff, 0xffffffff, false),
251 HOWTO (R_MOVL2, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "32/24 relaxed move", false, 0x0000ffff, 0x0000ffff, false),
253 HOWTO (R_BCC_INV, 0, 0, 8, true, 0, complain_overflow_signed, special, "DISP8 inverted", false, 0x000000ff, 0x000000ff, true),
255 HOWTO (R_JMP_DEL, 0, 0, 8, true, 0, complain_overflow_signed, special, "Deleted jump", false, 0x000000ff, 0x000000ff, true),
258 /* Turn a howto into a reloc number. */
260 #define SELECT_RELOC(x,howto) \
261 { x.r_type = select_reloc(howto); }
263 #define BADMAG(x) (H8300BADMAG(x) && H8300HBADMAG(x) && H8300SBADMAG(x))
264 #define H8300 1 /* Customize coffcode.h */
265 #define __A_MAGIC_SET__
267 /* Code to swap in the reloc. */
268 #define SWAP_IN_RELOC_OFFSET bfd_h_get_32
269 #define SWAP_OUT_RELOC_OFFSET bfd_h_put_32
270 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
271 dst->r_stuff[0] = 'S'; \
272 dst->r_stuff[1] = 'C';
274 static int
275 select_reloc (howto)
276 reloc_howto_type *howto;
278 return howto->type;
281 /* Code to turn a r_type into a howto ptr, uses the above howto table. */
283 static void
284 rtype2howto (internal, dst)
285 arelent *internal;
286 struct internal_reloc *dst;
288 switch (dst->r_type)
290 case R_RELBYTE:
291 internal->howto = howto_table + 0;
292 break;
293 case R_RELWORD:
294 internal->howto = howto_table + 1;
295 break;
296 case R_RELLONG:
297 internal->howto = howto_table + 2;
298 break;
299 case R_PCRBYTE:
300 internal->howto = howto_table + 3;
301 break;
302 case R_PCRWORD:
303 internal->howto = howto_table + 4;
304 break;
305 case R_PCRLONG:
306 internal->howto = howto_table + 5;
307 break;
308 case R_MOV16B1:
309 internal->howto = howto_table + 6;
310 break;
311 case R_MOV16B2:
312 internal->howto = howto_table + 7;
313 break;
314 case R_JMP1:
315 internal->howto = howto_table + 8;
316 break;
317 case R_JMP2:
318 internal->howto = howto_table + 9;
319 break;
320 case R_JMPL1:
321 internal->howto = howto_table + 10;
322 break;
323 case R_JMPL2:
324 internal->howto = howto_table + 11;
325 break;
326 case R_MOV24B1:
327 internal->howto = howto_table + 12;
328 break;
329 case R_MOV24B2:
330 internal->howto = howto_table + 13;
331 break;
332 case R_MEM_INDIRECT:
333 internal->howto = howto_table + 14;
334 break;
335 case R_PCRWORD_B:
336 internal->howto = howto_table + 15;
337 break;
338 case R_MOVL1:
339 internal->howto = howto_table + 16;
340 break;
341 case R_MOVL2:
342 internal->howto = howto_table + 17;
343 break;
344 case R_BCC_INV:
345 internal->howto = howto_table + 18;
346 break;
347 case R_JMP_DEL:
348 internal->howto = howto_table + 19;
349 break;
350 default:
351 abort ();
352 break;
356 #define RTYPE2HOWTO(internal, relocentry) rtype2howto(internal,relocentry)
358 /* Perform any necessary magic to the addend in a reloc entry. */
360 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
361 cache_ptr->addend = ext_reloc.r_offset;
363 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
364 reloc_processing(relent, reloc, symbols, abfd, section)
366 static void
367 reloc_processing (relent, reloc, symbols, abfd, section)
368 arelent *relent;
369 struct internal_reloc *reloc;
370 asymbol **symbols;
371 bfd *abfd;
372 asection *section;
374 relent->address = reloc->r_vaddr;
375 rtype2howto (relent, reloc);
377 if (((int) reloc->r_symndx) > 0)
379 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
381 else
383 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
386 relent->addend = reloc->r_offset;
388 relent->address -= section->vma;
389 #if 0
390 relent->section = 0;
391 #endif
394 static boolean
395 h8300_symbol_address_p (abfd, input_section, address)
396 bfd *abfd;
397 asection *input_section;
398 bfd_vma address;
400 asymbol **s;
402 s = _bfd_generic_link_get_symbols (abfd);
403 BFD_ASSERT (s != (asymbol **) NULL);
405 /* Search all the symbols for one in INPUT_SECTION with
406 address ADDRESS. */
407 while (*s)
409 asymbol *p = *s;
410 if (p->section == input_section
411 && (input_section->output_section->vma
412 + input_section->output_offset
413 + p->value) == address)
414 return true;
415 s++;
417 return false;
420 /* If RELOC represents a relaxable instruction/reloc, change it into
421 the relaxed reloc, notify the linker that symbol addresses
422 have changed (bfd_perform_slip) and return how much the current
423 section has shrunk by.
425 FIXME: Much of this code has knowledge of the ordering of entries
426 in the howto table. This needs to be fixed. */
428 static int
429 h8300_reloc16_estimate (abfd, input_section, reloc, shrink, link_info)
430 bfd *abfd;
431 asection *input_section;
432 arelent *reloc;
433 unsigned int shrink;
434 struct bfd_link_info *link_info;
436 bfd_vma value;
437 bfd_vma dot;
438 bfd_vma gap;
439 static asection *last_input_section = NULL;
440 static arelent *last_reloc = NULL;
442 /* The address of the thing to be relocated will have moved back by
443 the size of the shrink - but we don't change reloc->address here,
444 since we need it to know where the relocation lives in the source
445 uncooked section. */
446 bfd_vma address = reloc->address - shrink;
448 if (input_section != last_input_section)
449 last_reloc = NULL;
451 /* Only examine the relocs which might be relaxable. */
452 switch (reloc->howto->type)
454 /* This is the 16/24 bit absolute branch which could become an 8 bit
455 pc-relative branch. */
456 case R_JMP1:
457 case R_JMPL1:
458 /* Get the address of the target of this branch. */
459 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
461 /* Get the address of the next instruction (not the reloc). */
462 dot = (input_section->output_section->vma
463 + input_section->output_offset + address);
465 /* Adjust for R_JMP1 vs R_JMPL1. */
466 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
468 /* Compute the distance from this insn to the branch target. */
469 gap = value - dot;
471 /* If the distance is within -128..+128 inclusive, then we can relax
472 this jump. +128 is valid since the target will move two bytes
473 closer if we do relax this branch. */
474 if ((int)gap >= -128 && (int)gap <= 128 )
476 /* It's possible we may be able to eliminate this branch entirely;
477 if the previous instruction is a branch around this instruction,
478 and there's no label at this instruction, then we can reverse
479 the condition on the previous branch and eliminate this jump.
481 original: new:
482 bCC lab1 bCC' lab2
483 jmp lab2
484 lab1: lab1:
486 This saves 4 bytes instead of two, and should be relatively
487 common. */
489 if (gap <= 126
490 && last_reloc
491 && last_reloc->howto->type == R_PCRBYTE)
493 bfd_vma last_value;
494 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
495 input_section) + 1;
497 if (last_value == dot + 2
498 && last_reloc->address + 1 == reloc->address
499 && !h8300_symbol_address_p (abfd, input_section, dot - 2))
501 reloc->howto = howto_table + 19;
502 last_reloc->howto = howto_table + 18;
503 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
504 last_reloc->addend = reloc->addend;
505 shrink += 4;
506 bfd_perform_slip (abfd, 4, input_section, address);
507 break;
511 /* Change the reloc type. */
512 reloc->howto = reloc->howto + 1;
514 /* This shrinks this section by two bytes. */
515 shrink += 2;
516 bfd_perform_slip (abfd, 2, input_section, address);
518 break;
520 /* This is the 16 bit pc-relative branch which could become an 8 bit
521 pc-relative branch. */
522 case R_PCRWORD:
523 /* Get the address of the target of this branch, add one to the value
524 because the addend field in PCrel jumps is off by -1. */
525 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
527 /* Get the address of the next instruction if we were to relax. */
528 dot = input_section->output_section->vma +
529 input_section->output_offset + address;
531 /* Compute the distance from this insn to the branch target. */
532 gap = value - dot;
534 /* If the distance is within -128..+128 inclusive, then we can relax
535 this jump. +128 is valid since the target will move two bytes
536 closer if we do relax this branch. */
537 if ((int)gap >= -128 && (int)gap <= 128 )
539 /* Change the reloc type. */
540 reloc->howto = howto_table + 15;
542 /* This shrinks this section by two bytes. */
543 shrink += 2;
544 bfd_perform_slip (abfd, 2, input_section, address);
546 break;
548 /* This is a 16 bit absolute address in a mov.b insn, which can
549 become an 8 bit absolute address if it's in the right range. */
550 case R_MOV16B1:
551 /* Get the address of the data referenced by this mov.b insn. */
552 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
554 /* The address is in 0xff00..0xffff inclusive on the h8300 or
555 0xffff00..0xffffff inclusive on the h8300h, then we can
556 relax this mov.b */
557 if ((bfd_get_mach (abfd) == bfd_mach_h8300
558 && value >= 0xff00
559 && value <= 0xffff)
560 || ((bfd_get_mach (abfd) == bfd_mach_h8300h
561 || bfd_get_mach (abfd) == bfd_mach_h8300s)
562 && value >= 0xffff00
563 && value <= 0xffffff))
565 /* Change the reloc type. */
566 reloc->howto = reloc->howto + 1;
568 /* This shrinks this section by two bytes. */
569 shrink += 2;
570 bfd_perform_slip (abfd, 2, input_section, address);
572 break;
574 /* Similarly for a 24 bit absolute address in a mov.b. Note that
575 if we can't relax this into an 8 bit absolute, we'll fall through
576 and try to relax it into a 16bit absolute. */
577 case R_MOV24B1:
578 /* Get the address of the data referenced by this mov.b insn. */
579 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
581 /* The address is in 0xffff00..0xffffff inclusive on the h8300h,
582 then we can relax this mov.b */
583 if ((bfd_get_mach (abfd) == bfd_mach_h8300h
584 || bfd_get_mach (abfd) == bfd_mach_h8300s)
585 && value >= 0xffff00
586 && value <= 0xffffff)
588 /* Change the reloc type. */
589 reloc->howto = reloc->howto + 1;
591 /* This shrinks this section by four bytes. */
592 shrink += 4;
593 bfd_perform_slip (abfd, 4, input_section, address);
595 /* Done with this reloc. */
596 break;
599 /* FALLTHROUGH and try to turn the 32/24 bit reloc into a 16 bit
600 reloc. */
602 /* This is a 24/32 bit absolute address in a mov insn, which can
603 become an 16 bit absolute address if it's in the right range. */
604 case R_MOVL1:
605 /* Get the address of the data referenced by this mov insn. */
606 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
608 /* If this address is in 0x0000..0x7fff inclusive or
609 0xff8000..0xffffff inclusive, then it can be relaxed. */
610 if (value <= 0x7fff || value >= 0xff8000)
612 /* Change the reloc type. */
613 reloc->howto = howto_table + 17;
615 /* This shrinks this section by two bytes. */
616 shrink += 2;
617 bfd_perform_slip (abfd, 2, input_section, address);
619 break;
621 /* No other reloc types represent relaxing opportunities. */
622 default:
623 break;
626 last_reloc = reloc;
627 last_input_section = input_section;
628 return shrink;
631 /* Handle relocations for the H8/300, including relocs for relaxed
632 instructions.
634 FIXME: Not all relocations check for overflow! */
636 static void
637 h8300_reloc16_extra_cases (abfd, link_info, link_order, reloc, data, src_ptr,
638 dst_ptr)
639 bfd *abfd;
640 struct bfd_link_info *link_info;
641 struct bfd_link_order *link_order;
642 arelent *reloc;
643 bfd_byte *data;
644 unsigned int *src_ptr;
645 unsigned int *dst_ptr;
647 unsigned int src_address = *src_ptr;
648 unsigned int dst_address = *dst_ptr;
649 asection *input_section = link_order->u.indirect.section;
650 bfd_vma value;
651 bfd_vma dot;
652 int gap, tmp;
654 switch (reloc->howto->type)
656 /* Generic 8bit pc-relative relocation. */
657 case R_PCRBYTE:
658 /* Get the address of the target of this branch. */
659 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
661 dot = (link_order->offset
662 + dst_address
663 + link_order->u.indirect.section->output_section->vma);
665 gap = value - dot;
667 /* Sanity check. */
668 if (gap < -128 || gap > 126)
670 if (! ((*link_info->callbacks->reloc_overflow)
671 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
672 reloc->howto->name, reloc->addend, input_section->owner,
673 input_section, reloc->address)))
674 abort ();
677 /* Everything looks OK. Apply the relocation and update the
678 src/dst address appropriately. */
680 bfd_put_8 (abfd, gap, data + dst_address);
681 dst_address++;
682 src_address++;
684 /* All done. */
685 break;
687 /* Generic 16bit pc-relative relocation. */
688 case R_PCRWORD:
689 /* Get the address of the target of this branch. */
690 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
692 /* Get the address of the instruction (not the reloc). */
693 dot = (link_order->offset
694 + dst_address
695 + link_order->u.indirect.section->output_section->vma + 1);
697 gap = value - dot;
699 /* Sanity check. */
700 if (gap > 32766 || gap < -32768)
702 if (! ((*link_info->callbacks->reloc_overflow)
703 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
704 reloc->howto->name, reloc->addend, input_section->owner,
705 input_section, reloc->address)))
706 abort ();
709 /* Everything looks OK. Apply the relocation and update the
710 src/dst address appropriately. */
712 bfd_put_16 (abfd, gap, data + dst_address);
713 dst_address += 2;
714 src_address += 2;
716 /* All done. */
717 break;
719 /* Generic 8bit absolute relocation. */
720 case R_RELBYTE:
721 /* Get the address of the object referenced by this insn. */
722 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
724 /* Sanity check. */
725 if (value <= 0xff
726 || (value >= 0x0000ff00 && value <= 0x0000ffff)
727 || (value >= 0x00ffff00 && value <= 0x00ffffff)
728 || (value >= 0xffffff00 && value <= 0xffffffff))
730 /* Everything looks OK. Apply the relocation and update the
731 src/dst address appropriately. */
733 bfd_put_8 (abfd, value & 0xff, data + dst_address);
734 dst_address += 1;
735 src_address += 1;
737 else
739 if (! ((*link_info->callbacks->reloc_overflow)
740 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
741 reloc->howto->name, reloc->addend, input_section->owner,
742 input_section, reloc->address)))
743 abort ();
746 /* All done. */
747 break;
749 /* Various simple 16bit absolute relocations. */
750 case R_MOV16B1:
751 case R_JMP1:
752 case R_RELWORD:
753 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
754 bfd_put_16 (abfd, value, data + dst_address);
755 dst_address += 2;
756 src_address += 2;
757 break;
759 /* Various simple 24/32bit absolute relocations. */
760 case R_MOV24B1:
761 case R_MOVL1:
762 case R_RELLONG:
763 /* Get the address of the target of this branch. */
764 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
765 bfd_put_32 (abfd, value, data + dst_address);
766 dst_address += 4;
767 src_address += 4;
768 break;
770 /* Another 24/32bit absolute relocation. */
771 case R_JMPL1:
772 /* Get the address of the target of this branch. */
773 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
775 value = ((value & 0x00ffffff)
776 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
777 bfd_put_32 (abfd, value, data + dst_address);
778 dst_address += 4;
779 src_address += 4;
780 break;
782 /* A 16bit abolute relocation that was formerlly a 24/32bit
783 absolute relocation. */
784 case R_MOVL2:
785 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
787 /* Sanity check. */
788 if (value <= 0x7fff || value >= 0xff8000)
790 /* Insert the 16bit value into the proper location. */
791 bfd_put_16 (abfd, value, data + dst_address);
793 /* Fix the opcode. For all the move insns, we simply
794 need to turn off bit 0x20 in the previous byte. */
795 data[dst_address - 1] &= ~0x20;
796 dst_address += 2;
797 src_address += 4;
799 else
801 if (! ((*link_info->callbacks->reloc_overflow)
802 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
803 reloc->howto->name, reloc->addend, input_section->owner,
804 input_section, reloc->address)))
805 abort ();
807 break;
809 /* A 16bit absolute branch that is now an 8-bit pc-relative branch. */
810 case R_JMP2:
811 /* Get the address of the target of this branch. */
812 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
814 /* Get the address of the next instruction. */
815 dot = (link_order->offset
816 + dst_address
817 + link_order->u.indirect.section->output_section->vma + 1);
819 gap = value - dot;
821 /* Sanity check. */
822 if (gap < -128 || gap > 126)
824 if (! ((*link_info->callbacks->reloc_overflow)
825 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
826 reloc->howto->name, reloc->addend, input_section->owner,
827 input_section, reloc->address)))
828 abort ();
831 /* Now fix the instruction itself. */
832 switch (data[dst_address - 1])
834 case 0x5e:
835 /* jsr -> bsr */
836 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
837 break;
838 case 0x5a:
839 /* jmp ->bra */
840 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
841 break;
843 default:
844 abort ();
847 /* Write out the 8bit value. */
848 bfd_put_8 (abfd, gap, data + dst_address);
850 dst_address += 1;
851 src_address += 3;
853 break;
855 /* A 16bit pc-relative branch that is now an 8-bit pc-relative branch. */
856 case R_PCRWORD_B:
857 /* Get the address of the target of this branch. */
858 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
860 /* Get the address of the instruction (not the reloc). */
861 dot = (link_order->offset
862 + dst_address
863 + link_order->u.indirect.section->output_section->vma - 1);
865 gap = value - dot;
867 /* Sanity check. */
868 if (gap < -128 || gap > 126)
870 if (! ((*link_info->callbacks->reloc_overflow)
871 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
872 reloc->howto->name, reloc->addend, input_section->owner,
873 input_section, reloc->address)))
874 abort ();
877 /* Now fix the instruction. */
878 switch (data[dst_address - 2])
880 case 0x58:
881 /* bCC:16 -> bCC:8 */
882 /* Get the condition code from the original insn. */
883 tmp = data[dst_address - 1];
884 tmp &= 0xf0;
885 tmp >>= 4;
887 /* Now or in the high nibble of the opcode. */
888 tmp |= 0x40;
890 /* Write it. */
891 bfd_put_8 (abfd, tmp, data + dst_address - 2);
892 break;
894 case 0x5c:
895 /* bsr:16 -> bsr:8 */
896 bfd_put_8 (abfd, 0x55, data + dst_address - 2);
897 break;
899 default:
900 abort ();
903 /* Output the target. */
904 bfd_put_8 (abfd, gap, data + dst_address - 1);
906 /* We don't advance dst_address -- the 8bit reloc is applied at
907 dst_address - 1, so the next insn should begin at dst_address. */
908 src_address += 2;
910 break;
912 /* Similarly for a 24bit absolute that is now 8 bits. */
913 case R_JMPL2:
914 /* Get the address of the target of this branch. */
915 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
917 /* Get the address of the instruction (not the reloc). */
918 dot = (link_order->offset
919 + dst_address
920 + link_order->u.indirect.section->output_section->vma + 2);
922 gap = value - dot;
924 /* Fix the instruction. */
925 switch (data[src_address])
927 case 0x5e:
928 /* jsr -> bsr */
929 bfd_put_8 (abfd, 0x55, data + dst_address);
930 break;
931 case 0x5a:
932 /* jmp ->bra */
933 bfd_put_8 (abfd, 0x40, data + dst_address);
934 break;
935 default:
936 abort ();
939 bfd_put_8 (abfd, gap, data + dst_address + 1);
940 dst_address += 2;
941 src_address += 4;
943 break;
945 /* A 16bit absolute mov.b that is now an 8bit absolute mov.b. */
946 case R_MOV16B2:
947 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
949 /* Sanity check. */
950 if (data[dst_address - 2] != 0x6a)
951 abort ();
953 /* Fix up the opcode. */
954 switch (data[src_address - 1] & 0xf0)
956 case 0x00:
957 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
958 break;
959 case 0x80:
960 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
961 break;
962 default:
963 abort ();
966 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
967 src_address += 2;
968 break;
970 /* Similarly for a 24bit mov.b */
971 case R_MOV24B2:
972 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
974 /* Sanity check. */
975 if (data[dst_address - 2] != 0x6a)
976 abort ();
978 /* Fix up the opcode. */
979 switch (data[src_address - 1] & 0xf0)
981 case 0x20:
982 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
983 break;
984 case 0xa0:
985 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
986 break;
987 default:
988 abort ();
991 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
992 src_address += 4;
993 break;
995 case R_BCC_INV:
996 /* Get the address of the target of this branch. */
997 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
999 dot = (link_order->offset
1000 + dst_address
1001 + link_order->u.indirect.section->output_section->vma) + 1;
1003 gap = value - dot;
1005 /* Sanity check. */
1006 if (gap < -128 || gap > 126)
1008 if (! ((*link_info->callbacks->reloc_overflow)
1009 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1010 reloc->howto->name, reloc->addend, input_section->owner,
1011 input_section, reloc->address)))
1012 abort ();
1015 /* Everything looks OK. Fix the condition in the instruction, apply
1016 the relocation, and update the src/dst address appropriately. */
1018 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1019 data + dst_address - 1);
1020 bfd_put_8 (abfd, gap, data + dst_address);
1021 dst_address++;
1022 src_address++;
1024 /* All done. */
1025 break;
1027 case R_JMP_DEL:
1028 src_address += 4;
1029 break;
1031 /* An 8bit memory indirect instruction (jmp/jsr).
1033 There's several things that need to be done to handle
1034 this relocation.
1036 If this is a reloc against the absolute symbol, then
1037 we should handle it just R_RELBYTE. Likewise if it's
1038 for a symbol with a value ge 0 and le 0xff.
1040 Otherwise it's a jump/call through the function vector,
1041 and the linker is expected to set up the function vector
1042 and put the right value into the jump/call instruction. */
1043 case R_MEM_INDIRECT:
1045 /* We need to find the symbol so we can determine it's
1046 address in the function vector table. */
1047 asymbol *symbol;
1048 bfd_vma value;
1049 const char *name;
1050 struct funcvec_hash_entry *h;
1051 asection *vectors_sec = h8300_coff_hash_table (link_info)->vectors_sec;
1053 /* First see if this is a reloc against the absolute symbol
1054 or against a symbol with a nonnegative value <= 0xff. */
1055 symbol = *(reloc->sym_ptr_ptr);
1056 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1057 if (symbol == bfd_abs_section_ptr->symbol
1058 || value <= 0xff)
1060 /* This should be handled in a manner very similar to
1061 R_RELBYTES. If the value is in range, then just slam
1062 the value into the right location. Else trigger a
1063 reloc overflow callback. */
1064 if (value <= 0xff)
1066 bfd_put_8 (abfd, value, data + dst_address);
1067 dst_address += 1;
1068 src_address += 1;
1070 else
1072 if (! ((*link_info->callbacks->reloc_overflow)
1073 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1074 reloc->howto->name, reloc->addend, input_section->owner,
1075 input_section, reloc->address)))
1076 abort ();
1078 break;
1081 /* This is a jump/call through a function vector, and we're
1082 expected to create the function vector ourselves.
1084 First look up this symbol in the linker hash table -- we need
1085 the derived linker symbol which holds this symbol's index
1086 in the function vector. */
1087 name = symbol->name;
1088 if (symbol->flags & BSF_LOCAL)
1090 char *new_name = bfd_malloc (strlen (name) + 9);
1091 if (new_name == NULL)
1092 abort ();
1094 strcpy (new_name, name);
1095 sprintf (new_name + strlen (name), "_%08x",
1096 (int) symbol->section);
1097 name = new_name;
1100 h = funcvec_hash_lookup (h8300_coff_hash_table (link_info)->funcvec_hash_table,
1101 name, false, false);
1103 /* This shouldn't ever happen. If it does that means we've got
1104 data corruption of some kind. Aborting seems like a reasonable
1105 think to do here. */
1106 if (h == NULL || vectors_sec == NULL)
1107 abort ();
1109 /* Place the address of the function vector entry into the
1110 reloc's address. */
1111 bfd_put_8 (abfd,
1112 vectors_sec->output_offset + h->offset,
1113 data + dst_address);
1115 dst_address++;
1116 src_address++;
1118 /* Now create an entry in the function vector itself. */
1119 if (bfd_get_mach (input_section->owner) == bfd_mach_h8300)
1120 bfd_put_16 (abfd,
1121 bfd_coff_reloc16_get_value (reloc,
1122 link_info,
1123 input_section),
1124 vectors_sec->contents + h->offset);
1125 else if (bfd_get_mach (input_section->owner) == bfd_mach_h8300h
1126 || bfd_get_mach (input_section->owner) == bfd_mach_h8300s)
1127 bfd_put_32 (abfd,
1128 bfd_coff_reloc16_get_value (reloc,
1129 link_info,
1130 input_section),
1131 vectors_sec->contents + h->offset);
1132 else
1133 abort ();
1135 /* Gross. We've already written the contents of the vector section
1136 before we get here... So we write it again with the new data. */
1137 bfd_set_section_contents (vectors_sec->output_section->owner,
1138 vectors_sec->output_section,
1139 vectors_sec->contents,
1140 vectors_sec->output_offset,
1141 vectors_sec->_raw_size);
1142 break;
1145 default:
1146 abort ();
1147 break;
1151 *src_ptr = src_address;
1152 *dst_ptr = dst_address;
1155 /* Routine for the h8300 linker.
1157 This routine is necessary to handle the special R_MEM_INDIRECT
1158 relocs on the h8300. It's responsible for generating a vectors
1159 section and attaching it to an input bfd as well as sizing
1160 the vectors section. It also creates our vectors hash table.
1162 It uses the generic linker routines to actually add the symbols.
1163 from this BFD to the bfd linker hash table. It may add a few
1164 selected static symbols to the bfd linker hash table. */
1166 static boolean
1167 h8300_bfd_link_add_symbols (abfd, info)
1168 bfd *abfd;
1169 struct bfd_link_info *info;
1171 asection *sec;
1172 struct funcvec_hash_table *funcvec_hash_table;
1174 /* If we haven't created a vectors section, do so now. */
1175 if (!h8300_coff_hash_table (info)->vectors_sec)
1177 flagword flags;
1179 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1180 flags = (SEC_ALLOC | SEC_LOAD
1181 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1182 h8300_coff_hash_table (info)->vectors_sec = bfd_make_section (abfd,
1183 ".vectors");
1185 /* If the section wasn't created, or we couldn't set the flags,
1186 quit quickly now, rather than dieing a painful death later. */
1187 if (! h8300_coff_hash_table (info)->vectors_sec
1188 || ! bfd_set_section_flags (abfd,
1189 h8300_coff_hash_table(info)->vectors_sec,
1190 flags))
1191 return false;
1193 /* Also create the vector hash table. */
1194 funcvec_hash_table = ((struct funcvec_hash_table *)
1195 bfd_alloc (abfd, sizeof (struct funcvec_hash_table)));
1197 if (!funcvec_hash_table)
1198 return false;
1200 /* And initialize the funcvec hash table. */
1201 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1202 funcvec_hash_newfunc))
1204 bfd_release (abfd, funcvec_hash_table);
1205 return false;
1208 /* Store away a pointer to the funcvec hash table. */
1209 h8300_coff_hash_table (info)->funcvec_hash_table = funcvec_hash_table;
1212 /* Load up the function vector hash table. */
1213 funcvec_hash_table = h8300_coff_hash_table (info)->funcvec_hash_table;
1215 /* Add the symbols using the generic code. */
1216 _bfd_generic_link_add_symbols (abfd, info);
1218 /* Now scan the relocs for all the sections in this bfd; create
1219 additional space in the .vectors section as needed. */
1220 for (sec = abfd->sections; sec; sec = sec->next)
1222 long reloc_size, reloc_count, i;
1223 asymbol **symbols;
1224 arelent **relocs;
1226 /* Suck in the relocs, symbols & canonicalize them. */
1227 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1228 if (reloc_size <= 0)
1229 continue;
1231 relocs = (arelent **) bfd_malloc ((size_t) reloc_size);
1232 if (!relocs)
1233 return false;
1235 /* The symbols should have been read in by _bfd_generic link_add_symbols
1236 call abovec, so we can cheat and use the pointer to them that was
1237 saved in the above call. */
1238 symbols = _bfd_generic_link_get_symbols(abfd);
1239 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1240 if (reloc_count <= 0)
1242 free (relocs);
1243 continue;
1246 /* Now walk through all the relocations in this section. */
1247 for (i = 0; i < reloc_count; i++)
1249 arelent *reloc = relocs[i];
1250 asymbol *symbol = *(reloc->sym_ptr_ptr);
1251 const char *name;
1253 /* We've got an indirect reloc. See if we need to add it
1254 to the function vector table. At this point, we have
1255 to add a new entry for each unique symbol referenced
1256 by an R_MEM_INDIRECT relocation except for a reloc
1257 against the absolute section symbol. */
1258 if (reloc->howto->type == R_MEM_INDIRECT
1259 && symbol != bfd_abs_section_ptr->symbol)
1262 struct funcvec_hash_entry *h;
1264 name = symbol->name;
1265 if (symbol->flags & BSF_LOCAL)
1267 char *new_name = bfd_malloc (strlen (name) + 9);
1269 if (new_name == NULL)
1270 abort ();
1272 strcpy (new_name, name);
1273 sprintf (new_name + strlen (name), "_%08x",
1274 (int) symbol->section);
1275 name = new_name;
1278 /* Look this symbol up in the function vector hash table. */
1279 h = funcvec_hash_lookup (h8300_coff_hash_table (info)->funcvec_hash_table,
1280 name, false, false);
1282 /* If this symbol isn't already in the hash table, add
1283 it and bump up the size of the hash table. */
1284 if (h == NULL)
1286 h = funcvec_hash_lookup (h8300_coff_hash_table (info)->funcvec_hash_table,
1287 name, true, true);
1288 if (h == NULL)
1290 free (relocs);
1291 return false;
1294 /* Bump the size of the vectors section. Each vector
1295 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
1296 if (bfd_get_mach (abfd) == bfd_mach_h8300)
1297 h8300_coff_hash_table (info)->vectors_sec->_raw_size += 2;
1298 else if (bfd_get_mach (abfd) == bfd_mach_h8300h
1299 || bfd_get_mach (abfd) == bfd_mach_h8300s)
1300 h8300_coff_hash_table (info)->vectors_sec->_raw_size += 4;
1305 /* We're done with the relocations, release them. */
1306 free (relocs);
1309 /* Now actually allocate some space for the function vector. It's
1310 wasteful to do this more than once, but this is easier. */
1311 if (h8300_coff_hash_table (info)->vectors_sec->_raw_size != 0)
1313 /* Free the old contents. */
1314 if (h8300_coff_hash_table (info)->vectors_sec->contents)
1315 free (h8300_coff_hash_table (info)->vectors_sec->contents);
1317 /* Allocate new contents. */
1318 h8300_coff_hash_table (info)->vectors_sec->contents
1319 = bfd_malloc (h8300_coff_hash_table (info)->vectors_sec->_raw_size);
1322 return true;
1325 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1326 #define coff_reloc16_estimate h8300_reloc16_estimate
1327 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1328 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1330 #define COFF_LONG_FILENAMES
1331 #include "coffcode.h"
1333 #undef coff_bfd_get_relocated_section_contents
1334 #undef coff_bfd_relax_section
1335 #define coff_bfd_get_relocated_section_contents \
1336 bfd_coff_reloc16_get_relocated_section_contents
1337 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1339 CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL)