opcodes: handle mach-o for thumb/arm disambiguation.
[binutils-gdb.git] / bfd / elfxx-mips.c
blob57e1b6d9cf554c9fd327271f39c150fcd0f09359
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2015 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
47 #include "hashtab.h"
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
122 long symndx;
123 union
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
153 /* This structure is used to hold .got information when linking. */
155 struct mips_got_info
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
187 /* Structure passed when merging bfds' gots. */
189 struct mips_elf_got_per_bfd_arg
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
217 struct mips_elf_traverse_got_arg
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
224 struct _mips_elf_section_data
226 struct bfd_elf_section_data elf;
227 union
229 bfd_byte *tdata;
230 } u;
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
268 immediately before a PIC function "func". The second is to add:
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
274 to a separate trampoline section.
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
291 /* Macros for populating a mips_elf_la25_stub. */
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
306 struct mips_elf_hash_sort_data
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
328 struct plt_entry
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
352 struct mips_elf_link_hash_entry
354 struct elf_link_hash_entry root;
356 /* External symbol information. */
357 EXTR esym;
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
418 /* MIPS ELF linker hash table. */
420 struct mips_elf_link_hash_table
422 struct elf_link_hash_table root;
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
538 /* MIPS ELF private object data. */
540 struct mips_elf_obj_tdata
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
575 /* Get MIPS ELF private object data from BFD's tdata. */
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
609 /* Structure used to pass information to mips_elf_output_extsym. */
611 struct extsym_info
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
620 /* The names of the runtime procedure table symbols used on IRIX5. */
622 static const char * const mips_elf_dynsym_rtproc_names[] =
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
633 typedef struct
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
643 typedef struct
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
653 typedef struct
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
663 typedef struct
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
672 typedef struct
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
679 typedef struct
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
685 /* These are the constants used to swap the bitfields in a crinfo. */
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1010 We record any stubs that we find in the symbol table. */
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1189 /* microMIPS 32-bit opcode helper installer. */
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1198 /* microMIPS 32-bit opcode helper retriever. */
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1213 /* Traverse a MIPS ELF linker hash table. */
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1245 /* Create an entry in a MIPS ELF linker hash table. */
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1288 return (struct bfd_hash_entry *) ret;
1291 /* Allocate MIPS ELF private object data. */
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1303 if (!sec->used_by_bfd)
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1314 return _bfd_elf_new_section_hook (abfd, sec);
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1372 debug->fdr = NULL;
1374 return TRUE;
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1422 /* Create a runtime procedure table from the .mdebug section. */
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1458 size = swap->external_pdr_size;
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1556 return TRUE;
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 const char *name;
1585 if (ELF_ST_IS_MICROMIPS (h->root.other))
1586 value |= 1;
1588 /* Create a new symbol. */
1589 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1590 bh = NULL;
1591 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1592 BSF_LOCAL, s, value, NULL,
1593 TRUE, FALSE, &bh))
1594 return FALSE;
1596 /* Make it a local function. */
1597 elfh = (struct elf_link_hash_entry *) bh;
1598 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1599 elfh->size = size;
1600 elfh->forced_local = 1;
1601 return TRUE;
1604 /* We're about to redefine H. Create a symbol to represent H's
1605 current value and size, to help make the disassembly easier
1606 to read. */
1608 static bfd_boolean
1609 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1610 struct mips_elf_link_hash_entry *h,
1611 const char *prefix)
1613 struct bfd_link_hash_entry *bh;
1614 struct elf_link_hash_entry *elfh;
1615 const char *name;
1616 asection *s;
1617 bfd_vma value;
1619 /* Read the symbol's value. */
1620 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1621 || h->root.root.type == bfd_link_hash_defweak);
1622 s = h->root.root.u.def.section;
1623 value = h->root.root.u.def.value;
1625 /* Create a new symbol. */
1626 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1627 bh = NULL;
1628 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1629 BSF_LOCAL, s, value, NULL,
1630 TRUE, FALSE, &bh))
1631 return FALSE;
1633 /* Make it local and copy the other attributes from H. */
1634 elfh = (struct elf_link_hash_entry *) bh;
1635 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1636 elfh->other = h->root.other;
1637 elfh->size = h->root.size;
1638 elfh->forced_local = 1;
1639 return TRUE;
1642 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1643 function rather than to a hard-float stub. */
1645 static bfd_boolean
1646 section_allows_mips16_refs_p (asection *section)
1648 const char *name;
1650 name = bfd_get_section_name (section->owner, section);
1651 return (FN_STUB_P (name)
1652 || CALL_STUB_P (name)
1653 || CALL_FP_STUB_P (name)
1654 || strcmp (name, ".pdr") == 0);
1657 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1658 stub section of some kind. Return the R_SYMNDX of the target
1659 function, or 0 if we can't decide which function that is. */
1661 static unsigned long
1662 mips16_stub_symndx (const struct elf_backend_data *bed,
1663 asection *sec ATTRIBUTE_UNUSED,
1664 const Elf_Internal_Rela *relocs,
1665 const Elf_Internal_Rela *relend)
1667 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1668 const Elf_Internal_Rela *rel;
1670 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1671 one in a compound relocation. */
1672 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1673 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1674 return ELF_R_SYM (sec->owner, rel->r_info);
1676 /* Otherwise trust the first relocation, whatever its kind. This is
1677 the traditional behavior. */
1678 if (relocs < relend)
1679 return ELF_R_SYM (sec->owner, relocs->r_info);
1681 return 0;
1684 /* Check the mips16 stubs for a particular symbol, and see if we can
1685 discard them. */
1687 static void
1688 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1689 struct mips_elf_link_hash_entry *h)
1691 /* Dynamic symbols must use the standard call interface, in case other
1692 objects try to call them. */
1693 if (h->fn_stub != NULL
1694 && h->root.dynindx != -1)
1696 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1697 h->need_fn_stub = TRUE;
1700 if (h->fn_stub != NULL
1701 && ! h->need_fn_stub)
1703 /* We don't need the fn_stub; the only references to this symbol
1704 are 16 bit calls. Clobber the size to 0 to prevent it from
1705 being included in the link. */
1706 h->fn_stub->size = 0;
1707 h->fn_stub->flags &= ~SEC_RELOC;
1708 h->fn_stub->reloc_count = 0;
1709 h->fn_stub->flags |= SEC_EXCLUDE;
1710 h->fn_stub->output_section = bfd_abs_section_ptr;
1713 if (h->call_stub != NULL
1714 && ELF_ST_IS_MIPS16 (h->root.other))
1716 /* We don't need the call_stub; this is a 16 bit function, so
1717 calls from other 16 bit functions are OK. Clobber the size
1718 to 0 to prevent it from being included in the link. */
1719 h->call_stub->size = 0;
1720 h->call_stub->flags &= ~SEC_RELOC;
1721 h->call_stub->reloc_count = 0;
1722 h->call_stub->flags |= SEC_EXCLUDE;
1723 h->call_stub->output_section = bfd_abs_section_ptr;
1726 if (h->call_fp_stub != NULL
1727 && ELF_ST_IS_MIPS16 (h->root.other))
1729 /* We don't need the call_stub; this is a 16 bit function, so
1730 calls from other 16 bit functions are OK. Clobber the size
1731 to 0 to prevent it from being included in the link. */
1732 h->call_fp_stub->size = 0;
1733 h->call_fp_stub->flags &= ~SEC_RELOC;
1734 h->call_fp_stub->reloc_count = 0;
1735 h->call_fp_stub->flags |= SEC_EXCLUDE;
1736 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1740 /* Hashtable callbacks for mips_elf_la25_stubs. */
1742 static hashval_t
1743 mips_elf_la25_stub_hash (const void *entry_)
1745 const struct mips_elf_la25_stub *entry;
1747 entry = (struct mips_elf_la25_stub *) entry_;
1748 return entry->h->root.root.u.def.section->id
1749 + entry->h->root.root.u.def.value;
1752 static int
1753 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1755 const struct mips_elf_la25_stub *entry1, *entry2;
1757 entry1 = (struct mips_elf_la25_stub *) entry1_;
1758 entry2 = (struct mips_elf_la25_stub *) entry2_;
1759 return ((entry1->h->root.root.u.def.section
1760 == entry2->h->root.root.u.def.section)
1761 && (entry1->h->root.root.u.def.value
1762 == entry2->h->root.root.u.def.value));
1765 /* Called by the linker to set up the la25 stub-creation code. FN is
1766 the linker's implementation of add_stub_function. Return true on
1767 success. */
1769 bfd_boolean
1770 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1771 asection *(*fn) (const char *, asection *,
1772 asection *))
1774 struct mips_elf_link_hash_table *htab;
1776 htab = mips_elf_hash_table (info);
1777 if (htab == NULL)
1778 return FALSE;
1780 htab->add_stub_section = fn;
1781 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1782 mips_elf_la25_stub_eq, NULL);
1783 if (htab->la25_stubs == NULL)
1784 return FALSE;
1786 return TRUE;
1789 /* Return true if H is a locally-defined PIC function, in the sense
1790 that it or its fn_stub might need $25 to be valid on entry.
1791 Note that MIPS16 functions set up $gp using PC-relative instructions,
1792 so they themselves never need $25 to be valid. Only non-MIPS16
1793 entry points are of interest here. */
1795 static bfd_boolean
1796 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1798 return ((h->root.root.type == bfd_link_hash_defined
1799 || h->root.root.type == bfd_link_hash_defweak)
1800 && h->root.def_regular
1801 && !bfd_is_abs_section (h->root.root.u.def.section)
1802 && (!ELF_ST_IS_MIPS16 (h->root.other)
1803 || (h->fn_stub && h->need_fn_stub))
1804 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1805 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1808 /* Set *SEC to the input section that contains the target of STUB.
1809 Return the offset of the target from the start of that section. */
1811 static bfd_vma
1812 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1813 asection **sec)
1815 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1817 BFD_ASSERT (stub->h->need_fn_stub);
1818 *sec = stub->h->fn_stub;
1819 return 0;
1821 else
1823 *sec = stub->h->root.root.u.def.section;
1824 return stub->h->root.root.u.def.value;
1828 /* STUB describes an la25 stub that we have decided to implement
1829 by inserting an LUI/ADDIU pair before the target function.
1830 Create the section and redirect the function symbol to it. */
1832 static bfd_boolean
1833 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1834 struct bfd_link_info *info)
1836 struct mips_elf_link_hash_table *htab;
1837 char *name;
1838 asection *s, *input_section;
1839 unsigned int align;
1841 htab = mips_elf_hash_table (info);
1842 if (htab == NULL)
1843 return FALSE;
1845 /* Create a unique name for the new section. */
1846 name = bfd_malloc (11 + sizeof (".text.stub."));
1847 if (name == NULL)
1848 return FALSE;
1849 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1851 /* Create the section. */
1852 mips_elf_get_la25_target (stub, &input_section);
1853 s = htab->add_stub_section (name, input_section,
1854 input_section->output_section);
1855 if (s == NULL)
1856 return FALSE;
1858 /* Make sure that any padding goes before the stub. */
1859 align = input_section->alignment_power;
1860 if (!bfd_set_section_alignment (s->owner, s, align))
1861 return FALSE;
1862 if (align > 3)
1863 s->size = (1 << align) - 8;
1865 /* Create a symbol for the stub. */
1866 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1867 stub->stub_section = s;
1868 stub->offset = s->size;
1870 /* Allocate room for it. */
1871 s->size += 8;
1872 return TRUE;
1875 /* STUB describes an la25 stub that we have decided to implement
1876 with a separate trampoline. Allocate room for it and redirect
1877 the function symbol to it. */
1879 static bfd_boolean
1880 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1881 struct bfd_link_info *info)
1883 struct mips_elf_link_hash_table *htab;
1884 asection *s;
1886 htab = mips_elf_hash_table (info);
1887 if (htab == NULL)
1888 return FALSE;
1890 /* Create a trampoline section, if we haven't already. */
1891 s = htab->strampoline;
1892 if (s == NULL)
1894 asection *input_section = stub->h->root.root.u.def.section;
1895 s = htab->add_stub_section (".text", NULL,
1896 input_section->output_section);
1897 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1898 return FALSE;
1899 htab->strampoline = s;
1902 /* Create a symbol for the stub. */
1903 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1904 stub->stub_section = s;
1905 stub->offset = s->size;
1907 /* Allocate room for it. */
1908 s->size += 16;
1909 return TRUE;
1912 /* H describes a symbol that needs an la25 stub. Make sure that an
1913 appropriate stub exists and point H at it. */
1915 static bfd_boolean
1916 mips_elf_add_la25_stub (struct bfd_link_info *info,
1917 struct mips_elf_link_hash_entry *h)
1919 struct mips_elf_link_hash_table *htab;
1920 struct mips_elf_la25_stub search, *stub;
1921 bfd_boolean use_trampoline_p;
1922 asection *s;
1923 bfd_vma value;
1924 void **slot;
1926 /* Describe the stub we want. */
1927 search.stub_section = NULL;
1928 search.offset = 0;
1929 search.h = h;
1931 /* See if we've already created an equivalent stub. */
1932 htab = mips_elf_hash_table (info);
1933 if (htab == NULL)
1934 return FALSE;
1936 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1937 if (slot == NULL)
1938 return FALSE;
1940 stub = (struct mips_elf_la25_stub *) *slot;
1941 if (stub != NULL)
1943 /* We can reuse the existing stub. */
1944 h->la25_stub = stub;
1945 return TRUE;
1948 /* Create a permanent copy of ENTRY and add it to the hash table. */
1949 stub = bfd_malloc (sizeof (search));
1950 if (stub == NULL)
1951 return FALSE;
1952 *stub = search;
1953 *slot = stub;
1955 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1956 of the section and if we would need no more than 2 nops. */
1957 value = mips_elf_get_la25_target (stub, &s);
1958 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1960 h->la25_stub = stub;
1961 return (use_trampoline_p
1962 ? mips_elf_add_la25_trampoline (stub, info)
1963 : mips_elf_add_la25_intro (stub, info));
1966 /* A mips_elf_link_hash_traverse callback that is called before sizing
1967 sections. DATA points to a mips_htab_traverse_info structure. */
1969 static bfd_boolean
1970 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1972 struct mips_htab_traverse_info *hti;
1974 hti = (struct mips_htab_traverse_info *) data;
1975 if (!bfd_link_relocatable (hti->info))
1976 mips_elf_check_mips16_stubs (hti->info, h);
1978 if (mips_elf_local_pic_function_p (h))
1980 /* PR 12845: If H is in a section that has been garbage
1981 collected it will have its output section set to *ABS*. */
1982 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1983 return TRUE;
1985 /* H is a function that might need $25 to be valid on entry.
1986 If we're creating a non-PIC relocatable object, mark H as
1987 being PIC. If we're creating a non-relocatable object with
1988 non-PIC branches and jumps to H, make sure that H has an la25
1989 stub. */
1990 if (bfd_link_relocatable (hti->info))
1992 if (!PIC_OBJECT_P (hti->output_bfd))
1993 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1995 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1997 hti->error = TRUE;
1998 return FALSE;
2001 return TRUE;
2004 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2005 Most mips16 instructions are 16 bits, but these instructions
2006 are 32 bits.
2008 The format of these instructions is:
2010 +--------------+--------------------------------+
2011 | JALX | X| Imm 20:16 | Imm 25:21 |
2012 +--------------+--------------------------------+
2013 | Immediate 15:0 |
2014 +-----------------------------------------------+
2016 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2017 Note that the immediate value in the first word is swapped.
2019 When producing a relocatable object file, R_MIPS16_26 is
2020 handled mostly like R_MIPS_26. In particular, the addend is
2021 stored as a straight 26-bit value in a 32-bit instruction.
2022 (gas makes life simpler for itself by never adjusting a
2023 R_MIPS16_26 reloc to be against a section, so the addend is
2024 always zero). However, the 32 bit instruction is stored as 2
2025 16-bit values, rather than a single 32-bit value. In a
2026 big-endian file, the result is the same; in a little-endian
2027 file, the two 16-bit halves of the 32 bit value are swapped.
2028 This is so that a disassembler can recognize the jal
2029 instruction.
2031 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2032 instruction stored as two 16-bit values. The addend A is the
2033 contents of the targ26 field. The calculation is the same as
2034 R_MIPS_26. When storing the calculated value, reorder the
2035 immediate value as shown above, and don't forget to store the
2036 value as two 16-bit values.
2038 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2039 defined as
2041 big-endian:
2042 +--------+----------------------+
2043 | | |
2044 | | targ26-16 |
2045 |31 26|25 0|
2046 +--------+----------------------+
2048 little-endian:
2049 +----------+------+-------------+
2050 | | | |
2051 | sub1 | | sub2 |
2052 |0 9|10 15|16 31|
2053 +----------+--------------------+
2054 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2055 ((sub1 << 16) | sub2)).
2057 When producing a relocatable object file, the calculation is
2058 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2059 When producing a fully linked file, the calculation is
2060 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2061 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2063 The table below lists the other MIPS16 instruction relocations.
2064 Each one is calculated in the same way as the non-MIPS16 relocation
2065 given on the right, but using the extended MIPS16 layout of 16-bit
2066 immediate fields:
2068 R_MIPS16_GPREL R_MIPS_GPREL16
2069 R_MIPS16_GOT16 R_MIPS_GOT16
2070 R_MIPS16_CALL16 R_MIPS_CALL16
2071 R_MIPS16_HI16 R_MIPS_HI16
2072 R_MIPS16_LO16 R_MIPS_LO16
2074 A typical instruction will have a format like this:
2076 +--------------+--------------------------------+
2077 | EXTEND | Imm 10:5 | Imm 15:11 |
2078 +--------------+--------------------------------+
2079 | Major | rx | ry | Imm 4:0 |
2080 +--------------+--------------------------------+
2082 EXTEND is the five bit value 11110. Major is the instruction
2083 opcode.
2085 All we need to do here is shuffle the bits appropriately.
2086 As above, the two 16-bit halves must be swapped on a
2087 little-endian system. */
2089 static inline bfd_boolean
2090 mips16_reloc_p (int r_type)
2092 switch (r_type)
2094 case R_MIPS16_26:
2095 case R_MIPS16_GPREL:
2096 case R_MIPS16_GOT16:
2097 case R_MIPS16_CALL16:
2098 case R_MIPS16_HI16:
2099 case R_MIPS16_LO16:
2100 case R_MIPS16_TLS_GD:
2101 case R_MIPS16_TLS_LDM:
2102 case R_MIPS16_TLS_DTPREL_HI16:
2103 case R_MIPS16_TLS_DTPREL_LO16:
2104 case R_MIPS16_TLS_GOTTPREL:
2105 case R_MIPS16_TLS_TPREL_HI16:
2106 case R_MIPS16_TLS_TPREL_LO16:
2107 return TRUE;
2109 default:
2110 return FALSE;
2114 /* Check if a microMIPS reloc. */
2116 static inline bfd_boolean
2117 micromips_reloc_p (unsigned int r_type)
2119 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2122 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2123 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2124 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2126 static inline bfd_boolean
2127 micromips_reloc_shuffle_p (unsigned int r_type)
2129 return (micromips_reloc_p (r_type)
2130 && r_type != R_MICROMIPS_PC7_S1
2131 && r_type != R_MICROMIPS_PC10_S1);
2134 static inline bfd_boolean
2135 got16_reloc_p (int r_type)
2137 return (r_type == R_MIPS_GOT16
2138 || r_type == R_MIPS16_GOT16
2139 || r_type == R_MICROMIPS_GOT16);
2142 static inline bfd_boolean
2143 call16_reloc_p (int r_type)
2145 return (r_type == R_MIPS_CALL16
2146 || r_type == R_MIPS16_CALL16
2147 || r_type == R_MICROMIPS_CALL16);
2150 static inline bfd_boolean
2151 got_disp_reloc_p (unsigned int r_type)
2153 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2156 static inline bfd_boolean
2157 got_page_reloc_p (unsigned int r_type)
2159 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2162 static inline bfd_boolean
2163 got_lo16_reloc_p (unsigned int r_type)
2165 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2168 static inline bfd_boolean
2169 call_hi16_reloc_p (unsigned int r_type)
2171 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2174 static inline bfd_boolean
2175 call_lo16_reloc_p (unsigned int r_type)
2177 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2180 static inline bfd_boolean
2181 hi16_reloc_p (int r_type)
2183 return (r_type == R_MIPS_HI16
2184 || r_type == R_MIPS16_HI16
2185 || r_type == R_MICROMIPS_HI16
2186 || r_type == R_MIPS_PCHI16);
2189 static inline bfd_boolean
2190 lo16_reloc_p (int r_type)
2192 return (r_type == R_MIPS_LO16
2193 || r_type == R_MIPS16_LO16
2194 || r_type == R_MICROMIPS_LO16
2195 || r_type == R_MIPS_PCLO16);
2198 static inline bfd_boolean
2199 mips16_call_reloc_p (int r_type)
2201 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2204 static inline bfd_boolean
2205 jal_reloc_p (int r_type)
2207 return (r_type == R_MIPS_26
2208 || r_type == R_MIPS16_26
2209 || r_type == R_MICROMIPS_26_S1);
2212 static inline bfd_boolean
2213 aligned_pcrel_reloc_p (int r_type)
2215 return (r_type == R_MIPS_PC18_S3
2216 || r_type == R_MIPS_PC19_S2);
2219 static inline bfd_boolean
2220 micromips_branch_reloc_p (int r_type)
2222 return (r_type == R_MICROMIPS_26_S1
2223 || r_type == R_MICROMIPS_PC16_S1
2224 || r_type == R_MICROMIPS_PC10_S1
2225 || r_type == R_MICROMIPS_PC7_S1);
2228 static inline bfd_boolean
2229 tls_gd_reloc_p (unsigned int r_type)
2231 return (r_type == R_MIPS_TLS_GD
2232 || r_type == R_MIPS16_TLS_GD
2233 || r_type == R_MICROMIPS_TLS_GD);
2236 static inline bfd_boolean
2237 tls_ldm_reloc_p (unsigned int r_type)
2239 return (r_type == R_MIPS_TLS_LDM
2240 || r_type == R_MIPS16_TLS_LDM
2241 || r_type == R_MICROMIPS_TLS_LDM);
2244 static inline bfd_boolean
2245 tls_gottprel_reloc_p (unsigned int r_type)
2247 return (r_type == R_MIPS_TLS_GOTTPREL
2248 || r_type == R_MIPS16_TLS_GOTTPREL
2249 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2252 void
2253 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2254 bfd_boolean jal_shuffle, bfd_byte *data)
2256 bfd_vma first, second, val;
2258 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2259 return;
2261 /* Pick up the first and second halfwords of the instruction. */
2262 first = bfd_get_16 (abfd, data);
2263 second = bfd_get_16 (abfd, data + 2);
2264 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2265 val = first << 16 | second;
2266 else if (r_type != R_MIPS16_26)
2267 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2268 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2269 else
2270 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2271 | ((first & 0x1f) << 21) | second);
2272 bfd_put_32 (abfd, val, data);
2275 void
2276 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2277 bfd_boolean jal_shuffle, bfd_byte *data)
2279 bfd_vma first, second, val;
2281 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2282 return;
2284 val = bfd_get_32 (abfd, data);
2285 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2287 second = val & 0xffff;
2288 first = val >> 16;
2290 else if (r_type != R_MIPS16_26)
2292 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2293 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2295 else
2297 second = val & 0xffff;
2298 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2299 | ((val >> 21) & 0x1f);
2301 bfd_put_16 (abfd, second, data + 2);
2302 bfd_put_16 (abfd, first, data);
2305 bfd_reloc_status_type
2306 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2307 arelent *reloc_entry, asection *input_section,
2308 bfd_boolean relocatable, void *data, bfd_vma gp)
2310 bfd_vma relocation;
2311 bfd_signed_vma val;
2312 bfd_reloc_status_type status;
2314 if (bfd_is_com_section (symbol->section))
2315 relocation = 0;
2316 else
2317 relocation = symbol->value;
2319 relocation += symbol->section->output_section->vma;
2320 relocation += symbol->section->output_offset;
2322 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2323 return bfd_reloc_outofrange;
2325 /* Set val to the offset into the section or symbol. */
2326 val = reloc_entry->addend;
2328 _bfd_mips_elf_sign_extend (val, 16);
2330 /* Adjust val for the final section location and GP value. If we
2331 are producing relocatable output, we don't want to do this for
2332 an external symbol. */
2333 if (! relocatable
2334 || (symbol->flags & BSF_SECTION_SYM) != 0)
2335 val += relocation - gp;
2337 if (reloc_entry->howto->partial_inplace)
2339 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2340 (bfd_byte *) data
2341 + reloc_entry->address);
2342 if (status != bfd_reloc_ok)
2343 return status;
2345 else
2346 reloc_entry->addend = val;
2348 if (relocatable)
2349 reloc_entry->address += input_section->output_offset;
2351 return bfd_reloc_ok;
2354 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2355 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2356 that contains the relocation field and DATA points to the start of
2357 INPUT_SECTION. */
2359 struct mips_hi16
2361 struct mips_hi16 *next;
2362 bfd_byte *data;
2363 asection *input_section;
2364 arelent rel;
2367 /* FIXME: This should not be a static variable. */
2369 static struct mips_hi16 *mips_hi16_list;
2371 /* A howto special_function for REL *HI16 relocations. We can only
2372 calculate the correct value once we've seen the partnering
2373 *LO16 relocation, so just save the information for later.
2375 The ABI requires that the *LO16 immediately follow the *HI16.
2376 However, as a GNU extension, we permit an arbitrary number of
2377 *HI16s to be associated with a single *LO16. This significantly
2378 simplies the relocation handling in gcc. */
2380 bfd_reloc_status_type
2381 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2382 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2383 asection *input_section, bfd *output_bfd,
2384 char **error_message ATTRIBUTE_UNUSED)
2386 struct mips_hi16 *n;
2388 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2389 return bfd_reloc_outofrange;
2391 n = bfd_malloc (sizeof *n);
2392 if (n == NULL)
2393 return bfd_reloc_outofrange;
2395 n->next = mips_hi16_list;
2396 n->data = data;
2397 n->input_section = input_section;
2398 n->rel = *reloc_entry;
2399 mips_hi16_list = n;
2401 if (output_bfd != NULL)
2402 reloc_entry->address += input_section->output_offset;
2404 return bfd_reloc_ok;
2407 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2408 like any other 16-bit relocation when applied to global symbols, but is
2409 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2411 bfd_reloc_status_type
2412 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2413 void *data, asection *input_section,
2414 bfd *output_bfd, char **error_message)
2416 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2417 || bfd_is_und_section (bfd_get_section (symbol))
2418 || bfd_is_com_section (bfd_get_section (symbol)))
2419 /* The relocation is against a global symbol. */
2420 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2421 input_section, output_bfd,
2422 error_message);
2424 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2425 input_section, output_bfd, error_message);
2428 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2429 is a straightforward 16 bit inplace relocation, but we must deal with
2430 any partnering high-part relocations as well. */
2432 bfd_reloc_status_type
2433 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2434 void *data, asection *input_section,
2435 bfd *output_bfd, char **error_message)
2437 bfd_vma vallo;
2438 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2441 return bfd_reloc_outofrange;
2443 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2444 location);
2445 vallo = bfd_get_32 (abfd, location);
2446 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2447 location);
2449 while (mips_hi16_list != NULL)
2451 bfd_reloc_status_type ret;
2452 struct mips_hi16 *hi;
2454 hi = mips_hi16_list;
2456 /* R_MIPS*_GOT16 relocations are something of a special case. We
2457 want to install the addend in the same way as for a R_MIPS*_HI16
2458 relocation (with a rightshift of 16). However, since GOT16
2459 relocations can also be used with global symbols, their howto
2460 has a rightshift of 0. */
2461 if (hi->rel.howto->type == R_MIPS_GOT16)
2462 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2463 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2464 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2465 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2469 carry or borrow will induce a change of +1 or -1 in the high part. */
2470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2473 hi->input_section, output_bfd,
2474 error_message);
2475 if (ret != bfd_reloc_ok)
2476 return ret;
2478 mips_hi16_list = hi->next;
2479 free (hi);
2482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2483 input_section, output_bfd,
2484 error_message);
2487 /* A generic howto special_function. This calculates and installs the
2488 relocation itself, thus avoiding the oft-discussed problems in
2489 bfd_perform_relocation and bfd_install_relocation. */
2491 bfd_reloc_status_type
2492 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2494 asection *input_section, bfd *output_bfd,
2495 char **error_message ATTRIBUTE_UNUSED)
2497 bfd_signed_vma val;
2498 bfd_reloc_status_type status;
2499 bfd_boolean relocatable;
2501 relocatable = (output_bfd != NULL);
2503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2504 return bfd_reloc_outofrange;
2506 /* Build up the field adjustment in VAL. */
2507 val = 0;
2508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2510 /* Either we're calculating the final field value or we have a
2511 relocation against a section symbol. Add in the section's
2512 offset or address. */
2513 val += symbol->section->output_section->vma;
2514 val += symbol->section->output_offset;
2517 if (!relocatable)
2519 /* We're calculating the final field value. Add in the symbol's value
2520 and, if pc-relative, subtract the address of the field itself. */
2521 val += symbol->value;
2522 if (reloc_entry->howto->pc_relative)
2524 val -= input_section->output_section->vma;
2525 val -= input_section->output_offset;
2526 val -= reloc_entry->address;
2530 /* VAL is now the final adjustment. If we're keeping this relocation
2531 in the output file, and if the relocation uses a separate addend,
2532 we just need to add VAL to that addend. Otherwise we need to add
2533 VAL to the relocation field itself. */
2534 if (relocatable && !reloc_entry->howto->partial_inplace)
2535 reloc_entry->addend += val;
2536 else
2538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2540 /* Add in the separate addend, if any. */
2541 val += reloc_entry->addend;
2543 /* Add VAL to the relocation field. */
2544 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2545 location);
2546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2547 location);
2548 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2549 location);
2551 if (status != bfd_reloc_ok)
2552 return status;
2555 if (relocatable)
2556 reloc_entry->address += input_section->output_offset;
2558 return bfd_reloc_ok;
2561 /* Swap an entry in a .gptab section. Note that these routines rely
2562 on the equivalence of the two elements of the union. */
2564 static void
2565 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2566 Elf32_gptab *in)
2568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2572 static void
2573 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2574 Elf32_External_gptab *ex)
2576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2580 static void
2581 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2582 Elf32_External_compact_rel *ex)
2584 H_PUT_32 (abfd, in->id1, ex->id1);
2585 H_PUT_32 (abfd, in->num, ex->num);
2586 H_PUT_32 (abfd, in->id2, ex->id2);
2587 H_PUT_32 (abfd, in->offset, ex->offset);
2588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2592 static void
2593 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2594 Elf32_External_crinfo *ex)
2596 unsigned long l;
2598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2602 H_PUT_32 (abfd, l, ex->info);
2603 H_PUT_32 (abfd, in->konst, ex->konst);
2604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2607 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2608 routines swap this structure in and out. They are used outside of
2609 BFD, so they are globally visible. */
2611 void
2612 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2613 Elf32_RegInfo *in)
2615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2623 void
2624 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2625 Elf32_External_RegInfo *ex)
2627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2635 /* In the 64 bit ABI, the .MIPS.options section holds register
2636 information in an Elf64_Reginfo structure. These routines swap
2637 them in and out. They are globally visible because they are used
2638 outside of BFD. These routines are here so that gas can call them
2639 without worrying about whether the 64 bit ABI has been included. */
2641 void
2642 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2643 Elf64_Internal_RegInfo *in)
2645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2654 void
2655 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2656 Elf64_External_RegInfo *ex)
2658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2667 /* Swap in an options header. */
2669 void
2670 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2671 Elf_Internal_Options *in)
2673 in->kind = H_GET_8 (abfd, ex->kind);
2674 in->size = H_GET_8 (abfd, ex->size);
2675 in->section = H_GET_16 (abfd, ex->section);
2676 in->info = H_GET_32 (abfd, ex->info);
2679 /* Swap out an options header. */
2681 void
2682 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2683 Elf_External_Options *ex)
2685 H_PUT_8 (abfd, in->kind, ex->kind);
2686 H_PUT_8 (abfd, in->size, ex->size);
2687 H_PUT_16 (abfd, in->section, ex->section);
2688 H_PUT_32 (abfd, in->info, ex->info);
2691 /* Swap in an abiflags structure. */
2693 void
2694 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2695 const Elf_External_ABIFlags_v0 *ex,
2696 Elf_Internal_ABIFlags_v0 *in)
2698 in->version = H_GET_16 (abfd, ex->version);
2699 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2700 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2701 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2702 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2703 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2704 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2705 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2706 in->ases = H_GET_32 (abfd, ex->ases);
2707 in->flags1 = H_GET_32 (abfd, ex->flags1);
2708 in->flags2 = H_GET_32 (abfd, ex->flags2);
2711 /* Swap out an abiflags structure. */
2713 void
2714 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2715 const Elf_Internal_ABIFlags_v0 *in,
2716 Elf_External_ABIFlags_v0 *ex)
2718 H_PUT_16 (abfd, in->version, ex->version);
2719 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2720 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2721 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2722 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2723 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2724 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2725 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2726 H_PUT_32 (abfd, in->ases, ex->ases);
2727 H_PUT_32 (abfd, in->flags1, ex->flags1);
2728 H_PUT_32 (abfd, in->flags2, ex->flags2);
2731 /* This function is called via qsort() to sort the dynamic relocation
2732 entries by increasing r_symndx value. */
2734 static int
2735 sort_dynamic_relocs (const void *arg1, const void *arg2)
2737 Elf_Internal_Rela int_reloc1;
2738 Elf_Internal_Rela int_reloc2;
2739 int diff;
2741 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2742 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2744 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2745 if (diff != 0)
2746 return diff;
2748 if (int_reloc1.r_offset < int_reloc2.r_offset)
2749 return -1;
2750 if (int_reloc1.r_offset > int_reloc2.r_offset)
2751 return 1;
2752 return 0;
2755 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2757 static int
2758 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2759 const void *arg2 ATTRIBUTE_UNUSED)
2761 #ifdef BFD64
2762 Elf_Internal_Rela int_reloc1[3];
2763 Elf_Internal_Rela int_reloc2[3];
2765 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2766 (reldyn_sorting_bfd, arg1, int_reloc1);
2767 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2768 (reldyn_sorting_bfd, arg2, int_reloc2);
2770 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2771 return -1;
2772 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2773 return 1;
2775 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2776 return -1;
2777 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2778 return 1;
2779 return 0;
2780 #else
2781 abort ();
2782 #endif
2786 /* This routine is used to write out ECOFF debugging external symbol
2787 information. It is called via mips_elf_link_hash_traverse. The
2788 ECOFF external symbol information must match the ELF external
2789 symbol information. Unfortunately, at this point we don't know
2790 whether a symbol is required by reloc information, so the two
2791 tables may wind up being different. We must sort out the external
2792 symbol information before we can set the final size of the .mdebug
2793 section, and we must set the size of the .mdebug section before we
2794 can relocate any sections, and we can't know which symbols are
2795 required by relocation until we relocate the sections.
2796 Fortunately, it is relatively unlikely that any symbol will be
2797 stripped but required by a reloc. In particular, it can not happen
2798 when generating a final executable. */
2800 static bfd_boolean
2801 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2803 struct extsym_info *einfo = data;
2804 bfd_boolean strip;
2805 asection *sec, *output_section;
2807 if (h->root.indx == -2)
2808 strip = FALSE;
2809 else if ((h->root.def_dynamic
2810 || h->root.ref_dynamic
2811 || h->root.type == bfd_link_hash_new)
2812 && !h->root.def_regular
2813 && !h->root.ref_regular)
2814 strip = TRUE;
2815 else if (einfo->info->strip == strip_all
2816 || (einfo->info->strip == strip_some
2817 && bfd_hash_lookup (einfo->info->keep_hash,
2818 h->root.root.root.string,
2819 FALSE, FALSE) == NULL))
2820 strip = TRUE;
2821 else
2822 strip = FALSE;
2824 if (strip)
2825 return TRUE;
2827 if (h->esym.ifd == -2)
2829 h->esym.jmptbl = 0;
2830 h->esym.cobol_main = 0;
2831 h->esym.weakext = 0;
2832 h->esym.reserved = 0;
2833 h->esym.ifd = ifdNil;
2834 h->esym.asym.value = 0;
2835 h->esym.asym.st = stGlobal;
2837 if (h->root.root.type == bfd_link_hash_undefined
2838 || h->root.root.type == bfd_link_hash_undefweak)
2840 const char *name;
2842 /* Use undefined class. Also, set class and type for some
2843 special symbols. */
2844 name = h->root.root.root.string;
2845 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2846 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2848 h->esym.asym.sc = scData;
2849 h->esym.asym.st = stLabel;
2850 h->esym.asym.value = 0;
2852 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2854 h->esym.asym.sc = scAbs;
2855 h->esym.asym.st = stLabel;
2856 h->esym.asym.value =
2857 mips_elf_hash_table (einfo->info)->procedure_count;
2859 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2861 h->esym.asym.sc = scAbs;
2862 h->esym.asym.st = stLabel;
2863 h->esym.asym.value = elf_gp (einfo->abfd);
2865 else
2866 h->esym.asym.sc = scUndefined;
2868 else if (h->root.root.type != bfd_link_hash_defined
2869 && h->root.root.type != bfd_link_hash_defweak)
2870 h->esym.asym.sc = scAbs;
2871 else
2873 const char *name;
2875 sec = h->root.root.u.def.section;
2876 output_section = sec->output_section;
2878 /* When making a shared library and symbol h is the one from
2879 the another shared library, OUTPUT_SECTION may be null. */
2880 if (output_section == NULL)
2881 h->esym.asym.sc = scUndefined;
2882 else
2884 name = bfd_section_name (output_section->owner, output_section);
2886 if (strcmp (name, ".text") == 0)
2887 h->esym.asym.sc = scText;
2888 else if (strcmp (name, ".data") == 0)
2889 h->esym.asym.sc = scData;
2890 else if (strcmp (name, ".sdata") == 0)
2891 h->esym.asym.sc = scSData;
2892 else if (strcmp (name, ".rodata") == 0
2893 || strcmp (name, ".rdata") == 0)
2894 h->esym.asym.sc = scRData;
2895 else if (strcmp (name, ".bss") == 0)
2896 h->esym.asym.sc = scBss;
2897 else if (strcmp (name, ".sbss") == 0)
2898 h->esym.asym.sc = scSBss;
2899 else if (strcmp (name, ".init") == 0)
2900 h->esym.asym.sc = scInit;
2901 else if (strcmp (name, ".fini") == 0)
2902 h->esym.asym.sc = scFini;
2903 else
2904 h->esym.asym.sc = scAbs;
2908 h->esym.asym.reserved = 0;
2909 h->esym.asym.index = indexNil;
2912 if (h->root.root.type == bfd_link_hash_common)
2913 h->esym.asym.value = h->root.root.u.c.size;
2914 else if (h->root.root.type == bfd_link_hash_defined
2915 || h->root.root.type == bfd_link_hash_defweak)
2917 if (h->esym.asym.sc == scCommon)
2918 h->esym.asym.sc = scBss;
2919 else if (h->esym.asym.sc == scSCommon)
2920 h->esym.asym.sc = scSBss;
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924 if (output_section != NULL)
2925 h->esym.asym.value = (h->root.root.u.def.value
2926 + sec->output_offset
2927 + output_section->vma);
2928 else
2929 h->esym.asym.value = 0;
2931 else
2933 struct mips_elf_link_hash_entry *hd = h;
2935 while (hd->root.root.type == bfd_link_hash_indirect)
2936 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2938 if (hd->needs_lazy_stub)
2940 BFD_ASSERT (hd->root.plt.plist != NULL);
2941 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2942 /* Set type and value for a symbol with a function stub. */
2943 h->esym.asym.st = stProc;
2944 sec = hd->root.root.u.def.section;
2945 if (sec == NULL)
2946 h->esym.asym.value = 0;
2947 else
2949 output_section = sec->output_section;
2950 if (output_section != NULL)
2951 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2952 + sec->output_offset
2953 + output_section->vma);
2954 else
2955 h->esym.asym.value = 0;
2960 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2961 h->root.root.root.string,
2962 &h->esym))
2964 einfo->failed = TRUE;
2965 return FALSE;
2968 return TRUE;
2971 /* A comparison routine used to sort .gptab entries. */
2973 static int
2974 gptab_compare (const void *p1, const void *p2)
2976 const Elf32_gptab *a1 = p1;
2977 const Elf32_gptab *a2 = p2;
2979 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2982 /* Functions to manage the got entry hash table. */
2984 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2985 hash number. */
2987 static INLINE hashval_t
2988 mips_elf_hash_bfd_vma (bfd_vma addr)
2990 #ifdef BFD64
2991 return addr + (addr >> 32);
2992 #else
2993 return addr;
2994 #endif
2997 static hashval_t
2998 mips_elf_got_entry_hash (const void *entry_)
3000 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3002 return (entry->symndx
3003 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3004 + (entry->tls_type == GOT_TLS_LDM ? 0
3005 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3006 : entry->symndx >= 0 ? (entry->abfd->id
3007 + mips_elf_hash_bfd_vma (entry->d.addend))
3008 : entry->d.h->root.root.root.hash));
3011 static int
3012 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3014 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3015 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3017 return (e1->symndx == e2->symndx
3018 && e1->tls_type == e2->tls_type
3019 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3020 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3021 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3022 && e1->d.addend == e2->d.addend)
3023 : e2->abfd && e1->d.h == e2->d.h));
3026 static hashval_t
3027 mips_got_page_ref_hash (const void *ref_)
3029 const struct mips_got_page_ref *ref;
3031 ref = (const struct mips_got_page_ref *) ref_;
3032 return ((ref->symndx >= 0
3033 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3034 : ref->u.h->root.root.root.hash)
3035 + mips_elf_hash_bfd_vma (ref->addend));
3038 static int
3039 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3041 const struct mips_got_page_ref *ref1, *ref2;
3043 ref1 = (const struct mips_got_page_ref *) ref1_;
3044 ref2 = (const struct mips_got_page_ref *) ref2_;
3045 return (ref1->symndx == ref2->symndx
3046 && (ref1->symndx < 0
3047 ? ref1->u.h == ref2->u.h
3048 : ref1->u.abfd == ref2->u.abfd)
3049 && ref1->addend == ref2->addend);
3052 static hashval_t
3053 mips_got_page_entry_hash (const void *entry_)
3055 const struct mips_got_page_entry *entry;
3057 entry = (const struct mips_got_page_entry *) entry_;
3058 return entry->sec->id;
3061 static int
3062 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3064 const struct mips_got_page_entry *entry1, *entry2;
3066 entry1 = (const struct mips_got_page_entry *) entry1_;
3067 entry2 = (const struct mips_got_page_entry *) entry2_;
3068 return entry1->sec == entry2->sec;
3071 /* Create and return a new mips_got_info structure. */
3073 static struct mips_got_info *
3074 mips_elf_create_got_info (bfd *abfd)
3076 struct mips_got_info *g;
3078 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3079 if (g == NULL)
3080 return NULL;
3082 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3083 mips_elf_got_entry_eq, NULL);
3084 if (g->got_entries == NULL)
3085 return NULL;
3087 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3088 mips_got_page_ref_eq, NULL);
3089 if (g->got_page_refs == NULL)
3090 return NULL;
3092 return g;
3095 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3096 CREATE_P and if ABFD doesn't already have a GOT. */
3098 static struct mips_got_info *
3099 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3101 struct mips_elf_obj_tdata *tdata;
3103 if (!is_mips_elf (abfd))
3104 return NULL;
3106 tdata = mips_elf_tdata (abfd);
3107 if (!tdata->got && create_p)
3108 tdata->got = mips_elf_create_got_info (abfd);
3109 return tdata->got;
3112 /* Record that ABFD should use output GOT G. */
3114 static void
3115 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3117 struct mips_elf_obj_tdata *tdata;
3119 BFD_ASSERT (is_mips_elf (abfd));
3120 tdata = mips_elf_tdata (abfd);
3121 if (tdata->got)
3123 /* The GOT structure itself and the hash table entries are
3124 allocated to a bfd, but the hash tables aren't. */
3125 htab_delete (tdata->got->got_entries);
3126 htab_delete (tdata->got->got_page_refs);
3127 if (tdata->got->got_page_entries)
3128 htab_delete (tdata->got->got_page_entries);
3130 tdata->got = g;
3133 /* Return the dynamic relocation section. If it doesn't exist, try to
3134 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3135 if creation fails. */
3137 static asection *
3138 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3140 const char *dname;
3141 asection *sreloc;
3142 bfd *dynobj;
3144 dname = MIPS_ELF_REL_DYN_NAME (info);
3145 dynobj = elf_hash_table (info)->dynobj;
3146 sreloc = bfd_get_linker_section (dynobj, dname);
3147 if (sreloc == NULL && create_p)
3149 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3150 (SEC_ALLOC
3151 | SEC_LOAD
3152 | SEC_HAS_CONTENTS
3153 | SEC_IN_MEMORY
3154 | SEC_LINKER_CREATED
3155 | SEC_READONLY));
3156 if (sreloc == NULL
3157 || ! bfd_set_section_alignment (dynobj, sreloc,
3158 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3159 return NULL;
3161 return sreloc;
3164 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3166 static int
3167 mips_elf_reloc_tls_type (unsigned int r_type)
3169 if (tls_gd_reloc_p (r_type))
3170 return GOT_TLS_GD;
3172 if (tls_ldm_reloc_p (r_type))
3173 return GOT_TLS_LDM;
3175 if (tls_gottprel_reloc_p (r_type))
3176 return GOT_TLS_IE;
3178 return GOT_TLS_NONE;
3181 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3183 static int
3184 mips_tls_got_entries (unsigned int type)
3186 switch (type)
3188 case GOT_TLS_GD:
3189 case GOT_TLS_LDM:
3190 return 2;
3192 case GOT_TLS_IE:
3193 return 1;
3195 case GOT_TLS_NONE:
3196 return 0;
3198 abort ();
3201 /* Count the number of relocations needed for a TLS GOT entry, with
3202 access types from TLS_TYPE, and symbol H (or a local symbol if H
3203 is NULL). */
3205 static int
3206 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3207 struct elf_link_hash_entry *h)
3209 int indx = 0;
3210 bfd_boolean need_relocs = FALSE;
3211 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3213 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3214 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3215 indx = h->dynindx;
3217 if ((bfd_link_pic (info) || indx != 0)
3218 && (h == NULL
3219 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3220 || h->root.type != bfd_link_hash_undefweak))
3221 need_relocs = TRUE;
3223 if (!need_relocs)
3224 return 0;
3226 switch (tls_type)
3228 case GOT_TLS_GD:
3229 return indx != 0 ? 2 : 1;
3231 case GOT_TLS_IE:
3232 return 1;
3234 case GOT_TLS_LDM:
3235 return bfd_link_pic (info) ? 1 : 0;
3237 default:
3238 return 0;
3242 /* Add the number of GOT entries and TLS relocations required by ENTRY
3243 to G. */
3245 static void
3246 mips_elf_count_got_entry (struct bfd_link_info *info,
3247 struct mips_got_info *g,
3248 struct mips_got_entry *entry)
3250 if (entry->tls_type)
3252 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3253 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3254 entry->symndx < 0
3255 ? &entry->d.h->root : NULL);
3257 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3258 g->local_gotno += 1;
3259 else
3260 g->global_gotno += 1;
3263 /* Output a simple dynamic relocation into SRELOC. */
3265 static void
3266 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3267 asection *sreloc,
3268 unsigned long reloc_index,
3269 unsigned long indx,
3270 int r_type,
3271 bfd_vma offset)
3273 Elf_Internal_Rela rel[3];
3275 memset (rel, 0, sizeof (rel));
3277 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3278 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3280 if (ABI_64_P (output_bfd))
3282 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3283 (output_bfd, &rel[0],
3284 (sreloc->contents
3285 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3287 else
3288 bfd_elf32_swap_reloc_out
3289 (output_bfd, &rel[0],
3290 (sreloc->contents
3291 + reloc_index * sizeof (Elf32_External_Rel)));
3294 /* Initialize a set of TLS GOT entries for one symbol. */
3296 static void
3297 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3298 struct mips_got_entry *entry,
3299 struct mips_elf_link_hash_entry *h,
3300 bfd_vma value)
3302 struct mips_elf_link_hash_table *htab;
3303 int indx;
3304 asection *sreloc, *sgot;
3305 bfd_vma got_offset, got_offset2;
3306 bfd_boolean need_relocs = FALSE;
3308 htab = mips_elf_hash_table (info);
3309 if (htab == NULL)
3310 return;
3312 sgot = htab->sgot;
3314 indx = 0;
3315 if (h != NULL)
3317 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3319 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3320 &h->root)
3321 && (!bfd_link_pic (info)
3322 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3323 indx = h->root.dynindx;
3326 if (entry->tls_initialized)
3327 return;
3329 if ((bfd_link_pic (info) || indx != 0)
3330 && (h == NULL
3331 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3332 || h->root.type != bfd_link_hash_undefweak))
3333 need_relocs = TRUE;
3335 /* MINUS_ONE means the symbol is not defined in this object. It may not
3336 be defined at all; assume that the value doesn't matter in that
3337 case. Otherwise complain if we would use the value. */
3338 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3339 || h->root.root.type == bfd_link_hash_undefweak);
3341 /* Emit necessary relocations. */
3342 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3343 got_offset = entry->gotidx;
3345 switch (entry->tls_type)
3347 case GOT_TLS_GD:
3348 /* General Dynamic. */
3349 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3351 if (need_relocs)
3353 mips_elf_output_dynamic_relocation
3354 (abfd, sreloc, sreloc->reloc_count++, indx,
3355 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3356 sgot->output_offset + sgot->output_section->vma + got_offset);
3358 if (indx)
3359 mips_elf_output_dynamic_relocation
3360 (abfd, sreloc, sreloc->reloc_count++, indx,
3361 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3362 sgot->output_offset + sgot->output_section->vma + got_offset2);
3363 else
3364 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3365 sgot->contents + got_offset2);
3367 else
3369 MIPS_ELF_PUT_WORD (abfd, 1,
3370 sgot->contents + got_offset);
3371 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3372 sgot->contents + got_offset2);
3374 break;
3376 case GOT_TLS_IE:
3377 /* Initial Exec model. */
3378 if (need_relocs)
3380 if (indx == 0)
3381 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3382 sgot->contents + got_offset);
3383 else
3384 MIPS_ELF_PUT_WORD (abfd, 0,
3385 sgot->contents + got_offset);
3387 mips_elf_output_dynamic_relocation
3388 (abfd, sreloc, sreloc->reloc_count++, indx,
3389 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3390 sgot->output_offset + sgot->output_section->vma + got_offset);
3392 else
3393 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3394 sgot->contents + got_offset);
3395 break;
3397 case GOT_TLS_LDM:
3398 /* The initial offset is zero, and the LD offsets will include the
3399 bias by DTP_OFFSET. */
3400 MIPS_ELF_PUT_WORD (abfd, 0,
3401 sgot->contents + got_offset
3402 + MIPS_ELF_GOT_SIZE (abfd));
3404 if (!bfd_link_pic (info))
3405 MIPS_ELF_PUT_WORD (abfd, 1,
3406 sgot->contents + got_offset);
3407 else
3408 mips_elf_output_dynamic_relocation
3409 (abfd, sreloc, sreloc->reloc_count++, indx,
3410 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3411 sgot->output_offset + sgot->output_section->vma + got_offset);
3412 break;
3414 default:
3415 abort ();
3418 entry->tls_initialized = TRUE;
3421 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3422 for global symbol H. .got.plt comes before the GOT, so the offset
3423 will be negative. */
3425 static bfd_vma
3426 mips_elf_gotplt_index (struct bfd_link_info *info,
3427 struct elf_link_hash_entry *h)
3429 bfd_vma got_address, got_value;
3430 struct mips_elf_link_hash_table *htab;
3432 htab = mips_elf_hash_table (info);
3433 BFD_ASSERT (htab != NULL);
3435 BFD_ASSERT (h->plt.plist != NULL);
3436 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3438 /* Calculate the address of the associated .got.plt entry. */
3439 got_address = (htab->sgotplt->output_section->vma
3440 + htab->sgotplt->output_offset
3441 + (h->plt.plist->gotplt_index
3442 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3444 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3445 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3446 + htab->root.hgot->root.u.def.section->output_offset
3447 + htab->root.hgot->root.u.def.value);
3449 return got_address - got_value;
3452 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3453 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3454 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3455 offset can be found. */
3457 static bfd_vma
3458 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3459 bfd_vma value, unsigned long r_symndx,
3460 struct mips_elf_link_hash_entry *h, int r_type)
3462 struct mips_elf_link_hash_table *htab;
3463 struct mips_got_entry *entry;
3465 htab = mips_elf_hash_table (info);
3466 BFD_ASSERT (htab != NULL);
3468 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3469 r_symndx, h, r_type);
3470 if (!entry)
3471 return MINUS_ONE;
3473 if (entry->tls_type)
3474 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3475 return entry->gotidx;
3478 /* Return the GOT index of global symbol H in the primary GOT. */
3480 static bfd_vma
3481 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3482 struct elf_link_hash_entry *h)
3484 struct mips_elf_link_hash_table *htab;
3485 long global_got_dynindx;
3486 struct mips_got_info *g;
3487 bfd_vma got_index;
3489 htab = mips_elf_hash_table (info);
3490 BFD_ASSERT (htab != NULL);
3492 global_got_dynindx = 0;
3493 if (htab->global_gotsym != NULL)
3494 global_got_dynindx = htab->global_gotsym->dynindx;
3496 /* Once we determine the global GOT entry with the lowest dynamic
3497 symbol table index, we must put all dynamic symbols with greater
3498 indices into the primary GOT. That makes it easy to calculate the
3499 GOT offset. */
3500 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3501 g = mips_elf_bfd_got (obfd, FALSE);
3502 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3503 * MIPS_ELF_GOT_SIZE (obfd));
3504 BFD_ASSERT (got_index < htab->sgot->size);
3506 return got_index;
3509 /* Return the GOT index for the global symbol indicated by H, which is
3510 referenced by a relocation of type R_TYPE in IBFD. */
3512 static bfd_vma
3513 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3514 struct elf_link_hash_entry *h, int r_type)
3516 struct mips_elf_link_hash_table *htab;
3517 struct mips_got_info *g;
3518 struct mips_got_entry lookup, *entry;
3519 bfd_vma gotidx;
3521 htab = mips_elf_hash_table (info);
3522 BFD_ASSERT (htab != NULL);
3524 g = mips_elf_bfd_got (ibfd, FALSE);
3525 BFD_ASSERT (g);
3527 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3528 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3529 return mips_elf_primary_global_got_index (obfd, info, h);
3531 lookup.abfd = ibfd;
3532 lookup.symndx = -1;
3533 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3534 entry = htab_find (g->got_entries, &lookup);
3535 BFD_ASSERT (entry);
3537 gotidx = entry->gotidx;
3538 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3540 if (lookup.tls_type)
3542 bfd_vma value = MINUS_ONE;
3544 if ((h->root.type == bfd_link_hash_defined
3545 || h->root.type == bfd_link_hash_defweak)
3546 && h->root.u.def.section->output_section)
3547 value = (h->root.u.def.value
3548 + h->root.u.def.section->output_offset
3549 + h->root.u.def.section->output_section->vma);
3551 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3553 return gotidx;
3556 /* Find a GOT page entry that points to within 32KB of VALUE. These
3557 entries are supposed to be placed at small offsets in the GOT, i.e.,
3558 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3559 entry could be created. If OFFSETP is nonnull, use it to return the
3560 offset of the GOT entry from VALUE. */
3562 static bfd_vma
3563 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3564 bfd_vma value, bfd_vma *offsetp)
3566 bfd_vma page, got_index;
3567 struct mips_got_entry *entry;
3569 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3570 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3571 NULL, R_MIPS_GOT_PAGE);
3573 if (!entry)
3574 return MINUS_ONE;
3576 got_index = entry->gotidx;
3578 if (offsetp)
3579 *offsetp = value - entry->d.address;
3581 return got_index;
3584 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3585 EXTERNAL is true if the relocation was originally against a global
3586 symbol that binds locally. */
3588 static bfd_vma
3589 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3590 bfd_vma value, bfd_boolean external)
3592 struct mips_got_entry *entry;
3594 /* GOT16 relocations against local symbols are followed by a LO16
3595 relocation; those against global symbols are not. Thus if the
3596 symbol was originally local, the GOT16 relocation should load the
3597 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3598 if (! external)
3599 value = mips_elf_high (value) << 16;
3601 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3602 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3603 same in all cases. */
3604 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3605 NULL, R_MIPS_GOT16);
3606 if (entry)
3607 return entry->gotidx;
3608 else
3609 return MINUS_ONE;
3612 /* Returns the offset for the entry at the INDEXth position
3613 in the GOT. */
3615 static bfd_vma
3616 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3617 bfd *input_bfd, bfd_vma got_index)
3619 struct mips_elf_link_hash_table *htab;
3620 asection *sgot;
3621 bfd_vma gp;
3623 htab = mips_elf_hash_table (info);
3624 BFD_ASSERT (htab != NULL);
3626 sgot = htab->sgot;
3627 gp = _bfd_get_gp_value (output_bfd)
3628 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3630 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3633 /* Create and return a local GOT entry for VALUE, which was calculated
3634 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3635 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3636 instead. */
3638 static struct mips_got_entry *
3639 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3640 bfd *ibfd, bfd_vma value,
3641 unsigned long r_symndx,
3642 struct mips_elf_link_hash_entry *h,
3643 int r_type)
3645 struct mips_got_entry lookup, *entry;
3646 void **loc;
3647 struct mips_got_info *g;
3648 struct mips_elf_link_hash_table *htab;
3649 bfd_vma gotidx;
3651 htab = mips_elf_hash_table (info);
3652 BFD_ASSERT (htab != NULL);
3654 g = mips_elf_bfd_got (ibfd, FALSE);
3655 if (g == NULL)
3657 g = mips_elf_bfd_got (abfd, FALSE);
3658 BFD_ASSERT (g != NULL);
3661 /* This function shouldn't be called for symbols that live in the global
3662 area of the GOT. */
3663 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3665 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3666 if (lookup.tls_type)
3668 lookup.abfd = ibfd;
3669 if (tls_ldm_reloc_p (r_type))
3671 lookup.symndx = 0;
3672 lookup.d.addend = 0;
3674 else if (h == NULL)
3676 lookup.symndx = r_symndx;
3677 lookup.d.addend = 0;
3679 else
3681 lookup.symndx = -1;
3682 lookup.d.h = h;
3685 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3686 BFD_ASSERT (entry);
3688 gotidx = entry->gotidx;
3689 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3691 return entry;
3694 lookup.abfd = NULL;
3695 lookup.symndx = -1;
3696 lookup.d.address = value;
3697 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3698 if (!loc)
3699 return NULL;
3701 entry = (struct mips_got_entry *) *loc;
3702 if (entry)
3703 return entry;
3705 if (g->assigned_low_gotno > g->assigned_high_gotno)
3707 /* We didn't allocate enough space in the GOT. */
3708 (*_bfd_error_handler)
3709 (_("not enough GOT space for local GOT entries"));
3710 bfd_set_error (bfd_error_bad_value);
3711 return NULL;
3714 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3715 if (!entry)
3716 return NULL;
3718 if (got16_reloc_p (r_type)
3719 || call16_reloc_p (r_type)
3720 || got_page_reloc_p (r_type)
3721 || got_disp_reloc_p (r_type))
3722 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3723 else
3724 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3726 *entry = lookup;
3727 *loc = entry;
3729 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3731 /* These GOT entries need a dynamic relocation on VxWorks. */
3732 if (htab->is_vxworks)
3734 Elf_Internal_Rela outrel;
3735 asection *s;
3736 bfd_byte *rloc;
3737 bfd_vma got_address;
3739 s = mips_elf_rel_dyn_section (info, FALSE);
3740 got_address = (htab->sgot->output_section->vma
3741 + htab->sgot->output_offset
3742 + entry->gotidx);
3744 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3745 outrel.r_offset = got_address;
3746 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3747 outrel.r_addend = value;
3748 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3751 return entry;
3754 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3755 The number might be exact or a worst-case estimate, depending on how
3756 much information is available to elf_backend_omit_section_dynsym at
3757 the current linking stage. */
3759 static bfd_size_type
3760 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3762 bfd_size_type count;
3764 count = 0;
3765 if (bfd_link_pic (info)
3766 || elf_hash_table (info)->is_relocatable_executable)
3768 asection *p;
3769 const struct elf_backend_data *bed;
3771 bed = get_elf_backend_data (output_bfd);
3772 for (p = output_bfd->sections; p ; p = p->next)
3773 if ((p->flags & SEC_EXCLUDE) == 0
3774 && (p->flags & SEC_ALLOC) != 0
3775 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3776 ++count;
3778 return count;
3781 /* Sort the dynamic symbol table so that symbols that need GOT entries
3782 appear towards the end. */
3784 static bfd_boolean
3785 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3787 struct mips_elf_link_hash_table *htab;
3788 struct mips_elf_hash_sort_data hsd;
3789 struct mips_got_info *g;
3791 if (elf_hash_table (info)->dynsymcount == 0)
3792 return TRUE;
3794 htab = mips_elf_hash_table (info);
3795 BFD_ASSERT (htab != NULL);
3797 g = htab->got_info;
3798 if (g == NULL)
3799 return TRUE;
3801 hsd.low = NULL;
3802 hsd.max_unref_got_dynindx
3803 = hsd.min_got_dynindx
3804 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3805 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3806 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3807 elf_hash_table (info)),
3808 mips_elf_sort_hash_table_f,
3809 &hsd);
3811 /* There should have been enough room in the symbol table to
3812 accommodate both the GOT and non-GOT symbols. */
3813 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3814 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3815 == elf_hash_table (info)->dynsymcount);
3816 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3817 == g->global_gotno);
3819 /* Now we know which dynamic symbol has the lowest dynamic symbol
3820 table index in the GOT. */
3821 htab->global_gotsym = hsd.low;
3823 return TRUE;
3826 /* If H needs a GOT entry, assign it the highest available dynamic
3827 index. Otherwise, assign it the lowest available dynamic
3828 index. */
3830 static bfd_boolean
3831 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3833 struct mips_elf_hash_sort_data *hsd = data;
3835 /* Symbols without dynamic symbol table entries aren't interesting
3836 at all. */
3837 if (h->root.dynindx == -1)
3838 return TRUE;
3840 switch (h->global_got_area)
3842 case GGA_NONE:
3843 h->root.dynindx = hsd->max_non_got_dynindx++;
3844 break;
3846 case GGA_NORMAL:
3847 h->root.dynindx = --hsd->min_got_dynindx;
3848 hsd->low = (struct elf_link_hash_entry *) h;
3849 break;
3851 case GGA_RELOC_ONLY:
3852 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3853 hsd->low = (struct elf_link_hash_entry *) h;
3854 h->root.dynindx = hsd->max_unref_got_dynindx++;
3855 break;
3858 return TRUE;
3861 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3862 (which is owned by the caller and shouldn't be added to the
3863 hash table directly). */
3865 static bfd_boolean
3866 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3867 struct mips_got_entry *lookup)
3869 struct mips_elf_link_hash_table *htab;
3870 struct mips_got_entry *entry;
3871 struct mips_got_info *g;
3872 void **loc, **bfd_loc;
3874 /* Make sure there's a slot for this entry in the master GOT. */
3875 htab = mips_elf_hash_table (info);
3876 g = htab->got_info;
3877 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3878 if (!loc)
3879 return FALSE;
3881 /* Populate the entry if it isn't already. */
3882 entry = (struct mips_got_entry *) *loc;
3883 if (!entry)
3885 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3886 if (!entry)
3887 return FALSE;
3889 lookup->tls_initialized = FALSE;
3890 lookup->gotidx = -1;
3891 *entry = *lookup;
3892 *loc = entry;
3895 /* Reuse the same GOT entry for the BFD's GOT. */
3896 g = mips_elf_bfd_got (abfd, TRUE);
3897 if (!g)
3898 return FALSE;
3900 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3901 if (!bfd_loc)
3902 return FALSE;
3904 if (!*bfd_loc)
3905 *bfd_loc = entry;
3906 return TRUE;
3909 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3910 entry for it. FOR_CALL is true if the caller is only interested in
3911 using the GOT entry for calls. */
3913 static bfd_boolean
3914 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3915 bfd *abfd, struct bfd_link_info *info,
3916 bfd_boolean for_call, int r_type)
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_elf_link_hash_entry *hmips;
3920 struct mips_got_entry entry;
3921 unsigned char tls_type;
3923 htab = mips_elf_hash_table (info);
3924 BFD_ASSERT (htab != NULL);
3926 hmips = (struct mips_elf_link_hash_entry *) h;
3927 if (!for_call)
3928 hmips->got_only_for_calls = FALSE;
3930 /* A global symbol in the GOT must also be in the dynamic symbol
3931 table. */
3932 if (h->dynindx == -1)
3934 switch (ELF_ST_VISIBILITY (h->other))
3936 case STV_INTERNAL:
3937 case STV_HIDDEN:
3938 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3939 break;
3941 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3942 return FALSE;
3945 tls_type = mips_elf_reloc_tls_type (r_type);
3946 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3947 hmips->global_got_area = GGA_NORMAL;
3949 entry.abfd = abfd;
3950 entry.symndx = -1;
3951 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3952 entry.tls_type = tls_type;
3953 return mips_elf_record_got_entry (info, abfd, &entry);
3956 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3957 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3959 static bfd_boolean
3960 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3961 struct bfd_link_info *info, int r_type)
3963 struct mips_elf_link_hash_table *htab;
3964 struct mips_got_info *g;
3965 struct mips_got_entry entry;
3967 htab = mips_elf_hash_table (info);
3968 BFD_ASSERT (htab != NULL);
3970 g = htab->got_info;
3971 BFD_ASSERT (g != NULL);
3973 entry.abfd = abfd;
3974 entry.symndx = symndx;
3975 entry.d.addend = addend;
3976 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3977 return mips_elf_record_got_entry (info, abfd, &entry);
3980 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3981 H is the symbol's hash table entry, or null if SYMNDX is local
3982 to ABFD. */
3984 static bfd_boolean
3985 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3986 long symndx, struct elf_link_hash_entry *h,
3987 bfd_signed_vma addend)
3989 struct mips_elf_link_hash_table *htab;
3990 struct mips_got_info *g1, *g2;
3991 struct mips_got_page_ref lookup, *entry;
3992 void **loc, **bfd_loc;
3994 htab = mips_elf_hash_table (info);
3995 BFD_ASSERT (htab != NULL);
3997 g1 = htab->got_info;
3998 BFD_ASSERT (g1 != NULL);
4000 if (h)
4002 lookup.symndx = -1;
4003 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4005 else
4007 lookup.symndx = symndx;
4008 lookup.u.abfd = abfd;
4010 lookup.addend = addend;
4011 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4012 if (loc == NULL)
4013 return FALSE;
4015 entry = (struct mips_got_page_ref *) *loc;
4016 if (!entry)
4018 entry = bfd_alloc (abfd, sizeof (*entry));
4019 if (!entry)
4020 return FALSE;
4022 *entry = lookup;
4023 *loc = entry;
4026 /* Add the same entry to the BFD's GOT. */
4027 g2 = mips_elf_bfd_got (abfd, TRUE);
4028 if (!g2)
4029 return FALSE;
4031 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4032 if (!bfd_loc)
4033 return FALSE;
4035 if (!*bfd_loc)
4036 *bfd_loc = entry;
4038 return TRUE;
4041 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4043 static void
4044 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4045 unsigned int n)
4047 asection *s;
4048 struct mips_elf_link_hash_table *htab;
4050 htab = mips_elf_hash_table (info);
4051 BFD_ASSERT (htab != NULL);
4053 s = mips_elf_rel_dyn_section (info, FALSE);
4054 BFD_ASSERT (s != NULL);
4056 if (htab->is_vxworks)
4057 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4058 else
4060 if (s->size == 0)
4062 /* Make room for a null element. */
4063 s->size += MIPS_ELF_REL_SIZE (abfd);
4064 ++s->reloc_count;
4066 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4070 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4071 mips_elf_traverse_got_arg structure. Count the number of GOT
4072 entries and TLS relocs. Set DATA->value to true if we need
4073 to resolve indirect or warning symbols and then recreate the GOT. */
4075 static int
4076 mips_elf_check_recreate_got (void **entryp, void *data)
4078 struct mips_got_entry *entry;
4079 struct mips_elf_traverse_got_arg *arg;
4081 entry = (struct mips_got_entry *) *entryp;
4082 arg = (struct mips_elf_traverse_got_arg *) data;
4083 if (entry->abfd != NULL && entry->symndx == -1)
4085 struct mips_elf_link_hash_entry *h;
4087 h = entry->d.h;
4088 if (h->root.root.type == bfd_link_hash_indirect
4089 || h->root.root.type == bfd_link_hash_warning)
4091 arg->value = TRUE;
4092 return 0;
4095 mips_elf_count_got_entry (arg->info, arg->g, entry);
4096 return 1;
4099 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4100 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4101 converting entries for indirect and warning symbols into entries
4102 for the target symbol. Set DATA->g to null on error. */
4104 static int
4105 mips_elf_recreate_got (void **entryp, void *data)
4107 struct mips_got_entry new_entry, *entry;
4108 struct mips_elf_traverse_got_arg *arg;
4109 void **slot;
4111 entry = (struct mips_got_entry *) *entryp;
4112 arg = (struct mips_elf_traverse_got_arg *) data;
4113 if (entry->abfd != NULL
4114 && entry->symndx == -1
4115 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4116 || entry->d.h->root.root.type == bfd_link_hash_warning))
4118 struct mips_elf_link_hash_entry *h;
4120 new_entry = *entry;
4121 entry = &new_entry;
4122 h = entry->d.h;
4125 BFD_ASSERT (h->global_got_area == GGA_NONE);
4126 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4128 while (h->root.root.type == bfd_link_hash_indirect
4129 || h->root.root.type == bfd_link_hash_warning);
4130 entry->d.h = h;
4132 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4133 if (slot == NULL)
4135 arg->g = NULL;
4136 return 0;
4138 if (*slot == NULL)
4140 if (entry == &new_entry)
4142 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4143 if (!entry)
4145 arg->g = NULL;
4146 return 0;
4148 *entry = new_entry;
4150 *slot = entry;
4151 mips_elf_count_got_entry (arg->info, arg->g, entry);
4153 return 1;
4156 /* Return the maximum number of GOT page entries required for RANGE. */
4158 static bfd_vma
4159 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4161 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4164 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4166 static bfd_boolean
4167 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4168 asection *sec, bfd_signed_vma addend)
4170 struct mips_got_info *g = arg->g;
4171 struct mips_got_page_entry lookup, *entry;
4172 struct mips_got_page_range **range_ptr, *range;
4173 bfd_vma old_pages, new_pages;
4174 void **loc;
4176 /* Find the mips_got_page_entry hash table entry for this section. */
4177 lookup.sec = sec;
4178 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4179 if (loc == NULL)
4180 return FALSE;
4182 /* Create a mips_got_page_entry if this is the first time we've
4183 seen the section. */
4184 entry = (struct mips_got_page_entry *) *loc;
4185 if (!entry)
4187 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4188 if (!entry)
4189 return FALSE;
4191 entry->sec = sec;
4192 *loc = entry;
4195 /* Skip over ranges whose maximum extent cannot share a page entry
4196 with ADDEND. */
4197 range_ptr = &entry->ranges;
4198 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4199 range_ptr = &(*range_ptr)->next;
4201 /* If we scanned to the end of the list, or found a range whose
4202 minimum extent cannot share a page entry with ADDEND, create
4203 a new singleton range. */
4204 range = *range_ptr;
4205 if (!range || addend < range->min_addend - 0xffff)
4207 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4208 if (!range)
4209 return FALSE;
4211 range->next = *range_ptr;
4212 range->min_addend = addend;
4213 range->max_addend = addend;
4215 *range_ptr = range;
4216 entry->num_pages++;
4217 g->page_gotno++;
4218 return TRUE;
4221 /* Remember how many pages the old range contributed. */
4222 old_pages = mips_elf_pages_for_range (range);
4224 /* Update the ranges. */
4225 if (addend < range->min_addend)
4226 range->min_addend = addend;
4227 else if (addend > range->max_addend)
4229 if (range->next && addend >= range->next->min_addend - 0xffff)
4231 old_pages += mips_elf_pages_for_range (range->next);
4232 range->max_addend = range->next->max_addend;
4233 range->next = range->next->next;
4235 else
4236 range->max_addend = addend;
4239 /* Record any change in the total estimate. */
4240 new_pages = mips_elf_pages_for_range (range);
4241 if (old_pages != new_pages)
4243 entry->num_pages += new_pages - old_pages;
4244 g->page_gotno += new_pages - old_pages;
4247 return TRUE;
4250 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4251 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4252 whether the page reference described by *REFP needs a GOT page entry,
4253 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4255 static bfd_boolean
4256 mips_elf_resolve_got_page_ref (void **refp, void *data)
4258 struct mips_got_page_ref *ref;
4259 struct mips_elf_traverse_got_arg *arg;
4260 struct mips_elf_link_hash_table *htab;
4261 asection *sec;
4262 bfd_vma addend;
4264 ref = (struct mips_got_page_ref *) *refp;
4265 arg = (struct mips_elf_traverse_got_arg *) data;
4266 htab = mips_elf_hash_table (arg->info);
4268 if (ref->symndx < 0)
4270 struct mips_elf_link_hash_entry *h;
4272 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4273 h = ref->u.h;
4274 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4275 return 1;
4277 /* Ignore undefined symbols; we'll issue an error later if
4278 appropriate. */
4279 if (!((h->root.root.type == bfd_link_hash_defined
4280 || h->root.root.type == bfd_link_hash_defweak)
4281 && h->root.root.u.def.section))
4282 return 1;
4284 sec = h->root.root.u.def.section;
4285 addend = h->root.root.u.def.value + ref->addend;
4287 else
4289 Elf_Internal_Sym *isym;
4291 /* Read in the symbol. */
4292 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4293 ref->symndx);
4294 if (isym == NULL)
4296 arg->g = NULL;
4297 return 0;
4300 /* Get the associated input section. */
4301 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4302 if (sec == NULL)
4304 arg->g = NULL;
4305 return 0;
4308 /* If this is a mergable section, work out the section and offset
4309 of the merged data. For section symbols, the addend specifies
4310 of the offset _of_ the first byte in the data, otherwise it
4311 specifies the offset _from_ the first byte. */
4312 if (sec->flags & SEC_MERGE)
4314 void *secinfo;
4316 secinfo = elf_section_data (sec)->sec_info;
4317 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4318 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4319 isym->st_value + ref->addend);
4320 else
4321 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4322 isym->st_value) + ref->addend;
4324 else
4325 addend = isym->st_value + ref->addend;
4327 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4329 arg->g = NULL;
4330 return 0;
4332 return 1;
4335 /* If any entries in G->got_entries are for indirect or warning symbols,
4336 replace them with entries for the target symbol. Convert g->got_page_refs
4337 into got_page_entry structures and estimate the number of page entries
4338 that they require. */
4340 static bfd_boolean
4341 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4342 struct mips_got_info *g)
4344 struct mips_elf_traverse_got_arg tga;
4345 struct mips_got_info oldg;
4347 oldg = *g;
4349 tga.info = info;
4350 tga.g = g;
4351 tga.value = FALSE;
4352 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4353 if (tga.value)
4355 *g = oldg;
4356 g->got_entries = htab_create (htab_size (oldg.got_entries),
4357 mips_elf_got_entry_hash,
4358 mips_elf_got_entry_eq, NULL);
4359 if (!g->got_entries)
4360 return FALSE;
4362 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4363 if (!tga.g)
4364 return FALSE;
4366 htab_delete (oldg.got_entries);
4369 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4370 mips_got_page_entry_eq, NULL);
4371 if (g->got_page_entries == NULL)
4372 return FALSE;
4374 tga.info = info;
4375 tga.g = g;
4376 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4378 return TRUE;
4381 /* Return true if a GOT entry for H should live in the local rather than
4382 global GOT area. */
4384 static bfd_boolean
4385 mips_use_local_got_p (struct bfd_link_info *info,
4386 struct mips_elf_link_hash_entry *h)
4388 /* Symbols that aren't in the dynamic symbol table must live in the
4389 local GOT. This includes symbols that are completely undefined
4390 and which therefore don't bind locally. We'll report undefined
4391 symbols later if appropriate. */
4392 if (h->root.dynindx == -1)
4393 return TRUE;
4395 /* Symbols that bind locally can (and in the case of forced-local
4396 symbols, must) live in the local GOT. */
4397 if (h->got_only_for_calls
4398 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4399 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4400 return TRUE;
4402 /* If this is an executable that must provide a definition of the symbol,
4403 either though PLTs or copy relocations, then that address should go in
4404 the local rather than global GOT. */
4405 if (bfd_link_executable (info) && h->has_static_relocs)
4406 return TRUE;
4408 return FALSE;
4411 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4412 link_info structure. Decide whether the hash entry needs an entry in
4413 the global part of the primary GOT, setting global_got_area accordingly.
4414 Count the number of global symbols that are in the primary GOT only
4415 because they have relocations against them (reloc_only_gotno). */
4417 static int
4418 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4420 struct bfd_link_info *info;
4421 struct mips_elf_link_hash_table *htab;
4422 struct mips_got_info *g;
4424 info = (struct bfd_link_info *) data;
4425 htab = mips_elf_hash_table (info);
4426 g = htab->got_info;
4427 if (h->global_got_area != GGA_NONE)
4429 /* Make a final decision about whether the symbol belongs in the
4430 local or global GOT. */
4431 if (mips_use_local_got_p (info, h))
4432 /* The symbol belongs in the local GOT. We no longer need this
4433 entry if it was only used for relocations; those relocations
4434 will be against the null or section symbol instead of H. */
4435 h->global_got_area = GGA_NONE;
4436 else if (htab->is_vxworks
4437 && h->got_only_for_calls
4438 && h->root.plt.plist->mips_offset != MINUS_ONE)
4439 /* On VxWorks, calls can refer directly to the .got.plt entry;
4440 they don't need entries in the regular GOT. .got.plt entries
4441 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4442 h->global_got_area = GGA_NONE;
4443 else if (h->global_got_area == GGA_RELOC_ONLY)
4445 g->reloc_only_gotno++;
4446 g->global_gotno++;
4449 return 1;
4452 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4453 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4455 static int
4456 mips_elf_add_got_entry (void **entryp, void *data)
4458 struct mips_got_entry *entry;
4459 struct mips_elf_traverse_got_arg *arg;
4460 void **slot;
4462 entry = (struct mips_got_entry *) *entryp;
4463 arg = (struct mips_elf_traverse_got_arg *) data;
4464 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4465 if (!slot)
4467 arg->g = NULL;
4468 return 0;
4470 if (!*slot)
4472 *slot = entry;
4473 mips_elf_count_got_entry (arg->info, arg->g, entry);
4475 return 1;
4478 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4479 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4481 static int
4482 mips_elf_add_got_page_entry (void **entryp, void *data)
4484 struct mips_got_page_entry *entry;
4485 struct mips_elf_traverse_got_arg *arg;
4486 void **slot;
4488 entry = (struct mips_got_page_entry *) *entryp;
4489 arg = (struct mips_elf_traverse_got_arg *) data;
4490 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4491 if (!slot)
4493 arg->g = NULL;
4494 return 0;
4496 if (!*slot)
4498 *slot = entry;
4499 arg->g->page_gotno += entry->num_pages;
4501 return 1;
4504 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4505 this would lead to overflow, 1 if they were merged successfully,
4506 and 0 if a merge failed due to lack of memory. (These values are chosen
4507 so that nonnegative return values can be returned by a htab_traverse
4508 callback.) */
4510 static int
4511 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4512 struct mips_got_info *to,
4513 struct mips_elf_got_per_bfd_arg *arg)
4515 struct mips_elf_traverse_got_arg tga;
4516 unsigned int estimate;
4518 /* Work out how many page entries we would need for the combined GOT. */
4519 estimate = arg->max_pages;
4520 if (estimate >= from->page_gotno + to->page_gotno)
4521 estimate = from->page_gotno + to->page_gotno;
4523 /* And conservatively estimate how many local and TLS entries
4524 would be needed. */
4525 estimate += from->local_gotno + to->local_gotno;
4526 estimate += from->tls_gotno + to->tls_gotno;
4528 /* If we're merging with the primary got, any TLS relocations will
4529 come after the full set of global entries. Otherwise estimate those
4530 conservatively as well. */
4531 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4532 estimate += arg->global_count;
4533 else
4534 estimate += from->global_gotno + to->global_gotno;
4536 /* Bail out if the combined GOT might be too big. */
4537 if (estimate > arg->max_count)
4538 return -1;
4540 /* Transfer the bfd's got information from FROM to TO. */
4541 tga.info = arg->info;
4542 tga.g = to;
4543 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4544 if (!tga.g)
4545 return 0;
4547 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4548 if (!tga.g)
4549 return 0;
4551 mips_elf_replace_bfd_got (abfd, to);
4552 return 1;
4555 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4556 as possible of the primary got, since it doesn't require explicit
4557 dynamic relocations, but don't use bfds that would reference global
4558 symbols out of the addressable range. Failing the primary got,
4559 attempt to merge with the current got, or finish the current got
4560 and then make make the new got current. */
4562 static bfd_boolean
4563 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4564 struct mips_elf_got_per_bfd_arg *arg)
4566 unsigned int estimate;
4567 int result;
4569 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4570 return FALSE;
4572 /* Work out the number of page, local and TLS entries. */
4573 estimate = arg->max_pages;
4574 if (estimate > g->page_gotno)
4575 estimate = g->page_gotno;
4576 estimate += g->local_gotno + g->tls_gotno;
4578 /* We place TLS GOT entries after both locals and globals. The globals
4579 for the primary GOT may overflow the normal GOT size limit, so be
4580 sure not to merge a GOT which requires TLS with the primary GOT in that
4581 case. This doesn't affect non-primary GOTs. */
4582 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4584 if (estimate <= arg->max_count)
4586 /* If we don't have a primary GOT, use it as
4587 a starting point for the primary GOT. */
4588 if (!arg->primary)
4590 arg->primary = g;
4591 return TRUE;
4594 /* Try merging with the primary GOT. */
4595 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4596 if (result >= 0)
4597 return result;
4600 /* If we can merge with the last-created got, do it. */
4601 if (arg->current)
4603 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4604 if (result >= 0)
4605 return result;
4608 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4609 fits; if it turns out that it doesn't, we'll get relocation
4610 overflows anyway. */
4611 g->next = arg->current;
4612 arg->current = g;
4614 return TRUE;
4617 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4618 to GOTIDX, duplicating the entry if it has already been assigned
4619 an index in a different GOT. */
4621 static bfd_boolean
4622 mips_elf_set_gotidx (void **entryp, long gotidx)
4624 struct mips_got_entry *entry;
4626 entry = (struct mips_got_entry *) *entryp;
4627 if (entry->gotidx > 0)
4629 struct mips_got_entry *new_entry;
4631 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4632 if (!new_entry)
4633 return FALSE;
4635 *new_entry = *entry;
4636 *entryp = new_entry;
4637 entry = new_entry;
4639 entry->gotidx = gotidx;
4640 return TRUE;
4643 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4644 mips_elf_traverse_got_arg in which DATA->value is the size of one
4645 GOT entry. Set DATA->g to null on failure. */
4647 static int
4648 mips_elf_initialize_tls_index (void **entryp, void *data)
4650 struct mips_got_entry *entry;
4651 struct mips_elf_traverse_got_arg *arg;
4653 /* We're only interested in TLS symbols. */
4654 entry = (struct mips_got_entry *) *entryp;
4655 if (entry->tls_type == GOT_TLS_NONE)
4656 return 1;
4658 arg = (struct mips_elf_traverse_got_arg *) data;
4659 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4661 arg->g = NULL;
4662 return 0;
4665 /* Account for the entries we've just allocated. */
4666 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4667 return 1;
4670 /* A htab_traverse callback for GOT entries, where DATA points to a
4671 mips_elf_traverse_got_arg. Set the global_got_area of each global
4672 symbol to DATA->value. */
4674 static int
4675 mips_elf_set_global_got_area (void **entryp, void *data)
4677 struct mips_got_entry *entry;
4678 struct mips_elf_traverse_got_arg *arg;
4680 entry = (struct mips_got_entry *) *entryp;
4681 arg = (struct mips_elf_traverse_got_arg *) data;
4682 if (entry->abfd != NULL
4683 && entry->symndx == -1
4684 && entry->d.h->global_got_area != GGA_NONE)
4685 entry->d.h->global_got_area = arg->value;
4686 return 1;
4689 /* A htab_traverse callback for secondary GOT entries, where DATA points
4690 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4691 and record the number of relocations they require. DATA->value is
4692 the size of one GOT entry. Set DATA->g to null on failure. */
4694 static int
4695 mips_elf_set_global_gotidx (void **entryp, void *data)
4697 struct mips_got_entry *entry;
4698 struct mips_elf_traverse_got_arg *arg;
4700 entry = (struct mips_got_entry *) *entryp;
4701 arg = (struct mips_elf_traverse_got_arg *) data;
4702 if (entry->abfd != NULL
4703 && entry->symndx == -1
4704 && entry->d.h->global_got_area != GGA_NONE)
4706 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4708 arg->g = NULL;
4709 return 0;
4711 arg->g->assigned_low_gotno += 1;
4713 if (bfd_link_pic (arg->info)
4714 || (elf_hash_table (arg->info)->dynamic_sections_created
4715 && entry->d.h->root.def_dynamic
4716 && !entry->d.h->root.def_regular))
4717 arg->g->relocs += 1;
4720 return 1;
4723 /* A htab_traverse callback for GOT entries for which DATA is the
4724 bfd_link_info. Forbid any global symbols from having traditional
4725 lazy-binding stubs. */
4727 static int
4728 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4730 struct bfd_link_info *info;
4731 struct mips_elf_link_hash_table *htab;
4732 struct mips_got_entry *entry;
4734 entry = (struct mips_got_entry *) *entryp;
4735 info = (struct bfd_link_info *) data;
4736 htab = mips_elf_hash_table (info);
4737 BFD_ASSERT (htab != NULL);
4739 if (entry->abfd != NULL
4740 && entry->symndx == -1
4741 && entry->d.h->needs_lazy_stub)
4743 entry->d.h->needs_lazy_stub = FALSE;
4744 htab->lazy_stub_count--;
4747 return 1;
4750 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4751 the primary GOT. */
4752 static bfd_vma
4753 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4755 if (!g->next)
4756 return 0;
4758 g = mips_elf_bfd_got (ibfd, FALSE);
4759 if (! g)
4760 return 0;
4762 BFD_ASSERT (g->next);
4764 g = g->next;
4766 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4767 * MIPS_ELF_GOT_SIZE (abfd);
4770 /* Turn a single GOT that is too big for 16-bit addressing into
4771 a sequence of GOTs, each one 16-bit addressable. */
4773 static bfd_boolean
4774 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4775 asection *got, bfd_size_type pages)
4777 struct mips_elf_link_hash_table *htab;
4778 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4779 struct mips_elf_traverse_got_arg tga;
4780 struct mips_got_info *g, *gg;
4781 unsigned int assign, needed_relocs;
4782 bfd *dynobj, *ibfd;
4784 dynobj = elf_hash_table (info)->dynobj;
4785 htab = mips_elf_hash_table (info);
4786 BFD_ASSERT (htab != NULL);
4788 g = htab->got_info;
4790 got_per_bfd_arg.obfd = abfd;
4791 got_per_bfd_arg.info = info;
4792 got_per_bfd_arg.current = NULL;
4793 got_per_bfd_arg.primary = NULL;
4794 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4795 / MIPS_ELF_GOT_SIZE (abfd))
4796 - htab->reserved_gotno);
4797 got_per_bfd_arg.max_pages = pages;
4798 /* The number of globals that will be included in the primary GOT.
4799 See the calls to mips_elf_set_global_got_area below for more
4800 information. */
4801 got_per_bfd_arg.global_count = g->global_gotno;
4803 /* Try to merge the GOTs of input bfds together, as long as they
4804 don't seem to exceed the maximum GOT size, choosing one of them
4805 to be the primary GOT. */
4806 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4808 gg = mips_elf_bfd_got (ibfd, FALSE);
4809 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4810 return FALSE;
4813 /* If we do not find any suitable primary GOT, create an empty one. */
4814 if (got_per_bfd_arg.primary == NULL)
4815 g->next = mips_elf_create_got_info (abfd);
4816 else
4817 g->next = got_per_bfd_arg.primary;
4818 g->next->next = got_per_bfd_arg.current;
4820 /* GG is now the master GOT, and G is the primary GOT. */
4821 gg = g;
4822 g = g->next;
4824 /* Map the output bfd to the primary got. That's what we're going
4825 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4826 didn't mark in check_relocs, and we want a quick way to find it.
4827 We can't just use gg->next because we're going to reverse the
4828 list. */
4829 mips_elf_replace_bfd_got (abfd, g);
4831 /* Every symbol that is referenced in a dynamic relocation must be
4832 present in the primary GOT, so arrange for them to appear after
4833 those that are actually referenced. */
4834 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4835 g->global_gotno = gg->global_gotno;
4837 tga.info = info;
4838 tga.value = GGA_RELOC_ONLY;
4839 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4840 tga.value = GGA_NORMAL;
4841 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4843 /* Now go through the GOTs assigning them offset ranges.
4844 [assigned_low_gotno, local_gotno[ will be set to the range of local
4845 entries in each GOT. We can then compute the end of a GOT by
4846 adding local_gotno to global_gotno. We reverse the list and make
4847 it circular since then we'll be able to quickly compute the
4848 beginning of a GOT, by computing the end of its predecessor. To
4849 avoid special cases for the primary GOT, while still preserving
4850 assertions that are valid for both single- and multi-got links,
4851 we arrange for the main got struct to have the right number of
4852 global entries, but set its local_gotno such that the initial
4853 offset of the primary GOT is zero. Remember that the primary GOT
4854 will become the last item in the circular linked list, so it
4855 points back to the master GOT. */
4856 gg->local_gotno = -g->global_gotno;
4857 gg->global_gotno = g->global_gotno;
4858 gg->tls_gotno = 0;
4859 assign = 0;
4860 gg->next = gg;
4864 struct mips_got_info *gn;
4866 assign += htab->reserved_gotno;
4867 g->assigned_low_gotno = assign;
4868 g->local_gotno += assign;
4869 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4870 g->assigned_high_gotno = g->local_gotno - 1;
4871 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4873 /* Take g out of the direct list, and push it onto the reversed
4874 list that gg points to. g->next is guaranteed to be nonnull after
4875 this operation, as required by mips_elf_initialize_tls_index. */
4876 gn = g->next;
4877 g->next = gg->next;
4878 gg->next = g;
4880 /* Set up any TLS entries. We always place the TLS entries after
4881 all non-TLS entries. */
4882 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4883 tga.g = g;
4884 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4885 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4886 if (!tga.g)
4887 return FALSE;
4888 BFD_ASSERT (g->tls_assigned_gotno == assign);
4890 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4891 g = gn;
4893 /* Forbid global symbols in every non-primary GOT from having
4894 lazy-binding stubs. */
4895 if (g)
4896 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4898 while (g);
4900 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4902 needed_relocs = 0;
4903 for (g = gg->next; g && g->next != gg; g = g->next)
4905 unsigned int save_assign;
4907 /* Assign offsets to global GOT entries and count how many
4908 relocations they need. */
4909 save_assign = g->assigned_low_gotno;
4910 g->assigned_low_gotno = g->local_gotno;
4911 tga.info = info;
4912 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4913 tga.g = g;
4914 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4915 if (!tga.g)
4916 return FALSE;
4917 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4918 g->assigned_low_gotno = save_assign;
4920 if (bfd_link_pic (info))
4922 g->relocs += g->local_gotno - g->assigned_low_gotno;
4923 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4924 + g->next->global_gotno
4925 + g->next->tls_gotno
4926 + htab->reserved_gotno);
4928 needed_relocs += g->relocs;
4930 needed_relocs += g->relocs;
4932 if (needed_relocs)
4933 mips_elf_allocate_dynamic_relocations (dynobj, info,
4934 needed_relocs);
4936 return TRUE;
4940 /* Returns the first relocation of type r_type found, beginning with
4941 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4943 static const Elf_Internal_Rela *
4944 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4945 const Elf_Internal_Rela *relocation,
4946 const Elf_Internal_Rela *relend)
4948 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4950 while (relocation < relend)
4952 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4953 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4954 return relocation;
4956 ++relocation;
4959 /* We didn't find it. */
4960 return NULL;
4963 /* Return whether an input relocation is against a local symbol. */
4965 static bfd_boolean
4966 mips_elf_local_relocation_p (bfd *input_bfd,
4967 const Elf_Internal_Rela *relocation,
4968 asection **local_sections)
4970 unsigned long r_symndx;
4971 Elf_Internal_Shdr *symtab_hdr;
4972 size_t extsymoff;
4974 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4975 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4976 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4978 if (r_symndx < extsymoff)
4979 return TRUE;
4980 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4981 return TRUE;
4983 return FALSE;
4986 /* Sign-extend VALUE, which has the indicated number of BITS. */
4988 bfd_vma
4989 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4991 if (value & ((bfd_vma) 1 << (bits - 1)))
4992 /* VALUE is negative. */
4993 value |= ((bfd_vma) - 1) << bits;
4995 return value;
4998 /* Return non-zero if the indicated VALUE has overflowed the maximum
4999 range expressible by a signed number with the indicated number of
5000 BITS. */
5002 static bfd_boolean
5003 mips_elf_overflow_p (bfd_vma value, int bits)
5005 bfd_signed_vma svalue = (bfd_signed_vma) value;
5007 if (svalue > (1 << (bits - 1)) - 1)
5008 /* The value is too big. */
5009 return TRUE;
5010 else if (svalue < -(1 << (bits - 1)))
5011 /* The value is too small. */
5012 return TRUE;
5014 /* All is well. */
5015 return FALSE;
5018 /* Calculate the %high function. */
5020 static bfd_vma
5021 mips_elf_high (bfd_vma value)
5023 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5026 /* Calculate the %higher function. */
5028 static bfd_vma
5029 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5031 #ifdef BFD64
5032 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5033 #else
5034 abort ();
5035 return MINUS_ONE;
5036 #endif
5039 /* Calculate the %highest function. */
5041 static bfd_vma
5042 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5044 #ifdef BFD64
5045 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5046 #else
5047 abort ();
5048 return MINUS_ONE;
5049 #endif
5052 /* Create the .compact_rel section. */
5054 static bfd_boolean
5055 mips_elf_create_compact_rel_section
5056 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5058 flagword flags;
5059 register asection *s;
5061 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5063 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5064 | SEC_READONLY);
5066 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5067 if (s == NULL
5068 || ! bfd_set_section_alignment (abfd, s,
5069 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5070 return FALSE;
5072 s->size = sizeof (Elf32_External_compact_rel);
5075 return TRUE;
5078 /* Create the .got section to hold the global offset table. */
5080 static bfd_boolean
5081 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5083 flagword flags;
5084 register asection *s;
5085 struct elf_link_hash_entry *h;
5086 struct bfd_link_hash_entry *bh;
5087 struct mips_elf_link_hash_table *htab;
5089 htab = mips_elf_hash_table (info);
5090 BFD_ASSERT (htab != NULL);
5092 /* This function may be called more than once. */
5093 if (htab->sgot)
5094 return TRUE;
5096 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5097 | SEC_LINKER_CREATED);
5099 /* We have to use an alignment of 2**4 here because this is hardcoded
5100 in the function stub generation and in the linker script. */
5101 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5102 if (s == NULL
5103 || ! bfd_set_section_alignment (abfd, s, 4))
5104 return FALSE;
5105 htab->sgot = s;
5107 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5108 linker script because we don't want to define the symbol if we
5109 are not creating a global offset table. */
5110 bh = NULL;
5111 if (! (_bfd_generic_link_add_one_symbol
5112 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5113 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5114 return FALSE;
5116 h = (struct elf_link_hash_entry *) bh;
5117 h->non_elf = 0;
5118 h->def_regular = 1;
5119 h->type = STT_OBJECT;
5120 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5121 elf_hash_table (info)->hgot = h;
5123 if (bfd_link_pic (info)
5124 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5125 return FALSE;
5127 htab->got_info = mips_elf_create_got_info (abfd);
5128 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5129 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5131 /* We also need a .got.plt section when generating PLTs. */
5132 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5133 SEC_ALLOC | SEC_LOAD
5134 | SEC_HAS_CONTENTS
5135 | SEC_IN_MEMORY
5136 | SEC_LINKER_CREATED);
5137 if (s == NULL)
5138 return FALSE;
5139 htab->sgotplt = s;
5141 return TRUE;
5144 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5145 __GOTT_INDEX__ symbols. These symbols are only special for
5146 shared objects; they are not used in executables. */
5148 static bfd_boolean
5149 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5151 return (mips_elf_hash_table (info)->is_vxworks
5152 && bfd_link_pic (info)
5153 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5154 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5157 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5158 require an la25 stub. See also mips_elf_local_pic_function_p,
5159 which determines whether the destination function ever requires a
5160 stub. */
5162 static bfd_boolean
5163 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5164 bfd_boolean target_is_16_bit_code_p)
5166 /* We specifically ignore branches and jumps from EF_PIC objects,
5167 where the onus is on the compiler or programmer to perform any
5168 necessary initialization of $25. Sometimes such initialization
5169 is unnecessary; for example, -mno-shared functions do not use
5170 the incoming value of $25, and may therefore be called directly. */
5171 if (PIC_OBJECT_P (input_bfd))
5172 return FALSE;
5174 switch (r_type)
5176 case R_MIPS_26:
5177 case R_MIPS_PC16:
5178 case R_MIPS_PC21_S2:
5179 case R_MIPS_PC26_S2:
5180 case R_MICROMIPS_26_S1:
5181 case R_MICROMIPS_PC7_S1:
5182 case R_MICROMIPS_PC10_S1:
5183 case R_MICROMIPS_PC16_S1:
5184 case R_MICROMIPS_PC23_S2:
5185 return TRUE;
5187 case R_MIPS16_26:
5188 return !target_is_16_bit_code_p;
5190 default:
5191 return FALSE;
5195 /* Calculate the value produced by the RELOCATION (which comes from
5196 the INPUT_BFD). The ADDEND is the addend to use for this
5197 RELOCATION; RELOCATION->R_ADDEND is ignored.
5199 The result of the relocation calculation is stored in VALUEP.
5200 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5201 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5203 This function returns bfd_reloc_continue if the caller need take no
5204 further action regarding this relocation, bfd_reloc_notsupported if
5205 something goes dramatically wrong, bfd_reloc_overflow if an
5206 overflow occurs, and bfd_reloc_ok to indicate success. */
5208 static bfd_reloc_status_type
5209 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5210 asection *input_section,
5211 struct bfd_link_info *info,
5212 const Elf_Internal_Rela *relocation,
5213 bfd_vma addend, reloc_howto_type *howto,
5214 Elf_Internal_Sym *local_syms,
5215 asection **local_sections, bfd_vma *valuep,
5216 const char **namep,
5217 bfd_boolean *cross_mode_jump_p,
5218 bfd_boolean save_addend)
5220 /* The eventual value we will return. */
5221 bfd_vma value;
5222 /* The address of the symbol against which the relocation is
5223 occurring. */
5224 bfd_vma symbol = 0;
5225 /* The final GP value to be used for the relocatable, executable, or
5226 shared object file being produced. */
5227 bfd_vma gp;
5228 /* The place (section offset or address) of the storage unit being
5229 relocated. */
5230 bfd_vma p;
5231 /* The value of GP used to create the relocatable object. */
5232 bfd_vma gp0;
5233 /* The offset into the global offset table at which the address of
5234 the relocation entry symbol, adjusted by the addend, resides
5235 during execution. */
5236 bfd_vma g = MINUS_ONE;
5237 /* The section in which the symbol referenced by the relocation is
5238 located. */
5239 asection *sec = NULL;
5240 struct mips_elf_link_hash_entry *h = NULL;
5241 /* TRUE if the symbol referred to by this relocation is a local
5242 symbol. */
5243 bfd_boolean local_p, was_local_p;
5244 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5245 bfd_boolean gp_disp_p = FALSE;
5246 /* TRUE if the symbol referred to by this relocation is
5247 "__gnu_local_gp". */
5248 bfd_boolean gnu_local_gp_p = FALSE;
5249 Elf_Internal_Shdr *symtab_hdr;
5250 size_t extsymoff;
5251 unsigned long r_symndx;
5252 int r_type;
5253 /* TRUE if overflow occurred during the calculation of the
5254 relocation value. */
5255 bfd_boolean overflowed_p;
5256 /* TRUE if this relocation refers to a MIPS16 function. */
5257 bfd_boolean target_is_16_bit_code_p = FALSE;
5258 bfd_boolean target_is_micromips_code_p = FALSE;
5259 struct mips_elf_link_hash_table *htab;
5260 bfd *dynobj;
5262 dynobj = elf_hash_table (info)->dynobj;
5263 htab = mips_elf_hash_table (info);
5264 BFD_ASSERT (htab != NULL);
5266 /* Parse the relocation. */
5267 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5268 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5269 p = (input_section->output_section->vma
5270 + input_section->output_offset
5271 + relocation->r_offset);
5273 /* Assume that there will be no overflow. */
5274 overflowed_p = FALSE;
5276 /* Figure out whether or not the symbol is local, and get the offset
5277 used in the array of hash table entries. */
5278 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5279 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5280 local_sections);
5281 was_local_p = local_p;
5282 if (! elf_bad_symtab (input_bfd))
5283 extsymoff = symtab_hdr->sh_info;
5284 else
5286 /* The symbol table does not follow the rule that local symbols
5287 must come before globals. */
5288 extsymoff = 0;
5291 /* Figure out the value of the symbol. */
5292 if (local_p)
5294 Elf_Internal_Sym *sym;
5296 sym = local_syms + r_symndx;
5297 sec = local_sections[r_symndx];
5299 symbol = sec->output_section->vma + sec->output_offset;
5300 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5301 || (sec->flags & SEC_MERGE))
5302 symbol += sym->st_value;
5303 if ((sec->flags & SEC_MERGE)
5304 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5306 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5307 addend -= symbol;
5308 addend += sec->output_section->vma + sec->output_offset;
5311 /* MIPS16/microMIPS text labels should be treated as odd. */
5312 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5313 ++symbol;
5315 /* Record the name of this symbol, for our caller. */
5316 *namep = bfd_elf_string_from_elf_section (input_bfd,
5317 symtab_hdr->sh_link,
5318 sym->st_name);
5319 if (*namep == '\0')
5320 *namep = bfd_section_name (input_bfd, sec);
5322 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5323 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5325 else
5327 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5329 /* For global symbols we look up the symbol in the hash-table. */
5330 h = ((struct mips_elf_link_hash_entry *)
5331 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5332 /* Find the real hash-table entry for this symbol. */
5333 while (h->root.root.type == bfd_link_hash_indirect
5334 || h->root.root.type == bfd_link_hash_warning)
5335 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5337 /* Record the name of this symbol, for our caller. */
5338 *namep = h->root.root.root.string;
5340 /* See if this is the special _gp_disp symbol. Note that such a
5341 symbol must always be a global symbol. */
5342 if (strcmp (*namep, "_gp_disp") == 0
5343 && ! NEWABI_P (input_bfd))
5345 /* Relocations against _gp_disp are permitted only with
5346 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5347 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5348 return bfd_reloc_notsupported;
5350 gp_disp_p = TRUE;
5352 /* See if this is the special _gp symbol. Note that such a
5353 symbol must always be a global symbol. */
5354 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5355 gnu_local_gp_p = TRUE;
5358 /* If this symbol is defined, calculate its address. Note that
5359 _gp_disp is a magic symbol, always implicitly defined by the
5360 linker, so it's inappropriate to check to see whether or not
5361 its defined. */
5362 else if ((h->root.root.type == bfd_link_hash_defined
5363 || h->root.root.type == bfd_link_hash_defweak)
5364 && h->root.root.u.def.section)
5366 sec = h->root.root.u.def.section;
5367 if (sec->output_section)
5368 symbol = (h->root.root.u.def.value
5369 + sec->output_section->vma
5370 + sec->output_offset);
5371 else
5372 symbol = h->root.root.u.def.value;
5374 else if (h->root.root.type == bfd_link_hash_undefweak)
5375 /* We allow relocations against undefined weak symbols, giving
5376 it the value zero, so that you can undefined weak functions
5377 and check to see if they exist by looking at their
5378 addresses. */
5379 symbol = 0;
5380 else if (info->unresolved_syms_in_objects == RM_IGNORE
5381 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5382 symbol = 0;
5383 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5384 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5386 /* If this is a dynamic link, we should have created a
5387 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5388 in in _bfd_mips_elf_create_dynamic_sections.
5389 Otherwise, we should define the symbol with a value of 0.
5390 FIXME: It should probably get into the symbol table
5391 somehow as well. */
5392 BFD_ASSERT (! bfd_link_pic (info));
5393 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5394 symbol = 0;
5396 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5398 /* This is an optional symbol - an Irix specific extension to the
5399 ELF spec. Ignore it for now.
5400 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5401 than simply ignoring them, but we do not handle this for now.
5402 For information see the "64-bit ELF Object File Specification"
5403 which is available from here:
5404 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5405 symbol = 0;
5407 else if ((*info->callbacks->undefined_symbol)
5408 (info, h->root.root.root.string, input_bfd,
5409 input_section, relocation->r_offset,
5410 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5411 || ELF_ST_VISIBILITY (h->root.other)))
5413 return bfd_reloc_undefined;
5415 else
5417 return bfd_reloc_notsupported;
5420 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5421 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5424 /* If this is a reference to a 16-bit function with a stub, we need
5425 to redirect the relocation to the stub unless:
5427 (a) the relocation is for a MIPS16 JAL;
5429 (b) the relocation is for a MIPS16 PIC call, and there are no
5430 non-MIPS16 uses of the GOT slot; or
5432 (c) the section allows direct references to MIPS16 functions. */
5433 if (r_type != R_MIPS16_26
5434 && !bfd_link_relocatable (info)
5435 && ((h != NULL
5436 && h->fn_stub != NULL
5437 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5438 || (local_p
5439 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5440 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5441 && !section_allows_mips16_refs_p (input_section))
5443 /* This is a 32- or 64-bit call to a 16-bit function. We should
5444 have already noticed that we were going to need the
5445 stub. */
5446 if (local_p)
5448 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5449 value = 0;
5451 else
5453 BFD_ASSERT (h->need_fn_stub);
5454 if (h->la25_stub)
5456 /* If a LA25 header for the stub itself exists, point to the
5457 prepended LUI/ADDIU sequence. */
5458 sec = h->la25_stub->stub_section;
5459 value = h->la25_stub->offset;
5461 else
5463 sec = h->fn_stub;
5464 value = 0;
5468 symbol = sec->output_section->vma + sec->output_offset + value;
5469 /* The target is 16-bit, but the stub isn't. */
5470 target_is_16_bit_code_p = FALSE;
5472 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5473 to a standard MIPS function, we need to redirect the call to the stub.
5474 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5475 indirect calls should use an indirect stub instead. */
5476 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5477 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5478 || (local_p
5479 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5480 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5481 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5483 if (local_p)
5484 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5485 else
5487 /* If both call_stub and call_fp_stub are defined, we can figure
5488 out which one to use by checking which one appears in the input
5489 file. */
5490 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5492 asection *o;
5494 sec = NULL;
5495 for (o = input_bfd->sections; o != NULL; o = o->next)
5497 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5499 sec = h->call_fp_stub;
5500 break;
5503 if (sec == NULL)
5504 sec = h->call_stub;
5506 else if (h->call_stub != NULL)
5507 sec = h->call_stub;
5508 else
5509 sec = h->call_fp_stub;
5512 BFD_ASSERT (sec->size > 0);
5513 symbol = sec->output_section->vma + sec->output_offset;
5515 /* If this is a direct call to a PIC function, redirect to the
5516 non-PIC stub. */
5517 else if (h != NULL && h->la25_stub
5518 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5519 target_is_16_bit_code_p))
5520 symbol = (h->la25_stub->stub_section->output_section->vma
5521 + h->la25_stub->stub_section->output_offset
5522 + h->la25_stub->offset);
5523 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5524 entry is used if a standard PLT entry has also been made. In this
5525 case the symbol will have been set by mips_elf_set_plt_sym_value
5526 to point to the standard PLT entry, so redirect to the compressed
5527 one. */
5528 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5529 && !bfd_link_relocatable (info)
5530 && h != NULL
5531 && h->use_plt_entry
5532 && h->root.plt.plist->comp_offset != MINUS_ONE
5533 && h->root.plt.plist->mips_offset != MINUS_ONE)
5535 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5537 sec = htab->splt;
5538 symbol = (sec->output_section->vma
5539 + sec->output_offset
5540 + htab->plt_header_size
5541 + htab->plt_mips_offset
5542 + h->root.plt.plist->comp_offset
5543 + 1);
5545 target_is_16_bit_code_p = !micromips_p;
5546 target_is_micromips_code_p = micromips_p;
5549 /* Make sure MIPS16 and microMIPS are not used together. */
5550 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5551 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5553 (*_bfd_error_handler)
5554 (_("MIPS16 and microMIPS functions cannot call each other"));
5555 return bfd_reloc_notsupported;
5558 /* Calls from 16-bit code to 32-bit code and vice versa require the
5559 mode change. However, we can ignore calls to undefined weak symbols,
5560 which should never be executed at runtime. This exception is important
5561 because the assembly writer may have "known" that any definition of the
5562 symbol would be 16-bit code, and that direct jumps were therefore
5563 acceptable. */
5564 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5565 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5566 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5567 || (r_type == R_MICROMIPS_26_S1
5568 && !target_is_micromips_code_p)
5569 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5570 && (target_is_16_bit_code_p
5571 || target_is_micromips_code_p))));
5573 local_p = (h == NULL || mips_use_local_got_p (info, h));
5575 gp0 = _bfd_get_gp_value (input_bfd);
5576 gp = _bfd_get_gp_value (abfd);
5577 if (htab->got_info)
5578 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5580 if (gnu_local_gp_p)
5581 symbol = gp;
5583 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5584 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5585 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5586 if (got_page_reloc_p (r_type) && !local_p)
5588 r_type = (micromips_reloc_p (r_type)
5589 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5590 addend = 0;
5593 /* If we haven't already determined the GOT offset, and we're going
5594 to need it, get it now. */
5595 switch (r_type)
5597 case R_MIPS16_CALL16:
5598 case R_MIPS16_GOT16:
5599 case R_MIPS_CALL16:
5600 case R_MIPS_GOT16:
5601 case R_MIPS_GOT_DISP:
5602 case R_MIPS_GOT_HI16:
5603 case R_MIPS_CALL_HI16:
5604 case R_MIPS_GOT_LO16:
5605 case R_MIPS_CALL_LO16:
5606 case R_MICROMIPS_CALL16:
5607 case R_MICROMIPS_GOT16:
5608 case R_MICROMIPS_GOT_DISP:
5609 case R_MICROMIPS_GOT_HI16:
5610 case R_MICROMIPS_CALL_HI16:
5611 case R_MICROMIPS_GOT_LO16:
5612 case R_MICROMIPS_CALL_LO16:
5613 case R_MIPS_TLS_GD:
5614 case R_MIPS_TLS_GOTTPREL:
5615 case R_MIPS_TLS_LDM:
5616 case R_MIPS16_TLS_GD:
5617 case R_MIPS16_TLS_GOTTPREL:
5618 case R_MIPS16_TLS_LDM:
5619 case R_MICROMIPS_TLS_GD:
5620 case R_MICROMIPS_TLS_GOTTPREL:
5621 case R_MICROMIPS_TLS_LDM:
5622 /* Find the index into the GOT where this value is located. */
5623 if (tls_ldm_reloc_p (r_type))
5625 g = mips_elf_local_got_index (abfd, input_bfd, info,
5626 0, 0, NULL, r_type);
5627 if (g == MINUS_ONE)
5628 return bfd_reloc_outofrange;
5630 else if (!local_p)
5632 /* On VxWorks, CALL relocations should refer to the .got.plt
5633 entry, which is initialized to point at the PLT stub. */
5634 if (htab->is_vxworks
5635 && (call_hi16_reloc_p (r_type)
5636 || call_lo16_reloc_p (r_type)
5637 || call16_reloc_p (r_type)))
5639 BFD_ASSERT (addend == 0);
5640 BFD_ASSERT (h->root.needs_plt);
5641 g = mips_elf_gotplt_index (info, &h->root);
5643 else
5645 BFD_ASSERT (addend == 0);
5646 g = mips_elf_global_got_index (abfd, info, input_bfd,
5647 &h->root, r_type);
5648 if (!TLS_RELOC_P (r_type)
5649 && !elf_hash_table (info)->dynamic_sections_created)
5650 /* This is a static link. We must initialize the GOT entry. */
5651 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5654 else if (!htab->is_vxworks
5655 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5656 /* The calculation below does not involve "g". */
5657 break;
5658 else
5660 g = mips_elf_local_got_index (abfd, input_bfd, info,
5661 symbol + addend, r_symndx, h, r_type);
5662 if (g == MINUS_ONE)
5663 return bfd_reloc_outofrange;
5666 /* Convert GOT indices to actual offsets. */
5667 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5668 break;
5671 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5672 symbols are resolved by the loader. Add them to .rela.dyn. */
5673 if (h != NULL && is_gott_symbol (info, &h->root))
5675 Elf_Internal_Rela outrel;
5676 bfd_byte *loc;
5677 asection *s;
5679 s = mips_elf_rel_dyn_section (info, FALSE);
5680 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5682 outrel.r_offset = (input_section->output_section->vma
5683 + input_section->output_offset
5684 + relocation->r_offset);
5685 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5686 outrel.r_addend = addend;
5687 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5689 /* If we've written this relocation for a readonly section,
5690 we need to set DF_TEXTREL again, so that we do not delete the
5691 DT_TEXTREL tag. */
5692 if (MIPS_ELF_READONLY_SECTION (input_section))
5693 info->flags |= DF_TEXTREL;
5695 *valuep = 0;
5696 return bfd_reloc_ok;
5699 /* Figure out what kind of relocation is being performed. */
5700 switch (r_type)
5702 case R_MIPS_NONE:
5703 return bfd_reloc_continue;
5705 case R_MIPS_16:
5706 if (howto->partial_inplace)
5707 addend = _bfd_mips_elf_sign_extend (addend, 16);
5708 value = symbol + addend;
5709 overflowed_p = mips_elf_overflow_p (value, 16);
5710 break;
5712 case R_MIPS_32:
5713 case R_MIPS_REL32:
5714 case R_MIPS_64:
5715 if ((bfd_link_pic (info)
5716 || (htab->root.dynamic_sections_created
5717 && h != NULL
5718 && h->root.def_dynamic
5719 && !h->root.def_regular
5720 && !h->has_static_relocs))
5721 && r_symndx != STN_UNDEF
5722 && (h == NULL
5723 || h->root.root.type != bfd_link_hash_undefweak
5724 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5725 && (input_section->flags & SEC_ALLOC) != 0)
5727 /* If we're creating a shared library, then we can't know
5728 where the symbol will end up. So, we create a relocation
5729 record in the output, and leave the job up to the dynamic
5730 linker. We must do the same for executable references to
5731 shared library symbols, unless we've decided to use copy
5732 relocs or PLTs instead. */
5733 value = addend;
5734 if (!mips_elf_create_dynamic_relocation (abfd,
5735 info,
5736 relocation,
5738 sec,
5739 symbol,
5740 &value,
5741 input_section))
5742 return bfd_reloc_undefined;
5744 else
5746 if (r_type != R_MIPS_REL32)
5747 value = symbol + addend;
5748 else
5749 value = addend;
5751 value &= howto->dst_mask;
5752 break;
5754 case R_MIPS_PC32:
5755 value = symbol + addend - p;
5756 value &= howto->dst_mask;
5757 break;
5759 case R_MIPS16_26:
5760 /* The calculation for R_MIPS16_26 is just the same as for an
5761 R_MIPS_26. It's only the storage of the relocated field into
5762 the output file that's different. That's handled in
5763 mips_elf_perform_relocation. So, we just fall through to the
5764 R_MIPS_26 case here. */
5765 case R_MIPS_26:
5766 case R_MICROMIPS_26_S1:
5768 unsigned int shift;
5770 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5771 the correct ISA mode selector and bit 1 must be 0. */
5772 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5773 return bfd_reloc_outofrange;
5775 /* Shift is 2, unusually, for microMIPS JALX. */
5776 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5778 if (was_local_p)
5779 value = addend | ((p + 4) & (0xfc000000 << shift));
5780 else if (howto->partial_inplace)
5781 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5782 else
5783 value = addend;
5784 value = (value + symbol) >> shift;
5785 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5786 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5787 value &= howto->dst_mask;
5789 break;
5791 case R_MIPS_TLS_DTPREL_HI16:
5792 case R_MIPS16_TLS_DTPREL_HI16:
5793 case R_MICROMIPS_TLS_DTPREL_HI16:
5794 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5795 & howto->dst_mask);
5796 break;
5798 case R_MIPS_TLS_DTPREL_LO16:
5799 case R_MIPS_TLS_DTPREL32:
5800 case R_MIPS_TLS_DTPREL64:
5801 case R_MIPS16_TLS_DTPREL_LO16:
5802 case R_MICROMIPS_TLS_DTPREL_LO16:
5803 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5804 break;
5806 case R_MIPS_TLS_TPREL_HI16:
5807 case R_MIPS16_TLS_TPREL_HI16:
5808 case R_MICROMIPS_TLS_TPREL_HI16:
5809 value = (mips_elf_high (addend + symbol - tprel_base (info))
5810 & howto->dst_mask);
5811 break;
5813 case R_MIPS_TLS_TPREL_LO16:
5814 case R_MIPS_TLS_TPREL32:
5815 case R_MIPS_TLS_TPREL64:
5816 case R_MIPS16_TLS_TPREL_LO16:
5817 case R_MICROMIPS_TLS_TPREL_LO16:
5818 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5819 break;
5821 case R_MIPS_HI16:
5822 case R_MIPS16_HI16:
5823 case R_MICROMIPS_HI16:
5824 if (!gp_disp_p)
5826 value = mips_elf_high (addend + symbol);
5827 value &= howto->dst_mask;
5829 else
5831 /* For MIPS16 ABI code we generate this sequence
5832 0: li $v0,%hi(_gp_disp)
5833 4: addiupc $v1,%lo(_gp_disp)
5834 8: sll $v0,16
5835 12: addu $v0,$v1
5836 14: move $gp,$v0
5837 So the offsets of hi and lo relocs are the same, but the
5838 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5839 ADDIUPC clears the low two bits of the instruction address,
5840 so the base is ($t9 + 4) & ~3. */
5841 if (r_type == R_MIPS16_HI16)
5842 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5843 /* The microMIPS .cpload sequence uses the same assembly
5844 instructions as the traditional psABI version, but the
5845 incoming $t9 has the low bit set. */
5846 else if (r_type == R_MICROMIPS_HI16)
5847 value = mips_elf_high (addend + gp - p - 1);
5848 else
5849 value = mips_elf_high (addend + gp - p);
5850 overflowed_p = mips_elf_overflow_p (value, 16);
5852 break;
5854 case R_MIPS_LO16:
5855 case R_MIPS16_LO16:
5856 case R_MICROMIPS_LO16:
5857 case R_MICROMIPS_HI0_LO16:
5858 if (!gp_disp_p)
5859 value = (symbol + addend) & howto->dst_mask;
5860 else
5862 /* See the comment for R_MIPS16_HI16 above for the reason
5863 for this conditional. */
5864 if (r_type == R_MIPS16_LO16)
5865 value = addend + gp - (p & ~(bfd_vma) 0x3);
5866 else if (r_type == R_MICROMIPS_LO16
5867 || r_type == R_MICROMIPS_HI0_LO16)
5868 value = addend + gp - p + 3;
5869 else
5870 value = addend + gp - p + 4;
5871 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5872 for overflow. But, on, say, IRIX5, relocations against
5873 _gp_disp are normally generated from the .cpload
5874 pseudo-op. It generates code that normally looks like
5875 this:
5877 lui $gp,%hi(_gp_disp)
5878 addiu $gp,$gp,%lo(_gp_disp)
5879 addu $gp,$gp,$t9
5881 Here $t9 holds the address of the function being called,
5882 as required by the MIPS ELF ABI. The R_MIPS_LO16
5883 relocation can easily overflow in this situation, but the
5884 R_MIPS_HI16 relocation will handle the overflow.
5885 Therefore, we consider this a bug in the MIPS ABI, and do
5886 not check for overflow here. */
5888 break;
5890 case R_MIPS_LITERAL:
5891 case R_MICROMIPS_LITERAL:
5892 /* Because we don't merge literal sections, we can handle this
5893 just like R_MIPS_GPREL16. In the long run, we should merge
5894 shared literals, and then we will need to additional work
5895 here. */
5897 /* Fall through. */
5899 case R_MIPS16_GPREL:
5900 /* The R_MIPS16_GPREL performs the same calculation as
5901 R_MIPS_GPREL16, but stores the relocated bits in a different
5902 order. We don't need to do anything special here; the
5903 differences are handled in mips_elf_perform_relocation. */
5904 case R_MIPS_GPREL16:
5905 case R_MICROMIPS_GPREL7_S2:
5906 case R_MICROMIPS_GPREL16:
5907 /* Only sign-extend the addend if it was extracted from the
5908 instruction. If the addend was separate, leave it alone,
5909 otherwise we may lose significant bits. */
5910 if (howto->partial_inplace)
5911 addend = _bfd_mips_elf_sign_extend (addend, 16);
5912 value = symbol + addend - gp;
5913 /* If the symbol was local, any earlier relocatable links will
5914 have adjusted its addend with the gp offset, so compensate
5915 for that now. Don't do it for symbols forced local in this
5916 link, though, since they won't have had the gp offset applied
5917 to them before. */
5918 if (was_local_p)
5919 value += gp0;
5920 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5921 overflowed_p = mips_elf_overflow_p (value, 16);
5922 break;
5924 case R_MIPS16_GOT16:
5925 case R_MIPS16_CALL16:
5926 case R_MIPS_GOT16:
5927 case R_MIPS_CALL16:
5928 case R_MICROMIPS_GOT16:
5929 case R_MICROMIPS_CALL16:
5930 /* VxWorks does not have separate local and global semantics for
5931 R_MIPS*_GOT16; every relocation evaluates to "G". */
5932 if (!htab->is_vxworks && local_p)
5934 value = mips_elf_got16_entry (abfd, input_bfd, info,
5935 symbol + addend, !was_local_p);
5936 if (value == MINUS_ONE)
5937 return bfd_reloc_outofrange;
5938 value
5939 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5940 overflowed_p = mips_elf_overflow_p (value, 16);
5941 break;
5944 /* Fall through. */
5946 case R_MIPS_TLS_GD:
5947 case R_MIPS_TLS_GOTTPREL:
5948 case R_MIPS_TLS_LDM:
5949 case R_MIPS_GOT_DISP:
5950 case R_MIPS16_TLS_GD:
5951 case R_MIPS16_TLS_GOTTPREL:
5952 case R_MIPS16_TLS_LDM:
5953 case R_MICROMIPS_TLS_GD:
5954 case R_MICROMIPS_TLS_GOTTPREL:
5955 case R_MICROMIPS_TLS_LDM:
5956 case R_MICROMIPS_GOT_DISP:
5957 value = g;
5958 overflowed_p = mips_elf_overflow_p (value, 16);
5959 break;
5961 case R_MIPS_GPREL32:
5962 value = (addend + symbol + gp0 - gp);
5963 if (!save_addend)
5964 value &= howto->dst_mask;
5965 break;
5967 case R_MIPS_PC16:
5968 case R_MIPS_GNU_REL16_S2:
5969 if (howto->partial_inplace)
5970 addend = _bfd_mips_elf_sign_extend (addend, 18);
5972 if ((symbol + addend) & 3)
5973 return bfd_reloc_outofrange;
5975 value = symbol + addend - p;
5976 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5977 overflowed_p = mips_elf_overflow_p (value, 18);
5978 value >>= howto->rightshift;
5979 value &= howto->dst_mask;
5980 break;
5982 case R_MIPS_PC21_S2:
5983 if (howto->partial_inplace)
5984 addend = _bfd_mips_elf_sign_extend (addend, 23);
5986 if ((symbol + addend) & 3)
5987 return bfd_reloc_outofrange;
5989 value = symbol + addend - p;
5990 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5991 overflowed_p = mips_elf_overflow_p (value, 23);
5992 value >>= howto->rightshift;
5993 value &= howto->dst_mask;
5994 break;
5996 case R_MIPS_PC26_S2:
5997 if (howto->partial_inplace)
5998 addend = _bfd_mips_elf_sign_extend (addend, 28);
6000 if ((symbol + addend) & 3)
6001 return bfd_reloc_outofrange;
6003 value = symbol + addend - p;
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 28);
6006 value >>= howto->rightshift;
6007 value &= howto->dst_mask;
6008 break;
6010 case R_MIPS_PC18_S3:
6011 if (howto->partial_inplace)
6012 addend = _bfd_mips_elf_sign_extend (addend, 21);
6014 if ((symbol + addend) & 7)
6015 return bfd_reloc_outofrange;
6017 value = symbol + addend - ((p | 7) ^ 7);
6018 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6019 overflowed_p = mips_elf_overflow_p (value, 21);
6020 value >>= howto->rightshift;
6021 value &= howto->dst_mask;
6022 break;
6024 case R_MIPS_PC19_S2:
6025 if (howto->partial_inplace)
6026 addend = _bfd_mips_elf_sign_extend (addend, 21);
6028 if ((symbol + addend) & 3)
6029 return bfd_reloc_outofrange;
6031 value = symbol + addend - p;
6032 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6033 overflowed_p = mips_elf_overflow_p (value, 21);
6034 value >>= howto->rightshift;
6035 value &= howto->dst_mask;
6036 break;
6038 case R_MIPS_PCHI16:
6039 value = mips_elf_high (symbol + addend - p);
6040 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6041 overflowed_p = mips_elf_overflow_p (value, 16);
6042 value &= howto->dst_mask;
6043 break;
6045 case R_MIPS_PCLO16:
6046 if (howto->partial_inplace)
6047 addend = _bfd_mips_elf_sign_extend (addend, 16);
6048 value = symbol + addend - p;
6049 value &= howto->dst_mask;
6050 break;
6052 case R_MICROMIPS_PC7_S1:
6053 if (howto->partial_inplace)
6054 addend = _bfd_mips_elf_sign_extend (addend, 8);
6055 value = symbol + addend - p;
6056 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6057 overflowed_p = mips_elf_overflow_p (value, 8);
6058 value >>= howto->rightshift;
6059 value &= howto->dst_mask;
6060 break;
6062 case R_MICROMIPS_PC10_S1:
6063 if (howto->partial_inplace)
6064 addend = _bfd_mips_elf_sign_extend (addend, 11);
6065 value = symbol + addend - p;
6066 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6067 overflowed_p = mips_elf_overflow_p (value, 11);
6068 value >>= howto->rightshift;
6069 value &= howto->dst_mask;
6070 break;
6072 case R_MICROMIPS_PC16_S1:
6073 if (howto->partial_inplace)
6074 addend = _bfd_mips_elf_sign_extend (addend, 17);
6075 value = symbol + addend - p;
6076 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 overflowed_p = mips_elf_overflow_p (value, 17);
6078 value >>= howto->rightshift;
6079 value &= howto->dst_mask;
6080 break;
6082 case R_MICROMIPS_PC23_S2:
6083 if (howto->partial_inplace)
6084 addend = _bfd_mips_elf_sign_extend (addend, 25);
6085 value = symbol + addend - ((p | 3) ^ 3);
6086 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6087 overflowed_p = mips_elf_overflow_p (value, 25);
6088 value >>= howto->rightshift;
6089 value &= howto->dst_mask;
6090 break;
6092 case R_MIPS_GOT_HI16:
6093 case R_MIPS_CALL_HI16:
6094 case R_MICROMIPS_GOT_HI16:
6095 case R_MICROMIPS_CALL_HI16:
6096 /* We're allowed to handle these two relocations identically.
6097 The dynamic linker is allowed to handle the CALL relocations
6098 differently by creating a lazy evaluation stub. */
6099 value = g;
6100 value = mips_elf_high (value);
6101 value &= howto->dst_mask;
6102 break;
6104 case R_MIPS_GOT_LO16:
6105 case R_MIPS_CALL_LO16:
6106 case R_MICROMIPS_GOT_LO16:
6107 case R_MICROMIPS_CALL_LO16:
6108 value = g & howto->dst_mask;
6109 break;
6111 case R_MIPS_GOT_PAGE:
6112 case R_MICROMIPS_GOT_PAGE:
6113 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6114 if (value == MINUS_ONE)
6115 return bfd_reloc_outofrange;
6116 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6117 overflowed_p = mips_elf_overflow_p (value, 16);
6118 break;
6120 case R_MIPS_GOT_OFST:
6121 case R_MICROMIPS_GOT_OFST:
6122 if (local_p)
6123 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6124 else
6125 value = addend;
6126 overflowed_p = mips_elf_overflow_p (value, 16);
6127 break;
6129 case R_MIPS_SUB:
6130 case R_MICROMIPS_SUB:
6131 value = symbol - addend;
6132 value &= howto->dst_mask;
6133 break;
6135 case R_MIPS_HIGHER:
6136 case R_MICROMIPS_HIGHER:
6137 value = mips_elf_higher (addend + symbol);
6138 value &= howto->dst_mask;
6139 break;
6141 case R_MIPS_HIGHEST:
6142 case R_MICROMIPS_HIGHEST:
6143 value = mips_elf_highest (addend + symbol);
6144 value &= howto->dst_mask;
6145 break;
6147 case R_MIPS_SCN_DISP:
6148 case R_MICROMIPS_SCN_DISP:
6149 value = symbol + addend - sec->output_offset;
6150 value &= howto->dst_mask;
6151 break;
6153 case R_MIPS_JALR:
6154 case R_MICROMIPS_JALR:
6155 /* This relocation is only a hint. In some cases, we optimize
6156 it into a bal instruction. But we don't try to optimize
6157 when the symbol does not resolve locally. */
6158 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6159 return bfd_reloc_continue;
6160 value = symbol + addend;
6161 break;
6163 case R_MIPS_PJUMP:
6164 case R_MIPS_GNU_VTINHERIT:
6165 case R_MIPS_GNU_VTENTRY:
6166 /* We don't do anything with these at present. */
6167 return bfd_reloc_continue;
6169 default:
6170 /* An unrecognized relocation type. */
6171 return bfd_reloc_notsupported;
6174 /* Store the VALUE for our caller. */
6175 *valuep = value;
6176 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6179 /* Obtain the field relocated by RELOCATION. */
6181 static bfd_vma
6182 mips_elf_obtain_contents (reloc_howto_type *howto,
6183 const Elf_Internal_Rela *relocation,
6184 bfd *input_bfd, bfd_byte *contents)
6186 bfd_vma x = 0;
6187 bfd_byte *location = contents + relocation->r_offset;
6188 unsigned int size = bfd_get_reloc_size (howto);
6190 /* Obtain the bytes. */
6191 if (size != 0)
6192 x = bfd_get (8 * size, input_bfd, location);
6194 return x;
6197 /* It has been determined that the result of the RELOCATION is the
6198 VALUE. Use HOWTO to place VALUE into the output file at the
6199 appropriate position. The SECTION is the section to which the
6200 relocation applies.
6201 CROSS_MODE_JUMP_P is true if the relocation field
6202 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6204 Returns FALSE if anything goes wrong. */
6206 static bfd_boolean
6207 mips_elf_perform_relocation (struct bfd_link_info *info,
6208 reloc_howto_type *howto,
6209 const Elf_Internal_Rela *relocation,
6210 bfd_vma value, bfd *input_bfd,
6211 asection *input_section, bfd_byte *contents,
6212 bfd_boolean cross_mode_jump_p)
6214 bfd_vma x;
6215 bfd_byte *location;
6216 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6217 unsigned int size;
6219 /* Figure out where the relocation is occurring. */
6220 location = contents + relocation->r_offset;
6222 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6224 /* Obtain the current value. */
6225 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6227 /* Clear the field we are setting. */
6228 x &= ~howto->dst_mask;
6230 /* Set the field. */
6231 x |= (value & howto->dst_mask);
6233 /* If required, turn JAL into JALX. */
6234 if (cross_mode_jump_p && jal_reloc_p (r_type))
6236 bfd_boolean ok;
6237 bfd_vma opcode = x >> 26;
6238 bfd_vma jalx_opcode;
6240 /* Check to see if the opcode is already JAL or JALX. */
6241 if (r_type == R_MIPS16_26)
6243 ok = ((opcode == 0x6) || (opcode == 0x7));
6244 jalx_opcode = 0x7;
6246 else if (r_type == R_MICROMIPS_26_S1)
6248 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6249 jalx_opcode = 0x3c;
6251 else
6253 ok = ((opcode == 0x3) || (opcode == 0x1d));
6254 jalx_opcode = 0x1d;
6257 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6258 convert J or JALS to JALX. */
6259 if (!ok)
6261 (*_bfd_error_handler)
6262 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6263 input_bfd,
6264 input_section,
6265 (unsigned long) relocation->r_offset);
6266 bfd_set_error (bfd_error_bad_value);
6267 return FALSE;
6270 /* Make this the JALX opcode. */
6271 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6274 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6275 range. */
6276 if (!bfd_link_relocatable (info)
6277 && !cross_mode_jump_p
6278 && ((JAL_TO_BAL_P (input_bfd)
6279 && r_type == R_MIPS_26
6280 && (x >> 26) == 0x3) /* jal addr */
6281 || (JALR_TO_BAL_P (input_bfd)
6282 && r_type == R_MIPS_JALR
6283 && x == 0x0320f809) /* jalr t9 */
6284 || (JR_TO_B_P (input_bfd)
6285 && r_type == R_MIPS_JALR
6286 && x == 0x03200008))) /* jr t9 */
6288 bfd_vma addr;
6289 bfd_vma dest;
6290 bfd_signed_vma off;
6292 addr = (input_section->output_section->vma
6293 + input_section->output_offset
6294 + relocation->r_offset
6295 + 4);
6296 if (r_type == R_MIPS_26)
6297 dest = (value << 2) | ((addr >> 28) << 28);
6298 else
6299 dest = value;
6300 off = dest - addr;
6301 if (off <= 0x1ffff && off >= -0x20000)
6303 if (x == 0x03200008) /* jr t9 */
6304 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6305 else
6306 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6310 /* Put the value into the output. */
6311 size = bfd_get_reloc_size (howto);
6312 if (size != 0)
6313 bfd_put (8 * size, input_bfd, x, location);
6315 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6316 location);
6318 return TRUE;
6321 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6322 is the original relocation, which is now being transformed into a
6323 dynamic relocation. The ADDENDP is adjusted if necessary; the
6324 caller should store the result in place of the original addend. */
6326 static bfd_boolean
6327 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6328 struct bfd_link_info *info,
6329 const Elf_Internal_Rela *rel,
6330 struct mips_elf_link_hash_entry *h,
6331 asection *sec, bfd_vma symbol,
6332 bfd_vma *addendp, asection *input_section)
6334 Elf_Internal_Rela outrel[3];
6335 asection *sreloc;
6336 bfd *dynobj;
6337 int r_type;
6338 long indx;
6339 bfd_boolean defined_p;
6340 struct mips_elf_link_hash_table *htab;
6342 htab = mips_elf_hash_table (info);
6343 BFD_ASSERT (htab != NULL);
6345 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6346 dynobj = elf_hash_table (info)->dynobj;
6347 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6348 BFD_ASSERT (sreloc != NULL);
6349 BFD_ASSERT (sreloc->contents != NULL);
6350 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6351 < sreloc->size);
6353 outrel[0].r_offset =
6354 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6355 if (ABI_64_P (output_bfd))
6357 outrel[1].r_offset =
6358 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6359 outrel[2].r_offset =
6360 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6363 if (outrel[0].r_offset == MINUS_ONE)
6364 /* The relocation field has been deleted. */
6365 return TRUE;
6367 if (outrel[0].r_offset == MINUS_TWO)
6369 /* The relocation field has been converted into a relative value of
6370 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6371 the field to be fully relocated, so add in the symbol's value. */
6372 *addendp += symbol;
6373 return TRUE;
6376 /* We must now calculate the dynamic symbol table index to use
6377 in the relocation. */
6378 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6380 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6381 indx = h->root.dynindx;
6382 if (SGI_COMPAT (output_bfd))
6383 defined_p = h->root.def_regular;
6384 else
6385 /* ??? glibc's ld.so just adds the final GOT entry to the
6386 relocation field. It therefore treats relocs against
6387 defined symbols in the same way as relocs against
6388 undefined symbols. */
6389 defined_p = FALSE;
6391 else
6393 if (sec != NULL && bfd_is_abs_section (sec))
6394 indx = 0;
6395 else if (sec == NULL || sec->owner == NULL)
6397 bfd_set_error (bfd_error_bad_value);
6398 return FALSE;
6400 else
6402 indx = elf_section_data (sec->output_section)->dynindx;
6403 if (indx == 0)
6405 asection *osec = htab->root.text_index_section;
6406 indx = elf_section_data (osec)->dynindx;
6408 if (indx == 0)
6409 abort ();
6412 /* Instead of generating a relocation using the section
6413 symbol, we may as well make it a fully relative
6414 relocation. We want to avoid generating relocations to
6415 local symbols because we used to generate them
6416 incorrectly, without adding the original symbol value,
6417 which is mandated by the ABI for section symbols. In
6418 order to give dynamic loaders and applications time to
6419 phase out the incorrect use, we refrain from emitting
6420 section-relative relocations. It's not like they're
6421 useful, after all. This should be a bit more efficient
6422 as well. */
6423 /* ??? Although this behavior is compatible with glibc's ld.so,
6424 the ABI says that relocations against STN_UNDEF should have
6425 a symbol value of 0. Irix rld honors this, so relocations
6426 against STN_UNDEF have no effect. */
6427 if (!SGI_COMPAT (output_bfd))
6428 indx = 0;
6429 defined_p = TRUE;
6432 /* If the relocation was previously an absolute relocation and
6433 this symbol will not be referred to by the relocation, we must
6434 adjust it by the value we give it in the dynamic symbol table.
6435 Otherwise leave the job up to the dynamic linker. */
6436 if (defined_p && r_type != R_MIPS_REL32)
6437 *addendp += symbol;
6439 if (htab->is_vxworks)
6440 /* VxWorks uses non-relative relocations for this. */
6441 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6442 else
6443 /* The relocation is always an REL32 relocation because we don't
6444 know where the shared library will wind up at load-time. */
6445 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6446 R_MIPS_REL32);
6448 /* For strict adherence to the ABI specification, we should
6449 generate a R_MIPS_64 relocation record by itself before the
6450 _REL32/_64 record as well, such that the addend is read in as
6451 a 64-bit value (REL32 is a 32-bit relocation, after all).
6452 However, since none of the existing ELF64 MIPS dynamic
6453 loaders seems to care, we don't waste space with these
6454 artificial relocations. If this turns out to not be true,
6455 mips_elf_allocate_dynamic_relocation() should be tweaked so
6456 as to make room for a pair of dynamic relocations per
6457 invocation if ABI_64_P, and here we should generate an
6458 additional relocation record with R_MIPS_64 by itself for a
6459 NULL symbol before this relocation record. */
6460 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6461 ABI_64_P (output_bfd)
6462 ? R_MIPS_64
6463 : R_MIPS_NONE);
6464 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6466 /* Adjust the output offset of the relocation to reference the
6467 correct location in the output file. */
6468 outrel[0].r_offset += (input_section->output_section->vma
6469 + input_section->output_offset);
6470 outrel[1].r_offset += (input_section->output_section->vma
6471 + input_section->output_offset);
6472 outrel[2].r_offset += (input_section->output_section->vma
6473 + input_section->output_offset);
6475 /* Put the relocation back out. We have to use the special
6476 relocation outputter in the 64-bit case since the 64-bit
6477 relocation format is non-standard. */
6478 if (ABI_64_P (output_bfd))
6480 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6481 (output_bfd, &outrel[0],
6482 (sreloc->contents
6483 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6485 else if (htab->is_vxworks)
6487 /* VxWorks uses RELA rather than REL dynamic relocations. */
6488 outrel[0].r_addend = *addendp;
6489 bfd_elf32_swap_reloca_out
6490 (output_bfd, &outrel[0],
6491 (sreloc->contents
6492 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6494 else
6495 bfd_elf32_swap_reloc_out
6496 (output_bfd, &outrel[0],
6497 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6499 /* We've now added another relocation. */
6500 ++sreloc->reloc_count;
6502 /* Make sure the output section is writable. The dynamic linker
6503 will be writing to it. */
6504 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6505 |= SHF_WRITE;
6507 /* On IRIX5, make an entry of compact relocation info. */
6508 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6510 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6511 bfd_byte *cr;
6513 if (scpt)
6515 Elf32_crinfo cptrel;
6517 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6518 cptrel.vaddr = (rel->r_offset
6519 + input_section->output_section->vma
6520 + input_section->output_offset);
6521 if (r_type == R_MIPS_REL32)
6522 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6523 else
6524 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6525 mips_elf_set_cr_dist2to (cptrel, 0);
6526 cptrel.konst = *addendp;
6528 cr = (scpt->contents
6529 + sizeof (Elf32_External_compact_rel));
6530 mips_elf_set_cr_relvaddr (cptrel, 0);
6531 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6532 ((Elf32_External_crinfo *) cr
6533 + scpt->reloc_count));
6534 ++scpt->reloc_count;
6538 /* If we've written this relocation for a readonly section,
6539 we need to set DF_TEXTREL again, so that we do not delete the
6540 DT_TEXTREL tag. */
6541 if (MIPS_ELF_READONLY_SECTION (input_section))
6542 info->flags |= DF_TEXTREL;
6544 return TRUE;
6547 /* Return the MACH for a MIPS e_flags value. */
6549 unsigned long
6550 _bfd_elf_mips_mach (flagword flags)
6552 switch (flags & EF_MIPS_MACH)
6554 case E_MIPS_MACH_3900:
6555 return bfd_mach_mips3900;
6557 case E_MIPS_MACH_4010:
6558 return bfd_mach_mips4010;
6560 case E_MIPS_MACH_4100:
6561 return bfd_mach_mips4100;
6563 case E_MIPS_MACH_4111:
6564 return bfd_mach_mips4111;
6566 case E_MIPS_MACH_4120:
6567 return bfd_mach_mips4120;
6569 case E_MIPS_MACH_4650:
6570 return bfd_mach_mips4650;
6572 case E_MIPS_MACH_5400:
6573 return bfd_mach_mips5400;
6575 case E_MIPS_MACH_5500:
6576 return bfd_mach_mips5500;
6578 case E_MIPS_MACH_5900:
6579 return bfd_mach_mips5900;
6581 case E_MIPS_MACH_9000:
6582 return bfd_mach_mips9000;
6584 case E_MIPS_MACH_SB1:
6585 return bfd_mach_mips_sb1;
6587 case E_MIPS_MACH_LS2E:
6588 return bfd_mach_mips_loongson_2e;
6590 case E_MIPS_MACH_LS2F:
6591 return bfd_mach_mips_loongson_2f;
6593 case E_MIPS_MACH_LS3A:
6594 return bfd_mach_mips_loongson_3a;
6596 case E_MIPS_MACH_OCTEON3:
6597 return bfd_mach_mips_octeon3;
6599 case E_MIPS_MACH_OCTEON2:
6600 return bfd_mach_mips_octeon2;
6602 case E_MIPS_MACH_OCTEON:
6603 return bfd_mach_mips_octeon;
6605 case E_MIPS_MACH_XLR:
6606 return bfd_mach_mips_xlr;
6608 default:
6609 switch (flags & EF_MIPS_ARCH)
6611 default:
6612 case E_MIPS_ARCH_1:
6613 return bfd_mach_mips3000;
6615 case E_MIPS_ARCH_2:
6616 return bfd_mach_mips6000;
6618 case E_MIPS_ARCH_3:
6619 return bfd_mach_mips4000;
6621 case E_MIPS_ARCH_4:
6622 return bfd_mach_mips8000;
6624 case E_MIPS_ARCH_5:
6625 return bfd_mach_mips5;
6627 case E_MIPS_ARCH_32:
6628 return bfd_mach_mipsisa32;
6630 case E_MIPS_ARCH_64:
6631 return bfd_mach_mipsisa64;
6633 case E_MIPS_ARCH_32R2:
6634 return bfd_mach_mipsisa32r2;
6636 case E_MIPS_ARCH_64R2:
6637 return bfd_mach_mipsisa64r2;
6639 case E_MIPS_ARCH_32R6:
6640 return bfd_mach_mipsisa32r6;
6642 case E_MIPS_ARCH_64R6:
6643 return bfd_mach_mipsisa64r6;
6647 return 0;
6650 /* Return printable name for ABI. */
6652 static INLINE char *
6653 elf_mips_abi_name (bfd *abfd)
6655 flagword flags;
6657 flags = elf_elfheader (abfd)->e_flags;
6658 switch (flags & EF_MIPS_ABI)
6660 case 0:
6661 if (ABI_N32_P (abfd))
6662 return "N32";
6663 else if (ABI_64_P (abfd))
6664 return "64";
6665 else
6666 return "none";
6667 case E_MIPS_ABI_O32:
6668 return "O32";
6669 case E_MIPS_ABI_O64:
6670 return "O64";
6671 case E_MIPS_ABI_EABI32:
6672 return "EABI32";
6673 case E_MIPS_ABI_EABI64:
6674 return "EABI64";
6675 default:
6676 return "unknown abi";
6680 /* MIPS ELF uses two common sections. One is the usual one, and the
6681 other is for small objects. All the small objects are kept
6682 together, and then referenced via the gp pointer, which yields
6683 faster assembler code. This is what we use for the small common
6684 section. This approach is copied from ecoff.c. */
6685 static asection mips_elf_scom_section;
6686 static asymbol mips_elf_scom_symbol;
6687 static asymbol *mips_elf_scom_symbol_ptr;
6689 /* MIPS ELF also uses an acommon section, which represents an
6690 allocated common symbol which may be overridden by a
6691 definition in a shared library. */
6692 static asection mips_elf_acom_section;
6693 static asymbol mips_elf_acom_symbol;
6694 static asymbol *mips_elf_acom_symbol_ptr;
6696 /* This is used for both the 32-bit and the 64-bit ABI. */
6698 void
6699 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6701 elf_symbol_type *elfsym;
6703 /* Handle the special MIPS section numbers that a symbol may use. */
6704 elfsym = (elf_symbol_type *) asym;
6705 switch (elfsym->internal_elf_sym.st_shndx)
6707 case SHN_MIPS_ACOMMON:
6708 /* This section is used in a dynamically linked executable file.
6709 It is an allocated common section. The dynamic linker can
6710 either resolve these symbols to something in a shared
6711 library, or it can just leave them here. For our purposes,
6712 we can consider these symbols to be in a new section. */
6713 if (mips_elf_acom_section.name == NULL)
6715 /* Initialize the acommon section. */
6716 mips_elf_acom_section.name = ".acommon";
6717 mips_elf_acom_section.flags = SEC_ALLOC;
6718 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6719 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6720 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6721 mips_elf_acom_symbol.name = ".acommon";
6722 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6723 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6724 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6726 asym->section = &mips_elf_acom_section;
6727 break;
6729 case SHN_COMMON:
6730 /* Common symbols less than the GP size are automatically
6731 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6732 if (asym->value > elf_gp_size (abfd)
6733 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6734 || IRIX_COMPAT (abfd) == ict_irix6)
6735 break;
6736 /* Fall through. */
6737 case SHN_MIPS_SCOMMON:
6738 if (mips_elf_scom_section.name == NULL)
6740 /* Initialize the small common section. */
6741 mips_elf_scom_section.name = ".scommon";
6742 mips_elf_scom_section.flags = SEC_IS_COMMON;
6743 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6744 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6745 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6746 mips_elf_scom_symbol.name = ".scommon";
6747 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6748 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6749 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6751 asym->section = &mips_elf_scom_section;
6752 asym->value = elfsym->internal_elf_sym.st_size;
6753 break;
6755 case SHN_MIPS_SUNDEFINED:
6756 asym->section = bfd_und_section_ptr;
6757 break;
6759 case SHN_MIPS_TEXT:
6761 asection *section = bfd_get_section_by_name (abfd, ".text");
6763 if (section != NULL)
6765 asym->section = section;
6766 /* MIPS_TEXT is a bit special, the address is not an offset
6767 to the base of the .text section. So substract the section
6768 base address to make it an offset. */
6769 asym->value -= section->vma;
6772 break;
6774 case SHN_MIPS_DATA:
6776 asection *section = bfd_get_section_by_name (abfd, ".data");
6778 if (section != NULL)
6780 asym->section = section;
6781 /* MIPS_DATA is a bit special, the address is not an offset
6782 to the base of the .data section. So substract the section
6783 base address to make it an offset. */
6784 asym->value -= section->vma;
6787 break;
6790 /* If this is an odd-valued function symbol, assume it's a MIPS16
6791 or microMIPS one. */
6792 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6793 && (asym->value & 1) != 0)
6795 asym->value--;
6796 if (MICROMIPS_P (abfd))
6797 elfsym->internal_elf_sym.st_other
6798 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6799 else
6800 elfsym->internal_elf_sym.st_other
6801 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6805 /* Implement elf_backend_eh_frame_address_size. This differs from
6806 the default in the way it handles EABI64.
6808 EABI64 was originally specified as an LP64 ABI, and that is what
6809 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6810 historically accepted the combination of -mabi=eabi and -mlong32,
6811 and this ILP32 variation has become semi-official over time.
6812 Both forms use elf32 and have pointer-sized FDE addresses.
6814 If an EABI object was generated by GCC 4.0 or above, it will have
6815 an empty .gcc_compiled_longXX section, where XX is the size of longs
6816 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6817 have no special marking to distinguish them from LP64 objects.
6819 We don't want users of the official LP64 ABI to be punished for the
6820 existence of the ILP32 variant, but at the same time, we don't want
6821 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6822 We therefore take the following approach:
6824 - If ABFD contains a .gcc_compiled_longXX section, use it to
6825 determine the pointer size.
6827 - Otherwise check the type of the first relocation. Assume that
6828 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6830 - Otherwise punt.
6832 The second check is enough to detect LP64 objects generated by pre-4.0
6833 compilers because, in the kind of output generated by those compilers,
6834 the first relocation will be associated with either a CIE personality
6835 routine or an FDE start address. Furthermore, the compilers never
6836 used a special (non-pointer) encoding for this ABI.
6838 Checking the relocation type should also be safe because there is no
6839 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6840 did so. */
6842 unsigned int
6843 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6845 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6846 return 8;
6847 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6849 bfd_boolean long32_p, long64_p;
6851 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6852 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6853 if (long32_p && long64_p)
6854 return 0;
6855 if (long32_p)
6856 return 4;
6857 if (long64_p)
6858 return 8;
6860 if (sec->reloc_count > 0
6861 && elf_section_data (sec)->relocs != NULL
6862 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6863 == R_MIPS_64))
6864 return 8;
6866 return 0;
6868 return 4;
6871 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6872 relocations against two unnamed section symbols to resolve to the
6873 same address. For example, if we have code like:
6875 lw $4,%got_disp(.data)($gp)
6876 lw $25,%got_disp(.text)($gp)
6877 jalr $25
6879 then the linker will resolve both relocations to .data and the program
6880 will jump there rather than to .text.
6882 We can work around this problem by giving names to local section symbols.
6883 This is also what the MIPSpro tools do. */
6885 bfd_boolean
6886 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6888 return SGI_COMPAT (abfd);
6891 /* Work over a section just before writing it out. This routine is
6892 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6893 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6894 a better way. */
6896 bfd_boolean
6897 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6899 if (hdr->sh_type == SHT_MIPS_REGINFO
6900 && hdr->sh_size > 0)
6902 bfd_byte buf[4];
6904 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6905 BFD_ASSERT (hdr->contents == NULL);
6907 if (bfd_seek (abfd,
6908 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6909 SEEK_SET) != 0)
6910 return FALSE;
6911 H_PUT_32 (abfd, elf_gp (abfd), buf);
6912 if (bfd_bwrite (buf, 4, abfd) != 4)
6913 return FALSE;
6916 if (hdr->sh_type == SHT_MIPS_OPTIONS
6917 && hdr->bfd_section != NULL
6918 && mips_elf_section_data (hdr->bfd_section) != NULL
6919 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6921 bfd_byte *contents, *l, *lend;
6923 /* We stored the section contents in the tdata field in the
6924 set_section_contents routine. We save the section contents
6925 so that we don't have to read them again.
6926 At this point we know that elf_gp is set, so we can look
6927 through the section contents to see if there is an
6928 ODK_REGINFO structure. */
6930 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6931 l = contents;
6932 lend = contents + hdr->sh_size;
6933 while (l + sizeof (Elf_External_Options) <= lend)
6935 Elf_Internal_Options intopt;
6937 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6938 &intopt);
6939 if (intopt.size < sizeof (Elf_External_Options))
6941 (*_bfd_error_handler)
6942 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6943 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6944 break;
6946 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6948 bfd_byte buf[8];
6950 if (bfd_seek (abfd,
6951 (hdr->sh_offset
6952 + (l - contents)
6953 + sizeof (Elf_External_Options)
6954 + (sizeof (Elf64_External_RegInfo) - 8)),
6955 SEEK_SET) != 0)
6956 return FALSE;
6957 H_PUT_64 (abfd, elf_gp (abfd), buf);
6958 if (bfd_bwrite (buf, 8, abfd) != 8)
6959 return FALSE;
6961 else if (intopt.kind == ODK_REGINFO)
6963 bfd_byte buf[4];
6965 if (bfd_seek (abfd,
6966 (hdr->sh_offset
6967 + (l - contents)
6968 + sizeof (Elf_External_Options)
6969 + (sizeof (Elf32_External_RegInfo) - 4)),
6970 SEEK_SET) != 0)
6971 return FALSE;
6972 H_PUT_32 (abfd, elf_gp (abfd), buf);
6973 if (bfd_bwrite (buf, 4, abfd) != 4)
6974 return FALSE;
6976 l += intopt.size;
6980 if (hdr->bfd_section != NULL)
6982 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6984 /* .sbss is not handled specially here because the GNU/Linux
6985 prelinker can convert .sbss from NOBITS to PROGBITS and
6986 changing it back to NOBITS breaks the binary. The entry in
6987 _bfd_mips_elf_special_sections will ensure the correct flags
6988 are set on .sbss if BFD creates it without reading it from an
6989 input file, and without special handling here the flags set
6990 on it in an input file will be followed. */
6991 if (strcmp (name, ".sdata") == 0
6992 || strcmp (name, ".lit8") == 0
6993 || strcmp (name, ".lit4") == 0)
6994 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6995 else if (strcmp (name, ".srdata") == 0)
6996 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6997 else if (strcmp (name, ".compact_rel") == 0)
6998 hdr->sh_flags = 0;
6999 else if (strcmp (name, ".rtproc") == 0)
7001 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7003 unsigned int adjust;
7005 adjust = hdr->sh_size % hdr->sh_addralign;
7006 if (adjust != 0)
7007 hdr->sh_size += hdr->sh_addralign - adjust;
7012 return TRUE;
7015 /* Handle a MIPS specific section when reading an object file. This
7016 is called when elfcode.h finds a section with an unknown type.
7017 This routine supports both the 32-bit and 64-bit ELF ABI.
7019 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7020 how to. */
7022 bfd_boolean
7023 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7024 Elf_Internal_Shdr *hdr,
7025 const char *name,
7026 int shindex)
7028 flagword flags = 0;
7030 /* There ought to be a place to keep ELF backend specific flags, but
7031 at the moment there isn't one. We just keep track of the
7032 sections by their name, instead. Fortunately, the ABI gives
7033 suggested names for all the MIPS specific sections, so we will
7034 probably get away with this. */
7035 switch (hdr->sh_type)
7037 case SHT_MIPS_LIBLIST:
7038 if (strcmp (name, ".liblist") != 0)
7039 return FALSE;
7040 break;
7041 case SHT_MIPS_MSYM:
7042 if (strcmp (name, ".msym") != 0)
7043 return FALSE;
7044 break;
7045 case SHT_MIPS_CONFLICT:
7046 if (strcmp (name, ".conflict") != 0)
7047 return FALSE;
7048 break;
7049 case SHT_MIPS_GPTAB:
7050 if (! CONST_STRNEQ (name, ".gptab."))
7051 return FALSE;
7052 break;
7053 case SHT_MIPS_UCODE:
7054 if (strcmp (name, ".ucode") != 0)
7055 return FALSE;
7056 break;
7057 case SHT_MIPS_DEBUG:
7058 if (strcmp (name, ".mdebug") != 0)
7059 return FALSE;
7060 flags = SEC_DEBUGGING;
7061 break;
7062 case SHT_MIPS_REGINFO:
7063 if (strcmp (name, ".reginfo") != 0
7064 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7065 return FALSE;
7066 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7067 break;
7068 case SHT_MIPS_IFACE:
7069 if (strcmp (name, ".MIPS.interfaces") != 0)
7070 return FALSE;
7071 break;
7072 case SHT_MIPS_CONTENT:
7073 if (! CONST_STRNEQ (name, ".MIPS.content"))
7074 return FALSE;
7075 break;
7076 case SHT_MIPS_OPTIONS:
7077 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7078 return FALSE;
7079 break;
7080 case SHT_MIPS_ABIFLAGS:
7081 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7082 return FALSE;
7083 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7084 break;
7085 case SHT_MIPS_DWARF:
7086 if (! CONST_STRNEQ (name, ".debug_")
7087 && ! CONST_STRNEQ (name, ".zdebug_"))
7088 return FALSE;
7089 break;
7090 case SHT_MIPS_SYMBOL_LIB:
7091 if (strcmp (name, ".MIPS.symlib") != 0)
7092 return FALSE;
7093 break;
7094 case SHT_MIPS_EVENTS:
7095 if (! CONST_STRNEQ (name, ".MIPS.events")
7096 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7097 return FALSE;
7098 break;
7099 default:
7100 break;
7103 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7104 return FALSE;
7106 if (flags)
7108 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7109 (bfd_get_section_flags (abfd,
7110 hdr->bfd_section)
7111 | flags)))
7112 return FALSE;
7115 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7117 Elf_External_ABIFlags_v0 ext;
7119 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7120 &ext, 0, sizeof ext))
7121 return FALSE;
7122 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7123 &mips_elf_tdata (abfd)->abiflags);
7124 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7125 return FALSE;
7126 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7129 /* FIXME: We should record sh_info for a .gptab section. */
7131 /* For a .reginfo section, set the gp value in the tdata information
7132 from the contents of this section. We need the gp value while
7133 processing relocs, so we just get it now. The .reginfo section
7134 is not used in the 64-bit MIPS ELF ABI. */
7135 if (hdr->sh_type == SHT_MIPS_REGINFO)
7137 Elf32_External_RegInfo ext;
7138 Elf32_RegInfo s;
7140 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7141 &ext, 0, sizeof ext))
7142 return FALSE;
7143 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7144 elf_gp (abfd) = s.ri_gp_value;
7147 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7148 set the gp value based on what we find. We may see both
7149 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7150 they should agree. */
7151 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7153 bfd_byte *contents, *l, *lend;
7155 contents = bfd_malloc (hdr->sh_size);
7156 if (contents == NULL)
7157 return FALSE;
7158 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7159 0, hdr->sh_size))
7161 free (contents);
7162 return FALSE;
7164 l = contents;
7165 lend = contents + hdr->sh_size;
7166 while (l + sizeof (Elf_External_Options) <= lend)
7168 Elf_Internal_Options intopt;
7170 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7171 &intopt);
7172 if (intopt.size < sizeof (Elf_External_Options))
7174 (*_bfd_error_handler)
7175 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7176 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7177 break;
7179 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7181 Elf64_Internal_RegInfo intreg;
7183 bfd_mips_elf64_swap_reginfo_in
7184 (abfd,
7185 ((Elf64_External_RegInfo *)
7186 (l + sizeof (Elf_External_Options))),
7187 &intreg);
7188 elf_gp (abfd) = intreg.ri_gp_value;
7190 else if (intopt.kind == ODK_REGINFO)
7192 Elf32_RegInfo intreg;
7194 bfd_mips_elf32_swap_reginfo_in
7195 (abfd,
7196 ((Elf32_External_RegInfo *)
7197 (l + sizeof (Elf_External_Options))),
7198 &intreg);
7199 elf_gp (abfd) = intreg.ri_gp_value;
7201 l += intopt.size;
7203 free (contents);
7206 return TRUE;
7209 /* Set the correct type for a MIPS ELF section. We do this by the
7210 section name, which is a hack, but ought to work. This routine is
7211 used by both the 32-bit and the 64-bit ABI. */
7213 bfd_boolean
7214 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7216 const char *name = bfd_get_section_name (abfd, sec);
7218 if (strcmp (name, ".liblist") == 0)
7220 hdr->sh_type = SHT_MIPS_LIBLIST;
7221 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7222 /* The sh_link field is set in final_write_processing. */
7224 else if (strcmp (name, ".conflict") == 0)
7225 hdr->sh_type = SHT_MIPS_CONFLICT;
7226 else if (CONST_STRNEQ (name, ".gptab."))
7228 hdr->sh_type = SHT_MIPS_GPTAB;
7229 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7230 /* The sh_info field is set in final_write_processing. */
7232 else if (strcmp (name, ".ucode") == 0)
7233 hdr->sh_type = SHT_MIPS_UCODE;
7234 else if (strcmp (name, ".mdebug") == 0)
7236 hdr->sh_type = SHT_MIPS_DEBUG;
7237 /* In a shared object on IRIX 5.3, the .mdebug section has an
7238 entsize of 0. FIXME: Does this matter? */
7239 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7240 hdr->sh_entsize = 0;
7241 else
7242 hdr->sh_entsize = 1;
7244 else if (strcmp (name, ".reginfo") == 0)
7246 hdr->sh_type = SHT_MIPS_REGINFO;
7247 /* In a shared object on IRIX 5.3, the .reginfo section has an
7248 entsize of 0x18. FIXME: Does this matter? */
7249 if (SGI_COMPAT (abfd))
7251 if ((abfd->flags & DYNAMIC) != 0)
7252 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7253 else
7254 hdr->sh_entsize = 1;
7256 else
7257 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7259 else if (SGI_COMPAT (abfd)
7260 && (strcmp (name, ".hash") == 0
7261 || strcmp (name, ".dynamic") == 0
7262 || strcmp (name, ".dynstr") == 0))
7264 if (SGI_COMPAT (abfd))
7265 hdr->sh_entsize = 0;
7266 #if 0
7267 /* This isn't how the IRIX6 linker behaves. */
7268 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7269 #endif
7271 else if (strcmp (name, ".got") == 0
7272 || strcmp (name, ".srdata") == 0
7273 || strcmp (name, ".sdata") == 0
7274 || strcmp (name, ".sbss") == 0
7275 || strcmp (name, ".lit4") == 0
7276 || strcmp (name, ".lit8") == 0)
7277 hdr->sh_flags |= SHF_MIPS_GPREL;
7278 else if (strcmp (name, ".MIPS.interfaces") == 0)
7280 hdr->sh_type = SHT_MIPS_IFACE;
7281 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7283 else if (CONST_STRNEQ (name, ".MIPS.content"))
7285 hdr->sh_type = SHT_MIPS_CONTENT;
7286 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7287 /* The sh_info field is set in final_write_processing. */
7289 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7291 hdr->sh_type = SHT_MIPS_OPTIONS;
7292 hdr->sh_entsize = 1;
7293 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7295 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7297 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7298 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7300 else if (CONST_STRNEQ (name, ".debug_")
7301 || CONST_STRNEQ (name, ".zdebug_"))
7303 hdr->sh_type = SHT_MIPS_DWARF;
7305 /* Irix facilities such as libexc expect a single .debug_frame
7306 per executable, the system ones have NOSTRIP set and the linker
7307 doesn't merge sections with different flags so ... */
7308 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7309 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7311 else if (strcmp (name, ".MIPS.symlib") == 0)
7313 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7314 /* The sh_link and sh_info fields are set in
7315 final_write_processing. */
7317 else if (CONST_STRNEQ (name, ".MIPS.events")
7318 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7320 hdr->sh_type = SHT_MIPS_EVENTS;
7321 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7322 /* The sh_link field is set in final_write_processing. */
7324 else if (strcmp (name, ".msym") == 0)
7326 hdr->sh_type = SHT_MIPS_MSYM;
7327 hdr->sh_flags |= SHF_ALLOC;
7328 hdr->sh_entsize = 8;
7331 /* The generic elf_fake_sections will set up REL_HDR using the default
7332 kind of relocations. We used to set up a second header for the
7333 non-default kind of relocations here, but only NewABI would use
7334 these, and the IRIX ld doesn't like resulting empty RELA sections.
7335 Thus we create those header only on demand now. */
7337 return TRUE;
7340 /* Given a BFD section, try to locate the corresponding ELF section
7341 index. This is used by both the 32-bit and the 64-bit ABI.
7342 Actually, it's not clear to me that the 64-bit ABI supports these,
7343 but for non-PIC objects we will certainly want support for at least
7344 the .scommon section. */
7346 bfd_boolean
7347 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7348 asection *sec, int *retval)
7350 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7352 *retval = SHN_MIPS_SCOMMON;
7353 return TRUE;
7355 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7357 *retval = SHN_MIPS_ACOMMON;
7358 return TRUE;
7360 return FALSE;
7363 /* Hook called by the linker routine which adds symbols from an object
7364 file. We must handle the special MIPS section numbers here. */
7366 bfd_boolean
7367 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7368 Elf_Internal_Sym *sym, const char **namep,
7369 flagword *flagsp ATTRIBUTE_UNUSED,
7370 asection **secp, bfd_vma *valp)
7372 if (SGI_COMPAT (abfd)
7373 && (abfd->flags & DYNAMIC) != 0
7374 && strcmp (*namep, "_rld_new_interface") == 0)
7376 /* Skip IRIX5 rld entry name. */
7377 *namep = NULL;
7378 return TRUE;
7381 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7382 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7383 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7384 a magic symbol resolved by the linker, we ignore this bogus definition
7385 of _gp_disp. New ABI objects do not suffer from this problem so this
7386 is not done for them. */
7387 if (!NEWABI_P(abfd)
7388 && (sym->st_shndx == SHN_ABS)
7389 && (strcmp (*namep, "_gp_disp") == 0))
7391 *namep = NULL;
7392 return TRUE;
7395 switch (sym->st_shndx)
7397 case SHN_COMMON:
7398 /* Common symbols less than the GP size are automatically
7399 treated as SHN_MIPS_SCOMMON symbols. */
7400 if (sym->st_size > elf_gp_size (abfd)
7401 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7402 || IRIX_COMPAT (abfd) == ict_irix6)
7403 break;
7404 /* Fall through. */
7405 case SHN_MIPS_SCOMMON:
7406 *secp = bfd_make_section_old_way (abfd, ".scommon");
7407 (*secp)->flags |= SEC_IS_COMMON;
7408 *valp = sym->st_size;
7409 break;
7411 case SHN_MIPS_TEXT:
7412 /* This section is used in a shared object. */
7413 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7415 asymbol *elf_text_symbol;
7416 asection *elf_text_section;
7417 bfd_size_type amt = sizeof (asection);
7419 elf_text_section = bfd_zalloc (abfd, amt);
7420 if (elf_text_section == NULL)
7421 return FALSE;
7423 amt = sizeof (asymbol);
7424 elf_text_symbol = bfd_zalloc (abfd, amt);
7425 if (elf_text_symbol == NULL)
7426 return FALSE;
7428 /* Initialize the section. */
7430 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7431 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7433 elf_text_section->symbol = elf_text_symbol;
7434 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7436 elf_text_section->name = ".text";
7437 elf_text_section->flags = SEC_NO_FLAGS;
7438 elf_text_section->output_section = NULL;
7439 elf_text_section->owner = abfd;
7440 elf_text_symbol->name = ".text";
7441 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7442 elf_text_symbol->section = elf_text_section;
7444 /* This code used to do *secp = bfd_und_section_ptr if
7445 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7446 so I took it out. */
7447 *secp = mips_elf_tdata (abfd)->elf_text_section;
7448 break;
7450 case SHN_MIPS_ACOMMON:
7451 /* Fall through. XXX Can we treat this as allocated data? */
7452 case SHN_MIPS_DATA:
7453 /* This section is used in a shared object. */
7454 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7456 asymbol *elf_data_symbol;
7457 asection *elf_data_section;
7458 bfd_size_type amt = sizeof (asection);
7460 elf_data_section = bfd_zalloc (abfd, amt);
7461 if (elf_data_section == NULL)
7462 return FALSE;
7464 amt = sizeof (asymbol);
7465 elf_data_symbol = bfd_zalloc (abfd, amt);
7466 if (elf_data_symbol == NULL)
7467 return FALSE;
7469 /* Initialize the section. */
7471 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7472 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7474 elf_data_section->symbol = elf_data_symbol;
7475 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7477 elf_data_section->name = ".data";
7478 elf_data_section->flags = SEC_NO_FLAGS;
7479 elf_data_section->output_section = NULL;
7480 elf_data_section->owner = abfd;
7481 elf_data_symbol->name = ".data";
7482 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7483 elf_data_symbol->section = elf_data_section;
7485 /* This code used to do *secp = bfd_und_section_ptr if
7486 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7487 so I took it out. */
7488 *secp = mips_elf_tdata (abfd)->elf_data_section;
7489 break;
7491 case SHN_MIPS_SUNDEFINED:
7492 *secp = bfd_und_section_ptr;
7493 break;
7496 if (SGI_COMPAT (abfd)
7497 && ! bfd_link_pic (info)
7498 && info->output_bfd->xvec == abfd->xvec
7499 && strcmp (*namep, "__rld_obj_head") == 0)
7501 struct elf_link_hash_entry *h;
7502 struct bfd_link_hash_entry *bh;
7504 /* Mark __rld_obj_head as dynamic. */
7505 bh = NULL;
7506 if (! (_bfd_generic_link_add_one_symbol
7507 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7508 get_elf_backend_data (abfd)->collect, &bh)))
7509 return FALSE;
7511 h = (struct elf_link_hash_entry *) bh;
7512 h->non_elf = 0;
7513 h->def_regular = 1;
7514 h->type = STT_OBJECT;
7516 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7517 return FALSE;
7519 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7520 mips_elf_hash_table (info)->rld_symbol = h;
7523 /* If this is a mips16 text symbol, add 1 to the value to make it
7524 odd. This will cause something like .word SYM to come up with
7525 the right value when it is loaded into the PC. */
7526 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7527 ++*valp;
7529 return TRUE;
7532 /* This hook function is called before the linker writes out a global
7533 symbol. We mark symbols as small common if appropriate. This is
7534 also where we undo the increment of the value for a mips16 symbol. */
7537 _bfd_mips_elf_link_output_symbol_hook
7538 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7539 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7540 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7542 /* If we see a common symbol, which implies a relocatable link, then
7543 if a symbol was small common in an input file, mark it as small
7544 common in the output file. */
7545 if (sym->st_shndx == SHN_COMMON
7546 && strcmp (input_sec->name, ".scommon") == 0)
7547 sym->st_shndx = SHN_MIPS_SCOMMON;
7549 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7550 sym->st_value &= ~1;
7552 return 1;
7555 /* Functions for the dynamic linker. */
7557 /* Create dynamic sections when linking against a dynamic object. */
7559 bfd_boolean
7560 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7562 struct elf_link_hash_entry *h;
7563 struct bfd_link_hash_entry *bh;
7564 flagword flags;
7565 register asection *s;
7566 const char * const *namep;
7567 struct mips_elf_link_hash_table *htab;
7569 htab = mips_elf_hash_table (info);
7570 BFD_ASSERT (htab != NULL);
7572 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7573 | SEC_LINKER_CREATED | SEC_READONLY);
7575 /* The psABI requires a read-only .dynamic section, but the VxWorks
7576 EABI doesn't. */
7577 if (!htab->is_vxworks)
7579 s = bfd_get_linker_section (abfd, ".dynamic");
7580 if (s != NULL)
7582 if (! bfd_set_section_flags (abfd, s, flags))
7583 return FALSE;
7587 /* We need to create .got section. */
7588 if (!mips_elf_create_got_section (abfd, info))
7589 return FALSE;
7591 if (! mips_elf_rel_dyn_section (info, TRUE))
7592 return FALSE;
7594 /* Create .stub section. */
7595 s = bfd_make_section_anyway_with_flags (abfd,
7596 MIPS_ELF_STUB_SECTION_NAME (abfd),
7597 flags | SEC_CODE);
7598 if (s == NULL
7599 || ! bfd_set_section_alignment (abfd, s,
7600 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7601 return FALSE;
7602 htab->sstubs = s;
7604 if (!mips_elf_hash_table (info)->use_rld_obj_head
7605 && bfd_link_executable (info)
7606 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7608 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7609 flags &~ (flagword) SEC_READONLY);
7610 if (s == NULL
7611 || ! bfd_set_section_alignment (abfd, s,
7612 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7613 return FALSE;
7616 /* On IRIX5, we adjust add some additional symbols and change the
7617 alignments of several sections. There is no ABI documentation
7618 indicating that this is necessary on IRIX6, nor any evidence that
7619 the linker takes such action. */
7620 if (IRIX_COMPAT (abfd) == ict_irix5)
7622 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7624 bh = NULL;
7625 if (! (_bfd_generic_link_add_one_symbol
7626 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7627 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7628 return FALSE;
7630 h = (struct elf_link_hash_entry *) bh;
7631 h->non_elf = 0;
7632 h->def_regular = 1;
7633 h->type = STT_SECTION;
7635 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7636 return FALSE;
7639 /* We need to create a .compact_rel section. */
7640 if (SGI_COMPAT (abfd))
7642 if (!mips_elf_create_compact_rel_section (abfd, info))
7643 return FALSE;
7646 /* Change alignments of some sections. */
7647 s = bfd_get_linker_section (abfd, ".hash");
7648 if (s != NULL)
7649 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7651 s = bfd_get_linker_section (abfd, ".dynsym");
7652 if (s != NULL)
7653 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7655 s = bfd_get_linker_section (abfd, ".dynstr");
7656 if (s != NULL)
7657 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7659 /* ??? */
7660 s = bfd_get_section_by_name (abfd, ".reginfo");
7661 if (s != NULL)
7662 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7664 s = bfd_get_linker_section (abfd, ".dynamic");
7665 if (s != NULL)
7666 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7669 if (bfd_link_executable (info))
7671 const char *name;
7673 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7674 bh = NULL;
7675 if (!(_bfd_generic_link_add_one_symbol
7676 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7677 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7678 return FALSE;
7680 h = (struct elf_link_hash_entry *) bh;
7681 h->non_elf = 0;
7682 h->def_regular = 1;
7683 h->type = STT_SECTION;
7685 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7686 return FALSE;
7688 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7690 /* __rld_map is a four byte word located in the .data section
7691 and is filled in by the rtld to contain a pointer to
7692 the _r_debug structure. Its symbol value will be set in
7693 _bfd_mips_elf_finish_dynamic_symbol. */
7694 s = bfd_get_linker_section (abfd, ".rld_map");
7695 BFD_ASSERT (s != NULL);
7697 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7698 bh = NULL;
7699 if (!(_bfd_generic_link_add_one_symbol
7700 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7701 get_elf_backend_data (abfd)->collect, &bh)))
7702 return FALSE;
7704 h = (struct elf_link_hash_entry *) bh;
7705 h->non_elf = 0;
7706 h->def_regular = 1;
7707 h->type = STT_OBJECT;
7709 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7710 return FALSE;
7711 mips_elf_hash_table (info)->rld_symbol = h;
7715 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7716 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7717 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7718 return FALSE;
7720 /* Cache the sections created above. */
7721 htab->splt = bfd_get_linker_section (abfd, ".plt");
7722 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7723 if (htab->is_vxworks)
7725 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7726 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7728 else
7729 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7730 if (!htab->sdynbss
7731 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7732 || !htab->srelplt
7733 || !htab->splt)
7734 abort ();
7736 /* Do the usual VxWorks handling. */
7737 if (htab->is_vxworks
7738 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7739 return FALSE;
7741 return TRUE;
7744 /* Return true if relocation REL against section SEC is a REL rather than
7745 RELA relocation. RELOCS is the first relocation in the section and
7746 ABFD is the bfd that contains SEC. */
7748 static bfd_boolean
7749 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7750 const Elf_Internal_Rela *relocs,
7751 const Elf_Internal_Rela *rel)
7753 Elf_Internal_Shdr *rel_hdr;
7754 const struct elf_backend_data *bed;
7756 /* To determine which flavor of relocation this is, we depend on the
7757 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7758 rel_hdr = elf_section_data (sec)->rel.hdr;
7759 if (rel_hdr == NULL)
7760 return FALSE;
7761 bed = get_elf_backend_data (abfd);
7762 return ((size_t) (rel - relocs)
7763 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7766 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7767 HOWTO is the relocation's howto and CONTENTS points to the contents
7768 of the section that REL is against. */
7770 static bfd_vma
7771 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7772 reloc_howto_type *howto, bfd_byte *contents)
7774 bfd_byte *location;
7775 unsigned int r_type;
7776 bfd_vma addend;
7778 r_type = ELF_R_TYPE (abfd, rel->r_info);
7779 location = contents + rel->r_offset;
7781 /* Get the addend, which is stored in the input file. */
7782 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7783 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7784 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7786 return addend & howto->src_mask;
7789 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7790 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7791 and update *ADDEND with the final addend. Return true on success
7792 or false if the LO16 could not be found. RELEND is the exclusive
7793 upper bound on the relocations for REL's section. */
7795 static bfd_boolean
7796 mips_elf_add_lo16_rel_addend (bfd *abfd,
7797 const Elf_Internal_Rela *rel,
7798 const Elf_Internal_Rela *relend,
7799 bfd_byte *contents, bfd_vma *addend)
7801 unsigned int r_type, lo16_type;
7802 const Elf_Internal_Rela *lo16_relocation;
7803 reloc_howto_type *lo16_howto;
7804 bfd_vma l;
7806 r_type = ELF_R_TYPE (abfd, rel->r_info);
7807 if (mips16_reloc_p (r_type))
7808 lo16_type = R_MIPS16_LO16;
7809 else if (micromips_reloc_p (r_type))
7810 lo16_type = R_MICROMIPS_LO16;
7811 else if (r_type == R_MIPS_PCHI16)
7812 lo16_type = R_MIPS_PCLO16;
7813 else
7814 lo16_type = R_MIPS_LO16;
7816 /* The combined value is the sum of the HI16 addend, left-shifted by
7817 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7818 code does a `lui' of the HI16 value, and then an `addiu' of the
7819 LO16 value.)
7821 Scan ahead to find a matching LO16 relocation.
7823 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7824 be immediately following. However, for the IRIX6 ABI, the next
7825 relocation may be a composed relocation consisting of several
7826 relocations for the same address. In that case, the R_MIPS_LO16
7827 relocation may occur as one of these. We permit a similar
7828 extension in general, as that is useful for GCC.
7830 In some cases GCC dead code elimination removes the LO16 but keeps
7831 the corresponding HI16. This is strictly speaking a violation of
7832 the ABI but not immediately harmful. */
7833 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7834 if (lo16_relocation == NULL)
7835 return FALSE;
7837 /* Obtain the addend kept there. */
7838 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7839 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7841 l <<= lo16_howto->rightshift;
7842 l = _bfd_mips_elf_sign_extend (l, 16);
7844 *addend <<= 16;
7845 *addend += l;
7846 return TRUE;
7849 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7850 store the contents in *CONTENTS on success. Assume that *CONTENTS
7851 already holds the contents if it is nonull on entry. */
7853 static bfd_boolean
7854 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7856 if (*contents)
7857 return TRUE;
7859 /* Get cached copy if it exists. */
7860 if (elf_section_data (sec)->this_hdr.contents != NULL)
7862 *contents = elf_section_data (sec)->this_hdr.contents;
7863 return TRUE;
7866 return bfd_malloc_and_get_section (abfd, sec, contents);
7869 /* Make a new PLT record to keep internal data. */
7871 static struct plt_entry *
7872 mips_elf_make_plt_record (bfd *abfd)
7874 struct plt_entry *entry;
7876 entry = bfd_zalloc (abfd, sizeof (*entry));
7877 if (entry == NULL)
7878 return NULL;
7880 entry->stub_offset = MINUS_ONE;
7881 entry->mips_offset = MINUS_ONE;
7882 entry->comp_offset = MINUS_ONE;
7883 entry->gotplt_index = MINUS_ONE;
7884 return entry;
7887 /* Look through the relocs for a section during the first phase, and
7888 allocate space in the global offset table and record the need for
7889 standard MIPS and compressed procedure linkage table entries. */
7891 bfd_boolean
7892 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7893 asection *sec, const Elf_Internal_Rela *relocs)
7895 const char *name;
7896 bfd *dynobj;
7897 Elf_Internal_Shdr *symtab_hdr;
7898 struct elf_link_hash_entry **sym_hashes;
7899 size_t extsymoff;
7900 const Elf_Internal_Rela *rel;
7901 const Elf_Internal_Rela *rel_end;
7902 asection *sreloc;
7903 const struct elf_backend_data *bed;
7904 struct mips_elf_link_hash_table *htab;
7905 bfd_byte *contents;
7906 bfd_vma addend;
7907 reloc_howto_type *howto;
7909 if (bfd_link_relocatable (info))
7910 return TRUE;
7912 htab = mips_elf_hash_table (info);
7913 BFD_ASSERT (htab != NULL);
7915 dynobj = elf_hash_table (info)->dynobj;
7916 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7917 sym_hashes = elf_sym_hashes (abfd);
7918 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7920 bed = get_elf_backend_data (abfd);
7921 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7923 /* Check for the mips16 stub sections. */
7925 name = bfd_get_section_name (abfd, sec);
7926 if (FN_STUB_P (name))
7928 unsigned long r_symndx;
7930 /* Look at the relocation information to figure out which symbol
7931 this is for. */
7933 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7934 if (r_symndx == 0)
7936 (*_bfd_error_handler)
7937 (_("%B: Warning: cannot determine the target function for"
7938 " stub section `%s'"),
7939 abfd, name);
7940 bfd_set_error (bfd_error_bad_value);
7941 return FALSE;
7944 if (r_symndx < extsymoff
7945 || sym_hashes[r_symndx - extsymoff] == NULL)
7947 asection *o;
7949 /* This stub is for a local symbol. This stub will only be
7950 needed if there is some relocation in this BFD, other
7951 than a 16 bit function call, which refers to this symbol. */
7952 for (o = abfd->sections; o != NULL; o = o->next)
7954 Elf_Internal_Rela *sec_relocs;
7955 const Elf_Internal_Rela *r, *rend;
7957 /* We can ignore stub sections when looking for relocs. */
7958 if ((o->flags & SEC_RELOC) == 0
7959 || o->reloc_count == 0
7960 || section_allows_mips16_refs_p (o))
7961 continue;
7963 sec_relocs
7964 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7965 info->keep_memory);
7966 if (sec_relocs == NULL)
7967 return FALSE;
7969 rend = sec_relocs + o->reloc_count;
7970 for (r = sec_relocs; r < rend; r++)
7971 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7972 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7973 break;
7975 if (elf_section_data (o)->relocs != sec_relocs)
7976 free (sec_relocs);
7978 if (r < rend)
7979 break;
7982 if (o == NULL)
7984 /* There is no non-call reloc for this stub, so we do
7985 not need it. Since this function is called before
7986 the linker maps input sections to output sections, we
7987 can easily discard it by setting the SEC_EXCLUDE
7988 flag. */
7989 sec->flags |= SEC_EXCLUDE;
7990 return TRUE;
7993 /* Record this stub in an array of local symbol stubs for
7994 this BFD. */
7995 if (mips_elf_tdata (abfd)->local_stubs == NULL)
7997 unsigned long symcount;
7998 asection **n;
7999 bfd_size_type amt;
8001 if (elf_bad_symtab (abfd))
8002 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8003 else
8004 symcount = symtab_hdr->sh_info;
8005 amt = symcount * sizeof (asection *);
8006 n = bfd_zalloc (abfd, amt);
8007 if (n == NULL)
8008 return FALSE;
8009 mips_elf_tdata (abfd)->local_stubs = n;
8012 sec->flags |= SEC_KEEP;
8013 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8015 /* We don't need to set mips16_stubs_seen in this case.
8016 That flag is used to see whether we need to look through
8017 the global symbol table for stubs. We don't need to set
8018 it here, because we just have a local stub. */
8020 else
8022 struct mips_elf_link_hash_entry *h;
8024 h = ((struct mips_elf_link_hash_entry *)
8025 sym_hashes[r_symndx - extsymoff]);
8027 while (h->root.root.type == bfd_link_hash_indirect
8028 || h->root.root.type == bfd_link_hash_warning)
8029 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8031 /* H is the symbol this stub is for. */
8033 /* If we already have an appropriate stub for this function, we
8034 don't need another one, so we can discard this one. Since
8035 this function is called before the linker maps input sections
8036 to output sections, we can easily discard it by setting the
8037 SEC_EXCLUDE flag. */
8038 if (h->fn_stub != NULL)
8040 sec->flags |= SEC_EXCLUDE;
8041 return TRUE;
8044 sec->flags |= SEC_KEEP;
8045 h->fn_stub = sec;
8046 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8049 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8051 unsigned long r_symndx;
8052 struct mips_elf_link_hash_entry *h;
8053 asection **loc;
8055 /* Look at the relocation information to figure out which symbol
8056 this is for. */
8058 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8059 if (r_symndx == 0)
8061 (*_bfd_error_handler)
8062 (_("%B: Warning: cannot determine the target function for"
8063 " stub section `%s'"),
8064 abfd, name);
8065 bfd_set_error (bfd_error_bad_value);
8066 return FALSE;
8069 if (r_symndx < extsymoff
8070 || sym_hashes[r_symndx - extsymoff] == NULL)
8072 asection *o;
8074 /* This stub is for a local symbol. This stub will only be
8075 needed if there is some relocation (R_MIPS16_26) in this BFD
8076 that refers to this symbol. */
8077 for (o = abfd->sections; o != NULL; o = o->next)
8079 Elf_Internal_Rela *sec_relocs;
8080 const Elf_Internal_Rela *r, *rend;
8082 /* We can ignore stub sections when looking for relocs. */
8083 if ((o->flags & SEC_RELOC) == 0
8084 || o->reloc_count == 0
8085 || section_allows_mips16_refs_p (o))
8086 continue;
8088 sec_relocs
8089 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8090 info->keep_memory);
8091 if (sec_relocs == NULL)
8092 return FALSE;
8094 rend = sec_relocs + o->reloc_count;
8095 for (r = sec_relocs; r < rend; r++)
8096 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8097 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8098 break;
8100 if (elf_section_data (o)->relocs != sec_relocs)
8101 free (sec_relocs);
8103 if (r < rend)
8104 break;
8107 if (o == NULL)
8109 /* There is no non-call reloc for this stub, so we do
8110 not need it. Since this function is called before
8111 the linker maps input sections to output sections, we
8112 can easily discard it by setting the SEC_EXCLUDE
8113 flag. */
8114 sec->flags |= SEC_EXCLUDE;
8115 return TRUE;
8118 /* Record this stub in an array of local symbol call_stubs for
8119 this BFD. */
8120 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8122 unsigned long symcount;
8123 asection **n;
8124 bfd_size_type amt;
8126 if (elf_bad_symtab (abfd))
8127 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8128 else
8129 symcount = symtab_hdr->sh_info;
8130 amt = symcount * sizeof (asection *);
8131 n = bfd_zalloc (abfd, amt);
8132 if (n == NULL)
8133 return FALSE;
8134 mips_elf_tdata (abfd)->local_call_stubs = n;
8137 sec->flags |= SEC_KEEP;
8138 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8140 /* We don't need to set mips16_stubs_seen in this case.
8141 That flag is used to see whether we need to look through
8142 the global symbol table for stubs. We don't need to set
8143 it here, because we just have a local stub. */
8145 else
8147 h = ((struct mips_elf_link_hash_entry *)
8148 sym_hashes[r_symndx - extsymoff]);
8150 /* H is the symbol this stub is for. */
8152 if (CALL_FP_STUB_P (name))
8153 loc = &h->call_fp_stub;
8154 else
8155 loc = &h->call_stub;
8157 /* If we already have an appropriate stub for this function, we
8158 don't need another one, so we can discard this one. Since
8159 this function is called before the linker maps input sections
8160 to output sections, we can easily discard it by setting the
8161 SEC_EXCLUDE flag. */
8162 if (*loc != NULL)
8164 sec->flags |= SEC_EXCLUDE;
8165 return TRUE;
8168 sec->flags |= SEC_KEEP;
8169 *loc = sec;
8170 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8174 sreloc = NULL;
8175 contents = NULL;
8176 for (rel = relocs; rel < rel_end; ++rel)
8178 unsigned long r_symndx;
8179 unsigned int r_type;
8180 struct elf_link_hash_entry *h;
8181 bfd_boolean can_make_dynamic_p;
8182 bfd_boolean call_reloc_p;
8183 bfd_boolean constrain_symbol_p;
8185 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8186 r_type = ELF_R_TYPE (abfd, rel->r_info);
8188 if (r_symndx < extsymoff)
8189 h = NULL;
8190 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8192 (*_bfd_error_handler)
8193 (_("%B: Malformed reloc detected for section %s"),
8194 abfd, name);
8195 bfd_set_error (bfd_error_bad_value);
8196 return FALSE;
8198 else
8200 h = sym_hashes[r_symndx - extsymoff];
8201 if (h != NULL)
8203 while (h->root.type == bfd_link_hash_indirect
8204 || h->root.type == bfd_link_hash_warning)
8205 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8207 /* PR15323, ref flags aren't set for references in the
8208 same object. */
8209 h->root.non_ir_ref = 1;
8213 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8214 relocation into a dynamic one. */
8215 can_make_dynamic_p = FALSE;
8217 /* Set CALL_RELOC_P to true if the relocation is for a call,
8218 and if pointer equality therefore doesn't matter. */
8219 call_reloc_p = FALSE;
8221 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8222 into account when deciding how to define the symbol.
8223 Relocations in nonallocatable sections such as .pdr and
8224 .debug* should have no effect. */
8225 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8227 switch (r_type)
8229 case R_MIPS_CALL16:
8230 case R_MIPS_CALL_HI16:
8231 case R_MIPS_CALL_LO16:
8232 case R_MIPS16_CALL16:
8233 case R_MICROMIPS_CALL16:
8234 case R_MICROMIPS_CALL_HI16:
8235 case R_MICROMIPS_CALL_LO16:
8236 call_reloc_p = TRUE;
8237 /* Fall through. */
8239 case R_MIPS_GOT16:
8240 case R_MIPS_GOT_HI16:
8241 case R_MIPS_GOT_LO16:
8242 case R_MIPS_GOT_PAGE:
8243 case R_MIPS_GOT_OFST:
8244 case R_MIPS_GOT_DISP:
8245 case R_MIPS_TLS_GOTTPREL:
8246 case R_MIPS_TLS_GD:
8247 case R_MIPS_TLS_LDM:
8248 case R_MIPS16_GOT16:
8249 case R_MIPS16_TLS_GOTTPREL:
8250 case R_MIPS16_TLS_GD:
8251 case R_MIPS16_TLS_LDM:
8252 case R_MICROMIPS_GOT16:
8253 case R_MICROMIPS_GOT_HI16:
8254 case R_MICROMIPS_GOT_LO16:
8255 case R_MICROMIPS_GOT_PAGE:
8256 case R_MICROMIPS_GOT_OFST:
8257 case R_MICROMIPS_GOT_DISP:
8258 case R_MICROMIPS_TLS_GOTTPREL:
8259 case R_MICROMIPS_TLS_GD:
8260 case R_MICROMIPS_TLS_LDM:
8261 if (dynobj == NULL)
8262 elf_hash_table (info)->dynobj = dynobj = abfd;
8263 if (!mips_elf_create_got_section (dynobj, info))
8264 return FALSE;
8265 if (htab->is_vxworks && !bfd_link_pic (info))
8267 (*_bfd_error_handler)
8268 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8269 abfd, (unsigned long) rel->r_offset);
8270 bfd_set_error (bfd_error_bad_value);
8271 return FALSE;
8273 can_make_dynamic_p = TRUE;
8274 break;
8276 case R_MIPS_NONE:
8277 case R_MIPS_JALR:
8278 case R_MICROMIPS_JALR:
8279 /* These relocations have empty fields and are purely there to
8280 provide link information. The symbol value doesn't matter. */
8281 constrain_symbol_p = FALSE;
8282 break;
8284 case R_MIPS_GPREL16:
8285 case R_MIPS_GPREL32:
8286 case R_MIPS16_GPREL:
8287 case R_MICROMIPS_GPREL16:
8288 /* GP-relative relocations always resolve to a definition in a
8289 regular input file, ignoring the one-definition rule. This is
8290 important for the GP setup sequence in NewABI code, which
8291 always resolves to a local function even if other relocations
8292 against the symbol wouldn't. */
8293 constrain_symbol_p = FALSE;
8294 break;
8296 case R_MIPS_32:
8297 case R_MIPS_REL32:
8298 case R_MIPS_64:
8299 /* In VxWorks executables, references to external symbols
8300 must be handled using copy relocs or PLT entries; it is not
8301 possible to convert this relocation into a dynamic one.
8303 For executables that use PLTs and copy-relocs, we have a
8304 choice between converting the relocation into a dynamic
8305 one or using copy relocations or PLT entries. It is
8306 usually better to do the former, unless the relocation is
8307 against a read-only section. */
8308 if ((bfd_link_pic (info)
8309 || (h != NULL
8310 && !htab->is_vxworks
8311 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8312 && !(!info->nocopyreloc
8313 && !PIC_OBJECT_P (abfd)
8314 && MIPS_ELF_READONLY_SECTION (sec))))
8315 && (sec->flags & SEC_ALLOC) != 0)
8317 can_make_dynamic_p = TRUE;
8318 if (dynobj == NULL)
8319 elf_hash_table (info)->dynobj = dynobj = abfd;
8321 break;
8323 case R_MIPS_26:
8324 case R_MIPS_PC16:
8325 case R_MIPS_PC21_S2:
8326 case R_MIPS_PC26_S2:
8327 case R_MIPS16_26:
8328 case R_MICROMIPS_26_S1:
8329 case R_MICROMIPS_PC7_S1:
8330 case R_MICROMIPS_PC10_S1:
8331 case R_MICROMIPS_PC16_S1:
8332 case R_MICROMIPS_PC23_S2:
8333 call_reloc_p = TRUE;
8334 break;
8337 if (h)
8339 if (constrain_symbol_p)
8341 if (!can_make_dynamic_p)
8342 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8344 if (!call_reloc_p)
8345 h->pointer_equality_needed = 1;
8347 /* We must not create a stub for a symbol that has
8348 relocations related to taking the function's address.
8349 This doesn't apply to VxWorks, where CALL relocs refer
8350 to a .got.plt entry instead of a normal .got entry. */
8351 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8352 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8355 /* Relocations against the special VxWorks __GOTT_BASE__ and
8356 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8357 room for them in .rela.dyn. */
8358 if (is_gott_symbol (info, h))
8360 if (sreloc == NULL)
8362 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8363 if (sreloc == NULL)
8364 return FALSE;
8366 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8367 if (MIPS_ELF_READONLY_SECTION (sec))
8368 /* We tell the dynamic linker that there are
8369 relocations against the text segment. */
8370 info->flags |= DF_TEXTREL;
8373 else if (call_lo16_reloc_p (r_type)
8374 || got_lo16_reloc_p (r_type)
8375 || got_disp_reloc_p (r_type)
8376 || (got16_reloc_p (r_type) && htab->is_vxworks))
8378 /* We may need a local GOT entry for this relocation. We
8379 don't count R_MIPS_GOT_PAGE because we can estimate the
8380 maximum number of pages needed by looking at the size of
8381 the segment. Similar comments apply to R_MIPS*_GOT16 and
8382 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8383 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8384 R_MIPS_CALL_HI16 because these are always followed by an
8385 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8386 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8387 rel->r_addend, info, r_type))
8388 return FALSE;
8391 if (h != NULL
8392 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8393 ELF_ST_IS_MIPS16 (h->other)))
8394 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8396 switch (r_type)
8398 case R_MIPS_CALL16:
8399 case R_MIPS16_CALL16:
8400 case R_MICROMIPS_CALL16:
8401 if (h == NULL)
8403 (*_bfd_error_handler)
8404 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8405 abfd, (unsigned long) rel->r_offset);
8406 bfd_set_error (bfd_error_bad_value);
8407 return FALSE;
8409 /* Fall through. */
8411 case R_MIPS_CALL_HI16:
8412 case R_MIPS_CALL_LO16:
8413 case R_MICROMIPS_CALL_HI16:
8414 case R_MICROMIPS_CALL_LO16:
8415 if (h != NULL)
8417 /* Make sure there is room in the regular GOT to hold the
8418 function's address. We may eliminate it in favour of
8419 a .got.plt entry later; see mips_elf_count_got_symbols. */
8420 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8421 r_type))
8422 return FALSE;
8424 /* We need a stub, not a plt entry for the undefined
8425 function. But we record it as if it needs plt. See
8426 _bfd_elf_adjust_dynamic_symbol. */
8427 h->needs_plt = 1;
8428 h->type = STT_FUNC;
8430 break;
8432 case R_MIPS_GOT_PAGE:
8433 case R_MICROMIPS_GOT_PAGE:
8434 case R_MIPS16_GOT16:
8435 case R_MIPS_GOT16:
8436 case R_MIPS_GOT_HI16:
8437 case R_MIPS_GOT_LO16:
8438 case R_MICROMIPS_GOT16:
8439 case R_MICROMIPS_GOT_HI16:
8440 case R_MICROMIPS_GOT_LO16:
8441 if (!h || got_page_reloc_p (r_type))
8443 /* This relocation needs (or may need, if h != NULL) a
8444 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8445 know for sure until we know whether the symbol is
8446 preemptible. */
8447 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8449 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8450 return FALSE;
8451 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8452 addend = mips_elf_read_rel_addend (abfd, rel,
8453 howto, contents);
8454 if (got16_reloc_p (r_type))
8455 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8456 contents, &addend);
8457 else
8458 addend <<= howto->rightshift;
8460 else
8461 addend = rel->r_addend;
8462 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8463 h, addend))
8464 return FALSE;
8466 if (h)
8468 struct mips_elf_link_hash_entry *hmips =
8469 (struct mips_elf_link_hash_entry *) h;
8471 /* This symbol is definitely not overridable. */
8472 if (hmips->root.def_regular
8473 && ! (bfd_link_pic (info) && ! info->symbolic
8474 && ! hmips->root.forced_local))
8475 h = NULL;
8478 /* If this is a global, overridable symbol, GOT_PAGE will
8479 decay to GOT_DISP, so we'll need a GOT entry for it. */
8480 /* Fall through. */
8482 case R_MIPS_GOT_DISP:
8483 case R_MICROMIPS_GOT_DISP:
8484 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8485 FALSE, r_type))
8486 return FALSE;
8487 break;
8489 case R_MIPS_TLS_GOTTPREL:
8490 case R_MIPS16_TLS_GOTTPREL:
8491 case R_MICROMIPS_TLS_GOTTPREL:
8492 if (bfd_link_pic (info))
8493 info->flags |= DF_STATIC_TLS;
8494 /* Fall through */
8496 case R_MIPS_TLS_LDM:
8497 case R_MIPS16_TLS_LDM:
8498 case R_MICROMIPS_TLS_LDM:
8499 if (tls_ldm_reloc_p (r_type))
8501 r_symndx = STN_UNDEF;
8502 h = NULL;
8504 /* Fall through */
8506 case R_MIPS_TLS_GD:
8507 case R_MIPS16_TLS_GD:
8508 case R_MICROMIPS_TLS_GD:
8509 /* This symbol requires a global offset table entry, or two
8510 for TLS GD relocations. */
8511 if (h != NULL)
8513 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8514 FALSE, r_type))
8515 return FALSE;
8517 else
8519 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8520 rel->r_addend,
8521 info, r_type))
8522 return FALSE;
8524 break;
8526 case R_MIPS_32:
8527 case R_MIPS_REL32:
8528 case R_MIPS_64:
8529 /* In VxWorks executables, references to external symbols
8530 are handled using copy relocs or PLT stubs, so there's
8531 no need to add a .rela.dyn entry for this relocation. */
8532 if (can_make_dynamic_p)
8534 if (sreloc == NULL)
8536 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8537 if (sreloc == NULL)
8538 return FALSE;
8540 if (bfd_link_pic (info) && h == NULL)
8542 /* When creating a shared object, we must copy these
8543 reloc types into the output file as R_MIPS_REL32
8544 relocs. Make room for this reloc in .rel(a).dyn. */
8545 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8546 if (MIPS_ELF_READONLY_SECTION (sec))
8547 /* We tell the dynamic linker that there are
8548 relocations against the text segment. */
8549 info->flags |= DF_TEXTREL;
8551 else
8553 struct mips_elf_link_hash_entry *hmips;
8555 /* For a shared object, we must copy this relocation
8556 unless the symbol turns out to be undefined and
8557 weak with non-default visibility, in which case
8558 it will be left as zero.
8560 We could elide R_MIPS_REL32 for locally binding symbols
8561 in shared libraries, but do not yet do so.
8563 For an executable, we only need to copy this
8564 reloc if the symbol is defined in a dynamic
8565 object. */
8566 hmips = (struct mips_elf_link_hash_entry *) h;
8567 ++hmips->possibly_dynamic_relocs;
8568 if (MIPS_ELF_READONLY_SECTION (sec))
8569 /* We need it to tell the dynamic linker if there
8570 are relocations against the text segment. */
8571 hmips->readonly_reloc = TRUE;
8575 if (SGI_COMPAT (abfd))
8576 mips_elf_hash_table (info)->compact_rel_size +=
8577 sizeof (Elf32_External_crinfo);
8578 break;
8580 case R_MIPS_26:
8581 case R_MIPS_GPREL16:
8582 case R_MIPS_LITERAL:
8583 case R_MIPS_GPREL32:
8584 case R_MICROMIPS_26_S1:
8585 case R_MICROMIPS_GPREL16:
8586 case R_MICROMIPS_LITERAL:
8587 case R_MICROMIPS_GPREL7_S2:
8588 if (SGI_COMPAT (abfd))
8589 mips_elf_hash_table (info)->compact_rel_size +=
8590 sizeof (Elf32_External_crinfo);
8591 break;
8593 /* This relocation describes the C++ object vtable hierarchy.
8594 Reconstruct it for later use during GC. */
8595 case R_MIPS_GNU_VTINHERIT:
8596 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8597 return FALSE;
8598 break;
8600 /* This relocation describes which C++ vtable entries are actually
8601 used. Record for later use during GC. */
8602 case R_MIPS_GNU_VTENTRY:
8603 BFD_ASSERT (h != NULL);
8604 if (h != NULL
8605 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8606 return FALSE;
8607 break;
8609 default:
8610 break;
8613 /* Record the need for a PLT entry. At this point we don't know
8614 yet if we are going to create a PLT in the first place, but
8615 we only record whether the relocation requires a standard MIPS
8616 or a compressed code entry anyway. If we don't make a PLT after
8617 all, then we'll just ignore these arrangements. Likewise if
8618 a PLT entry is not created because the symbol is satisfied
8619 locally. */
8620 if (h != NULL
8621 && jal_reloc_p (r_type)
8622 && !SYMBOL_CALLS_LOCAL (info, h))
8624 if (h->plt.plist == NULL)
8625 h->plt.plist = mips_elf_make_plt_record (abfd);
8626 if (h->plt.plist == NULL)
8627 return FALSE;
8629 if (r_type == R_MIPS_26)
8630 h->plt.plist->need_mips = TRUE;
8631 else
8632 h->plt.plist->need_comp = TRUE;
8635 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8636 if there is one. We only need to handle global symbols here;
8637 we decide whether to keep or delete stubs for local symbols
8638 when processing the stub's relocations. */
8639 if (h != NULL
8640 && !mips16_call_reloc_p (r_type)
8641 && !section_allows_mips16_refs_p (sec))
8643 struct mips_elf_link_hash_entry *mh;
8645 mh = (struct mips_elf_link_hash_entry *) h;
8646 mh->need_fn_stub = TRUE;
8649 /* Refuse some position-dependent relocations when creating a
8650 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8651 not PIC, but we can create dynamic relocations and the result
8652 will be fine. Also do not refuse R_MIPS_LO16, which can be
8653 combined with R_MIPS_GOT16. */
8654 if (bfd_link_pic (info))
8656 switch (r_type)
8658 case R_MIPS16_HI16:
8659 case R_MIPS_HI16:
8660 case R_MIPS_HIGHER:
8661 case R_MIPS_HIGHEST:
8662 case R_MICROMIPS_HI16:
8663 case R_MICROMIPS_HIGHER:
8664 case R_MICROMIPS_HIGHEST:
8665 /* Don't refuse a high part relocation if it's against
8666 no symbol (e.g. part of a compound relocation). */
8667 if (r_symndx == STN_UNDEF)
8668 break;
8670 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8671 and has a special meaning. */
8672 if (!NEWABI_P (abfd) && h != NULL
8673 && strcmp (h->root.root.string, "_gp_disp") == 0)
8674 break;
8676 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8677 if (is_gott_symbol (info, h))
8678 break;
8680 /* FALLTHROUGH */
8682 case R_MIPS16_26:
8683 case R_MIPS_26:
8684 case R_MICROMIPS_26_S1:
8685 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8686 (*_bfd_error_handler)
8687 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8688 abfd, howto->name,
8689 (h) ? h->root.root.string : "a local symbol");
8690 bfd_set_error (bfd_error_bad_value);
8691 return FALSE;
8692 default:
8693 break;
8698 return TRUE;
8701 bfd_boolean
8702 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8703 struct bfd_link_info *link_info,
8704 bfd_boolean *again)
8706 Elf_Internal_Rela *internal_relocs;
8707 Elf_Internal_Rela *irel, *irelend;
8708 Elf_Internal_Shdr *symtab_hdr;
8709 bfd_byte *contents = NULL;
8710 size_t extsymoff;
8711 bfd_boolean changed_contents = FALSE;
8712 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8713 Elf_Internal_Sym *isymbuf = NULL;
8715 /* We are not currently changing any sizes, so only one pass. */
8716 *again = FALSE;
8718 if (bfd_link_relocatable (link_info))
8719 return TRUE;
8721 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8722 link_info->keep_memory);
8723 if (internal_relocs == NULL)
8724 return TRUE;
8726 irelend = internal_relocs + sec->reloc_count
8727 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8728 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8729 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8731 for (irel = internal_relocs; irel < irelend; irel++)
8733 bfd_vma symval;
8734 bfd_signed_vma sym_offset;
8735 unsigned int r_type;
8736 unsigned long r_symndx;
8737 asection *sym_sec;
8738 unsigned long instruction;
8740 /* Turn jalr into bgezal, and jr into beq, if they're marked
8741 with a JALR relocation, that indicate where they jump to.
8742 This saves some pipeline bubbles. */
8743 r_type = ELF_R_TYPE (abfd, irel->r_info);
8744 if (r_type != R_MIPS_JALR)
8745 continue;
8747 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8748 /* Compute the address of the jump target. */
8749 if (r_symndx >= extsymoff)
8751 struct mips_elf_link_hash_entry *h
8752 = ((struct mips_elf_link_hash_entry *)
8753 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8755 while (h->root.root.type == bfd_link_hash_indirect
8756 || h->root.root.type == bfd_link_hash_warning)
8757 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8759 /* If a symbol is undefined, or if it may be overridden,
8760 skip it. */
8761 if (! ((h->root.root.type == bfd_link_hash_defined
8762 || h->root.root.type == bfd_link_hash_defweak)
8763 && h->root.root.u.def.section)
8764 || (bfd_link_pic (link_info) && ! link_info->symbolic
8765 && !h->root.forced_local))
8766 continue;
8768 sym_sec = h->root.root.u.def.section;
8769 if (sym_sec->output_section)
8770 symval = (h->root.root.u.def.value
8771 + sym_sec->output_section->vma
8772 + sym_sec->output_offset);
8773 else
8774 symval = h->root.root.u.def.value;
8776 else
8778 Elf_Internal_Sym *isym;
8780 /* Read this BFD's symbols if we haven't done so already. */
8781 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8783 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8784 if (isymbuf == NULL)
8785 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8786 symtab_hdr->sh_info, 0,
8787 NULL, NULL, NULL);
8788 if (isymbuf == NULL)
8789 goto relax_return;
8792 isym = isymbuf + r_symndx;
8793 if (isym->st_shndx == SHN_UNDEF)
8794 continue;
8795 else if (isym->st_shndx == SHN_ABS)
8796 sym_sec = bfd_abs_section_ptr;
8797 else if (isym->st_shndx == SHN_COMMON)
8798 sym_sec = bfd_com_section_ptr;
8799 else
8800 sym_sec
8801 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8802 symval = isym->st_value
8803 + sym_sec->output_section->vma
8804 + sym_sec->output_offset;
8807 /* Compute branch offset, from delay slot of the jump to the
8808 branch target. */
8809 sym_offset = (symval + irel->r_addend)
8810 - (sec_start + irel->r_offset + 4);
8812 /* Branch offset must be properly aligned. */
8813 if ((sym_offset & 3) != 0)
8814 continue;
8816 sym_offset >>= 2;
8818 /* Check that it's in range. */
8819 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8820 continue;
8822 /* Get the section contents if we haven't done so already. */
8823 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8824 goto relax_return;
8826 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8828 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8829 if ((instruction & 0xfc1fffff) == 0x0000f809)
8830 instruction = 0x04110000;
8831 /* If it was jr <reg>, turn it into b <target>. */
8832 else if ((instruction & 0xfc1fffff) == 0x00000008)
8833 instruction = 0x10000000;
8834 else
8835 continue;
8837 instruction |= (sym_offset & 0xffff);
8838 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8839 changed_contents = TRUE;
8842 if (contents != NULL
8843 && elf_section_data (sec)->this_hdr.contents != contents)
8845 if (!changed_contents && !link_info->keep_memory)
8846 free (contents);
8847 else
8849 /* Cache the section contents for elf_link_input_bfd. */
8850 elf_section_data (sec)->this_hdr.contents = contents;
8853 return TRUE;
8855 relax_return:
8856 if (contents != NULL
8857 && elf_section_data (sec)->this_hdr.contents != contents)
8858 free (contents);
8859 return FALSE;
8862 /* Allocate space for global sym dynamic relocs. */
8864 static bfd_boolean
8865 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8867 struct bfd_link_info *info = inf;
8868 bfd *dynobj;
8869 struct mips_elf_link_hash_entry *hmips;
8870 struct mips_elf_link_hash_table *htab;
8872 htab = mips_elf_hash_table (info);
8873 BFD_ASSERT (htab != NULL);
8875 dynobj = elf_hash_table (info)->dynobj;
8876 hmips = (struct mips_elf_link_hash_entry *) h;
8878 /* VxWorks executables are handled elsewhere; we only need to
8879 allocate relocations in shared objects. */
8880 if (htab->is_vxworks && !bfd_link_pic (info))
8881 return TRUE;
8883 /* Ignore indirect symbols. All relocations against such symbols
8884 will be redirected to the target symbol. */
8885 if (h->root.type == bfd_link_hash_indirect)
8886 return TRUE;
8888 /* If this symbol is defined in a dynamic object, or we are creating
8889 a shared library, we will need to copy any R_MIPS_32 or
8890 R_MIPS_REL32 relocs against it into the output file. */
8891 if (! bfd_link_relocatable (info)
8892 && hmips->possibly_dynamic_relocs != 0
8893 && (h->root.type == bfd_link_hash_defweak
8894 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8895 || bfd_link_pic (info)))
8897 bfd_boolean do_copy = TRUE;
8899 if (h->root.type == bfd_link_hash_undefweak)
8901 /* Do not copy relocations for undefined weak symbols with
8902 non-default visibility. */
8903 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8904 do_copy = FALSE;
8906 /* Make sure undefined weak symbols are output as a dynamic
8907 symbol in PIEs. */
8908 else if (h->dynindx == -1 && !h->forced_local)
8910 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8911 return FALSE;
8915 if (do_copy)
8917 /* Even though we don't directly need a GOT entry for this symbol,
8918 the SVR4 psABI requires it to have a dynamic symbol table
8919 index greater that DT_MIPS_GOTSYM if there are dynamic
8920 relocations against it.
8922 VxWorks does not enforce the same mapping between the GOT
8923 and the symbol table, so the same requirement does not
8924 apply there. */
8925 if (!htab->is_vxworks)
8927 if (hmips->global_got_area > GGA_RELOC_ONLY)
8928 hmips->global_got_area = GGA_RELOC_ONLY;
8929 hmips->got_only_for_calls = FALSE;
8932 mips_elf_allocate_dynamic_relocations
8933 (dynobj, info, hmips->possibly_dynamic_relocs);
8934 if (hmips->readonly_reloc)
8935 /* We tell the dynamic linker that there are relocations
8936 against the text segment. */
8937 info->flags |= DF_TEXTREL;
8941 return TRUE;
8944 /* Adjust a symbol defined by a dynamic object and referenced by a
8945 regular object. The current definition is in some section of the
8946 dynamic object, but we're not including those sections. We have to
8947 change the definition to something the rest of the link can
8948 understand. */
8950 bfd_boolean
8951 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8952 struct elf_link_hash_entry *h)
8954 bfd *dynobj;
8955 struct mips_elf_link_hash_entry *hmips;
8956 struct mips_elf_link_hash_table *htab;
8958 htab = mips_elf_hash_table (info);
8959 BFD_ASSERT (htab != NULL);
8961 dynobj = elf_hash_table (info)->dynobj;
8962 hmips = (struct mips_elf_link_hash_entry *) h;
8964 /* Make sure we know what is going on here. */
8965 BFD_ASSERT (dynobj != NULL
8966 && (h->needs_plt
8967 || h->u.weakdef != NULL
8968 || (h->def_dynamic
8969 && h->ref_regular
8970 && !h->def_regular)));
8972 hmips = (struct mips_elf_link_hash_entry *) h;
8974 /* If there are call relocations against an externally-defined symbol,
8975 see whether we can create a MIPS lazy-binding stub for it. We can
8976 only do this if all references to the function are through call
8977 relocations, and in that case, the traditional lazy-binding stubs
8978 are much more efficient than PLT entries.
8980 Traditional stubs are only available on SVR4 psABI-based systems;
8981 VxWorks always uses PLTs instead. */
8982 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8984 if (! elf_hash_table (info)->dynamic_sections_created)
8985 return TRUE;
8987 /* If this symbol is not defined in a regular file, then set
8988 the symbol to the stub location. This is required to make
8989 function pointers compare as equal between the normal
8990 executable and the shared library. */
8991 if (!h->def_regular)
8993 hmips->needs_lazy_stub = TRUE;
8994 htab->lazy_stub_count++;
8995 return TRUE;
8998 /* As above, VxWorks requires PLT entries for externally-defined
8999 functions that are only accessed through call relocations.
9001 Both VxWorks and non-VxWorks targets also need PLT entries if there
9002 are static-only relocations against an externally-defined function.
9003 This can technically occur for shared libraries if there are
9004 branches to the symbol, although it is unlikely that this will be
9005 used in practice due to the short ranges involved. It can occur
9006 for any relative or absolute relocation in executables; in that
9007 case, the PLT entry becomes the function's canonical address. */
9008 else if (((h->needs_plt && !hmips->no_fn_stub)
9009 || (h->type == STT_FUNC && hmips->has_static_relocs))
9010 && htab->use_plts_and_copy_relocs
9011 && !SYMBOL_CALLS_LOCAL (info, h)
9012 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9013 && h->root.type == bfd_link_hash_undefweak))
9015 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9016 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9018 /* If this is the first symbol to need a PLT entry, then make some
9019 basic setup. Also work out PLT entry sizes. We'll need them
9020 for PLT offset calculations. */
9021 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9023 BFD_ASSERT (htab->sgotplt->size == 0);
9024 BFD_ASSERT (htab->plt_got_index == 0);
9026 /* If we're using the PLT additions to the psABI, each PLT
9027 entry is 16 bytes and the PLT0 entry is 32 bytes.
9028 Encourage better cache usage by aligning. We do this
9029 lazily to avoid pessimizing traditional objects. */
9030 if (!htab->is_vxworks
9031 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9032 return FALSE;
9034 /* Make sure that .got.plt is word-aligned. We do this lazily
9035 for the same reason as above. */
9036 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9037 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9038 return FALSE;
9040 /* On non-VxWorks targets, the first two entries in .got.plt
9041 are reserved. */
9042 if (!htab->is_vxworks)
9043 htab->plt_got_index
9044 += (get_elf_backend_data (dynobj)->got_header_size
9045 / MIPS_ELF_GOT_SIZE (dynobj));
9047 /* On VxWorks, also allocate room for the header's
9048 .rela.plt.unloaded entries. */
9049 if (htab->is_vxworks && !bfd_link_pic (info))
9050 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9052 /* Now work out the sizes of individual PLT entries. */
9053 if (htab->is_vxworks && bfd_link_pic (info))
9054 htab->plt_mips_entry_size
9055 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9056 else if (htab->is_vxworks)
9057 htab->plt_mips_entry_size
9058 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9059 else if (newabi_p)
9060 htab->plt_mips_entry_size
9061 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9062 else if (!micromips_p)
9064 htab->plt_mips_entry_size
9065 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9066 htab->plt_comp_entry_size
9067 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9069 else if (htab->insn32)
9071 htab->plt_mips_entry_size
9072 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9073 htab->plt_comp_entry_size
9074 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9076 else
9078 htab->plt_mips_entry_size
9079 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9080 htab->plt_comp_entry_size
9081 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9085 if (h->plt.plist == NULL)
9086 h->plt.plist = mips_elf_make_plt_record (dynobj);
9087 if (h->plt.plist == NULL)
9088 return FALSE;
9090 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9091 n32 or n64, so always use a standard entry there.
9093 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9094 all MIPS16 calls will go via that stub, and there is no benefit
9095 to having a MIPS16 entry. And in the case of call_stub a
9096 standard entry actually has to be used as the stub ends with a J
9097 instruction. */
9098 if (newabi_p
9099 || htab->is_vxworks
9100 || hmips->call_stub
9101 || hmips->call_fp_stub)
9103 h->plt.plist->need_mips = TRUE;
9104 h->plt.plist->need_comp = FALSE;
9107 /* Otherwise, if there are no direct calls to the function, we
9108 have a free choice of whether to use standard or compressed
9109 entries. Prefer microMIPS entries if the object is known to
9110 contain microMIPS code, so that it becomes possible to create
9111 pure microMIPS binaries. Prefer standard entries otherwise,
9112 because MIPS16 ones are no smaller and are usually slower. */
9113 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9115 if (micromips_p)
9116 h->plt.plist->need_comp = TRUE;
9117 else
9118 h->plt.plist->need_mips = TRUE;
9121 if (h->plt.plist->need_mips)
9123 h->plt.plist->mips_offset = htab->plt_mips_offset;
9124 htab->plt_mips_offset += htab->plt_mips_entry_size;
9126 if (h->plt.plist->need_comp)
9128 h->plt.plist->comp_offset = htab->plt_comp_offset;
9129 htab->plt_comp_offset += htab->plt_comp_entry_size;
9132 /* Reserve the corresponding .got.plt entry now too. */
9133 h->plt.plist->gotplt_index = htab->plt_got_index++;
9135 /* If the output file has no definition of the symbol, set the
9136 symbol's value to the address of the stub. */
9137 if (!bfd_link_pic (info) && !h->def_regular)
9138 hmips->use_plt_entry = TRUE;
9140 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9141 htab->srelplt->size += (htab->is_vxworks
9142 ? MIPS_ELF_RELA_SIZE (dynobj)
9143 : MIPS_ELF_REL_SIZE (dynobj));
9145 /* Make room for the .rela.plt.unloaded relocations. */
9146 if (htab->is_vxworks && !bfd_link_pic (info))
9147 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9149 /* All relocations against this symbol that could have been made
9150 dynamic will now refer to the PLT entry instead. */
9151 hmips->possibly_dynamic_relocs = 0;
9153 return TRUE;
9156 /* If this is a weak symbol, and there is a real definition, the
9157 processor independent code will have arranged for us to see the
9158 real definition first, and we can just use the same value. */
9159 if (h->u.weakdef != NULL)
9161 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9162 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9163 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9164 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9165 return TRUE;
9168 /* Otherwise, there is nothing further to do for symbols defined
9169 in regular objects. */
9170 if (h->def_regular)
9171 return TRUE;
9173 /* There's also nothing more to do if we'll convert all relocations
9174 against this symbol into dynamic relocations. */
9175 if (!hmips->has_static_relocs)
9176 return TRUE;
9178 /* We're now relying on copy relocations. Complain if we have
9179 some that we can't convert. */
9180 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9182 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9183 "dynamic symbol %s"),
9184 h->root.root.string);
9185 bfd_set_error (bfd_error_bad_value);
9186 return FALSE;
9189 /* We must allocate the symbol in our .dynbss section, which will
9190 become part of the .bss section of the executable. There will be
9191 an entry for this symbol in the .dynsym section. The dynamic
9192 object will contain position independent code, so all references
9193 from the dynamic object to this symbol will go through the global
9194 offset table. The dynamic linker will use the .dynsym entry to
9195 determine the address it must put in the global offset table, so
9196 both the dynamic object and the regular object will refer to the
9197 same memory location for the variable. */
9199 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9201 if (htab->is_vxworks)
9202 htab->srelbss->size += sizeof (Elf32_External_Rela);
9203 else
9204 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9205 h->needs_copy = 1;
9208 /* All relocations against this symbol that could have been made
9209 dynamic will now refer to the local copy instead. */
9210 hmips->possibly_dynamic_relocs = 0;
9212 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9215 /* This function is called after all the input files have been read,
9216 and the input sections have been assigned to output sections. We
9217 check for any mips16 stub sections that we can discard. */
9219 bfd_boolean
9220 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9221 struct bfd_link_info *info)
9223 asection *sect;
9224 struct mips_elf_link_hash_table *htab;
9225 struct mips_htab_traverse_info hti;
9227 htab = mips_elf_hash_table (info);
9228 BFD_ASSERT (htab != NULL);
9230 /* The .reginfo section has a fixed size. */
9231 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9232 if (sect != NULL)
9233 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9235 /* The .MIPS.abiflags section has a fixed size. */
9236 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9237 if (sect != NULL)
9238 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9240 hti.info = info;
9241 hti.output_bfd = output_bfd;
9242 hti.error = FALSE;
9243 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9244 mips_elf_check_symbols, &hti);
9245 if (hti.error)
9246 return FALSE;
9248 return TRUE;
9251 /* If the link uses a GOT, lay it out and work out its size. */
9253 static bfd_boolean
9254 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9256 bfd *dynobj;
9257 asection *s;
9258 struct mips_got_info *g;
9259 bfd_size_type loadable_size = 0;
9260 bfd_size_type page_gotno;
9261 bfd *ibfd;
9262 struct mips_elf_traverse_got_arg tga;
9263 struct mips_elf_link_hash_table *htab;
9265 htab = mips_elf_hash_table (info);
9266 BFD_ASSERT (htab != NULL);
9268 s = htab->sgot;
9269 if (s == NULL)
9270 return TRUE;
9272 dynobj = elf_hash_table (info)->dynobj;
9273 g = htab->got_info;
9275 /* Allocate room for the reserved entries. VxWorks always reserves
9276 3 entries; other objects only reserve 2 entries. */
9277 BFD_ASSERT (g->assigned_low_gotno == 0);
9278 if (htab->is_vxworks)
9279 htab->reserved_gotno = 3;
9280 else
9281 htab->reserved_gotno = 2;
9282 g->local_gotno += htab->reserved_gotno;
9283 g->assigned_low_gotno = htab->reserved_gotno;
9285 /* Decide which symbols need to go in the global part of the GOT and
9286 count the number of reloc-only GOT symbols. */
9287 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9289 if (!mips_elf_resolve_final_got_entries (info, g))
9290 return FALSE;
9292 /* Calculate the total loadable size of the output. That
9293 will give us the maximum number of GOT_PAGE entries
9294 required. */
9295 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9297 asection *subsection;
9299 for (subsection = ibfd->sections;
9300 subsection;
9301 subsection = subsection->next)
9303 if ((subsection->flags & SEC_ALLOC) == 0)
9304 continue;
9305 loadable_size += ((subsection->size + 0xf)
9306 &~ (bfd_size_type) 0xf);
9310 if (htab->is_vxworks)
9311 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9312 relocations against local symbols evaluate to "G", and the EABI does
9313 not include R_MIPS_GOT_PAGE. */
9314 page_gotno = 0;
9315 else
9316 /* Assume there are two loadable segments consisting of contiguous
9317 sections. Is 5 enough? */
9318 page_gotno = (loadable_size >> 16) + 5;
9320 /* Choose the smaller of the two page estimates; both are intended to be
9321 conservative. */
9322 if (page_gotno > g->page_gotno)
9323 page_gotno = g->page_gotno;
9325 g->local_gotno += page_gotno;
9326 g->assigned_high_gotno = g->local_gotno - 1;
9328 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9329 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9330 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9332 /* VxWorks does not support multiple GOTs. It initializes $gp to
9333 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9334 dynamic loader. */
9335 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9337 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9338 return FALSE;
9340 else
9342 /* Record that all bfds use G. This also has the effect of freeing
9343 the per-bfd GOTs, which we no longer need. */
9344 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9345 if (mips_elf_bfd_got (ibfd, FALSE))
9346 mips_elf_replace_bfd_got (ibfd, g);
9347 mips_elf_replace_bfd_got (output_bfd, g);
9349 /* Set up TLS entries. */
9350 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9351 tga.info = info;
9352 tga.g = g;
9353 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9354 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9355 if (!tga.g)
9356 return FALSE;
9357 BFD_ASSERT (g->tls_assigned_gotno
9358 == g->global_gotno + g->local_gotno + g->tls_gotno);
9360 /* Each VxWorks GOT entry needs an explicit relocation. */
9361 if (htab->is_vxworks && bfd_link_pic (info))
9362 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9364 /* Allocate room for the TLS relocations. */
9365 if (g->relocs)
9366 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9369 return TRUE;
9372 /* Estimate the size of the .MIPS.stubs section. */
9374 static void
9375 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9377 struct mips_elf_link_hash_table *htab;
9378 bfd_size_type dynsymcount;
9380 htab = mips_elf_hash_table (info);
9381 BFD_ASSERT (htab != NULL);
9383 if (htab->lazy_stub_count == 0)
9384 return;
9386 /* IRIX rld assumes that a function stub isn't at the end of the .text
9387 section, so add a dummy entry to the end. */
9388 htab->lazy_stub_count++;
9390 /* Get a worst-case estimate of the number of dynamic symbols needed.
9391 At this point, dynsymcount does not account for section symbols
9392 and count_section_dynsyms may overestimate the number that will
9393 be needed. */
9394 dynsymcount = (elf_hash_table (info)->dynsymcount
9395 + count_section_dynsyms (output_bfd, info));
9397 /* Determine the size of one stub entry. There's no disadvantage
9398 from using microMIPS code here, so for the sake of pure-microMIPS
9399 binaries we prefer it whenever there's any microMIPS code in
9400 output produced at all. This has a benefit of stubs being
9401 shorter by 4 bytes each too, unless in the insn32 mode. */
9402 if (!MICROMIPS_P (output_bfd))
9403 htab->function_stub_size = (dynsymcount > 0x10000
9404 ? MIPS_FUNCTION_STUB_BIG_SIZE
9405 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9406 else if (htab->insn32)
9407 htab->function_stub_size = (dynsymcount > 0x10000
9408 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9409 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9410 else
9411 htab->function_stub_size = (dynsymcount > 0x10000
9412 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9413 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9415 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9418 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9419 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9420 stub, allocate an entry in the stubs section. */
9422 static bfd_boolean
9423 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9425 struct mips_htab_traverse_info *hti = data;
9426 struct mips_elf_link_hash_table *htab;
9427 struct bfd_link_info *info;
9428 bfd *output_bfd;
9430 info = hti->info;
9431 output_bfd = hti->output_bfd;
9432 htab = mips_elf_hash_table (info);
9433 BFD_ASSERT (htab != NULL);
9435 if (h->needs_lazy_stub)
9437 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9438 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9439 bfd_vma isa_bit = micromips_p;
9441 BFD_ASSERT (htab->root.dynobj != NULL);
9442 if (h->root.plt.plist == NULL)
9443 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9444 if (h->root.plt.plist == NULL)
9446 hti->error = TRUE;
9447 return FALSE;
9449 h->root.root.u.def.section = htab->sstubs;
9450 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9451 h->root.plt.plist->stub_offset = htab->sstubs->size;
9452 h->root.other = other;
9453 htab->sstubs->size += htab->function_stub_size;
9455 return TRUE;
9458 /* Allocate offsets in the stubs section to each symbol that needs one.
9459 Set the final size of the .MIPS.stub section. */
9461 static bfd_boolean
9462 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9464 bfd *output_bfd = info->output_bfd;
9465 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9466 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9467 bfd_vma isa_bit = micromips_p;
9468 struct mips_elf_link_hash_table *htab;
9469 struct mips_htab_traverse_info hti;
9470 struct elf_link_hash_entry *h;
9471 bfd *dynobj;
9473 htab = mips_elf_hash_table (info);
9474 BFD_ASSERT (htab != NULL);
9476 if (htab->lazy_stub_count == 0)
9477 return TRUE;
9479 htab->sstubs->size = 0;
9480 hti.info = info;
9481 hti.output_bfd = output_bfd;
9482 hti.error = FALSE;
9483 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9484 if (hti.error)
9485 return FALSE;
9486 htab->sstubs->size += htab->function_stub_size;
9487 BFD_ASSERT (htab->sstubs->size
9488 == htab->lazy_stub_count * htab->function_stub_size);
9490 dynobj = elf_hash_table (info)->dynobj;
9491 BFD_ASSERT (dynobj != NULL);
9492 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9493 if (h == NULL)
9494 return FALSE;
9495 h->root.u.def.value = isa_bit;
9496 h->other = other;
9497 h->type = STT_FUNC;
9499 return TRUE;
9502 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9503 bfd_link_info. If H uses the address of a PLT entry as the value
9504 of the symbol, then set the entry in the symbol table now. Prefer
9505 a standard MIPS PLT entry. */
9507 static bfd_boolean
9508 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9510 struct bfd_link_info *info = data;
9511 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9512 struct mips_elf_link_hash_table *htab;
9513 unsigned int other;
9514 bfd_vma isa_bit;
9515 bfd_vma val;
9517 htab = mips_elf_hash_table (info);
9518 BFD_ASSERT (htab != NULL);
9520 if (h->use_plt_entry)
9522 BFD_ASSERT (h->root.plt.plist != NULL);
9523 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9524 || h->root.plt.plist->comp_offset != MINUS_ONE);
9526 val = htab->plt_header_size;
9527 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9529 isa_bit = 0;
9530 val += h->root.plt.plist->mips_offset;
9531 other = 0;
9533 else
9535 isa_bit = 1;
9536 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9537 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9539 val += isa_bit;
9540 /* For VxWorks, point at the PLT load stub rather than the lazy
9541 resolution stub; this stub will become the canonical function
9542 address. */
9543 if (htab->is_vxworks)
9544 val += 8;
9546 h->root.root.u.def.section = htab->splt;
9547 h->root.root.u.def.value = val;
9548 h->root.other = other;
9551 return TRUE;
9554 /* Set the sizes of the dynamic sections. */
9556 bfd_boolean
9557 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9558 struct bfd_link_info *info)
9560 bfd *dynobj;
9561 asection *s, *sreldyn;
9562 bfd_boolean reltext;
9563 struct mips_elf_link_hash_table *htab;
9565 htab = mips_elf_hash_table (info);
9566 BFD_ASSERT (htab != NULL);
9567 dynobj = elf_hash_table (info)->dynobj;
9568 BFD_ASSERT (dynobj != NULL);
9570 if (elf_hash_table (info)->dynamic_sections_created)
9572 /* Set the contents of the .interp section to the interpreter. */
9573 if (bfd_link_executable (info) && !info->nointerp)
9575 s = bfd_get_linker_section (dynobj, ".interp");
9576 BFD_ASSERT (s != NULL);
9577 s->size
9578 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9579 s->contents
9580 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9583 /* Figure out the size of the PLT header if we know that we
9584 are using it. For the sake of cache alignment always use
9585 a standard header whenever any standard entries are present
9586 even if microMIPS entries are present as well. This also
9587 lets the microMIPS header rely on the value of $v0 only set
9588 by microMIPS entries, for a small size reduction.
9590 Set symbol table entry values for symbols that use the
9591 address of their PLT entry now that we can calculate it.
9593 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9594 haven't already in _bfd_elf_create_dynamic_sections. */
9595 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9597 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9598 && !htab->plt_mips_offset);
9599 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9600 bfd_vma isa_bit = micromips_p;
9601 struct elf_link_hash_entry *h;
9602 bfd_vma size;
9604 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9605 BFD_ASSERT (htab->sgotplt->size == 0);
9606 BFD_ASSERT (htab->splt->size == 0);
9608 if (htab->is_vxworks && bfd_link_pic (info))
9609 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9610 else if (htab->is_vxworks)
9611 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9612 else if (ABI_64_P (output_bfd))
9613 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9614 else if (ABI_N32_P (output_bfd))
9615 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9616 else if (!micromips_p)
9617 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9618 else if (htab->insn32)
9619 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9620 else
9621 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9623 htab->plt_header_is_comp = micromips_p;
9624 htab->plt_header_size = size;
9625 htab->splt->size = (size
9626 + htab->plt_mips_offset
9627 + htab->plt_comp_offset);
9628 htab->sgotplt->size = (htab->plt_got_index
9629 * MIPS_ELF_GOT_SIZE (dynobj));
9631 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9633 if (htab->root.hplt == NULL)
9635 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9636 "_PROCEDURE_LINKAGE_TABLE_");
9637 htab->root.hplt = h;
9638 if (h == NULL)
9639 return FALSE;
9642 h = htab->root.hplt;
9643 h->root.u.def.value = isa_bit;
9644 h->other = other;
9645 h->type = STT_FUNC;
9649 /* Allocate space for global sym dynamic relocs. */
9650 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9652 mips_elf_estimate_stub_size (output_bfd, info);
9654 if (!mips_elf_lay_out_got (output_bfd, info))
9655 return FALSE;
9657 mips_elf_lay_out_lazy_stubs (info);
9659 /* The check_relocs and adjust_dynamic_symbol entry points have
9660 determined the sizes of the various dynamic sections. Allocate
9661 memory for them. */
9662 reltext = FALSE;
9663 for (s = dynobj->sections; s != NULL; s = s->next)
9665 const char *name;
9667 /* It's OK to base decisions on the section name, because none
9668 of the dynobj section names depend upon the input files. */
9669 name = bfd_get_section_name (dynobj, s);
9671 if ((s->flags & SEC_LINKER_CREATED) == 0)
9672 continue;
9674 if (CONST_STRNEQ (name, ".rel"))
9676 if (s->size != 0)
9678 const char *outname;
9679 asection *target;
9681 /* If this relocation section applies to a read only
9682 section, then we probably need a DT_TEXTREL entry.
9683 If the relocation section is .rel(a).dyn, we always
9684 assert a DT_TEXTREL entry rather than testing whether
9685 there exists a relocation to a read only section or
9686 not. */
9687 outname = bfd_get_section_name (output_bfd,
9688 s->output_section);
9689 target = bfd_get_section_by_name (output_bfd, outname + 4);
9690 if ((target != NULL
9691 && (target->flags & SEC_READONLY) != 0
9692 && (target->flags & SEC_ALLOC) != 0)
9693 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9694 reltext = TRUE;
9696 /* We use the reloc_count field as a counter if we need
9697 to copy relocs into the output file. */
9698 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9699 s->reloc_count = 0;
9701 /* If combreloc is enabled, elf_link_sort_relocs() will
9702 sort relocations, but in a different way than we do,
9703 and before we're done creating relocations. Also, it
9704 will move them around between input sections'
9705 relocation's contents, so our sorting would be
9706 broken, so don't let it run. */
9707 info->combreloc = 0;
9710 else if (bfd_link_executable (info)
9711 && ! mips_elf_hash_table (info)->use_rld_obj_head
9712 && CONST_STRNEQ (name, ".rld_map"))
9714 /* We add a room for __rld_map. It will be filled in by the
9715 rtld to contain a pointer to the _r_debug structure. */
9716 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9718 else if (SGI_COMPAT (output_bfd)
9719 && CONST_STRNEQ (name, ".compact_rel"))
9720 s->size += mips_elf_hash_table (info)->compact_rel_size;
9721 else if (s == htab->splt)
9723 /* If the last PLT entry has a branch delay slot, allocate
9724 room for an extra nop to fill the delay slot. This is
9725 for CPUs without load interlocking. */
9726 if (! LOAD_INTERLOCKS_P (output_bfd)
9727 && ! htab->is_vxworks && s->size > 0)
9728 s->size += 4;
9730 else if (! CONST_STRNEQ (name, ".init")
9731 && s != htab->sgot
9732 && s != htab->sgotplt
9733 && s != htab->sstubs
9734 && s != htab->sdynbss)
9736 /* It's not one of our sections, so don't allocate space. */
9737 continue;
9740 if (s->size == 0)
9742 s->flags |= SEC_EXCLUDE;
9743 continue;
9746 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9747 continue;
9749 /* Allocate memory for the section contents. */
9750 s->contents = bfd_zalloc (dynobj, s->size);
9751 if (s->contents == NULL)
9753 bfd_set_error (bfd_error_no_memory);
9754 return FALSE;
9758 if (elf_hash_table (info)->dynamic_sections_created)
9760 /* Add some entries to the .dynamic section. We fill in the
9761 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9762 must add the entries now so that we get the correct size for
9763 the .dynamic section. */
9765 /* SGI object has the equivalence of DT_DEBUG in the
9766 DT_MIPS_RLD_MAP entry. This must come first because glibc
9767 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9768 may only look at the first one they see. */
9769 if (!bfd_link_pic (info)
9770 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9771 return FALSE;
9773 if (bfd_link_executable (info)
9774 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9775 return FALSE;
9777 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9778 used by the debugger. */
9779 if (bfd_link_executable (info)
9780 && !SGI_COMPAT (output_bfd)
9781 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9782 return FALSE;
9784 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9785 info->flags |= DF_TEXTREL;
9787 if ((info->flags & DF_TEXTREL) != 0)
9789 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9790 return FALSE;
9792 /* Clear the DF_TEXTREL flag. It will be set again if we
9793 write out an actual text relocation; we may not, because
9794 at this point we do not know whether e.g. any .eh_frame
9795 absolute relocations have been converted to PC-relative. */
9796 info->flags &= ~DF_TEXTREL;
9799 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9800 return FALSE;
9802 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9803 if (htab->is_vxworks)
9805 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9806 use any of the DT_MIPS_* tags. */
9807 if (sreldyn && sreldyn->size > 0)
9809 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9810 return FALSE;
9812 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9813 return FALSE;
9815 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9816 return FALSE;
9819 else
9821 if (sreldyn && sreldyn->size > 0)
9823 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9824 return FALSE;
9826 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9827 return FALSE;
9829 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9830 return FALSE;
9833 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9834 return FALSE;
9836 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9837 return FALSE;
9839 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9840 return FALSE;
9842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9843 return FALSE;
9845 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9846 return FALSE;
9848 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9849 return FALSE;
9851 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9852 return FALSE;
9854 if (IRIX_COMPAT (dynobj) == ict_irix5
9855 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9856 return FALSE;
9858 if (IRIX_COMPAT (dynobj) == ict_irix6
9859 && (bfd_get_section_by_name
9860 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9861 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9862 return FALSE;
9864 if (htab->splt->size > 0)
9866 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9867 return FALSE;
9869 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9870 return FALSE;
9872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9873 return FALSE;
9875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9876 return FALSE;
9878 if (htab->is_vxworks
9879 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9880 return FALSE;
9883 return TRUE;
9886 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9887 Adjust its R_ADDEND field so that it is correct for the output file.
9888 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9889 and sections respectively; both use symbol indexes. */
9891 static void
9892 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9893 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9894 asection **local_sections, Elf_Internal_Rela *rel)
9896 unsigned int r_type, r_symndx;
9897 Elf_Internal_Sym *sym;
9898 asection *sec;
9900 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9902 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9903 if (gprel16_reloc_p (r_type)
9904 || r_type == R_MIPS_GPREL32
9905 || literal_reloc_p (r_type))
9907 rel->r_addend += _bfd_get_gp_value (input_bfd);
9908 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9911 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9912 sym = local_syms + r_symndx;
9914 /* Adjust REL's addend to account for section merging. */
9915 if (!bfd_link_relocatable (info))
9917 sec = local_sections[r_symndx];
9918 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9921 /* This would normally be done by the rela_normal code in elflink.c. */
9922 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9923 rel->r_addend += local_sections[r_symndx]->output_offset;
9927 /* Handle relocations against symbols from removed linkonce sections,
9928 or sections discarded by a linker script. We use this wrapper around
9929 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9930 on 64-bit ELF targets. In this case for any relocation handled, which
9931 always be the first in a triplet, the remaining two have to be processed
9932 together with the first, even if they are R_MIPS_NONE. It is the symbol
9933 index referred by the first reloc that applies to all the three and the
9934 remaining two never refer to an object symbol. And it is the final
9935 relocation (the last non-null one) that determines the output field of
9936 the whole relocation so retrieve the corresponding howto structure for
9937 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9939 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9940 and therefore requires to be pasted in a loop. It also defines a block
9941 and does not protect any of its arguments, hence the extra brackets. */
9943 static void
9944 mips_reloc_against_discarded_section (bfd *output_bfd,
9945 struct bfd_link_info *info,
9946 bfd *input_bfd, asection *input_section,
9947 Elf_Internal_Rela **rel,
9948 const Elf_Internal_Rela **relend,
9949 bfd_boolean rel_reloc,
9950 reloc_howto_type *howto,
9951 bfd_byte *contents)
9953 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9954 int count = bed->s->int_rels_per_ext_rel;
9955 unsigned int r_type;
9956 int i;
9958 for (i = count - 1; i > 0; i--)
9960 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9961 if (r_type != R_MIPS_NONE)
9963 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9964 break;
9969 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9970 (*rel), count, (*relend),
9971 howto, i, contents);
9973 while (0);
9976 /* Relocate a MIPS ELF section. */
9978 bfd_boolean
9979 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9980 bfd *input_bfd, asection *input_section,
9981 bfd_byte *contents, Elf_Internal_Rela *relocs,
9982 Elf_Internal_Sym *local_syms,
9983 asection **local_sections)
9985 Elf_Internal_Rela *rel;
9986 const Elf_Internal_Rela *relend;
9987 bfd_vma addend = 0;
9988 bfd_boolean use_saved_addend_p = FALSE;
9989 const struct elf_backend_data *bed;
9991 bed = get_elf_backend_data (output_bfd);
9992 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9993 for (rel = relocs; rel < relend; ++rel)
9995 const char *name;
9996 bfd_vma value = 0;
9997 reloc_howto_type *howto;
9998 bfd_boolean cross_mode_jump_p = FALSE;
9999 /* TRUE if the relocation is a RELA relocation, rather than a
10000 REL relocation. */
10001 bfd_boolean rela_relocation_p = TRUE;
10002 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10003 const char *msg;
10004 unsigned long r_symndx;
10005 asection *sec;
10006 Elf_Internal_Shdr *symtab_hdr;
10007 struct elf_link_hash_entry *h;
10008 bfd_boolean rel_reloc;
10010 rel_reloc = (NEWABI_P (input_bfd)
10011 && mips_elf_rel_relocation_p (input_bfd, input_section,
10012 relocs, rel));
10013 /* Find the relocation howto for this relocation. */
10014 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10016 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10017 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10018 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10020 sec = local_sections[r_symndx];
10021 h = NULL;
10023 else
10025 unsigned long extsymoff;
10027 extsymoff = 0;
10028 if (!elf_bad_symtab (input_bfd))
10029 extsymoff = symtab_hdr->sh_info;
10030 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10031 while (h->root.type == bfd_link_hash_indirect
10032 || h->root.type == bfd_link_hash_warning)
10033 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10035 sec = NULL;
10036 if (h->root.type == bfd_link_hash_defined
10037 || h->root.type == bfd_link_hash_defweak)
10038 sec = h->root.u.def.section;
10041 if (sec != NULL && discarded_section (sec))
10043 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10044 input_section, &rel, &relend,
10045 rel_reloc, howto, contents);
10046 continue;
10049 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10051 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10052 64-bit code, but make sure all their addresses are in the
10053 lowermost or uppermost 32-bit section of the 64-bit address
10054 space. Thus, when they use an R_MIPS_64 they mean what is
10055 usually meant by R_MIPS_32, with the exception that the
10056 stored value is sign-extended to 64 bits. */
10057 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10059 /* On big-endian systems, we need to lie about the position
10060 of the reloc. */
10061 if (bfd_big_endian (input_bfd))
10062 rel->r_offset += 4;
10065 if (!use_saved_addend_p)
10067 /* If these relocations were originally of the REL variety,
10068 we must pull the addend out of the field that will be
10069 relocated. Otherwise, we simply use the contents of the
10070 RELA relocation. */
10071 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10072 relocs, rel))
10074 rela_relocation_p = FALSE;
10075 addend = mips_elf_read_rel_addend (input_bfd, rel,
10076 howto, contents);
10077 if (hi16_reloc_p (r_type)
10078 || (got16_reloc_p (r_type)
10079 && mips_elf_local_relocation_p (input_bfd, rel,
10080 local_sections)))
10082 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10083 contents, &addend))
10085 if (h)
10086 name = h->root.root.string;
10087 else
10088 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10089 local_syms + r_symndx,
10090 sec);
10091 (*_bfd_error_handler)
10092 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10093 input_bfd, input_section, name, howto->name,
10094 rel->r_offset);
10097 else
10098 addend <<= howto->rightshift;
10100 else
10101 addend = rel->r_addend;
10102 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10103 local_syms, local_sections, rel);
10106 if (bfd_link_relocatable (info))
10108 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10109 && bfd_big_endian (input_bfd))
10110 rel->r_offset -= 4;
10112 if (!rela_relocation_p && rel->r_addend)
10114 addend += rel->r_addend;
10115 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10116 addend = mips_elf_high (addend);
10117 else if (r_type == R_MIPS_HIGHER)
10118 addend = mips_elf_higher (addend);
10119 else if (r_type == R_MIPS_HIGHEST)
10120 addend = mips_elf_highest (addend);
10121 else
10122 addend >>= howto->rightshift;
10124 /* We use the source mask, rather than the destination
10125 mask because the place to which we are writing will be
10126 source of the addend in the final link. */
10127 addend &= howto->src_mask;
10129 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10130 /* See the comment above about using R_MIPS_64 in the 32-bit
10131 ABI. Here, we need to update the addend. It would be
10132 possible to get away with just using the R_MIPS_32 reloc
10133 but for endianness. */
10135 bfd_vma sign_bits;
10136 bfd_vma low_bits;
10137 bfd_vma high_bits;
10139 if (addend & ((bfd_vma) 1 << 31))
10140 #ifdef BFD64
10141 sign_bits = ((bfd_vma) 1 << 32) - 1;
10142 #else
10143 sign_bits = -1;
10144 #endif
10145 else
10146 sign_bits = 0;
10148 /* If we don't know that we have a 64-bit type,
10149 do two separate stores. */
10150 if (bfd_big_endian (input_bfd))
10152 /* Store the sign-bits (which are most significant)
10153 first. */
10154 low_bits = sign_bits;
10155 high_bits = addend;
10157 else
10159 low_bits = addend;
10160 high_bits = sign_bits;
10162 bfd_put_32 (input_bfd, low_bits,
10163 contents + rel->r_offset);
10164 bfd_put_32 (input_bfd, high_bits,
10165 contents + rel->r_offset + 4);
10166 continue;
10169 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10170 input_bfd, input_section,
10171 contents, FALSE))
10172 return FALSE;
10175 /* Go on to the next relocation. */
10176 continue;
10179 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10180 relocations for the same offset. In that case we are
10181 supposed to treat the output of each relocation as the addend
10182 for the next. */
10183 if (rel + 1 < relend
10184 && rel->r_offset == rel[1].r_offset
10185 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10186 use_saved_addend_p = TRUE;
10187 else
10188 use_saved_addend_p = FALSE;
10190 /* Figure out what value we are supposed to relocate. */
10191 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10192 input_section, info, rel,
10193 addend, howto, local_syms,
10194 local_sections, &value,
10195 &name, &cross_mode_jump_p,
10196 use_saved_addend_p))
10198 case bfd_reloc_continue:
10199 /* There's nothing to do. */
10200 continue;
10202 case bfd_reloc_undefined:
10203 /* mips_elf_calculate_relocation already called the
10204 undefined_symbol callback. There's no real point in
10205 trying to perform the relocation at this point, so we
10206 just skip ahead to the next relocation. */
10207 continue;
10209 case bfd_reloc_notsupported:
10210 msg = _("internal error: unsupported relocation error");
10211 info->callbacks->warning
10212 (info, msg, name, input_bfd, input_section, rel->r_offset);
10213 return FALSE;
10215 case bfd_reloc_overflow:
10216 if (use_saved_addend_p)
10217 /* Ignore overflow until we reach the last relocation for
10218 a given location. */
10220 else
10222 struct mips_elf_link_hash_table *htab;
10224 htab = mips_elf_hash_table (info);
10225 BFD_ASSERT (htab != NULL);
10226 BFD_ASSERT (name != NULL);
10227 if (!htab->small_data_overflow_reported
10228 && (gprel16_reloc_p (howto->type)
10229 || literal_reloc_p (howto->type)))
10231 msg = _("small-data section exceeds 64KB;"
10232 " lower small-data size limit (see option -G)");
10234 htab->small_data_overflow_reported = TRUE;
10235 (*info->callbacks->einfo) ("%P: %s\n", msg);
10237 if (! ((*info->callbacks->reloc_overflow)
10238 (info, NULL, name, howto->name, (bfd_vma) 0,
10239 input_bfd, input_section, rel->r_offset)))
10240 return FALSE;
10242 break;
10244 case bfd_reloc_ok:
10245 break;
10247 case bfd_reloc_outofrange:
10248 if (jal_reloc_p (howto->type))
10250 msg = _("JALX to a non-word-aligned address");
10251 info->callbacks->warning
10252 (info, msg, name, input_bfd, input_section, rel->r_offset);
10253 return FALSE;
10255 if (aligned_pcrel_reloc_p (howto->type))
10257 msg = _("PC-relative load from unaligned address");
10258 info->callbacks->warning
10259 (info, msg, name, input_bfd, input_section, rel->r_offset);
10260 return FALSE;
10262 /* Fall through. */
10264 default:
10265 abort ();
10266 break;
10269 /* If we've got another relocation for the address, keep going
10270 until we reach the last one. */
10271 if (use_saved_addend_p)
10273 addend = value;
10274 continue;
10277 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10278 /* See the comment above about using R_MIPS_64 in the 32-bit
10279 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10280 that calculated the right value. Now, however, we
10281 sign-extend the 32-bit result to 64-bits, and store it as a
10282 64-bit value. We are especially generous here in that we
10283 go to extreme lengths to support this usage on systems with
10284 only a 32-bit VMA. */
10286 bfd_vma sign_bits;
10287 bfd_vma low_bits;
10288 bfd_vma high_bits;
10290 if (value & ((bfd_vma) 1 << 31))
10291 #ifdef BFD64
10292 sign_bits = ((bfd_vma) 1 << 32) - 1;
10293 #else
10294 sign_bits = -1;
10295 #endif
10296 else
10297 sign_bits = 0;
10299 /* If we don't know that we have a 64-bit type,
10300 do two separate stores. */
10301 if (bfd_big_endian (input_bfd))
10303 /* Undo what we did above. */
10304 rel->r_offset -= 4;
10305 /* Store the sign-bits (which are most significant)
10306 first. */
10307 low_bits = sign_bits;
10308 high_bits = value;
10310 else
10312 low_bits = value;
10313 high_bits = sign_bits;
10315 bfd_put_32 (input_bfd, low_bits,
10316 contents + rel->r_offset);
10317 bfd_put_32 (input_bfd, high_bits,
10318 contents + rel->r_offset + 4);
10319 continue;
10322 /* Actually perform the relocation. */
10323 if (! mips_elf_perform_relocation (info, howto, rel, value,
10324 input_bfd, input_section,
10325 contents, cross_mode_jump_p))
10326 return FALSE;
10329 return TRUE;
10332 /* A function that iterates over each entry in la25_stubs and fills
10333 in the code for each one. DATA points to a mips_htab_traverse_info. */
10335 static int
10336 mips_elf_create_la25_stub (void **slot, void *data)
10338 struct mips_htab_traverse_info *hti;
10339 struct mips_elf_link_hash_table *htab;
10340 struct mips_elf_la25_stub *stub;
10341 asection *s;
10342 bfd_byte *loc;
10343 bfd_vma offset, target, target_high, target_low;
10345 stub = (struct mips_elf_la25_stub *) *slot;
10346 hti = (struct mips_htab_traverse_info *) data;
10347 htab = mips_elf_hash_table (hti->info);
10348 BFD_ASSERT (htab != NULL);
10350 /* Create the section contents, if we haven't already. */
10351 s = stub->stub_section;
10352 loc = s->contents;
10353 if (loc == NULL)
10355 loc = bfd_malloc (s->size);
10356 if (loc == NULL)
10358 hti->error = TRUE;
10359 return FALSE;
10361 s->contents = loc;
10364 /* Work out where in the section this stub should go. */
10365 offset = stub->offset;
10367 /* Work out the target address. */
10368 target = mips_elf_get_la25_target (stub, &s);
10369 target += s->output_section->vma + s->output_offset;
10371 target_high = ((target + 0x8000) >> 16) & 0xffff;
10372 target_low = (target & 0xffff);
10374 if (stub->stub_section != htab->strampoline)
10376 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10377 of the section and write the two instructions at the end. */
10378 memset (loc, 0, offset);
10379 loc += offset;
10380 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10382 bfd_put_micromips_32 (hti->output_bfd,
10383 LA25_LUI_MICROMIPS (target_high),
10384 loc);
10385 bfd_put_micromips_32 (hti->output_bfd,
10386 LA25_ADDIU_MICROMIPS (target_low),
10387 loc + 4);
10389 else
10391 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10392 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10395 else
10397 /* This is trampoline. */
10398 loc += offset;
10399 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10401 bfd_put_micromips_32 (hti->output_bfd,
10402 LA25_LUI_MICROMIPS (target_high), loc);
10403 bfd_put_micromips_32 (hti->output_bfd,
10404 LA25_J_MICROMIPS (target), loc + 4);
10405 bfd_put_micromips_32 (hti->output_bfd,
10406 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10407 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10409 else
10411 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10412 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10413 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10414 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10417 return TRUE;
10420 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10421 adjust it appropriately now. */
10423 static void
10424 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10425 const char *name, Elf_Internal_Sym *sym)
10427 /* The linker script takes care of providing names and values for
10428 these, but we must place them into the right sections. */
10429 static const char* const text_section_symbols[] = {
10430 "_ftext",
10431 "_etext",
10432 "__dso_displacement",
10433 "__elf_header",
10434 "__program_header_table",
10435 NULL
10438 static const char* const data_section_symbols[] = {
10439 "_fdata",
10440 "_edata",
10441 "_end",
10442 "_fbss",
10443 NULL
10446 const char* const *p;
10447 int i;
10449 for (i = 0; i < 2; ++i)
10450 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10452 ++p)
10453 if (strcmp (*p, name) == 0)
10455 /* All of these symbols are given type STT_SECTION by the
10456 IRIX6 linker. */
10457 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10458 sym->st_other = STO_PROTECTED;
10460 /* The IRIX linker puts these symbols in special sections. */
10461 if (i == 0)
10462 sym->st_shndx = SHN_MIPS_TEXT;
10463 else
10464 sym->st_shndx = SHN_MIPS_DATA;
10466 break;
10470 /* Finish up dynamic symbol handling. We set the contents of various
10471 dynamic sections here. */
10473 bfd_boolean
10474 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10475 struct bfd_link_info *info,
10476 struct elf_link_hash_entry *h,
10477 Elf_Internal_Sym *sym)
10479 bfd *dynobj;
10480 asection *sgot;
10481 struct mips_got_info *g, *gg;
10482 const char *name;
10483 int idx;
10484 struct mips_elf_link_hash_table *htab;
10485 struct mips_elf_link_hash_entry *hmips;
10487 htab = mips_elf_hash_table (info);
10488 BFD_ASSERT (htab != NULL);
10489 dynobj = elf_hash_table (info)->dynobj;
10490 hmips = (struct mips_elf_link_hash_entry *) h;
10492 BFD_ASSERT (!htab->is_vxworks);
10494 if (h->plt.plist != NULL
10495 && (h->plt.plist->mips_offset != MINUS_ONE
10496 || h->plt.plist->comp_offset != MINUS_ONE))
10498 /* We've decided to create a PLT entry for this symbol. */
10499 bfd_byte *loc;
10500 bfd_vma header_address, got_address;
10501 bfd_vma got_address_high, got_address_low, load;
10502 bfd_vma got_index;
10503 bfd_vma isa_bit;
10505 got_index = h->plt.plist->gotplt_index;
10507 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10508 BFD_ASSERT (h->dynindx != -1);
10509 BFD_ASSERT (htab->splt != NULL);
10510 BFD_ASSERT (got_index != MINUS_ONE);
10511 BFD_ASSERT (!h->def_regular);
10513 /* Calculate the address of the PLT header. */
10514 isa_bit = htab->plt_header_is_comp;
10515 header_address = (htab->splt->output_section->vma
10516 + htab->splt->output_offset + isa_bit);
10518 /* Calculate the address of the .got.plt entry. */
10519 got_address = (htab->sgotplt->output_section->vma
10520 + htab->sgotplt->output_offset
10521 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10523 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10524 got_address_low = got_address & 0xffff;
10526 /* Initially point the .got.plt entry at the PLT header. */
10527 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10528 if (ABI_64_P (output_bfd))
10529 bfd_put_64 (output_bfd, header_address, loc);
10530 else
10531 bfd_put_32 (output_bfd, header_address, loc);
10533 /* Now handle the PLT itself. First the standard entry (the order
10534 does not matter, we just have to pick one). */
10535 if (h->plt.plist->mips_offset != MINUS_ONE)
10537 const bfd_vma *plt_entry;
10538 bfd_vma plt_offset;
10540 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10542 BFD_ASSERT (plt_offset <= htab->splt->size);
10544 /* Find out where the .plt entry should go. */
10545 loc = htab->splt->contents + plt_offset;
10547 /* Pick the load opcode. */
10548 load = MIPS_ELF_LOAD_WORD (output_bfd);
10550 /* Fill in the PLT entry itself. */
10552 if (MIPSR6_P (output_bfd))
10553 plt_entry = mipsr6_exec_plt_entry;
10554 else
10555 plt_entry = mips_exec_plt_entry;
10556 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10557 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10558 loc + 4);
10560 if (! LOAD_INTERLOCKS_P (output_bfd))
10562 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10563 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10565 else
10567 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10568 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10569 loc + 12);
10573 /* Now the compressed entry. They come after any standard ones. */
10574 if (h->plt.plist->comp_offset != MINUS_ONE)
10576 bfd_vma plt_offset;
10578 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10579 + h->plt.plist->comp_offset);
10581 BFD_ASSERT (plt_offset <= htab->splt->size);
10583 /* Find out where the .plt entry should go. */
10584 loc = htab->splt->contents + plt_offset;
10586 /* Fill in the PLT entry itself. */
10587 if (!MICROMIPS_P (output_bfd))
10589 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10591 bfd_put_16 (output_bfd, plt_entry[0], loc);
10592 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10593 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10594 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10595 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10596 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10597 bfd_put_32 (output_bfd, got_address, loc + 12);
10599 else if (htab->insn32)
10601 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10603 bfd_put_16 (output_bfd, plt_entry[0], loc);
10604 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10605 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10606 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10607 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10608 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10609 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10610 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10612 else
10614 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10615 bfd_signed_vma gotpc_offset;
10616 bfd_vma loc_address;
10618 BFD_ASSERT (got_address % 4 == 0);
10620 loc_address = (htab->splt->output_section->vma
10621 + htab->splt->output_offset + plt_offset);
10622 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10624 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10625 if (gotpc_offset + 0x1000000 >= 0x2000000)
10627 (*_bfd_error_handler)
10628 (_("%B: `%A' offset of %ld from `%A' "
10629 "beyond the range of ADDIUPC"),
10630 output_bfd,
10631 htab->sgotplt->output_section,
10632 htab->splt->output_section,
10633 (long) gotpc_offset);
10634 bfd_set_error (bfd_error_no_error);
10635 return FALSE;
10637 bfd_put_16 (output_bfd,
10638 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10639 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10640 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10641 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10642 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10643 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10647 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10648 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10649 got_index - 2, h->dynindx,
10650 R_MIPS_JUMP_SLOT, got_address);
10652 /* We distinguish between PLT entries and lazy-binding stubs by
10653 giving the former an st_other value of STO_MIPS_PLT. Set the
10654 flag and leave the value if there are any relocations in the
10655 binary where pointer equality matters. */
10656 sym->st_shndx = SHN_UNDEF;
10657 if (h->pointer_equality_needed)
10658 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10659 else
10661 sym->st_value = 0;
10662 sym->st_other = 0;
10666 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10668 /* We've decided to create a lazy-binding stub. */
10669 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10670 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10671 bfd_vma stub_size = htab->function_stub_size;
10672 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10673 bfd_vma isa_bit = micromips_p;
10674 bfd_vma stub_big_size;
10676 if (!micromips_p)
10677 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10678 else if (htab->insn32)
10679 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10680 else
10681 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10683 /* This symbol has a stub. Set it up. */
10685 BFD_ASSERT (h->dynindx != -1);
10687 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10689 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10690 sign extension at runtime in the stub, resulting in a negative
10691 index value. */
10692 if (h->dynindx & ~0x7fffffff)
10693 return FALSE;
10695 /* Fill the stub. */
10696 if (micromips_p)
10698 idx = 0;
10699 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10700 stub + idx);
10701 idx += 4;
10702 if (htab->insn32)
10704 bfd_put_micromips_32 (output_bfd,
10705 STUB_MOVE32_MICROMIPS, stub + idx);
10706 idx += 4;
10708 else
10710 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10711 idx += 2;
10713 if (stub_size == stub_big_size)
10715 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10717 bfd_put_micromips_32 (output_bfd,
10718 STUB_LUI_MICROMIPS (dynindx_hi),
10719 stub + idx);
10720 idx += 4;
10722 if (htab->insn32)
10724 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10725 stub + idx);
10726 idx += 4;
10728 else
10730 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10731 idx += 2;
10734 /* If a large stub is not required and sign extension is not a
10735 problem, then use legacy code in the stub. */
10736 if (stub_size == stub_big_size)
10737 bfd_put_micromips_32 (output_bfd,
10738 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10739 stub + idx);
10740 else if (h->dynindx & ~0x7fff)
10741 bfd_put_micromips_32 (output_bfd,
10742 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10743 stub + idx);
10744 else
10745 bfd_put_micromips_32 (output_bfd,
10746 STUB_LI16S_MICROMIPS (output_bfd,
10747 h->dynindx),
10748 stub + idx);
10750 else
10752 idx = 0;
10753 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10754 idx += 4;
10755 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10756 idx += 4;
10757 if (stub_size == stub_big_size)
10759 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10760 stub + idx);
10761 idx += 4;
10763 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10764 idx += 4;
10766 /* If a large stub is not required and sign extension is not a
10767 problem, then use legacy code in the stub. */
10768 if (stub_size == stub_big_size)
10769 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10770 stub + idx);
10771 else if (h->dynindx & ~0x7fff)
10772 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10773 stub + idx);
10774 else
10775 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10776 stub + idx);
10779 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10780 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10781 stub, stub_size);
10783 /* Mark the symbol as undefined. stub_offset != -1 occurs
10784 only for the referenced symbol. */
10785 sym->st_shndx = SHN_UNDEF;
10787 /* The run-time linker uses the st_value field of the symbol
10788 to reset the global offset table entry for this external
10789 to its stub address when unlinking a shared object. */
10790 sym->st_value = (htab->sstubs->output_section->vma
10791 + htab->sstubs->output_offset
10792 + h->plt.plist->stub_offset
10793 + isa_bit);
10794 sym->st_other = other;
10797 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10798 refer to the stub, since only the stub uses the standard calling
10799 conventions. */
10800 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10802 BFD_ASSERT (hmips->need_fn_stub);
10803 sym->st_value = (hmips->fn_stub->output_section->vma
10804 + hmips->fn_stub->output_offset);
10805 sym->st_size = hmips->fn_stub->size;
10806 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10809 BFD_ASSERT (h->dynindx != -1
10810 || h->forced_local);
10812 sgot = htab->sgot;
10813 g = htab->got_info;
10814 BFD_ASSERT (g != NULL);
10816 /* Run through the global symbol table, creating GOT entries for all
10817 the symbols that need them. */
10818 if (hmips->global_got_area != GGA_NONE)
10820 bfd_vma offset;
10821 bfd_vma value;
10823 value = sym->st_value;
10824 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10825 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10828 if (hmips->global_got_area != GGA_NONE && g->next)
10830 struct mips_got_entry e, *p;
10831 bfd_vma entry;
10832 bfd_vma offset;
10834 gg = g;
10836 e.abfd = output_bfd;
10837 e.symndx = -1;
10838 e.d.h = hmips;
10839 e.tls_type = GOT_TLS_NONE;
10841 for (g = g->next; g->next != gg; g = g->next)
10843 if (g->got_entries
10844 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10845 &e)))
10847 offset = p->gotidx;
10848 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10849 if (bfd_link_pic (info)
10850 || (elf_hash_table (info)->dynamic_sections_created
10851 && p->d.h != NULL
10852 && p->d.h->root.def_dynamic
10853 && !p->d.h->root.def_regular))
10855 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10856 the various compatibility problems, it's easier to mock
10857 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10858 mips_elf_create_dynamic_relocation to calculate the
10859 appropriate addend. */
10860 Elf_Internal_Rela rel[3];
10862 memset (rel, 0, sizeof (rel));
10863 if (ABI_64_P (output_bfd))
10864 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10865 else
10866 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10867 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10869 entry = 0;
10870 if (! (mips_elf_create_dynamic_relocation
10871 (output_bfd, info, rel,
10872 e.d.h, NULL, sym->st_value, &entry, sgot)))
10873 return FALSE;
10875 else
10876 entry = sym->st_value;
10877 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10882 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10883 name = h->root.root.string;
10884 if (h == elf_hash_table (info)->hdynamic
10885 || h == elf_hash_table (info)->hgot)
10886 sym->st_shndx = SHN_ABS;
10887 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10888 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10890 sym->st_shndx = SHN_ABS;
10891 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10892 sym->st_value = 1;
10894 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10896 sym->st_shndx = SHN_ABS;
10897 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10898 sym->st_value = elf_gp (output_bfd);
10900 else if (SGI_COMPAT (output_bfd))
10902 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10903 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10905 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10906 sym->st_other = STO_PROTECTED;
10907 sym->st_value = 0;
10908 sym->st_shndx = SHN_MIPS_DATA;
10910 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10912 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10913 sym->st_other = STO_PROTECTED;
10914 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10915 sym->st_shndx = SHN_ABS;
10917 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10919 if (h->type == STT_FUNC)
10920 sym->st_shndx = SHN_MIPS_TEXT;
10921 else if (h->type == STT_OBJECT)
10922 sym->st_shndx = SHN_MIPS_DATA;
10926 /* Emit a copy reloc, if needed. */
10927 if (h->needs_copy)
10929 asection *s;
10930 bfd_vma symval;
10932 BFD_ASSERT (h->dynindx != -1);
10933 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10935 s = mips_elf_rel_dyn_section (info, FALSE);
10936 symval = (h->root.u.def.section->output_section->vma
10937 + h->root.u.def.section->output_offset
10938 + h->root.u.def.value);
10939 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10940 h->dynindx, R_MIPS_COPY, symval);
10943 /* Handle the IRIX6-specific symbols. */
10944 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10945 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10947 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10948 to treat compressed symbols like any other. */
10949 if (ELF_ST_IS_MIPS16 (sym->st_other))
10951 BFD_ASSERT (sym->st_value & 1);
10952 sym->st_other -= STO_MIPS16;
10954 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10956 BFD_ASSERT (sym->st_value & 1);
10957 sym->st_other -= STO_MICROMIPS;
10960 return TRUE;
10963 /* Likewise, for VxWorks. */
10965 bfd_boolean
10966 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10967 struct bfd_link_info *info,
10968 struct elf_link_hash_entry *h,
10969 Elf_Internal_Sym *sym)
10971 bfd *dynobj;
10972 asection *sgot;
10973 struct mips_got_info *g;
10974 struct mips_elf_link_hash_table *htab;
10975 struct mips_elf_link_hash_entry *hmips;
10977 htab = mips_elf_hash_table (info);
10978 BFD_ASSERT (htab != NULL);
10979 dynobj = elf_hash_table (info)->dynobj;
10980 hmips = (struct mips_elf_link_hash_entry *) h;
10982 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10984 bfd_byte *loc;
10985 bfd_vma plt_address, got_address, got_offset, branch_offset;
10986 Elf_Internal_Rela rel;
10987 static const bfd_vma *plt_entry;
10988 bfd_vma gotplt_index;
10989 bfd_vma plt_offset;
10991 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10992 gotplt_index = h->plt.plist->gotplt_index;
10994 BFD_ASSERT (h->dynindx != -1);
10995 BFD_ASSERT (htab->splt != NULL);
10996 BFD_ASSERT (gotplt_index != MINUS_ONE);
10997 BFD_ASSERT (plt_offset <= htab->splt->size);
10999 /* Calculate the address of the .plt entry. */
11000 plt_address = (htab->splt->output_section->vma
11001 + htab->splt->output_offset
11002 + plt_offset);
11004 /* Calculate the address of the .got.plt entry. */
11005 got_address = (htab->sgotplt->output_section->vma
11006 + htab->sgotplt->output_offset
11007 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11009 /* Calculate the offset of the .got.plt entry from
11010 _GLOBAL_OFFSET_TABLE_. */
11011 got_offset = mips_elf_gotplt_index (info, h);
11013 /* Calculate the offset for the branch at the start of the PLT
11014 entry. The branch jumps to the beginning of .plt. */
11015 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11017 /* Fill in the initial value of the .got.plt entry. */
11018 bfd_put_32 (output_bfd, plt_address,
11019 (htab->sgotplt->contents
11020 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11022 /* Find out where the .plt entry should go. */
11023 loc = htab->splt->contents + plt_offset;
11025 if (bfd_link_pic (info))
11027 plt_entry = mips_vxworks_shared_plt_entry;
11028 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11029 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11031 else
11033 bfd_vma got_address_high, got_address_low;
11035 plt_entry = mips_vxworks_exec_plt_entry;
11036 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11037 got_address_low = got_address & 0xffff;
11039 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11040 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11041 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11042 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11043 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11044 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11045 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11046 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11048 loc = (htab->srelplt2->contents
11049 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11051 /* Emit a relocation for the .got.plt entry. */
11052 rel.r_offset = got_address;
11053 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11054 rel.r_addend = plt_offset;
11055 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11057 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11058 loc += sizeof (Elf32_External_Rela);
11059 rel.r_offset = plt_address + 8;
11060 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11061 rel.r_addend = got_offset;
11062 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11064 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11065 loc += sizeof (Elf32_External_Rela);
11066 rel.r_offset += 4;
11067 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11068 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11071 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11072 loc = (htab->srelplt->contents
11073 + gotplt_index * sizeof (Elf32_External_Rela));
11074 rel.r_offset = got_address;
11075 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11076 rel.r_addend = 0;
11077 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11079 if (!h->def_regular)
11080 sym->st_shndx = SHN_UNDEF;
11083 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11085 sgot = htab->sgot;
11086 g = htab->got_info;
11087 BFD_ASSERT (g != NULL);
11089 /* See if this symbol has an entry in the GOT. */
11090 if (hmips->global_got_area != GGA_NONE)
11092 bfd_vma offset;
11093 Elf_Internal_Rela outrel;
11094 bfd_byte *loc;
11095 asection *s;
11097 /* Install the symbol value in the GOT. */
11098 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11099 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11101 /* Add a dynamic relocation for it. */
11102 s = mips_elf_rel_dyn_section (info, FALSE);
11103 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11104 outrel.r_offset = (sgot->output_section->vma
11105 + sgot->output_offset
11106 + offset);
11107 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11108 outrel.r_addend = 0;
11109 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11112 /* Emit a copy reloc, if needed. */
11113 if (h->needs_copy)
11115 Elf_Internal_Rela rel;
11117 BFD_ASSERT (h->dynindx != -1);
11119 rel.r_offset = (h->root.u.def.section->output_section->vma
11120 + h->root.u.def.section->output_offset
11121 + h->root.u.def.value);
11122 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11123 rel.r_addend = 0;
11124 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11125 htab->srelbss->contents
11126 + (htab->srelbss->reloc_count
11127 * sizeof (Elf32_External_Rela)));
11128 ++htab->srelbss->reloc_count;
11131 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11132 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11133 sym->st_value &= ~1;
11135 return TRUE;
11138 /* Write out a plt0 entry to the beginning of .plt. */
11140 static bfd_boolean
11141 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11143 bfd_byte *loc;
11144 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11145 static const bfd_vma *plt_entry;
11146 struct mips_elf_link_hash_table *htab;
11148 htab = mips_elf_hash_table (info);
11149 BFD_ASSERT (htab != NULL);
11151 if (ABI_64_P (output_bfd))
11152 plt_entry = mips_n64_exec_plt0_entry;
11153 else if (ABI_N32_P (output_bfd))
11154 plt_entry = mips_n32_exec_plt0_entry;
11155 else if (!htab->plt_header_is_comp)
11156 plt_entry = mips_o32_exec_plt0_entry;
11157 else if (htab->insn32)
11158 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11159 else
11160 plt_entry = micromips_o32_exec_plt0_entry;
11162 /* Calculate the value of .got.plt. */
11163 gotplt_value = (htab->sgotplt->output_section->vma
11164 + htab->sgotplt->output_offset);
11165 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11166 gotplt_value_low = gotplt_value & 0xffff;
11168 /* The PLT sequence is not safe for N64 if .got.plt's address can
11169 not be loaded in two instructions. */
11170 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11171 || ~(gotplt_value | 0x7fffffff) == 0);
11173 /* Install the PLT header. */
11174 loc = htab->splt->contents;
11175 if (plt_entry == micromips_o32_exec_plt0_entry)
11177 bfd_vma gotpc_offset;
11178 bfd_vma loc_address;
11179 size_t i;
11181 BFD_ASSERT (gotplt_value % 4 == 0);
11183 loc_address = (htab->splt->output_section->vma
11184 + htab->splt->output_offset);
11185 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11187 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11188 if (gotpc_offset + 0x1000000 >= 0x2000000)
11190 (*_bfd_error_handler)
11191 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11192 output_bfd,
11193 htab->sgotplt->output_section,
11194 htab->splt->output_section,
11195 (long) gotpc_offset);
11196 bfd_set_error (bfd_error_no_error);
11197 return FALSE;
11199 bfd_put_16 (output_bfd,
11200 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11201 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11202 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11203 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11205 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11207 size_t i;
11209 bfd_put_16 (output_bfd, plt_entry[0], loc);
11210 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11211 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11212 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11213 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11214 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11215 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11216 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11218 else
11220 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11221 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11222 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11223 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11224 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11225 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11226 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11227 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11230 return TRUE;
11233 /* Install the PLT header for a VxWorks executable and finalize the
11234 contents of .rela.plt.unloaded. */
11236 static void
11237 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11239 Elf_Internal_Rela rela;
11240 bfd_byte *loc;
11241 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11242 static const bfd_vma *plt_entry;
11243 struct mips_elf_link_hash_table *htab;
11245 htab = mips_elf_hash_table (info);
11246 BFD_ASSERT (htab != NULL);
11248 plt_entry = mips_vxworks_exec_plt0_entry;
11250 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11251 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11252 + htab->root.hgot->root.u.def.section->output_offset
11253 + htab->root.hgot->root.u.def.value);
11255 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11256 got_value_low = got_value & 0xffff;
11258 /* Calculate the address of the PLT header. */
11259 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11261 /* Install the PLT header. */
11262 loc = htab->splt->contents;
11263 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11264 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11265 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11266 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11267 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11268 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11270 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11271 loc = htab->srelplt2->contents;
11272 rela.r_offset = plt_address;
11273 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11274 rela.r_addend = 0;
11275 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11276 loc += sizeof (Elf32_External_Rela);
11278 /* Output the relocation for the following addiu of
11279 %lo(_GLOBAL_OFFSET_TABLE_). */
11280 rela.r_offset += 4;
11281 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11282 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11283 loc += sizeof (Elf32_External_Rela);
11285 /* Fix up the remaining relocations. They may have the wrong
11286 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11287 in which symbols were output. */
11288 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11290 Elf_Internal_Rela rel;
11292 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11293 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11294 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11295 loc += sizeof (Elf32_External_Rela);
11297 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11298 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11299 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11300 loc += sizeof (Elf32_External_Rela);
11302 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11303 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11304 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11305 loc += sizeof (Elf32_External_Rela);
11309 /* Install the PLT header for a VxWorks shared library. */
11311 static void
11312 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11314 unsigned int i;
11315 struct mips_elf_link_hash_table *htab;
11317 htab = mips_elf_hash_table (info);
11318 BFD_ASSERT (htab != NULL);
11320 /* We just need to copy the entry byte-by-byte. */
11321 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11322 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11323 htab->splt->contents + i * 4);
11326 /* Finish up the dynamic sections. */
11328 bfd_boolean
11329 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11330 struct bfd_link_info *info)
11332 bfd *dynobj;
11333 asection *sdyn;
11334 asection *sgot;
11335 struct mips_got_info *gg, *g;
11336 struct mips_elf_link_hash_table *htab;
11338 htab = mips_elf_hash_table (info);
11339 BFD_ASSERT (htab != NULL);
11341 dynobj = elf_hash_table (info)->dynobj;
11343 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11345 sgot = htab->sgot;
11346 gg = htab->got_info;
11348 if (elf_hash_table (info)->dynamic_sections_created)
11350 bfd_byte *b;
11351 int dyn_to_skip = 0, dyn_skipped = 0;
11353 BFD_ASSERT (sdyn != NULL);
11354 BFD_ASSERT (gg != NULL);
11356 g = mips_elf_bfd_got (output_bfd, FALSE);
11357 BFD_ASSERT (g != NULL);
11359 for (b = sdyn->contents;
11360 b < sdyn->contents + sdyn->size;
11361 b += MIPS_ELF_DYN_SIZE (dynobj))
11363 Elf_Internal_Dyn dyn;
11364 const char *name;
11365 size_t elemsize;
11366 asection *s;
11367 bfd_boolean swap_out_p;
11369 /* Read in the current dynamic entry. */
11370 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11372 /* Assume that we're going to modify it and write it out. */
11373 swap_out_p = TRUE;
11375 switch (dyn.d_tag)
11377 case DT_RELENT:
11378 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11379 break;
11381 case DT_RELAENT:
11382 BFD_ASSERT (htab->is_vxworks);
11383 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11384 break;
11386 case DT_STRSZ:
11387 /* Rewrite DT_STRSZ. */
11388 dyn.d_un.d_val =
11389 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11390 break;
11392 case DT_PLTGOT:
11393 s = htab->sgot;
11394 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11395 break;
11397 case DT_MIPS_PLTGOT:
11398 s = htab->sgotplt;
11399 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11400 break;
11402 case DT_MIPS_RLD_VERSION:
11403 dyn.d_un.d_val = 1; /* XXX */
11404 break;
11406 case DT_MIPS_FLAGS:
11407 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11408 break;
11410 case DT_MIPS_TIME_STAMP:
11412 time_t t;
11413 time (&t);
11414 dyn.d_un.d_val = t;
11416 break;
11418 case DT_MIPS_ICHECKSUM:
11419 /* XXX FIXME: */
11420 swap_out_p = FALSE;
11421 break;
11423 case DT_MIPS_IVERSION:
11424 /* XXX FIXME: */
11425 swap_out_p = FALSE;
11426 break;
11428 case DT_MIPS_BASE_ADDRESS:
11429 s = output_bfd->sections;
11430 BFD_ASSERT (s != NULL);
11431 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11432 break;
11434 case DT_MIPS_LOCAL_GOTNO:
11435 dyn.d_un.d_val = g->local_gotno;
11436 break;
11438 case DT_MIPS_UNREFEXTNO:
11439 /* The index into the dynamic symbol table which is the
11440 entry of the first external symbol that is not
11441 referenced within the same object. */
11442 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11443 break;
11445 case DT_MIPS_GOTSYM:
11446 if (htab->global_gotsym)
11448 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11449 break;
11451 /* In case if we don't have global got symbols we default
11452 to setting DT_MIPS_GOTSYM to the same value as
11453 DT_MIPS_SYMTABNO, so we just fall through. */
11455 case DT_MIPS_SYMTABNO:
11456 name = ".dynsym";
11457 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11458 s = bfd_get_section_by_name (output_bfd, name);
11460 if (s != NULL)
11461 dyn.d_un.d_val = s->size / elemsize;
11462 else
11463 dyn.d_un.d_val = 0;
11464 break;
11466 case DT_MIPS_HIPAGENO:
11467 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11468 break;
11470 case DT_MIPS_RLD_MAP:
11472 struct elf_link_hash_entry *h;
11473 h = mips_elf_hash_table (info)->rld_symbol;
11474 if (!h)
11476 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11477 swap_out_p = FALSE;
11478 break;
11480 s = h->root.u.def.section;
11482 /* The MIPS_RLD_MAP tag stores the absolute address of the
11483 debug pointer. */
11484 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11485 + h->root.u.def.value);
11487 break;
11489 case DT_MIPS_RLD_MAP_REL:
11491 struct elf_link_hash_entry *h;
11492 bfd_vma dt_addr, rld_addr;
11493 h = mips_elf_hash_table (info)->rld_symbol;
11494 if (!h)
11496 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11497 swap_out_p = FALSE;
11498 break;
11500 s = h->root.u.def.section;
11502 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11503 pointer, relative to the address of the tag. */
11504 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11505 + (b - sdyn->contents));
11506 rld_addr = (s->output_section->vma + s->output_offset
11507 + h->root.u.def.value);
11508 dyn.d_un.d_ptr = rld_addr - dt_addr;
11510 break;
11512 case DT_MIPS_OPTIONS:
11513 s = (bfd_get_section_by_name
11514 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11515 dyn.d_un.d_ptr = s->vma;
11516 break;
11518 case DT_RELASZ:
11519 BFD_ASSERT (htab->is_vxworks);
11520 /* The count does not include the JUMP_SLOT relocations. */
11521 if (htab->srelplt)
11522 dyn.d_un.d_val -= htab->srelplt->size;
11523 break;
11525 case DT_PLTREL:
11526 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11527 if (htab->is_vxworks)
11528 dyn.d_un.d_val = DT_RELA;
11529 else
11530 dyn.d_un.d_val = DT_REL;
11531 break;
11533 case DT_PLTRELSZ:
11534 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11535 dyn.d_un.d_val = htab->srelplt->size;
11536 break;
11538 case DT_JMPREL:
11539 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11540 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11541 + htab->srelplt->output_offset);
11542 break;
11544 case DT_TEXTREL:
11545 /* If we didn't need any text relocations after all, delete
11546 the dynamic tag. */
11547 if (!(info->flags & DF_TEXTREL))
11549 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11550 swap_out_p = FALSE;
11552 break;
11554 case DT_FLAGS:
11555 /* If we didn't need any text relocations after all, clear
11556 DF_TEXTREL from DT_FLAGS. */
11557 if (!(info->flags & DF_TEXTREL))
11558 dyn.d_un.d_val &= ~DF_TEXTREL;
11559 else
11560 swap_out_p = FALSE;
11561 break;
11563 default:
11564 swap_out_p = FALSE;
11565 if (htab->is_vxworks
11566 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11567 swap_out_p = TRUE;
11568 break;
11571 if (swap_out_p || dyn_skipped)
11572 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11573 (dynobj, &dyn, b - dyn_skipped);
11575 if (dyn_to_skip)
11577 dyn_skipped += dyn_to_skip;
11578 dyn_to_skip = 0;
11582 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11583 if (dyn_skipped > 0)
11584 memset (b - dyn_skipped, 0, dyn_skipped);
11587 if (sgot != NULL && sgot->size > 0
11588 && !bfd_is_abs_section (sgot->output_section))
11590 if (htab->is_vxworks)
11592 /* The first entry of the global offset table points to the
11593 ".dynamic" section. The second is initialized by the
11594 loader and contains the shared library identifier.
11595 The third is also initialized by the loader and points
11596 to the lazy resolution stub. */
11597 MIPS_ELF_PUT_WORD (output_bfd,
11598 sdyn->output_offset + sdyn->output_section->vma,
11599 sgot->contents);
11600 MIPS_ELF_PUT_WORD (output_bfd, 0,
11601 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11602 MIPS_ELF_PUT_WORD (output_bfd, 0,
11603 sgot->contents
11604 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11606 else
11608 /* The first entry of the global offset table will be filled at
11609 runtime. The second entry will be used by some runtime loaders.
11610 This isn't the case of IRIX rld. */
11611 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11612 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11613 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11616 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11617 = MIPS_ELF_GOT_SIZE (output_bfd);
11620 /* Generate dynamic relocations for the non-primary gots. */
11621 if (gg != NULL && gg->next)
11623 Elf_Internal_Rela rel[3];
11624 bfd_vma addend = 0;
11626 memset (rel, 0, sizeof (rel));
11627 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11629 for (g = gg->next; g->next != gg; g = g->next)
11631 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11632 + g->next->tls_gotno;
11634 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11635 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11636 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11637 sgot->contents
11638 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11640 if (! bfd_link_pic (info))
11641 continue;
11643 for (; got_index < g->local_gotno; got_index++)
11645 if (got_index >= g->assigned_low_gotno
11646 && got_index <= g->assigned_high_gotno)
11647 continue;
11649 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11650 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11651 if (!(mips_elf_create_dynamic_relocation
11652 (output_bfd, info, rel, NULL,
11653 bfd_abs_section_ptr,
11654 0, &addend, sgot)))
11655 return FALSE;
11656 BFD_ASSERT (addend == 0);
11661 /* The generation of dynamic relocations for the non-primary gots
11662 adds more dynamic relocations. We cannot count them until
11663 here. */
11665 if (elf_hash_table (info)->dynamic_sections_created)
11667 bfd_byte *b;
11668 bfd_boolean swap_out_p;
11670 BFD_ASSERT (sdyn != NULL);
11672 for (b = sdyn->contents;
11673 b < sdyn->contents + sdyn->size;
11674 b += MIPS_ELF_DYN_SIZE (dynobj))
11676 Elf_Internal_Dyn dyn;
11677 asection *s;
11679 /* Read in the current dynamic entry. */
11680 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11682 /* Assume that we're going to modify it and write it out. */
11683 swap_out_p = TRUE;
11685 switch (dyn.d_tag)
11687 case DT_RELSZ:
11688 /* Reduce DT_RELSZ to account for any relocations we
11689 decided not to make. This is for the n64 irix rld,
11690 which doesn't seem to apply any relocations if there
11691 are trailing null entries. */
11692 s = mips_elf_rel_dyn_section (info, FALSE);
11693 dyn.d_un.d_val = (s->reloc_count
11694 * (ABI_64_P (output_bfd)
11695 ? sizeof (Elf64_Mips_External_Rel)
11696 : sizeof (Elf32_External_Rel)));
11697 /* Adjust the section size too. Tools like the prelinker
11698 can reasonably expect the values to the same. */
11699 elf_section_data (s->output_section)->this_hdr.sh_size
11700 = dyn.d_un.d_val;
11701 break;
11703 default:
11704 swap_out_p = FALSE;
11705 break;
11708 if (swap_out_p)
11709 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11710 (dynobj, &dyn, b);
11715 asection *s;
11716 Elf32_compact_rel cpt;
11718 if (SGI_COMPAT (output_bfd))
11720 /* Write .compact_rel section out. */
11721 s = bfd_get_linker_section (dynobj, ".compact_rel");
11722 if (s != NULL)
11724 cpt.id1 = 1;
11725 cpt.num = s->reloc_count;
11726 cpt.id2 = 2;
11727 cpt.offset = (s->output_section->filepos
11728 + sizeof (Elf32_External_compact_rel));
11729 cpt.reserved0 = 0;
11730 cpt.reserved1 = 0;
11731 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11732 ((Elf32_External_compact_rel *)
11733 s->contents));
11735 /* Clean up a dummy stub function entry in .text. */
11736 if (htab->sstubs != NULL)
11738 file_ptr dummy_offset;
11740 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11741 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11742 memset (htab->sstubs->contents + dummy_offset, 0,
11743 htab->function_stub_size);
11748 /* The psABI says that the dynamic relocations must be sorted in
11749 increasing order of r_symndx. The VxWorks EABI doesn't require
11750 this, and because the code below handles REL rather than RELA
11751 relocations, using it for VxWorks would be outright harmful. */
11752 if (!htab->is_vxworks)
11754 s = mips_elf_rel_dyn_section (info, FALSE);
11755 if (s != NULL
11756 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11758 reldyn_sorting_bfd = output_bfd;
11760 if (ABI_64_P (output_bfd))
11761 qsort ((Elf64_External_Rel *) s->contents + 1,
11762 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11763 sort_dynamic_relocs_64);
11764 else
11765 qsort ((Elf32_External_Rel *) s->contents + 1,
11766 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11767 sort_dynamic_relocs);
11772 if (htab->splt && htab->splt->size > 0)
11774 if (htab->is_vxworks)
11776 if (bfd_link_pic (info))
11777 mips_vxworks_finish_shared_plt (output_bfd, info);
11778 else
11779 mips_vxworks_finish_exec_plt (output_bfd, info);
11781 else
11783 BFD_ASSERT (!bfd_link_pic (info));
11784 if (!mips_finish_exec_plt (output_bfd, info))
11785 return FALSE;
11788 return TRUE;
11792 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11794 static void
11795 mips_set_isa_flags (bfd *abfd)
11797 flagword val;
11799 switch (bfd_get_mach (abfd))
11801 default:
11802 case bfd_mach_mips3000:
11803 val = E_MIPS_ARCH_1;
11804 break;
11806 case bfd_mach_mips3900:
11807 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11808 break;
11810 case bfd_mach_mips6000:
11811 val = E_MIPS_ARCH_2;
11812 break;
11814 case bfd_mach_mips4000:
11815 case bfd_mach_mips4300:
11816 case bfd_mach_mips4400:
11817 case bfd_mach_mips4600:
11818 val = E_MIPS_ARCH_3;
11819 break;
11821 case bfd_mach_mips4010:
11822 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11823 break;
11825 case bfd_mach_mips4100:
11826 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11827 break;
11829 case bfd_mach_mips4111:
11830 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11831 break;
11833 case bfd_mach_mips4120:
11834 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11835 break;
11837 case bfd_mach_mips4650:
11838 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11839 break;
11841 case bfd_mach_mips5400:
11842 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11843 break;
11845 case bfd_mach_mips5500:
11846 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11847 break;
11849 case bfd_mach_mips5900:
11850 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11851 break;
11853 case bfd_mach_mips9000:
11854 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11855 break;
11857 case bfd_mach_mips5000:
11858 case bfd_mach_mips7000:
11859 case bfd_mach_mips8000:
11860 case bfd_mach_mips10000:
11861 case bfd_mach_mips12000:
11862 case bfd_mach_mips14000:
11863 case bfd_mach_mips16000:
11864 val = E_MIPS_ARCH_4;
11865 break;
11867 case bfd_mach_mips5:
11868 val = E_MIPS_ARCH_5;
11869 break;
11871 case bfd_mach_mips_loongson_2e:
11872 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11873 break;
11875 case bfd_mach_mips_loongson_2f:
11876 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11877 break;
11879 case bfd_mach_mips_sb1:
11880 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11881 break;
11883 case bfd_mach_mips_loongson_3a:
11884 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11885 break;
11887 case bfd_mach_mips_octeon:
11888 case bfd_mach_mips_octeonp:
11889 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11890 break;
11892 case bfd_mach_mips_octeon3:
11893 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11894 break;
11896 case bfd_mach_mips_xlr:
11897 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11898 break;
11900 case bfd_mach_mips_octeon2:
11901 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11902 break;
11904 case bfd_mach_mipsisa32:
11905 val = E_MIPS_ARCH_32;
11906 break;
11908 case bfd_mach_mipsisa64:
11909 val = E_MIPS_ARCH_64;
11910 break;
11912 case bfd_mach_mipsisa32r2:
11913 case bfd_mach_mipsisa32r3:
11914 case bfd_mach_mipsisa32r5:
11915 val = E_MIPS_ARCH_32R2;
11916 break;
11918 case bfd_mach_mipsisa64r2:
11919 case bfd_mach_mipsisa64r3:
11920 case bfd_mach_mipsisa64r5:
11921 val = E_MIPS_ARCH_64R2;
11922 break;
11924 case bfd_mach_mipsisa32r6:
11925 val = E_MIPS_ARCH_32R6;
11926 break;
11928 case bfd_mach_mipsisa64r6:
11929 val = E_MIPS_ARCH_64R6;
11930 break;
11932 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11933 elf_elfheader (abfd)->e_flags |= val;
11938 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11939 Don't do so for code sections. We want to keep ordering of HI16/LO16
11940 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11941 relocs to be sorted. */
11943 bfd_boolean
11944 _bfd_mips_elf_sort_relocs_p (asection *sec)
11946 return (sec->flags & SEC_CODE) == 0;
11950 /* The final processing done just before writing out a MIPS ELF object
11951 file. This gets the MIPS architecture right based on the machine
11952 number. This is used by both the 32-bit and the 64-bit ABI. */
11954 void
11955 _bfd_mips_elf_final_write_processing (bfd *abfd,
11956 bfd_boolean linker ATTRIBUTE_UNUSED)
11958 unsigned int i;
11959 Elf_Internal_Shdr **hdrpp;
11960 const char *name;
11961 asection *sec;
11963 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11964 is nonzero. This is for compatibility with old objects, which used
11965 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11966 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11967 mips_set_isa_flags (abfd);
11969 /* Set the sh_info field for .gptab sections and other appropriate
11970 info for each special section. */
11971 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11972 i < elf_numsections (abfd);
11973 i++, hdrpp++)
11975 switch ((*hdrpp)->sh_type)
11977 case SHT_MIPS_MSYM:
11978 case SHT_MIPS_LIBLIST:
11979 sec = bfd_get_section_by_name (abfd, ".dynstr");
11980 if (sec != NULL)
11981 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11982 break;
11984 case SHT_MIPS_GPTAB:
11985 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11986 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11987 BFD_ASSERT (name != NULL
11988 && CONST_STRNEQ (name, ".gptab."));
11989 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11990 BFD_ASSERT (sec != NULL);
11991 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11992 break;
11994 case SHT_MIPS_CONTENT:
11995 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11996 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11997 BFD_ASSERT (name != NULL
11998 && CONST_STRNEQ (name, ".MIPS.content"));
11999 sec = bfd_get_section_by_name (abfd,
12000 name + sizeof ".MIPS.content" - 1);
12001 BFD_ASSERT (sec != NULL);
12002 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12003 break;
12005 case SHT_MIPS_SYMBOL_LIB:
12006 sec = bfd_get_section_by_name (abfd, ".dynsym");
12007 if (sec != NULL)
12008 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12009 sec = bfd_get_section_by_name (abfd, ".liblist");
12010 if (sec != NULL)
12011 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12012 break;
12014 case SHT_MIPS_EVENTS:
12015 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12016 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12017 BFD_ASSERT (name != NULL);
12018 if (CONST_STRNEQ (name, ".MIPS.events"))
12019 sec = bfd_get_section_by_name (abfd,
12020 name + sizeof ".MIPS.events" - 1);
12021 else
12023 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12024 sec = bfd_get_section_by_name (abfd,
12025 (name
12026 + sizeof ".MIPS.post_rel" - 1));
12028 BFD_ASSERT (sec != NULL);
12029 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12030 break;
12036 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12037 segments. */
12040 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12041 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12043 asection *s;
12044 int ret = 0;
12046 /* See if we need a PT_MIPS_REGINFO segment. */
12047 s = bfd_get_section_by_name (abfd, ".reginfo");
12048 if (s && (s->flags & SEC_LOAD))
12049 ++ret;
12051 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12052 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12053 ++ret;
12055 /* See if we need a PT_MIPS_OPTIONS segment. */
12056 if (IRIX_COMPAT (abfd) == ict_irix6
12057 && bfd_get_section_by_name (abfd,
12058 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12059 ++ret;
12061 /* See if we need a PT_MIPS_RTPROC segment. */
12062 if (IRIX_COMPAT (abfd) == ict_irix5
12063 && bfd_get_section_by_name (abfd, ".dynamic")
12064 && bfd_get_section_by_name (abfd, ".mdebug"))
12065 ++ret;
12067 /* Allocate a PT_NULL header in dynamic objects. See
12068 _bfd_mips_elf_modify_segment_map for details. */
12069 if (!SGI_COMPAT (abfd)
12070 && bfd_get_section_by_name (abfd, ".dynamic"))
12071 ++ret;
12073 return ret;
12076 /* Modify the segment map for an IRIX5 executable. */
12078 bfd_boolean
12079 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12080 struct bfd_link_info *info)
12082 asection *s;
12083 struct elf_segment_map *m, **pm;
12084 bfd_size_type amt;
12086 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12087 segment. */
12088 s = bfd_get_section_by_name (abfd, ".reginfo");
12089 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12091 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12092 if (m->p_type == PT_MIPS_REGINFO)
12093 break;
12094 if (m == NULL)
12096 amt = sizeof *m;
12097 m = bfd_zalloc (abfd, amt);
12098 if (m == NULL)
12099 return FALSE;
12101 m->p_type = PT_MIPS_REGINFO;
12102 m->count = 1;
12103 m->sections[0] = s;
12105 /* We want to put it after the PHDR and INTERP segments. */
12106 pm = &elf_seg_map (abfd);
12107 while (*pm != NULL
12108 && ((*pm)->p_type == PT_PHDR
12109 || (*pm)->p_type == PT_INTERP))
12110 pm = &(*pm)->next;
12112 m->next = *pm;
12113 *pm = m;
12117 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12118 segment. */
12119 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12120 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12122 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12123 if (m->p_type == PT_MIPS_ABIFLAGS)
12124 break;
12125 if (m == NULL)
12127 amt = sizeof *m;
12128 m = bfd_zalloc (abfd, amt);
12129 if (m == NULL)
12130 return FALSE;
12132 m->p_type = PT_MIPS_ABIFLAGS;
12133 m->count = 1;
12134 m->sections[0] = s;
12136 /* We want to put it after the PHDR and INTERP segments. */
12137 pm = &elf_seg_map (abfd);
12138 while (*pm != NULL
12139 && ((*pm)->p_type == PT_PHDR
12140 || (*pm)->p_type == PT_INTERP))
12141 pm = &(*pm)->next;
12143 m->next = *pm;
12144 *pm = m;
12148 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12149 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12150 PT_MIPS_OPTIONS segment immediately following the program header
12151 table. */
12152 if (NEWABI_P (abfd)
12153 /* On non-IRIX6 new abi, we'll have already created a segment
12154 for this section, so don't create another. I'm not sure this
12155 is not also the case for IRIX 6, but I can't test it right
12156 now. */
12157 && IRIX_COMPAT (abfd) == ict_irix6)
12159 for (s = abfd->sections; s; s = s->next)
12160 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12161 break;
12163 if (s)
12165 struct elf_segment_map *options_segment;
12167 pm = &elf_seg_map (abfd);
12168 while (*pm != NULL
12169 && ((*pm)->p_type == PT_PHDR
12170 || (*pm)->p_type == PT_INTERP))
12171 pm = &(*pm)->next;
12173 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12175 amt = sizeof (struct elf_segment_map);
12176 options_segment = bfd_zalloc (abfd, amt);
12177 options_segment->next = *pm;
12178 options_segment->p_type = PT_MIPS_OPTIONS;
12179 options_segment->p_flags = PF_R;
12180 options_segment->p_flags_valid = TRUE;
12181 options_segment->count = 1;
12182 options_segment->sections[0] = s;
12183 *pm = options_segment;
12187 else
12189 if (IRIX_COMPAT (abfd) == ict_irix5)
12191 /* If there are .dynamic and .mdebug sections, we make a room
12192 for the RTPROC header. FIXME: Rewrite without section names. */
12193 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12194 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12195 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12197 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12198 if (m->p_type == PT_MIPS_RTPROC)
12199 break;
12200 if (m == NULL)
12202 amt = sizeof *m;
12203 m = bfd_zalloc (abfd, amt);
12204 if (m == NULL)
12205 return FALSE;
12207 m->p_type = PT_MIPS_RTPROC;
12209 s = bfd_get_section_by_name (abfd, ".rtproc");
12210 if (s == NULL)
12212 m->count = 0;
12213 m->p_flags = 0;
12214 m->p_flags_valid = 1;
12216 else
12218 m->count = 1;
12219 m->sections[0] = s;
12222 /* We want to put it after the DYNAMIC segment. */
12223 pm = &elf_seg_map (abfd);
12224 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12225 pm = &(*pm)->next;
12226 if (*pm != NULL)
12227 pm = &(*pm)->next;
12229 m->next = *pm;
12230 *pm = m;
12234 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12235 .dynstr, .dynsym, and .hash sections, and everything in
12236 between. */
12237 for (pm = &elf_seg_map (abfd); *pm != NULL;
12238 pm = &(*pm)->next)
12239 if ((*pm)->p_type == PT_DYNAMIC)
12240 break;
12241 m = *pm;
12242 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12243 glibc's dynamic linker has traditionally derived the number of
12244 tags from the p_filesz field, and sometimes allocates stack
12245 arrays of that size. An overly-big PT_DYNAMIC segment can
12246 be actively harmful in such cases. Making PT_DYNAMIC contain
12247 other sections can also make life hard for the prelinker,
12248 which might move one of the other sections to a different
12249 PT_LOAD segment. */
12250 if (SGI_COMPAT (abfd)
12251 && m != NULL
12252 && m->count == 1
12253 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12255 static const char *sec_names[] =
12257 ".dynamic", ".dynstr", ".dynsym", ".hash"
12259 bfd_vma low, high;
12260 unsigned int i, c;
12261 struct elf_segment_map *n;
12263 low = ~(bfd_vma) 0;
12264 high = 0;
12265 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12267 s = bfd_get_section_by_name (abfd, sec_names[i]);
12268 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12270 bfd_size_type sz;
12272 if (low > s->vma)
12273 low = s->vma;
12274 sz = s->size;
12275 if (high < s->vma + sz)
12276 high = s->vma + sz;
12280 c = 0;
12281 for (s = abfd->sections; s != NULL; s = s->next)
12282 if ((s->flags & SEC_LOAD) != 0
12283 && s->vma >= low
12284 && s->vma + s->size <= high)
12285 ++c;
12287 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12288 n = bfd_zalloc (abfd, amt);
12289 if (n == NULL)
12290 return FALSE;
12291 *n = *m;
12292 n->count = c;
12294 i = 0;
12295 for (s = abfd->sections; s != NULL; s = s->next)
12297 if ((s->flags & SEC_LOAD) != 0
12298 && s->vma >= low
12299 && s->vma + s->size <= high)
12301 n->sections[i] = s;
12302 ++i;
12306 *pm = n;
12310 /* Allocate a spare program header in dynamic objects so that tools
12311 like the prelinker can add an extra PT_LOAD entry.
12313 If the prelinker needs to make room for a new PT_LOAD entry, its
12314 standard procedure is to move the first (read-only) sections into
12315 the new (writable) segment. However, the MIPS ABI requires
12316 .dynamic to be in a read-only segment, and the section will often
12317 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12319 Although the prelinker could in principle move .dynamic to a
12320 writable segment, it seems better to allocate a spare program
12321 header instead, and avoid the need to move any sections.
12322 There is a long tradition of allocating spare dynamic tags,
12323 so allocating a spare program header seems like a natural
12324 extension.
12326 If INFO is NULL, we may be copying an already prelinked binary
12327 with objcopy or strip, so do not add this header. */
12328 if (info != NULL
12329 && !SGI_COMPAT (abfd)
12330 && bfd_get_section_by_name (abfd, ".dynamic"))
12332 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12333 if ((*pm)->p_type == PT_NULL)
12334 break;
12335 if (*pm == NULL)
12337 m = bfd_zalloc (abfd, sizeof (*m));
12338 if (m == NULL)
12339 return FALSE;
12341 m->p_type = PT_NULL;
12342 *pm = m;
12346 return TRUE;
12349 /* Return the section that should be marked against GC for a given
12350 relocation. */
12352 asection *
12353 _bfd_mips_elf_gc_mark_hook (asection *sec,
12354 struct bfd_link_info *info,
12355 Elf_Internal_Rela *rel,
12356 struct elf_link_hash_entry *h,
12357 Elf_Internal_Sym *sym)
12359 /* ??? Do mips16 stub sections need to be handled special? */
12361 if (h != NULL)
12362 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12364 case R_MIPS_GNU_VTINHERIT:
12365 case R_MIPS_GNU_VTENTRY:
12366 return NULL;
12369 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12372 /* Update the got entry reference counts for the section being removed. */
12374 bfd_boolean
12375 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12376 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12377 asection *sec ATTRIBUTE_UNUSED,
12378 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12380 #if 0
12381 Elf_Internal_Shdr *symtab_hdr;
12382 struct elf_link_hash_entry **sym_hashes;
12383 bfd_signed_vma *local_got_refcounts;
12384 const Elf_Internal_Rela *rel, *relend;
12385 unsigned long r_symndx;
12386 struct elf_link_hash_entry *h;
12388 if (bfd_link_relocatable (info))
12389 return TRUE;
12391 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12392 sym_hashes = elf_sym_hashes (abfd);
12393 local_got_refcounts = elf_local_got_refcounts (abfd);
12395 relend = relocs + sec->reloc_count;
12396 for (rel = relocs; rel < relend; rel++)
12397 switch (ELF_R_TYPE (abfd, rel->r_info))
12399 case R_MIPS16_GOT16:
12400 case R_MIPS16_CALL16:
12401 case R_MIPS_GOT16:
12402 case R_MIPS_CALL16:
12403 case R_MIPS_CALL_HI16:
12404 case R_MIPS_CALL_LO16:
12405 case R_MIPS_GOT_HI16:
12406 case R_MIPS_GOT_LO16:
12407 case R_MIPS_GOT_DISP:
12408 case R_MIPS_GOT_PAGE:
12409 case R_MIPS_GOT_OFST:
12410 case R_MICROMIPS_GOT16:
12411 case R_MICROMIPS_CALL16:
12412 case R_MICROMIPS_CALL_HI16:
12413 case R_MICROMIPS_CALL_LO16:
12414 case R_MICROMIPS_GOT_HI16:
12415 case R_MICROMIPS_GOT_LO16:
12416 case R_MICROMIPS_GOT_DISP:
12417 case R_MICROMIPS_GOT_PAGE:
12418 case R_MICROMIPS_GOT_OFST:
12419 /* ??? It would seem that the existing MIPS code does no sort
12420 of reference counting or whatnot on its GOT and PLT entries,
12421 so it is not possible to garbage collect them at this time. */
12422 break;
12424 default:
12425 break;
12427 #endif
12429 return TRUE;
12432 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12434 bfd_boolean
12435 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12436 elf_gc_mark_hook_fn gc_mark_hook)
12438 bfd *sub;
12440 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12442 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12444 asection *o;
12446 if (! is_mips_elf (sub))
12447 continue;
12449 for (o = sub->sections; o != NULL; o = o->next)
12450 if (!o->gc_mark
12451 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12452 (bfd_get_section_name (sub, o)))
12454 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12455 return FALSE;
12459 return TRUE;
12462 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12463 hiding the old indirect symbol. Process additional relocation
12464 information. Also called for weakdefs, in which case we just let
12465 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12467 void
12468 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12469 struct elf_link_hash_entry *dir,
12470 struct elf_link_hash_entry *ind)
12472 struct mips_elf_link_hash_entry *dirmips, *indmips;
12474 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12476 dirmips = (struct mips_elf_link_hash_entry *) dir;
12477 indmips = (struct mips_elf_link_hash_entry *) ind;
12478 /* Any absolute non-dynamic relocations against an indirect or weak
12479 definition will be against the target symbol. */
12480 if (indmips->has_static_relocs)
12481 dirmips->has_static_relocs = TRUE;
12483 if (ind->root.type != bfd_link_hash_indirect)
12484 return;
12486 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12487 if (indmips->readonly_reloc)
12488 dirmips->readonly_reloc = TRUE;
12489 if (indmips->no_fn_stub)
12490 dirmips->no_fn_stub = TRUE;
12491 if (indmips->fn_stub)
12493 dirmips->fn_stub = indmips->fn_stub;
12494 indmips->fn_stub = NULL;
12496 if (indmips->need_fn_stub)
12498 dirmips->need_fn_stub = TRUE;
12499 indmips->need_fn_stub = FALSE;
12501 if (indmips->call_stub)
12503 dirmips->call_stub = indmips->call_stub;
12504 indmips->call_stub = NULL;
12506 if (indmips->call_fp_stub)
12508 dirmips->call_fp_stub = indmips->call_fp_stub;
12509 indmips->call_fp_stub = NULL;
12511 if (indmips->global_got_area < dirmips->global_got_area)
12512 dirmips->global_got_area = indmips->global_got_area;
12513 if (indmips->global_got_area < GGA_NONE)
12514 indmips->global_got_area = GGA_NONE;
12515 if (indmips->has_nonpic_branches)
12516 dirmips->has_nonpic_branches = TRUE;
12519 #define PDR_SIZE 32
12521 bfd_boolean
12522 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12523 struct bfd_link_info *info)
12525 asection *o;
12526 bfd_boolean ret = FALSE;
12527 unsigned char *tdata;
12528 size_t i, skip;
12530 o = bfd_get_section_by_name (abfd, ".pdr");
12531 if (! o)
12532 return FALSE;
12533 if (o->size == 0)
12534 return FALSE;
12535 if (o->size % PDR_SIZE != 0)
12536 return FALSE;
12537 if (o->output_section != NULL
12538 && bfd_is_abs_section (o->output_section))
12539 return FALSE;
12541 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12542 if (! tdata)
12543 return FALSE;
12545 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12546 info->keep_memory);
12547 if (!cookie->rels)
12549 free (tdata);
12550 return FALSE;
12553 cookie->rel = cookie->rels;
12554 cookie->relend = cookie->rels + o->reloc_count;
12556 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12558 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12560 tdata[i] = 1;
12561 skip ++;
12565 if (skip != 0)
12567 mips_elf_section_data (o)->u.tdata = tdata;
12568 if (o->rawsize == 0)
12569 o->rawsize = o->size;
12570 o->size -= skip * PDR_SIZE;
12571 ret = TRUE;
12573 else
12574 free (tdata);
12576 if (! info->keep_memory)
12577 free (cookie->rels);
12579 return ret;
12582 bfd_boolean
12583 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12585 if (strcmp (sec->name, ".pdr") == 0)
12586 return TRUE;
12587 return FALSE;
12590 bfd_boolean
12591 _bfd_mips_elf_write_section (bfd *output_bfd,
12592 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12593 asection *sec, bfd_byte *contents)
12595 bfd_byte *to, *from, *end;
12596 int i;
12598 if (strcmp (sec->name, ".pdr") != 0)
12599 return FALSE;
12601 if (mips_elf_section_data (sec)->u.tdata == NULL)
12602 return FALSE;
12604 to = contents;
12605 end = contents + sec->size;
12606 for (from = contents, i = 0;
12607 from < end;
12608 from += PDR_SIZE, i++)
12610 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12611 continue;
12612 if (to != from)
12613 memcpy (to, from, PDR_SIZE);
12614 to += PDR_SIZE;
12616 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12617 sec->output_offset, sec->size);
12618 return TRUE;
12621 /* microMIPS code retains local labels for linker relaxation. Omit them
12622 from output by default for clarity. */
12624 bfd_boolean
12625 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12627 return _bfd_elf_is_local_label_name (abfd, sym->name);
12630 /* MIPS ELF uses a special find_nearest_line routine in order the
12631 handle the ECOFF debugging information. */
12633 struct mips_elf_find_line
12635 struct ecoff_debug_info d;
12636 struct ecoff_find_line i;
12639 bfd_boolean
12640 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12641 asection *section, bfd_vma offset,
12642 const char **filename_ptr,
12643 const char **functionname_ptr,
12644 unsigned int *line_ptr,
12645 unsigned int *discriminator_ptr)
12647 asection *msec;
12649 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12650 filename_ptr, functionname_ptr,
12651 line_ptr, discriminator_ptr,
12652 dwarf_debug_sections,
12653 ABI_64_P (abfd) ? 8 : 0,
12654 &elf_tdata (abfd)->dwarf2_find_line_info))
12655 return TRUE;
12657 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12658 filename_ptr, functionname_ptr,
12659 line_ptr))
12660 return TRUE;
12662 msec = bfd_get_section_by_name (abfd, ".mdebug");
12663 if (msec != NULL)
12665 flagword origflags;
12666 struct mips_elf_find_line *fi;
12667 const struct ecoff_debug_swap * const swap =
12668 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12670 /* If we are called during a link, mips_elf_final_link may have
12671 cleared the SEC_HAS_CONTENTS field. We force it back on here
12672 if appropriate (which it normally will be). */
12673 origflags = msec->flags;
12674 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12675 msec->flags |= SEC_HAS_CONTENTS;
12677 fi = mips_elf_tdata (abfd)->find_line_info;
12678 if (fi == NULL)
12680 bfd_size_type external_fdr_size;
12681 char *fraw_src;
12682 char *fraw_end;
12683 struct fdr *fdr_ptr;
12684 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12686 fi = bfd_zalloc (abfd, amt);
12687 if (fi == NULL)
12689 msec->flags = origflags;
12690 return FALSE;
12693 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12695 msec->flags = origflags;
12696 return FALSE;
12699 /* Swap in the FDR information. */
12700 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12701 fi->d.fdr = bfd_alloc (abfd, amt);
12702 if (fi->d.fdr == NULL)
12704 msec->flags = origflags;
12705 return FALSE;
12707 external_fdr_size = swap->external_fdr_size;
12708 fdr_ptr = fi->d.fdr;
12709 fraw_src = (char *) fi->d.external_fdr;
12710 fraw_end = (fraw_src
12711 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12712 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12713 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12715 mips_elf_tdata (abfd)->find_line_info = fi;
12717 /* Note that we don't bother to ever free this information.
12718 find_nearest_line is either called all the time, as in
12719 objdump -l, so the information should be saved, or it is
12720 rarely called, as in ld error messages, so the memory
12721 wasted is unimportant. Still, it would probably be a
12722 good idea for free_cached_info to throw it away. */
12725 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12726 &fi->i, filename_ptr, functionname_ptr,
12727 line_ptr))
12729 msec->flags = origflags;
12730 return TRUE;
12733 msec->flags = origflags;
12736 /* Fall back on the generic ELF find_nearest_line routine. */
12738 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12739 filename_ptr, functionname_ptr,
12740 line_ptr, discriminator_ptr);
12743 bfd_boolean
12744 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12745 const char **filename_ptr,
12746 const char **functionname_ptr,
12747 unsigned int *line_ptr)
12749 bfd_boolean found;
12750 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12751 functionname_ptr, line_ptr,
12752 & elf_tdata (abfd)->dwarf2_find_line_info);
12753 return found;
12757 /* When are writing out the .options or .MIPS.options section,
12758 remember the bytes we are writing out, so that we can install the
12759 GP value in the section_processing routine. */
12761 bfd_boolean
12762 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12763 const void *location,
12764 file_ptr offset, bfd_size_type count)
12766 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12768 bfd_byte *c;
12770 if (elf_section_data (section) == NULL)
12772 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12773 section->used_by_bfd = bfd_zalloc (abfd, amt);
12774 if (elf_section_data (section) == NULL)
12775 return FALSE;
12777 c = mips_elf_section_data (section)->u.tdata;
12778 if (c == NULL)
12780 c = bfd_zalloc (abfd, section->size);
12781 if (c == NULL)
12782 return FALSE;
12783 mips_elf_section_data (section)->u.tdata = c;
12786 memcpy (c + offset, location, count);
12789 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12790 count);
12793 /* This is almost identical to bfd_generic_get_... except that some
12794 MIPS relocations need to be handled specially. Sigh. */
12796 bfd_byte *
12797 _bfd_elf_mips_get_relocated_section_contents
12798 (bfd *abfd,
12799 struct bfd_link_info *link_info,
12800 struct bfd_link_order *link_order,
12801 bfd_byte *data,
12802 bfd_boolean relocatable,
12803 asymbol **symbols)
12805 /* Get enough memory to hold the stuff */
12806 bfd *input_bfd = link_order->u.indirect.section->owner;
12807 asection *input_section = link_order->u.indirect.section;
12808 bfd_size_type sz;
12810 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12811 arelent **reloc_vector = NULL;
12812 long reloc_count;
12814 if (reloc_size < 0)
12815 goto error_return;
12817 reloc_vector = bfd_malloc (reloc_size);
12818 if (reloc_vector == NULL && reloc_size != 0)
12819 goto error_return;
12821 /* read in the section */
12822 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12823 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12824 goto error_return;
12826 reloc_count = bfd_canonicalize_reloc (input_bfd,
12827 input_section,
12828 reloc_vector,
12829 symbols);
12830 if (reloc_count < 0)
12831 goto error_return;
12833 if (reloc_count > 0)
12835 arelent **parent;
12836 /* for mips */
12837 int gp_found;
12838 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12841 struct bfd_hash_entry *h;
12842 struct bfd_link_hash_entry *lh;
12843 /* Skip all this stuff if we aren't mixing formats. */
12844 if (abfd && input_bfd
12845 && abfd->xvec == input_bfd->xvec)
12846 lh = 0;
12847 else
12849 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12850 lh = (struct bfd_link_hash_entry *) h;
12852 lookup:
12853 if (lh)
12855 switch (lh->type)
12857 case bfd_link_hash_undefined:
12858 case bfd_link_hash_undefweak:
12859 case bfd_link_hash_common:
12860 gp_found = 0;
12861 break;
12862 case bfd_link_hash_defined:
12863 case bfd_link_hash_defweak:
12864 gp_found = 1;
12865 gp = lh->u.def.value;
12866 break;
12867 case bfd_link_hash_indirect:
12868 case bfd_link_hash_warning:
12869 lh = lh->u.i.link;
12870 /* @@FIXME ignoring warning for now */
12871 goto lookup;
12872 case bfd_link_hash_new:
12873 default:
12874 abort ();
12877 else
12878 gp_found = 0;
12880 /* end mips */
12881 for (parent = reloc_vector; *parent != NULL; parent++)
12883 char *error_message = NULL;
12884 bfd_reloc_status_type r;
12886 /* Specific to MIPS: Deal with relocation types that require
12887 knowing the gp of the output bfd. */
12888 asymbol *sym = *(*parent)->sym_ptr_ptr;
12890 /* If we've managed to find the gp and have a special
12891 function for the relocation then go ahead, else default
12892 to the generic handling. */
12893 if (gp_found
12894 && (*parent)->howto->special_function
12895 == _bfd_mips_elf32_gprel16_reloc)
12896 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12897 input_section, relocatable,
12898 data, gp);
12899 else
12900 r = bfd_perform_relocation (input_bfd, *parent, data,
12901 input_section,
12902 relocatable ? abfd : NULL,
12903 &error_message);
12905 if (relocatable)
12907 asection *os = input_section->output_section;
12909 /* A partial link, so keep the relocs */
12910 os->orelocation[os->reloc_count] = *parent;
12911 os->reloc_count++;
12914 if (r != bfd_reloc_ok)
12916 switch (r)
12918 case bfd_reloc_undefined:
12919 if (!((*link_info->callbacks->undefined_symbol)
12920 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12921 input_bfd, input_section, (*parent)->address, TRUE)))
12922 goto error_return;
12923 break;
12924 case bfd_reloc_dangerous:
12925 BFD_ASSERT (error_message != NULL);
12926 if (!((*link_info->callbacks->reloc_dangerous)
12927 (link_info, error_message, input_bfd, input_section,
12928 (*parent)->address)))
12929 goto error_return;
12930 break;
12931 case bfd_reloc_overflow:
12932 if (!((*link_info->callbacks->reloc_overflow)
12933 (link_info, NULL,
12934 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12935 (*parent)->howto->name, (*parent)->addend,
12936 input_bfd, input_section, (*parent)->address)))
12937 goto error_return;
12938 break;
12939 case bfd_reloc_outofrange:
12940 default:
12941 abort ();
12942 break;
12948 if (reloc_vector != NULL)
12949 free (reloc_vector);
12950 return data;
12952 error_return:
12953 if (reloc_vector != NULL)
12954 free (reloc_vector);
12955 return NULL;
12958 static bfd_boolean
12959 mips_elf_relax_delete_bytes (bfd *abfd,
12960 asection *sec, bfd_vma addr, int count)
12962 Elf_Internal_Shdr *symtab_hdr;
12963 unsigned int sec_shndx;
12964 bfd_byte *contents;
12965 Elf_Internal_Rela *irel, *irelend;
12966 Elf_Internal_Sym *isym;
12967 Elf_Internal_Sym *isymend;
12968 struct elf_link_hash_entry **sym_hashes;
12969 struct elf_link_hash_entry **end_hashes;
12970 struct elf_link_hash_entry **start_hashes;
12971 unsigned int symcount;
12973 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12974 contents = elf_section_data (sec)->this_hdr.contents;
12976 irel = elf_section_data (sec)->relocs;
12977 irelend = irel + sec->reloc_count;
12979 /* Actually delete the bytes. */
12980 memmove (contents + addr, contents + addr + count,
12981 (size_t) (sec->size - addr - count));
12982 sec->size -= count;
12984 /* Adjust all the relocs. */
12985 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12987 /* Get the new reloc address. */
12988 if (irel->r_offset > addr)
12989 irel->r_offset -= count;
12992 BFD_ASSERT (addr % 2 == 0);
12993 BFD_ASSERT (count % 2 == 0);
12995 /* Adjust the local symbols defined in this section. */
12996 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12997 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12998 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12999 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13000 isym->st_value -= count;
13002 /* Now adjust the global symbols defined in this section. */
13003 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13004 - symtab_hdr->sh_info);
13005 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13006 end_hashes = sym_hashes + symcount;
13008 for (; sym_hashes < end_hashes; sym_hashes++)
13010 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13012 if ((sym_hash->root.type == bfd_link_hash_defined
13013 || sym_hash->root.type == bfd_link_hash_defweak)
13014 && sym_hash->root.u.def.section == sec)
13016 bfd_vma value = sym_hash->root.u.def.value;
13018 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13019 value &= MINUS_TWO;
13020 if (value > addr)
13021 sym_hash->root.u.def.value -= count;
13025 return TRUE;
13029 /* Opcodes needed for microMIPS relaxation as found in
13030 opcodes/micromips-opc.c. */
13032 struct opcode_descriptor {
13033 unsigned long match;
13034 unsigned long mask;
13037 /* The $ra register aka $31. */
13039 #define RA 31
13041 /* 32-bit instruction format register fields. */
13043 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13044 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13046 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13048 #define OP16_VALID_REG(r) \
13049 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13052 /* 32-bit and 16-bit branches. */
13054 static const struct opcode_descriptor b_insns_32[] = {
13055 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13056 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13057 { 0, 0 } /* End marker for find_match(). */
13060 static const struct opcode_descriptor bc_insn_32 =
13061 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13063 static const struct opcode_descriptor bz_insn_32 =
13064 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13066 static const struct opcode_descriptor bzal_insn_32 =
13067 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13069 static const struct opcode_descriptor beq_insn_32 =
13070 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13072 static const struct opcode_descriptor b_insn_16 =
13073 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13075 static const struct opcode_descriptor bz_insn_16 =
13076 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13079 /* 32-bit and 16-bit branch EQ and NE zero. */
13081 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13082 eq and second the ne. This convention is used when replacing a
13083 32-bit BEQ/BNE with the 16-bit version. */
13085 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13087 static const struct opcode_descriptor bz_rs_insns_32[] = {
13088 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13089 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13090 { 0, 0 } /* End marker for find_match(). */
13093 static const struct opcode_descriptor bz_rt_insns_32[] = {
13094 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13095 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13096 { 0, 0 } /* End marker for find_match(). */
13099 static const struct opcode_descriptor bzc_insns_32[] = {
13100 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13101 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13102 { 0, 0 } /* End marker for find_match(). */
13105 static const struct opcode_descriptor bz_insns_16[] = {
13106 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13107 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13108 { 0, 0 } /* End marker for find_match(). */
13111 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13113 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
13114 #define BZ16_REG_FIELD(r) \
13115 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
13118 /* 32-bit instructions with a delay slot. */
13120 static const struct opcode_descriptor jal_insn_32_bd16 =
13121 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13123 static const struct opcode_descriptor jal_insn_32_bd32 =
13124 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13126 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13127 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13129 static const struct opcode_descriptor j_insn_32 =
13130 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13132 static const struct opcode_descriptor jalr_insn_32 =
13133 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13135 /* This table can be compacted, because no opcode replacement is made. */
13137 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13138 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13140 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13141 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13143 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13144 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13145 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13146 { 0, 0 } /* End marker for find_match(). */
13149 /* This table can be compacted, because no opcode replacement is made. */
13151 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13152 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13154 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13155 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13156 { 0, 0 } /* End marker for find_match(). */
13160 /* 16-bit instructions with a delay slot. */
13162 static const struct opcode_descriptor jalr_insn_16_bd16 =
13163 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13165 static const struct opcode_descriptor jalr_insn_16_bd32 =
13166 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13168 static const struct opcode_descriptor jr_insn_16 =
13169 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13171 #define JR16_REG(opcode) ((opcode) & 0x1f)
13173 /* This table can be compacted, because no opcode replacement is made. */
13175 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13176 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13178 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13179 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13180 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13181 { 0, 0 } /* End marker for find_match(). */
13185 /* LUI instruction. */
13187 static const struct opcode_descriptor lui_insn =
13188 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13191 /* ADDIU instruction. */
13193 static const struct opcode_descriptor addiu_insn =
13194 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13196 static const struct opcode_descriptor addiupc_insn =
13197 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13199 #define ADDIUPC_REG_FIELD(r) \
13200 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13203 /* Relaxable instructions in a JAL delay slot: MOVE. */
13205 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13206 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13207 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13208 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13210 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13211 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13213 static const struct opcode_descriptor move_insns_32[] = {
13214 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13215 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13216 { 0, 0 } /* End marker for find_match(). */
13219 static const struct opcode_descriptor move_insn_16 =
13220 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13223 /* NOP instructions. */
13225 static const struct opcode_descriptor nop_insn_32 =
13226 { /* "nop", "", */ 0x00000000, 0xffffffff };
13228 static const struct opcode_descriptor nop_insn_16 =
13229 { /* "nop", "", */ 0x0c00, 0xffff };
13232 /* Instruction match support. */
13234 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13236 static int
13237 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13239 unsigned long indx;
13241 for (indx = 0; insn[indx].mask != 0; indx++)
13242 if (MATCH (opcode, insn[indx]))
13243 return indx;
13245 return -1;
13249 /* Branch and delay slot decoding support. */
13251 /* If PTR points to what *might* be a 16-bit branch or jump, then
13252 return the minimum length of its delay slot, otherwise return 0.
13253 Non-zero results are not definitive as we might be checking against
13254 the second half of another instruction. */
13256 static int
13257 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13259 unsigned long opcode;
13260 int bdsize;
13262 opcode = bfd_get_16 (abfd, ptr);
13263 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13264 /* 16-bit branch/jump with a 32-bit delay slot. */
13265 bdsize = 4;
13266 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13267 || find_match (opcode, ds_insns_16_bd16) >= 0)
13268 /* 16-bit branch/jump with a 16-bit delay slot. */
13269 bdsize = 2;
13270 else
13271 /* No delay slot. */
13272 bdsize = 0;
13274 return bdsize;
13277 /* If PTR points to what *might* be a 32-bit branch or jump, then
13278 return the minimum length of its delay slot, otherwise return 0.
13279 Non-zero results are not definitive as we might be checking against
13280 the second half of another instruction. */
13282 static int
13283 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13285 unsigned long opcode;
13286 int bdsize;
13288 opcode = bfd_get_micromips_32 (abfd, ptr);
13289 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13290 /* 32-bit branch/jump with a 32-bit delay slot. */
13291 bdsize = 4;
13292 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13293 /* 32-bit branch/jump with a 16-bit delay slot. */
13294 bdsize = 2;
13295 else
13296 /* No delay slot. */
13297 bdsize = 0;
13299 return bdsize;
13302 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13303 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13305 static bfd_boolean
13306 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13308 unsigned long opcode;
13310 opcode = bfd_get_16 (abfd, ptr);
13311 if (MATCH (opcode, b_insn_16)
13312 /* B16 */
13313 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13314 /* JR16 */
13315 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13316 /* BEQZ16, BNEZ16 */
13317 || (MATCH (opcode, jalr_insn_16_bd32)
13318 /* JALR16 */
13319 && reg != JR16_REG (opcode) && reg != RA))
13320 return TRUE;
13322 return FALSE;
13325 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13326 then return TRUE, otherwise FALSE. */
13328 static bfd_boolean
13329 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13331 unsigned long opcode;
13333 opcode = bfd_get_micromips_32 (abfd, ptr);
13334 if (MATCH (opcode, j_insn_32)
13335 /* J */
13336 || MATCH (opcode, bc_insn_32)
13337 /* BC1F, BC1T, BC2F, BC2T */
13338 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13339 /* JAL, JALX */
13340 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13341 /* BGEZ, BGTZ, BLEZ, BLTZ */
13342 || (MATCH (opcode, bzal_insn_32)
13343 /* BGEZAL, BLTZAL */
13344 && reg != OP32_SREG (opcode) && reg != RA)
13345 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13346 /* JALR, JALR.HB, BEQ, BNE */
13347 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13348 return TRUE;
13350 return FALSE;
13353 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13354 IRELEND) at OFFSET indicate that there must be a compact branch there,
13355 then return TRUE, otherwise FALSE. */
13357 static bfd_boolean
13358 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13359 const Elf_Internal_Rela *internal_relocs,
13360 const Elf_Internal_Rela *irelend)
13362 const Elf_Internal_Rela *irel;
13363 unsigned long opcode;
13365 opcode = bfd_get_micromips_32 (abfd, ptr);
13366 if (find_match (opcode, bzc_insns_32) < 0)
13367 return FALSE;
13369 for (irel = internal_relocs; irel < irelend; irel++)
13370 if (irel->r_offset == offset
13371 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13372 return TRUE;
13374 return FALSE;
13377 /* Bitsize checking. */
13378 #define IS_BITSIZE(val, N) \
13379 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13380 - (1ULL << ((N) - 1))) == (val))
13383 bfd_boolean
13384 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13385 struct bfd_link_info *link_info,
13386 bfd_boolean *again)
13388 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13389 Elf_Internal_Shdr *symtab_hdr;
13390 Elf_Internal_Rela *internal_relocs;
13391 Elf_Internal_Rela *irel, *irelend;
13392 bfd_byte *contents = NULL;
13393 Elf_Internal_Sym *isymbuf = NULL;
13395 /* Assume nothing changes. */
13396 *again = FALSE;
13398 /* We don't have to do anything for a relocatable link, if
13399 this section does not have relocs, or if this is not a
13400 code section. */
13402 if (bfd_link_relocatable (link_info)
13403 || (sec->flags & SEC_RELOC) == 0
13404 || sec->reloc_count == 0
13405 || (sec->flags & SEC_CODE) == 0)
13406 return TRUE;
13408 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13410 /* Get a copy of the native relocations. */
13411 internal_relocs = (_bfd_elf_link_read_relocs
13412 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13413 link_info->keep_memory));
13414 if (internal_relocs == NULL)
13415 goto error_return;
13417 /* Walk through them looking for relaxing opportunities. */
13418 irelend = internal_relocs + sec->reloc_count;
13419 for (irel = internal_relocs; irel < irelend; irel++)
13421 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13422 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13423 bfd_boolean target_is_micromips_code_p;
13424 unsigned long opcode;
13425 bfd_vma symval;
13426 bfd_vma pcrval;
13427 bfd_byte *ptr;
13428 int fndopc;
13430 /* The number of bytes to delete for relaxation and from where
13431 to delete these bytes starting at irel->r_offset. */
13432 int delcnt = 0;
13433 int deloff = 0;
13435 /* If this isn't something that can be relaxed, then ignore
13436 this reloc. */
13437 if (r_type != R_MICROMIPS_HI16
13438 && r_type != R_MICROMIPS_PC16_S1
13439 && r_type != R_MICROMIPS_26_S1)
13440 continue;
13442 /* Get the section contents if we haven't done so already. */
13443 if (contents == NULL)
13445 /* Get cached copy if it exists. */
13446 if (elf_section_data (sec)->this_hdr.contents != NULL)
13447 contents = elf_section_data (sec)->this_hdr.contents;
13448 /* Go get them off disk. */
13449 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13450 goto error_return;
13452 ptr = contents + irel->r_offset;
13454 /* Read this BFD's local symbols if we haven't done so already. */
13455 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13457 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13458 if (isymbuf == NULL)
13459 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13460 symtab_hdr->sh_info, 0,
13461 NULL, NULL, NULL);
13462 if (isymbuf == NULL)
13463 goto error_return;
13466 /* Get the value of the symbol referred to by the reloc. */
13467 if (r_symndx < symtab_hdr->sh_info)
13469 /* A local symbol. */
13470 Elf_Internal_Sym *isym;
13471 asection *sym_sec;
13473 isym = isymbuf + r_symndx;
13474 if (isym->st_shndx == SHN_UNDEF)
13475 sym_sec = bfd_und_section_ptr;
13476 else if (isym->st_shndx == SHN_ABS)
13477 sym_sec = bfd_abs_section_ptr;
13478 else if (isym->st_shndx == SHN_COMMON)
13479 sym_sec = bfd_com_section_ptr;
13480 else
13481 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13482 symval = (isym->st_value
13483 + sym_sec->output_section->vma
13484 + sym_sec->output_offset);
13485 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13487 else
13489 unsigned long indx;
13490 struct elf_link_hash_entry *h;
13492 /* An external symbol. */
13493 indx = r_symndx - symtab_hdr->sh_info;
13494 h = elf_sym_hashes (abfd)[indx];
13495 BFD_ASSERT (h != NULL);
13497 if (h->root.type != bfd_link_hash_defined
13498 && h->root.type != bfd_link_hash_defweak)
13499 /* This appears to be a reference to an undefined
13500 symbol. Just ignore it -- it will be caught by the
13501 regular reloc processing. */
13502 continue;
13504 symval = (h->root.u.def.value
13505 + h->root.u.def.section->output_section->vma
13506 + h->root.u.def.section->output_offset);
13507 target_is_micromips_code_p = (!h->needs_plt
13508 && ELF_ST_IS_MICROMIPS (h->other));
13512 /* For simplicity of coding, we are going to modify the
13513 section contents, the section relocs, and the BFD symbol
13514 table. We must tell the rest of the code not to free up this
13515 information. It would be possible to instead create a table
13516 of changes which have to be made, as is done in coff-mips.c;
13517 that would be more work, but would require less memory when
13518 the linker is run. */
13520 /* Only 32-bit instructions relaxed. */
13521 if (irel->r_offset + 4 > sec->size)
13522 continue;
13524 opcode = bfd_get_micromips_32 (abfd, ptr);
13526 /* This is the pc-relative distance from the instruction the
13527 relocation is applied to, to the symbol referred. */
13528 pcrval = (symval
13529 - (sec->output_section->vma + sec->output_offset)
13530 - irel->r_offset);
13532 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13533 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13534 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13536 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13538 where pcrval has first to be adjusted to apply against the LO16
13539 location (we make the adjustment later on, when we have figured
13540 out the offset). */
13541 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13543 bfd_boolean bzc = FALSE;
13544 unsigned long nextopc;
13545 unsigned long reg;
13546 bfd_vma offset;
13548 /* Give up if the previous reloc was a HI16 against this symbol
13549 too. */
13550 if (irel > internal_relocs
13551 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13552 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13553 continue;
13555 /* Or if the next reloc is not a LO16 against this symbol. */
13556 if (irel + 1 >= irelend
13557 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13558 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13559 continue;
13561 /* Or if the second next reloc is a LO16 against this symbol too. */
13562 if (irel + 2 >= irelend
13563 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13564 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13565 continue;
13567 /* See if the LUI instruction *might* be in a branch delay slot.
13568 We check whether what looks like a 16-bit branch or jump is
13569 actually an immediate argument to a compact branch, and let
13570 it through if so. */
13571 if (irel->r_offset >= 2
13572 && check_br16_dslot (abfd, ptr - 2)
13573 && !(irel->r_offset >= 4
13574 && (bzc = check_relocated_bzc (abfd,
13575 ptr - 4, irel->r_offset - 4,
13576 internal_relocs, irelend))))
13577 continue;
13578 if (irel->r_offset >= 4
13579 && !bzc
13580 && check_br32_dslot (abfd, ptr - 4))
13581 continue;
13583 reg = OP32_SREG (opcode);
13585 /* We only relax adjacent instructions or ones separated with
13586 a branch or jump that has a delay slot. The branch or jump
13587 must not fiddle with the register used to hold the address.
13588 Subtract 4 for the LUI itself. */
13589 offset = irel[1].r_offset - irel[0].r_offset;
13590 switch (offset - 4)
13592 case 0:
13593 break;
13594 case 2:
13595 if (check_br16 (abfd, ptr + 4, reg))
13596 break;
13597 continue;
13598 case 4:
13599 if (check_br32 (abfd, ptr + 4, reg))
13600 break;
13601 continue;
13602 default:
13603 continue;
13606 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13608 /* Give up unless the same register is used with both
13609 relocations. */
13610 if (OP32_SREG (nextopc) != reg)
13611 continue;
13613 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13614 and rounding up to take masking of the two LSBs into account. */
13615 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13617 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13618 if (IS_BITSIZE (symval, 16))
13620 /* Fix the relocation's type. */
13621 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13623 /* Instructions using R_MICROMIPS_LO16 have the base or
13624 source register in bits 20:16. This register becomes $0
13625 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13626 nextopc &= ~0x001f0000;
13627 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13628 contents + irel[1].r_offset);
13631 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13632 We add 4 to take LUI deletion into account while checking
13633 the PC-relative distance. */
13634 else if (symval % 4 == 0
13635 && IS_BITSIZE (pcrval + 4, 25)
13636 && MATCH (nextopc, addiu_insn)
13637 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13638 && OP16_VALID_REG (OP32_TREG (nextopc)))
13640 /* Fix the relocation's type. */
13641 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13643 /* Replace ADDIU with the ADDIUPC version. */
13644 nextopc = (addiupc_insn.match
13645 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13647 bfd_put_micromips_32 (abfd, nextopc,
13648 contents + irel[1].r_offset);
13651 /* Can't do anything, give up, sigh... */
13652 else
13653 continue;
13655 /* Fix the relocation's type. */
13656 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13658 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13659 delcnt = 4;
13660 deloff = 0;
13663 /* Compact branch relaxation -- due to the multitude of macros
13664 employed by the compiler/assembler, compact branches are not
13665 always generated. Obviously, this can/will be fixed elsewhere,
13666 but there is no drawback in double checking it here. */
13667 else if (r_type == R_MICROMIPS_PC16_S1
13668 && irel->r_offset + 5 < sec->size
13669 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13670 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13671 && ((!insn32
13672 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13673 nop_insn_16) ? 2 : 0))
13674 || (irel->r_offset + 7 < sec->size
13675 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13676 ptr + 4),
13677 nop_insn_32) ? 4 : 0))))
13679 unsigned long reg;
13681 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13683 /* Replace BEQZ/BNEZ with the compact version. */
13684 opcode = (bzc_insns_32[fndopc].match
13685 | BZC32_REG_FIELD (reg)
13686 | (opcode & 0xffff)); /* Addend value. */
13688 bfd_put_micromips_32 (abfd, opcode, ptr);
13690 /* Delete the delay slot NOP: two or four bytes from
13691 irel->offset + 4; delcnt has already been set above. */
13692 deloff = 4;
13695 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13696 to check the distance from the next instruction, so subtract 2. */
13697 else if (!insn32
13698 && r_type == R_MICROMIPS_PC16_S1
13699 && IS_BITSIZE (pcrval - 2, 11)
13700 && find_match (opcode, b_insns_32) >= 0)
13702 /* Fix the relocation's type. */
13703 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13705 /* Replace the 32-bit opcode with a 16-bit opcode. */
13706 bfd_put_16 (abfd,
13707 (b_insn_16.match
13708 | (opcode & 0x3ff)), /* Addend value. */
13709 ptr);
13711 /* Delete 2 bytes from irel->r_offset + 2. */
13712 delcnt = 2;
13713 deloff = 2;
13716 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13717 to check the distance from the next instruction, so subtract 2. */
13718 else if (!insn32
13719 && r_type == R_MICROMIPS_PC16_S1
13720 && IS_BITSIZE (pcrval - 2, 8)
13721 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13722 && OP16_VALID_REG (OP32_SREG (opcode)))
13723 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13724 && OP16_VALID_REG (OP32_TREG (opcode)))))
13726 unsigned long reg;
13728 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13730 /* Fix the relocation's type. */
13731 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13733 /* Replace the 32-bit opcode with a 16-bit opcode. */
13734 bfd_put_16 (abfd,
13735 (bz_insns_16[fndopc].match
13736 | BZ16_REG_FIELD (reg)
13737 | (opcode & 0x7f)), /* Addend value. */
13738 ptr);
13740 /* Delete 2 bytes from irel->r_offset + 2. */
13741 delcnt = 2;
13742 deloff = 2;
13745 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13746 else if (!insn32
13747 && r_type == R_MICROMIPS_26_S1
13748 && target_is_micromips_code_p
13749 && irel->r_offset + 7 < sec->size
13750 && MATCH (opcode, jal_insn_32_bd32))
13752 unsigned long n32opc;
13753 bfd_boolean relaxed = FALSE;
13755 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13757 if (MATCH (n32opc, nop_insn_32))
13759 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13760 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13762 relaxed = TRUE;
13764 else if (find_match (n32opc, move_insns_32) >= 0)
13766 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13767 bfd_put_16 (abfd,
13768 (move_insn_16.match
13769 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13770 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13771 ptr + 4);
13773 relaxed = TRUE;
13775 /* Other 32-bit instructions relaxable to 16-bit
13776 instructions will be handled here later. */
13778 if (relaxed)
13780 /* JAL with 32-bit delay slot that is changed to a JALS
13781 with 16-bit delay slot. */
13782 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13784 /* Delete 2 bytes from irel->r_offset + 6. */
13785 delcnt = 2;
13786 deloff = 6;
13790 if (delcnt != 0)
13792 /* Note that we've changed the relocs, section contents, etc. */
13793 elf_section_data (sec)->relocs = internal_relocs;
13794 elf_section_data (sec)->this_hdr.contents = contents;
13795 symtab_hdr->contents = (unsigned char *) isymbuf;
13797 /* Delete bytes depending on the delcnt and deloff. */
13798 if (!mips_elf_relax_delete_bytes (abfd, sec,
13799 irel->r_offset + deloff, delcnt))
13800 goto error_return;
13802 /* That will change things, so we should relax again.
13803 Note that this is not required, and it may be slow. */
13804 *again = TRUE;
13808 if (isymbuf != NULL
13809 && symtab_hdr->contents != (unsigned char *) isymbuf)
13811 if (! link_info->keep_memory)
13812 free (isymbuf);
13813 else
13815 /* Cache the symbols for elf_link_input_bfd. */
13816 symtab_hdr->contents = (unsigned char *) isymbuf;
13820 if (contents != NULL
13821 && elf_section_data (sec)->this_hdr.contents != contents)
13823 if (! link_info->keep_memory)
13824 free (contents);
13825 else
13827 /* Cache the section contents for elf_link_input_bfd. */
13828 elf_section_data (sec)->this_hdr.contents = contents;
13832 if (internal_relocs != NULL
13833 && elf_section_data (sec)->relocs != internal_relocs)
13834 free (internal_relocs);
13836 return TRUE;
13838 error_return:
13839 if (isymbuf != NULL
13840 && symtab_hdr->contents != (unsigned char *) isymbuf)
13841 free (isymbuf);
13842 if (contents != NULL
13843 && elf_section_data (sec)->this_hdr.contents != contents)
13844 free (contents);
13845 if (internal_relocs != NULL
13846 && elf_section_data (sec)->relocs != internal_relocs)
13847 free (internal_relocs);
13849 return FALSE;
13852 /* Create a MIPS ELF linker hash table. */
13854 struct bfd_link_hash_table *
13855 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13857 struct mips_elf_link_hash_table *ret;
13858 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13860 ret = bfd_zmalloc (amt);
13861 if (ret == NULL)
13862 return NULL;
13864 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13865 mips_elf_link_hash_newfunc,
13866 sizeof (struct mips_elf_link_hash_entry),
13867 MIPS_ELF_DATA))
13869 free (ret);
13870 return NULL;
13872 ret->root.init_plt_refcount.plist = NULL;
13873 ret->root.init_plt_offset.plist = NULL;
13875 return &ret->root.root;
13878 /* Likewise, but indicate that the target is VxWorks. */
13880 struct bfd_link_hash_table *
13881 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13883 struct bfd_link_hash_table *ret;
13885 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13886 if (ret)
13888 struct mips_elf_link_hash_table *htab;
13890 htab = (struct mips_elf_link_hash_table *) ret;
13891 htab->use_plts_and_copy_relocs = TRUE;
13892 htab->is_vxworks = TRUE;
13894 return ret;
13897 /* A function that the linker calls if we are allowed to use PLTs
13898 and copy relocs. */
13900 void
13901 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13903 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13906 /* A function that the linker calls to select between all or only
13907 32-bit microMIPS instructions. */
13909 void
13910 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13912 mips_elf_hash_table (info)->insn32 = on;
13915 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13917 struct mips_mach_extension
13919 unsigned long extension, base;
13923 /* An array describing how BFD machines relate to one another. The entries
13924 are ordered topologically with MIPS I extensions listed last. */
13926 static const struct mips_mach_extension mips_mach_extensions[] =
13928 /* MIPS64r2 extensions. */
13929 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13930 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13931 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13932 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13933 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13935 /* MIPS64 extensions. */
13936 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13937 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13938 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13940 /* MIPS V extensions. */
13941 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13943 /* R10000 extensions. */
13944 { bfd_mach_mips12000, bfd_mach_mips10000 },
13945 { bfd_mach_mips14000, bfd_mach_mips10000 },
13946 { bfd_mach_mips16000, bfd_mach_mips10000 },
13948 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13949 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13950 better to allow vr5400 and vr5500 code to be merged anyway, since
13951 many libraries will just use the core ISA. Perhaps we could add
13952 some sort of ASE flag if this ever proves a problem. */
13953 { bfd_mach_mips5500, bfd_mach_mips5400 },
13954 { bfd_mach_mips5400, bfd_mach_mips5000 },
13956 /* MIPS IV extensions. */
13957 { bfd_mach_mips5, bfd_mach_mips8000 },
13958 { bfd_mach_mips10000, bfd_mach_mips8000 },
13959 { bfd_mach_mips5000, bfd_mach_mips8000 },
13960 { bfd_mach_mips7000, bfd_mach_mips8000 },
13961 { bfd_mach_mips9000, bfd_mach_mips8000 },
13963 /* VR4100 extensions. */
13964 { bfd_mach_mips4120, bfd_mach_mips4100 },
13965 { bfd_mach_mips4111, bfd_mach_mips4100 },
13967 /* MIPS III extensions. */
13968 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13969 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13970 { bfd_mach_mips8000, bfd_mach_mips4000 },
13971 { bfd_mach_mips4650, bfd_mach_mips4000 },
13972 { bfd_mach_mips4600, bfd_mach_mips4000 },
13973 { bfd_mach_mips4400, bfd_mach_mips4000 },
13974 { bfd_mach_mips4300, bfd_mach_mips4000 },
13975 { bfd_mach_mips4100, bfd_mach_mips4000 },
13976 { bfd_mach_mips4010, bfd_mach_mips4000 },
13977 { bfd_mach_mips5900, bfd_mach_mips4000 },
13979 /* MIPS32 extensions. */
13980 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13982 /* MIPS II extensions. */
13983 { bfd_mach_mips4000, bfd_mach_mips6000 },
13984 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13986 /* MIPS I extensions. */
13987 { bfd_mach_mips6000, bfd_mach_mips3000 },
13988 { bfd_mach_mips3900, bfd_mach_mips3000 }
13991 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13993 static bfd_boolean
13994 mips_mach_extends_p (unsigned long base, unsigned long extension)
13996 size_t i;
13998 if (extension == base)
13999 return TRUE;
14001 if (base == bfd_mach_mipsisa32
14002 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14003 return TRUE;
14005 if (base == bfd_mach_mipsisa32r2
14006 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14007 return TRUE;
14009 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14010 if (extension == mips_mach_extensions[i].extension)
14012 extension = mips_mach_extensions[i].base;
14013 if (extension == base)
14014 return TRUE;
14017 return FALSE;
14020 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14022 static unsigned long
14023 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14025 switch (isa_ext)
14027 case AFL_EXT_3900: return bfd_mach_mips3900;
14028 case AFL_EXT_4010: return bfd_mach_mips4010;
14029 case AFL_EXT_4100: return bfd_mach_mips4100;
14030 case AFL_EXT_4111: return bfd_mach_mips4111;
14031 case AFL_EXT_4120: return bfd_mach_mips4120;
14032 case AFL_EXT_4650: return bfd_mach_mips4650;
14033 case AFL_EXT_5400: return bfd_mach_mips5400;
14034 case AFL_EXT_5500: return bfd_mach_mips5500;
14035 case AFL_EXT_5900: return bfd_mach_mips5900;
14036 case AFL_EXT_10000: return bfd_mach_mips10000;
14037 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14038 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14039 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14040 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14041 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14042 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14043 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14044 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14045 default: return bfd_mach_mips3000;
14049 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14051 unsigned int
14052 bfd_mips_isa_ext (bfd *abfd)
14054 switch (bfd_get_mach (abfd))
14056 case bfd_mach_mips3900: return AFL_EXT_3900;
14057 case bfd_mach_mips4010: return AFL_EXT_4010;
14058 case bfd_mach_mips4100: return AFL_EXT_4100;
14059 case bfd_mach_mips4111: return AFL_EXT_4111;
14060 case bfd_mach_mips4120: return AFL_EXT_4120;
14061 case bfd_mach_mips4650: return AFL_EXT_4650;
14062 case bfd_mach_mips5400: return AFL_EXT_5400;
14063 case bfd_mach_mips5500: return AFL_EXT_5500;
14064 case bfd_mach_mips5900: return AFL_EXT_5900;
14065 case bfd_mach_mips10000: return AFL_EXT_10000;
14066 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14067 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14068 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14069 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14070 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14071 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14072 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14073 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14074 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14075 default: return 0;
14079 /* Encode ISA level and revision as a single value. */
14080 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14082 /* Decode a single value into level and revision. */
14083 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14084 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14086 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14088 static void
14089 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14091 int new_isa = 0;
14092 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14094 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14095 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14096 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14097 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14098 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14099 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14100 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14101 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14102 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14103 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14104 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14105 default:
14106 (*_bfd_error_handler)
14107 (_("%B: Unknown architecture %s"),
14108 abfd, bfd_printable_name (abfd));
14111 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14113 abiflags->isa_level = ISA_LEVEL (new_isa);
14114 abiflags->isa_rev = ISA_REV (new_isa);
14117 /* Update the isa_ext if ABFD describes a further extension. */
14118 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14119 bfd_get_mach (abfd)))
14120 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14123 /* Return true if the given ELF header flags describe a 32-bit binary. */
14125 static bfd_boolean
14126 mips_32bit_flags_p (flagword flags)
14128 return ((flags & EF_MIPS_32BITMODE) != 0
14129 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14130 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14131 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14132 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14133 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14134 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14135 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14138 /* Infer the content of the ABI flags based on the elf header. */
14140 static void
14141 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14143 obj_attribute *in_attr;
14145 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14146 update_mips_abiflags_isa (abfd, abiflags);
14148 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14149 abiflags->gpr_size = AFL_REG_32;
14150 else
14151 abiflags->gpr_size = AFL_REG_64;
14153 abiflags->cpr1_size = AFL_REG_NONE;
14155 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14156 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14158 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14159 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14160 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14161 && abiflags->gpr_size == AFL_REG_32))
14162 abiflags->cpr1_size = AFL_REG_32;
14163 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14164 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14165 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14166 abiflags->cpr1_size = AFL_REG_64;
14168 abiflags->cpr2_size = AFL_REG_NONE;
14170 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14171 abiflags->ases |= AFL_ASE_MDMX;
14172 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14173 abiflags->ases |= AFL_ASE_MIPS16;
14174 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14175 abiflags->ases |= AFL_ASE_MICROMIPS;
14177 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14178 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14179 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14180 && abiflags->isa_level >= 32
14181 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14182 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14185 /* We need to use a special link routine to handle the .reginfo and
14186 the .mdebug sections. We need to merge all instances of these
14187 sections together, not write them all out sequentially. */
14189 bfd_boolean
14190 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14192 asection *o;
14193 struct bfd_link_order *p;
14194 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14195 asection *rtproc_sec, *abiflags_sec;
14196 Elf32_RegInfo reginfo;
14197 struct ecoff_debug_info debug;
14198 struct mips_htab_traverse_info hti;
14199 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14200 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14201 HDRR *symhdr = &debug.symbolic_header;
14202 void *mdebug_handle = NULL;
14203 asection *s;
14204 EXTR esym;
14205 unsigned int i;
14206 bfd_size_type amt;
14207 struct mips_elf_link_hash_table *htab;
14209 static const char * const secname[] =
14211 ".text", ".init", ".fini", ".data",
14212 ".rodata", ".sdata", ".sbss", ".bss"
14214 static const int sc[] =
14216 scText, scInit, scFini, scData,
14217 scRData, scSData, scSBss, scBss
14220 /* Sort the dynamic symbols so that those with GOT entries come after
14221 those without. */
14222 htab = mips_elf_hash_table (info);
14223 BFD_ASSERT (htab != NULL);
14225 if (!mips_elf_sort_hash_table (abfd, info))
14226 return FALSE;
14228 /* Create any scheduled LA25 stubs. */
14229 hti.info = info;
14230 hti.output_bfd = abfd;
14231 hti.error = FALSE;
14232 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14233 if (hti.error)
14234 return FALSE;
14236 /* Get a value for the GP register. */
14237 if (elf_gp (abfd) == 0)
14239 struct bfd_link_hash_entry *h;
14241 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14242 if (h != NULL && h->type == bfd_link_hash_defined)
14243 elf_gp (abfd) = (h->u.def.value
14244 + h->u.def.section->output_section->vma
14245 + h->u.def.section->output_offset);
14246 else if (htab->is_vxworks
14247 && (h = bfd_link_hash_lookup (info->hash,
14248 "_GLOBAL_OFFSET_TABLE_",
14249 FALSE, FALSE, TRUE))
14250 && h->type == bfd_link_hash_defined)
14251 elf_gp (abfd) = (h->u.def.section->output_section->vma
14252 + h->u.def.section->output_offset
14253 + h->u.def.value);
14254 else if (bfd_link_relocatable (info))
14256 bfd_vma lo = MINUS_ONE;
14258 /* Find the GP-relative section with the lowest offset. */
14259 for (o = abfd->sections; o != NULL; o = o->next)
14260 if (o->vma < lo
14261 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14262 lo = o->vma;
14264 /* And calculate GP relative to that. */
14265 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14267 else
14269 /* If the relocate_section function needs to do a reloc
14270 involving the GP value, it should make a reloc_dangerous
14271 callback to warn that GP is not defined. */
14275 /* Go through the sections and collect the .reginfo and .mdebug
14276 information. */
14277 abiflags_sec = NULL;
14278 reginfo_sec = NULL;
14279 mdebug_sec = NULL;
14280 gptab_data_sec = NULL;
14281 gptab_bss_sec = NULL;
14282 for (o = abfd->sections; o != NULL; o = o->next)
14284 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14286 /* We have found the .MIPS.abiflags section in the output file.
14287 Look through all the link_orders comprising it and remove them.
14288 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14289 for (p = o->map_head.link_order; p != NULL; p = p->next)
14291 asection *input_section;
14293 if (p->type != bfd_indirect_link_order)
14295 if (p->type == bfd_data_link_order)
14296 continue;
14297 abort ();
14300 input_section = p->u.indirect.section;
14302 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14303 elf_link_input_bfd ignores this section. */
14304 input_section->flags &= ~SEC_HAS_CONTENTS;
14307 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14308 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14310 /* Skip this section later on (I don't think this currently
14311 matters, but someday it might). */
14312 o->map_head.link_order = NULL;
14314 abiflags_sec = o;
14317 if (strcmp (o->name, ".reginfo") == 0)
14319 memset (&reginfo, 0, sizeof reginfo);
14321 /* We have found the .reginfo section in the output file.
14322 Look through all the link_orders comprising it and merge
14323 the information together. */
14324 for (p = o->map_head.link_order; p != NULL; p = p->next)
14326 asection *input_section;
14327 bfd *input_bfd;
14328 Elf32_External_RegInfo ext;
14329 Elf32_RegInfo sub;
14331 if (p->type != bfd_indirect_link_order)
14333 if (p->type == bfd_data_link_order)
14334 continue;
14335 abort ();
14338 input_section = p->u.indirect.section;
14339 input_bfd = input_section->owner;
14341 if (! bfd_get_section_contents (input_bfd, input_section,
14342 &ext, 0, sizeof ext))
14343 return FALSE;
14345 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14347 reginfo.ri_gprmask |= sub.ri_gprmask;
14348 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14349 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14350 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14351 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14353 /* ri_gp_value is set by the function
14354 mips_elf32_section_processing when the section is
14355 finally written out. */
14357 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14358 elf_link_input_bfd ignores this section. */
14359 input_section->flags &= ~SEC_HAS_CONTENTS;
14362 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14363 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14365 /* Skip this section later on (I don't think this currently
14366 matters, but someday it might). */
14367 o->map_head.link_order = NULL;
14369 reginfo_sec = o;
14372 if (strcmp (o->name, ".mdebug") == 0)
14374 struct extsym_info einfo;
14375 bfd_vma last;
14377 /* We have found the .mdebug section in the output file.
14378 Look through all the link_orders comprising it and merge
14379 the information together. */
14380 symhdr->magic = swap->sym_magic;
14381 /* FIXME: What should the version stamp be? */
14382 symhdr->vstamp = 0;
14383 symhdr->ilineMax = 0;
14384 symhdr->cbLine = 0;
14385 symhdr->idnMax = 0;
14386 symhdr->ipdMax = 0;
14387 symhdr->isymMax = 0;
14388 symhdr->ioptMax = 0;
14389 symhdr->iauxMax = 0;
14390 symhdr->issMax = 0;
14391 symhdr->issExtMax = 0;
14392 symhdr->ifdMax = 0;
14393 symhdr->crfd = 0;
14394 symhdr->iextMax = 0;
14396 /* We accumulate the debugging information itself in the
14397 debug_info structure. */
14398 debug.line = NULL;
14399 debug.external_dnr = NULL;
14400 debug.external_pdr = NULL;
14401 debug.external_sym = NULL;
14402 debug.external_opt = NULL;
14403 debug.external_aux = NULL;
14404 debug.ss = NULL;
14405 debug.ssext = debug.ssext_end = NULL;
14406 debug.external_fdr = NULL;
14407 debug.external_rfd = NULL;
14408 debug.external_ext = debug.external_ext_end = NULL;
14410 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14411 if (mdebug_handle == NULL)
14412 return FALSE;
14414 esym.jmptbl = 0;
14415 esym.cobol_main = 0;
14416 esym.weakext = 0;
14417 esym.reserved = 0;
14418 esym.ifd = ifdNil;
14419 esym.asym.iss = issNil;
14420 esym.asym.st = stLocal;
14421 esym.asym.reserved = 0;
14422 esym.asym.index = indexNil;
14423 last = 0;
14424 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14426 esym.asym.sc = sc[i];
14427 s = bfd_get_section_by_name (abfd, secname[i]);
14428 if (s != NULL)
14430 esym.asym.value = s->vma;
14431 last = s->vma + s->size;
14433 else
14434 esym.asym.value = last;
14435 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14436 secname[i], &esym))
14437 return FALSE;
14440 for (p = o->map_head.link_order; p != NULL; p = p->next)
14442 asection *input_section;
14443 bfd *input_bfd;
14444 const struct ecoff_debug_swap *input_swap;
14445 struct ecoff_debug_info input_debug;
14446 char *eraw_src;
14447 char *eraw_end;
14449 if (p->type != bfd_indirect_link_order)
14451 if (p->type == bfd_data_link_order)
14452 continue;
14453 abort ();
14456 input_section = p->u.indirect.section;
14457 input_bfd = input_section->owner;
14459 if (!is_mips_elf (input_bfd))
14461 /* I don't know what a non MIPS ELF bfd would be
14462 doing with a .mdebug section, but I don't really
14463 want to deal with it. */
14464 continue;
14467 input_swap = (get_elf_backend_data (input_bfd)
14468 ->elf_backend_ecoff_debug_swap);
14470 BFD_ASSERT (p->size == input_section->size);
14472 /* The ECOFF linking code expects that we have already
14473 read in the debugging information and set up an
14474 ecoff_debug_info structure, so we do that now. */
14475 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14476 &input_debug))
14477 return FALSE;
14479 if (! (bfd_ecoff_debug_accumulate
14480 (mdebug_handle, abfd, &debug, swap, input_bfd,
14481 &input_debug, input_swap, info)))
14482 return FALSE;
14484 /* Loop through the external symbols. For each one with
14485 interesting information, try to find the symbol in
14486 the linker global hash table and save the information
14487 for the output external symbols. */
14488 eraw_src = input_debug.external_ext;
14489 eraw_end = (eraw_src
14490 + (input_debug.symbolic_header.iextMax
14491 * input_swap->external_ext_size));
14492 for (;
14493 eraw_src < eraw_end;
14494 eraw_src += input_swap->external_ext_size)
14496 EXTR ext;
14497 const char *name;
14498 struct mips_elf_link_hash_entry *h;
14500 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14501 if (ext.asym.sc == scNil
14502 || ext.asym.sc == scUndefined
14503 || ext.asym.sc == scSUndefined)
14504 continue;
14506 name = input_debug.ssext + ext.asym.iss;
14507 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14508 name, FALSE, FALSE, TRUE);
14509 if (h == NULL || h->esym.ifd != -2)
14510 continue;
14512 if (ext.ifd != -1)
14514 BFD_ASSERT (ext.ifd
14515 < input_debug.symbolic_header.ifdMax);
14516 ext.ifd = input_debug.ifdmap[ext.ifd];
14519 h->esym = ext;
14522 /* Free up the information we just read. */
14523 free (input_debug.line);
14524 free (input_debug.external_dnr);
14525 free (input_debug.external_pdr);
14526 free (input_debug.external_sym);
14527 free (input_debug.external_opt);
14528 free (input_debug.external_aux);
14529 free (input_debug.ss);
14530 free (input_debug.ssext);
14531 free (input_debug.external_fdr);
14532 free (input_debug.external_rfd);
14533 free (input_debug.external_ext);
14535 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14536 elf_link_input_bfd ignores this section. */
14537 input_section->flags &= ~SEC_HAS_CONTENTS;
14540 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14542 /* Create .rtproc section. */
14543 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14544 if (rtproc_sec == NULL)
14546 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14547 | SEC_LINKER_CREATED | SEC_READONLY);
14549 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14550 ".rtproc",
14551 flags);
14552 if (rtproc_sec == NULL
14553 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14554 return FALSE;
14557 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14558 info, rtproc_sec,
14559 &debug))
14560 return FALSE;
14563 /* Build the external symbol information. */
14564 einfo.abfd = abfd;
14565 einfo.info = info;
14566 einfo.debug = &debug;
14567 einfo.swap = swap;
14568 einfo.failed = FALSE;
14569 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14570 mips_elf_output_extsym, &einfo);
14571 if (einfo.failed)
14572 return FALSE;
14574 /* Set the size of the .mdebug section. */
14575 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14577 /* Skip this section later on (I don't think this currently
14578 matters, but someday it might). */
14579 o->map_head.link_order = NULL;
14581 mdebug_sec = o;
14584 if (CONST_STRNEQ (o->name, ".gptab."))
14586 const char *subname;
14587 unsigned int c;
14588 Elf32_gptab *tab;
14589 Elf32_External_gptab *ext_tab;
14590 unsigned int j;
14592 /* The .gptab.sdata and .gptab.sbss sections hold
14593 information describing how the small data area would
14594 change depending upon the -G switch. These sections
14595 not used in executables files. */
14596 if (! bfd_link_relocatable (info))
14598 for (p = o->map_head.link_order; p != NULL; p = p->next)
14600 asection *input_section;
14602 if (p->type != bfd_indirect_link_order)
14604 if (p->type == bfd_data_link_order)
14605 continue;
14606 abort ();
14609 input_section = p->u.indirect.section;
14611 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14612 elf_link_input_bfd ignores this section. */
14613 input_section->flags &= ~SEC_HAS_CONTENTS;
14616 /* Skip this section later on (I don't think this
14617 currently matters, but someday it might). */
14618 o->map_head.link_order = NULL;
14620 /* Really remove the section. */
14621 bfd_section_list_remove (abfd, o);
14622 --abfd->section_count;
14624 continue;
14627 /* There is one gptab for initialized data, and one for
14628 uninitialized data. */
14629 if (strcmp (o->name, ".gptab.sdata") == 0)
14630 gptab_data_sec = o;
14631 else if (strcmp (o->name, ".gptab.sbss") == 0)
14632 gptab_bss_sec = o;
14633 else
14635 (*_bfd_error_handler)
14636 (_("%s: illegal section name `%s'"),
14637 bfd_get_filename (abfd), o->name);
14638 bfd_set_error (bfd_error_nonrepresentable_section);
14639 return FALSE;
14642 /* The linker script always combines .gptab.data and
14643 .gptab.sdata into .gptab.sdata, and likewise for
14644 .gptab.bss and .gptab.sbss. It is possible that there is
14645 no .sdata or .sbss section in the output file, in which
14646 case we must change the name of the output section. */
14647 subname = o->name + sizeof ".gptab" - 1;
14648 if (bfd_get_section_by_name (abfd, subname) == NULL)
14650 if (o == gptab_data_sec)
14651 o->name = ".gptab.data";
14652 else
14653 o->name = ".gptab.bss";
14654 subname = o->name + sizeof ".gptab" - 1;
14655 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14658 /* Set up the first entry. */
14659 c = 1;
14660 amt = c * sizeof (Elf32_gptab);
14661 tab = bfd_malloc (amt);
14662 if (tab == NULL)
14663 return FALSE;
14664 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14665 tab[0].gt_header.gt_unused = 0;
14667 /* Combine the input sections. */
14668 for (p = o->map_head.link_order; p != NULL; p = p->next)
14670 asection *input_section;
14671 bfd *input_bfd;
14672 bfd_size_type size;
14673 unsigned long last;
14674 bfd_size_type gpentry;
14676 if (p->type != bfd_indirect_link_order)
14678 if (p->type == bfd_data_link_order)
14679 continue;
14680 abort ();
14683 input_section = p->u.indirect.section;
14684 input_bfd = input_section->owner;
14686 /* Combine the gptab entries for this input section one
14687 by one. We know that the input gptab entries are
14688 sorted by ascending -G value. */
14689 size = input_section->size;
14690 last = 0;
14691 for (gpentry = sizeof (Elf32_External_gptab);
14692 gpentry < size;
14693 gpentry += sizeof (Elf32_External_gptab))
14695 Elf32_External_gptab ext_gptab;
14696 Elf32_gptab int_gptab;
14697 unsigned long val;
14698 unsigned long add;
14699 bfd_boolean exact;
14700 unsigned int look;
14702 if (! (bfd_get_section_contents
14703 (input_bfd, input_section, &ext_gptab, gpentry,
14704 sizeof (Elf32_External_gptab))))
14706 free (tab);
14707 return FALSE;
14710 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14711 &int_gptab);
14712 val = int_gptab.gt_entry.gt_g_value;
14713 add = int_gptab.gt_entry.gt_bytes - last;
14715 exact = FALSE;
14716 for (look = 1; look < c; look++)
14718 if (tab[look].gt_entry.gt_g_value >= val)
14719 tab[look].gt_entry.gt_bytes += add;
14721 if (tab[look].gt_entry.gt_g_value == val)
14722 exact = TRUE;
14725 if (! exact)
14727 Elf32_gptab *new_tab;
14728 unsigned int max;
14730 /* We need a new table entry. */
14731 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14732 new_tab = bfd_realloc (tab, amt);
14733 if (new_tab == NULL)
14735 free (tab);
14736 return FALSE;
14738 tab = new_tab;
14739 tab[c].gt_entry.gt_g_value = val;
14740 tab[c].gt_entry.gt_bytes = add;
14742 /* Merge in the size for the next smallest -G
14743 value, since that will be implied by this new
14744 value. */
14745 max = 0;
14746 for (look = 1; look < c; look++)
14748 if (tab[look].gt_entry.gt_g_value < val
14749 && (max == 0
14750 || (tab[look].gt_entry.gt_g_value
14751 > tab[max].gt_entry.gt_g_value)))
14752 max = look;
14754 if (max != 0)
14755 tab[c].gt_entry.gt_bytes +=
14756 tab[max].gt_entry.gt_bytes;
14758 ++c;
14761 last = int_gptab.gt_entry.gt_bytes;
14764 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14765 elf_link_input_bfd ignores this section. */
14766 input_section->flags &= ~SEC_HAS_CONTENTS;
14769 /* The table must be sorted by -G value. */
14770 if (c > 2)
14771 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14773 /* Swap out the table. */
14774 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14775 ext_tab = bfd_alloc (abfd, amt);
14776 if (ext_tab == NULL)
14778 free (tab);
14779 return FALSE;
14782 for (j = 0; j < c; j++)
14783 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14784 free (tab);
14786 o->size = c * sizeof (Elf32_External_gptab);
14787 o->contents = (bfd_byte *) ext_tab;
14789 /* Skip this section later on (I don't think this currently
14790 matters, but someday it might). */
14791 o->map_head.link_order = NULL;
14795 /* Invoke the regular ELF backend linker to do all the work. */
14796 if (!bfd_elf_final_link (abfd, info))
14797 return FALSE;
14799 /* Now write out the computed sections. */
14801 if (abiflags_sec != NULL)
14803 Elf_External_ABIFlags_v0 ext;
14804 Elf_Internal_ABIFlags_v0 *abiflags;
14806 abiflags = &mips_elf_tdata (abfd)->abiflags;
14808 /* Set up the abiflags if no valid input sections were found. */
14809 if (!mips_elf_tdata (abfd)->abiflags_valid)
14811 infer_mips_abiflags (abfd, abiflags);
14812 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14814 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14815 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14816 return FALSE;
14819 if (reginfo_sec != NULL)
14821 Elf32_External_RegInfo ext;
14823 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14824 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14825 return FALSE;
14828 if (mdebug_sec != NULL)
14830 BFD_ASSERT (abfd->output_has_begun);
14831 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14832 swap, info,
14833 mdebug_sec->filepos))
14834 return FALSE;
14836 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14839 if (gptab_data_sec != NULL)
14841 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14842 gptab_data_sec->contents,
14843 0, gptab_data_sec->size))
14844 return FALSE;
14847 if (gptab_bss_sec != NULL)
14849 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14850 gptab_bss_sec->contents,
14851 0, gptab_bss_sec->size))
14852 return FALSE;
14855 if (SGI_COMPAT (abfd))
14857 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14858 if (rtproc_sec != NULL)
14860 if (! bfd_set_section_contents (abfd, rtproc_sec,
14861 rtproc_sec->contents,
14862 0, rtproc_sec->size))
14863 return FALSE;
14867 return TRUE;
14870 /* Merge object attributes from IBFD into OBFD. Raise an error if
14871 there are conflicting attributes. */
14872 static bfd_boolean
14873 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14875 obj_attribute *in_attr;
14876 obj_attribute *out_attr;
14877 bfd *abi_fp_bfd;
14878 bfd *abi_msa_bfd;
14880 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14881 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14882 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14883 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14885 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14886 if (!abi_msa_bfd
14887 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14888 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14890 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14892 /* This is the first object. Copy the attributes. */
14893 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14895 /* Use the Tag_null value to indicate the attributes have been
14896 initialized. */
14897 elf_known_obj_attributes_proc (obfd)[0].i = 1;
14899 return TRUE;
14902 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14903 non-conflicting ones. */
14904 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14905 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14907 int out_fp, in_fp;
14909 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14910 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14911 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14912 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14913 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
14914 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14915 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14916 || in_fp == Val_GNU_MIPS_ABI_FP_64
14917 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14919 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14920 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14922 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14923 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14924 || out_fp == Val_GNU_MIPS_ABI_FP_64
14925 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14926 /* Keep the current setting. */;
14927 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14928 && in_fp == Val_GNU_MIPS_ABI_FP_64)
14930 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14931 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14933 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14934 && out_fp == Val_GNU_MIPS_ABI_FP_64)
14935 /* Keep the current setting. */;
14936 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14938 const char *out_string, *in_string;
14940 out_string = _bfd_mips_fp_abi_string (out_fp);
14941 in_string = _bfd_mips_fp_abi_string (in_fp);
14942 /* First warn about cases involving unrecognised ABIs. */
14943 if (!out_string && !in_string)
14944 _bfd_error_handler
14945 (_("Warning: %B uses unknown floating point ABI %d "
14946 "(set by %B), %B uses unknown floating point ABI %d"),
14947 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14948 else if (!out_string)
14949 _bfd_error_handler
14950 (_("Warning: %B uses unknown floating point ABI %d "
14951 "(set by %B), %B uses %s"),
14952 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14953 else if (!in_string)
14954 _bfd_error_handler
14955 (_("Warning: %B uses %s (set by %B), "
14956 "%B uses unknown floating point ABI %d"),
14957 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14958 else
14960 /* If one of the bfds is soft-float, the other must be
14961 hard-float. The exact choice of hard-float ABI isn't
14962 really relevant to the error message. */
14963 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14964 out_string = "-mhard-float";
14965 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14966 in_string = "-mhard-float";
14967 _bfd_error_handler
14968 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14969 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14974 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14975 non-conflicting ones. */
14976 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14978 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14979 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14980 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14981 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14982 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14984 case Val_GNU_MIPS_ABI_MSA_128:
14985 _bfd_error_handler
14986 (_("Warning: %B uses %s (set by %B), "
14987 "%B uses unknown MSA ABI %d"),
14988 obfd, abi_msa_bfd, ibfd,
14989 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14990 break;
14992 default:
14993 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
14995 case Val_GNU_MIPS_ABI_MSA_128:
14996 _bfd_error_handler
14997 (_("Warning: %B uses unknown MSA ABI %d "
14998 "(set by %B), %B uses %s"),
14999 obfd, abi_msa_bfd, ibfd,
15000 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15001 break;
15003 default:
15004 _bfd_error_handler
15005 (_("Warning: %B uses unknown MSA ABI %d "
15006 "(set by %B), %B uses unknown MSA ABI %d"),
15007 obfd, abi_msa_bfd, ibfd,
15008 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15009 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15010 break;
15015 /* Merge Tag_compatibility attributes and any common GNU ones. */
15016 _bfd_elf_merge_object_attributes (ibfd, obfd);
15018 return TRUE;
15021 /* Merge backend specific data from an object file to the output
15022 object file when linking. */
15024 bfd_boolean
15025 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15027 flagword old_flags;
15028 flagword new_flags;
15029 bfd_boolean ok;
15030 bfd_boolean null_input_bfd = TRUE;
15031 asection *sec;
15032 obj_attribute *out_attr;
15034 /* Check if we have the same endianness. */
15035 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15037 (*_bfd_error_handler)
15038 (_("%B: endianness incompatible with that of the selected emulation"),
15039 ibfd);
15040 return FALSE;
15043 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15044 return TRUE;
15046 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15048 (*_bfd_error_handler)
15049 (_("%B: ABI is incompatible with that of the selected emulation"),
15050 ibfd);
15051 return FALSE;
15054 /* Set up the FP ABI attribute from the abiflags if it is not already
15055 set. */
15056 if (mips_elf_tdata (ibfd)->abiflags_valid)
15058 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15059 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15060 in_attr[Tag_GNU_MIPS_ABI_FP].i =
15061 mips_elf_tdata (ibfd)->abiflags.fp_abi;
15064 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
15065 return FALSE;
15067 /* Check to see if the input BFD actually contains any sections.
15068 If not, its flags may not have been initialised either, but it cannot
15069 actually cause any incompatibility. */
15070 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15072 /* Ignore synthetic sections and empty .text, .data and .bss sections
15073 which are automatically generated by gas. Also ignore fake
15074 (s)common sections, since merely defining a common symbol does
15075 not affect compatibility. */
15076 if ((sec->flags & SEC_IS_COMMON) == 0
15077 && strcmp (sec->name, ".reginfo")
15078 && strcmp (sec->name, ".mdebug")
15079 && (sec->size != 0
15080 || (strcmp (sec->name, ".text")
15081 && strcmp (sec->name, ".data")
15082 && strcmp (sec->name, ".bss"))))
15084 null_input_bfd = FALSE;
15085 break;
15088 if (null_input_bfd)
15089 return TRUE;
15091 /* Populate abiflags using existing information. */
15092 if (!mips_elf_tdata (ibfd)->abiflags_valid)
15094 infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags);
15095 mips_elf_tdata (ibfd)->abiflags_valid = TRUE;
15097 else
15099 Elf_Internal_ABIFlags_v0 abiflags;
15100 Elf_Internal_ABIFlags_v0 in_abiflags;
15101 infer_mips_abiflags (ibfd, &abiflags);
15102 in_abiflags = mips_elf_tdata (ibfd)->abiflags;
15104 /* It is not possible to infer the correct ISA revision
15105 for R3 or R5 so drop down to R2 for the checks. */
15106 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15107 in_abiflags.isa_rev = 2;
15109 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15110 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15111 (*_bfd_error_handler)
15112 (_("%B: warning: Inconsistent ISA between e_flags and "
15113 ".MIPS.abiflags"), ibfd);
15114 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15115 && in_abiflags.fp_abi != abiflags.fp_abi)
15116 (*_bfd_error_handler)
15117 (_("%B: warning: Inconsistent FP ABI between e_flags and "
15118 ".MIPS.abiflags"), ibfd);
15119 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15120 (*_bfd_error_handler)
15121 (_("%B: warning: Inconsistent ASEs between e_flags and "
15122 ".MIPS.abiflags"), ibfd);
15123 /* The isa_ext is allowed to be an extension of what can be inferred
15124 from e_flags. */
15125 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15126 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15127 (*_bfd_error_handler)
15128 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15129 ".MIPS.abiflags"), ibfd);
15130 if (in_abiflags.flags2 != 0)
15131 (*_bfd_error_handler)
15132 (_("%B: warning: Unexpected flag in the flags2 field of "
15133 ".MIPS.abiflags (0x%lx)"), ibfd,
15134 (unsigned long) in_abiflags.flags2);
15137 if (!mips_elf_tdata (obfd)->abiflags_valid)
15139 /* Copy input abiflags if output abiflags are not already valid. */
15140 mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags;
15141 mips_elf_tdata (obfd)->abiflags_valid = TRUE;
15144 if (! elf_flags_init (obfd))
15146 elf_flags_init (obfd) = TRUE;
15147 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15148 elf_elfheader (obfd)->e_ident[EI_CLASS]
15149 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15151 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15152 && (bfd_get_arch_info (obfd)->the_default
15153 || mips_mach_extends_p (bfd_get_mach (obfd),
15154 bfd_get_mach (ibfd))))
15156 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15157 bfd_get_mach (ibfd)))
15158 return FALSE;
15160 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15161 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15164 return TRUE;
15167 /* Update the output abiflags fp_abi using the computed fp_abi. */
15168 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15169 mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15171 #define max(a,b) ((a) > (b) ? (a) : (b))
15172 /* Merge abiflags. */
15173 mips_elf_tdata (obfd)->abiflags.isa_level
15174 = max (mips_elf_tdata (obfd)->abiflags.isa_level,
15175 mips_elf_tdata (ibfd)->abiflags.isa_level);
15176 mips_elf_tdata (obfd)->abiflags.isa_rev
15177 = max (mips_elf_tdata (obfd)->abiflags.isa_rev,
15178 mips_elf_tdata (ibfd)->abiflags.isa_rev);
15179 mips_elf_tdata (obfd)->abiflags.gpr_size
15180 = max (mips_elf_tdata (obfd)->abiflags.gpr_size,
15181 mips_elf_tdata (ibfd)->abiflags.gpr_size);
15182 mips_elf_tdata (obfd)->abiflags.cpr1_size
15183 = max (mips_elf_tdata (obfd)->abiflags.cpr1_size,
15184 mips_elf_tdata (ibfd)->abiflags.cpr1_size);
15185 mips_elf_tdata (obfd)->abiflags.cpr2_size
15186 = max (mips_elf_tdata (obfd)->abiflags.cpr2_size,
15187 mips_elf_tdata (ibfd)->abiflags.cpr2_size);
15188 #undef max
15189 mips_elf_tdata (obfd)->abiflags.ases
15190 |= mips_elf_tdata (ibfd)->abiflags.ases;
15191 mips_elf_tdata (obfd)->abiflags.flags1
15192 |= mips_elf_tdata (ibfd)->abiflags.flags1;
15194 new_flags = elf_elfheader (ibfd)->e_flags;
15195 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15196 old_flags = elf_elfheader (obfd)->e_flags;
15198 /* Check flag compatibility. */
15200 new_flags &= ~EF_MIPS_NOREORDER;
15201 old_flags &= ~EF_MIPS_NOREORDER;
15203 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15204 doesn't seem to matter. */
15205 new_flags &= ~EF_MIPS_XGOT;
15206 old_flags &= ~EF_MIPS_XGOT;
15208 /* MIPSpro generates ucode info in n64 objects. Again, we should
15209 just be able to ignore this. */
15210 new_flags &= ~EF_MIPS_UCODE;
15211 old_flags &= ~EF_MIPS_UCODE;
15213 /* DSOs should only be linked with CPIC code. */
15214 if ((ibfd->flags & DYNAMIC) != 0)
15215 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15217 if (new_flags == old_flags)
15218 return TRUE;
15220 ok = TRUE;
15222 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15223 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15225 (*_bfd_error_handler)
15226 (_("%B: warning: linking abicalls files with non-abicalls files"),
15227 ibfd);
15228 ok = TRUE;
15231 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15232 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15233 if (! (new_flags & EF_MIPS_PIC))
15234 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15236 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15237 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15239 /* Compare the ISAs. */
15240 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15242 (*_bfd_error_handler)
15243 (_("%B: linking 32-bit code with 64-bit code"),
15244 ibfd);
15245 ok = FALSE;
15247 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15249 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15250 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15252 /* Copy the architecture info from IBFD to OBFD. Also copy
15253 the 32-bit flag (if set) so that we continue to recognise
15254 OBFD as a 32-bit binary. */
15255 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15256 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15257 elf_elfheader (obfd)->e_flags
15258 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15260 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15261 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15263 /* Copy across the ABI flags if OBFD doesn't use them
15264 and if that was what caused us to treat IBFD as 32-bit. */
15265 if ((old_flags & EF_MIPS_ABI) == 0
15266 && mips_32bit_flags_p (new_flags)
15267 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15268 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15270 else
15272 /* The ISAs aren't compatible. */
15273 (*_bfd_error_handler)
15274 (_("%B: linking %s module with previous %s modules"),
15275 ibfd,
15276 bfd_printable_name (ibfd),
15277 bfd_printable_name (obfd));
15278 ok = FALSE;
15282 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15283 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15285 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15286 does set EI_CLASS differently from any 32-bit ABI. */
15287 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15288 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15289 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15291 /* Only error if both are set (to different values). */
15292 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15293 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15294 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15296 (*_bfd_error_handler)
15297 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15298 ibfd,
15299 elf_mips_abi_name (ibfd),
15300 elf_mips_abi_name (obfd));
15301 ok = FALSE;
15303 new_flags &= ~EF_MIPS_ABI;
15304 old_flags &= ~EF_MIPS_ABI;
15307 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15308 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15309 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15311 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15312 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15313 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15314 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15315 int micro_mis = old_m16 && new_micro;
15316 int m16_mis = old_micro && new_m16;
15318 if (m16_mis || micro_mis)
15320 (*_bfd_error_handler)
15321 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15322 ibfd,
15323 m16_mis ? "MIPS16" : "microMIPS",
15324 m16_mis ? "microMIPS" : "MIPS16");
15325 ok = FALSE;
15328 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15330 new_flags &= ~ EF_MIPS_ARCH_ASE;
15331 old_flags &= ~ EF_MIPS_ARCH_ASE;
15334 /* Compare NaN encodings. */
15335 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15337 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15338 ibfd,
15339 (new_flags & EF_MIPS_NAN2008
15340 ? "-mnan=2008" : "-mnan=legacy"),
15341 (old_flags & EF_MIPS_NAN2008
15342 ? "-mnan=2008" : "-mnan=legacy"));
15343 ok = FALSE;
15344 new_flags &= ~EF_MIPS_NAN2008;
15345 old_flags &= ~EF_MIPS_NAN2008;
15348 /* Compare FP64 state. */
15349 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15351 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15352 ibfd,
15353 (new_flags & EF_MIPS_FP64
15354 ? "-mfp64" : "-mfp32"),
15355 (old_flags & EF_MIPS_FP64
15356 ? "-mfp64" : "-mfp32"));
15357 ok = FALSE;
15358 new_flags &= ~EF_MIPS_FP64;
15359 old_flags &= ~EF_MIPS_FP64;
15362 /* Warn about any other mismatches */
15363 if (new_flags != old_flags)
15365 (*_bfd_error_handler)
15366 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15367 ibfd, (unsigned long) new_flags,
15368 (unsigned long) old_flags);
15369 ok = FALSE;
15372 if (! ok)
15374 bfd_set_error (bfd_error_bad_value);
15375 return FALSE;
15378 return TRUE;
15381 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15383 bfd_boolean
15384 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15386 BFD_ASSERT (!elf_flags_init (abfd)
15387 || elf_elfheader (abfd)->e_flags == flags);
15389 elf_elfheader (abfd)->e_flags = flags;
15390 elf_flags_init (abfd) = TRUE;
15391 return TRUE;
15394 char *
15395 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15397 switch (dtag)
15399 default: return "";
15400 case DT_MIPS_RLD_VERSION:
15401 return "MIPS_RLD_VERSION";
15402 case DT_MIPS_TIME_STAMP:
15403 return "MIPS_TIME_STAMP";
15404 case DT_MIPS_ICHECKSUM:
15405 return "MIPS_ICHECKSUM";
15406 case DT_MIPS_IVERSION:
15407 return "MIPS_IVERSION";
15408 case DT_MIPS_FLAGS:
15409 return "MIPS_FLAGS";
15410 case DT_MIPS_BASE_ADDRESS:
15411 return "MIPS_BASE_ADDRESS";
15412 case DT_MIPS_MSYM:
15413 return "MIPS_MSYM";
15414 case DT_MIPS_CONFLICT:
15415 return "MIPS_CONFLICT";
15416 case DT_MIPS_LIBLIST:
15417 return "MIPS_LIBLIST";
15418 case DT_MIPS_LOCAL_GOTNO:
15419 return "MIPS_LOCAL_GOTNO";
15420 case DT_MIPS_CONFLICTNO:
15421 return "MIPS_CONFLICTNO";
15422 case DT_MIPS_LIBLISTNO:
15423 return "MIPS_LIBLISTNO";
15424 case DT_MIPS_SYMTABNO:
15425 return "MIPS_SYMTABNO";
15426 case DT_MIPS_UNREFEXTNO:
15427 return "MIPS_UNREFEXTNO";
15428 case DT_MIPS_GOTSYM:
15429 return "MIPS_GOTSYM";
15430 case DT_MIPS_HIPAGENO:
15431 return "MIPS_HIPAGENO";
15432 case DT_MIPS_RLD_MAP:
15433 return "MIPS_RLD_MAP";
15434 case DT_MIPS_RLD_MAP_REL:
15435 return "MIPS_RLD_MAP_REL";
15436 case DT_MIPS_DELTA_CLASS:
15437 return "MIPS_DELTA_CLASS";
15438 case DT_MIPS_DELTA_CLASS_NO:
15439 return "MIPS_DELTA_CLASS_NO";
15440 case DT_MIPS_DELTA_INSTANCE:
15441 return "MIPS_DELTA_INSTANCE";
15442 case DT_MIPS_DELTA_INSTANCE_NO:
15443 return "MIPS_DELTA_INSTANCE_NO";
15444 case DT_MIPS_DELTA_RELOC:
15445 return "MIPS_DELTA_RELOC";
15446 case DT_MIPS_DELTA_RELOC_NO:
15447 return "MIPS_DELTA_RELOC_NO";
15448 case DT_MIPS_DELTA_SYM:
15449 return "MIPS_DELTA_SYM";
15450 case DT_MIPS_DELTA_SYM_NO:
15451 return "MIPS_DELTA_SYM_NO";
15452 case DT_MIPS_DELTA_CLASSSYM:
15453 return "MIPS_DELTA_CLASSSYM";
15454 case DT_MIPS_DELTA_CLASSSYM_NO:
15455 return "MIPS_DELTA_CLASSSYM_NO";
15456 case DT_MIPS_CXX_FLAGS:
15457 return "MIPS_CXX_FLAGS";
15458 case DT_MIPS_PIXIE_INIT:
15459 return "MIPS_PIXIE_INIT";
15460 case DT_MIPS_SYMBOL_LIB:
15461 return "MIPS_SYMBOL_LIB";
15462 case DT_MIPS_LOCALPAGE_GOTIDX:
15463 return "MIPS_LOCALPAGE_GOTIDX";
15464 case DT_MIPS_LOCAL_GOTIDX:
15465 return "MIPS_LOCAL_GOTIDX";
15466 case DT_MIPS_HIDDEN_GOTIDX:
15467 return "MIPS_HIDDEN_GOTIDX";
15468 case DT_MIPS_PROTECTED_GOTIDX:
15469 return "MIPS_PROTECTED_GOT_IDX";
15470 case DT_MIPS_OPTIONS:
15471 return "MIPS_OPTIONS";
15472 case DT_MIPS_INTERFACE:
15473 return "MIPS_INTERFACE";
15474 case DT_MIPS_DYNSTR_ALIGN:
15475 return "DT_MIPS_DYNSTR_ALIGN";
15476 case DT_MIPS_INTERFACE_SIZE:
15477 return "DT_MIPS_INTERFACE_SIZE";
15478 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15479 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15480 case DT_MIPS_PERF_SUFFIX:
15481 return "DT_MIPS_PERF_SUFFIX";
15482 case DT_MIPS_COMPACT_SIZE:
15483 return "DT_MIPS_COMPACT_SIZE";
15484 case DT_MIPS_GP_VALUE:
15485 return "DT_MIPS_GP_VALUE";
15486 case DT_MIPS_AUX_DYNAMIC:
15487 return "DT_MIPS_AUX_DYNAMIC";
15488 case DT_MIPS_PLTGOT:
15489 return "DT_MIPS_PLTGOT";
15490 case DT_MIPS_RWPLT:
15491 return "DT_MIPS_RWPLT";
15495 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15496 not known. */
15498 const char *
15499 _bfd_mips_fp_abi_string (int fp)
15501 switch (fp)
15503 /* These strings aren't translated because they're simply
15504 option lists. */
15505 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15506 return "-mdouble-float";
15508 case Val_GNU_MIPS_ABI_FP_SINGLE:
15509 return "-msingle-float";
15511 case Val_GNU_MIPS_ABI_FP_SOFT:
15512 return "-msoft-float";
15514 case Val_GNU_MIPS_ABI_FP_OLD_64:
15515 return _("-mips32r2 -mfp64 (12 callee-saved)");
15517 case Val_GNU_MIPS_ABI_FP_XX:
15518 return "-mfpxx";
15520 case Val_GNU_MIPS_ABI_FP_64:
15521 return "-mgp32 -mfp64";
15523 case Val_GNU_MIPS_ABI_FP_64A:
15524 return "-mgp32 -mfp64 -mno-odd-spreg";
15526 default:
15527 return 0;
15531 static void
15532 print_mips_ases (FILE *file, unsigned int mask)
15534 if (mask & AFL_ASE_DSP)
15535 fputs ("\n\tDSP ASE", file);
15536 if (mask & AFL_ASE_DSPR2)
15537 fputs ("\n\tDSP R2 ASE", file);
15538 if (mask & AFL_ASE_EVA)
15539 fputs ("\n\tEnhanced VA Scheme", file);
15540 if (mask & AFL_ASE_MCU)
15541 fputs ("\n\tMCU (MicroController) ASE", file);
15542 if (mask & AFL_ASE_MDMX)
15543 fputs ("\n\tMDMX ASE", file);
15544 if (mask & AFL_ASE_MIPS3D)
15545 fputs ("\n\tMIPS-3D ASE", file);
15546 if (mask & AFL_ASE_MT)
15547 fputs ("\n\tMT ASE", file);
15548 if (mask & AFL_ASE_SMARTMIPS)
15549 fputs ("\n\tSmartMIPS ASE", file);
15550 if (mask & AFL_ASE_VIRT)
15551 fputs ("\n\tVZ ASE", file);
15552 if (mask & AFL_ASE_MSA)
15553 fputs ("\n\tMSA ASE", file);
15554 if (mask & AFL_ASE_MIPS16)
15555 fputs ("\n\tMIPS16 ASE", file);
15556 if (mask & AFL_ASE_MICROMIPS)
15557 fputs ("\n\tMICROMIPS ASE", file);
15558 if (mask & AFL_ASE_XPA)
15559 fputs ("\n\tXPA ASE", file);
15560 if (mask == 0)
15561 fprintf (file, "\n\t%s", _("None"));
15562 else if ((mask & ~AFL_ASE_MASK) != 0)
15563 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15566 static void
15567 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15569 switch (isa_ext)
15571 case 0:
15572 fputs (_("None"), file);
15573 break;
15574 case AFL_EXT_XLR:
15575 fputs ("RMI XLR", file);
15576 break;
15577 case AFL_EXT_OCTEON3:
15578 fputs ("Cavium Networks Octeon3", file);
15579 break;
15580 case AFL_EXT_OCTEON2:
15581 fputs ("Cavium Networks Octeon2", file);
15582 break;
15583 case AFL_EXT_OCTEONP:
15584 fputs ("Cavium Networks OcteonP", file);
15585 break;
15586 case AFL_EXT_LOONGSON_3A:
15587 fputs ("Loongson 3A", file);
15588 break;
15589 case AFL_EXT_OCTEON:
15590 fputs ("Cavium Networks Octeon", file);
15591 break;
15592 case AFL_EXT_5900:
15593 fputs ("Toshiba R5900", file);
15594 break;
15595 case AFL_EXT_4650:
15596 fputs ("MIPS R4650", file);
15597 break;
15598 case AFL_EXT_4010:
15599 fputs ("LSI R4010", file);
15600 break;
15601 case AFL_EXT_4100:
15602 fputs ("NEC VR4100", file);
15603 break;
15604 case AFL_EXT_3900:
15605 fputs ("Toshiba R3900", file);
15606 break;
15607 case AFL_EXT_10000:
15608 fputs ("MIPS R10000", file);
15609 break;
15610 case AFL_EXT_SB1:
15611 fputs ("Broadcom SB-1", file);
15612 break;
15613 case AFL_EXT_4111:
15614 fputs ("NEC VR4111/VR4181", file);
15615 break;
15616 case AFL_EXT_4120:
15617 fputs ("NEC VR4120", file);
15618 break;
15619 case AFL_EXT_5400:
15620 fputs ("NEC VR5400", file);
15621 break;
15622 case AFL_EXT_5500:
15623 fputs ("NEC VR5500", file);
15624 break;
15625 case AFL_EXT_LOONGSON_2E:
15626 fputs ("ST Microelectronics Loongson 2E", file);
15627 break;
15628 case AFL_EXT_LOONGSON_2F:
15629 fputs ("ST Microelectronics Loongson 2F", file);
15630 break;
15631 default:
15632 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15633 break;
15637 static void
15638 print_mips_fp_abi_value (FILE *file, int val)
15640 switch (val)
15642 case Val_GNU_MIPS_ABI_FP_ANY:
15643 fprintf (file, _("Hard or soft float\n"));
15644 break;
15645 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15646 fprintf (file, _("Hard float (double precision)\n"));
15647 break;
15648 case Val_GNU_MIPS_ABI_FP_SINGLE:
15649 fprintf (file, _("Hard float (single precision)\n"));
15650 break;
15651 case Val_GNU_MIPS_ABI_FP_SOFT:
15652 fprintf (file, _("Soft float\n"));
15653 break;
15654 case Val_GNU_MIPS_ABI_FP_OLD_64:
15655 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15656 break;
15657 case Val_GNU_MIPS_ABI_FP_XX:
15658 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15659 break;
15660 case Val_GNU_MIPS_ABI_FP_64:
15661 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15662 break;
15663 case Val_GNU_MIPS_ABI_FP_64A:
15664 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15665 break;
15666 default:
15667 fprintf (file, "??? (%d)\n", val);
15668 break;
15672 static int
15673 get_mips_reg_size (int reg_size)
15675 return (reg_size == AFL_REG_NONE) ? 0
15676 : (reg_size == AFL_REG_32) ? 32
15677 : (reg_size == AFL_REG_64) ? 64
15678 : (reg_size == AFL_REG_128) ? 128
15679 : -1;
15682 bfd_boolean
15683 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15685 FILE *file = ptr;
15687 BFD_ASSERT (abfd != NULL && ptr != NULL);
15689 /* Print normal ELF private data. */
15690 _bfd_elf_print_private_bfd_data (abfd, ptr);
15692 /* xgettext:c-format */
15693 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15695 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15696 fprintf (file, _(" [abi=O32]"));
15697 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15698 fprintf (file, _(" [abi=O64]"));
15699 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15700 fprintf (file, _(" [abi=EABI32]"));
15701 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15702 fprintf (file, _(" [abi=EABI64]"));
15703 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15704 fprintf (file, _(" [abi unknown]"));
15705 else if (ABI_N32_P (abfd))
15706 fprintf (file, _(" [abi=N32]"));
15707 else if (ABI_64_P (abfd))
15708 fprintf (file, _(" [abi=64]"));
15709 else
15710 fprintf (file, _(" [no abi set]"));
15712 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15713 fprintf (file, " [mips1]");
15714 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15715 fprintf (file, " [mips2]");
15716 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15717 fprintf (file, " [mips3]");
15718 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15719 fprintf (file, " [mips4]");
15720 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15721 fprintf (file, " [mips5]");
15722 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15723 fprintf (file, " [mips32]");
15724 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15725 fprintf (file, " [mips64]");
15726 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15727 fprintf (file, " [mips32r2]");
15728 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15729 fprintf (file, " [mips64r2]");
15730 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15731 fprintf (file, " [mips32r6]");
15732 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15733 fprintf (file, " [mips64r6]");
15734 else
15735 fprintf (file, _(" [unknown ISA]"));
15737 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15738 fprintf (file, " [mdmx]");
15740 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15741 fprintf (file, " [mips16]");
15743 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15744 fprintf (file, " [micromips]");
15746 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15747 fprintf (file, " [nan2008]");
15749 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15750 fprintf (file, " [old fp64]");
15752 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15753 fprintf (file, " [32bitmode]");
15754 else
15755 fprintf (file, _(" [not 32bitmode]"));
15757 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15758 fprintf (file, " [noreorder]");
15760 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15761 fprintf (file, " [PIC]");
15763 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15764 fprintf (file, " [CPIC]");
15766 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15767 fprintf (file, " [XGOT]");
15769 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15770 fprintf (file, " [UCODE]");
15772 fputc ('\n', file);
15774 if (mips_elf_tdata (abfd)->abiflags_valid)
15776 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15777 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15778 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15779 if (abiflags->isa_rev > 1)
15780 fprintf (file, "r%d", abiflags->isa_rev);
15781 fprintf (file, "\nGPR size: %d",
15782 get_mips_reg_size (abiflags->gpr_size));
15783 fprintf (file, "\nCPR1 size: %d",
15784 get_mips_reg_size (abiflags->cpr1_size));
15785 fprintf (file, "\nCPR2 size: %d",
15786 get_mips_reg_size (abiflags->cpr2_size));
15787 fputs ("\nFP ABI: ", file);
15788 print_mips_fp_abi_value (file, abiflags->fp_abi);
15789 fputs ("ISA Extension: ", file);
15790 print_mips_isa_ext (file, abiflags->isa_ext);
15791 fputs ("\nASEs:", file);
15792 print_mips_ases (file, abiflags->ases);
15793 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15794 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15795 fputc ('\n', file);
15798 return TRUE;
15801 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15803 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15804 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15805 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15806 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15807 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15808 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15809 { NULL, 0, 0, 0, 0 }
15812 /* Merge non visibility st_other attributes. Ensure that the
15813 STO_OPTIONAL flag is copied into h->other, even if this is not a
15814 definiton of the symbol. */
15815 void
15816 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15817 const Elf_Internal_Sym *isym,
15818 bfd_boolean definition,
15819 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15821 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15823 unsigned char other;
15825 other = (definition ? isym->st_other : h->other);
15826 other &= ~ELF_ST_VISIBILITY (-1);
15827 h->other = other | ELF_ST_VISIBILITY (h->other);
15830 if (!definition
15831 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15832 h->other |= STO_OPTIONAL;
15835 /* Decide whether an undefined symbol is special and can be ignored.
15836 This is the case for OPTIONAL symbols on IRIX. */
15837 bfd_boolean
15838 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15840 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15843 bfd_boolean
15844 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15846 return (sym->st_shndx == SHN_COMMON
15847 || sym->st_shndx == SHN_MIPS_ACOMMON
15848 || sym->st_shndx == SHN_MIPS_SCOMMON);
15851 /* Return address for Ith PLT stub in section PLT, for relocation REL
15852 or (bfd_vma) -1 if it should not be included. */
15854 bfd_vma
15855 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15856 const arelent *rel ATTRIBUTE_UNUSED)
15858 return (plt->vma
15859 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15860 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15863 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15864 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15865 and .got.plt and also the slots may be of a different size each we walk
15866 the PLT manually fetching instructions and matching them against known
15867 patterns. To make things easier standard MIPS slots, if any, always come
15868 first. As we don't create proper ELF symbols we use the UDATA.I member
15869 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15870 with the ST_OTHER member of the ELF symbol. */
15872 long
15873 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15874 long symcount ATTRIBUTE_UNUSED,
15875 asymbol **syms ATTRIBUTE_UNUSED,
15876 long dynsymcount, asymbol **dynsyms,
15877 asymbol **ret)
15879 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15880 static const char microsuffix[] = "@micromipsplt";
15881 static const char m16suffix[] = "@mips16plt";
15882 static const char mipssuffix[] = "@plt";
15884 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15885 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15886 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15887 Elf_Internal_Shdr *hdr;
15888 bfd_byte *plt_data;
15889 bfd_vma plt_offset;
15890 unsigned int other;
15891 bfd_vma entry_size;
15892 bfd_vma plt0_size;
15893 asection *relplt;
15894 bfd_vma opcode;
15895 asection *plt;
15896 asymbol *send;
15897 size_t size;
15898 char *names;
15899 long counti;
15900 arelent *p;
15901 asymbol *s;
15902 char *nend;
15903 long count;
15904 long pi;
15905 long i;
15906 long n;
15908 *ret = NULL;
15910 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15911 return 0;
15913 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15914 if (relplt == NULL)
15915 return 0;
15917 hdr = &elf_section_data (relplt)->this_hdr;
15918 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15919 return 0;
15921 plt = bfd_get_section_by_name (abfd, ".plt");
15922 if (plt == NULL)
15923 return 0;
15925 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15926 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15927 return -1;
15928 p = relplt->relocation;
15930 /* Calculating the exact amount of space required for symbols would
15931 require two passes over the PLT, so just pessimise assuming two
15932 PLT slots per relocation. */
15933 count = relplt->size / hdr->sh_entsize;
15934 counti = count * bed->s->int_rels_per_ext_rel;
15935 size = 2 * count * sizeof (asymbol);
15936 size += count * (sizeof (mipssuffix) +
15937 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15938 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15939 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15941 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15942 size += sizeof (asymbol) + sizeof (pltname);
15944 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15945 return -1;
15947 if (plt->size < 16)
15948 return -1;
15950 s = *ret = bfd_malloc (size);
15951 if (s == NULL)
15952 return -1;
15953 send = s + 2 * count + 1;
15955 names = (char *) send;
15956 nend = (char *) s + size;
15957 n = 0;
15959 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15960 if (opcode == 0x3302fffe)
15962 if (!micromips_p)
15963 return -1;
15964 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15965 other = STO_MICROMIPS;
15967 else if (opcode == 0x0398c1d0)
15969 if (!micromips_p)
15970 return -1;
15971 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15972 other = STO_MICROMIPS;
15974 else
15976 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15977 other = 0;
15980 s->the_bfd = abfd;
15981 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15982 s->section = plt;
15983 s->value = 0;
15984 s->name = names;
15985 s->udata.i = other;
15986 memcpy (names, pltname, sizeof (pltname));
15987 names += sizeof (pltname);
15988 ++s, ++n;
15990 pi = 0;
15991 for (plt_offset = plt0_size;
15992 plt_offset + 8 <= plt->size && s < send;
15993 plt_offset += entry_size)
15995 bfd_vma gotplt_addr;
15996 const char *suffix;
15997 bfd_vma gotplt_hi;
15998 bfd_vma gotplt_lo;
15999 size_t suffixlen;
16001 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16003 /* Check if the second word matches the expected MIPS16 instruction. */
16004 if (opcode == 0x651aeb00)
16006 if (micromips_p)
16007 return -1;
16008 /* Truncated table??? */
16009 if (plt_offset + 16 > plt->size)
16010 break;
16011 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16012 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16013 suffixlen = sizeof (m16suffix);
16014 suffix = m16suffix;
16015 other = STO_MIPS16;
16017 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16018 else if (opcode == 0xff220000)
16020 if (!micromips_p)
16021 return -1;
16022 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16023 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16024 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16025 gotplt_lo <<= 2;
16026 gotplt_addr = gotplt_hi + gotplt_lo;
16027 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16028 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16029 suffixlen = sizeof (microsuffix);
16030 suffix = microsuffix;
16031 other = STO_MICROMIPS;
16033 /* Likewise the expected microMIPS instruction (insn32 mode). */
16034 else if ((opcode & 0xffff0000) == 0xff2f0000)
16036 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16037 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16038 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16039 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16040 gotplt_addr = gotplt_hi + gotplt_lo;
16041 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16042 suffixlen = sizeof (microsuffix);
16043 suffix = microsuffix;
16044 other = STO_MICROMIPS;
16046 /* Otherwise assume standard MIPS code. */
16047 else
16049 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16050 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16051 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16052 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16053 gotplt_addr = gotplt_hi + gotplt_lo;
16054 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16055 suffixlen = sizeof (mipssuffix);
16056 suffix = mipssuffix;
16057 other = 0;
16059 /* Truncated table??? */
16060 if (plt_offset + entry_size > plt->size)
16061 break;
16063 for (i = 0;
16064 i < count && p[pi].address != gotplt_addr;
16065 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16067 if (i < count)
16069 size_t namelen;
16070 size_t len;
16072 *s = **p[pi].sym_ptr_ptr;
16073 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16074 we are defining a symbol, ensure one of them is set. */
16075 if ((s->flags & BSF_LOCAL) == 0)
16076 s->flags |= BSF_GLOBAL;
16077 s->flags |= BSF_SYNTHETIC;
16078 s->section = plt;
16079 s->value = plt_offset;
16080 s->name = names;
16081 s->udata.i = other;
16083 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16084 namelen = len + suffixlen;
16085 if (names + namelen > nend)
16086 break;
16088 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16089 names += len;
16090 memcpy (names, suffix, suffixlen);
16091 names += suffixlen;
16093 ++s, ++n;
16094 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16098 free (plt_data);
16100 return n;
16103 void
16104 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16106 struct mips_elf_link_hash_table *htab;
16107 Elf_Internal_Ehdr *i_ehdrp;
16109 i_ehdrp = elf_elfheader (abfd);
16110 if (link_info)
16112 htab = mips_elf_hash_table (link_info);
16113 BFD_ASSERT (htab != NULL);
16115 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16116 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16119 _bfd_elf_post_process_headers (abfd, link_info);
16121 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16122 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16123 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16127 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16129 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16132 /* Return the opcode for can't unwind. */
16135 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16137 return COMPACT_EH_CANT_UNWIND_OPCODE;