1 /* Renesas RX specific support for 32-bit ELF.
2 Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22 #include "bfd_stdint.h"
26 #include "libiberty.h"
29 #define RX_OPCODE_BIG_ENDIAN 0
31 /* This is a meta-target that's used only with objcopy, to avoid the
32 endian-swap we would otherwise get. We check for this in
34 const bfd_target rx_elf32_be_ns_vec
;
35 const bfd_target rx_elf32_be_vec
;
38 char * rx_get_reloc (long);
39 void rx_dump_symtab (bfd
*, void *, void *);
42 #define RXREL(n,sz,bit,shift,complain,pcrel) \
43 HOWTO (R_RX_##n, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \
44 bfd_elf_generic_reloc, "R_RX_" #n, FALSE, 0, ~0, FALSE)
46 /* Note that the relocations around 0x7f are internal to this file;
47 feel free to move them as needed to avoid conflicts with published
48 relocation numbers. */
50 static reloc_howto_type rx_elf_howto_table
[] =
52 RXREL (NONE
, 3, 0, 0, dont
, FALSE
),
53 RXREL (DIR32
, 2, 32, 0, signed, FALSE
),
54 RXREL (DIR24S
, 2, 24, 0, signed, FALSE
),
55 RXREL (DIR16
, 1, 16, 0, dont
, FALSE
),
56 RXREL (DIR16U
, 1, 16, 0, unsigned, FALSE
),
57 RXREL (DIR16S
, 1, 16, 0, signed, FALSE
),
58 RXREL (DIR8
, 0, 8, 0, dont
, FALSE
),
59 RXREL (DIR8U
, 0, 8, 0, unsigned, FALSE
),
60 RXREL (DIR8S
, 0, 8, 0, signed, FALSE
),
61 RXREL (DIR24S_PCREL
, 2, 24, 0, signed, TRUE
),
62 RXREL (DIR16S_PCREL
, 1, 16, 0, signed, TRUE
),
63 RXREL (DIR8S_PCREL
, 0, 8, 0, signed, TRUE
),
64 RXREL (DIR16UL
, 1, 16, 2, unsigned, FALSE
),
65 RXREL (DIR16UW
, 1, 16, 1, unsigned, FALSE
),
66 RXREL (DIR8UL
, 0, 8, 2, unsigned, FALSE
),
67 RXREL (DIR8UW
, 0, 8, 1, unsigned, FALSE
),
68 RXREL (DIR32_REV
, 1, 16, 0, dont
, FALSE
),
69 RXREL (DIR16_REV
, 1, 16, 0, dont
, FALSE
),
70 RXREL (DIR3U_PCREL
, 0, 3, 0, dont
, TRUE
),
86 RXREL (RH_3_PCREL
, 0, 3, 0, signed, TRUE
),
87 RXREL (RH_16_OP
, 1, 16, 0, signed, FALSE
),
88 RXREL (RH_24_OP
, 2, 24, 0, signed, FALSE
),
89 RXREL (RH_32_OP
, 2, 32, 0, signed, FALSE
),
90 RXREL (RH_24_UNS
, 2, 24, 0, unsigned, FALSE
),
91 RXREL (RH_8_NEG
, 0, 8, 0, signed, FALSE
),
92 RXREL (RH_16_NEG
, 1, 16, 0, signed, FALSE
),
93 RXREL (RH_24_NEG
, 2, 24, 0, signed, FALSE
),
94 RXREL (RH_32_NEG
, 2, 32, 0, signed, FALSE
),
95 RXREL (RH_DIFF
, 2, 32, 0, signed, FALSE
),
96 RXREL (RH_GPRELB
, 1, 16, 0, unsigned, FALSE
),
97 RXREL (RH_GPRELW
, 1, 16, 0, unsigned, FALSE
),
98 RXREL (RH_GPRELL
, 1, 16, 0, unsigned, FALSE
),
99 RXREL (RH_RELAX
, 0, 0, 0, dont
, FALSE
),
121 RXREL (ABS32
, 2, 32, 0, dont
, FALSE
),
122 RXREL (ABS24S
, 2, 24, 0, signed, FALSE
),
123 RXREL (ABS16
, 1, 16, 0, dont
, FALSE
),
124 RXREL (ABS16U
, 1, 16, 0, unsigned, FALSE
),
125 RXREL (ABS16S
, 1, 16, 0, signed, FALSE
),
126 RXREL (ABS8
, 0, 8, 0, dont
, FALSE
),
127 RXREL (ABS8U
, 0, 8, 0, unsigned, FALSE
),
128 RXREL (ABS8S
, 0, 8, 0, signed, FALSE
),
129 RXREL (ABS24S_PCREL
, 2, 24, 0, signed, TRUE
),
130 RXREL (ABS16S_PCREL
, 1, 16, 0, signed, TRUE
),
131 RXREL (ABS8S_PCREL
, 0, 8, 0, signed, TRUE
),
132 RXREL (ABS16UL
, 1, 16, 0, unsigned, FALSE
),
133 RXREL (ABS16UW
, 1, 16, 0, unsigned, FALSE
),
134 RXREL (ABS8UL
, 0, 8, 0, unsigned, FALSE
),
135 RXREL (ABS8UW
, 0, 8, 0, unsigned, FALSE
),
136 RXREL (ABS32_REV
, 2, 32, 0, dont
, FALSE
),
137 RXREL (ABS16_REV
, 1, 16, 0, dont
, FALSE
),
139 #define STACK_REL_P(x) ((x) <= R_RX_ABS16_REV && (x) >= R_RX_ABS32)
180 /* These are internal. */
181 /* A 5-bit unsigned displacement to a B/W/L address, at bit position 8/12. */
182 /* ---- ---- 4--- 3210. */
183 #define R_RX_RH_ABS5p8B 0x78
184 RXREL (RH_ABS5p8B
, 0, 0, 0, dont
, FALSE
),
185 #define R_RX_RH_ABS5p8W 0x79
186 RXREL (RH_ABS5p8W
, 0, 0, 0, dont
, FALSE
),
187 #define R_RX_RH_ABS5p8L 0x7a
188 RXREL (RH_ABS5p8L
, 0, 0, 0, dont
, FALSE
),
189 /* A 5-bit unsigned displacement to a B/W/L address, at bit position 5/12. */
190 /* ---- -432 1--- 0---. */
191 #define R_RX_RH_ABS5p5B 0x7b
192 RXREL (RH_ABS5p5B
, 0, 0, 0, dont
, FALSE
),
193 #define R_RX_RH_ABS5p5W 0x7c
194 RXREL (RH_ABS5p5W
, 0, 0, 0, dont
, FALSE
),
195 #define R_RX_RH_ABS5p5L 0x7d
196 RXREL (RH_ABS5p5L
, 0, 0, 0, dont
, FALSE
),
197 /* A 4-bit unsigned immediate at bit position 8. */
198 #define R_RX_RH_UIMM4p8 0x7e
199 RXREL (RH_UIMM4p8
, 0, 0, 0, dont
, FALSE
),
200 /* A 4-bit negative unsigned immediate at bit position 8. */
201 #define R_RX_RH_UNEG4p8 0x7f
202 RXREL (RH_UNEG4p8
, 0, 0, 0, dont
, FALSE
),
203 /* End of internal relocs. */
205 RXREL (SYM
, 2, 32, 0, dont
, FALSE
),
206 RXREL (OPneg
, 2, 32, 0, dont
, FALSE
),
207 RXREL (OPadd
, 2, 32, 0, dont
, FALSE
),
208 RXREL (OPsub
, 2, 32, 0, dont
, FALSE
),
209 RXREL (OPmul
, 2, 32, 0, dont
, FALSE
),
210 RXREL (OPdiv
, 2, 32, 0, dont
, FALSE
),
211 RXREL (OPshla
, 2, 32, 0, dont
, FALSE
),
212 RXREL (OPshra
, 2, 32, 0, dont
, FALSE
),
213 RXREL (OPsctsize
, 2, 32, 0, dont
, FALSE
),
214 RXREL (OPscttop
, 2, 32, 0, dont
, FALSE
),
215 RXREL (OPand
, 2, 32, 0, dont
, FALSE
),
216 RXREL (OPor
, 2, 32, 0, dont
, FALSE
),
217 RXREL (OPxor
, 2, 32, 0, dont
, FALSE
),
218 RXREL (OPnot
, 2, 32, 0, dont
, FALSE
),
219 RXREL (OPmod
, 2, 32, 0, dont
, FALSE
),
220 RXREL (OPromtop
, 2, 32, 0, dont
, FALSE
),
221 RXREL (OPramtop
, 2, 32, 0, dont
, FALSE
)
224 /* Map BFD reloc types to RX ELF reloc types. */
228 bfd_reloc_code_real_type bfd_reloc_val
;
229 unsigned int rx_reloc_val
;
232 static const struct rx_reloc_map rx_reloc_map
[] =
234 { BFD_RELOC_NONE
, R_RX_NONE
},
235 { BFD_RELOC_8
, R_RX_DIR8S
},
236 { BFD_RELOC_16
, R_RX_DIR16S
},
237 { BFD_RELOC_24
, R_RX_DIR24S
},
238 { BFD_RELOC_32
, R_RX_DIR32
},
239 { BFD_RELOC_RX_16_OP
, R_RX_DIR16
},
240 { BFD_RELOC_RX_DIR3U_PCREL
, R_RX_DIR3U_PCREL
},
241 { BFD_RELOC_8_PCREL
, R_RX_DIR8S_PCREL
},
242 { BFD_RELOC_16_PCREL
, R_RX_DIR16S_PCREL
},
243 { BFD_RELOC_24_PCREL
, R_RX_DIR24S_PCREL
},
244 { BFD_RELOC_RX_8U
, R_RX_DIR8U
},
245 { BFD_RELOC_RX_16U
, R_RX_DIR16U
},
246 { BFD_RELOC_RX_24U
, R_RX_RH_24_UNS
},
247 { BFD_RELOC_RX_NEG8
, R_RX_RH_8_NEG
},
248 { BFD_RELOC_RX_NEG16
, R_RX_RH_16_NEG
},
249 { BFD_RELOC_RX_NEG24
, R_RX_RH_24_NEG
},
250 { BFD_RELOC_RX_NEG32
, R_RX_RH_32_NEG
},
251 { BFD_RELOC_RX_DIFF
, R_RX_RH_DIFF
},
252 { BFD_RELOC_RX_GPRELB
, R_RX_RH_GPRELB
},
253 { BFD_RELOC_RX_GPRELW
, R_RX_RH_GPRELW
},
254 { BFD_RELOC_RX_GPRELL
, R_RX_RH_GPRELL
},
255 { BFD_RELOC_RX_RELAX
, R_RX_RH_RELAX
},
256 { BFD_RELOC_RX_SYM
, R_RX_SYM
},
257 { BFD_RELOC_RX_OP_SUBTRACT
, R_RX_OPsub
},
258 { BFD_RELOC_RX_OP_NEG
, R_RX_OPneg
},
259 { BFD_RELOC_RX_ABS8
, R_RX_ABS8
},
260 { BFD_RELOC_RX_ABS16
, R_RX_ABS16
},
261 { BFD_RELOC_RX_ABS16_REV
, R_RX_ABS16_REV
},
262 { BFD_RELOC_RX_ABS32
, R_RX_ABS32
},
263 { BFD_RELOC_RX_ABS32_REV
, R_RX_ABS32_REV
},
264 { BFD_RELOC_RX_ABS16UL
, R_RX_ABS16UL
},
265 { BFD_RELOC_RX_ABS16UW
, R_RX_ABS16UW
},
266 { BFD_RELOC_RX_ABS16U
, R_RX_ABS16U
}
269 #define BIGE(abfd) ((abfd)->xvec->byteorder == BFD_ENDIAN_BIG)
271 static reloc_howto_type
*
272 rx_reloc_type_lookup (bfd
* abfd ATTRIBUTE_UNUSED
,
273 bfd_reloc_code_real_type code
)
277 if (code
== BFD_RELOC_RX_32_OP
)
278 return rx_elf_howto_table
+ R_RX_DIR32
;
280 for (i
= ARRAY_SIZE (rx_reloc_map
); i
--;)
281 if (rx_reloc_map
[i
].bfd_reloc_val
== code
)
282 return rx_elf_howto_table
+ rx_reloc_map
[i
].rx_reloc_val
;
287 static reloc_howto_type
*
288 rx_reloc_name_lookup (bfd
* abfd ATTRIBUTE_UNUSED
, const char * r_name
)
292 for (i
= 0; i
< ARRAY_SIZE (rx_elf_howto_table
); i
++)
293 if (rx_elf_howto_table
[i
].name
!= NULL
294 && strcasecmp (rx_elf_howto_table
[i
].name
, r_name
) == 0)
295 return rx_elf_howto_table
+ i
;
300 /* Set the howto pointer for an RX ELF reloc. */
303 rx_info_to_howto_rela (bfd
* abfd ATTRIBUTE_UNUSED
,
305 Elf_Internal_Rela
* dst
)
309 r_type
= ELF32_R_TYPE (dst
->r_info
);
310 if (r_type
>= (unsigned int) R_RX_max
)
312 _bfd_error_handler (_("%B: invalid RX reloc number: %d"), abfd
, r_type
);
315 cache_ptr
->howto
= rx_elf_howto_table
+ r_type
;
319 get_symbol_value (const char * name
,
320 bfd_reloc_status_type
* status
,
321 struct bfd_link_info
* info
,
323 asection
* input_section
,
327 struct bfd_link_hash_entry
* h
;
329 h
= bfd_link_hash_lookup (info
->hash
, name
, FALSE
, FALSE
, TRUE
);
332 || (h
->type
!= bfd_link_hash_defined
333 && h
->type
!= bfd_link_hash_defweak
))
334 * status
= info
->callbacks
->undefined_symbol
335 (info
, name
, input_bfd
, input_section
, offset
, TRUE
);
337 value
= (h
->u
.def
.value
338 + h
->u
.def
.section
->output_section
->vma
339 + h
->u
.def
.section
->output_offset
);
344 get_symbol_value_maybe (const char * name
,
345 struct bfd_link_info
* info
)
348 struct bfd_link_hash_entry
* h
;
350 h
= bfd_link_hash_lookup (info
->hash
, name
, FALSE
, FALSE
, TRUE
);
353 || (h
->type
!= bfd_link_hash_defined
354 && h
->type
!= bfd_link_hash_defweak
))
357 value
= (h
->u
.def
.value
358 + h
->u
.def
.section
->output_section
->vma
359 + h
->u
.def
.section
->output_offset
);
365 get_gp (bfd_reloc_status_type
* status
,
366 struct bfd_link_info
* info
,
371 static bfd_boolean cached
= FALSE
;
372 static bfd_vma cached_value
= 0;
376 cached_value
= get_symbol_value ("__gp", status
, info
, abfd
, sec
, offset
);
383 get_romstart (bfd_reloc_status_type
* status
,
384 struct bfd_link_info
* info
,
389 static bfd_boolean cached
= FALSE
;
390 static bfd_vma cached_value
= 0;
394 cached_value
= get_symbol_value ("_start", status
, info
, abfd
, sec
, offset
);
401 get_ramstart (bfd_reloc_status_type
* status
,
402 struct bfd_link_info
* info
,
407 static bfd_boolean cached
= FALSE
;
408 static bfd_vma cached_value
= 0;
412 cached_value
= get_symbol_value ("__datastart", status
, info
, abfd
, sec
, offset
);
418 #define NUM_STACK_ENTRIES 16
419 static int32_t rx_stack
[ NUM_STACK_ENTRIES
];
420 static unsigned int rx_stack_top
;
422 #define RX_STACK_PUSH(val) \
425 if (rx_stack_top < NUM_STACK_ENTRIES) \
426 rx_stack [rx_stack_top ++] = (val); \
428 r = bfd_reloc_dangerous; \
432 #define RX_STACK_POP(dest) \
435 if (rx_stack_top > 0) \
436 (dest) = rx_stack [-- rx_stack_top]; \
438 (dest) = 0, r = bfd_reloc_dangerous; \
442 /* Relocate an RX ELF section.
443 There is some attempt to make this function usable for many architectures,
444 both USE_REL and USE_RELA ['twould be nice if such a critter existed],
445 if only to serve as a learning tool.
447 The RELOCATE_SECTION function is called by the new ELF backend linker
448 to handle the relocations for a section.
450 The relocs are always passed as Rela structures; if the section
451 actually uses Rel structures, the r_addend field will always be
454 This function is responsible for adjusting the section contents as
455 necessary, and (if using Rela relocs and generating a relocatable
456 output file) adjusting the reloc addend as necessary.
458 This function does not have to worry about setting the reloc
459 address or the reloc symbol index.
461 LOCAL_SYMS is a pointer to the swapped in local symbols.
463 LOCAL_SECTIONS is an array giving the section in the input file
464 corresponding to the st_shndx field of each local symbol.
466 The global hash table entry for the global symbols can be found
467 via elf_sym_hashes (input_bfd).
469 When generating relocatable output, this function must handle
470 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
471 going to be the section symbol corresponding to the output
472 section, which means that the addend must be adjusted
476 rx_elf_relocate_section
478 struct bfd_link_info
* info
,
480 asection
* input_section
,
482 Elf_Internal_Rela
* relocs
,
483 Elf_Internal_Sym
* local_syms
,
484 asection
** local_sections
)
486 Elf_Internal_Shdr
* symtab_hdr
;
487 struct elf_link_hash_entry
** sym_hashes
;
488 Elf_Internal_Rela
* rel
;
489 Elf_Internal_Rela
* relend
;
490 bfd_boolean pid_mode
;
491 bfd_boolean saw_subtract
= FALSE
;
492 const char * table_default_cache
= NULL
;
493 bfd_vma table_start_cache
= 0;
494 bfd_vma table_end_cache
= 0;
496 if (elf_elfheader (output_bfd
)->e_flags
& E_FLAG_RX_PID
)
501 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
502 sym_hashes
= elf_sym_hashes (input_bfd
);
503 relend
= relocs
+ input_section
->reloc_count
;
504 for (rel
= relocs
; rel
< relend
; rel
++)
506 reloc_howto_type
* howto
;
507 unsigned long r_symndx
;
508 Elf_Internal_Sym
* sym
;
510 struct elf_link_hash_entry
* h
;
512 bfd_reloc_status_type r
;
513 const char * name
= NULL
;
514 bfd_boolean unresolved_reloc
= TRUE
;
517 r_type
= ELF32_R_TYPE (rel
->r_info
);
518 r_symndx
= ELF32_R_SYM (rel
->r_info
);
520 howto
= rx_elf_howto_table
+ ELF32_R_TYPE (rel
->r_info
);
526 if (rx_stack_top
== 0)
527 saw_subtract
= FALSE
;
529 if (r_symndx
< symtab_hdr
->sh_info
)
531 sym
= local_syms
+ r_symndx
;
532 sec
= local_sections
[r_symndx
];
533 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, & sec
, rel
);
535 name
= bfd_elf_string_from_elf_section
536 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
);
537 name
= (sym
->st_name
== 0) ? bfd_section_name (input_bfd
, sec
) : name
;
541 bfd_boolean warned
, ignored
;
543 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
544 r_symndx
, symtab_hdr
, sym_hashes
, h
,
545 sec
, relocation
, unresolved_reloc
,
548 name
= h
->root
.root
.string
;
551 if (strncmp (name
, "$tableentry$default$", 20) == 0)
556 bfd_reloc_status_type tstat
= 0;
558 if (table_default_cache
!= name
)
561 /* All relocs for a given table should be to the same
562 (weak) default symbol) so we can use it to detect a
563 cache miss. We use the offset into the table to find
564 the "real" symbol. Calculate and store the table's
567 table_default_cache
= name
;
569 /* We have already done error checking in rx_table_find(). */
571 buf
= (char *) malloc (13 + strlen (name
+ 20));
573 sprintf (buf
, "$tablestart$%s", name
+ 20);
575 table_start_cache
= get_symbol_value (buf
,
582 sprintf (buf
, "$tableend$%s", name
+ 20);
584 table_end_cache
= get_symbol_value (buf
,
594 entry_vma
= (input_section
->output_section
->vma
595 + input_section
->output_offset
598 if (table_end_cache
<= entry_vma
|| entry_vma
< table_start_cache
)
600 _bfd_error_handler (_("%B:%A: table entry %s outside table"),
601 input_bfd
, input_section
,
604 else if ((int) (entry_vma
- table_start_cache
) % 4)
606 _bfd_error_handler (_("%B:%A: table entry %s not word-aligned within table"),
607 input_bfd
, input_section
,
612 idx
= (int) (entry_vma
- table_start_cache
) / 4;
614 /* This will look like $tableentry$<N>$<name> */
615 buf
= (char *) malloc (12 + 20 + strlen (name
+ 20));
616 sprintf (buf
, "$tableentry$%d$%s", idx
, name
+ 20);
618 h
= (struct elf_link_hash_entry
*) bfd_link_hash_lookup (info
->hash
, buf
, FALSE
, FALSE
, TRUE
);
622 relocation
= (h
->root
.u
.def
.value
623 + h
->root
.u
.def
.section
->output_section
->vma
624 + h
->root
.u
.def
.section
->output_offset
);;
631 if (sec
!= NULL
&& discarded_section (sec
))
632 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
633 rel
, 1, relend
, howto
, 0, contents
);
635 if (bfd_link_relocatable (info
))
637 /* This is a relocatable link. We don't have to change
638 anything, unless the reloc is against a section symbol,
639 in which case we have to adjust according to where the
640 section symbol winds up in the output section. */
641 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
642 rel
->r_addend
+= sec
->output_offset
;
646 if (h
!= NULL
&& h
->root
.type
== bfd_link_hash_undefweak
)
647 /* If the symbol is undefined and weak
648 then the relocation resolves to zero. */
652 if (howto
->pc_relative
)
654 relocation
-= (input_section
->output_section
->vma
655 + input_section
->output_offset
657 if (r_type
!= R_RX_RH_3_PCREL
658 && r_type
!= R_RX_DIR3U_PCREL
)
662 relocation
+= rel
->r_addend
;
667 #define RANGE(a,b) if (a > (long) relocation || (long) relocation > b) r = bfd_reloc_overflow
668 #define ALIGN(m) if (relocation & m) r = bfd_reloc_other;
669 #define OP(i) (contents[rel->r_offset + (i)])
670 #define WARN_REDHAT(type) \
671 _bfd_error_handler (_("%B:%A: Warning: deprecated Red Hat reloc " type " detected against: %s."), \
672 input_bfd, input_section, name)
674 /* Check for unsafe relocs in PID mode. These are any relocs where
675 an absolute address is being computed. There are special cases
676 for relocs against symbols that are known to be referenced in
677 crt0.o before the PID base address register has been initialised. */
678 #define UNSAFE_FOR_PID \
683 && sec->flags & SEC_READONLY \
684 && !(input_section->flags & SEC_DEBUGGING) \
685 && strcmp (name, "__pid_base") != 0 \
686 && strcmp (name, "__gp") != 0 \
687 && strcmp (name, "__romdatastart") != 0 \
689 _bfd_error_handler (_("%B(%A): unsafe PID relocation %s at 0x%08lx (against %s in %s)"), \
690 input_bfd, input_section, howto->name, \
691 input_section->output_section->vma + input_section->output_offset + rel->r_offset, \
696 /* Opcode relocs are always big endian. Data relocs are bi-endian. */
705 case R_RX_RH_3_PCREL
:
706 WARN_REDHAT ("RX_RH_3_PCREL");
709 OP (0) |= relocation
& 0x07;
713 WARN_REDHAT ("RX_RH_8_NEG");
714 relocation
= - relocation
;
715 case R_RX_DIR8S_PCREL
:
734 WARN_REDHAT ("RX_RH_16_NEG");
735 relocation
= - relocation
;
736 case R_RX_DIR16S_PCREL
:
738 RANGE (-32768, 32767);
739 #if RX_OPCODE_BIG_ENDIAN
742 OP (1) = relocation
>> 8;
747 WARN_REDHAT ("RX_RH_16_OP");
749 RANGE (-32768, 32767);
750 #if RX_OPCODE_BIG_ENDIAN
752 OP (0) = relocation
>> 8;
755 OP (1) = relocation
>> 8;
761 RANGE (-32768, 65535);
762 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
765 OP (0) = relocation
>> 8;
770 OP (1) = relocation
>> 8;
777 #if RX_OPCODE_BIG_ENDIAN
779 OP (0) = relocation
>> 8;
782 OP (1) = relocation
>> 8;
788 RANGE (-32768, 65536);
789 #if RX_OPCODE_BIG_ENDIAN
791 OP (0) = relocation
>> 8;
794 OP (1) = relocation
>> 8;
800 RANGE (-32768, 65536);
801 #if RX_OPCODE_BIG_ENDIAN
803 OP (1) = relocation
>> 8;
806 OP (0) = relocation
>> 8;
810 case R_RX_DIR3U_PCREL
:
813 OP (0) |= relocation
& 0x07;
818 WARN_REDHAT ("RX_RH_24_NEG");
819 relocation
= - relocation
;
820 case R_RX_DIR24S_PCREL
:
821 RANGE (-0x800000, 0x7fffff);
822 #if RX_OPCODE_BIG_ENDIAN
824 OP (1) = relocation
>> 8;
825 OP (0) = relocation
>> 16;
828 OP (1) = relocation
>> 8;
829 OP (2) = relocation
>> 16;
835 WARN_REDHAT ("RX_RH_24_OP");
836 RANGE (-0x800000, 0x7fffff);
837 #if RX_OPCODE_BIG_ENDIAN
839 OP (1) = relocation
>> 8;
840 OP (0) = relocation
>> 16;
843 OP (1) = relocation
>> 8;
844 OP (2) = relocation
>> 16;
850 RANGE (-0x800000, 0x7fffff);
851 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
854 OP (1) = relocation
>> 8;
855 OP (0) = relocation
>> 16;
860 OP (1) = relocation
>> 8;
861 OP (2) = relocation
>> 16;
867 WARN_REDHAT ("RX_RH_24_UNS");
869 #if RX_OPCODE_BIG_ENDIAN
871 OP (1) = relocation
>> 8;
872 OP (0) = relocation
>> 16;
875 OP (1) = relocation
>> 8;
876 OP (2) = relocation
>> 16;
882 WARN_REDHAT ("RX_RH_32_NEG");
883 relocation
= - relocation
;
884 #if RX_OPCODE_BIG_ENDIAN
886 OP (2) = relocation
>> 8;
887 OP (1) = relocation
>> 16;
888 OP (0) = relocation
>> 24;
891 OP (1) = relocation
>> 8;
892 OP (2) = relocation
>> 16;
893 OP (3) = relocation
>> 24;
899 WARN_REDHAT ("RX_RH_32_OP");
900 #if RX_OPCODE_BIG_ENDIAN
902 OP (2) = relocation
>> 8;
903 OP (1) = relocation
>> 16;
904 OP (0) = relocation
>> 24;
907 OP (1) = relocation
>> 8;
908 OP (2) = relocation
>> 16;
909 OP (3) = relocation
>> 24;
914 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
917 OP (2) = relocation
>> 8;
918 OP (1) = relocation
>> 16;
919 OP (0) = relocation
>> 24;
924 OP (1) = relocation
>> 8;
925 OP (2) = relocation
>> 16;
926 OP (3) = relocation
>> 24;
931 if (BIGE (output_bfd
))
934 OP (1) = relocation
>> 8;
935 OP (2) = relocation
>> 16;
936 OP (3) = relocation
>> 24;
941 OP (2) = relocation
>> 8;
942 OP (1) = relocation
>> 16;
943 OP (0) = relocation
>> 24;
950 WARN_REDHAT ("RX_RH_DIFF");
951 val
= bfd_get_32 (output_bfd
, & OP (0));
953 bfd_put_32 (output_bfd
, val
, & OP (0));
958 WARN_REDHAT ("RX_RH_GPRELB");
959 relocation
-= get_gp (&r
, info
, input_bfd
, input_section
, rel
->r_offset
);
961 #if RX_OPCODE_BIG_ENDIAN
963 OP (0) = relocation
>> 8;
966 OP (1) = relocation
>> 8;
971 WARN_REDHAT ("RX_RH_GPRELW");
972 relocation
-= get_gp (&r
, info
, input_bfd
, input_section
, rel
->r_offset
);
976 #if RX_OPCODE_BIG_ENDIAN
978 OP (0) = relocation
>> 8;
981 OP (1) = relocation
>> 8;
986 WARN_REDHAT ("RX_RH_GPRELL");
987 relocation
-= get_gp (&r
, info
, input_bfd
, input_section
, rel
->r_offset
);
991 #if RX_OPCODE_BIG_ENDIAN
993 OP (0) = relocation
>> 8;
996 OP (1) = relocation
>> 8;
1000 /* Internal relocations just for relaxation: */
1001 case R_RX_RH_ABS5p5B
:
1002 RX_STACK_POP (relocation
);
1005 OP (0) |= relocation
>> 2;
1007 OP (1) |= (relocation
<< 6) & 0x80;
1008 OP (1) |= (relocation
<< 3) & 0x08;
1011 case R_RX_RH_ABS5p5W
:
1012 RX_STACK_POP (relocation
);
1017 OP (0) |= relocation
>> 2;
1019 OP (1) |= (relocation
<< 6) & 0x80;
1020 OP (1) |= (relocation
<< 3) & 0x08;
1023 case R_RX_RH_ABS5p5L
:
1024 RX_STACK_POP (relocation
);
1029 OP (0) |= relocation
>> 2;
1031 OP (1) |= (relocation
<< 6) & 0x80;
1032 OP (1) |= (relocation
<< 3) & 0x08;
1035 case R_RX_RH_ABS5p8B
:
1036 RX_STACK_POP (relocation
);
1039 OP (0) |= (relocation
<< 3) & 0x80;
1040 OP (0) |= relocation
& 0x0f;
1043 case R_RX_RH_ABS5p8W
:
1044 RX_STACK_POP (relocation
);
1049 OP (0) |= (relocation
<< 3) & 0x80;
1050 OP (0) |= relocation
& 0x0f;
1053 case R_RX_RH_ABS5p8L
:
1054 RX_STACK_POP (relocation
);
1059 OP (0) |= (relocation
<< 3) & 0x80;
1060 OP (0) |= relocation
& 0x0f;
1063 case R_RX_RH_UIMM4p8
:
1066 OP (0) |= relocation
<< 4;
1069 case R_RX_RH_UNEG4p8
:
1072 OP (0) |= (-relocation
) << 4;
1075 /* Complex reloc handling: */
1079 RX_STACK_POP (relocation
);
1080 #if RX_OPCODE_BIG_ENDIAN
1081 OP (3) = relocation
;
1082 OP (2) = relocation
>> 8;
1083 OP (1) = relocation
>> 16;
1084 OP (0) = relocation
>> 24;
1086 OP (0) = relocation
;
1087 OP (1) = relocation
>> 8;
1088 OP (2) = relocation
>> 16;
1089 OP (3) = relocation
>> 24;
1093 case R_RX_ABS32_REV
:
1095 RX_STACK_POP (relocation
);
1096 #if RX_OPCODE_BIG_ENDIAN
1097 OP (0) = relocation
;
1098 OP (1) = relocation
>> 8;
1099 OP (2) = relocation
>> 16;
1100 OP (3) = relocation
>> 24;
1102 OP (3) = relocation
;
1103 OP (2) = relocation
>> 8;
1104 OP (1) = relocation
>> 16;
1105 OP (0) = relocation
>> 24;
1109 case R_RX_ABS24S_PCREL
:
1112 RX_STACK_POP (relocation
);
1113 RANGE (-0x800000, 0x7fffff);
1114 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
1116 OP (2) = relocation
;
1117 OP (1) = relocation
>> 8;
1118 OP (0) = relocation
>> 16;
1122 OP (0) = relocation
;
1123 OP (1) = relocation
>> 8;
1124 OP (2) = relocation
>> 16;
1130 RX_STACK_POP (relocation
);
1131 RANGE (-32768, 65535);
1132 #if RX_OPCODE_BIG_ENDIAN
1133 OP (1) = relocation
;
1134 OP (0) = relocation
>> 8;
1136 OP (0) = relocation
;
1137 OP (1) = relocation
>> 8;
1141 case R_RX_ABS16_REV
:
1143 RX_STACK_POP (relocation
);
1144 RANGE (-32768, 65535);
1145 #if RX_OPCODE_BIG_ENDIAN
1146 OP (0) = relocation
;
1147 OP (1) = relocation
>> 8;
1149 OP (1) = relocation
;
1150 OP (0) = relocation
>> 8;
1154 case R_RX_ABS16S_PCREL
:
1156 RX_STACK_POP (relocation
);
1157 RANGE (-32768, 32767);
1158 if (BIGE (output_bfd
) && !(input_section
->flags
& SEC_CODE
))
1160 OP (1) = relocation
;
1161 OP (0) = relocation
>> 8;
1165 OP (0) = relocation
;
1166 OP (1) = relocation
>> 8;
1172 RX_STACK_POP (relocation
);
1174 #if RX_OPCODE_BIG_ENDIAN
1175 OP (1) = relocation
;
1176 OP (0) = relocation
>> 8;
1178 OP (0) = relocation
;
1179 OP (1) = relocation
>> 8;
1185 RX_STACK_POP (relocation
);
1188 #if RX_OPCODE_BIG_ENDIAN
1189 OP (1) = relocation
;
1190 OP (0) = relocation
>> 8;
1192 OP (0) = relocation
;
1193 OP (1) = relocation
>> 8;
1199 RX_STACK_POP (relocation
);
1202 #if RX_OPCODE_BIG_ENDIAN
1203 OP (1) = relocation
;
1204 OP (0) = relocation
>> 8;
1206 OP (0) = relocation
;
1207 OP (1) = relocation
>> 8;
1213 RX_STACK_POP (relocation
);
1215 OP (0) = relocation
;
1220 RX_STACK_POP (relocation
);
1222 OP (0) = relocation
;
1227 RX_STACK_POP (relocation
);
1230 OP (0) = relocation
;
1235 RX_STACK_POP (relocation
);
1238 OP (0) = relocation
;
1243 case R_RX_ABS8S_PCREL
:
1244 RX_STACK_POP (relocation
);
1246 OP (0) = relocation
;
1250 if (r_symndx
< symtab_hdr
->sh_info
)
1251 RX_STACK_PUSH (sec
->output_section
->vma
1252 + sec
->output_offset
1258 && (h
->root
.type
== bfd_link_hash_defined
1259 || h
->root
.type
== bfd_link_hash_defweak
))
1260 RX_STACK_PUSH (h
->root
.u
.def
.value
1261 + sec
->output_section
->vma
1262 + sec
->output_offset
1265 _bfd_error_handler (_("Warning: RX_SYM reloc with an unknown symbol"));
1273 saw_subtract
= TRUE
;
1276 RX_STACK_PUSH (tmp
);
1284 RX_STACK_POP (tmp1
);
1285 RX_STACK_POP (tmp2
);
1287 RX_STACK_PUSH (tmp1
);
1295 saw_subtract
= TRUE
;
1296 RX_STACK_POP (tmp1
);
1297 RX_STACK_POP (tmp2
);
1299 RX_STACK_PUSH (tmp2
);
1307 RX_STACK_POP (tmp1
);
1308 RX_STACK_POP (tmp2
);
1310 RX_STACK_PUSH (tmp1
);
1318 RX_STACK_POP (tmp1
);
1319 RX_STACK_POP (tmp2
);
1321 RX_STACK_PUSH (tmp1
);
1329 RX_STACK_POP (tmp1
);
1330 RX_STACK_POP (tmp2
);
1332 RX_STACK_PUSH (tmp1
);
1340 RX_STACK_POP (tmp1
);
1341 RX_STACK_POP (tmp2
);
1343 RX_STACK_PUSH (tmp1
);
1347 case R_RX_OPsctsize
:
1348 RX_STACK_PUSH (input_section
->size
);
1352 RX_STACK_PUSH (input_section
->output_section
->vma
);
1359 RX_STACK_POP (tmp1
);
1360 RX_STACK_POP (tmp2
);
1362 RX_STACK_PUSH (tmp1
);
1370 RX_STACK_POP (tmp1
);
1371 RX_STACK_POP (tmp2
);
1373 RX_STACK_PUSH (tmp1
);
1381 RX_STACK_POP (tmp1
);
1382 RX_STACK_POP (tmp2
);
1384 RX_STACK_PUSH (tmp1
);
1394 RX_STACK_PUSH (tmp
);
1402 RX_STACK_POP (tmp1
);
1403 RX_STACK_POP (tmp2
);
1405 RX_STACK_PUSH (tmp1
);
1410 RX_STACK_PUSH (get_romstart (&r
, info
, input_bfd
, input_section
, rel
->r_offset
));
1414 RX_STACK_PUSH (get_ramstart (&r
, info
, input_bfd
, input_section
, rel
->r_offset
));
1418 r
= bfd_reloc_notsupported
;
1422 if (r
!= bfd_reloc_ok
)
1424 const char * msg
= NULL
;
1428 case bfd_reloc_overflow
:
1429 /* Catch the case of a missing function declaration
1430 and emit a more helpful error message. */
1431 if (r_type
== R_RX_DIR24S_PCREL
)
1432 msg
= _("%B(%A): error: call to undefined function '%s'");
1434 r
= info
->callbacks
->reloc_overflow
1435 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
, (bfd_vma
) 0,
1436 input_bfd
, input_section
, rel
->r_offset
);
1439 case bfd_reloc_undefined
:
1440 r
= info
->callbacks
->undefined_symbol
1441 (info
, name
, input_bfd
, input_section
, rel
->r_offset
,
1445 case bfd_reloc_other
:
1446 msg
= _("%B(%A): warning: unaligned access to symbol '%s' in the small data area");
1449 case bfd_reloc_outofrange
:
1450 msg
= _("%B(%A): internal error: out of range error");
1453 case bfd_reloc_notsupported
:
1454 msg
= _("%B(%A): internal error: unsupported relocation error");
1457 case bfd_reloc_dangerous
:
1458 msg
= _("%B(%A): internal error: dangerous relocation");
1462 msg
= _("%B(%A): internal error: unknown error");
1467 _bfd_error_handler (msg
, input_bfd
, input_section
, name
);
1477 /* Relaxation Support. */
1479 /* Progression of relocations from largest operand size to smallest
1483 next_smaller_reloc (int r
)
1487 case R_RX_DIR32
: return R_RX_DIR24S
;
1488 case R_RX_DIR24S
: return R_RX_DIR16S
;
1489 case R_RX_DIR16S
: return R_RX_DIR8S
;
1490 case R_RX_DIR8S
: return R_RX_NONE
;
1492 case R_RX_DIR16
: return R_RX_DIR8
;
1493 case R_RX_DIR8
: return R_RX_NONE
;
1495 case R_RX_DIR16U
: return R_RX_DIR8U
;
1496 case R_RX_DIR8U
: return R_RX_NONE
;
1498 case R_RX_DIR24S_PCREL
: return R_RX_DIR16S_PCREL
;
1499 case R_RX_DIR16S_PCREL
: return R_RX_DIR8S_PCREL
;
1500 case R_RX_DIR8S_PCREL
: return R_RX_DIR3U_PCREL
;
1502 case R_RX_DIR16UL
: return R_RX_DIR8UL
;
1503 case R_RX_DIR8UL
: return R_RX_NONE
;
1504 case R_RX_DIR16UW
: return R_RX_DIR8UW
;
1505 case R_RX_DIR8UW
: return R_RX_NONE
;
1507 case R_RX_RH_32_OP
: return R_RX_RH_24_OP
;
1508 case R_RX_RH_24_OP
: return R_RX_RH_16_OP
;
1509 case R_RX_RH_16_OP
: return R_RX_DIR8
;
1511 case R_RX_ABS32
: return R_RX_ABS24S
;
1512 case R_RX_ABS24S
: return R_RX_ABS16S
;
1513 case R_RX_ABS16
: return R_RX_ABS8
;
1514 case R_RX_ABS16U
: return R_RX_ABS8U
;
1515 case R_RX_ABS16S
: return R_RX_ABS8S
;
1516 case R_RX_ABS8
: return R_RX_NONE
;
1517 case R_RX_ABS8U
: return R_RX_NONE
;
1518 case R_RX_ABS8S
: return R_RX_NONE
;
1519 case R_RX_ABS24S_PCREL
: return R_RX_ABS16S_PCREL
;
1520 case R_RX_ABS16S_PCREL
: return R_RX_ABS8S_PCREL
;
1521 case R_RX_ABS8S_PCREL
: return R_RX_NONE
;
1522 case R_RX_ABS16UL
: return R_RX_ABS8UL
;
1523 case R_RX_ABS16UW
: return R_RX_ABS8UW
;
1524 case R_RX_ABS8UL
: return R_RX_NONE
;
1525 case R_RX_ABS8UW
: return R_RX_NONE
;
1530 /* Delete some bytes from a section while relaxing. */
1533 elf32_rx_relax_delete_bytes (bfd
*abfd
, asection
*sec
, bfd_vma addr
, int count
,
1534 Elf_Internal_Rela
*alignment_rel
, int force_snip
)
1536 Elf_Internal_Shdr
* symtab_hdr
;
1537 unsigned int sec_shndx
;
1538 bfd_byte
* contents
;
1539 Elf_Internal_Rela
* irel
;
1540 Elf_Internal_Rela
* irelend
;
1541 Elf_Internal_Sym
* isym
;
1542 Elf_Internal_Sym
* isymend
;
1544 unsigned int symcount
;
1545 struct elf_link_hash_entry
** sym_hashes
;
1546 struct elf_link_hash_entry
** end_hashes
;
1551 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
1553 contents
= elf_section_data (sec
)->this_hdr
.contents
;
1555 /* The deletion must stop at the next alignment boundary, if
1556 ALIGNMENT_REL is non-NULL. */
1559 toaddr
= alignment_rel
->r_offset
;
1561 irel
= elf_section_data (sec
)->relocs
;
1562 irelend
= irel
+ sec
->reloc_count
;
1564 if (irel
== NULL
&& sec
->reloc_count
> 0)
1566 /* If the relocs have not been kept in the section data
1567 structure (because -no-keep-memory was used) then
1569 irel
= (_bfd_elf_link_read_relocs
1570 (abfd
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
, FALSE
));
1572 /* FIXME: Return FALSE instead ? */
1576 /* Actually delete the bytes. */
1577 memmove (contents
+ addr
, contents
+ addr
+ count
,
1578 (size_t) (toaddr
- addr
- count
));
1580 /* If we don't have an alignment marker to worry about, we can just
1581 shrink the section. Otherwise, we have to fill in the newly
1582 created gap with NOP insns (0x03). */
1586 memset (contents
+ toaddr
- count
, 0x03, count
);
1588 /* Adjust all the relocs. */
1589 for (; irel
< irelend
; irel
++)
1591 /* Get the new reloc address. */
1592 if (irel
->r_offset
> addr
1593 && (irel
->r_offset
< toaddr
1594 || (force_snip
&& irel
->r_offset
== toaddr
)))
1595 irel
->r_offset
-= count
;
1597 /* If we see an ALIGN marker at the end of the gap, we move it
1598 to the beginning of the gap, since marking these gaps is what
1600 if (irel
->r_offset
== toaddr
1601 && ELF32_R_TYPE (irel
->r_info
) == R_RX_RH_RELAX
1602 && irel
->r_addend
& RX_RELAXA_ALIGN
)
1603 irel
->r_offset
-= count
;
1606 /* Adjust the local symbols defined in this section. */
1607 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1608 isym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
1609 isymend
= isym
+ symtab_hdr
->sh_info
;
1611 for (; isym
< isymend
; isym
++)
1613 /* If the symbol is in the range of memory we just moved, we
1614 have to adjust its value. */
1615 if (isym
->st_shndx
== sec_shndx
1616 && isym
->st_value
> addr
1617 && isym
->st_value
< toaddr
)
1618 isym
->st_value
-= count
;
1620 /* If the symbol *spans* the bytes we just deleted (i.e. it's
1621 *end* is in the moved bytes but it's *start* isn't), then we
1622 must adjust its size. */
1623 if (isym
->st_shndx
== sec_shndx
1624 && isym
->st_value
< addr
1625 && isym
->st_value
+ isym
->st_size
> addr
1626 && isym
->st_value
+ isym
->st_size
< toaddr
)
1627 isym
->st_size
-= count
;
1630 /* Now adjust the global symbols defined in this section. */
1631 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
1632 - symtab_hdr
->sh_info
);
1633 sym_hashes
= elf_sym_hashes (abfd
);
1634 end_hashes
= sym_hashes
+ symcount
;
1636 for (; sym_hashes
< end_hashes
; sym_hashes
++)
1638 struct elf_link_hash_entry
*sym_hash
= *sym_hashes
;
1640 if ((sym_hash
->root
.type
== bfd_link_hash_defined
1641 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
1642 && sym_hash
->root
.u
.def
.section
== sec
)
1644 /* As above, adjust the value if needed. */
1645 if (sym_hash
->root
.u
.def
.value
> addr
1646 && sym_hash
->root
.u
.def
.value
< toaddr
)
1647 sym_hash
->root
.u
.def
.value
-= count
;
1649 /* As above, adjust the size if needed. */
1650 if (sym_hash
->root
.u
.def
.value
< addr
1651 && sym_hash
->root
.u
.def
.value
+ sym_hash
->size
> addr
1652 && sym_hash
->root
.u
.def
.value
+ sym_hash
->size
< toaddr
)
1653 sym_hash
->size
-= count
;
1660 /* Used to sort relocs by address. If relocs have the same address,
1661 we maintain their relative order, except that R_RX_RH_RELAX
1662 alignment relocs must be the first reloc for any given address. */
1665 reloc_bubblesort (Elf_Internal_Rela
* r
, int count
)
1669 bfd_boolean swappit
;
1671 /* This is almost a classic bubblesort. It's the slowest sort, but
1672 we're taking advantage of the fact that the relocations are
1673 mostly in order already (the assembler emits them that way) and
1674 we need relocs with the same address to remain in the same
1680 for (i
= 0; i
< count
- 1; i
++)
1682 if (r
[i
].r_offset
> r
[i
+ 1].r_offset
)
1684 else if (r
[i
].r_offset
< r
[i
+ 1].r_offset
)
1686 else if (ELF32_R_TYPE (r
[i
+ 1].r_info
) == R_RX_RH_RELAX
1687 && (r
[i
+ 1].r_addend
& RX_RELAXA_ALIGN
))
1689 else if (ELF32_R_TYPE (r
[i
+ 1].r_info
) == R_RX_RH_RELAX
1690 && (r
[i
+ 1].r_addend
& RX_RELAXA_ELIGN
)
1691 && !(ELF32_R_TYPE (r
[i
].r_info
) == R_RX_RH_RELAX
1692 && (r
[i
].r_addend
& RX_RELAXA_ALIGN
)))
1699 Elf_Internal_Rela tmp
;
1704 /* If we do move a reloc back, re-scan to see if it
1705 needs to be moved even further back. This avoids
1706 most of the O(n^2) behavior for our cases. */
1716 #define OFFSET_FOR_RELOC(rel, lrel, scale) \
1717 rx_offset_for_reloc (abfd, rel + 1, symtab_hdr, shndx_buf, intsyms, \
1718 lrel, abfd, sec, link_info, scale)
1721 rx_offset_for_reloc (bfd
* abfd
,
1722 Elf_Internal_Rela
* rel
,
1723 Elf_Internal_Shdr
* symtab_hdr
,
1724 Elf_External_Sym_Shndx
* shndx_buf ATTRIBUTE_UNUSED
,
1725 Elf_Internal_Sym
* intsyms
,
1726 Elf_Internal_Rela
** lrel
,
1728 asection
* input_section
,
1729 struct bfd_link_info
* info
,
1733 bfd_reloc_status_type r
;
1737 /* REL is the first of 1..N relocations. We compute the symbol
1738 value for each relocation, then combine them if needed. LREL
1739 gets a pointer to the last relocation used. */
1744 /* Get the value of the symbol referred to by the reloc. */
1745 if (ELF32_R_SYM (rel
->r_info
) < symtab_hdr
->sh_info
)
1747 /* A local symbol. */
1748 Elf_Internal_Sym
*isym
;
1751 isym
= intsyms
+ ELF32_R_SYM (rel
->r_info
);
1753 if (isym
->st_shndx
== SHN_UNDEF
)
1754 ssec
= bfd_und_section_ptr
;
1755 else if (isym
->st_shndx
== SHN_ABS
)
1756 ssec
= bfd_abs_section_ptr
;
1757 else if (isym
->st_shndx
== SHN_COMMON
)
1758 ssec
= bfd_com_section_ptr
;
1760 ssec
= bfd_section_from_elf_index (abfd
,
1763 /* Initial symbol value. */
1764 symval
= isym
->st_value
;
1766 /* GAS may have made this symbol relative to a section, in
1767 which case, we have to add the addend to find the
1769 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
1770 symval
+= rel
->r_addend
;
1774 if ((ssec
->flags
& SEC_MERGE
)
1775 && ssec
->sec_info_type
== SEC_INFO_TYPE_MERGE
)
1776 symval
= _bfd_merged_section_offset (abfd
, & ssec
,
1777 elf_section_data (ssec
)->sec_info
,
1781 /* Now make the offset relative to where the linker is putting it. */
1784 ssec
->output_section
->vma
+ ssec
->output_offset
;
1786 symval
+= rel
->r_addend
;
1791 struct elf_link_hash_entry
* h
;
1793 /* An external symbol. */
1794 indx
= ELF32_R_SYM (rel
->r_info
) - symtab_hdr
->sh_info
;
1795 h
= elf_sym_hashes (abfd
)[indx
];
1796 BFD_ASSERT (h
!= NULL
);
1798 if (h
->root
.type
!= bfd_link_hash_defined
1799 && h
->root
.type
!= bfd_link_hash_defweak
)
1801 /* This appears to be a reference to an undefined
1802 symbol. Just ignore it--it will be caught by the
1803 regular reloc processing. */
1809 symval
= (h
->root
.u
.def
.value
1810 + h
->root
.u
.def
.section
->output_section
->vma
1811 + h
->root
.u
.def
.section
->output_offset
);
1813 symval
+= rel
->r_addend
;
1816 switch (ELF32_R_TYPE (rel
->r_info
))
1819 RX_STACK_PUSH (symval
);
1823 RX_STACK_POP (tmp1
);
1825 RX_STACK_PUSH (tmp1
);
1829 RX_STACK_POP (tmp1
);
1830 RX_STACK_POP (tmp2
);
1832 RX_STACK_PUSH (tmp1
);
1836 RX_STACK_POP (tmp1
);
1837 RX_STACK_POP (tmp2
);
1839 RX_STACK_PUSH (tmp2
);
1843 RX_STACK_POP (tmp1
);
1844 RX_STACK_POP (tmp2
);
1846 RX_STACK_PUSH (tmp1
);
1850 RX_STACK_POP (tmp1
);
1851 RX_STACK_POP (tmp2
);
1853 RX_STACK_PUSH (tmp1
);
1857 RX_STACK_POP (tmp1
);
1858 RX_STACK_POP (tmp2
);
1860 RX_STACK_PUSH (tmp1
);
1864 RX_STACK_POP (tmp1
);
1865 RX_STACK_POP (tmp2
);
1867 RX_STACK_PUSH (tmp1
);
1870 case R_RX_OPsctsize
:
1871 RX_STACK_PUSH (input_section
->size
);
1875 RX_STACK_PUSH (input_section
->output_section
->vma
);
1879 RX_STACK_POP (tmp1
);
1880 RX_STACK_POP (tmp2
);
1882 RX_STACK_PUSH (tmp1
);
1886 RX_STACK_POP (tmp1
);
1887 RX_STACK_POP (tmp2
);
1889 RX_STACK_PUSH (tmp1
);
1893 RX_STACK_POP (tmp1
);
1894 RX_STACK_POP (tmp2
);
1896 RX_STACK_PUSH (tmp1
);
1900 RX_STACK_POP (tmp1
);
1902 RX_STACK_PUSH (tmp1
);
1906 RX_STACK_POP (tmp1
);
1907 RX_STACK_POP (tmp2
);
1909 RX_STACK_PUSH (tmp1
);
1913 RX_STACK_PUSH (get_romstart (&r
, info
, input_bfd
, input_section
, rel
->r_offset
));
1917 RX_STACK_PUSH (get_ramstart (&r
, info
, input_bfd
, input_section
, rel
->r_offset
));
1925 RX_STACK_POP (symval
);
1936 RX_STACK_POP (symval
);
1944 RX_STACK_POP (symval
);
1955 move_reloc (Elf_Internal_Rela
* irel
, Elf_Internal_Rela
* srel
, int delta
)
1957 bfd_vma old_offset
= srel
->r_offset
;
1960 while (irel
<= srel
)
1962 if (irel
->r_offset
== old_offset
)
1963 irel
->r_offset
+= delta
;
1968 /* Relax one section. */
1971 elf32_rx_relax_section (bfd
* abfd
,
1973 struct bfd_link_info
* link_info
,
1974 bfd_boolean
* again
,
1975 bfd_boolean allow_pcrel3
)
1977 Elf_Internal_Shdr
* symtab_hdr
;
1978 Elf_Internal_Shdr
* shndx_hdr
;
1979 Elf_Internal_Rela
* internal_relocs
;
1980 Elf_Internal_Rela
* free_relocs
= NULL
;
1981 Elf_Internal_Rela
* irel
;
1982 Elf_Internal_Rela
* srel
;
1983 Elf_Internal_Rela
* irelend
;
1984 Elf_Internal_Rela
* next_alignment
;
1985 Elf_Internal_Rela
* prev_alignment
;
1986 bfd_byte
* contents
= NULL
;
1987 bfd_byte
* free_contents
= NULL
;
1988 Elf_Internal_Sym
* intsyms
= NULL
;
1989 Elf_Internal_Sym
* free_intsyms
= NULL
;
1990 Elf_External_Sym_Shndx
* shndx_buf
= NULL
;
1996 int section_alignment_glue
;
1997 /* how much to scale the relocation by - 1, 2, or 4. */
2000 /* Assume nothing changes. */
2003 /* We don't have to do anything for a relocatable link, if
2004 this section does not have relocs, or if this is not a
2006 if (bfd_link_relocatable (link_info
)
2007 || (sec
->flags
& SEC_RELOC
) == 0
2008 || sec
->reloc_count
== 0
2009 || (sec
->flags
& SEC_CODE
) == 0)
2012 symtab_hdr
= & elf_symtab_hdr (abfd
);
2013 if (elf_symtab_shndx_list (abfd
))
2014 shndx_hdr
= & elf_symtab_shndx_list (abfd
)->hdr
;
2018 sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
2020 /* Get the section contents. */
2021 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
2022 contents
= elf_section_data (sec
)->this_hdr
.contents
;
2023 /* Go get them off disk. */
2026 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
2028 elf_section_data (sec
)->this_hdr
.contents
= contents
;
2031 /* Read this BFD's symbols. */
2032 /* Get cached copy if it exists. */
2033 if (symtab_hdr
->contents
!= NULL
)
2034 intsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2037 intsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
, symtab_hdr
->sh_info
, 0, NULL
, NULL
, NULL
);
2038 symtab_hdr
->contents
= (bfd_byte
*) intsyms
;
2041 if (shndx_hdr
&& shndx_hdr
->sh_size
!= 0)
2045 amt
= symtab_hdr
->sh_info
;
2046 amt
*= sizeof (Elf_External_Sym_Shndx
);
2047 shndx_buf
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
2048 if (shndx_buf
== NULL
)
2050 if (bfd_seek (abfd
, shndx_hdr
->sh_offset
, SEEK_SET
) != 0
2051 || bfd_bread (shndx_buf
, amt
, abfd
) != amt
)
2053 shndx_hdr
->contents
= (bfd_byte
*) shndx_buf
;
2056 /* Get a copy of the native relocations. */
2057 internal_relocs
= (_bfd_elf_link_read_relocs
2058 (abfd
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
,
2059 link_info
->keep_memory
));
2060 if (internal_relocs
== NULL
)
2062 if (! link_info
->keep_memory
)
2063 free_relocs
= internal_relocs
;
2065 /* The RL_ relocs must be just before the operand relocs they go
2066 with, so we must sort them to guarantee this. We use bubblesort
2067 instead of qsort so we can guarantee that relocs with the same
2068 address remain in the same relative order. */
2069 reloc_bubblesort (internal_relocs
, sec
->reloc_count
);
2071 /* Walk through them looking for relaxing opportunities. */
2072 irelend
= internal_relocs
+ sec
->reloc_count
;
2074 /* This will either be NULL or a pointer to the next alignment
2076 next_alignment
= internal_relocs
;
2077 /* This will be the previous alignment, although at first it points
2078 to the first real relocation. */
2079 prev_alignment
= internal_relocs
;
2081 /* We calculate worst case shrinkage caused by alignment directives.
2082 No fool-proof, but better than either ignoring the problem or
2083 doing heavy duty analysis of all the alignment markers in all
2085 section_alignment_glue
= 0;
2086 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2087 if (ELF32_R_TYPE (irel
->r_info
) == R_RX_RH_RELAX
2088 && irel
->r_addend
& RX_RELAXA_ALIGN
)
2090 int this_glue
= 1 << (irel
->r_addend
& RX_RELAXA_ANUM
);
2092 if (section_alignment_glue
< this_glue
)
2093 section_alignment_glue
= this_glue
;
2095 /* Worst case is all 0..N alignments, in order, causing 2*N-1 byte
2097 section_alignment_glue
*= 2;
2099 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2101 unsigned char *insn
;
2104 /* The insns we care about are all marked with one of these. */
2105 if (ELF32_R_TYPE (irel
->r_info
) != R_RX_RH_RELAX
)
2108 if (irel
->r_addend
& RX_RELAXA_ALIGN
2109 || next_alignment
== internal_relocs
)
2111 /* When we delete bytes, we need to maintain all the alignments
2112 indicated. In addition, we need to be careful about relaxing
2113 jumps across alignment boundaries - these displacements
2114 *grow* when we delete bytes. For now, don't shrink
2115 displacements across an alignment boundary, just in case.
2116 Note that this only affects relocations to the same
2118 prev_alignment
= next_alignment
;
2119 next_alignment
+= 2;
2120 while (next_alignment
< irelend
2121 && (ELF32_R_TYPE (next_alignment
->r_info
) != R_RX_RH_RELAX
2122 || !(next_alignment
->r_addend
& RX_RELAXA_ELIGN
)))
2124 if (next_alignment
>= irelend
|| next_alignment
->r_offset
== 0)
2125 next_alignment
= NULL
;
2128 /* When we hit alignment markers, see if we've shrunk enough
2129 before them to reduce the gap without violating the alignment
2131 if (irel
->r_addend
& RX_RELAXA_ALIGN
)
2133 /* At this point, the next relocation *should* be the ELIGN
2135 Elf_Internal_Rela
*erel
= irel
+ 1;
2136 unsigned int alignment
, nbytes
;
2138 if (ELF32_R_TYPE (erel
->r_info
) != R_RX_RH_RELAX
)
2140 if (!(erel
->r_addend
& RX_RELAXA_ELIGN
))
2143 alignment
= 1 << (irel
->r_addend
& RX_RELAXA_ANUM
);
2145 if (erel
->r_offset
- irel
->r_offset
< alignment
)
2148 nbytes
= erel
->r_offset
- irel
->r_offset
;
2149 nbytes
/= alignment
;
2150 nbytes
*= alignment
;
2152 elf32_rx_relax_delete_bytes (abfd
, sec
, erel
->r_offset
-nbytes
, nbytes
, next_alignment
,
2153 erel
->r_offset
== sec
->size
);
2159 if (irel
->r_addend
& RX_RELAXA_ELIGN
)
2162 insn
= contents
+ irel
->r_offset
;
2164 nrelocs
= irel
->r_addend
& RX_RELAXA_RNUM
;
2166 /* At this point, we have an insn that is a candidate for linker
2167 relaxation. There are NRELOCS relocs following that may be
2168 relaxed, although each reloc may be made of more than one
2169 reloc entry (such as gp-rel symbols). */
2171 /* Get the value of the symbol referred to by the reloc. Just
2172 in case this is the last reloc in the list, use the RL's
2173 addend to choose between this reloc (no addend) or the next
2174 (yes addend, which means at least one following reloc). */
2176 /* srel points to the "current" reloction for this insn -
2177 actually the last reloc for a given operand, which is the one
2178 we need to update. We check the relaxations in the same
2179 order that the relocations happen, so we'll just push it
2183 pc
= sec
->output_section
->vma
+ sec
->output_offset
2187 symval = OFFSET_FOR_RELOC (srel, &srel, &scale); \
2188 pcrel = symval - pc + srel->r_addend; \
2191 #define SNIPNR(offset, nbytes) \
2192 elf32_rx_relax_delete_bytes (abfd, sec, (insn - contents) + offset, nbytes, next_alignment, 0);
2193 #define SNIP(offset, nbytes, newtype) \
2194 SNIPNR (offset, nbytes); \
2195 srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), newtype)
2197 /* The order of these bit tests must match the order that the
2198 relocs appear in. Since we sorted those by offset, we can
2201 /* Note that the numbers in, say, DSP6 are the bit offsets of
2202 the code fields that describe the operand. Bits number 0 for
2203 the MSB of insn[0]. */
2210 if (irel
->r_addend
& RX_RELAXA_DSP6
)
2215 if (code
== 2 && symval
/scale
<= 255)
2217 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2220 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2221 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2223 SNIP (3, 1, newrel
);
2228 else if (code
== 1 && symval
== 0)
2231 SNIP (2, 1, R_RX_NONE
);
2235 /* Special case DSP:5 format: MOV.bwl dsp:5[Rsrc],Rdst. */
2236 else if (code
== 1 && symval
/scale
<= 31
2237 /* Decodable bits. */
2238 && (insn
[0] & 0xcc) == 0xcc
2240 && (insn
[0] & 0x30) != 0x30
2241 /* Register MSBs. */
2242 && (insn
[1] & 0x88) == 0x00)
2246 insn
[0] = 0x88 | (insn
[0] & 0x30);
2247 /* The register fields are in the right place already. */
2249 /* We can't relax this new opcode. */
2252 switch ((insn
[0] & 0x30) >> 4)
2255 newrel
= R_RX_RH_ABS5p5B
;
2258 newrel
= R_RX_RH_ABS5p5W
;
2261 newrel
= R_RX_RH_ABS5p5L
;
2265 move_reloc (irel
, srel
, -2);
2266 SNIP (2, 1, newrel
);
2269 /* Special case DSP:5 format: MOVU.bw dsp:5[Rsrc],Rdst. */
2270 else if (code
== 1 && symval
/scale
<= 31
2271 /* Decodable bits. */
2272 && (insn
[0] & 0xf8) == 0x58
2273 /* Register MSBs. */
2274 && (insn
[1] & 0x88) == 0x00)
2278 insn
[0] = 0xb0 | ((insn
[0] & 0x04) << 1);
2279 /* The register fields are in the right place already. */
2281 /* We can't relax this new opcode. */
2284 switch ((insn
[0] & 0x08) >> 3)
2287 newrel
= R_RX_RH_ABS5p5B
;
2290 newrel
= R_RX_RH_ABS5p5W
;
2294 move_reloc (irel
, srel
, -2);
2295 SNIP (2, 1, newrel
);
2299 /* A DSP4 operand always follows a DSP6 operand, even if there's
2300 no relocation for it. We have to read the code out of the
2301 opcode to calculate the offset of the operand. */
2302 if (irel
->r_addend
& RX_RELAXA_DSP4
)
2304 int code6
, offset
= 0;
2308 code6
= insn
[0] & 0x03;
2311 case 0: offset
= 2; break;
2312 case 1: offset
= 3; break;
2313 case 2: offset
= 4; break;
2314 case 3: offset
= 2; break;
2317 code
= (insn
[0] & 0x0c) >> 2;
2319 if (code
== 2 && symval
/ scale
<= 255)
2321 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2325 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2326 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2328 SNIP (offset
+1, 1, newrel
);
2333 else if (code
== 1 && symval
== 0)
2336 SNIP (offset
, 1, R_RX_NONE
);
2339 /* Special case DSP:5 format: MOV.bwl Rsrc,dsp:5[Rdst] */
2340 else if (code
== 1 && symval
/scale
<= 31
2341 /* Decodable bits. */
2342 && (insn
[0] & 0xc3) == 0xc3
2344 && (insn
[0] & 0x30) != 0x30
2345 /* Register MSBs. */
2346 && (insn
[1] & 0x88) == 0x00)
2350 insn
[0] = 0x80 | (insn
[0] & 0x30);
2351 /* The register fields are in the right place already. */
2353 /* We can't relax this new opcode. */
2356 switch ((insn
[0] & 0x30) >> 4)
2359 newrel
= R_RX_RH_ABS5p5B
;
2362 newrel
= R_RX_RH_ABS5p5W
;
2365 newrel
= R_RX_RH_ABS5p5L
;
2369 move_reloc (irel
, srel
, -2);
2370 SNIP (2, 1, newrel
);
2374 /* These always occur alone, but the offset depends on whether
2375 it's a MEMEX opcode (0x06) or not. */
2376 if (irel
->r_addend
& RX_RELAXA_DSP14
)
2381 if (insn
[0] == 0x06)
2388 if (code
== 2 && symval
/ scale
<= 255)
2390 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2394 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2395 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2397 SNIP (offset
, 1, newrel
);
2401 else if (code
== 1 && symval
== 0)
2404 SNIP (offset
, 1, R_RX_NONE
);
2415 /* These always occur alone. */
2416 if (irel
->r_addend
& RX_RELAXA_IMM6
)
2422 /* These relocations sign-extend, so we must do signed compares. */
2423 ssymval
= (long) symval
;
2425 code
= insn
[0] & 0x03;
2427 if (code
== 0 && ssymval
<= 8388607 && ssymval
>= -8388608)
2429 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2433 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2434 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2436 SNIP (2, 1, newrel
);
2441 else if (code
== 3 && ssymval
<= 32767 && ssymval
>= -32768)
2443 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2447 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2448 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2450 SNIP (2, 1, newrel
);
2455 /* Special case UIMM8 format: CMP #uimm8,Rdst. */
2456 else if (code
== 2 && ssymval
<= 255 && ssymval
>= 16
2457 /* Decodable bits. */
2458 && (insn
[0] & 0xfc) == 0x74
2459 /* Decodable bits. */
2460 && ((insn
[1] & 0xf0) == 0x00))
2465 insn
[1] = 0x50 | (insn
[1] & 0x0f);
2467 /* We can't relax this new opcode. */
2470 if (STACK_REL_P (ELF32_R_TYPE (srel
->r_info
)))
2471 newrel
= R_RX_ABS8U
;
2473 newrel
= R_RX_DIR8U
;
2475 SNIP (2, 1, newrel
);
2479 else if (code
== 2 && ssymval
<= 127 && ssymval
>= -128)
2481 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2485 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2486 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2488 SNIP (2, 1, newrel
);
2493 /* Special case UIMM4 format: CMP, MUL, AND, OR. */
2494 else if (code
== 1 && ssymval
<= 15 && ssymval
>= 0
2495 /* Decodable bits and immediate type. */
2497 /* Decodable bits. */
2498 && (insn
[1] & 0xc0) == 0x00)
2500 static const int newop
[4] = { 1, 3, 4, 5 };
2502 insn
[0] = 0x60 | newop
[insn
[1] >> 4];
2503 /* The register number doesn't move. */
2505 /* We can't relax this new opcode. */
2508 move_reloc (irel
, srel
, -1);
2510 SNIP (2, 1, R_RX_RH_UIMM4p8
);
2514 /* Special case UIMM4 format: ADD -> ADD/SUB. */
2515 else if (code
== 1 && ssymval
<= 15 && ssymval
>= -15
2516 /* Decodable bits and immediate type. */
2518 /* Same register for source and destination. */
2519 && ((insn
[1] >> 4) == (insn
[1] & 0x0f)))
2523 /* Note that we can't turn "add $0,Rs" into a NOP
2524 because the flags need to be set right. */
2528 insn
[0] = 0x60; /* Subtract. */
2529 newrel
= R_RX_RH_UNEG4p8
;
2533 insn
[0] = 0x62; /* Add. */
2534 newrel
= R_RX_RH_UIMM4p8
;
2537 /* The register number is in the right place. */
2539 /* We can't relax this new opcode. */
2542 move_reloc (irel
, srel
, -1);
2544 SNIP (2, 1, newrel
);
2549 /* These are either matched with a DSP6 (2-byte base) or an id24
2551 if (irel
->r_addend
& RX_RELAXA_IMM12
)
2553 int dspcode
, offset
= 0;
2558 if ((insn
[0] & 0xfc) == 0xfc)
2559 dspcode
= 1; /* Just something with one byte operand. */
2561 dspcode
= insn
[0] & 3;
2564 case 0: offset
= 2; break;
2565 case 1: offset
= 3; break;
2566 case 2: offset
= 4; break;
2567 case 3: offset
= 2; break;
2570 /* These relocations sign-extend, so we must do signed compares. */
2571 ssymval
= (long) symval
;
2573 code
= (insn
[1] >> 2) & 3;
2574 if (code
== 0 && ssymval
<= 8388607 && ssymval
>= -8388608)
2576 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2580 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2581 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2583 SNIP (offset
, 1, newrel
);
2588 else if (code
== 3 && ssymval
<= 32767 && ssymval
>= -32768)
2590 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2594 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2595 if (newrel
!= ELF32_R_TYPE (srel
->r_info
))
2597 SNIP (offset
, 1, newrel
);
2602 /* Special case UIMM8 format: MOV #uimm8,Rdst. */
2603 else if (code
== 2 && ssymval
<= 255 && ssymval
>= 16
2604 /* Decodable bits. */
2606 /* Decodable bits. */
2607 && ((insn
[1] & 0x03) == 0x02))
2612 insn
[1] = 0x40 | (insn
[1] >> 4);
2614 /* We can't relax this new opcode. */
2617 if (STACK_REL_P (ELF32_R_TYPE (srel
->r_info
)))
2618 newrel
= R_RX_ABS8U
;
2620 newrel
= R_RX_DIR8U
;
2622 SNIP (2, 1, newrel
);
2626 else if (code
== 2 && ssymval
<= 127 && ssymval
>= -128)
2628 unsigned int newrel
= ELF32_R_TYPE(srel
->r_info
);
2632 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2633 if (newrel
!= ELF32_R_TYPE(srel
->r_info
))
2635 SNIP (offset
, 1, newrel
);
2640 /* Special case UIMM4 format: MOV #uimm4,Rdst. */
2641 else if (code
== 1 && ssymval
<= 15 && ssymval
>= 0
2642 /* Decodable bits. */
2644 /* Decodable bits. */
2645 && ((insn
[1] & 0x03) == 0x02))
2648 insn
[1] = insn
[1] >> 4;
2650 /* We can't relax this new opcode. */
2653 move_reloc (irel
, srel
, -1);
2655 SNIP (2, 1, R_RX_RH_UIMM4p8
);
2660 if (irel
->r_addend
& RX_RELAXA_BRA
)
2662 unsigned int newrel
= ELF32_R_TYPE (srel
->r_info
);
2664 int alignment_glue
= 0;
2668 /* Branches over alignment chunks are problematic, as
2669 deleting bytes here makes the branch *further* away. We
2670 can be agressive with branches within this alignment
2671 block, but not branches outside it. */
2672 if ((prev_alignment
== NULL
2673 || symval
< (bfd_vma
)(sec_start
+ prev_alignment
->r_offset
))
2674 && (next_alignment
== NULL
2675 || symval
> (bfd_vma
)(sec_start
+ next_alignment
->r_offset
)))
2676 alignment_glue
= section_alignment_glue
;
2678 if (ELF32_R_TYPE(srel
[1].r_info
) == R_RX_RH_RELAX
2679 && srel
[1].r_addend
& RX_RELAXA_BRA
2680 && srel
[1].r_offset
< irel
->r_offset
+ pcrel
)
2683 newrel
= next_smaller_reloc (ELF32_R_TYPE (srel
->r_info
));
2685 /* The values we compare PCREL with are not what you'd
2686 expect; they're off by a little to compensate for (1)
2687 where the reloc is relative to the insn, and (2) how much
2688 the insn is going to change when we relax it. */
2690 /* These we have to decode. */
2693 case 0x04: /* BRA pcdsp:24 */
2694 if (-32768 + alignment_glue
<= pcrel
2695 && pcrel
<= 32765 - alignment_glue
)
2698 SNIP (3, 1, newrel
);
2703 case 0x38: /* BRA pcdsp:16 */
2704 if (-128 + alignment_glue
<= pcrel
2705 && pcrel
<= 127 - alignment_glue
)
2708 SNIP (2, 1, newrel
);
2713 case 0x2e: /* BRA pcdsp:8 */
2714 /* Note that there's a risk here of shortening things so
2715 much that we no longer fit this reloc; it *should*
2716 only happen when you branch across a branch, and that
2717 branch also devolves into BRA.S. "Real" code should
2719 if (max_pcrel3
+ alignment_glue
<= pcrel
2720 && pcrel
<= 10 - alignment_glue
2724 SNIP (1, 1, newrel
);
2725 move_reloc (irel
, srel
, -1);
2730 case 0x05: /* BSR pcdsp:24 */
2731 if (-32768 + alignment_glue
<= pcrel
2732 && pcrel
<= 32765 - alignment_glue
)
2735 SNIP (1, 1, newrel
);
2740 case 0x3a: /* BEQ.W pcdsp:16 */
2741 case 0x3b: /* BNE.W pcdsp:16 */
2742 if (-128 + alignment_glue
<= pcrel
2743 && pcrel
<= 127 - alignment_glue
)
2745 insn
[0] = 0x20 | (insn
[0] & 1);
2746 SNIP (1, 1, newrel
);
2751 case 0x20: /* BEQ.B pcdsp:8 */
2752 case 0x21: /* BNE.B pcdsp:8 */
2753 if (max_pcrel3
+ alignment_glue
<= pcrel
2754 && pcrel
- alignment_glue
<= 10
2757 insn
[0] = 0x10 | ((insn
[0] & 1) << 3);
2758 SNIP (1, 1, newrel
);
2759 move_reloc (irel
, srel
, -1);
2764 case 0x16: /* synthetic BNE dsp24 */
2765 case 0x1e: /* synthetic BEQ dsp24 */
2766 if (-32767 + alignment_glue
<= pcrel
2767 && pcrel
<= 32766 - alignment_glue
2770 if (insn
[0] == 0x16)
2774 /* We snip out the bytes at the end else the reloc
2775 will get moved too, and too much. */
2776 SNIP (3, 2, newrel
);
2777 move_reloc (irel
, srel
, -1);
2783 /* Special case - synthetic conditional branches, pcrel24.
2784 Note that EQ and NE have been handled above. */
2785 if ((insn
[0] & 0xf0) == 0x20
2788 && srel
->r_offset
!= irel
->r_offset
+ 1
2789 && -32767 + alignment_glue
<= pcrel
2790 && pcrel
<= 32766 - alignment_glue
)
2794 SNIP (5, 1, newrel
);
2798 /* Special case - synthetic conditional branches, pcrel16 */
2799 if ((insn
[0] & 0xf0) == 0x20
2802 && srel
->r_offset
!= irel
->r_offset
+ 1
2803 && -127 + alignment_glue
<= pcrel
2804 && pcrel
<= 126 - alignment_glue
)
2806 int cond
= (insn
[0] & 0x0f) ^ 0x01;
2808 insn
[0] = 0x20 | cond
;
2809 /* By moving the reloc first, we avoid having
2810 delete_bytes move it also. */
2811 move_reloc (irel
, srel
, -2);
2812 SNIP (2, 3, newrel
);
2817 BFD_ASSERT (nrelocs
== 0);
2819 /* Special case - check MOV.bwl #IMM, dsp[reg] and see if we can
2820 use MOV.bwl #uimm:8, dsp:5[r7] format. This is tricky
2821 because it may have one or two relocations. */
2822 if ((insn
[0] & 0xfc) == 0xf8
2823 && (insn
[1] & 0x80) == 0x00
2824 && (insn
[0] & 0x03) != 0x03)
2826 int dcode
, icode
, reg
, ioff
, dscale
, ilen
;
2827 bfd_vma disp_val
= 0;
2829 Elf_Internal_Rela
* disp_rel
= 0;
2830 Elf_Internal_Rela
* imm_rel
= 0;
2835 dcode
= insn
[0] & 0x03;
2836 icode
= (insn
[1] >> 2) & 0x03;
2837 reg
= (insn
[1] >> 4) & 0x0f;
2839 ioff
= dcode
== 1 ? 3 : dcode
== 2 ? 4 : 2;
2841 /* Figure out what the dispacement is. */
2842 if (dcode
== 1 || dcode
== 2)
2844 /* There's a displacement. See if there's a reloc for it. */
2845 if (srel
[1].r_offset
== irel
->r_offset
+ 2)
2857 #if RX_OPCODE_BIG_ENDIAN
2858 disp_val
= insn
[2] * 256 + insn
[3];
2860 disp_val
= insn
[2] + insn
[3] * 256;
2863 switch (insn
[1] & 3)
2879 /* Figure out what the immediate is. */
2880 if (srel
[1].r_offset
== irel
->r_offset
+ ioff
)
2883 imm_val
= (long) symval
;
2888 unsigned char * ip
= insn
+ ioff
;
2893 /* For byte writes, we don't sign extend. Makes the math easier later. */
2897 imm_val
= (char) ip
[0];
2900 #if RX_OPCODE_BIG_ENDIAN
2901 imm_val
= ((char) ip
[0] << 8) | ip
[1];
2903 imm_val
= ((char) ip
[1] << 8) | ip
[0];
2907 #if RX_OPCODE_BIG_ENDIAN
2908 imm_val
= ((char) ip
[0] << 16) | (ip
[1] << 8) | ip
[2];
2910 imm_val
= ((char) ip
[2] << 16) | (ip
[1] << 8) | ip
[0];
2914 #if RX_OPCODE_BIG_ENDIAN
2915 imm_val
= (ip
[0] << 24) | (ip
[1] << 16) | (ip
[2] << 8) | ip
[3];
2917 imm_val
= (ip
[3] << 24) | (ip
[2] << 16) | (ip
[1] << 8) | ip
[0];
2951 /* The shortcut happens when the immediate is 0..255,
2952 register r0 to r7, and displacement (scaled) 0..31. */
2954 if (0 <= imm_val
&& imm_val
<= 255
2955 && 0 <= reg
&& reg
<= 7
2956 && disp_val
/ dscale
<= 31)
2958 insn
[0] = 0x3c | (insn
[1] & 0x03);
2959 insn
[1] = (((disp_val
/ dscale
) << 3) & 0x80) | (reg
<< 4) | ((disp_val
/dscale
) & 0x0f);
2964 int newrel
= R_RX_NONE
;
2969 newrel
= R_RX_RH_ABS5p8B
;
2972 newrel
= R_RX_RH_ABS5p8W
;
2975 newrel
= R_RX_RH_ABS5p8L
;
2978 disp_rel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (disp_rel
->r_info
), newrel
);
2979 move_reloc (irel
, disp_rel
, -1);
2983 imm_rel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (imm_rel
->r_info
), R_RX_DIR8U
);
2984 move_reloc (disp_rel
? disp_rel
: irel
,
2986 irel
->r_offset
- imm_rel
->r_offset
+ 2);
2989 SNIPNR (3, ilen
- 3);
2992 /* We can't relax this new opcode. */
2998 /* We can't reliably relax branches to DIR3U_PCREL unless we know
2999 whatever they're branching over won't shrink any more. If we're
3000 basically done here, do one more pass just for branches - but
3001 don't request a pass after that one! */
3002 if (!*again
&& !allow_pcrel3
)
3004 bfd_boolean ignored
;
3006 elf32_rx_relax_section (abfd
, sec
, link_info
, &ignored
, TRUE
);
3012 if (free_relocs
!= NULL
)
3015 if (free_contents
!= NULL
)
3016 free (free_contents
);
3018 if (shndx_buf
!= NULL
)
3020 shndx_hdr
->contents
= NULL
;
3024 if (free_intsyms
!= NULL
)
3025 free (free_intsyms
);
3031 elf32_rx_relax_section_wrapper (bfd
* abfd
,
3033 struct bfd_link_info
* link_info
,
3034 bfd_boolean
* again
)
3036 return elf32_rx_relax_section (abfd
, sec
, link_info
, again
, FALSE
);
3039 /* Function to set the ELF flag bits. */
3042 rx_elf_set_private_flags (bfd
* abfd
, flagword flags
)
3044 elf_elfheader (abfd
)->e_flags
= flags
;
3045 elf_flags_init (abfd
) = TRUE
;
3049 static bfd_boolean no_warn_mismatch
= FALSE
;
3050 static bfd_boolean ignore_lma
= TRUE
;
3052 void bfd_elf32_rx_set_target_flags (bfd_boolean
, bfd_boolean
);
3055 bfd_elf32_rx_set_target_flags (bfd_boolean user_no_warn_mismatch
,
3056 bfd_boolean user_ignore_lma
)
3058 no_warn_mismatch
= user_no_warn_mismatch
;
3059 ignore_lma
= user_ignore_lma
;
3062 /* Converts FLAGS into a descriptive string.
3063 Returns a static pointer. */
3066 describe_flags (flagword flags
)
3068 static char buf
[128];
3072 if (flags
& E_FLAG_RX_64BIT_DOUBLES
)
3073 strcat (buf
, "64-bit doubles");
3075 strcat (buf
, "32-bit doubles");
3077 if (flags
& E_FLAG_RX_DSP
)
3078 strcat (buf
, ", dsp");
3080 strcat (buf
, ", no dsp");
3082 if (flags
& E_FLAG_RX_PID
)
3083 strcat (buf
, ", pid");
3085 strcat (buf
, ", no pid");
3087 if (flags
& E_FLAG_RX_ABI
)
3088 strcat (buf
, ", RX ABI");
3090 strcat (buf
, ", GCC ABI");
3092 if (flags
& E_FLAG_RX_SINSNS_SET
)
3093 strcat (buf
, flags
& E_FLAG_RX_SINSNS_YES
? ", uses String instructions" : ", bans String instructions");
3098 /* Merge backend specific data from an object file to the output
3099 object file when linking. */
3102 rx_elf_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
3106 bfd_boolean error
= FALSE
;
3108 new_flags
= elf_elfheader (ibfd
)->e_flags
;
3109 old_flags
= elf_elfheader (obfd
)->e_flags
;
3111 if (!elf_flags_init (obfd
))
3113 /* First call, no flags set. */
3114 elf_flags_init (obfd
) = TRUE
;
3115 elf_elfheader (obfd
)->e_flags
= new_flags
;
3117 else if (old_flags
!= new_flags
)
3119 flagword known_flags
;
3121 if (old_flags
& E_FLAG_RX_SINSNS_SET
)
3123 if ((new_flags
& E_FLAG_RX_SINSNS_SET
) == 0)
3125 new_flags
&= ~ E_FLAG_RX_SINSNS_MASK
;
3126 new_flags
|= (old_flags
& E_FLAG_RX_SINSNS_MASK
);
3129 else if (new_flags
& E_FLAG_RX_SINSNS_SET
)
3131 old_flags
&= ~ E_FLAG_RX_SINSNS_MASK
;
3132 old_flags
|= (new_flags
& E_FLAG_RX_SINSNS_MASK
);
3135 known_flags
= E_FLAG_RX_ABI
| E_FLAG_RX_64BIT_DOUBLES
3136 | E_FLAG_RX_DSP
| E_FLAG_RX_PID
| E_FLAG_RX_SINSNS_MASK
;
3138 if ((old_flags
^ new_flags
) & known_flags
)
3140 /* Only complain if flag bits we care about do not match.
3141 Other bits may be set, since older binaries did use some
3142 deprecated flags. */
3143 if (no_warn_mismatch
)
3145 elf_elfheader (obfd
)->e_flags
= (new_flags
| old_flags
) & known_flags
;
3149 _bfd_error_handler ("There is a conflict merging the ELF header flags from %s",
3150 bfd_get_filename (ibfd
));
3151 _bfd_error_handler (" the input file's flags: %s",
3152 describe_flags (new_flags
));
3153 _bfd_error_handler (" the output file's flags: %s",
3154 describe_flags (old_flags
));
3159 elf_elfheader (obfd
)->e_flags
= new_flags
& known_flags
;
3163 bfd_set_error (bfd_error_bad_value
);
3169 rx_elf_print_private_bfd_data (bfd
* abfd
, void * ptr
)
3171 FILE * file
= (FILE *) ptr
;
3174 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
3176 /* Print normal ELF private data. */
3177 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
3179 flags
= elf_elfheader (abfd
)->e_flags
;
3180 fprintf (file
, _("private flags = 0x%lx:"), (long) flags
);
3182 fprintf (file
, "%s", describe_flags (flags
));
3186 /* Return the MACH for an e_flags value. */
3189 elf32_rx_machine (bfd
* abfd ATTRIBUTE_UNUSED
)
3191 #if 0 /* FIXME: EF_RX_CPU_MASK collides with E_FLAG_RX_...
3192 Need to sort out how these flag bits are used.
3193 For now we assume that the flags are OK. */
3194 if ((elf_elfheader (abfd
)->e_flags
& EF_RX_CPU_MASK
) == EF_RX_CPU_RX
)
3202 rx_elf_object_p (bfd
* abfd
)
3206 Elf_Internal_Phdr
*phdr
= elf_tdata (abfd
)->phdr
;
3207 int nphdrs
= elf_elfheader (abfd
)->e_phnum
;
3209 static int saw_be
= FALSE
;
3211 /* We never want to automatically choose the non-swapping big-endian
3212 target. The user can only get that explicitly, such as with -I
3214 if (abfd
->xvec
== &rx_elf32_be_ns_vec
3215 && abfd
->target_defaulted
)
3218 /* BFD->target_defaulted is not set to TRUE when a target is chosen
3219 as a fallback, so we check for "scanning" to know when to stop
3220 using the non-swapping target. */
3221 if (abfd
->xvec
== &rx_elf32_be_ns_vec
3224 if (abfd
->xvec
== &rx_elf32_be_vec
)
3227 bfd_default_set_arch_mach (abfd
, bfd_arch_rx
,
3228 elf32_rx_machine (abfd
));
3230 /* For each PHDR in the object, we must find some section that
3231 corresponds (based on matching file offsets) and use its VMA
3232 information to reconstruct the p_vaddr field we clobbered when we
3234 for (i
=0; i
<nphdrs
; i
++)
3236 for (u
=0; u
<elf_tdata(abfd
)->num_elf_sections
; u
++)
3238 Elf_Internal_Shdr
*sec
= elf_tdata(abfd
)->elf_sect_ptr
[u
];
3240 if (phdr
[i
].p_filesz
3241 && phdr
[i
].p_offset
<= (bfd_vma
) sec
->sh_offset
3242 && (bfd_vma
)sec
->sh_offset
<= phdr
[i
].p_offset
+ (phdr
[i
].p_filesz
- 1))
3244 /* Found one! The difference between the two addresses,
3245 plus the difference between the two file offsets, is
3246 enough information to reconstruct the lma. */
3248 /* Example where they aren't:
3249 PHDR[1] = lma fffc0100 offset 00002010 size 00000100
3250 SEC[6] = vma 00000050 offset 00002050 size 00000040
3252 The correct LMA for the section is fffc0140 + (2050-2010).
3255 phdr
[i
].p_vaddr
= sec
->sh_addr
+ (sec
->sh_offset
- phdr
[i
].p_offset
);
3260 /* We must update the bfd sections as well, so we don't stop
3262 bsec
= abfd
->sections
;
3265 if (phdr
[i
].p_filesz
3266 && phdr
[i
].p_vaddr
<= bsec
->vma
3267 && bsec
->vma
<= phdr
[i
].p_vaddr
+ (phdr
[i
].p_filesz
- 1))
3269 bsec
->lma
= phdr
[i
].p_paddr
+ (bsec
->vma
- phdr
[i
].p_vaddr
);
3281 rx_dump_symtab (bfd
* abfd
, void * internal_syms
, void * external_syms
)
3284 Elf_Internal_Sym
* isymbuf
;
3285 Elf_Internal_Sym
* isymend
;
3286 Elf_Internal_Sym
* isym
;
3287 Elf_Internal_Shdr
* symtab_hdr
;
3288 bfd_boolean free_internal
= FALSE
, free_external
= FALSE
;
3290 char * st_info_stb_str
;
3291 char * st_other_str
;
3292 char * st_shndx_str
;
3294 if (! internal_syms
)
3296 internal_syms
= bfd_malloc (1000);
3299 if (! external_syms
)
3301 external_syms
= bfd_malloc (1000);
3305 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3306 locsymcount
= symtab_hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
3308 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
3309 symtab_hdr
->sh_info
, 0,
3310 internal_syms
, external_syms
, NULL
);
3312 isymbuf
= internal_syms
;
3313 isymend
= isymbuf
+ locsymcount
;
3315 for (isym
= isymbuf
; isym
< isymend
; isym
++)
3317 switch (ELF_ST_TYPE (isym
->st_info
))
3319 case STT_FUNC
: st_info_str
= "STT_FUNC"; break;
3320 case STT_SECTION
: st_info_str
= "STT_SECTION"; break;
3321 case STT_FILE
: st_info_str
= "STT_FILE"; break;
3322 case STT_OBJECT
: st_info_str
= "STT_OBJECT"; break;
3323 case STT_TLS
: st_info_str
= "STT_TLS"; break;
3324 default: st_info_str
= "";
3326 switch (ELF_ST_BIND (isym
->st_info
))
3328 case STB_LOCAL
: st_info_stb_str
= "STB_LOCAL"; break;
3329 case STB_GLOBAL
: st_info_stb_str
= "STB_GLOBAL"; break;
3330 default: st_info_stb_str
= "";
3332 switch (ELF_ST_VISIBILITY (isym
->st_other
))
3334 case STV_DEFAULT
: st_other_str
= "STV_DEFAULT"; break;
3335 case STV_INTERNAL
: st_other_str
= "STV_INTERNAL"; break;
3336 case STV_PROTECTED
: st_other_str
= "STV_PROTECTED"; break;
3337 default: st_other_str
= "";
3339 switch (isym
->st_shndx
)
3341 case SHN_ABS
: st_shndx_str
= "SHN_ABS"; break;
3342 case SHN_COMMON
: st_shndx_str
= "SHN_COMMON"; break;
3343 case SHN_UNDEF
: st_shndx_str
= "SHN_UNDEF"; break;
3344 default: st_shndx_str
= "";
3347 printf ("isym = %p st_value = %lx st_size = %lx st_name = (%lu) %s "
3348 "st_info = (%d) %s %s st_other = (%d) %s st_shndx = (%d) %s\n",
3350 (unsigned long) isym
->st_value
,
3351 (unsigned long) isym
->st_size
,
3353 bfd_elf_string_from_elf_section (abfd
, symtab_hdr
->sh_link
,
3355 isym
->st_info
, st_info_str
, st_info_stb_str
,
3356 isym
->st_other
, st_other_str
,
3357 isym
->st_shndx
, st_shndx_str
);
3360 free (internal_syms
);
3362 free (external_syms
);
3366 rx_get_reloc (long reloc
)
3368 if (0 <= reloc
&& reloc
< R_RX_max
)
3369 return rx_elf_howto_table
[reloc
].name
;
3375 /* We must take care to keep the on-disk copy of any code sections
3376 that are fully linked swapped if the target is big endian, to match
3377 the Renesas tools. */
3379 /* The rule is: big endian object that are final-link executables,
3380 have code sections stored with 32-bit words swapped relative to
3381 what you'd get by default. */
3384 rx_get_section_contents (bfd
* abfd
,
3388 bfd_size_type count
)
3390 int exec
= (abfd
->flags
& EXEC_P
) ? 1 : 0;
3391 int s_code
= (section
->flags
& SEC_CODE
) ? 1 : 0;
3395 fprintf (stderr
, "dj: get %ld %ld from %s %s e%d sc%d %08lx:%08lx\n",
3396 (long) offset
, (long) count
, section
->name
,
3397 bfd_big_endian(abfd
) ? "be" : "le",
3398 exec
, s_code
, (long unsigned) section
->filepos
,
3399 (long unsigned) offset
);
3402 if (exec
&& s_code
&& bfd_big_endian (abfd
))
3404 char * cloc
= (char *) location
;
3405 bfd_size_type cnt
, end_cnt
;
3409 /* Fetch and swap unaligned bytes at the beginning. */
3414 rv
= _bfd_generic_get_section_contents (abfd
, section
, buf
,
3419 bfd_putb32 (bfd_getl32 (buf
), buf
);
3421 cnt
= 4 - (offset
% 4);
3425 memcpy (location
, buf
+ (offset
% 4), cnt
);
3432 end_cnt
= count
% 4;
3434 /* Fetch and swap the middle bytes. */
3437 rv
= _bfd_generic_get_section_contents (abfd
, section
, cloc
, offset
,
3442 for (cnt
= count
; cnt
>= 4; cnt
-= 4, cloc
+= 4)
3443 bfd_putb32 (bfd_getl32 (cloc
), cloc
);
3446 /* Fetch and swap the end bytes. */
3451 /* Fetch the end bytes. */
3452 rv
= _bfd_generic_get_section_contents (abfd
, section
, buf
,
3453 offset
+ count
- end_cnt
, 4);
3457 bfd_putb32 (bfd_getl32 (buf
), buf
);
3458 memcpy (cloc
, buf
, end_cnt
);
3462 rv
= _bfd_generic_get_section_contents (abfd
, section
, location
, offset
, count
);
3469 rx2_set_section_contents (bfd
* abfd
,
3471 const void * location
,
3473 bfd_size_type count
)
3477 fprintf (stderr
, " set sec %s %08x loc %p offset %#x count %#x\n",
3478 section
->name
, (unsigned) section
->vma
, location
, (int) offset
, (int) count
);
3479 for (i
= 0; i
< count
; i
++)
3481 if (i
% 16 == 0 && i
> 0)
3482 fprintf (stderr
, "\n");
3484 if (i
% 16 && i
% 4 == 0)
3485 fprintf (stderr
, " ");
3488 fprintf (stderr
, " %08x:", (int) (section
->vma
+ offset
+ i
));
3490 fprintf (stderr
, " %02x", ((unsigned char *) location
)[i
]);
3492 fprintf (stderr
, "\n");
3494 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
, count
);
3496 #define _bfd_elf_set_section_contents rx2_set_section_contents
3500 rx_set_section_contents (bfd
* abfd
,
3502 const void * location
,
3504 bfd_size_type count
)
3506 bfd_boolean exec
= (abfd
->flags
& EXEC_P
) ? TRUE
: FALSE
;
3507 bfd_boolean s_code
= (section
->flags
& SEC_CODE
) ? TRUE
: FALSE
;
3509 char * swapped_data
= NULL
;
3511 bfd_vma caddr
= section
->vma
+ offset
;
3513 bfd_size_type scount
;
3518 fprintf (stderr
, "\ndj: set %ld %ld to %s %s e%d sc%d\n",
3519 (long) offset
, (long) count
, section
->name
,
3520 bfd_big_endian (abfd
) ? "be" : "le",
3523 for (i
= 0; i
< count
; i
++)
3525 int a
= section
->vma
+ offset
+ i
;
3527 if (a
% 16 == 0 && a
> 0)
3528 fprintf (stderr
, "\n");
3530 if (a
% 16 && a
% 4 == 0)
3531 fprintf (stderr
, " ");
3533 if (a
% 16 == 0 || i
== 0)
3534 fprintf (stderr
, " %08x:", (int) (section
->vma
+ offset
+ i
));
3536 fprintf (stderr
, " %02x", ((unsigned char *) location
)[i
]);
3539 fprintf (stderr
, "\n");
3542 if (! exec
|| ! s_code
|| ! bfd_big_endian (abfd
))
3543 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
, count
);
3545 while (count
> 0 && caddr
> 0 && caddr
% 4)
3549 case 0: faddr
= offset
+ 3; break;
3550 case 1: faddr
= offset
+ 1; break;
3551 case 2: faddr
= offset
- 1; break;
3552 case 3: faddr
= offset
- 3; break;
3555 rv
= _bfd_elf_set_section_contents (abfd
, section
, location
, faddr
, 1);
3565 scount
= (int)(count
/ 4) * 4;
3568 char * cloc
= (char *) location
;
3570 swapped_data
= (char *) bfd_alloc (abfd
, count
);
3572 for (i
= 0; i
< count
; i
+= 4)
3574 bfd_vma v
= bfd_getl32 (cloc
+ i
);
3575 bfd_putb32 (v
, swapped_data
+ i
);
3578 rv
= _bfd_elf_set_section_contents (abfd
, section
, swapped_data
, offset
, scount
);
3590 caddr
= section
->vma
+ offset
;
3595 case 0: faddr
= offset
+ 3; break;
3596 case 1: faddr
= offset
+ 1; break;
3597 case 2: faddr
= offset
- 1; break;
3598 case 3: faddr
= offset
- 3; break;
3600 rv
= _bfd_elf_set_section_contents (abfd
, section
, location
, faddr
, 1);
3615 rx_final_link (bfd
* abfd
, struct bfd_link_info
* info
)
3619 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
3622 fprintf (stderr
, "sec %s fl %x vma %lx lma %lx size %lx raw %lx\n",
3623 o
->name
, o
->flags
, o
->vma
, o
->lma
, o
->size
, o
->rawsize
);
3625 if (o
->flags
& SEC_CODE
3626 && bfd_big_endian (abfd
)
3630 fprintf (stderr
, "adjusting...\n");
3632 o
->size
+= 4 - (o
->size
% 4);
3636 return bfd_elf_final_link (abfd
, info
);
3640 elf32_rx_modify_program_headers (bfd
* abfd ATTRIBUTE_UNUSED
,
3641 struct bfd_link_info
* info ATTRIBUTE_UNUSED
)
3643 const struct elf_backend_data
* bed
;
3644 struct elf_obj_tdata
* tdata
;
3645 Elf_Internal_Phdr
* phdr
;
3649 bed
= get_elf_backend_data (abfd
);
3650 tdata
= elf_tdata (abfd
);
3652 count
= elf_program_header_size (abfd
) / bed
->s
->sizeof_phdr
;
3655 for (i
= count
; i
-- != 0;)
3656 if (phdr
[i
].p_type
== PT_LOAD
)
3658 /* The Renesas tools expect p_paddr to be zero. However,
3659 there is no other way to store the writable data in ROM for
3660 startup initialization. So, we let the linker *think*
3661 we're using paddr and vaddr the "usual" way, but at the
3662 last minute we move the paddr into the vaddr (which is what
3663 the simulator uses) and zero out paddr. Note that this
3664 does not affect the section headers, just the program
3665 headers. We hope. */
3666 phdr
[i
].p_vaddr
= phdr
[i
].p_paddr
;
3667 #if 0 /* If we zero out p_paddr, then the LMA in the section table
3669 phdr
[i
].p_paddr
= 0;
3676 /* The default literal sections should always be marked as "code" (i.e.,
3677 SHF_EXECINSTR). This is particularly important for big-endian mode
3678 when we do not want their contents byte reversed. */
3679 static const struct bfd_elf_special_section elf32_rx_special_sections
[] =
3681 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_EXECINSTR
},
3682 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_EXECINSTR
},
3683 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_EXECINSTR
},
3684 { NULL
, 0, 0, 0, 0 }
3689 struct bfd_link_info
*info
;
3690 bfd_vma table_start
;
3692 bfd_vma
*table_handlers
;
3693 bfd_vma table_default_handler
;
3694 struct bfd_link_hash_entry
**table_entries
;
3695 struct bfd_link_hash_entry
*table_default_entry
;
3700 rx_table_find (struct bfd_hash_entry
*vent
, void *vinfo
)
3702 RX_Table_Info
*info
= (RX_Table_Info
*)vinfo
;
3703 struct bfd_link_hash_entry
*ent
= (struct bfd_link_hash_entry
*)vent
;
3704 const char *name
; /* of the symbol we've found */
3708 const char *tname
; /* name of the table */
3709 bfd_vma start_addr
, end_addr
;
3711 struct bfd_link_hash_entry
* h
;
3713 /* We're looking for globally defined symbols of the form
3714 $tablestart$<NAME>. */
3715 if (ent
->type
!= bfd_link_hash_defined
3716 && ent
->type
!= bfd_link_hash_defweak
)
3719 name
= ent
->root
.string
;
3720 sec
= ent
->u
.def
.section
;
3723 if (strncmp (name
, "$tablestart$", 12))
3726 sec
->flags
|= SEC_KEEP
;
3730 start_addr
= ent
->u
.def
.value
;
3732 /* At this point, we can't build the table but we can (and must)
3733 find all the related symbols and mark their sections as SEC_KEEP
3734 so we don't garbage collect them. */
3736 buf
= (char *) malloc (12 + 10 + strlen (tname
));
3738 sprintf (buf
, "$tableend$%s", tname
);
3739 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, FALSE
, FALSE
, TRUE
);
3740 if (!h
|| (h
->type
!= bfd_link_hash_defined
3741 && h
->type
!= bfd_link_hash_defweak
))
3743 _bfd_error_handler (_("%B:%A: table %s missing corresponding %s"),
3744 abfd
, sec
, name
, buf
);
3748 if (h
->u
.def
.section
!= ent
->u
.def
.section
)
3750 _bfd_error_handler (_("%B:%A: %s and %s must be in the same input section"),
3751 h
->u
.def
.section
->owner
, h
->u
.def
.section
,
3756 end_addr
= h
->u
.def
.value
;
3758 sprintf (buf
, "$tableentry$default$%s", tname
);
3759 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, FALSE
, FALSE
, TRUE
);
3760 if (h
&& (h
->type
== bfd_link_hash_defined
3761 || h
->type
== bfd_link_hash_defweak
))
3763 h
->u
.def
.section
->flags
|= SEC_KEEP
;
3766 for (idx
= 0; idx
< (int) (end_addr
- start_addr
) / 4; idx
++)
3768 sprintf (buf
, "$tableentry$%d$%s", idx
, tname
);
3769 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, FALSE
, FALSE
, TRUE
);
3770 if (h
&& (h
->type
== bfd_link_hash_defined
3771 || h
->type
== bfd_link_hash_defweak
))
3773 h
->u
.def
.section
->flags
|= SEC_KEEP
;
3777 /* Return TRUE to keep scanning, FALSE to end the traversal. */
3781 /* We need to check for table entry symbols and build the tables, and
3782 we need to do it before the linker does garbage collection. This function is
3783 called once per input object file. */
3786 (bfd
* abfd ATTRIBUTE_UNUSED
,
3787 struct bfd_link_info
* info ATTRIBUTE_UNUSED
)
3789 RX_Table_Info stuff
;
3793 bfd_hash_traverse (&(info
->hash
->table
), rx_table_find
, &stuff
);
3800 rx_table_map_2 (struct bfd_hash_entry
*vent
, void *vinfo
)
3802 RX_Table_Info
*info
= (RX_Table_Info
*)vinfo
;
3803 struct bfd_link_hash_entry
*ent
= (struct bfd_link_hash_entry
*)vent
;
3808 /* See if the symbol ENT has an address listed in the table, and
3809 isn't a debug/special symbol. If so, put it in the table. */
3811 if (ent
->type
!= bfd_link_hash_defined
3812 && ent
->type
!= bfd_link_hash_defweak
)
3815 name
= ent
->root
.string
;
3817 if (name
[0] == '$' || name
[0] == '.' || name
[0] < ' ')
3820 addr
= (ent
->u
.def
.value
3821 + ent
->u
.def
.section
->output_section
->vma
3822 + ent
->u
.def
.section
->output_offset
);
3824 for (idx
= 0; idx
< info
->table_size
; idx
++)
3825 if (addr
== info
->table_handlers
[idx
])
3826 info
->table_entries
[idx
] = ent
;
3828 if (addr
== info
->table_default_handler
)
3829 info
->table_default_entry
= ent
;
3835 rx_table_map (struct bfd_hash_entry
*vent
, void *vinfo
)
3837 RX_Table_Info
*info
= (RX_Table_Info
*)vinfo
;
3838 struct bfd_link_hash_entry
*ent
= (struct bfd_link_hash_entry
*)vent
;
3839 const char *name
; /* of the symbol we've found */
3841 const char *tname
; /* name of the table */
3842 bfd_vma start_addr
, end_addr
;
3844 struct bfd_link_hash_entry
* h
;
3847 /* We're looking for globally defined symbols of the form
3848 $tablestart$<NAME>. */
3849 if (ent
->type
!= bfd_link_hash_defined
3850 && ent
->type
!= bfd_link_hash_defweak
)
3853 name
= ent
->root
.string
;
3855 if (strncmp (name
, "$tablestart$", 12))
3859 start_addr
= (ent
->u
.def
.value
3860 + ent
->u
.def
.section
->output_section
->vma
3861 + ent
->u
.def
.section
->output_offset
);
3863 buf
= (char *) malloc (12 + 10 + strlen (tname
));
3865 sprintf (buf
, "$tableend$%s", tname
);
3866 end_addr
= get_symbol_value_maybe (buf
, info
->info
);
3868 sprintf (buf
, "$tableentry$default$%s", tname
);
3869 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, FALSE
, FALSE
, TRUE
);
3872 info
->table_default_handler
= (h
->u
.def
.value
3873 + h
->u
.def
.section
->output_section
->vma
3874 + h
->u
.def
.section
->output_offset
);
3877 /* Zero is a valid handler address! */
3878 info
->table_default_handler
= (bfd_vma
) (-1);
3879 info
->table_default_entry
= NULL
;
3881 info
->table_start
= start_addr
;
3882 info
->table_size
= (int) (end_addr
- start_addr
) / 4;
3883 info
->table_handlers
= (bfd_vma
*) malloc (info
->table_size
* sizeof (bfd_vma
));
3884 info
->table_entries
= (struct bfd_link_hash_entry
**) malloc (info
->table_size
* sizeof (struct bfd_link_hash_entry
));
3886 for (idx
= 0; idx
< (int) (end_addr
- start_addr
) / 4; idx
++)
3888 sprintf (buf
, "$tableentry$%d$%s", idx
, tname
);
3889 h
= bfd_link_hash_lookup (info
->info
->hash
, buf
, FALSE
, FALSE
, TRUE
);
3890 if (h
&& (h
->type
== bfd_link_hash_defined
3891 || h
->type
== bfd_link_hash_defweak
))
3893 info
->table_handlers
[idx
] = (h
->u
.def
.value
3894 + h
->u
.def
.section
->output_section
->vma
3895 + h
->u
.def
.section
->output_offset
);
3898 info
->table_handlers
[idx
] = info
->table_default_handler
;
3899 info
->table_entries
[idx
] = NULL
;
3904 bfd_hash_traverse (&(info
->info
->hash
->table
), rx_table_map_2
, info
);
3906 fprintf (info
->mapfile
, "\nRX Vector Table: %s has %d entries at 0x%08" BFD_VMA_FMT
"x\n\n",
3907 tname
, info
->table_size
, start_addr
);
3909 if (info
->table_default_entry
)
3910 fprintf (info
->mapfile
, " default handler is: %s at 0x%08" BFD_VMA_FMT
"x\n",
3911 info
->table_default_entry
->root
.string
,
3912 info
->table_default_handler
);
3913 else if (info
->table_default_handler
!= (bfd_vma
)(-1))
3914 fprintf (info
->mapfile
, " default handler is at 0x%08" BFD_VMA_FMT
"x\n",
3915 info
->table_default_handler
);
3917 fprintf (info
->mapfile
, " no default handler\n");
3920 for (idx
= 0; idx
< info
->table_size
; idx
++)
3922 if (info
->table_handlers
[idx
] == info
->table_default_handler
)
3925 fprintf (info
->mapfile
, " . . .\n");
3931 fprintf (info
->mapfile
, " 0x%08" BFD_VMA_FMT
"x [%3d] ", start_addr
+ 4 * idx
, idx
);
3933 if (info
->table_handlers
[idx
] == (bfd_vma
) (-1))
3934 fprintf (info
->mapfile
, "(no handler found)\n");
3936 else if (info
->table_handlers
[idx
] == info
->table_default_handler
)
3938 if (info
->table_default_entry
)
3939 fprintf (info
->mapfile
, "(default)\n");
3941 fprintf (info
->mapfile
, "(default)\n");
3944 else if (info
->table_entries
[idx
])
3946 fprintf (info
->mapfile
, "0x%08" BFD_VMA_FMT
"x %s\n", info
->table_handlers
[idx
], info
->table_entries
[idx
]->root
.string
);
3951 fprintf (info
->mapfile
, "0x%08" BFD_VMA_FMT
"x ???\n", info
->table_handlers
[idx
]);
3955 fprintf (info
->mapfile
, " . . .\n");
3961 rx_additional_link_map_text (bfd
*obfd
, struct bfd_link_info
*info
, FILE *mapfile
)
3963 /* We scan the symbol table looking for $tableentry$'s, and for
3964 each, try to deduce which handlers go with which entries. */
3966 RX_Table_Info stuff
;
3970 stuff
.mapfile
= mapfile
;
3971 bfd_hash_traverse (&(info
->hash
->table
), rx_table_map
, &stuff
);
3975 #define ELF_ARCH bfd_arch_rx
3976 #define ELF_MACHINE_CODE EM_RX
3977 #define ELF_MAXPAGESIZE 0x1000
3979 #define TARGET_BIG_SYM rx_elf32_be_vec
3980 #define TARGET_BIG_NAME "elf32-rx-be"
3982 #define TARGET_LITTLE_SYM rx_elf32_le_vec
3983 #define TARGET_LITTLE_NAME "elf32-rx-le"
3985 #define elf_info_to_howto_rel NULL
3986 #define elf_info_to_howto rx_info_to_howto_rela
3987 #define elf_backend_object_p rx_elf_object_p
3988 #define elf_backend_relocate_section rx_elf_relocate_section
3989 #define elf_symbol_leading_char ('_')
3990 #define elf_backend_can_gc_sections 1
3991 #define elf_backend_modify_program_headers elf32_rx_modify_program_headers
3993 #define bfd_elf32_bfd_reloc_type_lookup rx_reloc_type_lookup
3994 #define bfd_elf32_bfd_reloc_name_lookup rx_reloc_name_lookup
3995 #define bfd_elf32_bfd_set_private_flags rx_elf_set_private_flags
3996 #define bfd_elf32_bfd_merge_private_bfd_data rx_elf_merge_private_bfd_data
3997 #define bfd_elf32_bfd_print_private_bfd_data rx_elf_print_private_bfd_data
3998 #define bfd_elf32_get_section_contents rx_get_section_contents
3999 #define bfd_elf32_set_section_contents rx_set_section_contents
4000 #define bfd_elf32_bfd_final_link rx_final_link
4001 #define bfd_elf32_bfd_relax_section elf32_rx_relax_section_wrapper
4002 #define elf_backend_special_sections elf32_rx_special_sections
4003 #define elf_backend_check_directives rx_check_directives
4005 #include "elf32-target.h"
4007 /* We define a second big-endian target that doesn't have the custom
4008 section get/set hooks, for times when we want to preserve the
4009 pre-swapped .text sections (like objcopy). */
4011 #undef TARGET_BIG_SYM
4012 #define TARGET_BIG_SYM rx_elf32_be_ns_vec
4013 #undef TARGET_BIG_NAME
4014 #define TARGET_BIG_NAME "elf32-rx-be-ns"
4015 #undef TARGET_LITTLE_SYM
4017 #undef bfd_elf32_get_section_contents
4018 #undef bfd_elf32_set_section_contents
4021 #define elf32_bed elf32_rx_be_ns_bed
4023 #include "elf32-target.h"