Synchronize sourceware version of the libiberty sources with the master gcc versions.
[binutils-gdb.git] / bfd / elf32-m68hc1x.c
blob6ac21f496ba8f95b5dfd05f2e0b3859fddc4d7c1
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright (C) 1999-2024 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez (stcarrez@nerim.fr)
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf32-m68hc1x.h"
28 #include "elf/m68hc11.h"
29 #include "opcode/m68hc11.h"
30 #include "libiberty.h"
32 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
33 ((struct elf32_m68hc11_stub_hash_entry *) \
34 bfd_hash_lookup ((table), (string), (create), (copy)))
36 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
37 (const char *stub_name,
38 asection *section,
39 struct m68hc11_elf_link_hash_table *htab);
41 static struct bfd_hash_entry *stub_hash_newfunc
42 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
44 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
45 const char* name, bfd_vma value,
46 asection* sec);
48 static bool m68hc11_elf_export_one_stub
49 (struct bfd_hash_entry *gen_entry, void *in_arg);
51 static void scan_sections_for_abi (bfd*, asection*, void *);
53 struct m68hc11_scan_param
55 struct m68hc11_page_info* pinfo;
56 bool use_memory_banks;
60 /* Destroy a 68HC11/68HC12 ELF linker hash table. */
62 static void
63 m68hc11_elf_bfd_link_hash_table_free (bfd *obfd)
65 struct m68hc11_elf_link_hash_table *ret
66 = (struct m68hc11_elf_link_hash_table *) obfd->link.hash;
68 bfd_hash_table_free (ret->stub_hash_table);
69 free (ret->stub_hash_table);
70 _bfd_elf_link_hash_table_free (obfd);
73 /* Create a 68HC11/68HC12 ELF linker hash table. */
75 struct m68hc11_elf_link_hash_table*
76 m68hc11_elf_hash_table_create (bfd *abfd)
78 struct m68hc11_elf_link_hash_table *ret;
79 size_t amt = sizeof (struct m68hc11_elf_link_hash_table);
81 ret = (struct m68hc11_elf_link_hash_table *) bfd_zmalloc (amt);
82 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
83 return NULL;
85 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
86 _bfd_elf_link_hash_newfunc,
87 sizeof (struct elf_link_hash_entry),
88 M68HC11_ELF_DATA))
90 free (ret);
91 return NULL;
94 /* Init the stub hash table too. */
95 amt = sizeof (struct bfd_hash_table);
96 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
97 if (ret->stub_hash_table == NULL)
99 _bfd_elf_link_hash_table_free (abfd);
100 return NULL;
102 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
103 sizeof (struct elf32_m68hc11_stub_hash_entry)))
105 free (ret->stub_hash_table);
106 _bfd_elf_link_hash_table_free (abfd);
107 return NULL;
109 ret->root.root.hash_table_free = m68hc11_elf_bfd_link_hash_table_free;
111 return ret;
114 /* Assorted hash table functions. */
116 /* Initialize an entry in the stub hash table. */
118 static struct bfd_hash_entry *
119 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
120 const char *string)
122 /* Allocate the structure if it has not already been allocated by a
123 subclass. */
124 if (entry == NULL)
126 entry = bfd_hash_allocate (table,
127 sizeof (struct elf32_m68hc11_stub_hash_entry));
128 if (entry == NULL)
129 return entry;
132 /* Call the allocation method of the superclass. */
133 entry = bfd_hash_newfunc (entry, table, string);
134 if (entry != NULL)
136 struct elf32_m68hc11_stub_hash_entry *eh;
138 /* Initialize the local fields. */
139 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
140 eh->stub_sec = NULL;
141 eh->stub_offset = 0;
142 eh->target_value = 0;
143 eh->target_section = NULL;
146 return entry;
149 /* Add a new stub entry to the stub hash. Not all fields of the new
150 stub entry are initialised. */
152 static struct elf32_m68hc11_stub_hash_entry *
153 m68hc12_add_stub (const char *stub_name, asection *section,
154 struct m68hc11_elf_link_hash_table *htab)
156 struct elf32_m68hc11_stub_hash_entry *stub_entry;
158 /* Enter this entry into the linker stub hash table. */
159 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
160 true, false);
161 if (stub_entry == NULL)
163 /* xgettext:c-format */
164 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
165 section->owner, stub_name);
166 return NULL;
169 if (htab->stub_section == 0)
171 htab->stub_section = (*htab->add_stub_section) (".tramp",
172 htab->tramp_section);
175 stub_entry->stub_sec = htab->stub_section;
176 stub_entry->stub_offset = 0;
177 return stub_entry;
180 /* Hook called by the linker routine which adds symbols from an object
181 file. We use it for identify far symbols and force a loading of
182 the trampoline handler. */
184 bool
185 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
186 Elf_Internal_Sym *sym,
187 const char **namep ATTRIBUTE_UNUSED,
188 flagword *flagsp ATTRIBUTE_UNUSED,
189 asection **secp ATTRIBUTE_UNUSED,
190 bfd_vma *valp ATTRIBUTE_UNUSED)
192 if (sym->st_other & STO_M68HC12_FAR)
194 struct elf_link_hash_entry *h;
196 h = (struct elf_link_hash_entry *)
197 bfd_link_hash_lookup (info->hash, "__far_trampoline",
198 false, false, false);
199 if (h == NULL)
201 struct bfd_link_hash_entry* entry = NULL;
203 _bfd_generic_link_add_one_symbol (info, abfd,
204 "__far_trampoline",
205 BSF_GLOBAL,
206 bfd_und_section_ptr,
207 (bfd_vma) 0, (const char*) NULL,
208 false, false, &entry);
212 return true;
215 /* Merge non-visibility st_other attributes, STO_M68HC12_FAR and
216 STO_M68HC12_INTERRUPT. */
218 void
219 elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h,
220 unsigned int st_other,
221 bool definition,
222 bool dynamic ATTRIBUTE_UNUSED)
224 if (definition)
225 h->other = ((st_other & ~ELF_ST_VISIBILITY (-1))
226 | ELF_ST_VISIBILITY (h->other));
229 /* External entry points for sizing and building linker stubs. */
231 /* Set up various things so that we can make a list of input sections
232 for each output section included in the link. Returns -1 on error,
233 0 when no stubs will be needed, and 1 on success. */
236 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
238 bfd *input_bfd;
239 unsigned int bfd_count;
240 unsigned int top_id, top_index;
241 asection *section;
242 asection **input_list, **list;
243 size_t amt;
244 asection *text_section;
245 struct m68hc11_elf_link_hash_table *htab;
247 htab = m68hc11_elf_hash_table (info);
248 if (htab == NULL)
249 return -1;
251 if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
252 return 0;
254 /* Count the number of input BFDs and find the top input section id.
255 Also search for an existing ".tramp" section so that we know
256 where generated trampolines must go. Default to ".text" if we
257 can't find it. */
258 htab->tramp_section = 0;
259 text_section = 0;
260 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
261 input_bfd != NULL;
262 input_bfd = input_bfd->link.next)
264 bfd_count += 1;
265 for (section = input_bfd->sections;
266 section != NULL;
267 section = section->next)
269 const char *name = bfd_section_name (section);
271 if (!strcmp (name, ".tramp"))
272 htab->tramp_section = section;
274 if (!strcmp (name, ".text"))
275 text_section = section;
277 if (top_id < section->id)
278 top_id = section->id;
281 htab->bfd_count = bfd_count;
282 if (htab->tramp_section == 0)
283 htab->tramp_section = text_section;
285 /* We can't use output_bfd->section_count here to find the top output
286 section index as some sections may have been removed, and
287 strip_excluded_output_sections doesn't renumber the indices. */
288 for (section = output_bfd->sections, top_index = 0;
289 section != NULL;
290 section = section->next)
292 if (top_index < section->index)
293 top_index = section->index;
296 htab->top_index = top_index;
297 amt = sizeof (asection *) * (top_index + 1);
298 input_list = (asection **) bfd_malloc (amt);
299 htab->input_list = input_list;
300 if (input_list == NULL)
301 return -1;
303 /* For sections we aren't interested in, mark their entries with a
304 value we can check later. */
305 list = input_list + top_index;
307 *list = bfd_abs_section_ptr;
308 while (list-- != input_list);
310 for (section = output_bfd->sections;
311 section != NULL;
312 section = section->next)
314 if ((section->flags & SEC_CODE) != 0)
315 input_list[section->index] = NULL;
318 return 1;
321 /* Determine and set the size of the stub section for a final link.
323 The basic idea here is to examine all the relocations looking for
324 PC-relative calls to a target that is unreachable with a "bl"
325 instruction. */
327 bool
328 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
329 struct bfd_link_info *info,
330 asection * (*add_stub_section) (const char*, asection*))
332 bfd *input_bfd;
333 asection *section;
334 Elf_Internal_Sym *local_syms, **all_local_syms;
335 unsigned int bfd_indx, bfd_count;
336 size_t amt;
337 asection *stub_sec;
338 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
340 if (htab == NULL)
341 return false;
343 /* Stash our params away. */
344 htab->stub_bfd = stub_bfd;
345 htab->add_stub_section = add_stub_section;
347 /* Count the number of input BFDs and find the top input section id. */
348 for (input_bfd = info->input_bfds, bfd_count = 0;
349 input_bfd != NULL;
350 input_bfd = input_bfd->link.next)
351 bfd_count += 1;
353 /* We want to read in symbol extension records only once. To do this
354 we need to read in the local symbols in parallel and save them for
355 later use; so hold pointers to the local symbols in an array. */
356 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
357 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
358 if (all_local_syms == NULL)
359 return false;
361 /* Walk over all the input BFDs, swapping in local symbols. */
362 for (input_bfd = info->input_bfds, bfd_indx = 0;
363 input_bfd != NULL;
364 input_bfd = input_bfd->link.next, bfd_indx++)
366 Elf_Internal_Shdr *symtab_hdr;
368 /* We'll need the symbol table in a second. */
369 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
370 if (symtab_hdr->sh_info == 0)
371 continue;
373 /* We need an array of the local symbols attached to the input bfd. */
374 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
375 if (local_syms == NULL)
377 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
378 symtab_hdr->sh_info, 0,
379 NULL, NULL, NULL);
380 /* Cache them for elf_link_input_bfd. */
381 symtab_hdr->contents = (unsigned char *) local_syms;
383 if (local_syms == NULL)
385 free (all_local_syms);
386 return false;
389 all_local_syms[bfd_indx] = local_syms;
392 for (input_bfd = info->input_bfds, bfd_indx = 0;
393 input_bfd != NULL;
394 input_bfd = input_bfd->link.next, bfd_indx++)
396 Elf_Internal_Shdr *symtab_hdr;
397 struct elf_link_hash_entry ** sym_hashes;
399 sym_hashes = elf_sym_hashes (input_bfd);
401 /* We'll need the symbol table in a second. */
402 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
403 if (symtab_hdr->sh_info == 0)
404 continue;
406 local_syms = all_local_syms[bfd_indx];
408 /* Walk over each section attached to the input bfd. */
409 for (section = input_bfd->sections;
410 section != NULL;
411 section = section->next)
413 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
415 /* If there aren't any relocs, then there's nothing more
416 to do. */
417 if ((section->flags & SEC_RELOC) == 0
418 || section->reloc_count == 0)
419 continue;
421 /* If this section is a link-once section that will be
422 discarded, then don't create any stubs. */
423 if (section->output_section == NULL
424 || section->output_section->owner != output_bfd)
425 continue;
427 /* Get the relocs. */
428 internal_relocs
429 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
430 (Elf_Internal_Rela *) NULL,
431 info->keep_memory);
432 if (internal_relocs == NULL)
433 goto error_ret_free_local;
435 /* Now examine each relocation. */
436 irela = internal_relocs;
437 irelaend = irela + section->reloc_count;
438 for (; irela < irelaend; irela++)
440 unsigned int r_type, r_indx;
441 struct elf32_m68hc11_stub_hash_entry *stub_entry;
442 asection *sym_sec;
443 bfd_vma sym_value;
444 struct elf_link_hash_entry *hash;
445 const char *stub_name;
446 Elf_Internal_Sym *sym;
448 r_type = ELF32_R_TYPE (irela->r_info);
450 /* Only look at 16-bit relocs. */
451 if (r_type != (unsigned int) R_M68HC11_16)
452 continue;
454 /* Now determine the call target, its name, value,
455 section. */
456 r_indx = ELF32_R_SYM (irela->r_info);
457 if (r_indx < symtab_hdr->sh_info)
459 /* It's a local symbol. */
460 Elf_Internal_Shdr *hdr;
461 bool is_far;
463 sym = local_syms + r_indx;
464 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
465 if (!is_far)
466 continue;
468 if (sym->st_shndx >= elf_numsections (input_bfd))
469 sym_sec = NULL;
470 else
472 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
473 sym_sec = hdr->bfd_section;
475 stub_name = (bfd_elf_string_from_elf_section
476 (input_bfd, symtab_hdr->sh_link,
477 sym->st_name));
478 sym_value = sym->st_value;
479 hash = NULL;
481 else
483 /* It's an external symbol. */
484 int e_indx;
486 e_indx = r_indx - symtab_hdr->sh_info;
487 hash = (struct elf_link_hash_entry *)
488 (sym_hashes[e_indx]);
490 while (hash->root.type == bfd_link_hash_indirect
491 || hash->root.type == bfd_link_hash_warning)
492 hash = ((struct elf_link_hash_entry *)
493 hash->root.u.i.link);
495 if (hash->root.type == bfd_link_hash_defined
496 || hash->root.type == bfd_link_hash_defweak
497 || hash->root.type == bfd_link_hash_new)
499 if (!(hash->other & STO_M68HC12_FAR))
500 continue;
502 else if (hash->root.type == bfd_link_hash_undefweak)
504 continue;
506 else if (hash->root.type == bfd_link_hash_undefined)
508 continue;
510 else
512 bfd_set_error (bfd_error_bad_value);
513 goto error_ret_free_internal;
515 sym_sec = hash->root.u.def.section;
516 sym_value = hash->root.u.def.value;
517 stub_name = hash->root.root.string;
520 if (!stub_name)
521 goto error_ret_free_internal;
523 stub_entry = m68hc12_stub_hash_lookup
524 (htab->stub_hash_table,
525 stub_name,
526 false, false);
527 if (stub_entry == NULL)
529 if (add_stub_section == 0)
530 continue;
532 stub_entry = m68hc12_add_stub (stub_name, section, htab);
533 if (stub_entry == NULL)
535 error_ret_free_internal:
536 if (elf_section_data (section)->relocs == NULL)
537 free (internal_relocs);
538 goto error_ret_free_local;
542 stub_entry->target_value = sym_value;
543 stub_entry->target_section = sym_sec;
546 /* We're done with the internal relocs, free them. */
547 if (elf_section_data (section)->relocs == NULL)
548 free (internal_relocs);
552 if (add_stub_section)
554 /* OK, we've added some stubs. Find out the new size of the
555 stub sections. */
556 for (stub_sec = htab->stub_bfd->sections;
557 stub_sec != NULL;
558 stub_sec = stub_sec->next)
560 stub_sec->size = 0;
563 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
565 free (all_local_syms);
566 return true;
568 error_ret_free_local:
569 free (all_local_syms);
570 return false;
573 /* Export the trampoline addresses in the symbol table. */
574 static bool
575 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
577 struct bfd_link_info *info;
578 struct m68hc11_elf_link_hash_table *htab;
579 struct elf32_m68hc11_stub_hash_entry *stub_entry;
580 char* name;
581 bool result;
583 info = (struct bfd_link_info *) in_arg;
584 htab = m68hc11_elf_hash_table (info);
585 if (htab == NULL)
586 return false;
588 /* Massage our args to the form they really have. */
589 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
591 /* Generate the trampoline according to HC11 or HC12. */
592 result = (* htab->build_one_stub) (gen_entry, in_arg);
594 /* Make a printable name that does not conflict with the real function. */
595 name = concat ("tramp.", stub_entry->root.string, NULL);
597 /* Export the symbol for debugging/disassembling. */
598 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
599 stub_entry->stub_offset,
600 stub_entry->stub_sec);
601 free (name);
602 return result;
605 /* Export a symbol or set its value and section. */
606 static void
607 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
608 const char *name, bfd_vma value, asection *sec)
610 struct elf_link_hash_entry *h;
612 h = (struct elf_link_hash_entry *)
613 bfd_link_hash_lookup (info->hash, name, false, false, false);
614 if (h == NULL)
616 _bfd_generic_link_add_one_symbol (info, abfd,
617 name,
618 BSF_GLOBAL,
619 sec,
620 value,
621 (const char*) NULL,
622 true, false, NULL);
624 else
626 h->root.type = bfd_link_hash_defined;
627 h->root.u.def.value = value;
628 h->root.u.def.section = sec;
633 /* Build all the stubs associated with the current output file. The
634 stubs are kept in a hash table attached to the main linker hash
635 table. This function is called via m68hc12elf_finish in the
636 linker. */
638 bool
639 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
641 asection *stub_sec;
642 struct bfd_hash_table *table;
643 struct m68hc11_elf_link_hash_table *htab;
644 struct m68hc11_scan_param param;
646 m68hc11_elf_get_bank_parameters (info);
647 htab = m68hc11_elf_hash_table (info);
648 if (htab == NULL)
649 return false;
651 for (stub_sec = htab->stub_bfd->sections;
652 stub_sec != NULL;
653 stub_sec = stub_sec->next)
655 bfd_size_type size;
657 /* Allocate memory to hold the linker stubs. */
658 size = stub_sec->size;
659 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
660 if (stub_sec->contents == NULL && size != 0)
661 return false;
662 stub_sec->size = 0;
665 /* Build the stubs as directed by the stub hash table. */
666 table = htab->stub_hash_table;
667 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
669 /* Scan the output sections to see if we use the memory banks.
670 If so, export the symbols that define how the memory banks
671 are mapped. This is used by gdb and the simulator to obtain
672 the information. It can be used by programs to burn the eprom
673 at the good addresses. */
674 param.use_memory_banks = false;
675 param.pinfo = &htab->pinfo;
676 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
677 if (param.use_memory_banks)
679 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
680 htab->pinfo.bank_physical,
681 bfd_abs_section_ptr);
682 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
683 htab->pinfo.bank_virtual,
684 bfd_abs_section_ptr);
685 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
686 htab->pinfo.bank_size,
687 bfd_abs_section_ptr);
690 return true;
693 void
694 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
696 unsigned i;
697 struct m68hc11_page_info *pinfo;
698 struct bfd_link_hash_entry *h;
699 struct m68hc11_elf_link_hash_table *htab;
701 htab = m68hc11_elf_hash_table (info);
702 if (htab == NULL)
703 return;
705 pinfo = & htab->pinfo;
706 if (pinfo->bank_param_initialized)
707 return;
709 pinfo->bank_virtual = M68HC12_BANK_VIRT;
710 pinfo->bank_mask = M68HC12_BANK_MASK;
711 pinfo->bank_physical = M68HC12_BANK_BASE;
712 pinfo->bank_shift = M68HC12_BANK_SHIFT;
713 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
715 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
716 false, false, true);
717 if (h != (struct bfd_link_hash_entry*) NULL
718 && h->type == bfd_link_hash_defined)
719 pinfo->bank_physical = (h->u.def.value
720 + h->u.def.section->output_section->vma
721 + h->u.def.section->output_offset);
723 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
724 false, false, true);
725 if (h != (struct bfd_link_hash_entry*) NULL
726 && h->type == bfd_link_hash_defined)
727 pinfo->bank_virtual = (h->u.def.value
728 + h->u.def.section->output_section->vma
729 + h->u.def.section->output_offset);
731 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
732 false, false, true);
733 if (h != (struct bfd_link_hash_entry*) NULL
734 && h->type == bfd_link_hash_defined)
735 pinfo->bank_size = (h->u.def.value
736 + h->u.def.section->output_section->vma
737 + h->u.def.section->output_offset);
739 pinfo->bank_shift = 0;
740 for (i = pinfo->bank_size; i != 0; i >>= 1)
741 pinfo->bank_shift++;
742 pinfo->bank_shift--;
743 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
744 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
745 pinfo->bank_param_initialized = 1;
747 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", false,
748 false, true);
749 if (h != (struct bfd_link_hash_entry*) NULL
750 && h->type == bfd_link_hash_defined)
751 pinfo->trampoline_addr = (h->u.def.value
752 + h->u.def.section->output_section->vma
753 + h->u.def.section->output_offset);
756 /* Return 1 if the address is in banked memory.
757 This can be applied to a virtual address and to a physical address. */
759 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
761 if (addr >= pinfo->bank_virtual)
762 return 1;
764 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
765 return 1;
767 return 0;
770 /* Return the physical address seen by the processor, taking
771 into account banked memory. */
772 bfd_vma
773 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
775 if (addr < pinfo->bank_virtual)
776 return addr;
778 /* Map the address to the memory bank. */
779 addr -= pinfo->bank_virtual;
780 addr &= pinfo->bank_mask;
781 addr += pinfo->bank_physical;
782 return addr;
785 /* Return the page number corresponding to an address in banked memory. */
786 bfd_vma
787 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
789 if (addr < pinfo->bank_virtual)
790 return 0;
792 /* Map the address to the memory bank. */
793 addr -= pinfo->bank_virtual;
794 addr >>= pinfo->bank_shift;
795 addr &= 0x0ff;
796 return addr;
799 /* This function is used for relocs which are only used for relaxing,
800 which the linker should otherwise ignore. */
802 bfd_reloc_status_type
803 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
804 arelent *reloc_entry,
805 asymbol *symbol ATTRIBUTE_UNUSED,
806 void *data ATTRIBUTE_UNUSED,
807 asection *input_section,
808 bfd *output_bfd,
809 char **error_message ATTRIBUTE_UNUSED)
811 if (output_bfd != NULL)
812 reloc_entry->address += input_section->output_offset;
813 return bfd_reloc_ok;
816 bfd_reloc_status_type
817 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
818 arelent *reloc_entry,
819 asymbol *symbol,
820 void *data ATTRIBUTE_UNUSED,
821 asection *input_section,
822 bfd *output_bfd,
823 char **error_message ATTRIBUTE_UNUSED)
825 if (output_bfd != (bfd *) NULL
826 && (symbol->flags & BSF_SECTION_SYM) == 0
827 && (! reloc_entry->howto->partial_inplace
828 || reloc_entry->addend == 0))
830 reloc_entry->address += input_section->output_offset;
831 return bfd_reloc_ok;
834 if (output_bfd != NULL)
835 return bfd_reloc_continue;
837 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
838 return bfd_reloc_outofrange;
840 abort();
843 /* Look through the relocs for a section during the first phase.
844 Since we don't do .gots or .plts, we just need to consider the
845 virtual table relocs for gc. */
847 bool
848 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
849 asection *sec, const Elf_Internal_Rela *relocs)
851 Elf_Internal_Shdr * symtab_hdr;
852 struct elf_link_hash_entry ** sym_hashes;
853 const Elf_Internal_Rela * rel;
854 const Elf_Internal_Rela * rel_end;
856 if (bfd_link_relocatable (info))
857 return true;
859 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
860 sym_hashes = elf_sym_hashes (abfd);
861 rel_end = relocs + sec->reloc_count;
863 for (rel = relocs; rel < rel_end; rel++)
865 struct elf_link_hash_entry * h;
866 unsigned long r_symndx;
868 r_symndx = ELF32_R_SYM (rel->r_info);
870 if (r_symndx < symtab_hdr->sh_info)
871 h = NULL;
872 else
874 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
875 while (h->root.type == bfd_link_hash_indirect
876 || h->root.type == bfd_link_hash_warning)
877 h = (struct elf_link_hash_entry *) h->root.u.i.link;
880 switch (ELF32_R_TYPE (rel->r_info))
882 /* This relocation describes the C++ object vtable hierarchy.
883 Reconstruct it for later use during GC. */
884 case R_M68HC11_GNU_VTINHERIT:
885 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
886 return false;
887 break;
889 /* This relocation describes which C++ vtable entries are actually
890 used. Record for later use during GC. */
891 case R_M68HC11_GNU_VTENTRY:
892 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
893 return false;
894 break;
898 return true;
901 static bool ATTRIBUTE_PRINTF (6, 7)
902 reloc_warning (struct bfd_link_info *info, const char *name, bfd *input_bfd,
903 asection *input_section, const Elf_Internal_Rela *rel,
904 const char *fmt, ...)
906 va_list ap;
907 char *buf;
908 int ret;
910 va_start (ap, fmt);
911 ret = vasprintf (&buf, fmt, ap);
912 va_end (ap);
913 if (ret < 0)
915 bfd_set_error (bfd_error_no_memory);
916 return false;
918 info->callbacks->warning (info, buf, name, input_bfd, input_section,
919 rel->r_offset);
920 free (buf);
921 return true;
924 /* Relocate a 68hc11/68hc12 ELF section. */
926 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
927 struct bfd_link_info *info,
928 bfd *input_bfd, asection *input_section,
929 bfd_byte *contents, Elf_Internal_Rela *relocs,
930 Elf_Internal_Sym *local_syms,
931 asection **local_sections)
933 Elf_Internal_Shdr *symtab_hdr;
934 struct elf_link_hash_entry **sym_hashes;
935 Elf_Internal_Rela *rel, *relend;
936 const char *name = NULL;
937 struct m68hc11_page_info *pinfo;
938 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
939 struct m68hc11_elf_link_hash_table *htab;
940 unsigned long e_flags;
942 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
943 sym_hashes = elf_sym_hashes (input_bfd);
944 e_flags = elf_elfheader (input_bfd)->e_flags;
946 htab = m68hc11_elf_hash_table (info);
947 if (htab == NULL)
948 return false;
950 /* Get memory bank parameters. */
951 m68hc11_elf_get_bank_parameters (info);
953 pinfo = & htab->pinfo;
954 rel = relocs;
955 relend = relocs + input_section->reloc_count;
957 for (; rel < relend; rel++)
959 int r_type;
960 arelent arel;
961 reloc_howto_type *howto;
962 unsigned long r_symndx;
963 Elf_Internal_Sym *sym;
964 asection *sec;
965 bfd_vma relocation = 0;
966 bfd_reloc_status_type r = bfd_reloc_undefined;
967 bfd_vma phys_page;
968 bfd_vma phys_addr;
969 bfd_vma insn_addr;
970 bfd_vma insn_page;
971 bool is_far = false;
972 bool is_xgate_symbol = false;
973 bool is_section_symbol = false;
974 struct elf_link_hash_entry *h;
975 bfd_vma val;
976 const char *msg;
978 r_symndx = ELF32_R_SYM (rel->r_info);
979 r_type = ELF32_R_TYPE (rel->r_info);
981 if (r_type == R_M68HC11_GNU_VTENTRY
982 || r_type == R_M68HC11_GNU_VTINHERIT)
983 continue;
985 if (! (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel))
986 continue;
987 howto = arel.howto;
989 h = NULL;
990 sym = NULL;
991 sec = NULL;
992 if (r_symndx < symtab_hdr->sh_info)
994 sym = local_syms + r_symndx;
995 sec = local_sections[r_symndx];
996 relocation = (sec->output_section->vma
997 + sec->output_offset
998 + sym->st_value);
999 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
1000 is_xgate_symbol = (sym && (sym->st_target_internal));
1001 is_section_symbol = ELF_ST_TYPE (sym->st_info) & STT_SECTION;
1003 else
1005 bool unresolved_reloc, warned, ignored;
1007 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1008 r_symndx, symtab_hdr, sym_hashes,
1009 h, sec, relocation, unresolved_reloc,
1010 warned, ignored);
1012 is_far = (h && (h->other & STO_M68HC12_FAR));
1013 is_xgate_symbol = (h && (h->target_internal));
1016 if (sec != NULL && discarded_section (sec))
1017 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1018 rel, 1, relend, howto, 0, contents);
1020 if (bfd_link_relocatable (info))
1022 /* This is a relocatable link. We don't have to change
1023 anything, unless the reloc is against a section symbol,
1024 in which case we have to adjust according to where the
1025 section symbol winds up in the output section. */
1026 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1027 rel->r_addend += sec->output_offset;
1028 continue;
1031 if (h != NULL)
1032 name = h->root.root.string;
1033 else
1035 name = (bfd_elf_string_from_elf_section
1036 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1037 if (name == NULL || *name == '\0')
1038 name = bfd_section_name (sec);
1041 if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
1043 struct elf32_m68hc11_stub_hash_entry* stub;
1045 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
1046 name, false, false);
1047 if (stub)
1049 relocation = stub->stub_offset
1050 + stub->stub_sec->output_section->vma
1051 + stub->stub_sec->output_offset;
1052 is_far = false;
1056 /* Do the memory bank mapping. */
1057 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1058 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1059 switch (r_type)
1061 case R_M68HC12_LO8XG:
1062 /* This relocation is specific to XGATE IMM16 calls and will precede
1063 a HI8. tc-m68hc11 only generates them in pairs.
1064 Leave the relocation to the HI8XG step. */
1065 r = bfd_reloc_ok;
1066 r_type = R_M68HC11_NONE;
1067 break;
1069 case R_M68HC12_HI8XG:
1070 /* This relocation is specific to XGATE IMM16 calls and must follow
1071 a LO8XG. Does not actually check that it was a LO8XG.
1072 Adjusts high and low bytes. */
1073 relocation = phys_addr;
1074 if ((e_flags & E_M68HC11_XGATE_RAMOFFSET)
1075 && (relocation >= 0x2000))
1076 relocation += 0xc000; /* HARDCODED RAM offset for XGATE. */
1078 /* Fetch 16 bit value including low byte in previous insn. */
1079 val = (bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset) << 8)
1080 | bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset - 2);
1082 /* Add on value to preserve carry, then write zero to high byte. */
1083 relocation += val;
1085 /* Write out top byte. */
1086 bfd_put_8 (input_bfd, (relocation >> 8) & 0xff,
1087 (bfd_byte*) contents + rel->r_offset);
1089 /* Write out low byte to previous instruction. */
1090 bfd_put_8 (input_bfd, relocation & 0xff,
1091 (bfd_byte*) contents + rel->r_offset - 2);
1093 /* Mark as relocation completed. */
1094 r = bfd_reloc_ok;
1095 r_type = R_M68HC11_NONE;
1096 break;
1098 /* The HI8 and LO8 relocs are generated by %hi(expr) %lo(expr)
1099 assembler directives. %hi does not support carry. */
1100 case R_M68HC11_HI8:
1101 case R_M68HC11_LO8:
1102 relocation = phys_addr;
1103 break;
1105 case R_M68HC11_24:
1106 /* Reloc used by 68HC12 call instruction. */
1107 bfd_put_16 (input_bfd, phys_addr,
1108 (bfd_byte*) contents + rel->r_offset);
1109 bfd_put_8 (input_bfd, phys_page,
1110 (bfd_byte*) contents + rel->r_offset + 2);
1111 r = bfd_reloc_ok;
1112 r_type = R_M68HC11_NONE;
1113 break;
1115 case R_M68HC11_NONE:
1116 r = bfd_reloc_ok;
1117 break;
1119 case R_M68HC11_LO16:
1120 /* Reloc generated by %addr(expr) gas to obtain the
1121 address as mapped in the memory bank window. */
1122 relocation = phys_addr;
1123 break;
1125 case R_M68HC11_PAGE:
1126 /* Reloc generated by %page(expr) gas to obtain the
1127 page number associated with the address. */
1128 relocation = phys_page;
1129 break;
1131 case R_M68HC11_16:
1132 if (is_far)
1134 if (!reloc_warning (info, name, input_bfd, input_section, rel,
1135 _("reference to the far symbol `%s' using a "
1136 "wrong relocation may result in incorrect "
1137 "execution"), name))
1138 return false;
1141 /* Get virtual address of instruction having the relocation. */
1142 insn_addr = input_section->output_section->vma
1143 + input_section->output_offset
1144 + rel->r_offset;
1146 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1148 /* If we are linking an S12 instruction against an XGATE symbol, we
1149 need to change the offset of the symbol value so that it's correct
1150 from the S12's perspective. */
1151 if (is_xgate_symbol)
1153 /* The ram in the global space is mapped to 0x2000 in the 16-bit
1154 address space for S12 and 0xE000 in the 16-bit address space
1155 for XGATE. */
1156 if (relocation >= 0xE000)
1158 /* We offset the address by the difference
1159 between these two mappings. */
1160 relocation -= 0xC000;
1161 break;
1163 else
1165 if (!reloc_warning (info, name, input_bfd, input_section, rel,
1166 _("XGATE address (%lx) is not within "
1167 "shared RAM(0xE000-0xFFFF), therefore "
1168 "you must manually offset the address, "
1169 "and possibly manage the page, in your "
1170 "code."), (long) phys_addr))
1171 return false;
1172 break;
1176 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1177 && m68hc11_addr_is_banked (pinfo, insn_addr)
1178 && phys_page != insn_page
1179 && !(e_flags & E_M68HC11_NO_BANK_WARNING))
1181 if (!reloc_warning (info, name, input_bfd, input_section, rel,
1182 _("banked address [%lx:%04lx] (%lx) is not "
1183 "in the same bank as current banked "
1184 "address [%lx:%04lx] (%lx)"),
1185 (long) phys_page, (long) phys_addr,
1186 (long) (relocation + rel->r_addend),
1187 (long) insn_page,
1188 (long) m68hc11_phys_addr (pinfo, insn_addr),
1189 (long) insn_addr))
1190 return false;
1191 break;
1194 if (phys_page != 0 && insn_page == 0)
1196 if (!reloc_warning (info, name, input_bfd, input_section, rel,
1197 _("reference to a banked address [%lx:%04lx] "
1198 "in the normal address space at %04lx"),
1199 (long) phys_page, (long) phys_addr,
1200 (long) insn_addr))
1201 return false;
1202 relocation = phys_addr;
1203 break;
1206 /* If this is a banked address use the phys_addr so that
1207 we stay in the banked window. */
1208 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1209 relocation = phys_addr;
1210 break;
1213 /* If we are linking an XGATE instruction against an S12 symbol, we
1214 need to change the offset of the symbol value so that it's correct
1215 from the XGATE's perspective. */
1216 if (!strcmp (howto->name, "R_XGATE_IMM8_LO")
1217 || !strcmp (howto->name, "R_XGATE_IMM8_HI"))
1219 /* We can only offset S12 addresses that lie within the non-paged
1220 area of RAM. */
1221 if (!is_xgate_symbol && !is_section_symbol)
1223 /* The ram in the global space is mapped to 0x2000 and stops at
1224 0x4000 in the 16-bit address space for S12 and 0xE000 in the
1225 16-bit address space for XGATE. */
1226 if (relocation >= 0x2000 && relocation < 0x4000)
1227 /* We offset the address by the difference
1228 between these two mappings. */
1229 relocation += 0xC000;
1230 else
1232 if (!reloc_warning (info, name, input_bfd, input_section, rel,
1233 _("S12 address (%lx) is not within "
1234 "shared RAM(0x2000-0x4000), therefore "
1235 "you must manually offset the address "
1236 "in your code"), (long) phys_addr))
1237 return false;
1238 break;
1243 if (r_type != R_M68HC11_NONE)
1245 if ((r_type == R_M68HC12_PCREL_9) || (r_type == R_M68HC12_PCREL_10))
1246 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1247 contents, rel->r_offset,
1248 relocation - 2, rel->r_addend);
1249 else
1250 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1251 contents, rel->r_offset,
1252 relocation, rel->r_addend);
1255 if (r != bfd_reloc_ok)
1257 switch (r)
1259 case bfd_reloc_overflow:
1260 (*info->callbacks->reloc_overflow)
1261 (info, NULL, name, howto->name, (bfd_vma) 0,
1262 input_bfd, input_section, rel->r_offset);
1263 break;
1265 case bfd_reloc_undefined:
1266 (*info->callbacks->undefined_symbol)
1267 (info, name, input_bfd, input_section, rel->r_offset, true);
1268 break;
1270 case bfd_reloc_outofrange:
1271 msg = _ ("internal error: out of range error");
1272 goto common_error;
1274 case bfd_reloc_notsupported:
1275 msg = _ ("internal error: unsupported relocation error");
1276 goto common_error;
1278 case bfd_reloc_dangerous:
1279 msg = _ ("internal error: dangerous error");
1280 goto common_error;
1282 default:
1283 msg = _ ("internal error: unknown error");
1284 /* fall through */
1286 common_error:
1287 (*info->callbacks->warning) (info, msg, name, input_bfd,
1288 input_section, rel->r_offset);
1289 break;
1294 return true;
1299 /* Set and control ELF flags in ELF header. */
1301 bool
1302 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1304 BFD_ASSERT (!elf_flags_init (abfd)
1305 || elf_elfheader (abfd)->e_flags == flags);
1307 elf_elfheader (abfd)->e_flags = flags;
1308 elf_flags_init (abfd) = true;
1309 return true;
1312 /* Merge backend specific data from an object file to the output
1313 object file when linking. */
1315 bool
1316 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1318 bfd *obfd = info->output_bfd;
1319 flagword old_flags;
1320 flagword new_flags;
1321 bool ok = true;
1323 /* Check if we have the same endianness */
1324 if (!_bfd_generic_verify_endian_match (ibfd, info))
1325 return false;
1327 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1328 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1329 return true;
1331 new_flags = elf_elfheader (ibfd)->e_flags;
1332 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1333 old_flags = elf_elfheader (obfd)->e_flags;
1335 if (! elf_flags_init (obfd))
1337 elf_flags_init (obfd) = true;
1338 elf_elfheader (obfd)->e_flags = new_flags;
1339 elf_elfheader (obfd)->e_ident[EI_CLASS]
1340 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1342 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1343 && bfd_get_arch_info (obfd)->the_default)
1345 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1346 bfd_get_mach (ibfd)))
1347 return false;
1350 return true;
1353 /* Check ABI compatibility. */
1354 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1356 _bfd_error_handler
1357 (_("%pB: linking files compiled for 16-bit integers (-mshort) "
1358 "and others for 32-bit integers"), ibfd);
1359 ok = false;
1361 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1363 _bfd_error_handler
1364 (_("%pB: linking files compiled for 32-bit double (-fshort-double) "
1365 "and others for 64-bit double"), ibfd);
1366 ok = false;
1369 /* Processor compatibility. */
1370 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1372 _bfd_error_handler
1373 (_("%pB: linking files compiled for HCS12 with "
1374 "others compiled for HC12"), ibfd);
1375 ok = false;
1377 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1378 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1380 elf_elfheader (obfd)->e_flags = new_flags;
1382 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1383 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1385 /* Warn about any other mismatches */
1386 if (new_flags != old_flags)
1388 _bfd_error_handler
1389 /* xgettext:c-format */
1390 (_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"),
1391 ibfd, new_flags, old_flags);
1392 ok = false;
1395 if (! ok)
1397 bfd_set_error (bfd_error_bad_value);
1398 return false;
1401 return true;
1404 bool
1405 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1407 FILE *file = (FILE *) ptr;
1409 BFD_ASSERT (abfd != NULL && ptr != NULL);
1411 /* Print normal ELF private data. */
1412 _bfd_elf_print_private_bfd_data (abfd, ptr);
1414 /* xgettext:c-format */
1415 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1417 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1418 fprintf (file, _("[abi=32-bit int, "));
1419 else
1420 fprintf (file, _("[abi=16-bit int, "));
1422 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1423 fprintf (file, _("64-bit double, "));
1424 else
1425 fprintf (file, _("32-bit double, "));
1427 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1428 fprintf (file, _("cpu=HC11]"));
1429 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1430 fprintf (file, _("cpu=HCS12]"));
1431 else
1432 fprintf (file, _("cpu=HC12]"));
1434 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1435 fprintf (file, _(" [memory=bank-model]"));
1436 else
1437 fprintf (file, _(" [memory=flat]"));
1439 if (elf_elfheader (abfd)->e_flags & E_M68HC11_XGATE_RAMOFFSET)
1440 fprintf (file, _(" [XGATE RAM offsetting]"));
1442 fputc ('\n', file);
1444 return true;
1447 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1448 asection *asect, void *arg)
1450 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1452 if (asect->vma >= p->pinfo->bank_virtual)
1453 p->use_memory_banks = true;
1456 /* Tweak the OSABI field of the elf header. */
1458 bool
1459 elf32_m68hc11_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
1461 struct m68hc11_scan_param param;
1462 struct m68hc11_elf_link_hash_table *htab;
1464 if (!_bfd_elf_init_file_header (abfd, link_info))
1465 return false;
1467 if (link_info == NULL)
1468 return true;
1470 htab = m68hc11_elf_hash_table (link_info);
1471 if (htab == NULL)
1472 return true;
1474 m68hc11_elf_get_bank_parameters (link_info);
1476 param.use_memory_banks = false;
1477 param.pinfo = & htab->pinfo;
1479 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1481 if (param.use_memory_banks)
1483 Elf_Internal_Ehdr * i_ehdrp;
1485 i_ehdrp = elf_elfheader (abfd);
1486 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1488 return true;