readelf: Support RELR in -S and -d and output
[binutils-gdb.git] / bfd / coff-sh.c
blob10d203f52800ada77b05b89464d88e0232b1f7b7
1 /* BFD back-end for Renesas Super-H COFF binaries.
2 Copyright (C) 1993-2021 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4 Written by Steve Chamberlain, <sac@cygnus.com>.
5 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "coff/sh.h"
30 #include "coff/internal.h"
32 #undef bfd_pe_print_pdata
34 #ifdef COFF_WITH_PE
35 #include "coff/pe.h"
37 #ifndef COFF_IMAGE_WITH_PE
38 static bool sh_align_load_span
39 (bfd *, asection *, bfd_byte *,
40 bool (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
41 void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bool *);
43 #define _bfd_sh_align_load_span sh_align_load_span
44 #endif
46 #define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata
48 #else
50 #define bfd_pe_print_pdata NULL
52 #endif /* COFF_WITH_PE. */
54 #include "libcoff.h"
56 /* Internal functions. */
58 #ifdef COFF_WITH_PE
59 /* Can't build import tables with 2**4 alignment. */
60 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
61 #else
62 /* Default section alignment to 2**4. */
63 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
64 #endif
66 #ifdef COFF_IMAGE_WITH_PE
67 /* Align PE executables. */
68 #define COFF_PAGE_SIZE 0x1000
69 #endif
71 /* Generate long file names. */
72 #define COFF_LONG_FILENAMES
74 #ifdef COFF_WITH_PE
75 /* Return TRUE if this relocation should
76 appear in the output .reloc section. */
78 static bool
79 in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
80 reloc_howto_type * howto)
82 return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
84 #endif
86 static bfd_reloc_status_type
87 sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
88 static bool
89 sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
90 bfd_byte *, struct internal_reloc *,
91 struct internal_syment *, asection **);
92 static bool
93 sh_align_loads (bfd *, asection *, struct internal_reloc *,
94 bfd_byte *, bool *);
96 /* The supported relocations. There are a lot of relocations defined
97 in coff/internal.h which we do not expect to ever see. */
98 static reloc_howto_type sh_coff_howtos[] =
100 EMPTY_HOWTO (0),
101 EMPTY_HOWTO (1),
102 #ifdef COFF_WITH_PE
103 /* Windows CE */
104 HOWTO (R_SH_IMM32CE, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 32, /* bitsize */
108 false, /* pc_relative */
109 0, /* bitpos */
110 complain_overflow_bitfield, /* complain_on_overflow */
111 sh_reloc, /* special_function */
112 "r_imm32ce", /* name */
113 true, /* partial_inplace */
114 0xffffffff, /* src_mask */
115 0xffffffff, /* dst_mask */
116 false), /* pcrel_offset */
117 #else
118 EMPTY_HOWTO (2),
119 #endif
120 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
121 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
122 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
123 EMPTY_HOWTO (6), /* R_SH_IMM24 */
124 EMPTY_HOWTO (7), /* R_SH_LOW16 */
125 EMPTY_HOWTO (8),
126 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
128 HOWTO (R_SH_PCDISP8BY2, /* type */
129 1, /* rightshift */
130 1, /* size (0 = byte, 1 = short, 2 = long) */
131 8, /* bitsize */
132 true, /* pc_relative */
133 0, /* bitpos */
134 complain_overflow_signed, /* complain_on_overflow */
135 sh_reloc, /* special_function */
136 "r_pcdisp8by2", /* name */
137 true, /* partial_inplace */
138 0xff, /* src_mask */
139 0xff, /* dst_mask */
140 true), /* pcrel_offset */
142 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
144 HOWTO (R_SH_PCDISP, /* type */
145 1, /* rightshift */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
147 12, /* bitsize */
148 true, /* pc_relative */
149 0, /* bitpos */
150 complain_overflow_signed, /* complain_on_overflow */
151 sh_reloc, /* special_function */
152 "r_pcdisp12by2", /* name */
153 true, /* partial_inplace */
154 0xfff, /* src_mask */
155 0xfff, /* dst_mask */
156 true), /* pcrel_offset */
158 EMPTY_HOWTO (13),
160 HOWTO (R_SH_IMM32, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 32, /* bitsize */
164 false, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield, /* complain_on_overflow */
167 sh_reloc, /* special_function */
168 "r_imm32", /* name */
169 true, /* partial_inplace */
170 0xffffffff, /* src_mask */
171 0xffffffff, /* dst_mask */
172 false), /* pcrel_offset */
174 EMPTY_HOWTO (15),
175 #ifdef COFF_WITH_PE
176 HOWTO (R_SH_IMAGEBASE, /* type */
177 0, /* rightshift */
178 2, /* size (0 = byte, 1 = short, 2 = long) */
179 32, /* bitsize */
180 false, /* pc_relative */
181 0, /* bitpos */
182 complain_overflow_bitfield, /* complain_on_overflow */
183 sh_reloc, /* special_function */
184 "rva32", /* name */
185 true, /* partial_inplace */
186 0xffffffff, /* src_mask */
187 0xffffffff, /* dst_mask */
188 false), /* pcrel_offset */
189 #else
190 EMPTY_HOWTO (16), /* R_SH_IMM8 */
191 #endif
192 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
193 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
194 EMPTY_HOWTO (19), /* R_SH_IMM4 */
195 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
196 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
198 HOWTO (R_SH_PCRELIMM8BY2, /* type */
199 1, /* rightshift */
200 1, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 true, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_unsigned, /* complain_on_overflow */
205 sh_reloc, /* special_function */
206 "r_pcrelimm8by2", /* name */
207 true, /* partial_inplace */
208 0xff, /* src_mask */
209 0xff, /* dst_mask */
210 true), /* pcrel_offset */
212 HOWTO (R_SH_PCRELIMM8BY4, /* type */
213 2, /* rightshift */
214 1, /* size (0 = byte, 1 = short, 2 = long) */
215 8, /* bitsize */
216 true, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_unsigned, /* complain_on_overflow */
219 sh_reloc, /* special_function */
220 "r_pcrelimm8by4", /* name */
221 true, /* partial_inplace */
222 0xff, /* src_mask */
223 0xff, /* dst_mask */
224 true), /* pcrel_offset */
226 HOWTO (R_SH_IMM16, /* type */
227 0, /* rightshift */
228 1, /* size (0 = byte, 1 = short, 2 = long) */
229 16, /* bitsize */
230 false, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_bitfield, /* complain_on_overflow */
233 sh_reloc, /* special_function */
234 "r_imm16", /* name */
235 true, /* partial_inplace */
236 0xffff, /* src_mask */
237 0xffff, /* dst_mask */
238 false), /* pcrel_offset */
240 HOWTO (R_SH_SWITCH16, /* type */
241 0, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 16, /* bitsize */
244 false, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_bitfield, /* complain_on_overflow */
247 sh_reloc, /* special_function */
248 "r_switch16", /* name */
249 true, /* partial_inplace */
250 0xffff, /* src_mask */
251 0xffff, /* dst_mask */
252 false), /* pcrel_offset */
254 HOWTO (R_SH_SWITCH32, /* type */
255 0, /* rightshift */
256 2, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 false, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_bitfield, /* complain_on_overflow */
261 sh_reloc, /* special_function */
262 "r_switch32", /* name */
263 true, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 false), /* pcrel_offset */
268 HOWTO (R_SH_USES, /* type */
269 0, /* rightshift */
270 1, /* size (0 = byte, 1 = short, 2 = long) */
271 16, /* bitsize */
272 false, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 sh_reloc, /* special_function */
276 "r_uses", /* name */
277 true, /* partial_inplace */
278 0xffff, /* src_mask */
279 0xffff, /* dst_mask */
280 false), /* pcrel_offset */
282 HOWTO (R_SH_COUNT, /* type */
283 0, /* rightshift */
284 2, /* size (0 = byte, 1 = short, 2 = long) */
285 32, /* bitsize */
286 false, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_bitfield, /* complain_on_overflow */
289 sh_reloc, /* special_function */
290 "r_count", /* name */
291 true, /* partial_inplace */
292 0xffffffff, /* src_mask */
293 0xffffffff, /* dst_mask */
294 false), /* pcrel_offset */
296 HOWTO (R_SH_ALIGN, /* type */
297 0, /* rightshift */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
299 32, /* bitsize */
300 false, /* pc_relative */
301 0, /* bitpos */
302 complain_overflow_bitfield, /* complain_on_overflow */
303 sh_reloc, /* special_function */
304 "r_align", /* name */
305 true, /* partial_inplace */
306 0xffffffff, /* src_mask */
307 0xffffffff, /* dst_mask */
308 false), /* pcrel_offset */
310 HOWTO (R_SH_CODE, /* type */
311 0, /* rightshift */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
313 32, /* bitsize */
314 false, /* pc_relative */
315 0, /* bitpos */
316 complain_overflow_bitfield, /* complain_on_overflow */
317 sh_reloc, /* special_function */
318 "r_code", /* name */
319 true, /* partial_inplace */
320 0xffffffff, /* src_mask */
321 0xffffffff, /* dst_mask */
322 false), /* pcrel_offset */
324 HOWTO (R_SH_DATA, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
328 false, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_bitfield, /* complain_on_overflow */
331 sh_reloc, /* special_function */
332 "r_data", /* name */
333 true, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 false), /* pcrel_offset */
338 HOWTO (R_SH_LABEL, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
342 false, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 sh_reloc, /* special_function */
346 "r_label", /* name */
347 true, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 false), /* pcrel_offset */
352 HOWTO (R_SH_SWITCH8, /* type */
353 0, /* rightshift */
354 0, /* size (0 = byte, 1 = short, 2 = long) */
355 8, /* bitsize */
356 false, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_bitfield, /* complain_on_overflow */
359 sh_reloc, /* special_function */
360 "r_switch8", /* name */
361 true, /* partial_inplace */
362 0xff, /* src_mask */
363 0xff, /* dst_mask */
364 false) /* pcrel_offset */
367 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
369 /* Check for a bad magic number. */
370 #define BADMAG(x) SHBADMAG(x)
372 /* Customize coffcode.h (this is not currently used). */
373 #define SH 1
375 /* FIXME: This should not be set here. */
376 #define __A_MAGIC_SET__
378 #ifndef COFF_WITH_PE
379 /* Swap the r_offset field in and out. */
380 #define SWAP_IN_RELOC_OFFSET H_GET_32
381 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
383 /* Swap out extra information in the reloc structure. */
384 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
385 do \
387 dst->r_stuff[0] = 'S'; \
388 dst->r_stuff[1] = 'C'; \
390 while (0)
391 #endif
393 /* Get the value of a symbol, when performing a relocation. */
395 static long
396 get_symbol_value (asymbol *symbol)
398 bfd_vma relocation;
400 if (bfd_is_com_section (symbol->section))
401 relocation = 0;
402 else
403 relocation = (symbol->value +
404 symbol->section->output_section->vma +
405 symbol->section->output_offset);
407 return relocation;
410 #ifdef COFF_WITH_PE
411 /* Convert an rtype to howto for the COFF backend linker.
412 Copied from coff-i386. */
413 #define coff_rtype_to_howto coff_sh_rtype_to_howto
416 static reloc_howto_type *
417 coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
418 asection * sec,
419 struct internal_reloc * rel,
420 struct coff_link_hash_entry * h,
421 struct internal_syment * sym,
422 bfd_vma * addendp)
424 reloc_howto_type * howto;
426 howto = sh_coff_howtos + rel->r_type;
428 *addendp = 0;
430 if (howto->pc_relative)
431 *addendp += sec->vma;
433 if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
435 /* This is a common symbol. The section contents include the
436 size (sym->n_value) as an addend. The relocate_section
437 function will be adding in the final value of the symbol. We
438 need to subtract out the current size in order to get the
439 correct result. */
440 BFD_ASSERT (h != NULL);
443 if (howto->pc_relative)
445 *addendp -= 4;
447 /* If the symbol is defined, then the generic code is going to
448 add back the symbol value in order to cancel out an
449 adjustment it made to the addend. However, we set the addend
450 to 0 at the start of this function. We need to adjust here,
451 to avoid the adjustment the generic code will make. FIXME:
452 This is getting a bit hackish. */
453 if (sym != NULL && sym->n_scnum != 0)
454 *addendp -= sym->n_value;
457 if (rel->r_type == R_SH_IMAGEBASE)
458 *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
460 return howto;
463 #endif /* COFF_WITH_PE */
465 /* This structure is used to map BFD reloc codes to SH PE relocs. */
466 struct shcoff_reloc_map
468 bfd_reloc_code_real_type bfd_reloc_val;
469 unsigned char shcoff_reloc_val;
472 #ifdef COFF_WITH_PE
473 /* An array mapping BFD reloc codes to SH PE relocs. */
474 static const struct shcoff_reloc_map sh_reloc_map[] =
476 { BFD_RELOC_32, R_SH_IMM32CE },
477 { BFD_RELOC_RVA, R_SH_IMAGEBASE },
478 { BFD_RELOC_CTOR, R_SH_IMM32CE },
480 #else
481 /* An array mapping BFD reloc codes to SH PE relocs. */
482 static const struct shcoff_reloc_map sh_reloc_map[] =
484 { BFD_RELOC_32, R_SH_IMM32 },
485 { BFD_RELOC_CTOR, R_SH_IMM32 },
487 #endif
489 /* Given a BFD reloc code, return the howto structure for the
490 corresponding SH PE reloc. */
491 #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
492 #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
494 static reloc_howto_type *
495 sh_coff_reloc_type_lookup (bfd *abfd,
496 bfd_reloc_code_real_type code)
498 unsigned int i;
500 for (i = ARRAY_SIZE (sh_reloc_map); i--;)
501 if (sh_reloc_map[i].bfd_reloc_val == code)
502 return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
504 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
505 abfd, (unsigned int) code);
506 return NULL;
509 static reloc_howto_type *
510 sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
511 const char *r_name)
513 unsigned int i;
515 for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
516 if (sh_coff_howtos[i].name != NULL
517 && strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
518 return &sh_coff_howtos[i];
520 return NULL;
523 /* This macro is used in coffcode.h to get the howto corresponding to
524 an internal reloc. */
526 #define RTYPE2HOWTO(relent, internal) \
527 ((relent)->howto = \
528 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
529 ? &sh_coff_howtos[(internal)->r_type] \
530 : (reloc_howto_type *) NULL))
532 /* This is the same as the macro in coffcode.h, except that it copies
533 r_offset into reloc_entry->addend for some relocs. */
534 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
536 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
537 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
538 coffsym = (obj_symbols (abfd) \
539 + (cache_ptr->sym_ptr_ptr - symbols)); \
540 else if (ptr) \
541 coffsym = coff_symbol_from (ptr); \
542 if (coffsym != (coff_symbol_type *) NULL \
543 && coffsym->native->u.syment.n_scnum == 0) \
544 cache_ptr->addend = 0; \
545 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
546 && ptr->section != (asection *) NULL) \
547 cache_ptr->addend = - (ptr->section->vma + ptr->value); \
548 else \
549 cache_ptr->addend = 0; \
550 if ((reloc).r_type == R_SH_SWITCH8 \
551 || (reloc).r_type == R_SH_SWITCH16 \
552 || (reloc).r_type == R_SH_SWITCH32 \
553 || (reloc).r_type == R_SH_USES \
554 || (reloc).r_type == R_SH_COUNT \
555 || (reloc).r_type == R_SH_ALIGN) \
556 cache_ptr->addend = (reloc).r_offset; \
559 /* This is the howto function for the SH relocations. */
561 static bfd_reloc_status_type
562 sh_reloc (bfd * abfd,
563 arelent * reloc_entry,
564 asymbol * symbol_in,
565 void * data,
566 asection * input_section,
567 bfd * output_bfd,
568 char ** error_message ATTRIBUTE_UNUSED)
570 bfd_vma insn;
571 bfd_vma sym_value;
572 unsigned short r_type;
573 bfd_vma addr = reloc_entry->address;
574 bfd_byte *hit_data = addr + (bfd_byte *) data;
576 r_type = reloc_entry->howto->type;
578 if (output_bfd != NULL)
580 /* Partial linking--do nothing. */
581 reloc_entry->address += input_section->output_offset;
582 return bfd_reloc_ok;
585 /* Almost all relocs have to do with relaxing. If any work must be
586 done for them, it has been done in sh_relax_section. */
587 if (r_type != R_SH_IMM32
588 #ifdef COFF_WITH_PE
589 && r_type != R_SH_IMM32CE
590 && r_type != R_SH_IMAGEBASE
591 #endif
592 && (r_type != R_SH_PCDISP
593 || (symbol_in->flags & BSF_LOCAL) != 0))
594 return bfd_reloc_ok;
596 if (symbol_in != NULL
597 && bfd_is_und_section (symbol_in->section))
598 return bfd_reloc_undefined;
600 if (addr > input_section->size)
601 return bfd_reloc_outofrange;
603 sym_value = get_symbol_value (symbol_in);
605 switch (r_type)
607 case R_SH_IMM32:
608 #ifdef COFF_WITH_PE
609 case R_SH_IMM32CE:
610 #endif
611 insn = bfd_get_32 (abfd, hit_data);
612 insn += sym_value + reloc_entry->addend;
613 bfd_put_32 (abfd, insn, hit_data);
614 break;
615 #ifdef COFF_WITH_PE
616 case R_SH_IMAGEBASE:
617 insn = bfd_get_32 (abfd, hit_data);
618 insn += sym_value + reloc_entry->addend;
619 insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
620 bfd_put_32 (abfd, insn, hit_data);
621 break;
622 #endif
623 case R_SH_PCDISP:
624 insn = bfd_get_16 (abfd, hit_data);
625 sym_value += reloc_entry->addend;
626 sym_value -= (input_section->output_section->vma
627 + input_section->output_offset
628 + addr
629 + 4);
630 sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1;
631 insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff);
632 bfd_put_16 (abfd, insn, hit_data);
633 if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0)
634 return bfd_reloc_overflow;
635 break;
636 default:
637 abort ();
638 break;
641 return bfd_reloc_ok;
644 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
646 /* We can do relaxing. */
647 #define coff_bfd_relax_section sh_relax_section
649 /* We use the special COFF backend linker. */
650 #define coff_relocate_section sh_relocate_section
652 /* When relaxing, we need to use special code to get the relocated
653 section contents. */
654 #define coff_bfd_get_relocated_section_contents \
655 sh_coff_get_relocated_section_contents
657 #include "coffcode.h"
659 static bool
660 sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
662 /* This function handles relaxing on the SH.
664 Function calls on the SH look like this:
666 movl L1,r0
668 jsr @r0
671 .long function
673 The compiler and assembler will cooperate to create R_SH_USES
674 relocs on the jsr instructions. The r_offset field of the
675 R_SH_USES reloc is the PC relative offset to the instruction which
676 loads the register (the r_offset field is computed as though it
677 were a jump instruction, so the offset value is actually from four
678 bytes past the instruction). The linker can use this reloc to
679 determine just which function is being called, and thus decide
680 whether it is possible to replace the jsr with a bsr.
682 If multiple function calls are all based on a single register load
683 (i.e., the same function is called multiple times), the compiler
684 guarantees that each function call will have an R_SH_USES reloc.
685 Therefore, if the linker is able to convert each R_SH_USES reloc
686 which refers to that address, it can safely eliminate the register
687 load.
689 When the assembler creates an R_SH_USES reloc, it examines it to
690 determine which address is being loaded (L1 in the above example).
691 It then counts the number of references to that address, and
692 creates an R_SH_COUNT reloc at that address. The r_offset field of
693 the R_SH_COUNT reloc will be the number of references. If the
694 linker is able to eliminate a register load, it can use the
695 R_SH_COUNT reloc to see whether it can also eliminate the function
696 address.
698 SH relaxing also handles another, unrelated, matter. On the SH, if
699 a load or store instruction is not aligned on a four byte boundary,
700 the memory cycle interferes with the 32 bit instruction fetch,
701 causing a one cycle bubble in the pipeline. Therefore, we try to
702 align load and store instructions on four byte boundaries if we
703 can, by swapping them with one of the adjacent instructions. */
705 static bool
706 sh_relax_section (bfd *abfd,
707 asection *sec,
708 struct bfd_link_info *link_info,
709 bool *again)
711 struct internal_reloc *internal_relocs;
712 bool have_code;
713 struct internal_reloc *irel, *irelend;
714 bfd_byte *contents = NULL;
716 *again = false;
718 if (bfd_link_relocatable (link_info)
719 || (sec->flags & SEC_RELOC) == 0
720 || sec->reloc_count == 0)
721 return true;
723 if (coff_section_data (abfd, sec) == NULL)
725 size_t amt = sizeof (struct coff_section_tdata);
726 sec->used_by_bfd = bfd_zalloc (abfd, amt);
727 if (sec->used_by_bfd == NULL)
728 return false;
731 internal_relocs = (_bfd_coff_read_internal_relocs
732 (abfd, sec, link_info->keep_memory,
733 (bfd_byte *) NULL, false,
734 (struct internal_reloc *) NULL));
735 if (internal_relocs == NULL)
736 goto error_return;
738 have_code = false;
740 irelend = internal_relocs + sec->reloc_count;
741 for (irel = internal_relocs; irel < irelend; irel++)
743 bfd_vma laddr, paddr, symval;
744 unsigned short insn;
745 struct internal_reloc *irelfn, *irelscan, *irelcount;
746 struct internal_syment sym;
747 bfd_signed_vma foff;
749 if (irel->r_type == R_SH_CODE)
750 have_code = true;
752 if (irel->r_type != R_SH_USES)
753 continue;
755 /* Get the section contents. */
756 if (contents == NULL)
758 if (coff_section_data (abfd, sec)->contents != NULL)
759 contents = coff_section_data (abfd, sec)->contents;
760 else
762 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
763 goto error_return;
767 /* The r_offset field of the R_SH_USES reloc will point us to
768 the register load. The 4 is because the r_offset field is
769 computed as though it were a jump offset, which are based
770 from 4 bytes after the jump instruction. */
771 laddr = irel->r_vaddr - sec->vma + 4;
772 /* Careful to sign extend the 32-bit offset. */
773 laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
774 if (laddr >= sec->size)
776 /* xgettext: c-format */
777 _bfd_error_handler
778 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"),
779 abfd, (uint64_t) irel->r_vaddr);
780 continue;
782 insn = bfd_get_16 (abfd, contents + laddr);
784 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
785 if ((insn & 0xf000) != 0xd000)
787 _bfd_error_handler
788 /* xgettext: c-format */
789 (_("%pB: %#" PRIx64 ": warning: R_SH_USES points to unrecognized insn %#x"),
790 abfd, (uint64_t) irel->r_vaddr, insn);
791 continue;
794 /* Get the address from which the register is being loaded. The
795 displacement in the mov.l instruction is quadrupled. It is a
796 displacement from four bytes after the movl instruction, but,
797 before adding in the PC address, two least significant bits
798 of the PC are cleared. We assume that the section is aligned
799 on a four byte boundary. */
800 paddr = insn & 0xff;
801 paddr *= 4;
802 paddr += (laddr + 4) &~ (bfd_vma) 3;
803 if (paddr >= sec->size)
805 _bfd_error_handler
806 /* xgettext: c-format */
807 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"),
808 abfd, (uint64_t) irel->r_vaddr);
809 continue;
812 /* Get the reloc for the address from which the register is
813 being loaded. This reloc will tell us which function is
814 actually being called. */
815 paddr += sec->vma;
816 for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
817 if (irelfn->r_vaddr == paddr
818 #ifdef COFF_WITH_PE
819 && (irelfn->r_type == R_SH_IMM32
820 || irelfn->r_type == R_SH_IMM32CE
821 || irelfn->r_type == R_SH_IMAGEBASE)
823 #else
824 && irelfn->r_type == R_SH_IMM32
825 #endif
827 break;
828 if (irelfn >= irelend)
830 _bfd_error_handler
831 /* xgettext: c-format */
832 (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"),
833 abfd, (uint64_t) paddr);
834 continue;
837 /* Get the value of the symbol referred to by the reloc. */
838 if (! _bfd_coff_get_external_symbols (abfd))
839 goto error_return;
840 bfd_coff_swap_sym_in (abfd,
841 ((bfd_byte *) obj_coff_external_syms (abfd)
842 + (irelfn->r_symndx
843 * bfd_coff_symesz (abfd))),
844 &sym);
845 if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
847 _bfd_error_handler
848 /* xgettext: c-format */
849 (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"),
850 abfd, (uint64_t) paddr);
851 continue;
854 if (sym.n_sclass != C_EXT)
856 symval = (sym.n_value
857 - sec->vma
858 + sec->output_section->vma
859 + sec->output_offset);
861 else
863 struct coff_link_hash_entry *h;
865 h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
866 BFD_ASSERT (h != NULL);
867 if (h->root.type != bfd_link_hash_defined
868 && h->root.type != bfd_link_hash_defweak)
870 /* This appears to be a reference to an undefined
871 symbol. Just ignore it--it will be caught by the
872 regular reloc processing. */
873 continue;
876 symval = (h->root.u.def.value
877 + h->root.u.def.section->output_section->vma
878 + h->root.u.def.section->output_offset);
881 symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
883 /* See if this function call can be shortened. */
884 foff = (symval
885 - (irel->r_vaddr
886 - sec->vma
887 + sec->output_section->vma
888 + sec->output_offset
889 + 4));
890 if (foff < -0x1000 || foff >= 0x1000)
892 /* After all that work, we can't shorten this function call. */
893 continue;
896 /* Shorten the function call. */
898 /* For simplicity of coding, we are going to modify the section
899 contents, the section relocs, and the BFD symbol table. We
900 must tell the rest of the code not to free up this
901 information. It would be possible to instead create a table
902 of changes which have to be made, as is done in coff-mips.c;
903 that would be more work, but would require less memory when
904 the linker is run. */
906 coff_section_data (abfd, sec)->relocs = internal_relocs;
907 coff_section_data (abfd, sec)->keep_relocs = true;
909 coff_section_data (abfd, sec)->contents = contents;
910 coff_section_data (abfd, sec)->keep_contents = true;
912 obj_coff_keep_syms (abfd) = true;
914 /* Replace the jsr with a bsr. */
916 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
917 replace the jsr with a bsr. */
918 irel->r_type = R_SH_PCDISP;
919 irel->r_symndx = irelfn->r_symndx;
920 if (sym.n_sclass != C_EXT)
922 /* If this needs to be changed because of future relaxing,
923 it will be handled here like other internal PCDISP
924 relocs. */
925 bfd_put_16 (abfd,
926 (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
927 contents + irel->r_vaddr - sec->vma);
929 else
931 /* We can't fully resolve this yet, because the external
932 symbol value may be changed by future relaxing. We let
933 the final link phase handle it. */
934 bfd_put_16 (abfd, (bfd_vma) 0xb000,
935 contents + irel->r_vaddr - sec->vma);
938 /* See if there is another R_SH_USES reloc referring to the same
939 register load. */
940 for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
941 if (irelscan->r_type == R_SH_USES
942 && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
943 break;
944 if (irelscan < irelend)
946 /* Some other function call depends upon this register load,
947 and we have not yet converted that function call.
948 Indeed, we may never be able to convert it. There is
949 nothing else we can do at this point. */
950 continue;
953 /* Look for a R_SH_COUNT reloc on the location where the
954 function address is stored. Do this before deleting any
955 bytes, to avoid confusion about the address. */
956 for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
957 if (irelcount->r_vaddr == paddr
958 && irelcount->r_type == R_SH_COUNT)
959 break;
961 /* Delete the register load. */
962 if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
963 goto error_return;
965 /* That will change things, so, just in case it permits some
966 other function call to come within range, we should relax
967 again. Note that this is not required, and it may be slow. */
968 *again = true;
970 /* Now check whether we got a COUNT reloc. */
971 if (irelcount >= irelend)
973 _bfd_error_handler
974 /* xgettext: c-format */
975 (_("%pB: %#" PRIx64 ": warning: could not find expected COUNT reloc"),
976 abfd, (uint64_t) paddr);
977 continue;
980 /* The number of uses is stored in the r_offset field. We've
981 just deleted one. */
982 if (irelcount->r_offset == 0)
984 /* xgettext: c-format */
985 _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"),
986 abfd, (uint64_t) paddr);
987 continue;
990 --irelcount->r_offset;
992 /* If there are no more uses, we can delete the address. Reload
993 the address from irelfn, in case it was changed by the
994 previous call to sh_relax_delete_bytes. */
995 if (irelcount->r_offset == 0)
997 if (! sh_relax_delete_bytes (abfd, sec,
998 irelfn->r_vaddr - sec->vma, 4))
999 goto error_return;
1002 /* We've done all we can with that function call. */
1005 /* Look for load and store instructions that we can align on four
1006 byte boundaries. */
1007 if (have_code)
1009 bool swapped;
1011 /* Get the section contents. */
1012 if (contents == NULL)
1014 if (coff_section_data (abfd, sec)->contents != NULL)
1015 contents = coff_section_data (abfd, sec)->contents;
1016 else
1018 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1019 goto error_return;
1023 if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1024 goto error_return;
1026 if (swapped)
1028 coff_section_data (abfd, sec)->relocs = internal_relocs;
1029 coff_section_data (abfd, sec)->keep_relocs = true;
1031 coff_section_data (abfd, sec)->contents = contents;
1032 coff_section_data (abfd, sec)->keep_contents = true;
1034 obj_coff_keep_syms (abfd) = true;
1038 if (internal_relocs != NULL
1039 && internal_relocs != coff_section_data (abfd, sec)->relocs)
1041 if (! link_info->keep_memory)
1042 free (internal_relocs);
1043 else
1044 coff_section_data (abfd, sec)->relocs = internal_relocs;
1047 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1049 if (! link_info->keep_memory)
1050 free (contents);
1051 else
1052 /* Cache the section contents for coff_link_input_bfd. */
1053 coff_section_data (abfd, sec)->contents = contents;
1056 return true;
1058 error_return:
1059 if (internal_relocs != coff_section_data (abfd, sec)->relocs)
1060 free (internal_relocs);
1061 if (contents != coff_section_data (abfd, sec)->contents)
1062 free (contents);
1063 return false;
1066 /* Delete some bytes from a section while relaxing. */
1068 static bool
1069 sh_relax_delete_bytes (bfd *abfd,
1070 asection *sec,
1071 bfd_vma addr,
1072 int count)
1074 bfd_byte *contents;
1075 struct internal_reloc *irel, *irelend;
1076 struct internal_reloc *irelalign;
1077 bfd_vma toaddr;
1078 bfd_byte *esym, *esymend;
1079 bfd_size_type symesz;
1080 struct coff_link_hash_entry **sym_hash;
1081 asection *o;
1083 contents = coff_section_data (abfd, sec)->contents;
1085 /* The deletion must stop at the next ALIGN reloc for an alignment
1086 power larger than the number of bytes we are deleting. */
1088 irelalign = NULL;
1089 toaddr = sec->size;
1091 irel = coff_section_data (abfd, sec)->relocs;
1092 irelend = irel + sec->reloc_count;
1093 for (; irel < irelend; irel++)
1095 if (irel->r_type == R_SH_ALIGN
1096 && irel->r_vaddr - sec->vma > addr
1097 && count < (1 << irel->r_offset))
1099 irelalign = irel;
1100 toaddr = irel->r_vaddr - sec->vma;
1101 break;
1105 /* Actually delete the bytes. */
1106 memmove (contents + addr, contents + addr + count,
1107 (size_t) (toaddr - addr - count));
1108 if (irelalign == NULL)
1109 sec->size -= count;
1110 else
1112 int i;
1114 #define NOP_OPCODE (0x0009)
1116 BFD_ASSERT ((count & 1) == 0);
1117 for (i = 0; i < count; i += 2)
1118 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
1121 /* Adjust all the relocs. */
1122 for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1124 bfd_vma nraddr, stop;
1125 bfd_vma start = 0;
1126 int insn = 0;
1127 struct internal_syment sym;
1128 int off, adjust, oinsn;
1129 bfd_signed_vma voff = 0;
1130 bool overflow;
1132 /* Get the new reloc address. */
1133 nraddr = irel->r_vaddr - sec->vma;
1134 if ((irel->r_vaddr - sec->vma > addr
1135 && irel->r_vaddr - sec->vma < toaddr)
1136 || (irel->r_type == R_SH_ALIGN
1137 && irel->r_vaddr - sec->vma == toaddr))
1138 nraddr -= count;
1140 /* See if this reloc was for the bytes we have deleted, in which
1141 case we no longer care about it. Don't delete relocs which
1142 represent addresses, though. */
1143 if (irel->r_vaddr - sec->vma >= addr
1144 && irel->r_vaddr - sec->vma < addr + count
1145 && irel->r_type != R_SH_ALIGN
1146 && irel->r_type != R_SH_CODE
1147 && irel->r_type != R_SH_DATA
1148 && irel->r_type != R_SH_LABEL)
1149 irel->r_type = R_SH_UNUSED;
1151 /* If this is a PC relative reloc, see if the range it covers
1152 includes the bytes we have deleted. */
1153 switch (irel->r_type)
1155 default:
1156 break;
1158 case R_SH_PCDISP8BY2:
1159 case R_SH_PCDISP:
1160 case R_SH_PCRELIMM8BY2:
1161 case R_SH_PCRELIMM8BY4:
1162 start = irel->r_vaddr - sec->vma;
1163 insn = bfd_get_16 (abfd, contents + nraddr);
1164 break;
1167 switch (irel->r_type)
1169 default:
1170 start = stop = addr;
1171 break;
1173 case R_SH_IMM32:
1174 #ifdef COFF_WITH_PE
1175 case R_SH_IMM32CE:
1176 case R_SH_IMAGEBASE:
1177 #endif
1178 /* If this reloc is against a symbol defined in this
1179 section, and the symbol will not be adjusted below, we
1180 must check the addend to see it will put the value in
1181 range to be adjusted, and hence must be changed. */
1182 bfd_coff_swap_sym_in (abfd,
1183 ((bfd_byte *) obj_coff_external_syms (abfd)
1184 + (irel->r_symndx
1185 * bfd_coff_symesz (abfd))),
1186 &sym);
1187 if (sym.n_sclass != C_EXT
1188 && sym.n_scnum == sec->target_index
1189 && ((bfd_vma) sym.n_value <= addr
1190 || (bfd_vma) sym.n_value >= toaddr))
1192 bfd_vma val;
1194 val = bfd_get_32 (abfd, contents + nraddr);
1195 val += sym.n_value;
1196 if (val > addr && val < toaddr)
1197 bfd_put_32 (abfd, val - count, contents + nraddr);
1199 start = stop = addr;
1200 break;
1202 case R_SH_PCDISP8BY2:
1203 off = insn & 0xff;
1204 if (off & 0x80)
1205 off -= 0x100;
1206 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1207 break;
1209 case R_SH_PCDISP:
1210 bfd_coff_swap_sym_in (abfd,
1211 ((bfd_byte *) obj_coff_external_syms (abfd)
1212 + (irel->r_symndx
1213 * bfd_coff_symesz (abfd))),
1214 &sym);
1215 if (sym.n_sclass == C_EXT)
1216 start = stop = addr;
1217 else
1219 off = insn & 0xfff;
1220 if (off & 0x800)
1221 off -= 0x1000;
1222 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1224 break;
1226 case R_SH_PCRELIMM8BY2:
1227 off = insn & 0xff;
1228 stop = start + 4 + off * 2;
1229 break;
1231 case R_SH_PCRELIMM8BY4:
1232 off = insn & 0xff;
1233 stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1234 break;
1236 case R_SH_SWITCH8:
1237 case R_SH_SWITCH16:
1238 case R_SH_SWITCH32:
1239 /* These relocs types represent
1240 .word L2-L1
1241 The r_offset field holds the difference between the reloc
1242 address and L1. That is the start of the reloc, and
1243 adding in the contents gives us the top. We must adjust
1244 both the r_offset field and the section contents. */
1246 start = irel->r_vaddr - sec->vma;
1247 stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1249 if (start > addr
1250 && start < toaddr
1251 && (stop <= addr || stop >= toaddr))
1252 irel->r_offset += count;
1253 else if (stop > addr
1254 && stop < toaddr
1255 && (start <= addr || start >= toaddr))
1256 irel->r_offset -= count;
1258 start = stop;
1260 if (irel->r_type == R_SH_SWITCH16)
1261 voff = bfd_get_signed_16 (abfd, contents + nraddr);
1262 else if (irel->r_type == R_SH_SWITCH8)
1263 voff = bfd_get_8 (abfd, contents + nraddr);
1264 else
1265 voff = bfd_get_signed_32 (abfd, contents + nraddr);
1266 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1268 break;
1270 case R_SH_USES:
1271 start = irel->r_vaddr - sec->vma;
1272 stop = (bfd_vma) ((bfd_signed_vma) start
1273 + (long) irel->r_offset
1274 + 4);
1275 break;
1278 if (start > addr
1279 && start < toaddr
1280 && (stop <= addr || stop >= toaddr))
1281 adjust = count;
1282 else if (stop > addr
1283 && stop < toaddr
1284 && (start <= addr || start >= toaddr))
1285 adjust = - count;
1286 else
1287 adjust = 0;
1289 if (adjust != 0)
1291 oinsn = insn;
1292 overflow = false;
1293 switch (irel->r_type)
1295 default:
1296 abort ();
1297 break;
1299 case R_SH_PCDISP8BY2:
1300 case R_SH_PCRELIMM8BY2:
1301 insn += adjust / 2;
1302 if ((oinsn & 0xff00) != (insn & 0xff00))
1303 overflow = true;
1304 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1305 break;
1307 case R_SH_PCDISP:
1308 insn += adjust / 2;
1309 if ((oinsn & 0xf000) != (insn & 0xf000))
1310 overflow = true;
1311 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1312 break;
1314 case R_SH_PCRELIMM8BY4:
1315 BFD_ASSERT (adjust == count || count >= 4);
1316 if (count >= 4)
1317 insn += adjust / 4;
1318 else
1320 if ((irel->r_vaddr & 3) == 0)
1321 ++insn;
1323 if ((oinsn & 0xff00) != (insn & 0xff00))
1324 overflow = true;
1325 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1326 break;
1328 case R_SH_SWITCH8:
1329 voff += adjust;
1330 if (voff < 0 || voff >= 0xff)
1331 overflow = true;
1332 bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
1333 break;
1335 case R_SH_SWITCH16:
1336 voff += adjust;
1337 if (voff < - 0x8000 || voff >= 0x8000)
1338 overflow = true;
1339 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1340 break;
1342 case R_SH_SWITCH32:
1343 voff += adjust;
1344 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1345 break;
1347 case R_SH_USES:
1348 irel->r_offset += adjust;
1349 break;
1352 if (overflow)
1354 _bfd_error_handler
1355 /* xgettext: c-format */
1356 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
1357 abfd, (uint64_t) irel->r_vaddr);
1358 bfd_set_error (bfd_error_bad_value);
1359 return false;
1363 irel->r_vaddr = nraddr + sec->vma;
1366 /* Look through all the other sections. If there contain any IMM32
1367 relocs against internal symbols which we are not going to adjust
1368 below, we may need to adjust the addends. */
1369 for (o = abfd->sections; o != NULL; o = o->next)
1371 struct internal_reloc *internal_relocs;
1372 struct internal_reloc *irelscan, *irelscanend;
1373 bfd_byte *ocontents;
1375 if (o == sec
1376 || (o->flags & SEC_RELOC) == 0
1377 || o->reloc_count == 0)
1378 continue;
1380 /* We always cache the relocs. Perhaps, if info->keep_memory is
1381 FALSE, we should free them, if we are permitted to, when we
1382 leave sh_coff_relax_section. */
1383 internal_relocs = (_bfd_coff_read_internal_relocs
1384 (abfd, o, true, (bfd_byte *) NULL, false,
1385 (struct internal_reloc *) NULL));
1386 if (internal_relocs == NULL)
1387 return false;
1389 ocontents = NULL;
1390 irelscanend = internal_relocs + o->reloc_count;
1391 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1393 struct internal_syment sym;
1395 #ifdef COFF_WITH_PE
1396 if (irelscan->r_type != R_SH_IMM32
1397 && irelscan->r_type != R_SH_IMAGEBASE
1398 && irelscan->r_type != R_SH_IMM32CE)
1399 #else
1400 if (irelscan->r_type != R_SH_IMM32)
1401 #endif
1402 continue;
1404 bfd_coff_swap_sym_in (abfd,
1405 ((bfd_byte *) obj_coff_external_syms (abfd)
1406 + (irelscan->r_symndx
1407 * bfd_coff_symesz (abfd))),
1408 &sym);
1409 if (sym.n_sclass != C_EXT
1410 && sym.n_scnum == sec->target_index
1411 && ((bfd_vma) sym.n_value <= addr
1412 || (bfd_vma) sym.n_value >= toaddr))
1414 bfd_vma val;
1416 if (ocontents == NULL)
1418 if (coff_section_data (abfd, o)->contents != NULL)
1419 ocontents = coff_section_data (abfd, o)->contents;
1420 else
1422 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1423 return false;
1424 /* We always cache the section contents.
1425 Perhaps, if info->keep_memory is FALSE, we
1426 should free them, if we are permitted to,
1427 when we leave sh_coff_relax_section. */
1428 coff_section_data (abfd, o)->contents = ocontents;
1432 val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1433 val += sym.n_value;
1434 if (val > addr && val < toaddr)
1435 bfd_put_32 (abfd, val - count,
1436 ocontents + irelscan->r_vaddr - o->vma);
1438 coff_section_data (abfd, o)->keep_contents = true;
1443 /* Adjusting the internal symbols will not work if something has
1444 already retrieved the generic symbols. It would be possible to
1445 make this work by adjusting the generic symbols at the same time.
1446 However, this case should not arise in normal usage. */
1447 if (obj_symbols (abfd) != NULL
1448 || obj_raw_syments (abfd) != NULL)
1450 _bfd_error_handler
1451 (_("%pB: fatal: generic symbols retrieved before relaxing"), abfd);
1452 bfd_set_error (bfd_error_invalid_operation);
1453 return false;
1456 /* Adjust all the symbols. */
1457 sym_hash = obj_coff_sym_hashes (abfd);
1458 symesz = bfd_coff_symesz (abfd);
1459 esym = (bfd_byte *) obj_coff_external_syms (abfd);
1460 esymend = esym + obj_raw_syment_count (abfd) * symesz;
1461 while (esym < esymend)
1463 struct internal_syment isym;
1465 bfd_coff_swap_sym_in (abfd, esym, &isym);
1467 if (isym.n_scnum == sec->target_index
1468 && (bfd_vma) isym.n_value > addr
1469 && (bfd_vma) isym.n_value < toaddr)
1471 isym.n_value -= count;
1473 bfd_coff_swap_sym_out (abfd, &isym, esym);
1475 if (*sym_hash != NULL)
1477 BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1478 || (*sym_hash)->root.type == bfd_link_hash_defweak);
1479 BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1480 && (*sym_hash)->root.u.def.value < toaddr);
1481 (*sym_hash)->root.u.def.value -= count;
1485 esym += (isym.n_numaux + 1) * symesz;
1486 sym_hash += isym.n_numaux + 1;
1489 /* See if we can move the ALIGN reloc forward. We have adjusted
1490 r_vaddr for it already. */
1491 if (irelalign != NULL)
1493 bfd_vma alignto, alignaddr;
1495 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1496 alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1497 1 << irelalign->r_offset);
1498 if (alignto != alignaddr)
1500 /* Tail recursion. */
1501 return sh_relax_delete_bytes (abfd, sec, alignaddr,
1502 (int) (alignto - alignaddr));
1506 return true;
1509 /* This is yet another version of the SH opcode table, used to rapidly
1510 get information about a particular instruction. */
1512 /* The opcode map is represented by an array of these structures. The
1513 array is indexed by the high order four bits in the instruction. */
1515 struct sh_major_opcode
1517 /* A pointer to the instruction list. This is an array which
1518 contains all the instructions with this major opcode. */
1519 const struct sh_minor_opcode *minor_opcodes;
1520 /* The number of elements in minor_opcodes. */
1521 unsigned short count;
1524 /* This structure holds information for a set of SH opcodes. The
1525 instruction code is anded with the mask value, and the resulting
1526 value is used to search the order opcode list. */
1528 struct sh_minor_opcode
1530 /* The sorted opcode list. */
1531 const struct sh_opcode *opcodes;
1532 /* The number of elements in opcodes. */
1533 unsigned short count;
1534 /* The mask value to use when searching the opcode list. */
1535 unsigned short mask;
1538 /* This structure holds information for an SH instruction. An array
1539 of these structures is sorted in order by opcode. */
1541 struct sh_opcode
1543 /* The code for this instruction, after it has been anded with the
1544 mask value in the sh_major_opcode structure. */
1545 unsigned short opcode;
1546 /* Flags for this instruction. */
1547 unsigned long flags;
1550 /* Flag which appear in the sh_opcode structure. */
1552 /* This instruction loads a value from memory. */
1553 #define LOAD (0x1)
1555 /* This instruction stores a value to memory. */
1556 #define STORE (0x2)
1558 /* This instruction is a branch. */
1559 #define BRANCH (0x4)
1561 /* This instruction has a delay slot. */
1562 #define DELAY (0x8)
1564 /* This instruction uses the value in the register in the field at
1565 mask 0x0f00 of the instruction. */
1566 #define USES1 (0x10)
1567 #define USES1_REG(x) ((x & 0x0f00) >> 8)
1569 /* This instruction uses the value in the register in the field at
1570 mask 0x00f0 of the instruction. */
1571 #define USES2 (0x20)
1572 #define USES2_REG(x) ((x & 0x00f0) >> 4)
1574 /* This instruction uses the value in register 0. */
1575 #define USESR0 (0x40)
1577 /* This instruction sets the value in the register in the field at
1578 mask 0x0f00 of the instruction. */
1579 #define SETS1 (0x80)
1580 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
1582 /* This instruction sets the value in the register in the field at
1583 mask 0x00f0 of the instruction. */
1584 #define SETS2 (0x100)
1585 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
1587 /* This instruction sets register 0. */
1588 #define SETSR0 (0x200)
1590 /* This instruction sets a special register. */
1591 #define SETSSP (0x400)
1593 /* This instruction uses a special register. */
1594 #define USESSP (0x800)
1596 /* This instruction uses the floating point register in the field at
1597 mask 0x0f00 of the instruction. */
1598 #define USESF1 (0x1000)
1599 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
1601 /* This instruction uses the floating point register in the field at
1602 mask 0x00f0 of the instruction. */
1603 #define USESF2 (0x2000)
1604 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
1606 /* This instruction uses floating point register 0. */
1607 #define USESF0 (0x4000)
1609 /* This instruction sets the floating point register in the field at
1610 mask 0x0f00 of the instruction. */
1611 #define SETSF1 (0x8000)
1612 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1614 #define USESAS (0x10000)
1615 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1616 #define USESR8 (0x20000)
1617 #define SETSAS (0x40000)
1618 #define SETSAS_REG(x) USESAS_REG (x)
1620 #define MAP(a) a, sizeof a / sizeof a[0]
1622 #ifndef COFF_IMAGE_WITH_PE
1624 /* The opcode maps. */
1626 static const struct sh_opcode sh_opcode00[] =
1628 { 0x0008, SETSSP }, /* clrt */
1629 { 0x0009, 0 }, /* nop */
1630 { 0x000b, BRANCH | DELAY | USESSP }, /* rts */
1631 { 0x0018, SETSSP }, /* sett */
1632 { 0x0019, SETSSP }, /* div0u */
1633 { 0x001b, 0 }, /* sleep */
1634 { 0x0028, SETSSP }, /* clrmac */
1635 { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */
1636 { 0x0038, USESSP | SETSSP }, /* ldtlb */
1637 { 0x0048, SETSSP }, /* clrs */
1638 { 0x0058, SETSSP } /* sets */
1641 static const struct sh_opcode sh_opcode01[] =
1643 { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */
1644 { 0x000a, SETS1 | USESSP }, /* sts mach,rn */
1645 { 0x001a, SETS1 | USESSP }, /* sts macl,rn */
1646 { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */
1647 { 0x0029, SETS1 | USESSP }, /* movt rn */
1648 { 0x002a, SETS1 | USESSP }, /* sts pr,rn */
1649 { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */
1650 { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */
1651 { 0x0083, LOAD | USES1 }, /* pref @rn */
1652 { 0x007a, SETS1 | USESSP }, /* sts a0,rn */
1653 { 0x008a, SETS1 | USESSP }, /* sts x0,rn */
1654 { 0x009a, SETS1 | USESSP }, /* sts x1,rn */
1655 { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */
1656 { 0x00ba, SETS1 | USESSP } /* sts y1,rn */
1659 static const struct sh_opcode sh_opcode02[] =
1661 { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */
1662 { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
1663 { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
1664 { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
1665 { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */
1666 { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */
1667 { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */
1668 { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */
1669 { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1672 static const struct sh_minor_opcode sh_opcode0[] =
1674 { MAP (sh_opcode00), 0xffff },
1675 { MAP (sh_opcode01), 0xf0ff },
1676 { MAP (sh_opcode02), 0xf00f }
1679 static const struct sh_opcode sh_opcode10[] =
1681 { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
1684 static const struct sh_minor_opcode sh_opcode1[] =
1686 { MAP (sh_opcode10), 0xf000 }
1689 static const struct sh_opcode sh_opcode20[] =
1691 { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */
1692 { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */
1693 { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */
1694 { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */
1695 { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */
1696 { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */
1697 { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */
1698 { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */
1699 { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */
1700 { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */
1701 { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */
1702 { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */
1703 { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */
1704 { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */
1705 { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */
1708 static const struct sh_minor_opcode sh_opcode2[] =
1710 { MAP (sh_opcode20), 0xf00f }
1713 static const struct sh_opcode sh_opcode30[] =
1715 { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */
1716 { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */
1717 { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */
1718 { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */
1719 { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */
1720 { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */
1721 { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */
1722 { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */
1723 { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1724 { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
1725 { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */
1726 { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */
1727 { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1728 { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */
1731 static const struct sh_minor_opcode sh_opcode3[] =
1733 { MAP (sh_opcode30), 0xf00f }
1736 static const struct sh_opcode sh_opcode40[] =
1738 { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */
1739 { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */
1740 { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
1741 { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */
1742 { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */
1743 { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */
1744 { 0x4008, SETS1 | USES1 }, /* shll2 rn */
1745 { 0x4009, SETS1 | USES1 }, /* shlr2 rn */
1746 { 0x400a, SETSSP | USES1 }, /* lds rm,mach */
1747 { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */
1748 { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */
1749 { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */
1750 { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
1751 { 0x4014, SETSSP | USES1 }, /* setrc rm */
1752 { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */
1753 { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */
1754 { 0x4018, SETS1 | USES1 }, /* shll8 rn */
1755 { 0x4019, SETS1 | USES1 }, /* shlr8 rn */
1756 { 0x401a, SETSSP | USES1 }, /* lds rm,macl */
1757 { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */
1758 { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */
1759 { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */
1760 { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
1761 { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */
1762 { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */
1763 { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */
1764 { 0x4028, SETS1 | USES1 }, /* shll16 rn */
1765 { 0x4029, SETS1 | USES1 }, /* shlr16 rn */
1766 { 0x402a, SETSSP | USES1 }, /* lds rm,pr */
1767 { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */
1768 { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
1769 { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */
1770 { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */
1771 { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
1772 { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */
1773 { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */
1774 { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
1775 { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */
1776 { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */
1777 { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
1778 { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */
1779 { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */
1780 { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
1781 { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */
1782 { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */
1783 { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
1784 { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */
1785 { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */
1786 { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
1787 { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */
1788 { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */
1791 static const struct sh_opcode sh_opcode41[] =
1793 { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
1794 { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */
1795 { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */
1796 { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */
1797 { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */
1798 { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1801 static const struct sh_minor_opcode sh_opcode4[] =
1803 { MAP (sh_opcode40), 0xf0ff },
1804 { MAP (sh_opcode41), 0xf00f }
1807 static const struct sh_opcode sh_opcode50[] =
1809 { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */
1812 static const struct sh_minor_opcode sh_opcode5[] =
1814 { MAP (sh_opcode50), 0xf000 }
1817 static const struct sh_opcode sh_opcode60[] =
1819 { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */
1820 { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */
1821 { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */
1822 { 0x6003, SETS1 | USES2 }, /* mov rm,rn */
1823 { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
1824 { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
1825 { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
1826 { 0x6007, SETS1 | USES2 }, /* not rm,rn */
1827 { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */
1828 { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */
1829 { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */
1830 { 0x600b, SETS1 | USES2 }, /* neg rm,rn */
1831 { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */
1832 { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */
1833 { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */
1834 { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */
1837 static const struct sh_minor_opcode sh_opcode6[] =
1839 { MAP (sh_opcode60), 0xf00f }
1842 static const struct sh_opcode sh_opcode70[] =
1844 { 0x7000, SETS1 | USES1 } /* add #imm,rn */
1847 static const struct sh_minor_opcode sh_opcode7[] =
1849 { MAP (sh_opcode70), 0xf000 }
1852 static const struct sh_opcode sh_opcode80[] =
1854 { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
1855 { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
1856 { 0x8200, SETSSP }, /* setrc #imm */
1857 { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */
1858 { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */
1859 { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */
1860 { 0x8900, BRANCH | USESSP }, /* bt label */
1861 { 0x8b00, BRANCH | USESSP }, /* bf label */
1862 { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */
1863 { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */
1864 { 0x8e00, SETSSP }, /* ldre @(disp,pc) */
1865 { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
1868 static const struct sh_minor_opcode sh_opcode8[] =
1870 { MAP (sh_opcode80), 0xff00 }
1873 static const struct sh_opcode sh_opcode90[] =
1875 { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */
1878 static const struct sh_minor_opcode sh_opcode9[] =
1880 { MAP (sh_opcode90), 0xf000 }
1883 static const struct sh_opcode sh_opcodea0[] =
1885 { 0xa000, BRANCH | DELAY } /* bra label */
1888 static const struct sh_minor_opcode sh_opcodea[] =
1890 { MAP (sh_opcodea0), 0xf000 }
1893 static const struct sh_opcode sh_opcodeb0[] =
1895 { 0xb000, BRANCH | DELAY } /* bsr label */
1898 static const struct sh_minor_opcode sh_opcodeb[] =
1900 { MAP (sh_opcodeb0), 0xf000 }
1903 static const struct sh_opcode sh_opcodec0[] =
1905 { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */
1906 { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */
1907 { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */
1908 { 0xc300, BRANCH | USESSP }, /* trapa #imm */
1909 { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */
1910 { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */
1911 { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */
1912 { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */
1913 { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */
1914 { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */
1915 { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */
1916 { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */
1917 { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */
1918 { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
1919 { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
1920 { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */
1923 static const struct sh_minor_opcode sh_opcodec[] =
1925 { MAP (sh_opcodec0), 0xff00 }
1928 static const struct sh_opcode sh_opcoded0[] =
1930 { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */
1933 static const struct sh_minor_opcode sh_opcoded[] =
1935 { MAP (sh_opcoded0), 0xf000 }
1938 static const struct sh_opcode sh_opcodee0[] =
1940 { 0xe000, SETS1 } /* mov #imm,rn */
1943 static const struct sh_minor_opcode sh_opcodee[] =
1945 { MAP (sh_opcodee0), 0xf000 }
1948 static const struct sh_opcode sh_opcodef0[] =
1950 { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */
1951 { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */
1952 { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */
1953 { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */
1954 { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */
1955 { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */
1956 { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
1957 { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */
1958 { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */
1959 { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */
1960 { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */
1961 { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
1962 { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */
1963 { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
1966 static const struct sh_opcode sh_opcodef1[] =
1968 { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */
1969 { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */
1970 { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */
1971 { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */
1972 { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */
1973 { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */
1974 { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */
1975 { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */
1976 { 0xf08d, SETSF1 }, /* fldi0 fn */
1977 { 0xf09d, SETSF1 } /* fldi1 fn */
1980 static const struct sh_minor_opcode sh_opcodef[] =
1982 { MAP (sh_opcodef0), 0xf00f },
1983 { MAP (sh_opcodef1), 0xf0ff }
1986 static struct sh_major_opcode sh_opcodes[] =
1988 { MAP (sh_opcode0) },
1989 { MAP (sh_opcode1) },
1990 { MAP (sh_opcode2) },
1991 { MAP (sh_opcode3) },
1992 { MAP (sh_opcode4) },
1993 { MAP (sh_opcode5) },
1994 { MAP (sh_opcode6) },
1995 { MAP (sh_opcode7) },
1996 { MAP (sh_opcode8) },
1997 { MAP (sh_opcode9) },
1998 { MAP (sh_opcodea) },
1999 { MAP (sh_opcodeb) },
2000 { MAP (sh_opcodec) },
2001 { MAP (sh_opcoded) },
2002 { MAP (sh_opcodee) },
2003 { MAP (sh_opcodef) }
2006 /* The double data transfer / parallel processing insns are not
2007 described here. This will cause sh_align_load_span to leave them alone. */
2009 static const struct sh_opcode sh_dsp_opcodef0[] =
2011 { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */
2012 { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2013 { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */
2014 { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */
2015 { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */
2016 { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2017 { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2018 { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2021 static const struct sh_minor_opcode sh_dsp_opcodef[] =
2023 { MAP (sh_dsp_opcodef0), 0xfc0d }
2026 /* Given an instruction, return a pointer to the corresponding
2027 sh_opcode structure. Return NULL if the instruction is not
2028 recognized. */
2030 static const struct sh_opcode *
2031 sh_insn_info (unsigned int insn)
2033 const struct sh_major_opcode *maj;
2034 const struct sh_minor_opcode *min, *minend;
2036 maj = &sh_opcodes[(insn & 0xf000) >> 12];
2037 min = maj->minor_opcodes;
2038 minend = min + maj->count;
2039 for (; min < minend; min++)
2041 unsigned int l;
2042 const struct sh_opcode *op, *opend;
2044 l = insn & min->mask;
2045 op = min->opcodes;
2046 opend = op + min->count;
2048 /* Since the opcodes tables are sorted, we could use a binary
2049 search here if the count were above some cutoff value. */
2050 for (; op < opend; op++)
2051 if (op->opcode == l)
2052 return op;
2055 return NULL;
2058 /* See whether an instruction uses a general purpose register. */
2060 static bool
2061 sh_insn_uses_reg (unsigned int insn,
2062 const struct sh_opcode *op,
2063 unsigned int reg)
2065 unsigned int f;
2067 f = op->flags;
2069 if ((f & USES1) != 0
2070 && USES1_REG (insn) == reg)
2071 return true;
2072 if ((f & USES2) != 0
2073 && USES2_REG (insn) == reg)
2074 return true;
2075 if ((f & USESR0) != 0
2076 && reg == 0)
2077 return true;
2078 if ((f & USESAS) && reg == USESAS_REG (insn))
2079 return true;
2080 if ((f & USESR8) && reg == 8)
2081 return true;
2083 return false;
2086 /* See whether an instruction sets a general purpose register. */
2088 static bool
2089 sh_insn_sets_reg (unsigned int insn,
2090 const struct sh_opcode *op,
2091 unsigned int reg)
2093 unsigned int f;
2095 f = op->flags;
2097 if ((f & SETS1) != 0
2098 && SETS1_REG (insn) == reg)
2099 return true;
2100 if ((f & SETS2) != 0
2101 && SETS2_REG (insn) == reg)
2102 return true;
2103 if ((f & SETSR0) != 0
2104 && reg == 0)
2105 return true;
2106 if ((f & SETSAS) && reg == SETSAS_REG (insn))
2107 return true;
2109 return false;
2112 /* See whether an instruction uses or sets a general purpose register */
2114 static bool
2115 sh_insn_uses_or_sets_reg (unsigned int insn,
2116 const struct sh_opcode *op,
2117 unsigned int reg)
2119 if (sh_insn_uses_reg (insn, op, reg))
2120 return true;
2122 return sh_insn_sets_reg (insn, op, reg);
2125 /* See whether an instruction uses a floating point register. */
2127 static bool
2128 sh_insn_uses_freg (unsigned int insn,
2129 const struct sh_opcode *op,
2130 unsigned int freg)
2132 unsigned int f;
2134 f = op->flags;
2136 /* We can't tell if this is a double-precision insn, so just play safe
2137 and assume that it might be. So not only have we test FREG against
2138 itself, but also even FREG against FREG+1 - if the using insn uses
2139 just the low part of a double precision value - but also an odd
2140 FREG against FREG-1 - if the setting insn sets just the low part
2141 of a double precision value.
2142 So what this all boils down to is that we have to ignore the lowest
2143 bit of the register number. */
2145 if ((f & USESF1) != 0
2146 && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
2147 return true;
2148 if ((f & USESF2) != 0
2149 && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
2150 return true;
2151 if ((f & USESF0) != 0
2152 && freg == 0)
2153 return true;
2155 return false;
2158 /* See whether an instruction sets a floating point register. */
2160 static bool
2161 sh_insn_sets_freg (unsigned int insn,
2162 const struct sh_opcode *op,
2163 unsigned int freg)
2165 unsigned int f;
2167 f = op->flags;
2169 /* We can't tell if this is a double-precision insn, so just play safe
2170 and assume that it might be. So not only have we test FREG against
2171 itself, but also even FREG against FREG+1 - if the using insn uses
2172 just the low part of a double precision value - but also an odd
2173 FREG against FREG-1 - if the setting insn sets just the low part
2174 of a double precision value.
2175 So what this all boils down to is that we have to ignore the lowest
2176 bit of the register number. */
2178 if ((f & SETSF1) != 0
2179 && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
2180 return true;
2182 return false;
2185 /* See whether an instruction uses or sets a floating point register */
2187 static bool
2188 sh_insn_uses_or_sets_freg (unsigned int insn,
2189 const struct sh_opcode *op,
2190 unsigned int reg)
2192 if (sh_insn_uses_freg (insn, op, reg))
2193 return true;
2195 return sh_insn_sets_freg (insn, op, reg);
2198 /* See whether instructions I1 and I2 conflict, assuming I1 comes
2199 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
2200 This should return TRUE if there is a conflict, or FALSE if the
2201 instructions can be swapped safely. */
2203 static bool
2204 sh_insns_conflict (unsigned int i1,
2205 const struct sh_opcode *op1,
2206 unsigned int i2,
2207 const struct sh_opcode *op2)
2209 unsigned int f1, f2;
2211 f1 = op1->flags;
2212 f2 = op2->flags;
2214 /* Load of fpscr conflicts with floating point operations.
2215 FIXME: shouldn't test raw opcodes here. */
2216 if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2217 || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
2218 return true;
2220 if ((f1 & (BRANCH | DELAY)) != 0
2221 || (f2 & (BRANCH | DELAY)) != 0)
2222 return true;
2224 if (((f1 | f2) & SETSSP)
2225 && (f1 & (SETSSP | USESSP))
2226 && (f2 & (SETSSP | USESSP)))
2227 return true;
2229 if ((f1 & SETS1) != 0
2230 && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
2231 return true;
2232 if ((f1 & SETS2) != 0
2233 && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
2234 return true;
2235 if ((f1 & SETSR0) != 0
2236 && sh_insn_uses_or_sets_reg (i2, op2, 0))
2237 return true;
2238 if ((f1 & SETSAS)
2239 && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
2240 return true;
2241 if ((f1 & SETSF1) != 0
2242 && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
2243 return true;
2245 if ((f2 & SETS1) != 0
2246 && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
2247 return true;
2248 if ((f2 & SETS2) != 0
2249 && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
2250 return true;
2251 if ((f2 & SETSR0) != 0
2252 && sh_insn_uses_or_sets_reg (i1, op1, 0))
2253 return true;
2254 if ((f2 & SETSAS)
2255 && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
2256 return true;
2257 if ((f2 & SETSF1) != 0
2258 && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
2259 return true;
2261 /* The instructions do not conflict. */
2262 return false;
2265 /* I1 is a load instruction, and I2 is some other instruction. Return
2266 TRUE if I1 loads a register which I2 uses. */
2268 static bool
2269 sh_load_use (unsigned int i1,
2270 const struct sh_opcode *op1,
2271 unsigned int i2,
2272 const struct sh_opcode *op2)
2274 unsigned int f1;
2276 f1 = op1->flags;
2278 if ((f1 & LOAD) == 0)
2279 return false;
2281 /* If both SETS1 and SETSSP are set, that means a load to a special
2282 register using postincrement addressing mode, which we don't care
2283 about here. */
2284 if ((f1 & SETS1) != 0
2285 && (f1 & SETSSP) == 0
2286 && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
2287 return true;
2289 if ((f1 & SETSR0) != 0
2290 && sh_insn_uses_reg (i2, op2, 0))
2291 return true;
2293 if ((f1 & SETSF1) != 0
2294 && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
2295 return true;
2297 return false;
2300 /* Try to align loads and stores within a span of memory. This is
2301 called by both the ELF and the COFF sh targets. ABFD and SEC are
2302 the BFD and section we are examining. CONTENTS is the contents of
2303 the section. SWAP is the routine to call to swap two instructions.
2304 RELOCS is a pointer to the internal relocation information, to be
2305 passed to SWAP. PLABEL is a pointer to the current label in a
2306 sorted list of labels; LABEL_END is the end of the list. START and
2307 STOP are the range of memory to examine. If a swap is made,
2308 *PSWAPPED is set to TRUE. */
2310 #ifdef COFF_WITH_PE
2311 static
2312 #endif
2313 bool
2314 _bfd_sh_align_load_span (bfd *abfd,
2315 asection *sec,
2316 bfd_byte *contents,
2317 bool (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
2318 void * relocs,
2319 bfd_vma **plabel,
2320 bfd_vma *label_end,
2321 bfd_vma start,
2322 bfd_vma stop,
2323 bool *pswapped)
2325 int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2326 || abfd->arch_info->mach == bfd_mach_sh3_dsp);
2327 bfd_vma i;
2329 /* The SH4 has a Harvard architecture, hence aligning loads is not
2330 desirable. In fact, it is counter-productive, since it interferes
2331 with the schedules generated by the compiler. */
2332 if (abfd->arch_info->mach == bfd_mach_sh4)
2333 return true;
2335 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2336 instructions. */
2337 if (dsp)
2339 sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2340 sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0];
2343 /* Instructions should be aligned on 2 byte boundaries. */
2344 if ((start & 1) == 1)
2345 ++start;
2347 /* Now look through the unaligned addresses. */
2348 i = start;
2349 if ((i & 2) == 0)
2350 i += 2;
2351 for (; i < stop; i += 4)
2353 unsigned int insn;
2354 const struct sh_opcode *op;
2355 unsigned int prev_insn = 0;
2356 const struct sh_opcode *prev_op = NULL;
2358 insn = bfd_get_16 (abfd, contents + i);
2359 op = sh_insn_info (insn);
2360 if (op == NULL
2361 || (op->flags & (LOAD | STORE)) == 0)
2362 continue;
2364 /* This is a load or store which is not on a four byte boundary. */
2366 while (*plabel < label_end && **plabel < i)
2367 ++*plabel;
2369 if (i > start)
2371 prev_insn = bfd_get_16 (abfd, contents + i - 2);
2372 /* If INSN is the field b of a parallel processing insn, it is not
2373 a load / store after all. Note that the test here might mistake
2374 the field_b of a pcopy insn for the starting code of a parallel
2375 processing insn; this might miss a swapping opportunity, but at
2376 least we're on the safe side. */
2377 if (dsp && (prev_insn & 0xfc00) == 0xf800)
2378 continue;
2380 /* Check if prev_insn is actually the field b of a parallel
2381 processing insn. Again, this can give a spurious match
2382 after a pcopy. */
2383 if (dsp && i - 2 > start)
2385 unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
2387 if ((pprev_insn & 0xfc00) == 0xf800)
2388 prev_op = NULL;
2389 else
2390 prev_op = sh_insn_info (prev_insn);
2392 else
2393 prev_op = sh_insn_info (prev_insn);
2395 /* If the load/store instruction is in a delay slot, we
2396 can't swap. */
2397 if (prev_op == NULL
2398 || (prev_op->flags & DELAY) != 0)
2399 continue;
2401 if (i > start
2402 && (*plabel >= label_end || **plabel != i)
2403 && prev_op != NULL
2404 && (prev_op->flags & (LOAD | STORE)) == 0
2405 && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2407 bool ok;
2409 /* The load/store instruction does not have a label, and
2410 there is a previous instruction; PREV_INSN is not
2411 itself a load/store instruction, and PREV_INSN and
2412 INSN do not conflict. */
2414 ok = true;
2416 if (i >= start + 4)
2418 unsigned int prev2_insn;
2419 const struct sh_opcode *prev2_op;
2421 prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2422 prev2_op = sh_insn_info (prev2_insn);
2424 /* If the instruction before PREV_INSN has a delay
2425 slot--that is, PREV_INSN is in a delay slot--we
2426 can not swap. */
2427 if (prev2_op == NULL
2428 || (prev2_op->flags & DELAY) != 0)
2429 ok = false;
2431 /* If the instruction before PREV_INSN is a load,
2432 and it sets a register which INSN uses, then
2433 putting INSN immediately after PREV_INSN will
2434 cause a pipeline bubble, so there is no point to
2435 making the swap. */
2436 if (ok
2437 && (prev2_op->flags & LOAD) != 0
2438 && sh_load_use (prev2_insn, prev2_op, insn, op))
2439 ok = false;
2442 if (ok)
2444 if (! (*swap) (abfd, sec, relocs, contents, i - 2))
2445 return false;
2446 *pswapped = true;
2447 continue;
2451 while (*plabel < label_end && **plabel < i + 2)
2452 ++*plabel;
2454 if (i + 2 < stop
2455 && (*plabel >= label_end || **plabel != i + 2))
2457 unsigned int next_insn;
2458 const struct sh_opcode *next_op;
2460 /* There is an instruction after the load/store
2461 instruction, and it does not have a label. */
2462 next_insn = bfd_get_16 (abfd, contents + i + 2);
2463 next_op = sh_insn_info (next_insn);
2464 if (next_op != NULL
2465 && (next_op->flags & (LOAD | STORE)) == 0
2466 && ! sh_insns_conflict (insn, op, next_insn, next_op))
2468 bool ok;
2470 /* NEXT_INSN is not itself a load/store instruction,
2471 and it does not conflict with INSN. */
2473 ok = true;
2475 /* If PREV_INSN is a load, and it sets a register
2476 which NEXT_INSN uses, then putting NEXT_INSN
2477 immediately after PREV_INSN will cause a pipeline
2478 bubble, so there is no reason to make this swap. */
2479 if (prev_op != NULL
2480 && (prev_op->flags & LOAD) != 0
2481 && sh_load_use (prev_insn, prev_op, next_insn, next_op))
2482 ok = false;
2484 /* If INSN is a load, and it sets a register which
2485 the insn after NEXT_INSN uses, then doing the
2486 swap will cause a pipeline bubble, so there is no
2487 reason to make the swap. However, if the insn
2488 after NEXT_INSN is itself a load or store
2489 instruction, then it is misaligned, so
2490 optimistically hope that it will be swapped
2491 itself, and just live with the pipeline bubble if
2492 it isn't. */
2493 if (ok
2494 && i + 4 < stop
2495 && (op->flags & LOAD) != 0)
2497 unsigned int next2_insn;
2498 const struct sh_opcode *next2_op;
2500 next2_insn = bfd_get_16 (abfd, contents + i + 4);
2501 next2_op = sh_insn_info (next2_insn);
2502 if (next2_op == NULL
2503 || ((next2_op->flags & (LOAD | STORE)) == 0
2504 && sh_load_use (insn, op, next2_insn, next2_op)))
2505 ok = false;
2508 if (ok)
2510 if (! (*swap) (abfd, sec, relocs, contents, i))
2511 return false;
2512 *pswapped = true;
2513 continue;
2519 return true;
2521 #endif /* not COFF_IMAGE_WITH_PE */
2523 /* Swap two SH instructions. */
2525 static bool
2526 sh_swap_insns (bfd * abfd,
2527 asection * sec,
2528 void * relocs,
2529 bfd_byte * contents,
2530 bfd_vma addr)
2532 struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2533 unsigned short i1, i2;
2534 struct internal_reloc *irel, *irelend;
2536 /* Swap the instructions themselves. */
2537 i1 = bfd_get_16 (abfd, contents + addr);
2538 i2 = bfd_get_16 (abfd, contents + addr + 2);
2539 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2540 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
2542 /* Adjust all reloc addresses. */
2543 irelend = internal_relocs + sec->reloc_count;
2544 for (irel = internal_relocs; irel < irelend; irel++)
2546 int type, add;
2548 /* There are a few special types of relocs that we don't want to
2549 adjust. These relocs do not apply to the instruction itself,
2550 but are only associated with the address. */
2551 type = irel->r_type;
2552 if (type == R_SH_ALIGN
2553 || type == R_SH_CODE
2554 || type == R_SH_DATA
2555 || type == R_SH_LABEL)
2556 continue;
2558 /* If an R_SH_USES reloc points to one of the addresses being
2559 swapped, we must adjust it. It would be incorrect to do this
2560 for a jump, though, since we want to execute both
2561 instructions after the jump. (We have avoided swapping
2562 around a label, so the jump will not wind up executing an
2563 instruction it shouldn't). */
2564 if (type == R_SH_USES)
2566 bfd_vma off;
2568 off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2569 if (off == addr)
2570 irel->r_offset += 2;
2571 else if (off == addr + 2)
2572 irel->r_offset -= 2;
2575 if (irel->r_vaddr - sec->vma == addr)
2577 irel->r_vaddr += 2;
2578 add = -2;
2580 else if (irel->r_vaddr - sec->vma == addr + 2)
2582 irel->r_vaddr -= 2;
2583 add = 2;
2585 else
2586 add = 0;
2588 if (add != 0)
2590 bfd_byte *loc;
2591 unsigned short insn, oinsn;
2592 bool overflow;
2594 loc = contents + irel->r_vaddr - sec->vma;
2595 overflow = false;
2596 switch (type)
2598 default:
2599 break;
2601 case R_SH_PCDISP8BY2:
2602 case R_SH_PCRELIMM8BY2:
2603 insn = bfd_get_16 (abfd, loc);
2604 oinsn = insn;
2605 insn += add / 2;
2606 if ((oinsn & 0xff00) != (insn & 0xff00))
2607 overflow = true;
2608 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2609 break;
2611 case R_SH_PCDISP:
2612 insn = bfd_get_16 (abfd, loc);
2613 oinsn = insn;
2614 insn += add / 2;
2615 if ((oinsn & 0xf000) != (insn & 0xf000))
2616 overflow = true;
2617 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2618 break;
2620 case R_SH_PCRELIMM8BY4:
2621 /* This reloc ignores the least significant 3 bits of
2622 the program counter before adding in the offset.
2623 This means that if ADDR is at an even address, the
2624 swap will not affect the offset. If ADDR is an at an
2625 odd address, then the instruction will be crossing a
2626 four byte boundary, and must be adjusted. */
2627 if ((addr & 3) != 0)
2629 insn = bfd_get_16 (abfd, loc);
2630 oinsn = insn;
2631 insn += add / 2;
2632 if ((oinsn & 0xff00) != (insn & 0xff00))
2633 overflow = true;
2634 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2637 break;
2640 if (overflow)
2642 _bfd_error_handler
2643 /* xgettext: c-format */
2644 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
2645 abfd, (uint64_t) irel->r_vaddr);
2646 bfd_set_error (bfd_error_bad_value);
2647 return false;
2652 return true;
2655 /* Look for loads and stores which we can align to four byte
2656 boundaries. See the longer comment above sh_relax_section for why
2657 this is desirable. This sets *PSWAPPED if some instruction was
2658 swapped. */
2660 static bool
2661 sh_align_loads (bfd *abfd,
2662 asection *sec,
2663 struct internal_reloc *internal_relocs,
2664 bfd_byte *contents,
2665 bool *pswapped)
2667 struct internal_reloc *irel, *irelend;
2668 bfd_vma *labels = NULL;
2669 bfd_vma *label, *label_end;
2670 bfd_size_type amt;
2672 *pswapped = false;
2674 irelend = internal_relocs + sec->reloc_count;
2676 /* Get all the addresses with labels on them. */
2677 amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2678 labels = (bfd_vma *) bfd_malloc (amt);
2679 if (labels == NULL)
2680 goto error_return;
2681 label_end = labels;
2682 for (irel = internal_relocs; irel < irelend; irel++)
2684 if (irel->r_type == R_SH_LABEL)
2686 *label_end = irel->r_vaddr - sec->vma;
2687 ++label_end;
2691 /* Note that the assembler currently always outputs relocs in
2692 address order. If that ever changes, this code will need to sort
2693 the label values and the relocs. */
2695 label = labels;
2697 for (irel = internal_relocs; irel < irelend; irel++)
2699 bfd_vma start, stop;
2701 if (irel->r_type != R_SH_CODE)
2702 continue;
2704 start = irel->r_vaddr - sec->vma;
2706 for (irel++; irel < irelend; irel++)
2707 if (irel->r_type == R_SH_DATA)
2708 break;
2709 if (irel < irelend)
2710 stop = irel->r_vaddr - sec->vma;
2711 else
2712 stop = sec->size;
2714 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2715 internal_relocs, &label,
2716 label_end, start, stop, pswapped))
2717 goto error_return;
2720 free (labels);
2722 return true;
2724 error_return:
2725 free (labels);
2726 return false;
2729 /* This is a modification of _bfd_coff_generic_relocate_section, which
2730 will handle SH relaxing. */
2732 static bool
2733 sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
2734 struct bfd_link_info *info,
2735 bfd *input_bfd,
2736 asection *input_section,
2737 bfd_byte *contents,
2738 struct internal_reloc *relocs,
2739 struct internal_syment *syms,
2740 asection **sections)
2742 struct internal_reloc *rel;
2743 struct internal_reloc *relend;
2745 rel = relocs;
2746 relend = rel + input_section->reloc_count;
2747 for (; rel < relend; rel++)
2749 long symndx;
2750 struct coff_link_hash_entry *h;
2751 struct internal_syment *sym;
2752 bfd_vma addend;
2753 bfd_vma val;
2754 reloc_howto_type *howto;
2755 bfd_reloc_status_type rstat;
2757 /* Almost all relocs have to do with relaxing. If any work must
2758 be done for them, it has been done in sh_relax_section. */
2759 if (rel->r_type != R_SH_IMM32
2760 #ifdef COFF_WITH_PE
2761 && rel->r_type != R_SH_IMM32CE
2762 && rel->r_type != R_SH_IMAGEBASE
2763 #endif
2764 && rel->r_type != R_SH_PCDISP)
2765 continue;
2767 symndx = rel->r_symndx;
2769 if (symndx == -1)
2771 h = NULL;
2772 sym = NULL;
2774 else
2776 if (symndx < 0
2777 || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2779 _bfd_error_handler
2780 /* xgettext: c-format */
2781 (_("%pB: illegal symbol index %ld in relocs"),
2782 input_bfd, symndx);
2783 bfd_set_error (bfd_error_bad_value);
2784 return false;
2786 h = obj_coff_sym_hashes (input_bfd)[symndx];
2787 sym = syms + symndx;
2790 if (sym != NULL && sym->n_scnum != 0)
2791 addend = - sym->n_value;
2792 else
2793 addend = 0;
2795 if (rel->r_type == R_SH_PCDISP)
2796 addend -= 4;
2798 if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2799 howto = NULL;
2800 else
2801 howto = &sh_coff_howtos[rel->r_type];
2803 if (howto == NULL)
2805 bfd_set_error (bfd_error_bad_value);
2806 return false;
2809 #ifdef COFF_WITH_PE
2810 if (rel->r_type == R_SH_IMAGEBASE)
2811 addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2812 #endif
2814 val = 0;
2816 if (h == NULL)
2818 asection *sec;
2820 /* There is nothing to do for an internal PCDISP reloc. */
2821 if (rel->r_type == R_SH_PCDISP)
2822 continue;
2824 if (symndx == -1)
2826 sec = bfd_abs_section_ptr;
2827 val = 0;
2829 else
2831 sec = sections[symndx];
2832 val = (sec->output_section->vma
2833 + sec->output_offset
2834 + sym->n_value
2835 - sec->vma);
2838 else
2840 if (h->root.type == bfd_link_hash_defined
2841 || h->root.type == bfd_link_hash_defweak)
2843 asection *sec;
2845 sec = h->root.u.def.section;
2846 val = (h->root.u.def.value
2847 + sec->output_section->vma
2848 + sec->output_offset);
2850 else if (! bfd_link_relocatable (info))
2851 (*info->callbacks->undefined_symbol)
2852 (info, h->root.root.string, input_bfd, input_section,
2853 rel->r_vaddr - input_section->vma, true);
2856 rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2857 contents,
2858 rel->r_vaddr - input_section->vma,
2859 val, addend);
2861 switch (rstat)
2863 default:
2864 abort ();
2865 case bfd_reloc_ok:
2866 break;
2867 case bfd_reloc_overflow:
2869 const char *name;
2870 char buf[SYMNMLEN + 1];
2872 if (symndx == -1)
2873 name = "*ABS*";
2874 else if (h != NULL)
2875 name = NULL;
2876 else if (sym->_n._n_n._n_zeroes == 0
2877 && sym->_n._n_n._n_offset != 0)
2878 name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
2879 else
2881 strncpy (buf, sym->_n._n_name, SYMNMLEN);
2882 buf[SYMNMLEN] = '\0';
2883 name = buf;
2886 (*info->callbacks->reloc_overflow)
2887 (info, (h ? &h->root : NULL), name, howto->name,
2888 (bfd_vma) 0, input_bfd, input_section,
2889 rel->r_vaddr - input_section->vma);
2894 return true;
2897 /* This is a version of bfd_generic_get_relocated_section_contents
2898 which uses sh_relocate_section. */
2900 static bfd_byte *
2901 sh_coff_get_relocated_section_contents (bfd *output_bfd,
2902 struct bfd_link_info *link_info,
2903 struct bfd_link_order *link_order,
2904 bfd_byte *data,
2905 bool relocatable,
2906 asymbol **symbols)
2908 asection *input_section = link_order->u.indirect.section;
2909 bfd *input_bfd = input_section->owner;
2910 asection **sections = NULL;
2911 struct internal_reloc *internal_relocs = NULL;
2912 struct internal_syment *internal_syms = NULL;
2914 /* We only need to handle the case of relaxing, or of having a
2915 particular set of section contents, specially. */
2916 if (relocatable
2917 || coff_section_data (input_bfd, input_section) == NULL
2918 || coff_section_data (input_bfd, input_section)->contents == NULL)
2919 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2920 link_order, data,
2921 relocatable,
2922 symbols);
2924 memcpy (data, coff_section_data (input_bfd, input_section)->contents,
2925 (size_t) input_section->size);
2927 if ((input_section->flags & SEC_RELOC) != 0
2928 && input_section->reloc_count > 0)
2930 bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2931 bfd_byte *esym, *esymend;
2932 struct internal_syment *isymp;
2933 asection **secpp;
2934 bfd_size_type amt;
2936 if (! _bfd_coff_get_external_symbols (input_bfd))
2937 goto error_return;
2939 internal_relocs = (_bfd_coff_read_internal_relocs
2940 (input_bfd, input_section, false, (bfd_byte *) NULL,
2941 false, (struct internal_reloc *) NULL));
2942 if (internal_relocs == NULL)
2943 goto error_return;
2945 amt = obj_raw_syment_count (input_bfd);
2946 amt *= sizeof (struct internal_syment);
2947 internal_syms = (struct internal_syment *) bfd_malloc (amt);
2948 if (internal_syms == NULL)
2949 goto error_return;
2951 amt = obj_raw_syment_count (input_bfd);
2952 amt *= sizeof (asection *);
2953 sections = (asection **) bfd_malloc (amt);
2954 if (sections == NULL)
2955 goto error_return;
2957 isymp = internal_syms;
2958 secpp = sections;
2959 esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2960 esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2961 while (esym < esymend)
2963 bfd_coff_swap_sym_in (input_bfd, esym, isymp);
2965 if (isymp->n_scnum != 0)
2966 *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2967 else
2969 if (isymp->n_value == 0)
2970 *secpp = bfd_und_section_ptr;
2971 else
2972 *secpp = bfd_com_section_ptr;
2975 esym += (isymp->n_numaux + 1) * symesz;
2976 secpp += isymp->n_numaux + 1;
2977 isymp += isymp->n_numaux + 1;
2980 if (! sh_relocate_section (output_bfd, link_info, input_bfd,
2981 input_section, data, internal_relocs,
2982 internal_syms, sections))
2983 goto error_return;
2985 free (sections);
2986 sections = NULL;
2987 free (internal_syms);
2988 internal_syms = NULL;
2989 free (internal_relocs);
2990 internal_relocs = NULL;
2993 return data;
2995 error_return:
2996 free (internal_relocs);
2997 free (internal_syms);
2998 free (sections);
2999 return NULL;
3002 /* The target vectors. */
3004 #ifndef TARGET_SHL_SYM
3005 CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
3006 #endif
3008 #ifdef TARGET_SHL_SYM
3009 #define TARGET_SYM TARGET_SHL_SYM
3010 #else
3011 #define TARGET_SYM sh_coff_le_vec
3012 #endif
3014 #ifndef TARGET_SHL_NAME
3015 #define TARGET_SHL_NAME "coff-shl"
3016 #endif
3018 #ifdef COFF_WITH_PE
3019 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3020 SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
3021 #else
3022 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3023 0, '_', NULL, COFF_SWAP_TABLE)
3024 #endif
3026 #ifndef TARGET_SHL_SYM
3028 /* Some people want versions of the SH COFF target which do not align
3029 to 16 byte boundaries. We implement that by adding a couple of new
3030 target vectors. These are just like the ones above, but they
3031 change the default section alignment. To generate them in the
3032 assembler, use -small. To use them in the linker, use -b
3033 coff-sh{l}-small and -oformat coff-sh{l}-small.
3035 Yes, this is a horrible hack. A general solution for setting
3036 section alignment in COFF is rather complex. ELF handles this
3037 correctly. */
3039 /* Only recognize the small versions if the target was not defaulted.
3040 Otherwise we won't recognize the non default endianness. */
3042 static bfd_cleanup
3043 coff_small_object_p (bfd *abfd)
3045 if (abfd->target_defaulted)
3047 bfd_set_error (bfd_error_wrong_format);
3048 return NULL;
3050 return coff_object_p (abfd);
3053 /* Set the section alignment for the small versions. */
3055 static bool
3056 coff_small_new_section_hook (bfd *abfd, asection *section)
3058 if (! coff_new_section_hook (abfd, section))
3059 return false;
3061 /* We must align to at least a four byte boundary, because longword
3062 accesses must be on a four byte boundary. */
3063 if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3064 section->alignment_power = 2;
3066 return true;
3069 /* This is copied from bfd_coff_std_swap_table so that we can change
3070 the default section alignment power. */
3072 static bfd_coff_backend_data bfd_coff_small_swap_table =
3074 coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3075 coff_swap_aux_out, coff_swap_sym_out,
3076 coff_swap_lineno_out, coff_swap_reloc_out,
3077 coff_swap_filehdr_out, coff_swap_aouthdr_out,
3078 coff_swap_scnhdr_out,
3079 FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
3080 #ifdef COFF_LONG_FILENAMES
3081 true,
3082 #else
3083 false,
3084 #endif
3085 COFF_DEFAULT_LONG_SECTION_NAMES,
3087 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3088 true,
3089 #else
3090 false,
3091 #endif
3092 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3094 #else
3096 #endif
3097 32768,
3098 coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3099 coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3100 coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3101 coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3102 coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
3103 coff_classify_symbol, coff_compute_section_file_positions,
3104 coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3105 coff_adjust_symndx, coff_link_add_one_symbol,
3106 coff_link_output_has_begun, coff_final_link_postscript,
3107 bfd_pe_print_pdata
3110 #define coff_small_close_and_cleanup \
3111 coff_close_and_cleanup
3112 #define coff_small_bfd_free_cached_info \
3113 coff_bfd_free_cached_info
3114 #define coff_small_get_section_contents \
3115 coff_get_section_contents
3116 #define coff_small_get_section_contents_in_window \
3117 coff_get_section_contents_in_window
3119 extern const bfd_target sh_coff_small_le_vec;
3121 const bfd_target sh_coff_small_vec =
3123 "coff-sh-small", /* name */
3124 bfd_target_coff_flavour,
3125 BFD_ENDIAN_BIG, /* data byte order is big */
3126 BFD_ENDIAN_BIG, /* header byte order is big */
3128 (HAS_RELOC | EXEC_P /* object flags */
3129 | HAS_LINENO | HAS_DEBUG
3130 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3132 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3133 '_', /* leading symbol underscore */
3134 '/', /* ar_pad_char */
3135 15, /* ar_max_namelen */
3136 0, /* match priority. */
3137 TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols. */
3138 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3139 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3140 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3141 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3142 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3143 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3145 { /* bfd_check_format */
3146 _bfd_dummy_target,
3147 coff_small_object_p,
3148 bfd_generic_archive_p,
3149 _bfd_dummy_target
3151 { /* bfd_set_format */
3152 _bfd_bool_bfd_false_error,
3153 coff_mkobject,
3154 _bfd_generic_mkarchive,
3155 _bfd_bool_bfd_false_error
3157 { /* bfd_write_contents */
3158 _bfd_bool_bfd_false_error,
3159 coff_write_object_contents,
3160 _bfd_write_archive_contents,
3161 _bfd_bool_bfd_false_error
3164 BFD_JUMP_TABLE_GENERIC (coff_small),
3165 BFD_JUMP_TABLE_COPY (coff),
3166 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3167 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3168 BFD_JUMP_TABLE_SYMBOLS (coff),
3169 BFD_JUMP_TABLE_RELOCS (coff),
3170 BFD_JUMP_TABLE_WRITE (coff),
3171 BFD_JUMP_TABLE_LINK (coff),
3172 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3174 &sh_coff_small_le_vec,
3176 &bfd_coff_small_swap_table
3179 const bfd_target sh_coff_small_le_vec =
3181 "coff-shl-small", /* name */
3182 bfd_target_coff_flavour,
3183 BFD_ENDIAN_LITTLE, /* data byte order is little */
3184 BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/
3186 (HAS_RELOC | EXEC_P /* object flags */
3187 | HAS_LINENO | HAS_DEBUG
3188 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3190 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3191 '_', /* leading symbol underscore */
3192 '/', /* ar_pad_char */
3193 15, /* ar_max_namelen */
3194 0, /* match priority. */
3195 TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols. */
3196 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3197 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3198 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3199 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3200 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3201 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3203 { /* bfd_check_format */
3204 _bfd_dummy_target,
3205 coff_small_object_p,
3206 bfd_generic_archive_p,
3207 _bfd_dummy_target
3209 { /* bfd_set_format */
3210 _bfd_bool_bfd_false_error,
3211 coff_mkobject,
3212 _bfd_generic_mkarchive,
3213 _bfd_bool_bfd_false_error
3215 { /* bfd_write_contents */
3216 _bfd_bool_bfd_false_error,
3217 coff_write_object_contents,
3218 _bfd_write_archive_contents,
3219 _bfd_bool_bfd_false_error
3222 BFD_JUMP_TABLE_GENERIC (coff_small),
3223 BFD_JUMP_TABLE_COPY (coff),
3224 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3225 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3226 BFD_JUMP_TABLE_SYMBOLS (coff),
3227 BFD_JUMP_TABLE_RELOCS (coff),
3228 BFD_JUMP_TABLE_WRITE (coff),
3229 BFD_JUMP_TABLE_LINK (coff),
3230 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3232 &sh_coff_small_vec,
3234 &bfd_coff_small_swap_table
3236 #endif