1 /* frags.c - manage frags -
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GAS, the GNU Assembler.
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 extern fragS zero_address_frag
;
26 extern fragS predefined_address_frag
;
28 static int totalfrags
;
37 clear_frag_count (void)
42 /* Initialization for frag routines. */
47 zero_address_frag
.fr_type
= rs_fill
;
48 predefined_address_frag
.fr_type
= rs_fill
;
51 /* Check that we're not trying to assemble into a section that can't
52 allocate frags (currently, this is only possible in the absolute
53 section), or into an mri common. */
56 frag_alloc_check (const struct obstack
*ob
)
58 if (ob
->chunk_size
== 0)
60 as_bad (_("attempt to allocate data in absolute section"));
61 subseg_set (text_section
, 0);
64 if (mri_common_symbol
!= NULL
)
66 as_bad (_("attempt to allocate data in common section"));
67 mri_common_symbol
= NULL
;
71 /* Allocate a frag on the specified obstack.
72 Call this routine from everywhere else, so that all the weird alignment
73 hackery can be done in just one place. */
76 frag_alloc (struct obstack
*ob
)
81 (void) obstack_alloc (ob
, 0);
82 oalign
= obstack_alignment_mask (ob
);
83 obstack_alignment_mask (ob
) = 0;
84 ptr
= (fragS
*) obstack_alloc (ob
, SIZEOF_STRUCT_FRAG
);
85 obstack_alignment_mask (ob
) = oalign
;
86 memset (ptr
, 0, SIZEOF_STRUCT_FRAG
);
91 /* Try to augment current frag by nchars chars.
92 If there is no room, close off the current frag with a ".fill 0"
93 and begin a new frag. Then loop until the new frag has at least
94 nchars chars available. Does not set up any fields in frag_now. */
97 frag_grow (size_t nchars
)
99 if (obstack_room (&frchain_now
->frch_obstack
) < nchars
)
104 /* Try to allocate a bit more than needed right now. But don't do
105 this if we would waste too much memory. Especially necessary
106 for extremely big (like 2GB initialized) frags. */
107 if (nchars
< 0x10000)
110 newc
= nchars
+ 0x10000;
111 newc
+= SIZEOF_STRUCT_FRAG
;
113 /* Check for possible overflow. */
115 as_fatal (ngettext ("can't extend frag %lu char",
116 "can't extend frag %lu chars",
117 (unsigned long) nchars
),
118 (unsigned long) nchars
);
120 /* Force to allocate at least NEWC bytes, but not less than the
122 oldc
= obstack_chunk_size (&frchain_now
->frch_obstack
);
124 obstack_chunk_size (&frchain_now
->frch_obstack
) = newc
;
126 while (obstack_room (&frchain_now
->frch_obstack
) < nchars
)
128 /* Not enough room in this frag. Close it and start a new one.
129 This must be done in a loop because the created frag may not
130 be big enough if the current obstack chunk is used. */
131 frag_wane (frag_now
);
135 /* Restore the old chunk size. */
136 obstack_chunk_size (&frchain_now
->frch_obstack
) = oldc
;
140 /* Call this to close off a completed frag, and start up a new (empty)
141 frag, in the same subsegment as the old frag.
142 [frchain_now remains the same but frag_now is updated.]
143 Because this calculates the correct value of fr_fix by
144 looking at the obstack 'frags', it needs to know how many
145 characters at the end of the old frag belong to the maximal
146 variable part; The rest must belong to fr_fix.
147 It doesn't actually set up the old frag's fr_var. You may have
148 set fr_var == 1, but allocated 10 chars to the end of the frag;
149 In this case you pass old_frags_var_max_size == 10.
150 In fact, you may use fr_var for something totally unrelated to the
151 size of the variable part of the frag; None of the generic frag
152 handling code makes use of fr_var.
154 Make a new frag, initialising some components. Link new frag at end
158 frag_new (size_t old_frags_var_max_size
159 /* Number of chars (already allocated on obstack frags) in
160 variable_length part of frag. */)
162 fragS
*former_last_fragP
;
165 gas_assert (frchain_now
->frch_last
== frag_now
);
167 /* Fix up old frag's fr_fix. */
168 frag_now
->fr_fix
= frag_now_fix_octets ();
169 gas_assert (frag_now
->fr_fix
>= old_frags_var_max_size
170 || now_seg
== absolute_section
);
171 frag_now
->fr_fix
-= old_frags_var_max_size
;
172 /* Make sure its type is valid. */
173 gas_assert (frag_now
->fr_type
!= 0);
175 /* This will align the obstack so the next struct we allocate on it
176 will begin at a correct boundary. */
177 obstack_finish (&frchain_now
->frch_obstack
);
180 former_last_fragP
= frchP
->frch_last
;
181 gas_assert (former_last_fragP
!= 0);
182 gas_assert (former_last_fragP
== frag_now
);
183 frag_now
= frag_alloc (&frchP
->frch_obstack
);
185 frag_now
->fr_file
= as_where (&frag_now
->fr_line
);
187 /* Generally, frag_now->points to an address rounded up to next
188 alignment. However, characters will add to obstack frags
189 IMMEDIATELY after the struct frag, even if they are not starting
190 at an alignment address. */
191 former_last_fragP
->fr_next
= frag_now
;
192 frchP
->frch_last
= frag_now
;
196 extern struct list_info_struct
*listing_tail
;
197 frag_now
->line
= listing_tail
;
201 gas_assert (frchain_now
->frch_last
== frag_now
);
203 frag_now
->fr_next
= NULL
;
206 /* Start a new frag unless we have n more chars of room in the current frag.
207 Close off the old frag with a .fill 0.
209 Return the address of the 1st char to write into. Advance
210 frag_now_growth past the new chars. */
213 frag_more (size_t nchars
)
217 frag_alloc_check (&frchain_now
->frch_obstack
);
219 retval
= obstack_next_free (&frchain_now
->frch_obstack
);
220 obstack_blank_fast (&frchain_now
->frch_obstack
, nchars
);
224 /* Close the current frag, setting its fields for a relaxable frag. Start a
228 frag_var_init (relax_stateT type
, size_t max_chars
, size_t var
,
229 relax_substateT subtype
, symbolS
*symbol
, offsetT offset
,
232 frag_now
->fr_var
= var
;
233 frag_now
->fr_type
= type
;
234 frag_now
->fr_subtype
= subtype
;
235 frag_now
->fr_symbol
= symbol
;
236 frag_now
->fr_offset
= offset
;
237 frag_now
->fr_opcode
= opcode
;
239 frag_now
->fr_cgen
.insn
= 0;
240 frag_now
->fr_cgen
.opindex
= 0;
241 frag_now
->fr_cgen
.opinfo
= 0;
244 TC_FRAG_INIT (frag_now
, max_chars
);
246 frag_now
->fr_file
= as_where (&frag_now
->fr_line
);
248 frag_new (max_chars
);
251 /* Start a new frag unless we have max_chars more chars of room in the
252 current frag. Close off the old frag with a .fill 0.
254 Set up a machine_dependent relaxable frag, then start a new frag.
255 Return the address of the 1st char of the var part of the old frag
259 frag_var (relax_stateT type
, size_t max_chars
, size_t var
,
260 relax_substateT subtype
, symbolS
*symbol
, offsetT offset
,
265 frag_grow (max_chars
);
266 retval
= obstack_next_free (&frchain_now
->frch_obstack
);
267 obstack_blank_fast (&frchain_now
->frch_obstack
, max_chars
);
268 frag_var_init (type
, max_chars
, var
, subtype
, symbol
, offset
, opcode
);
272 /* OVE: This variant of frag_var assumes that space for the tail has been
274 No call to frag_grow is done. */
277 frag_variant (relax_stateT type
, size_t max_chars
, size_t var
,
278 relax_substateT subtype
, symbolS
*symbol
, offsetT offset
,
283 retval
= obstack_next_free (&frchain_now
->frch_obstack
);
284 frag_var_init (type
, max_chars
, var
, subtype
, symbol
, offset
, opcode
);
289 /* Reduce the variable end of a frag to a harmless state. */
292 frag_wane (fragS
*fragP
)
294 fragP
->fr_type
= rs_fill
;
295 fragP
->fr_offset
= 0;
299 /* Return the number of bytes by which the current frag can be grown. */
304 return obstack_room (&frchain_now
->frch_obstack
);
307 /* Make an alignment frag. The size of this frag will be adjusted to
308 force the next frag to have the appropriate alignment. ALIGNMENT
309 is the power of two to which to align. FILL_CHARACTER is the
310 character to use to fill in any bytes which are skipped. MAX is
311 the maximum number of characters to skip when doing the alignment,
312 or 0 if there is no maximum. */
315 frag_align (int alignment
, int fill_character
, int max
)
317 if (now_seg
== absolute_section
)
322 mask
= (~(addressT
) 0) << alignment
;
323 new_off
= (abs_section_offset
+ ~mask
) & mask
;
324 if (max
== 0 || new_off
- abs_section_offset
<= (addressT
) max
)
325 abs_section_offset
= new_off
;
331 p
= frag_var (rs_align
, 1, 1, (relax_substateT
) max
,
332 (symbolS
*) 0, (offsetT
) alignment
, (char *) 0);
337 /* Make an alignment frag like frag_align, but fill with a repeating
338 pattern rather than a single byte. ALIGNMENT is the power of two
339 to which to align. FILL_PATTERN is the fill pattern to repeat in
340 the bytes which are skipped. N_FILL is the number of bytes in
341 FILL_PATTERN. MAX is the maximum number of characters to skip when
342 doing the alignment, or 0 if there is no maximum. */
345 frag_align_pattern (int alignment
, const char *fill_pattern
,
346 size_t n_fill
, int max
)
350 p
= frag_var (rs_align
, n_fill
, n_fill
, (relax_substateT
) max
,
351 (symbolS
*) 0, (offsetT
) alignment
, (char *) 0);
352 memcpy (p
, fill_pattern
, n_fill
);
355 /* The NOP_OPCODE is for the alignment fill value. Fill it with a nop
356 instruction so that the disassembler does not choke on it. */
358 #define NOP_OPCODE 0x00
361 /* Use this to restrict the amount of memory allocated for representing
362 the alignment code. Needs to be large enough to hold any fixed sized
363 prologue plus the replicating portion. */
364 #ifndef MAX_MEM_FOR_RS_ALIGN_CODE
365 /* Assume that if HANDLE_ALIGN is not defined then no special action
366 is required to code fill, which means that we get just repeat the
367 one NOP_OPCODE byte. */
368 # ifndef HANDLE_ALIGN
369 # define MAX_MEM_FOR_RS_ALIGN_CODE 1
371 # define MAX_MEM_FOR_RS_ALIGN_CODE (((size_t) 1 << alignment) - 1)
376 frag_align_code (int alignment
, int max
)
380 p
= frag_var (rs_align_code
, MAX_MEM_FOR_RS_ALIGN_CODE
, 1,
381 (relax_substateT
) max
, (symbolS
*) 0,
382 (offsetT
) alignment
, (char *) 0);
387 frag_now_fix_octets (void)
389 if (now_seg
== absolute_section
)
390 return abs_section_offset
;
392 return ((char *) obstack_next_free (&frchain_now
->frch_obstack
)
393 - frag_now
->fr_literal
);
399 /* Symbols whose section has SEC_ELF_OCTETS set,
400 resolve to octets instead of target bytes. */
401 if (now_seg
->flags
& SEC_OCTETS
)
402 return frag_now_fix_octets ();
404 return frag_now_fix_octets () / OCTETS_PER_BYTE
;
408 frag_append_1_char (int datum
)
410 frag_alloc_check (&frchain_now
->frch_obstack
);
411 if (obstack_room (&frchain_now
->frch_obstack
) <= 1)
413 frag_wane (frag_now
);
416 obstack_1grow (&frchain_now
->frch_obstack
, datum
);
419 /* Return TRUE if FRAG1 and FRAG2 have a fixed relationship between
420 their start addresses. Set OFFSET to the difference in address
421 not already accounted for in the frag FR_ADDRESS. */
424 frag_offset_fixed_p (const fragS
*frag1
, const fragS
*frag2
, offsetT
*offset
)
429 /* Start with offset initialised to difference between the two frags.
430 Prior to assigning frag addresses this will be zero. */
431 off
= frag1
->fr_address
- frag2
->fr_address
;
438 /* Maybe frag2 is after frag1. */
440 while (frag
->fr_type
== rs_fill
)
442 off
+= frag
->fr_fix
+ frag
->fr_offset
* frag
->fr_var
;
443 frag
= frag
->fr_next
;
453 /* Maybe frag1 is after frag2. */
454 off
= frag1
->fr_address
- frag2
->fr_address
;
456 while (frag
->fr_type
== rs_fill
)
458 off
-= frag
->fr_fix
+ frag
->fr_offset
* frag
->fr_var
;
459 frag
= frag
->fr_next
;
472 /* Return TRUE if FRAG2 follows FRAG1 with a fixed relationship
473 between the two assuming alignment frags do nothing. Set OFFSET to
474 the difference in address not already accounted for in the frag
478 frag_offset_ignore_align_p (const fragS
*frag1
, const fragS
*frag2
,
484 /* Start with offset initialised to difference between the two frags.
485 Prior to assigning frag addresses this will be zero. */
486 off
= frag1
->fr_address
- frag2
->fr_address
;
494 while (frag
->fr_type
== rs_fill
495 || frag
->fr_type
== rs_align
496 || frag
->fr_type
== rs_align_code
497 || frag
->fr_type
== rs_align_test
)
499 if (frag
->fr_type
== rs_fill
)
500 off
+= frag
->fr_fix
+ frag
->fr_offset
* frag
->fr_var
;
501 frag
= frag
->fr_next
;
514 /* Return TRUE if we can determine whether FRAG2 OFF2 appears after
515 (strict >, not >=) FRAG1 OFF1, assuming it is not before. Set
516 *OFFSET so that resolve_expression will resolve an O_gt operation
517 between them to false (0) if they are guaranteed to be at the same
518 location, or to true (-1) if they are guaranteed to be at different
519 locations. Return FALSE conservatively, e.g. if neither result can
522 They are known to be in the same segment, and not the same frag
523 (this is a fallback for frag_offset_fixed_p, that always takes care
524 of this case), and it is expected (from the uses this is designed
525 to simplify, namely location view increments) that frag2 is
526 reachable from frag1 following the fr_next links, rather than the
530 frag_gtoffset_p (valueT off2
, const fragS
*frag2
,
531 valueT off1
, const fragS
*frag1
, offsetT
*offset
)
533 /* Insanity check. */
534 if (frag2
== frag1
|| off1
> frag1
->fr_fix
)
537 /* If the first symbol offset is at the end of the first frag and
538 the second symbol offset at the beginning of the second frag then
539 it is possible they are at the same address. Go looking for a
540 non-zero fr_fix in any frag between these frags. If found then
541 we can say the O_gt result will be true. If no such frag is
542 found we assume that frag1 or any of the following frags might
543 have a variable tail and thus the answer is unknown. This isn't
544 strictly true; some frags don't have a variable tail, but it
545 doesn't seem worth optimizing for those cases. */
546 const fragS
*frag
= frag1
;
547 offsetT delta
= off2
- off1
;
550 delta
+= frag
->fr_fix
;
551 frag
= frag
->fr_next
;
558 /* If we run off the end of the frag chain then we have a case
559 where frag2 is not after frag1, ie. an O_gt expression not
560 created for .loc view. */
565 *offset
= (off2
- off1
- delta
) * OCTETS_PER_BYTE
;