1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2023 Free Software Foundation, Inc.
3 Written by Cygnus Support.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
31 Sections are supported in BFD in <<section.c>>.
37 @* section prototypes::
41 Section Input, Section Output, Sections, Sections
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
71 Section Output, typedef asection, Section Input, Sections
76 To write a new object style BFD, the various sections to be
77 written have to be created. They are attached to the BFD in
78 the same way as input sections; data is written to the
79 sections using <<bfd_set_section_contents>>.
81 Any program that creates or combines sections (e.g., the assembler
82 and linker) must use the <<asection>> fields <<output_section>> and
83 <<output_offset>> to indicate the file sections to which each
84 section must be written. (If the section is being created from
85 scratch, <<output_section>> should probably point to the section
86 itself and <<output_offset>> should probably be zero.)
88 The data to be written comes from input sections attached
89 (via <<output_section>> pointers) to
90 the output sections. The output section structure can be
91 considered a filter for the input section: the output section
92 determines the vma of the output data and the name, but the
93 input section determines the offset into the output section of
94 the data to be written.
96 E.g., to create a section "O", starting at 0x100, 0x123 long,
97 containing two subsections, "A" at offset 0x0 (i.e., at vma
98 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
99 structures would look like:
104 | output_section -----------> section name "O"
106 | section name "B" | size 0x123
107 | output_offset 0x20 |
109 | output_section --------|
114 The data within a section is stored in a @dfn{link_order}.
115 These are much like the fixups in <<gas>>. The link_order
116 abstraction allows a section to grow and shrink within itself.
118 A link_order knows how big it is, and which is the next
119 link_order and where the raw data for it is; it also points to
120 a list of relocations which apply to it.
122 The link_order is used by the linker to perform relaxing on
123 final code. The compiler creates code which is as big as
124 necessary to make it work without relaxing, and the user can
125 select whether to relax. Sometimes relaxing takes a lot of
126 time. The linker runs around the relocations to see if any
127 are attached to data which can be shrunk, if so it does it on
128 a link_order by link_order basis.
140 typedef asection, section prototypes, Section Output, Sections
144 Here is the section structure:
147 .{* Linenumber stuff. *}
148 .typedef struct lineno_cache_entry
150 . unsigned int line_number; {* Linenumber from start of function. *}
153 . struct bfd_symbol *sym; {* Function name. *}
154 . bfd_vma offset; {* Offset into section. *}
161 .typedef struct bfd_section
163 . {* The name of the section; the name isn't a copy, the pointer is
164 . the same as that passed to bfd_make_section. *}
167 . {* The next section in the list belonging to the BFD, or NULL. *}
168 . struct bfd_section *next;
170 . {* The previous section in the list belonging to the BFD, or NULL. *}
171 . struct bfd_section *prev;
173 . {* A unique sequence number. *}
176 . {* A unique section number which can be used by assembler to
177 . distinguish different sections with the same section name. *}
178 . unsigned int section_id;
180 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
181 . unsigned int index;
183 . {* The field flags contains attributes of the section. Some
184 . flags are read in from the object file, and some are
185 . synthesized from other information. *}
188 .#define SEC_NO_FLAGS 0x0
190 . {* Tells the OS to allocate space for this section when loading.
191 . This is clear for a section containing debug information only. *}
192 .#define SEC_ALLOC 0x1
194 . {* Tells the OS to load the section from the file when loading.
195 . This is clear for a .bss section. *}
196 .#define SEC_LOAD 0x2
198 . {* The section contains data still to be relocated, so there is
199 . some relocation information too. *}
200 .#define SEC_RELOC 0x4
202 . {* A signal to the OS that the section contains read only data. *}
203 .#define SEC_READONLY 0x8
205 . {* The section contains code only. *}
206 .#define SEC_CODE 0x10
208 . {* The section contains data only. *}
209 .#define SEC_DATA 0x20
211 . {* The section will reside in ROM. *}
212 .#define SEC_ROM 0x40
214 . {* The section contains constructor information. This section
215 . type is used by the linker to create lists of constructors and
216 . destructors used by <<g++>>. When a back end sees a symbol
217 . which should be used in a constructor list, it creates a new
218 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
219 . the symbol to it, and builds a relocation. To build the lists
220 . of constructors, all the linker has to do is catenate all the
221 . sections called <<__CTOR_LIST__>> and relocate the data
222 . contained within - exactly the operations it would peform on
224 .#define SEC_CONSTRUCTOR 0x80
226 . {* The section has contents - a data section could be
227 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
228 . <<SEC_HAS_CONTENTS>> *}
229 .#define SEC_HAS_CONTENTS 0x100
231 . {* An instruction to the linker to not output the section
232 . even if it has information which would normally be written. *}
233 .#define SEC_NEVER_LOAD 0x200
235 . {* The section contains thread local data. *}
236 .#define SEC_THREAD_LOCAL 0x400
238 . {* The section's size is fixed. Generic linker code will not
239 . recalculate it and it is up to whoever has set this flag to
240 . get the size right. *}
241 .#define SEC_FIXED_SIZE 0x800
243 . {* The section contains common symbols (symbols may be defined
244 . multiple times, the value of a symbol is the amount of
245 . space it requires, and the largest symbol value is the one
246 . used). Most targets have exactly one of these (which we
247 . translate to bfd_com_section_ptr), but ECOFF has two. *}
248 .#define SEC_IS_COMMON 0x1000
250 . {* The section contains only debugging information. For
251 . example, this is set for ELF .debug and .stab sections.
252 . strip tests this flag to see if a section can be
254 .#define SEC_DEBUGGING 0x2000
256 . {* The contents of this section are held in memory pointed to
257 . by the contents field. This is checked by bfd_get_section_contents,
258 . and the data is retrieved from memory if appropriate. *}
259 .#define SEC_IN_MEMORY 0x4000
261 . {* The contents of this section are to be excluded by the
262 . linker for executable and shared objects unless those
263 . objects are to be further relocated. *}
264 .#define SEC_EXCLUDE 0x8000
266 . {* The contents of this section are to be sorted based on the sum of
267 . the symbol and addend values specified by the associated relocation
268 . entries. Entries without associated relocation entries will be
269 . appended to the end of the section in an unspecified order. *}
270 .#define SEC_SORT_ENTRIES 0x10000
272 . {* When linking, duplicate sections of the same name should be
273 . discarded, rather than being combined into a single section as
274 . is usually done. This is similar to how common symbols are
275 . handled. See SEC_LINK_DUPLICATES below. *}
276 .#define SEC_LINK_ONCE 0x20000
278 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
279 . should handle duplicate sections. *}
280 .#define SEC_LINK_DUPLICATES 0xc0000
282 . {* This value for SEC_LINK_DUPLICATES means that duplicate
283 . sections with the same name should simply be discarded. *}
284 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
286 . {* This value for SEC_LINK_DUPLICATES means that the linker
287 . should warn if there are any duplicate sections, although
288 . it should still only link one copy. *}
289 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
291 . {* This value for SEC_LINK_DUPLICATES means that the linker
292 . should warn if any duplicate sections are a different size. *}
293 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
295 . {* This value for SEC_LINK_DUPLICATES means that the linker
296 . should warn if any duplicate sections contain different
298 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
299 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
301 . {* This section was created by the linker as part of dynamic
302 . relocation or other arcane processing. It is skipped when
303 . going through the first-pass output, trusting that someone
304 . else up the line will take care of it later. *}
305 .#define SEC_LINKER_CREATED 0x100000
307 . {* This section contains a section ID to distinguish different
308 . sections with the same section name. *}
309 .#define SEC_ASSEMBLER_SECTION_ID 0x100000
311 . {* This section should not be subject to garbage collection.
312 . Also set to inform the linker that this section should not be
313 . listed in the link map as discarded. *}
314 .#define SEC_KEEP 0x200000
316 . {* This section contains "short" data, and should be placed
318 .#define SEC_SMALL_DATA 0x400000
320 . {* Attempt to merge identical entities in the section.
321 . Entity size is given in the entsize field. *}
322 .#define SEC_MERGE 0x800000
324 . {* If given with SEC_MERGE, entities to merge are zero terminated
325 . strings where entsize specifies character size instead of fixed
327 .#define SEC_STRINGS 0x1000000
329 . {* This section contains data about section groups. *}
330 .#define SEC_GROUP 0x2000000
332 . {* The section is a COFF shared library section. This flag is
333 . only for the linker. If this type of section appears in
334 . the input file, the linker must copy it to the output file
335 . without changing the vma or size. FIXME: Although this
336 . was originally intended to be general, it really is COFF
337 . specific (and the flag was renamed to indicate this). It
338 . might be cleaner to have some more general mechanism to
339 . allow the back end to control what the linker does with
341 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
343 . {* This input section should be copied to output in reverse order
344 . as an array of pointers. This is for ELF linker internal use
346 .#define SEC_ELF_REVERSE_COPY 0x4000000
348 . {* This section contains data which may be shared with other
349 . executables or shared objects. This is for COFF only. *}
350 .#define SEC_COFF_SHARED 0x8000000
352 . {* Indicate that section has the purecode flag set. *}
353 .#define SEC_ELF_PURECODE 0x8000000
355 . {* When a section with this flag is being linked, then if the size of
356 . the input section is less than a page, it should not cross a page
357 . boundary. If the size of the input section is one page or more,
358 . it should be aligned on a page boundary. This is for TI
359 . TMS320C54X only. *}
360 .#define SEC_TIC54X_BLOCK 0x10000000
362 . {* This section has the SHF_X86_64_LARGE flag. This is ELF x86-64 only. *}
363 .#define SEC_ELF_LARGE 0x10000000
365 . {* Conditionally link this section; do not link if there are no
366 . references found to any symbol in the section. This is for TI
367 . TMS320C54X only. *}
368 .#define SEC_TIC54X_CLINK 0x20000000
370 . {* This section contains vliw code. This is for Toshiba MeP only. *}
371 .#define SEC_MEP_VLIW 0x20000000
373 . {* All symbols, sizes and relocations in this section are octets
374 . instead of bytes. Required for DWARF debug sections as DWARF
375 . information is organized in octets, not bytes. *}
376 .#define SEC_ELF_OCTETS 0x40000000
378 . {* Indicate that section has the no read flag set. This happens
379 . when memory read flag isn't set. *}
380 .#define SEC_COFF_NOREAD 0x40000000
382 . {* End of section flags. *}
384 . {* Some internal packed boolean fields. *}
386 . {* See the vma field. *}
387 . unsigned int user_set_vma : 1;
389 . {* A mark flag used by some of the linker backends. *}
390 . unsigned int linker_mark : 1;
392 . {* Another mark flag used by some of the linker backends. Set for
393 . output sections that have an input section. *}
394 . unsigned int linker_has_input : 1;
396 . {* Mark flag used by some linker backends for garbage collection. *}
397 . unsigned int gc_mark : 1;
399 . {* Section compression status. *}
400 . unsigned int compress_status : 2;
401 .#define COMPRESS_SECTION_NONE 0
402 .#define COMPRESS_SECTION_DONE 1
403 .#define DECOMPRESS_SECTION_ZLIB 2
404 .#define DECOMPRESS_SECTION_ZSTD 3
406 . {* The following flags are used by the ELF linker. *}
408 . {* Mark sections which have been allocated to segments. *}
409 . unsigned int segment_mark : 1;
411 . {* Type of sec_info information. *}
412 . unsigned int sec_info_type:3;
413 .#define SEC_INFO_TYPE_NONE 0
414 .#define SEC_INFO_TYPE_STABS 1
415 .#define SEC_INFO_TYPE_MERGE 2
416 .#define SEC_INFO_TYPE_EH_FRAME 3
417 .#define SEC_INFO_TYPE_JUST_SYMS 4
418 .#define SEC_INFO_TYPE_TARGET 5
419 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
420 .#define SEC_INFO_TYPE_SFRAME 7
422 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
423 . unsigned int use_rela_p:1;
425 . {* Bits used by various backends. The generic code doesn't touch
428 . unsigned int sec_flg0:1;
429 . unsigned int sec_flg1:1;
430 . unsigned int sec_flg2:1;
431 . unsigned int sec_flg3:1;
432 . unsigned int sec_flg4:1;
433 . unsigned int sec_flg5:1;
435 . {* End of internal packed boolean fields. *}
437 . {* The virtual memory address of the section - where it will be
438 . at run time. The symbols are relocated against this. The
439 . user_set_vma flag is maintained by bfd; if it's not set, the
440 . backend can assign addresses (for example, in <<a.out>>, where
441 . the default address for <<.data>> is dependent on the specific
442 . target and various flags). *}
445 . {* The load address of the section - where it would be in a
446 . rom image; really only used for writing section header
450 . {* The size of the section in *octets*, as it will be output.
451 . Contains a value even if the section has no contents (e.g., the
452 . size of <<.bss>>). *}
453 . bfd_size_type size;
455 . {* For input sections, the original size on disk of the section, in
456 . octets. This field should be set for any section whose size is
457 . changed by linker relaxation. It is required for sections where
458 . the linker relaxation scheme doesn't cache altered section and
459 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
460 . targets), and thus the original size needs to be kept to read the
461 . section multiple times. For output sections, rawsize holds the
462 . section size calculated on a previous linker relaxation pass. *}
463 . bfd_size_type rawsize;
465 . {* The compressed size of the section in octets. *}
466 . bfd_size_type compressed_size;
468 . {* If this section is going to be output, then this value is the
469 . offset in *bytes* into the output section of the first byte in the
470 . input section (byte ==> smallest addressable unit on the
471 . target). In most cases, if this was going to start at the
472 . 100th octet (8-bit quantity) in the output section, this value
473 . would be 100. However, if the target byte size is 16 bits
474 . (bfd_octets_per_byte is "2"), this value would be 50. *}
475 . bfd_vma output_offset;
477 . {* The output section through which to map on output. *}
478 . struct bfd_section *output_section;
480 . {* If an input section, a pointer to a vector of relocation
481 . records for the data in this section. *}
482 . struct reloc_cache_entry *relocation;
484 . {* If an output section, a pointer to a vector of pointers to
485 . relocation records for the data in this section. *}
486 . struct reloc_cache_entry **orelocation;
488 . {* The number of relocation records in one of the above. *}
489 . unsigned reloc_count;
491 . {* The alignment requirement of the section, as an exponent of 2 -
492 . e.g., 3 aligns to 2^3 (or 8). *}
493 . unsigned int alignment_power;
495 . {* Information below is back end specific - and not always used
498 . {* File position of section data. *}
501 . {* File position of relocation info. *}
502 . file_ptr rel_filepos;
504 . {* File position of line data. *}
505 . file_ptr line_filepos;
507 . {* Pointer to data for applications. *}
510 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
512 . bfd_byte *contents;
514 . {* Attached line number information. *}
517 . {* Number of line number records. *}
518 . unsigned int lineno_count;
520 . {* Entity size for merging purposes. *}
521 . unsigned int entsize;
523 . {* Points to the kept section if this section is a link-once section,
524 . and is discarded. *}
525 . struct bfd_section *kept_section;
527 . {* When a section is being output, this value changes as more
528 . linenumbers are written out. *}
529 . file_ptr moving_line_filepos;
531 . {* What the section number is in the target world. *}
536 . {* If this is a constructor section then here is a list of the
537 . relocations created to relocate items within it. *}
538 . struct relent_chain *constructor_chain;
540 . {* The BFD which owns the section. *}
543 . {* A symbol which points at this section only. *}
544 . struct bfd_symbol *symbol;
545 . struct bfd_symbol **symbol_ptr_ptr;
547 . {* Early in the link process, map_head and map_tail are used to build
548 . a list of input sections attached to an output section. Later,
549 . output sections use these fields for a list of bfd_link_order
550 . structs. The linked_to_symbol_name field is for ELF assembler
553 . struct bfd_link_order *link_order;
554 . struct bfd_section *s;
555 . const char *linked_to_symbol_name;
556 . } map_head, map_tail;
558 . {* Points to the output section this section is already assigned to,
559 . if any. This is used when support for non-contiguous memory
560 . regions is enabled. *}
561 . struct bfd_section *already_assigned;
563 . {* Explicitly specified section type, if non-zero. *}
570 .static inline const char *
571 .bfd_section_name (const asection *sec)
576 .static inline bfd_size_type
577 .bfd_section_size (const asection *sec)
582 .static inline bfd_vma
583 .bfd_section_vma (const asection *sec)
588 .static inline bfd_vma
589 .bfd_section_lma (const asection *sec)
594 .static inline unsigned int
595 .bfd_section_alignment (const asection *sec)
597 . return sec->alignment_power;
600 .static inline flagword
601 .bfd_section_flags (const asection *sec)
606 .static inline void *
607 .bfd_section_userdata (const asection *sec)
609 . return sec->userdata;
612 .bfd_is_com_section (const asection *sec)
614 . return (sec->flags & SEC_IS_COMMON) != 0;
617 .{* Note: the following are provided as inline functions rather than macros
618 . because not all callers use the return value. A macro implementation
619 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
620 . compilers will complain about comma expressions that have no effect. *}
622 .bfd_set_section_userdata (asection *sec, void *val)
624 . sec->userdata = val;
629 .bfd_set_section_vma (asection *sec, bfd_vma val)
631 . sec->vma = sec->lma = val;
632 . sec->user_set_vma = true;
637 .bfd_set_section_lma (asection *sec, bfd_vma val)
644 .bfd_set_section_alignment (asection *sec, unsigned int val)
646 . if (val >= sizeof (bfd_vma) * 8 - 1)
648 . sec->alignment_power = val;
652 .{* These sections are global, and are managed by BFD. The application
653 . and target back end are not permitted to change the values in
655 .extern asection _bfd_std_section[4];
657 .#define BFD_ABS_SECTION_NAME "*ABS*"
658 .#define BFD_UND_SECTION_NAME "*UND*"
659 .#define BFD_COM_SECTION_NAME "*COM*"
660 .#define BFD_IND_SECTION_NAME "*IND*"
662 .{* Pointer to the common section. *}
663 .#define bfd_com_section_ptr (&_bfd_std_section[0])
664 .{* Pointer to the undefined section. *}
665 .#define bfd_und_section_ptr (&_bfd_std_section[1])
666 .{* Pointer to the absolute section. *}
667 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
668 .{* Pointer to the indirect section. *}
669 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
672 .bfd_is_und_section (const asection *sec)
674 . return sec == bfd_und_section_ptr;
678 .bfd_is_abs_section (const asection *sec)
680 . return sec == bfd_abs_section_ptr;
684 .bfd_is_ind_section (const asection *sec)
686 . return sec == bfd_ind_section_ptr;
690 .bfd_is_const_section (const asection *sec)
692 . return (sec >= _bfd_std_section
693 . && sec < _bfd_std_section + (sizeof (_bfd_std_section)
694 . / sizeof (_bfd_std_section[0])));
697 .{* Return TRUE if input section SEC has been discarded. *}
699 .discarded_section (const asection *sec)
701 . return (!bfd_is_abs_section (sec)
702 . && bfd_is_abs_section (sec->output_section)
703 . && sec->sec_info_type != SEC_INFO_TYPE_MERGE
704 . && sec->sec_info_type != SEC_INFO_TYPE_JUST_SYMS);
707 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \
708 . {* name, next, prev, id, section_id, index, flags, user_set_vma, *} \
709 . { NAME, NULL, NULL, IDX, 0, 0, FLAGS, 0, \
711 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
714 . {* segment_mark, sec_info_type, use_rela_p, *} \
717 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
718 . 0, 0, 0, 0, 0, 0, \
720 . {* vma, lma, size, rawsize, compressed_size, *} \
723 . {* output_offset, output_section, relocation, orelocation, *} \
724 . 0, &SEC, NULL, NULL, \
726 . {* reloc_count, alignment_power, filepos, rel_filepos, *} \
729 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
730 . 0, NULL, NULL, NULL, 0, \
732 . {* entsize, kept_section, moving_line_filepos, *} \
735 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
736 . 0, NULL, NULL, NULL, \
738 . {* symbol, symbol_ptr_ptr, *} \
739 . (struct bfd_symbol *) SYM, &SEC.symbol, \
741 . {* map_head, map_tail, already_assigned, type *} \
742 . { NULL }, { NULL }, NULL, 0 \
746 .{* We use a macro to initialize the static asymbol structures because
747 . traditional C does not permit us to initialize a union member while
748 . gcc warns if we don't initialize it.
749 . the_bfd, name, value, attr, section [, udata] *}
751 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
752 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
754 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
755 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
760 /* These symbols are global, not specific to any BFD. Therefore, anything
761 that tries to change them is broken, and should be repaired. */
763 static const asymbol global_syms
[] =
765 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME
, bfd_com_section_ptr
),
766 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME
, bfd_und_section_ptr
),
767 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME
, bfd_abs_section_ptr
),
768 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME
, bfd_ind_section_ptr
)
771 #define STD_SECTION(NAME, IDX, FLAGS) \
772 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS)
774 asection _bfd_std_section
[] = {
775 STD_SECTION (BFD_COM_SECTION_NAME
, 0, SEC_IS_COMMON
),
776 STD_SECTION (BFD_UND_SECTION_NAME
, 1, 0),
777 STD_SECTION (BFD_ABS_SECTION_NAME
, 2, 0),
778 STD_SECTION (BFD_IND_SECTION_NAME
, 3, 0)
782 /* Initialize an entry in the section hash table. */
784 struct bfd_hash_entry
*
785 bfd_section_hash_newfunc (struct bfd_hash_entry
*entry
,
786 struct bfd_hash_table
*table
,
789 /* Allocate the structure if it has not already been allocated by a
793 entry
= (struct bfd_hash_entry
*)
794 bfd_hash_allocate (table
, sizeof (struct section_hash_entry
));
799 /* Call the allocation method of the superclass. */
800 entry
= bfd_hash_newfunc (entry
, table
, string
);
802 memset (&((struct section_hash_entry
*) entry
)->section
, 0,
808 #define section_hash_lookup(table, string, create, copy) \
809 ((struct section_hash_entry *) \
810 bfd_hash_lookup ((table), (string), (create), (copy)))
812 /* Create a symbol whose only job is to point to this section. This
813 is useful for things like relocs which are relative to the base
817 _bfd_generic_new_section_hook (bfd
*abfd
, asection
*newsect
)
819 newsect
->symbol
= bfd_make_empty_symbol (abfd
);
820 if (newsect
->symbol
== NULL
)
823 newsect
->symbol
->name
= newsect
->name
;
824 newsect
->symbol
->value
= 0;
825 newsect
->symbol
->section
= newsect
;
826 newsect
->symbol
->flags
= BSF_SECTION_SYM
;
828 newsect
->symbol_ptr_ptr
= &newsect
->symbol
;
832 unsigned int _bfd_section_id
= 0x10; /* id 0 to 3 used by STD_SECTION. */
834 /* Initializes a new section. NEWSECT->NAME is already set. */
837 bfd_section_init (bfd
*abfd
, asection
*newsect
)
839 newsect
->id
= _bfd_section_id
;
840 newsect
->index
= abfd
->section_count
;
841 newsect
->owner
= abfd
;
843 if (! BFD_SEND (abfd
, _new_section_hook
, (abfd
, newsect
)))
847 abfd
->section_count
++;
848 bfd_section_list_append (abfd
, newsect
);
855 section prototypes, , typedef asection, Sections
859 These are the functions exported by the section handling part of BFD.
864 bfd_section_list_clear
867 void bfd_section_list_clear (bfd *);
870 Clears the section list, and also resets the section count and
875 bfd_section_list_clear (bfd
*abfd
)
877 abfd
->sections
= NULL
;
878 abfd
->section_last
= NULL
;
879 abfd
->section_count
= 0;
880 memset (abfd
->section_htab
.table
, 0,
881 abfd
->section_htab
.size
* sizeof (struct bfd_hash_entry
*));
882 abfd
->section_htab
.count
= 0;
887 bfd_get_section_by_name
890 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
893 Return the most recently created section attached to @var{abfd}
894 named @var{name}. Return NULL if no such section exists.
898 bfd_get_section_by_name (bfd
*abfd
, const char *name
)
900 struct section_hash_entry
*sh
;
905 sh
= section_hash_lookup (&abfd
->section_htab
, name
, false, false);
914 bfd_get_next_section_by_name
917 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
920 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
921 return the next most recently created section attached to the same
922 BFD with the same name, or if no such section exists in the same BFD and
923 IBFD is non-NULL, the next section with the same name in any input
924 BFD following IBFD. Return NULL on finding no section.
928 bfd_get_next_section_by_name (bfd
*ibfd
, asection
*sec
)
930 struct section_hash_entry
*sh
;
934 sh
= ((struct section_hash_entry
*)
935 ((char *) sec
- offsetof (struct section_hash_entry
, section
)));
937 hash
= sh
->root
.hash
;
939 for (sh
= (struct section_hash_entry
*) sh
->root
.next
;
941 sh
= (struct section_hash_entry
*) sh
->root
.next
)
942 if (sh
->root
.hash
== hash
943 && strcmp (sh
->root
.string
, name
) == 0)
948 while ((ibfd
= ibfd
->link
.next
) != NULL
)
950 asection
*s
= bfd_get_section_by_name (ibfd
, name
);
961 bfd_get_linker_section
964 asection *bfd_get_linker_section (bfd *abfd, const char *name);
967 Return the linker created section attached to @var{abfd}
968 named @var{name}. Return NULL if no such section exists.
972 bfd_get_linker_section (bfd
*abfd
, const char *name
)
974 asection
*sec
= bfd_get_section_by_name (abfd
, name
);
976 while (sec
!= NULL
&& (sec
->flags
& SEC_LINKER_CREATED
) == 0)
977 sec
= bfd_get_next_section_by_name (NULL
, sec
);
983 bfd_get_section_by_name_if
986 asection *bfd_get_section_by_name_if
989 bool (*func) (bfd *abfd, asection *sect, void *obj),
993 Call the provided function @var{func} for each section
994 attached to the BFD @var{abfd} whose name matches @var{name},
995 passing @var{obj} as an argument. The function will be called
998 | func (abfd, the_section, obj);
1000 It returns the first section for which @var{func} returns true,
1006 bfd_get_section_by_name_if (bfd
*abfd
, const char *name
,
1007 bool (*operation
) (bfd
*, asection
*, void *),
1010 struct section_hash_entry
*sh
;
1016 sh
= section_hash_lookup (&abfd
->section_htab
, name
, false, false);
1020 hash
= sh
->root
.hash
;
1021 for (; sh
!= NULL
; sh
= (struct section_hash_entry
*) sh
->root
.next
)
1022 if (sh
->root
.hash
== hash
1023 && strcmp (sh
->root
.string
, name
) == 0
1024 && (*operation
) (abfd
, &sh
->section
, user_storage
))
1025 return &sh
->section
;
1032 bfd_get_unique_section_name
1035 char *bfd_get_unique_section_name
1036 (bfd *abfd, const char *templat, int *count);
1039 Invent a section name that is unique in @var{abfd} by tacking
1040 a dot and a digit suffix onto the original @var{templat}. If
1041 @var{count} is non-NULL, then it specifies the first number
1042 tried as a suffix to generate a unique name. The value
1043 pointed to by @var{count} will be incremented in this case.
1047 bfd_get_unique_section_name (bfd
*abfd
, const char *templat
, int *count
)
1053 len
= strlen (templat
);
1054 sname
= (char *) bfd_malloc (len
+ 8);
1057 memcpy (sname
, templat
, len
);
1064 /* If we have a million sections, something is badly wrong. */
1067 sprintf (sname
+ len
, ".%d", num
++);
1069 while (section_hash_lookup (&abfd
->section_htab
, sname
, false, false));
1078 bfd_make_section_old_way
1081 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1084 Create a new empty section called @var{name}
1085 and attach it to the end of the chain of sections for the
1086 BFD @var{abfd}. An attempt to create a section with a name which
1087 is already in use returns its pointer without changing the
1090 It has the funny name since this is the way it used to be
1091 before it was rewritten....
1093 Possible errors are:
1094 o <<bfd_error_invalid_operation>> -
1095 If output has already started for this BFD.
1096 o <<bfd_error_no_memory>> -
1097 If memory allocation fails.
1102 bfd_make_section_old_way (bfd
*abfd
, const char *name
)
1106 if (abfd
->output_has_begun
)
1108 bfd_set_error (bfd_error_invalid_operation
);
1112 if (strcmp (name
, BFD_ABS_SECTION_NAME
) == 0)
1113 newsect
= bfd_abs_section_ptr
;
1114 else if (strcmp (name
, BFD_COM_SECTION_NAME
) == 0)
1115 newsect
= bfd_com_section_ptr
;
1116 else if (strcmp (name
, BFD_UND_SECTION_NAME
) == 0)
1117 newsect
= bfd_und_section_ptr
;
1118 else if (strcmp (name
, BFD_IND_SECTION_NAME
) == 0)
1119 newsect
= bfd_ind_section_ptr
;
1122 struct section_hash_entry
*sh
;
1124 sh
= section_hash_lookup (&abfd
->section_htab
, name
, true, false);
1128 newsect
= &sh
->section
;
1129 if (newsect
->name
!= NULL
)
1131 /* Section already exists. */
1135 newsect
->name
= name
;
1136 return bfd_section_init (abfd
, newsect
);
1139 /* Call new_section_hook when "creating" the standard abs, com, und
1140 and ind sections to tack on format specific section data.
1141 Also, create a proper section symbol. */
1142 if (! BFD_SEND (abfd
, _new_section_hook
, (abfd
, newsect
)))
1149 bfd_make_section_anyway_with_flags
1152 asection *bfd_make_section_anyway_with_flags
1153 (bfd *abfd, const char *name, flagword flags);
1156 Create a new empty section called @var{name} and attach it to the end of
1157 the chain of sections for @var{abfd}. Create a new section even if there
1158 is already a section with that name. Also set the attributes of the
1159 new section to the value @var{flags}.
1161 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1162 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1163 o <<bfd_error_no_memory>> - If memory allocation fails.
1167 bfd_make_section_anyway_with_flags (bfd
*abfd
, const char *name
,
1170 struct section_hash_entry
*sh
;
1173 if (abfd
->output_has_begun
)
1175 bfd_set_error (bfd_error_invalid_operation
);
1179 sh
= section_hash_lookup (&abfd
->section_htab
, name
, true, false);
1183 newsect
= &sh
->section
;
1184 if (newsect
->name
!= NULL
)
1186 /* We are making a section of the same name. Put it in the
1187 section hash table. Even though we can't find it directly by a
1188 hash lookup, we'll be able to find the section by traversing
1189 sh->root.next quicker than looking at all the bfd sections. */
1190 struct section_hash_entry
*new_sh
;
1191 new_sh
= (struct section_hash_entry
*)
1192 bfd_section_hash_newfunc (NULL
, &abfd
->section_htab
, name
);
1196 new_sh
->root
= sh
->root
;
1197 sh
->root
.next
= &new_sh
->root
;
1198 newsect
= &new_sh
->section
;
1201 newsect
->flags
= flags
;
1202 newsect
->name
= name
;
1203 return bfd_section_init (abfd
, newsect
);
1208 bfd_make_section_anyway
1211 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1214 Create a new empty section called @var{name} and attach it to the end of
1215 the chain of sections for @var{abfd}. Create a new section even if there
1216 is already a section with that name.
1218 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1219 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1220 o <<bfd_error_no_memory>> - If memory allocation fails.
1224 bfd_make_section_anyway (bfd
*abfd
, const char *name
)
1226 return bfd_make_section_anyway_with_flags (abfd
, name
, 0);
1231 bfd_make_section_with_flags
1234 asection *bfd_make_section_with_flags
1235 (bfd *, const char *name, flagword flags);
1238 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1239 bfd_set_error ()) without changing the section chain if there is already a
1240 section named @var{name}. Also set the attributes of the new section to
1241 the value @var{flags}. If there is an error, return <<NULL>> and set
1246 bfd_make_section_with_flags (bfd
*abfd
, const char *name
,
1249 struct section_hash_entry
*sh
;
1252 if (abfd
== NULL
|| name
== NULL
|| abfd
->output_has_begun
)
1254 bfd_set_error (bfd_error_invalid_operation
);
1258 if (strcmp (name
, BFD_ABS_SECTION_NAME
) == 0
1259 || strcmp (name
, BFD_COM_SECTION_NAME
) == 0
1260 || strcmp (name
, BFD_UND_SECTION_NAME
) == 0
1261 || strcmp (name
, BFD_IND_SECTION_NAME
) == 0)
1264 sh
= section_hash_lookup (&abfd
->section_htab
, name
, true, false);
1268 newsect
= &sh
->section
;
1269 if (newsect
->name
!= NULL
)
1271 /* Section already exists. */
1275 newsect
->name
= name
;
1276 newsect
->flags
= flags
;
1277 return bfd_section_init (abfd
, newsect
);
1285 asection *bfd_make_section (bfd *, const char *name);
1288 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1289 bfd_set_error ()) without changing the section chain if there is already a
1290 section named @var{name}. If there is an error, return <<NULL>> and set
1295 bfd_make_section (bfd
*abfd
, const char *name
)
1297 return bfd_make_section_with_flags (abfd
, name
, 0);
1302 bfd_set_section_flags
1305 bool bfd_set_section_flags (asection *sec, flagword flags);
1308 Set the attributes of the section @var{sec} to the value @var{flags}.
1309 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1312 o <<bfd_error_invalid_operation>> -
1313 The section cannot have one or more of the attributes
1314 requested. For example, a .bss section in <<a.out>> may not
1315 have the <<SEC_HAS_CONTENTS>> field set.
1320 bfd_set_section_flags (asection
*section
, flagword flags
)
1322 section
->flags
= flags
;
1331 void bfd_rename_section
1332 (asection *sec, const char *newname);
1335 Rename section @var{sec} to @var{newname}.
1339 bfd_rename_section (asection
*sec
, const char *newname
)
1341 struct section_hash_entry
*sh
;
1343 sh
= (struct section_hash_entry
*)
1344 ((char *) sec
- offsetof (struct section_hash_entry
, section
));
1345 sh
->section
.name
= newname
;
1346 bfd_hash_rename (&sec
->owner
->section_htab
, newname
, &sh
->root
);
1351 bfd_map_over_sections
1354 void bfd_map_over_sections
1356 void (*func) (bfd *abfd, asection *sect, void *obj),
1360 Call the provided function @var{func} for each section
1361 attached to the BFD @var{abfd}, passing @var{obj} as an
1362 argument. The function will be called as if by
1364 | func (abfd, the_section, obj);
1366 This is the preferred method for iterating over sections; an
1367 alternative would be to use a loop:
1370 | for (p = abfd->sections; p != NULL; p = p->next)
1371 | func (abfd, p, ...)
1376 bfd_map_over_sections (bfd
*abfd
,
1377 void (*operation
) (bfd
*, asection
*, void *),
1383 for (sect
= abfd
->sections
; sect
!= NULL
; i
++, sect
= sect
->next
)
1384 (*operation
) (abfd
, sect
, user_storage
);
1386 if (i
!= abfd
->section_count
) /* Debugging */
1392 bfd_sections_find_if
1395 asection *bfd_sections_find_if
1397 bool (*operation) (bfd *abfd, asection *sect, void *obj),
1401 Call the provided function @var{operation} for each section
1402 attached to the BFD @var{abfd}, passing @var{obj} as an
1403 argument. The function will be called as if by
1405 | operation (abfd, the_section, obj);
1407 It returns the first section for which @var{operation} returns true.
1412 bfd_sections_find_if (bfd
*abfd
,
1413 bool (*operation
) (bfd
*, asection
*, void *),
1418 for (sect
= abfd
->sections
; sect
!= NULL
; sect
= sect
->next
)
1419 if ((*operation
) (abfd
, sect
, user_storage
))
1427 bfd_set_section_size
1430 bool bfd_set_section_size (asection *sec, bfd_size_type val);
1433 Set @var{sec} to the size @var{val}. If the operation is
1434 ok, then <<TRUE>> is returned, else <<FALSE>>.
1436 Possible error returns:
1437 o <<bfd_error_invalid_operation>> -
1438 Writing has started to the BFD, so setting the size is invalid.
1443 bfd_set_section_size (asection
*sec
, bfd_size_type val
)
1445 /* Once you've started writing to any section you cannot create or change
1446 the size of any others. */
1448 if (sec
->owner
== NULL
|| sec
->owner
->output_has_begun
)
1450 bfd_set_error (bfd_error_invalid_operation
);
1460 bfd_set_section_contents
1463 bool bfd_set_section_contents
1464 (bfd *abfd, asection *section, const void *data,
1465 file_ptr offset, bfd_size_type count);
1468 Sets the contents of the section @var{section} in BFD
1469 @var{abfd} to the data starting in memory at @var{location}.
1470 The data is written to the output section starting at offset
1471 @var{offset} for @var{count} octets.
1473 Normally <<TRUE>> is returned, but <<FALSE>> is returned if
1474 there was an error. Possible error returns are:
1475 o <<bfd_error_no_contents>> -
1476 The output section does not have the <<SEC_HAS_CONTENTS>>
1477 attribute, so nothing can be written to it.
1478 o <<bfd_error_bad_value>> -
1479 The section is unable to contain all of the data.
1480 o <<bfd_error_invalid_operation>> -
1481 The BFD is not writeable.
1482 o and some more too.
1484 This routine is front end to the back end function
1485 <<_bfd_set_section_contents>>.
1490 bfd_set_section_contents (bfd
*abfd
,
1492 const void *location
,
1494 bfd_size_type count
)
1498 if (!(bfd_section_flags (section
) & SEC_HAS_CONTENTS
))
1500 bfd_set_error (bfd_error_no_contents
);
1505 if ((bfd_size_type
) offset
> sz
1506 || count
> sz
- offset
1507 || count
!= (size_t) count
)
1509 bfd_set_error (bfd_error_bad_value
);
1513 if (!bfd_write_p (abfd
))
1515 bfd_set_error (bfd_error_invalid_operation
);
1519 /* Record a copy of the data in memory if desired. */
1520 if (section
->contents
1521 && location
!= section
->contents
+ offset
)
1522 memcpy (section
->contents
+ offset
, location
, (size_t) count
);
1524 if (BFD_SEND (abfd
, _bfd_set_section_contents
,
1525 (abfd
, section
, location
, offset
, count
)))
1527 abfd
->output_has_begun
= true;
1536 bfd_get_section_contents
1539 bool bfd_get_section_contents
1540 (bfd *abfd, asection *section, void *location, file_ptr offset,
1541 bfd_size_type count);
1544 Read data from @var{section} in BFD @var{abfd}
1545 into memory starting at @var{location}. The data is read at an
1546 offset of @var{offset} from the start of the input section,
1547 and is read for @var{count} bytes.
1549 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1550 flag set are requested or if the section does not have the
1551 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1552 with zeroes. If no errors occur, <<TRUE>> is returned, else
1557 bfd_get_section_contents (bfd
*abfd
,
1561 bfd_size_type count
)
1565 if (section
->flags
& SEC_CONSTRUCTOR
)
1567 memset (location
, 0, (size_t) count
);
1571 sz
= bfd_get_section_limit_octets (abfd
, section
);
1572 if ((bfd_size_type
) offset
> sz
1573 || count
> sz
- offset
1574 || count
!= (size_t) count
)
1576 bfd_set_error (bfd_error_bad_value
);
1584 if ((section
->flags
& SEC_HAS_CONTENTS
) == 0)
1586 memset (location
, 0, (size_t) count
);
1590 if ((section
->flags
& SEC_IN_MEMORY
) != 0)
1592 if (section
->contents
== NULL
)
1594 /* This can happen because of errors earlier on in the linking process.
1595 We do not want to seg-fault here, so clear the flag and return an
1597 section
->flags
&= ~ SEC_IN_MEMORY
;
1598 bfd_set_error (bfd_error_invalid_operation
);
1602 memmove (location
, section
->contents
+ offset
, (size_t) count
);
1606 return BFD_SEND (abfd
, _bfd_get_section_contents
,
1607 (abfd
, section
, location
, offset
, count
));
1612 bfd_malloc_and_get_section
1615 bool bfd_malloc_and_get_section
1616 (bfd *abfd, asection *section, bfd_byte **buf);
1619 Read all data from @var{section} in BFD @var{abfd}
1620 into a buffer, *@var{buf}, malloc'd by this function.
1621 Return @code{true} on success, @code{false} on failure in which
1622 case *@var{buf} will be NULL.
1626 bfd_malloc_and_get_section (bfd
*abfd
, sec_ptr sec
, bfd_byte
**buf
)
1629 return bfd_get_full_section_contents (abfd
, sec
, buf
);
1633 bfd_copy_private_section_data
1636 bool bfd_copy_private_section_data
1637 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1640 Copy private section information from @var{isec} in the BFD
1641 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1642 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1645 o <<bfd_error_no_memory>> -
1646 Not enough memory exists to create private data for @var{osec}.
1648 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1649 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1650 . (ibfd, isection, obfd, osection))
1655 bfd_generic_is_group_section
1658 bool bfd_generic_is_group_section (bfd *, const asection *sec);
1661 Returns TRUE if @var{sec} is a member of a group.
1665 bfd_generic_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
,
1666 const asection
*sec ATTRIBUTE_UNUSED
)
1673 bfd_generic_group_name
1676 const char *bfd_generic_group_name (bfd *, const asection *sec);
1679 Returns group name if @var{sec} is a member of a group.
1683 bfd_generic_group_name (bfd
*abfd ATTRIBUTE_UNUSED
,
1684 const asection
*sec ATTRIBUTE_UNUSED
)
1691 bfd_generic_discard_group
1694 bool bfd_generic_discard_group (bfd *abfd, asection *group);
1697 Remove all members of @var{group} from the output.
1701 bfd_generic_discard_group (bfd
*abfd ATTRIBUTE_UNUSED
,
1702 asection
*group ATTRIBUTE_UNUSED
)
1708 _bfd_nowrite_set_section_contents (bfd
*abfd
,
1709 sec_ptr section ATTRIBUTE_UNUSED
,
1710 const void *location ATTRIBUTE_UNUSED
,
1711 file_ptr offset ATTRIBUTE_UNUSED
,
1712 bfd_size_type count ATTRIBUTE_UNUSED
)
1714 return _bfd_bool_bfd_false_error (abfd
);
1719 _bfd_section_size_insane
1722 bool _bfd_section_size_insane (bfd *abfd, asection *sec);
1725 Returns true if the given section has a size that indicates
1726 it cannot be read from file. Return false if the size is OK
1727 *or* this function can't say one way or the other.
1732 _bfd_section_size_insane (bfd
*abfd
, asection
*sec
)
1734 bfd_size_type size
= bfd_get_section_limit_octets (abfd
, sec
);
1738 if ((bfd_section_flags (sec
) & SEC_IN_MEMORY
) != 0
1739 /* PR 24753: Linker created sections can be larger than
1740 the file size, eg if they are being used to hold stubs. */
1741 || (bfd_section_flags (sec
) & SEC_LINKER_CREATED
) != 0
1742 /* PR 24753: Sections which have no content should also be
1743 excluded as they contain no size on disk. */
1744 || (bfd_section_flags (sec
) & SEC_HAS_CONTENTS
) == 0
1745 /* The MMO file format supports its own special compression
1746 technique, but it uses COMPRESS_SECTION_NONE when loading
1747 a section's contents. */
1748 || bfd_get_flavour (abfd
) == bfd_target_mmo_flavour
)
1751 ufile_ptr filesize
= bfd_get_file_size (abfd
);
1755 if (sec
->compress_status
== DECOMPRESS_SECTION_ZSTD
1756 || sec
->compress_status
== DECOMPRESS_SECTION_ZLIB
)
1758 /* PR26946, PR28834: Sanity check compress header uncompressed
1759 size against the original file size, and check that the
1760 compressed section can be read from file. We choose an
1761 arbitrary uncompressed size of 10x the file size, rather than
1762 a compress ratio. The reason being that compiling
1763 "int aaa..a;" with "a" repeated enough times can result in
1764 compression ratios without limit for .debug_str, whereas such
1765 a file will usually also have the enormous symbol
1766 uncompressed in .symtab. */
1767 if (size
/ 10 > filesize
)
1769 bfd_set_error (bfd_error_bad_value
);
1772 size
= sec
->compressed_size
;
1775 if ((ufile_ptr
) sec
->filepos
> filesize
|| size
> filesize
- sec
->filepos
)
1777 bfd_set_error (bfd_error_file_truncated
);