1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2023 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
25 #include "libiberty.h"
29 #include "elf-vxworks.h"
31 #include "elf32-arm.h"
34 /* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36 #define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
39 /* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41 #define RELOC_SIZE(HTAB) \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
46 /* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48 #define SWAP_RELOC_IN(HTAB) \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
53 /* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55 #define SWAP_RELOC_OUT(HTAB) \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
60 #define elf_info_to_howto NULL
61 #define elf_info_to_howto_rel elf32_arm_info_to_howto
63 #define ARM_ELF_ABI_VERSION 0
64 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
66 /* The Adjusted Place, as defined by AAELF. */
67 #define Pa(X) ((X) & 0xfffffffc)
69 static bool elf32_arm_write_section (bfd
*output_bfd
,
70 struct bfd_link_info
*link_info
,
74 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
78 static reloc_howto_type elf32_arm_howto_table_1
[] =
81 HOWTO (R_ARM_NONE
, /* type */
85 false, /* pc_relative */
87 complain_overflow_dont
,/* complain_on_overflow */
88 bfd_elf_generic_reloc
, /* special_function */
89 "R_ARM_NONE", /* name */
90 false, /* partial_inplace */
93 false), /* pcrel_offset */
95 HOWTO (R_ARM_PC24
, /* type */
99 true, /* pc_relative */
101 complain_overflow_signed
,/* complain_on_overflow */
102 bfd_elf_generic_reloc
, /* special_function */
103 "R_ARM_PC24", /* name */
104 false, /* partial_inplace */
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
107 true), /* pcrel_offset */
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32
, /* type */
114 false, /* pc_relative */
116 complain_overflow_bitfield
,/* complain_on_overflow */
117 bfd_elf_generic_reloc
, /* special_function */
118 "R_ARM_ABS32", /* name */
119 false, /* partial_inplace */
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
122 false), /* pcrel_offset */
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32
, /* type */
129 true, /* pc_relative */
131 complain_overflow_bitfield
,/* complain_on_overflow */
132 bfd_elf_generic_reloc
, /* special_function */
133 "R_ARM_REL32", /* name */
134 false, /* partial_inplace */
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
137 true), /* pcrel_offset */
139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
140 HOWTO (R_ARM_LDR_PC_G0
, /* type */
144 true, /* pc_relative */
146 complain_overflow_dont
,/* complain_on_overflow */
147 bfd_elf_generic_reloc
, /* special_function */
148 "R_ARM_LDR_PC_G0", /* name */
149 false, /* partial_inplace */
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
152 true), /* pcrel_offset */
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16
, /* type */
159 false, /* pc_relative */
161 complain_overflow_bitfield
,/* complain_on_overflow */
162 bfd_elf_generic_reloc
, /* special_function */
163 "R_ARM_ABS16", /* name */
164 false, /* partial_inplace */
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
167 false), /* pcrel_offset */
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12
, /* type */
174 false, /* pc_relative */
176 complain_overflow_bitfield
,/* complain_on_overflow */
177 bfd_elf_generic_reloc
, /* special_function */
178 "R_ARM_ABS12", /* name */
179 false, /* partial_inplace */
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
182 false), /* pcrel_offset */
184 HOWTO (R_ARM_THM_ABS5
, /* type */
188 false, /* pc_relative */
190 complain_overflow_bitfield
,/* complain_on_overflow */
191 bfd_elf_generic_reloc
, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
193 false, /* partial_inplace */
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
196 false), /* pcrel_offset */
199 HOWTO (R_ARM_ABS8
, /* type */
203 false, /* pc_relative */
205 complain_overflow_bitfield
,/* complain_on_overflow */
206 bfd_elf_generic_reloc
, /* special_function */
207 "R_ARM_ABS8", /* name */
208 false, /* partial_inplace */
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
211 false), /* pcrel_offset */
213 HOWTO (R_ARM_SBREL32
, /* type */
217 false, /* pc_relative */
219 complain_overflow_dont
,/* complain_on_overflow */
220 bfd_elf_generic_reloc
, /* special_function */
221 "R_ARM_SBREL32", /* name */
222 false, /* partial_inplace */
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
225 false), /* pcrel_offset */
227 HOWTO (R_ARM_THM_CALL
, /* type */
231 true, /* pc_relative */
233 complain_overflow_signed
,/* complain_on_overflow */
234 bfd_elf_generic_reloc
, /* special_function */
235 "R_ARM_THM_CALL", /* name */
236 false, /* partial_inplace */
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
239 true), /* pcrel_offset */
241 HOWTO (R_ARM_THM_PC8
, /* type */
245 true, /* pc_relative */
247 complain_overflow_signed
,/* complain_on_overflow */
248 bfd_elf_generic_reloc
, /* special_function */
249 "R_ARM_THM_PC8", /* name */
250 false, /* partial_inplace */
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
253 true), /* pcrel_offset */
255 HOWTO (R_ARM_BREL_ADJ
, /* type */
259 false, /* pc_relative */
261 complain_overflow_signed
,/* complain_on_overflow */
262 bfd_elf_generic_reloc
, /* special_function */
263 "R_ARM_BREL_ADJ", /* name */
264 false, /* partial_inplace */
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
267 false), /* pcrel_offset */
269 HOWTO (R_ARM_TLS_DESC
, /* type */
273 false, /* pc_relative */
275 complain_overflow_bitfield
,/* complain_on_overflow */
276 bfd_elf_generic_reloc
, /* special_function */
277 "R_ARM_TLS_DESC", /* name */
278 false, /* partial_inplace */
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
281 false), /* pcrel_offset */
283 HOWTO (R_ARM_THM_SWI8
, /* type */
287 false, /* pc_relative */
289 complain_overflow_signed
,/* complain_on_overflow */
290 bfd_elf_generic_reloc
, /* special_function */
291 "R_ARM_SWI8", /* name */
292 false, /* partial_inplace */
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
295 false), /* pcrel_offset */
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25
, /* type */
302 true, /* pc_relative */
304 complain_overflow_signed
,/* complain_on_overflow */
305 bfd_elf_generic_reloc
, /* special_function */
306 "R_ARM_XPC25", /* name */
307 false, /* partial_inplace */
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
310 true), /* pcrel_offset */
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22
, /* type */
317 true, /* pc_relative */
319 complain_overflow_signed
,/* complain_on_overflow */
320 bfd_elf_generic_reloc
, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
322 false, /* partial_inplace */
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
325 true), /* pcrel_offset */
327 /* Dynamic TLS relocations. */
329 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
333 false, /* pc_relative */
335 complain_overflow_bitfield
,/* complain_on_overflow */
336 bfd_elf_generic_reloc
, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
338 true, /* partial_inplace */
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
341 false), /* pcrel_offset */
343 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
347 false, /* pc_relative */
349 complain_overflow_bitfield
,/* complain_on_overflow */
350 bfd_elf_generic_reloc
, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
352 true, /* partial_inplace */
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
355 false), /* pcrel_offset */
357 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
361 false, /* pc_relative */
363 complain_overflow_bitfield
,/* complain_on_overflow */
364 bfd_elf_generic_reloc
, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
366 true, /* partial_inplace */
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
369 false), /* pcrel_offset */
371 /* Relocs used in ARM Linux */
373 HOWTO (R_ARM_COPY
, /* type */
377 false, /* pc_relative */
379 complain_overflow_bitfield
,/* complain_on_overflow */
380 bfd_elf_generic_reloc
, /* special_function */
381 "R_ARM_COPY", /* name */
382 true, /* partial_inplace */
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
385 false), /* pcrel_offset */
387 HOWTO (R_ARM_GLOB_DAT
, /* type */
391 false, /* pc_relative */
393 complain_overflow_bitfield
,/* complain_on_overflow */
394 bfd_elf_generic_reloc
, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
396 true, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 false), /* pcrel_offset */
401 HOWTO (R_ARM_JUMP_SLOT
, /* type */
405 false, /* pc_relative */
407 complain_overflow_bitfield
,/* complain_on_overflow */
408 bfd_elf_generic_reloc
, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
410 true, /* partial_inplace */
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
413 false), /* pcrel_offset */
415 HOWTO (R_ARM_RELATIVE
, /* type */
419 false, /* pc_relative */
421 complain_overflow_bitfield
,/* complain_on_overflow */
422 bfd_elf_generic_reloc
, /* special_function */
423 "R_ARM_RELATIVE", /* name */
424 true, /* partial_inplace */
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
427 false), /* pcrel_offset */
429 HOWTO (R_ARM_GOTOFF32
, /* type */
433 false, /* pc_relative */
435 complain_overflow_bitfield
,/* complain_on_overflow */
436 bfd_elf_generic_reloc
, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
438 true, /* partial_inplace */
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
441 false), /* pcrel_offset */
443 HOWTO (R_ARM_GOTPC
, /* type */
447 true, /* pc_relative */
449 complain_overflow_bitfield
,/* complain_on_overflow */
450 bfd_elf_generic_reloc
, /* special_function */
451 "R_ARM_GOTPC", /* name */
452 true, /* partial_inplace */
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
455 true), /* pcrel_offset */
457 HOWTO (R_ARM_GOT32
, /* type */
461 false, /* pc_relative */
463 complain_overflow_bitfield
,/* complain_on_overflow */
464 bfd_elf_generic_reloc
, /* special_function */
465 "R_ARM_GOT32", /* name */
466 true, /* partial_inplace */
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
469 false), /* pcrel_offset */
471 HOWTO (R_ARM_PLT32
, /* type */
475 true, /* pc_relative */
477 complain_overflow_bitfield
,/* complain_on_overflow */
478 bfd_elf_generic_reloc
, /* special_function */
479 "R_ARM_PLT32", /* name */
480 false, /* partial_inplace */
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
483 true), /* pcrel_offset */
485 HOWTO (R_ARM_CALL
, /* type */
489 true, /* pc_relative */
491 complain_overflow_signed
,/* complain_on_overflow */
492 bfd_elf_generic_reloc
, /* special_function */
493 "R_ARM_CALL", /* name */
494 false, /* partial_inplace */
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
497 true), /* pcrel_offset */
499 HOWTO (R_ARM_JUMP24
, /* type */
503 true, /* pc_relative */
505 complain_overflow_signed
,/* complain_on_overflow */
506 bfd_elf_generic_reloc
, /* special_function */
507 "R_ARM_JUMP24", /* name */
508 false, /* partial_inplace */
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
511 true), /* pcrel_offset */
513 HOWTO (R_ARM_THM_JUMP24
, /* type */
517 true, /* pc_relative */
519 complain_overflow_signed
,/* complain_on_overflow */
520 bfd_elf_generic_reloc
, /* special_function */
521 "R_ARM_THM_JUMP24", /* name */
522 false, /* partial_inplace */
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
525 true), /* pcrel_offset */
527 HOWTO (R_ARM_BASE_ABS
, /* type */
531 false, /* pc_relative */
533 complain_overflow_dont
,/* complain_on_overflow */
534 bfd_elf_generic_reloc
, /* special_function */
535 "R_ARM_BASE_ABS", /* name */
536 false, /* partial_inplace */
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
539 false), /* pcrel_offset */
541 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
545 true, /* pc_relative */
547 complain_overflow_dont
,/* complain_on_overflow */
548 bfd_elf_generic_reloc
, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
550 false, /* partial_inplace */
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
553 true), /* pcrel_offset */
555 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
559 true, /* pc_relative */
561 complain_overflow_dont
,/* complain_on_overflow */
562 bfd_elf_generic_reloc
, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
564 false, /* partial_inplace */
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
567 true), /* pcrel_offset */
569 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
573 true, /* pc_relative */
575 complain_overflow_dont
,/* complain_on_overflow */
576 bfd_elf_generic_reloc
, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
578 false, /* partial_inplace */
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
581 true), /* pcrel_offset */
583 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
587 false, /* pc_relative */
589 complain_overflow_dont
,/* complain_on_overflow */
590 bfd_elf_generic_reloc
, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
592 false, /* partial_inplace */
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
595 false), /* pcrel_offset */
597 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
601 false, /* pc_relative */
603 complain_overflow_dont
,/* complain_on_overflow */
604 bfd_elf_generic_reloc
, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
606 false, /* partial_inplace */
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
609 false), /* pcrel_offset */
611 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
615 false, /* pc_relative */
617 complain_overflow_dont
,/* complain_on_overflow */
618 bfd_elf_generic_reloc
, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
620 false, /* partial_inplace */
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
623 false), /* pcrel_offset */
625 HOWTO (R_ARM_TARGET1
, /* type */
629 false, /* pc_relative */
631 complain_overflow_dont
,/* complain_on_overflow */
632 bfd_elf_generic_reloc
, /* special_function */
633 "R_ARM_TARGET1", /* name */
634 false, /* partial_inplace */
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
637 false), /* pcrel_offset */
639 HOWTO (R_ARM_ROSEGREL32
, /* type */
643 false, /* pc_relative */
645 complain_overflow_dont
,/* complain_on_overflow */
646 bfd_elf_generic_reloc
, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
648 false, /* partial_inplace */
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
651 false), /* pcrel_offset */
653 HOWTO (R_ARM_V4BX
, /* type */
657 false, /* pc_relative */
659 complain_overflow_dont
,/* complain_on_overflow */
660 bfd_elf_generic_reloc
, /* special_function */
661 "R_ARM_V4BX", /* name */
662 false, /* partial_inplace */
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
665 false), /* pcrel_offset */
667 HOWTO (R_ARM_TARGET2
, /* type */
671 false, /* pc_relative */
673 complain_overflow_signed
,/* complain_on_overflow */
674 bfd_elf_generic_reloc
, /* special_function */
675 "R_ARM_TARGET2", /* name */
676 false, /* partial_inplace */
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
679 true), /* pcrel_offset */
681 HOWTO (R_ARM_PREL31
, /* type */
685 true, /* pc_relative */
687 complain_overflow_signed
,/* complain_on_overflow */
688 bfd_elf_generic_reloc
, /* special_function */
689 "R_ARM_PREL31", /* name */
690 false, /* partial_inplace */
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
693 true), /* pcrel_offset */
695 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
699 false, /* pc_relative */
701 complain_overflow_dont
,/* complain_on_overflow */
702 bfd_elf_generic_reloc
, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
704 false, /* partial_inplace */
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
707 false), /* pcrel_offset */
709 HOWTO (R_ARM_MOVT_ABS
, /* type */
713 false, /* pc_relative */
715 complain_overflow_bitfield
,/* complain_on_overflow */
716 bfd_elf_generic_reloc
, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
718 false, /* partial_inplace */
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
721 false), /* pcrel_offset */
723 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
727 true, /* pc_relative */
729 complain_overflow_dont
,/* complain_on_overflow */
730 bfd_elf_generic_reloc
, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
732 false, /* partial_inplace */
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
735 true), /* pcrel_offset */
737 HOWTO (R_ARM_MOVT_PREL
, /* type */
741 true, /* pc_relative */
743 complain_overflow_bitfield
,/* complain_on_overflow */
744 bfd_elf_generic_reloc
, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
746 false, /* partial_inplace */
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
749 true), /* pcrel_offset */
751 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
755 false, /* pc_relative */
757 complain_overflow_dont
,/* complain_on_overflow */
758 bfd_elf_generic_reloc
, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
760 false, /* partial_inplace */
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
763 false), /* pcrel_offset */
765 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
769 false, /* pc_relative */
771 complain_overflow_bitfield
,/* complain_on_overflow */
772 bfd_elf_generic_reloc
, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
774 false, /* partial_inplace */
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
777 false), /* pcrel_offset */
779 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
783 true, /* pc_relative */
785 complain_overflow_dont
,/* complain_on_overflow */
786 bfd_elf_generic_reloc
, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
788 false, /* partial_inplace */
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
791 true), /* pcrel_offset */
793 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
797 true, /* pc_relative */
799 complain_overflow_bitfield
,/* complain_on_overflow */
800 bfd_elf_generic_reloc
, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
802 false, /* partial_inplace */
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
805 true), /* pcrel_offset */
807 HOWTO (R_ARM_THM_JUMP19
, /* type */
811 true, /* pc_relative */
813 complain_overflow_signed
,/* complain_on_overflow */
814 bfd_elf_generic_reloc
, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
816 false, /* partial_inplace */
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
819 true), /* pcrel_offset */
821 HOWTO (R_ARM_THM_JUMP6
, /* type */
825 true, /* pc_relative */
827 complain_overflow_unsigned
,/* complain_on_overflow */
828 bfd_elf_generic_reloc
, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
830 false, /* partial_inplace */
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
833 true), /* pcrel_offset */
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
838 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
842 true, /* pc_relative */
844 complain_overflow_dont
,/* complain_on_overflow */
845 bfd_elf_generic_reloc
, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
847 false, /* partial_inplace */
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
850 true), /* pcrel_offset */
852 HOWTO (R_ARM_THM_PC12
, /* type */
856 true, /* pc_relative */
858 complain_overflow_dont
,/* complain_on_overflow */
859 bfd_elf_generic_reloc
, /* special_function */
860 "R_ARM_THM_PC12", /* name */
861 false, /* partial_inplace */
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
864 true), /* pcrel_offset */
866 HOWTO (R_ARM_ABS32_NOI
, /* type */
870 false, /* pc_relative */
872 complain_overflow_dont
,/* complain_on_overflow */
873 bfd_elf_generic_reloc
, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
875 false, /* partial_inplace */
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
878 false), /* pcrel_offset */
880 HOWTO (R_ARM_REL32_NOI
, /* type */
884 true, /* pc_relative */
886 complain_overflow_dont
,/* complain_on_overflow */
887 bfd_elf_generic_reloc
, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
889 false, /* partial_inplace */
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
892 false), /* pcrel_offset */
894 /* Group relocations. */
896 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
900 true, /* pc_relative */
902 complain_overflow_dont
,/* complain_on_overflow */
903 bfd_elf_generic_reloc
, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
905 false, /* partial_inplace */
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
908 true), /* pcrel_offset */
910 HOWTO (R_ARM_ALU_PC_G0
, /* type */
914 true, /* pc_relative */
916 complain_overflow_dont
,/* complain_on_overflow */
917 bfd_elf_generic_reloc
, /* special_function */
918 "R_ARM_ALU_PC_G0", /* name */
919 false, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 true), /* pcrel_offset */
924 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
928 true, /* pc_relative */
930 complain_overflow_dont
,/* complain_on_overflow */
931 bfd_elf_generic_reloc
, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
933 false, /* partial_inplace */
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
936 true), /* pcrel_offset */
938 HOWTO (R_ARM_ALU_PC_G1
, /* type */
942 true, /* pc_relative */
944 complain_overflow_dont
,/* complain_on_overflow */
945 bfd_elf_generic_reloc
, /* special_function */
946 "R_ARM_ALU_PC_G1", /* name */
947 false, /* partial_inplace */
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
950 true), /* pcrel_offset */
952 HOWTO (R_ARM_ALU_PC_G2
, /* type */
956 true, /* pc_relative */
958 complain_overflow_dont
,/* complain_on_overflow */
959 bfd_elf_generic_reloc
, /* special_function */
960 "R_ARM_ALU_PC_G2", /* name */
961 false, /* partial_inplace */
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
964 true), /* pcrel_offset */
966 HOWTO (R_ARM_LDR_PC_G1
, /* type */
970 true, /* pc_relative */
972 complain_overflow_dont
,/* complain_on_overflow */
973 bfd_elf_generic_reloc
, /* special_function */
974 "R_ARM_LDR_PC_G1", /* name */
975 false, /* partial_inplace */
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
978 true), /* pcrel_offset */
980 HOWTO (R_ARM_LDR_PC_G2
, /* type */
984 true, /* pc_relative */
986 complain_overflow_dont
,/* complain_on_overflow */
987 bfd_elf_generic_reloc
, /* special_function */
988 "R_ARM_LDR_PC_G2", /* name */
989 false, /* partial_inplace */
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
992 true), /* pcrel_offset */
994 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
998 true, /* pc_relative */
1000 complain_overflow_dont
,/* complain_on_overflow */
1001 bfd_elf_generic_reloc
, /* special_function */
1002 "R_ARM_LDRS_PC_G0", /* name */
1003 false, /* partial_inplace */
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
1006 true), /* pcrel_offset */
1008 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1012 true, /* pc_relative */
1014 complain_overflow_dont
,/* complain_on_overflow */
1015 bfd_elf_generic_reloc
, /* special_function */
1016 "R_ARM_LDRS_PC_G1", /* name */
1017 false, /* partial_inplace */
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
1020 true), /* pcrel_offset */
1022 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1026 true, /* pc_relative */
1028 complain_overflow_dont
,/* complain_on_overflow */
1029 bfd_elf_generic_reloc
, /* special_function */
1030 "R_ARM_LDRS_PC_G2", /* name */
1031 false, /* partial_inplace */
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
1034 true), /* pcrel_offset */
1036 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1040 true, /* pc_relative */
1042 complain_overflow_dont
,/* complain_on_overflow */
1043 bfd_elf_generic_reloc
, /* special_function */
1044 "R_ARM_LDC_PC_G0", /* name */
1045 false, /* partial_inplace */
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
1048 true), /* pcrel_offset */
1050 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1054 true, /* pc_relative */
1056 complain_overflow_dont
,/* complain_on_overflow */
1057 bfd_elf_generic_reloc
, /* special_function */
1058 "R_ARM_LDC_PC_G1", /* name */
1059 false, /* partial_inplace */
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
1062 true), /* pcrel_offset */
1064 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1068 true, /* pc_relative */
1070 complain_overflow_dont
,/* complain_on_overflow */
1071 bfd_elf_generic_reloc
, /* special_function */
1072 "R_ARM_LDC_PC_G2", /* name */
1073 false, /* partial_inplace */
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
1076 true), /* pcrel_offset */
1078 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1082 true, /* pc_relative */
1084 complain_overflow_dont
,/* complain_on_overflow */
1085 bfd_elf_generic_reloc
, /* special_function */
1086 "R_ARM_ALU_SB_G0_NC", /* name */
1087 false, /* partial_inplace */
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
1090 true), /* pcrel_offset */
1092 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1096 true, /* pc_relative */
1098 complain_overflow_dont
,/* complain_on_overflow */
1099 bfd_elf_generic_reloc
, /* special_function */
1100 "R_ARM_ALU_SB_G0", /* name */
1101 false, /* partial_inplace */
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
1104 true), /* pcrel_offset */
1106 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1110 true, /* pc_relative */
1112 complain_overflow_dont
,/* complain_on_overflow */
1113 bfd_elf_generic_reloc
, /* special_function */
1114 "R_ARM_ALU_SB_G1_NC", /* name */
1115 false, /* partial_inplace */
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
1118 true), /* pcrel_offset */
1120 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1124 true, /* pc_relative */
1126 complain_overflow_dont
,/* complain_on_overflow */
1127 bfd_elf_generic_reloc
, /* special_function */
1128 "R_ARM_ALU_SB_G1", /* name */
1129 false, /* partial_inplace */
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
1132 true), /* pcrel_offset */
1134 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1138 true, /* pc_relative */
1140 complain_overflow_dont
,/* complain_on_overflow */
1141 bfd_elf_generic_reloc
, /* special_function */
1142 "R_ARM_ALU_SB_G2", /* name */
1143 false, /* partial_inplace */
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
1146 true), /* pcrel_offset */
1148 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1152 true, /* pc_relative */
1154 complain_overflow_dont
,/* complain_on_overflow */
1155 bfd_elf_generic_reloc
, /* special_function */
1156 "R_ARM_LDR_SB_G0", /* name */
1157 false, /* partial_inplace */
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
1160 true), /* pcrel_offset */
1162 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1166 true, /* pc_relative */
1168 complain_overflow_dont
,/* complain_on_overflow */
1169 bfd_elf_generic_reloc
, /* special_function */
1170 "R_ARM_LDR_SB_G1", /* name */
1171 false, /* partial_inplace */
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
1174 true), /* pcrel_offset */
1176 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1180 true, /* pc_relative */
1182 complain_overflow_dont
,/* complain_on_overflow */
1183 bfd_elf_generic_reloc
, /* special_function */
1184 "R_ARM_LDR_SB_G2", /* name */
1185 false, /* partial_inplace */
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
1188 true), /* pcrel_offset */
1190 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1194 true, /* pc_relative */
1196 complain_overflow_dont
,/* complain_on_overflow */
1197 bfd_elf_generic_reloc
, /* special_function */
1198 "R_ARM_LDRS_SB_G0", /* name */
1199 false, /* partial_inplace */
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
1202 true), /* pcrel_offset */
1204 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1208 true, /* pc_relative */
1210 complain_overflow_dont
,/* complain_on_overflow */
1211 bfd_elf_generic_reloc
, /* special_function */
1212 "R_ARM_LDRS_SB_G1", /* name */
1213 false, /* partial_inplace */
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
1216 true), /* pcrel_offset */
1218 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1222 true, /* pc_relative */
1224 complain_overflow_dont
,/* complain_on_overflow */
1225 bfd_elf_generic_reloc
, /* special_function */
1226 "R_ARM_LDRS_SB_G2", /* name */
1227 false, /* partial_inplace */
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
1230 true), /* pcrel_offset */
1232 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1236 true, /* pc_relative */
1238 complain_overflow_dont
,/* complain_on_overflow */
1239 bfd_elf_generic_reloc
, /* special_function */
1240 "R_ARM_LDC_SB_G0", /* name */
1241 false, /* partial_inplace */
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
1244 true), /* pcrel_offset */
1246 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1250 true, /* pc_relative */
1252 complain_overflow_dont
,/* complain_on_overflow */
1253 bfd_elf_generic_reloc
, /* special_function */
1254 "R_ARM_LDC_SB_G1", /* name */
1255 false, /* partial_inplace */
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
1258 true), /* pcrel_offset */
1260 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1264 true, /* pc_relative */
1266 complain_overflow_dont
,/* complain_on_overflow */
1267 bfd_elf_generic_reloc
, /* special_function */
1268 "R_ARM_LDC_SB_G2", /* name */
1269 false, /* partial_inplace */
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
1272 true), /* pcrel_offset */
1274 /* End of group relocations. */
1276 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1280 false, /* pc_relative */
1282 complain_overflow_dont
,/* complain_on_overflow */
1283 bfd_elf_generic_reloc
, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
1285 false, /* partial_inplace */
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
1288 false), /* pcrel_offset */
1290 HOWTO (R_ARM_MOVT_BREL
, /* type */
1294 false, /* pc_relative */
1296 complain_overflow_bitfield
,/* complain_on_overflow */
1297 bfd_elf_generic_reloc
, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
1299 false, /* partial_inplace */
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
1302 false), /* pcrel_offset */
1304 HOWTO (R_ARM_MOVW_BREL
, /* type */
1308 false, /* pc_relative */
1310 complain_overflow_dont
,/* complain_on_overflow */
1311 bfd_elf_generic_reloc
, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
1313 false, /* partial_inplace */
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
1316 false), /* pcrel_offset */
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1322 false, /* pc_relative */
1324 complain_overflow_dont
,/* complain_on_overflow */
1325 bfd_elf_generic_reloc
, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
1327 false, /* partial_inplace */
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
1330 false), /* pcrel_offset */
1332 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1336 false, /* pc_relative */
1338 complain_overflow_bitfield
,/* complain_on_overflow */
1339 bfd_elf_generic_reloc
, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
1341 false, /* partial_inplace */
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
1344 false), /* pcrel_offset */
1346 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1350 false, /* pc_relative */
1352 complain_overflow_dont
,/* complain_on_overflow */
1353 bfd_elf_generic_reloc
, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
1355 false, /* partial_inplace */
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
1358 false), /* pcrel_offset */
1360 HOWTO (R_ARM_TLS_GOTDESC
, /* type */
1364 false, /* pc_relative */
1366 complain_overflow_bitfield
,/* complain_on_overflow */
1367 NULL
, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
1369 true, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 false), /* pcrel_offset */
1374 HOWTO (R_ARM_TLS_CALL
, /* type */
1378 false, /* pc_relative */
1380 complain_overflow_dont
,/* complain_on_overflow */
1381 bfd_elf_generic_reloc
, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
1383 false, /* partial_inplace */
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
1386 false), /* pcrel_offset */
1388 HOWTO (R_ARM_TLS_DESCSEQ
, /* type */
1392 false, /* pc_relative */
1394 complain_overflow_dont
,/* complain_on_overflow */
1395 bfd_elf_generic_reloc
, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
1397 false, /* partial_inplace */
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
1400 false), /* pcrel_offset */
1402 HOWTO (R_ARM_THM_TLS_CALL
, /* type */
1406 false, /* pc_relative */
1408 complain_overflow_dont
,/* complain_on_overflow */
1409 bfd_elf_generic_reloc
, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
1411 false, /* partial_inplace */
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
1414 false), /* pcrel_offset */
1416 HOWTO (R_ARM_PLT32_ABS
, /* type */
1420 false, /* pc_relative */
1422 complain_overflow_dont
,/* complain_on_overflow */
1423 bfd_elf_generic_reloc
, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
1425 false, /* partial_inplace */
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
1428 false), /* pcrel_offset */
1430 HOWTO (R_ARM_GOT_ABS
, /* type */
1434 false, /* pc_relative */
1436 complain_overflow_dont
,/* complain_on_overflow */
1437 bfd_elf_generic_reloc
, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
1439 false, /* partial_inplace */
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
1442 false), /* pcrel_offset */
1444 HOWTO (R_ARM_GOT_PREL
, /* type */
1448 true, /* pc_relative */
1450 complain_overflow_dont
, /* complain_on_overflow */
1451 bfd_elf_generic_reloc
, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
1453 false, /* partial_inplace */
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 true), /* pcrel_offset */
1458 HOWTO (R_ARM_GOT_BREL12
, /* type */
1462 false, /* pc_relative */
1464 complain_overflow_bitfield
,/* complain_on_overflow */
1465 bfd_elf_generic_reloc
, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
1467 false, /* partial_inplace */
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
1470 false), /* pcrel_offset */
1472 HOWTO (R_ARM_GOTOFF12
, /* type */
1476 false, /* pc_relative */
1478 complain_overflow_bitfield
,/* complain_on_overflow */
1479 bfd_elf_generic_reloc
, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
1481 false, /* partial_inplace */
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
1484 false), /* pcrel_offset */
1486 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1488 /* GNU extension to record C++ vtable member usage */
1489 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1493 false, /* pc_relative */
1495 complain_overflow_dont
, /* complain_on_overflow */
1496 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
1498 false, /* partial_inplace */
1501 false), /* pcrel_offset */
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1508 false, /* pc_relative */
1510 complain_overflow_dont
, /* complain_on_overflow */
1511 NULL
, /* special_function */
1512 "R_ARM_GNU_VTINHERIT", /* name */
1513 false, /* partial_inplace */
1516 false), /* pcrel_offset */
1518 HOWTO (R_ARM_THM_JUMP11
, /* type */
1522 true, /* pc_relative */
1524 complain_overflow_signed
, /* complain_on_overflow */
1525 bfd_elf_generic_reloc
, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
1527 false, /* partial_inplace */
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
1530 true), /* pcrel_offset */
1532 HOWTO (R_ARM_THM_JUMP8
, /* type */
1536 true, /* pc_relative */
1538 complain_overflow_signed
, /* complain_on_overflow */
1539 bfd_elf_generic_reloc
, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
1541 false, /* partial_inplace */
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
1544 true), /* pcrel_offset */
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32
, /* type */
1551 false, /* pc_relative */
1553 complain_overflow_bitfield
,/* complain_on_overflow */
1554 NULL
, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
1556 true, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 false), /* pcrel_offset */
1561 HOWTO (R_ARM_TLS_LDM32
, /* type */
1565 false, /* pc_relative */
1567 complain_overflow_bitfield
,/* complain_on_overflow */
1568 bfd_elf_generic_reloc
, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
1570 true, /* partial_inplace */
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
1573 false), /* pcrel_offset */
1575 HOWTO (R_ARM_TLS_LDO32
, /* type */
1579 false, /* pc_relative */
1581 complain_overflow_bitfield
,/* complain_on_overflow */
1582 bfd_elf_generic_reloc
, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
1584 true, /* partial_inplace */
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
1587 false), /* pcrel_offset */
1589 HOWTO (R_ARM_TLS_IE32
, /* type */
1593 false, /* pc_relative */
1595 complain_overflow_bitfield
,/* complain_on_overflow */
1596 NULL
, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
1598 true, /* partial_inplace */
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
1601 false), /* pcrel_offset */
1603 HOWTO (R_ARM_TLS_LE32
, /* type */
1607 false, /* pc_relative */
1609 complain_overflow_bitfield
,/* complain_on_overflow */
1610 NULL
, /* special_function */
1611 "R_ARM_TLS_LE32", /* name */
1612 true, /* partial_inplace */
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
1615 false), /* pcrel_offset */
1617 HOWTO (R_ARM_TLS_LDO12
, /* type */
1621 false, /* pc_relative */
1623 complain_overflow_bitfield
,/* complain_on_overflow */
1624 bfd_elf_generic_reloc
, /* special_function */
1625 "R_ARM_TLS_LDO12", /* name */
1626 false, /* partial_inplace */
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
1629 false), /* pcrel_offset */
1631 HOWTO (R_ARM_TLS_LE12
, /* type */
1635 false, /* pc_relative */
1637 complain_overflow_bitfield
,/* complain_on_overflow */
1638 bfd_elf_generic_reloc
, /* special_function */
1639 "R_ARM_TLS_LE12", /* name */
1640 false, /* partial_inplace */
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
1643 false), /* pcrel_offset */
1645 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1649 false, /* pc_relative */
1651 complain_overflow_bitfield
,/* complain_on_overflow */
1652 bfd_elf_generic_reloc
, /* special_function */
1653 "R_ARM_TLS_IE12GP", /* name */
1654 false, /* partial_inplace */
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
1657 false), /* pcrel_offset */
1659 /* 112-127 private relocations. */
1677 /* R_ARM_ME_TOO, obsolete. */
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ
, /* type */
1684 false, /* pc_relative */
1686 complain_overflow_dont
,/* complain_on_overflow */
1687 bfd_elf_generic_reloc
, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
1689 false, /* partial_inplace */
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
1692 false), /* pcrel_offset */
1695 HOWTO (R_ARM_THM_ALU_ABS_G0_NC
,/* type. */
1696 0, /* rightshift. */
1699 false, /* pc_relative. */
1701 complain_overflow_bitfield
,/* complain_on_overflow. */
1702 bfd_elf_generic_reloc
, /* special_function. */
1703 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1704 false, /* partial_inplace. */
1705 0x00000000, /* src_mask. */
1706 0x00000000, /* dst_mask. */
1707 false), /* pcrel_offset. */
1708 HOWTO (R_ARM_THM_ALU_ABS_G1_NC
,/* type. */
1709 0, /* rightshift. */
1712 false, /* pc_relative. */
1714 complain_overflow_bitfield
,/* complain_on_overflow. */
1715 bfd_elf_generic_reloc
, /* special_function. */
1716 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1717 false, /* partial_inplace. */
1718 0x00000000, /* src_mask. */
1719 0x00000000, /* dst_mask. */
1720 false), /* pcrel_offset. */
1721 HOWTO (R_ARM_THM_ALU_ABS_G2_NC
,/* type. */
1722 0, /* rightshift. */
1725 false, /* pc_relative. */
1727 complain_overflow_bitfield
,/* complain_on_overflow. */
1728 bfd_elf_generic_reloc
, /* special_function. */
1729 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1730 false, /* partial_inplace. */
1731 0x00000000, /* src_mask. */
1732 0x00000000, /* dst_mask. */
1733 false), /* pcrel_offset. */
1734 HOWTO (R_ARM_THM_ALU_ABS_G3_NC
,/* type. */
1735 0, /* rightshift. */
1738 false, /* pc_relative. */
1740 complain_overflow_bitfield
,/* complain_on_overflow. */
1741 bfd_elf_generic_reloc
, /* special_function. */
1742 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1743 false, /* partial_inplace. */
1744 0x00000000, /* src_mask. */
1745 0x00000000, /* dst_mask. */
1746 false), /* pcrel_offset. */
1747 /* Relocations for Armv8.1-M Mainline. */
1748 HOWTO (R_ARM_THM_BF16
, /* type. */
1749 0, /* rightshift. */
1752 true, /* pc_relative. */
1754 complain_overflow_dont
,/* do not complain_on_overflow. */
1755 bfd_elf_generic_reloc
, /* special_function. */
1756 "R_ARM_THM_BF16", /* name. */
1757 false, /* partial_inplace. */
1758 0x001f0ffe, /* src_mask. */
1759 0x001f0ffe, /* dst_mask. */
1760 true), /* pcrel_offset. */
1761 HOWTO (R_ARM_THM_BF12
, /* type. */
1762 0, /* rightshift. */
1765 true, /* pc_relative. */
1767 complain_overflow_dont
,/* do not complain_on_overflow. */
1768 bfd_elf_generic_reloc
, /* special_function. */
1769 "R_ARM_THM_BF12", /* name. */
1770 false, /* partial_inplace. */
1771 0x00010ffe, /* src_mask. */
1772 0x00010ffe, /* dst_mask. */
1773 true), /* pcrel_offset. */
1774 HOWTO (R_ARM_THM_BF18
, /* type. */
1775 0, /* rightshift. */
1778 true, /* pc_relative. */
1780 complain_overflow_dont
,/* do not complain_on_overflow. */
1781 bfd_elf_generic_reloc
, /* special_function. */
1782 "R_ARM_THM_BF18", /* name. */
1783 false, /* partial_inplace. */
1784 0x007f0ffe, /* src_mask. */
1785 0x007f0ffe, /* dst_mask. */
1786 true), /* pcrel_offset. */
1790 static reloc_howto_type elf32_arm_howto_table_2
[8] =
1792 HOWTO (R_ARM_IRELATIVE
, /* type */
1796 false, /* pc_relative */
1798 complain_overflow_bitfield
,/* complain_on_overflow */
1799 bfd_elf_generic_reloc
, /* special_function */
1800 "R_ARM_IRELATIVE", /* name */
1801 true, /* partial_inplace */
1802 0xffffffff, /* src_mask */
1803 0xffffffff, /* dst_mask */
1804 false), /* pcrel_offset */
1805 HOWTO (R_ARM_GOTFUNCDESC
, /* type */
1809 false, /* pc_relative */
1811 complain_overflow_bitfield
,/* complain_on_overflow */
1812 bfd_elf_generic_reloc
, /* special_function */
1813 "R_ARM_GOTFUNCDESC", /* name */
1814 false, /* partial_inplace */
1816 0xffffffff, /* dst_mask */
1817 false), /* pcrel_offset */
1818 HOWTO (R_ARM_GOTOFFFUNCDESC
, /* type */
1822 false, /* pc_relative */
1824 complain_overflow_bitfield
,/* complain_on_overflow */
1825 bfd_elf_generic_reloc
, /* special_function */
1826 "R_ARM_GOTOFFFUNCDESC",/* name */
1827 false, /* partial_inplace */
1829 0xffffffff, /* dst_mask */
1830 false), /* pcrel_offset */
1831 HOWTO (R_ARM_FUNCDESC
, /* type */
1835 false, /* pc_relative */
1837 complain_overflow_bitfield
,/* complain_on_overflow */
1838 bfd_elf_generic_reloc
, /* special_function */
1839 "R_ARM_FUNCDESC", /* name */
1840 false, /* partial_inplace */
1842 0xffffffff, /* dst_mask */
1843 false), /* pcrel_offset */
1844 HOWTO (R_ARM_FUNCDESC_VALUE
, /* type */
1848 false, /* pc_relative */
1850 complain_overflow_bitfield
,/* complain_on_overflow */
1851 bfd_elf_generic_reloc
, /* special_function */
1852 "R_ARM_FUNCDESC_VALUE",/* name */
1853 false, /* partial_inplace */
1855 0xffffffff, /* dst_mask */
1856 false), /* pcrel_offset */
1857 HOWTO (R_ARM_TLS_GD32_FDPIC
, /* type */
1861 false, /* pc_relative */
1863 complain_overflow_bitfield
,/* complain_on_overflow */
1864 bfd_elf_generic_reloc
, /* special_function */
1865 "R_ARM_TLS_GD32_FDPIC",/* name */
1866 false, /* partial_inplace */
1868 0xffffffff, /* dst_mask */
1869 false), /* pcrel_offset */
1870 HOWTO (R_ARM_TLS_LDM32_FDPIC
, /* type */
1874 false, /* pc_relative */
1876 complain_overflow_bitfield
,/* complain_on_overflow */
1877 bfd_elf_generic_reloc
, /* special_function */
1878 "R_ARM_TLS_LDM32_FDPIC",/* name */
1879 false, /* partial_inplace */
1881 0xffffffff, /* dst_mask */
1882 false), /* pcrel_offset */
1883 HOWTO (R_ARM_TLS_IE32_FDPIC
, /* type */
1887 false, /* pc_relative */
1889 complain_overflow_bitfield
,/* complain_on_overflow */
1890 bfd_elf_generic_reloc
, /* special_function */
1891 "R_ARM_TLS_IE32_FDPIC",/* name */
1892 false, /* partial_inplace */
1894 0xffffffff, /* dst_mask */
1895 false), /* pcrel_offset */
1898 /* 249-255 extended, currently unused, relocations: */
1899 static reloc_howto_type elf32_arm_howto_table_3
[4] =
1901 HOWTO (R_ARM_RREL32
, /* type */
1905 false, /* pc_relative */
1907 complain_overflow_dont
,/* complain_on_overflow */
1908 bfd_elf_generic_reloc
, /* special_function */
1909 "R_ARM_RREL32", /* name */
1910 false, /* partial_inplace */
1913 false), /* pcrel_offset */
1915 HOWTO (R_ARM_RABS32
, /* type */
1919 false, /* pc_relative */
1921 complain_overflow_dont
,/* complain_on_overflow */
1922 bfd_elf_generic_reloc
, /* special_function */
1923 "R_ARM_RABS32", /* name */
1924 false, /* partial_inplace */
1927 false), /* pcrel_offset */
1929 HOWTO (R_ARM_RPC24
, /* type */
1933 false, /* pc_relative */
1935 complain_overflow_dont
,/* complain_on_overflow */
1936 bfd_elf_generic_reloc
, /* special_function */
1937 "R_ARM_RPC24", /* name */
1938 false, /* partial_inplace */
1941 false), /* pcrel_offset */
1943 HOWTO (R_ARM_RBASE
, /* type */
1947 false, /* pc_relative */
1949 complain_overflow_dont
,/* complain_on_overflow */
1950 bfd_elf_generic_reloc
, /* special_function */
1951 "R_ARM_RBASE", /* name */
1952 false, /* partial_inplace */
1955 false) /* pcrel_offset */
1958 static reloc_howto_type
*
1959 elf32_arm_howto_from_type (unsigned int r_type
)
1961 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1962 return &elf32_arm_howto_table_1
[r_type
];
1964 if (r_type
>= R_ARM_IRELATIVE
1965 && r_type
< R_ARM_IRELATIVE
+ ARRAY_SIZE (elf32_arm_howto_table_2
))
1966 return &elf32_arm_howto_table_2
[r_type
- R_ARM_IRELATIVE
];
1968 if (r_type
>= R_ARM_RREL32
1969 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_3
))
1970 return &elf32_arm_howto_table_3
[r_type
- R_ARM_RREL32
];
1976 elf32_arm_info_to_howto (bfd
* abfd
, arelent
* bfd_reloc
,
1977 Elf_Internal_Rela
* elf_reloc
)
1979 unsigned int r_type
;
1981 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1982 if ((bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
)) == NULL
)
1984 /* xgettext:c-format */
1985 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1987 bfd_set_error (bfd_error_bad_value
);
1993 struct elf32_arm_reloc_map
1995 bfd_reloc_code_real_type bfd_reloc_val
;
1996 unsigned char elf_reloc_val
;
1999 /* All entries in this list must also be present in elf32_arm_howto_table. */
2000 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
2002 {BFD_RELOC_NONE
, R_ARM_NONE
},
2003 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
2004 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
2005 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
2006 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
2007 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
2008 {BFD_RELOC_32
, R_ARM_ABS32
},
2009 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
2010 {BFD_RELOC_8
, R_ARM_ABS8
},
2011 {BFD_RELOC_16
, R_ARM_ABS16
},
2012 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
2013 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
2014 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
2018 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
2019 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
2020 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
2021 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
2022 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
2023 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
2024 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
2025 {BFD_RELOC_ARM_GOT_PREL
, R_ARM_GOT_PREL
},
2026 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
2027 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
2028 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
2029 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
2030 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
2031 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
2032 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
2033 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
2034 {BFD_RELOC_ARM_TLS_GOTDESC
, R_ARM_TLS_GOTDESC
},
2035 {BFD_RELOC_ARM_TLS_CALL
, R_ARM_TLS_CALL
},
2036 {BFD_RELOC_ARM_THM_TLS_CALL
, R_ARM_THM_TLS_CALL
},
2037 {BFD_RELOC_ARM_TLS_DESCSEQ
, R_ARM_TLS_DESCSEQ
},
2038 {BFD_RELOC_ARM_THM_TLS_DESCSEQ
, R_ARM_THM_TLS_DESCSEQ
},
2039 {BFD_RELOC_ARM_TLS_DESC
, R_ARM_TLS_DESC
},
2040 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
2041 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
2042 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
2043 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
2044 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
2045 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
2046 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
2047 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
2048 {BFD_RELOC_ARM_IRELATIVE
, R_ARM_IRELATIVE
},
2049 {BFD_RELOC_ARM_GOTFUNCDESC
, R_ARM_GOTFUNCDESC
},
2050 {BFD_RELOC_ARM_GOTOFFFUNCDESC
, R_ARM_GOTOFFFUNCDESC
},
2051 {BFD_RELOC_ARM_FUNCDESC
, R_ARM_FUNCDESC
},
2052 {BFD_RELOC_ARM_FUNCDESC_VALUE
, R_ARM_FUNCDESC_VALUE
},
2053 {BFD_RELOC_ARM_TLS_GD32_FDPIC
, R_ARM_TLS_GD32_FDPIC
},
2054 {BFD_RELOC_ARM_TLS_LDM32_FDPIC
, R_ARM_TLS_LDM32_FDPIC
},
2055 {BFD_RELOC_ARM_TLS_IE32_FDPIC
, R_ARM_TLS_IE32_FDPIC
},
2056 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
2057 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
2058 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
2059 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
2060 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
2061 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
2062 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
2063 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
2064 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
2065 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
2066 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
2067 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
2068 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
2069 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
2070 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
2071 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
2072 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
2073 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
2074 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
2075 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
2076 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
2077 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
2078 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
2079 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
2080 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
2081 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
2082 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
2083 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
2084 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
2085 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
2086 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
2087 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
2088 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
2089 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
2090 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
2091 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
2092 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
2093 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
2094 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
, R_ARM_THM_ALU_ABS_G3_NC
},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
, R_ARM_THM_ALU_ABS_G2_NC
},
2097 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
, R_ARM_THM_ALU_ABS_G1_NC
},
2098 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
, R_ARM_THM_ALU_ABS_G0_NC
},
2099 {BFD_RELOC_ARM_THUMB_BF17
, R_ARM_THM_BF16
},
2100 {BFD_RELOC_ARM_THUMB_BF13
, R_ARM_THM_BF12
},
2101 {BFD_RELOC_ARM_THUMB_BF19
, R_ARM_THM_BF18
}
2104 static reloc_howto_type
*
2105 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
2106 bfd_reloc_code_real_type code
)
2110 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
2111 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
2112 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
2117 static reloc_howto_type
*
2118 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
2123 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
2124 if (elf32_arm_howto_table_1
[i
].name
!= NULL
2125 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
2126 return &elf32_arm_howto_table_1
[i
];
2128 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
2129 if (elf32_arm_howto_table_2
[i
].name
!= NULL
2130 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
2131 return &elf32_arm_howto_table_2
[i
];
2133 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_3
); i
++)
2134 if (elf32_arm_howto_table_3
[i
].name
!= NULL
2135 && strcasecmp (elf32_arm_howto_table_3
[i
].name
, r_name
) == 0)
2136 return &elf32_arm_howto_table_3
[i
];
2141 /* Support for core dump NOTE sections. */
2144 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
2149 switch (note
->descsz
)
2154 case 148: /* Linux/ARM 32-bit. */
2156 elf_tdata (abfd
)->core
->signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
2159 elf_tdata (abfd
)->core
->lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
2168 /* Make a ".reg/999" section. */
2169 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
2170 size
, note
->descpos
+ offset
);
2174 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
2176 switch (note
->descsz
)
2181 case 124: /* Linux/ARM elf_prpsinfo. */
2182 elf_tdata (abfd
)->core
->pid
2183 = bfd_get_32 (abfd
, note
->descdata
+ 12);
2184 elf_tdata (abfd
)->core
->program
2185 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
2186 elf_tdata (abfd
)->core
->command
2187 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
2190 /* Note that for some reason, a spurious space is tacked
2191 onto the end of the args in some (at least one anyway)
2192 implementations, so strip it off if it exists. */
2194 char *command
= elf_tdata (abfd
)->core
->command
;
2195 int n
= strlen (command
);
2197 if (0 < n
&& command
[n
- 1] == ' ')
2198 command
[n
- 1] = '\0';
2205 elf32_arm_nabi_write_core_note (bfd
*abfd
, char *buf
, int *bufsiz
,
2215 char data
[124] ATTRIBUTE_NONSTRING
;
2218 va_start (ap
, note_type
);
2219 memset (data
, 0, sizeof (data
));
2220 strncpy (data
+ 28, va_arg (ap
, const char *), 16);
2221 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2223 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
2224 -Wstringop-truncation:
2225 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2227 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION
;
2229 strncpy (data
+ 44, va_arg (ap
, const char *), 80);
2230 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2235 return elfcore_write_note (abfd
, buf
, bufsiz
,
2236 "CORE", note_type
, data
, sizeof (data
));
2247 va_start (ap
, note_type
);
2248 memset (data
, 0, sizeof (data
));
2249 pid
= va_arg (ap
, long);
2250 bfd_put_32 (abfd
, pid
, data
+ 24);
2251 cursig
= va_arg (ap
, int);
2252 bfd_put_16 (abfd
, cursig
, data
+ 12);
2253 greg
= va_arg (ap
, const void *);
2254 memcpy (data
+ 72, greg
, 72);
2257 return elfcore_write_note (abfd
, buf
, bufsiz
,
2258 "CORE", note_type
, data
, sizeof (data
));
2263 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2264 #define TARGET_LITTLE_NAME "elf32-littlearm"
2265 #define TARGET_BIG_SYM arm_elf32_be_vec
2266 #define TARGET_BIG_NAME "elf32-bigarm"
2268 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2269 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2270 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2272 typedef unsigned long int insn32
;
2273 typedef unsigned short int insn16
;
2275 /* In lieu of proper flags, assume all EABIv4 or later objects are
2277 #define INTERWORK_FLAG(abfd) \
2278 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2279 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2280 || ((abfd)->flags & BFD_LINKER_CREATED))
2282 /* The linker script knows the section names for placement.
2283 The entry_names are used to do simple name mangling on the stubs.
2284 Given a function name, and its type, the stub can be found. The
2285 name can be changed. The only requirement is the %s be present. */
2286 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2287 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2289 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2290 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2292 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2293 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2295 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2296 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2298 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2299 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2301 #define STUB_ENTRY_NAME "__%s_veneer"
2303 #define CMSE_PREFIX "__acle_se_"
2305 #define CMSE_STUB_NAME ".gnu.sgstubs"
2307 /* The name of the dynamic interpreter. This is put in the .interp
2309 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2311 /* FDPIC default stack size. */
2312 #define DEFAULT_STACK_SIZE 0x8000
2314 static const unsigned long tls_trampoline
[] =
2316 0xe08e0000, /* add r0, lr, r0 */
2317 0xe5901004, /* ldr r1, [r0,#4] */
2318 0xe12fff11, /* bx r1 */
2321 static const unsigned long dl_tlsdesc_lazy_trampoline
[] =
2323 0xe52d2004, /* push {r2} */
2324 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2325 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2326 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2327 0xe081100f, /* 2: add r1, pc */
2328 0xe12fff12, /* bx r2 */
2329 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2330 + dl_tlsdesc_lazy_resolver(GOT) */
2331 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2334 /* NOTE: [Thumb nop sequence]
2335 When adding code that transitions from Thumb to Arm the instruction that
2336 should be used for the alignment padding should be 0xe7fd (b .-2) instead of
2337 a nop for performance reasons. */
2339 /* ARM FDPIC PLT entry. */
2340 /* The last 5 words contain PLT lazy fragment code and data. */
2341 static const bfd_vma elf32_arm_fdpic_plt_entry
[] =
2343 0xe59fc008, /* ldr r12, .L1 */
2344 0xe08cc009, /* add r12, r12, r9 */
2345 0xe59c9004, /* ldr r9, [r12, #4] */
2346 0xe59cf000, /* ldr pc, [r12] */
2347 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2348 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2349 0xe51fc00c, /* ldr r12, [pc, #-12] */
2350 0xe92d1000, /* push {r12} */
2351 0xe599c004, /* ldr r12, [r9, #4] */
2352 0xe599f000, /* ldr pc, [r9] */
2355 /* Thumb FDPIC PLT entry. */
2356 /* The last 5 words contain PLT lazy fragment code and data. */
2357 static const bfd_vma elf32_arm_fdpic_thumb_plt_entry
[] =
2359 0xc00cf8df, /* ldr.w r12, .L1 */
2360 0x0c09eb0c, /* add.w r12, r12, r9 */
2361 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2362 0xf000f8dc, /* ldr.w pc, [r12] */
2363 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2364 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2365 0xc008f85f, /* ldr.w r12, .L2 */
2366 0xcd04f84d, /* push {r12} */
2367 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2368 0xf000f8d9, /* ldr.w pc, [r9] */
2371 #ifdef FOUR_WORD_PLT
2373 /* The first entry in a procedure linkage table looks like
2374 this. It is set up so that any shared library function that is
2375 called before the relocation has been set up calls the dynamic
2377 static const bfd_vma elf32_arm_plt0_entry
[] =
2379 0xe52de004, /* str lr, [sp, #-4]! */
2380 0xe59fe010, /* ldr lr, [pc, #16] */
2381 0xe08fe00e, /* add lr, pc, lr */
2382 0xe5bef008, /* ldr pc, [lr, #8]! */
2385 /* Subsequent entries in a procedure linkage table look like
2387 static const bfd_vma elf32_arm_plt_entry
[] =
2389 0xe28fc600, /* add ip, pc, #NN */
2390 0xe28cca00, /* add ip, ip, #NN */
2391 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2392 0x00000000, /* unused */
2395 #else /* not FOUR_WORD_PLT */
2397 /* The first entry in a procedure linkage table looks like
2398 this. It is set up so that any shared library function that is
2399 called before the relocation has been set up calls the dynamic
2401 static const bfd_vma elf32_arm_plt0_entry
[] =
2403 0xe52de004, /* str lr, [sp, #-4]! */
2404 0xe59fe004, /* ldr lr, [pc, #4] */
2405 0xe08fe00e, /* add lr, pc, lr */
2406 0xe5bef008, /* ldr pc, [lr, #8]! */
2407 0x00000000, /* &GOT[0] - . */
2410 /* By default subsequent entries in a procedure linkage table look like
2411 this. Offsets that don't fit into 28 bits will cause link error. */
2412 static const bfd_vma elf32_arm_plt_entry_short
[] =
2414 0xe28fc600, /* add ip, pc, #0xNN00000 */
2415 0xe28cca00, /* add ip, ip, #0xNN000 */
2416 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2419 /* When explicitly asked, we'll use this "long" entry format
2420 which can cope with arbitrary displacements. */
2421 static const bfd_vma elf32_arm_plt_entry_long
[] =
2423 0xe28fc200, /* add ip, pc, #0xN0000000 */
2424 0xe28cc600, /* add ip, ip, #0xNN00000 */
2425 0xe28cca00, /* add ip, ip, #0xNN000 */
2426 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2429 static bool elf32_arm_use_long_plt_entry
= false;
2431 #endif /* not FOUR_WORD_PLT */
2433 /* The first entry in a procedure linkage table looks like this.
2434 It is set up so that any shared library function that is called before the
2435 relocation has been set up calls the dynamic linker first. */
2436 static const bfd_vma elf32_thumb2_plt0_entry
[] =
2438 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2439 an instruction maybe encoded to one or two array elements. */
2440 0xf8dfb500, /* push {lr} */
2441 0x44fee008, /* ldr.w lr, [pc, #8] */
2443 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2444 0x00000000, /* &GOT[0] - . */
2447 /* Subsequent entries in a procedure linkage table for thumb only target
2449 static const bfd_vma elf32_thumb2_plt_entry
[] =
2451 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2452 an instruction maybe encoded to one or two array elements. */
2453 0x0c00f240, /* movw ip, #0xNNNN */
2454 0x0c00f2c0, /* movt ip, #0xNNNN */
2455 0xf8dc44fc, /* add ip, pc */
2456 0xe7fcf000 /* ldr.w pc, [ip] */
2460 /* The format of the first entry in the procedure linkage table
2461 for a VxWorks executable. */
2462 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
2464 0xe52dc008, /* str ip,[sp,#-8]! */
2465 0xe59fc000, /* ldr ip,[pc] */
2466 0xe59cf008, /* ldr pc,[ip,#8] */
2467 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2470 /* The format of subsequent entries in a VxWorks executable. */
2471 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
2473 0xe59fc000, /* ldr ip,[pc] */
2474 0xe59cf000, /* ldr pc,[ip] */
2475 0x00000000, /* .long @got */
2476 0xe59fc000, /* ldr ip,[pc] */
2477 0xea000000, /* b _PLT */
2478 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2481 /* The format of entries in a VxWorks shared library. */
2482 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
2484 0xe59fc000, /* ldr ip,[pc] */
2485 0xe79cf009, /* ldr pc,[ip,r9] */
2486 0x00000000, /* .long @got */
2487 0xe59fc000, /* ldr ip,[pc] */
2488 0xe599f008, /* ldr pc,[r9,#8] */
2489 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2492 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2493 #define PLT_THUMB_STUB_SIZE 4
2494 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2500 /* The first entry in a procedure linkage table looks like
2501 this. It is set up so that any shared library function that is
2502 called before the relocation has been set up calls the dynamic
2504 static const bfd_vma elf32_arm_nacl_plt0_entry
[] =
2507 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2508 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2509 0xe08cc00f, /* add ip, ip, pc */
2510 0xe52dc008, /* str ip, [sp, #-8]! */
2511 /* Second bundle: */
2512 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2513 0xe59cc000, /* ldr ip, [ip] */
2514 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2515 0xe12fff1c, /* bx ip */
2517 0xe320f000, /* nop */
2518 0xe320f000, /* nop */
2519 0xe320f000, /* nop */
2521 0xe50dc004, /* str ip, [sp, #-4] */
2522 /* Fourth bundle: */
2523 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2524 0xe59cc000, /* ldr ip, [ip] */
2525 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2526 0xe12fff1c, /* bx ip */
2528 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2530 /* Subsequent entries in a procedure linkage table look like this. */
2531 static const bfd_vma elf32_arm_nacl_plt_entry
[] =
2533 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2534 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2535 0xe08cc00f, /* add ip, ip, pc */
2536 0xea000000, /* b .Lplt_tail */
2540 There was a bug due to too high values of THM_MAX_FWD_BRANCH_OFFSET and
2541 THM2_MAX_FWD_BRANCH_OFFSET. The first macro concerns the case when Thumb-2
2542 is not available, and second macro when Thumb-2 is available. Among other
2543 things, they affect the range of branches represented as BLX instructions
2544 in Encoding T2 defined in Section A8.8.25 of the ARM Architecture
2545 Reference Manual ARMv7-A and ARMv7-R edition issue C.d. Such branches are
2546 specified there to have a maximum forward offset that is a multiple of 4.
2547 Previously, the respective values defined here were multiples of 2 but not
2548 4 and they are included in comments for reference. */
2549 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2550 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2551 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) - 4 + 4)
2552 /* #def THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) - 2 + 4) */
2553 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2554 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 4) + 4)
2555 /* #def THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4) */
2556 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2557 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2558 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2568 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2569 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2570 is inserted in arm_build_one_stub(). */
2571 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2572 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2573 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2574 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2575 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2576 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2577 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2578 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2583 enum stub_insn_type type
;
2584 unsigned int r_type
;
2588 /* See note [Thumb nop sequence] when adding a veneer. */
2590 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2591 to reach the stub if necessary. */
2592 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2594 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2595 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2598 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2600 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2602 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2603 ARM_INSN (0xe12fff1c), /* bx ip */
2604 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2607 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2608 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2610 THUMB16_INSN (0xb401), /* push {r0} */
2611 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2612 THUMB16_INSN (0x4684), /* mov ip, r0 */
2613 THUMB16_INSN (0xbc01), /* pop {r0} */
2614 THUMB16_INSN (0x4760), /* bx ip */
2615 THUMB16_INSN (0xbf00), /* nop */
2616 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2619 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2620 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only
[] =
2622 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2623 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(x) */
2626 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2627 M-profile architectures. */
2628 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure
[] =
2630 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2631 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2632 THUMB16_INSN (0x4760), /* bx ip */
2635 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2637 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2639 THUMB16_INSN (0x4778), /* bx pc */
2640 THUMB16_INSN (0xe7fd), /* b .-2 */
2641 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2642 ARM_INSN (0xe12fff1c), /* bx ip */
2643 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2646 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2648 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2650 THUMB16_INSN (0x4778), /* bx pc */
2651 THUMB16_INSN (0xe7fd), /* b .-2 */
2652 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2653 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2656 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2657 one, when the destination is close enough. */
2658 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2660 THUMB16_INSN (0x4778), /* bx pc */
2661 THUMB16_INSN (0xe7fd), /* b .-2 */
2662 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2665 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2666 blx to reach the stub if necessary. */
2667 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2669 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2670 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2671 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2674 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2675 blx to reach the stub if necessary. We can not add into pc;
2676 it is not guaranteed to mode switch (different in ARMv6 and
2678 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2680 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2681 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2682 ARM_INSN (0xe12fff1c), /* bx ip */
2683 DATA_WORD (0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2686 /* V4T ARM -> ARM long branch stub, PIC. */
2687 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2689 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2690 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2691 ARM_INSN (0xe12fff1c), /* bx ip */
2692 DATA_WORD (0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2695 /* V4T Thumb -> ARM long branch stub, PIC. */
2696 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2698 THUMB16_INSN (0x4778), /* bx pc */
2699 THUMB16_INSN (0xe7fd), /* b .-2 */
2700 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2701 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2702 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2705 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2707 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2709 THUMB16_INSN (0xb401), /* push {r0} */
2710 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2711 THUMB16_INSN (0x46fc), /* mov ip, pc */
2712 THUMB16_INSN (0x4484), /* add ip, r0 */
2713 THUMB16_INSN (0xbc01), /* pop {r0} */
2714 THUMB16_INSN (0x4760), /* bx ip */
2715 DATA_WORD (0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2718 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2720 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2722 THUMB16_INSN (0x4778), /* bx pc */
2723 THUMB16_INSN (0xe7fd), /* b .-2 */
2724 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2725 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2726 ARM_INSN (0xe12fff1c), /* bx ip */
2727 DATA_WORD (0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2730 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2731 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2732 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic
[] =
2734 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2735 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2736 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2739 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2740 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2741 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic
[] =
2743 THUMB16_INSN (0x4778), /* bx pc */
2744 THUMB16_INSN (0xe7fd), /* b .-2 */
2745 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2746 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2747 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2750 /* NaCl ARM -> ARM long branch stub. */
2751 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl
[] =
2753 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2754 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2755 ARM_INSN (0xe12fff1c), /* bx ip */
2756 ARM_INSN (0xe320f000), /* nop */
2757 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2758 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2759 DATA_WORD (0, R_ARM_NONE
, 0), /* .word 0 */
2760 DATA_WORD (0, R_ARM_NONE
, 0), /* .word 0 */
2763 /* NaCl ARM -> ARM long branch stub, PIC. */
2764 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic
[] =
2766 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2767 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2768 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2769 ARM_INSN (0xe12fff1c), /* bx ip */
2770 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2771 DATA_WORD (0, R_ARM_REL32
, 8), /* dcd R_ARM_REL32(X+8) */
2772 DATA_WORD (0, R_ARM_NONE
, 0), /* .word 0 */
2773 DATA_WORD (0, R_ARM_NONE
, 0), /* .word 0 */
2776 /* Stub used for transition to secure state (aka SG veneer). */
2777 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only
[] =
2779 THUMB32_INSN (0xe97fe97f), /* sg. */
2780 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2784 /* Cortex-A8 erratum-workaround stubs. */
2786 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2787 can't use a conditional branch to reach this stub). */
2789 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2791 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2792 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2793 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2796 /* Stub used for b.w and bl.w instructions. */
2798 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2800 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2803 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2805 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2808 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2809 instruction (which switches to ARM mode) to point to this stub. Jump to the
2810 real destination using an ARM-mode branch. */
2812 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2814 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2817 /* For each section group there can be a specially created linker section
2818 to hold the stubs for that group. The name of the stub section is based
2819 upon the name of another section within that group with the suffix below
2822 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2823 create what appeared to be a linker stub section when it actually
2824 contained user code/data. For example, consider this fragment:
2826 const char * stubborn_problems[] = { "np" };
2828 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2831 .data.rel.local.stubborn_problems
2833 This then causes problems in arm32_arm_build_stubs() as it triggers:
2835 // Ignore non-stub sections.
2836 if (!strstr (stub_sec->name, STUB_SUFFIX))
2839 And so the section would be ignored instead of being processed. Hence
2840 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2842 #define STUB_SUFFIX ".__stub"
2844 /* One entry per long/short branch stub defined above. */
2846 DEF_STUB (long_branch_any_any) \
2847 DEF_STUB (long_branch_v4t_arm_thumb) \
2848 DEF_STUB (long_branch_thumb_only) \
2849 DEF_STUB (long_branch_v4t_thumb_thumb) \
2850 DEF_STUB (long_branch_v4t_thumb_arm) \
2851 DEF_STUB (short_branch_v4t_thumb_arm) \
2852 DEF_STUB (long_branch_any_arm_pic) \
2853 DEF_STUB (long_branch_any_thumb_pic) \
2854 DEF_STUB (long_branch_v4t_thumb_thumb_pic) \
2855 DEF_STUB (long_branch_v4t_arm_thumb_pic) \
2856 DEF_STUB (long_branch_v4t_thumb_arm_pic) \
2857 DEF_STUB (long_branch_thumb_only_pic) \
2858 DEF_STUB (long_branch_any_tls_pic) \
2859 DEF_STUB (long_branch_v4t_thumb_tls_pic) \
2860 DEF_STUB (long_branch_arm_nacl) \
2861 DEF_STUB (long_branch_arm_nacl_pic) \
2862 DEF_STUB (cmse_branch_thumb_only) \
2863 DEF_STUB (a8_veneer_b_cond) \
2864 DEF_STUB (a8_veneer_b) \
2865 DEF_STUB (a8_veneer_bl) \
2866 DEF_STUB (a8_veneer_blx) \
2867 DEF_STUB (long_branch_thumb2_only) \
2868 DEF_STUB (long_branch_thumb2_only_pure)
2870 #define DEF_STUB(x) arm_stub_##x,
2871 enum elf32_arm_stub_type
2879 /* Note the first a8_veneer type. */
2880 const unsigned arm_stub_a8_veneer_lwm
= arm_stub_a8_veneer_b_cond
;
2884 const insn_sequence
* template_sequence
;
2888 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2889 static const stub_def stub_definitions
[] =
2895 struct elf32_arm_stub_hash_entry
2897 /* Base hash table entry structure. */
2898 struct bfd_hash_entry root
;
2900 /* The stub section. */
2903 /* Offset within stub_sec of the beginning of this stub. */
2904 bfd_vma stub_offset
;
2906 /* Given the symbol's value and its section we can determine its final
2907 value when building the stubs (so the stub knows where to jump). */
2908 bfd_vma target_value
;
2909 asection
*target_section
;
2911 /* Same as above but for the source of the branch to the stub. Used for
2912 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2913 such, source section does not need to be recorded since Cortex-A8 erratum
2914 workaround stubs are only generated when both source and target are in the
2916 bfd_vma source_value
;
2918 /* The instruction which caused this stub to be generated (only valid for
2919 Cortex-A8 erratum workaround stubs at present). */
2920 unsigned long orig_insn
;
2922 /* The stub type. */
2923 enum elf32_arm_stub_type stub_type
;
2924 /* Its encoding size in bytes. */
2927 const insn_sequence
*stub_template
;
2928 /* The size of the template (number of entries). */
2929 int stub_template_size
;
2931 /* The symbol table entry, if any, that this was derived from. */
2932 struct elf32_arm_link_hash_entry
*h
;
2934 /* Type of branch. */
2935 enum arm_st_branch_type branch_type
;
2937 /* Where this stub is being called from, or, in the case of combined
2938 stub sections, the first input section in the group. */
2941 /* The name for the local symbol at the start of this stub. The
2942 stub name in the hash table has to be unique; this does not, so
2943 it can be friendlier. */
2947 /* Used to build a map of a section. This is required for mixed-endian
2950 typedef struct elf32_elf_section_map
2955 elf32_arm_section_map
;
2957 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2961 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2962 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2963 VFP11_ERRATUM_ARM_VENEER
,
2964 VFP11_ERRATUM_THUMB_VENEER
2966 elf32_vfp11_erratum_type
;
2968 typedef struct elf32_vfp11_erratum_list
2970 struct elf32_vfp11_erratum_list
*next
;
2976 struct elf32_vfp11_erratum_list
*veneer
;
2977 unsigned int vfp_insn
;
2981 struct elf32_vfp11_erratum_list
*branch
;
2985 elf32_vfp11_erratum_type type
;
2987 elf32_vfp11_erratum_list
;
2989 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2993 STM32L4XX_ERRATUM_BRANCH_TO_VENEER
,
2994 STM32L4XX_ERRATUM_VENEER
2996 elf32_stm32l4xx_erratum_type
;
2998 typedef struct elf32_stm32l4xx_erratum_list
3000 struct elf32_stm32l4xx_erratum_list
*next
;
3006 struct elf32_stm32l4xx_erratum_list
*veneer
;
3011 struct elf32_stm32l4xx_erratum_list
*branch
;
3015 elf32_stm32l4xx_erratum_type type
;
3017 elf32_stm32l4xx_erratum_list
;
3022 INSERT_EXIDX_CANTUNWIND_AT_END
3024 arm_unwind_edit_type
;
3026 /* A (sorted) list of edits to apply to an unwind table. */
3027 typedef struct arm_unwind_table_edit
3029 arm_unwind_edit_type type
;
3030 /* Note: we sometimes want to insert an unwind entry corresponding to a
3031 section different from the one we're currently writing out, so record the
3032 (text) section this edit relates to here. */
3033 asection
*linked_section
;
3035 struct arm_unwind_table_edit
*next
;
3037 arm_unwind_table_edit
;
3039 typedef struct _arm_elf_section_data
3041 /* Information about mapping symbols. */
3042 struct bfd_elf_section_data elf
;
3043 unsigned int mapcount
;
3044 unsigned int mapsize
;
3045 elf32_arm_section_map
*map
;
3046 /* Information about CPU errata. */
3047 unsigned int erratumcount
;
3048 elf32_vfp11_erratum_list
*erratumlist
;
3049 unsigned int stm32l4xx_erratumcount
;
3050 elf32_stm32l4xx_erratum_list
*stm32l4xx_erratumlist
;
3051 unsigned int additional_reloc_count
;
3052 /* Information about unwind tables. */
3055 /* Unwind info attached to a text section. */
3058 asection
*arm_exidx_sec
;
3061 /* Unwind info attached to an .ARM.exidx section. */
3064 arm_unwind_table_edit
*unwind_edit_list
;
3065 arm_unwind_table_edit
*unwind_edit_tail
;
3069 _arm_elf_section_data
;
3071 #define elf32_arm_section_data(sec) \
3072 ((_arm_elf_section_data *) elf_section_data (sec))
3074 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3075 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3076 so may be created multiple times: we use an array of these entries whilst
3077 relaxing which we can refresh easily, then create stubs for each potentially
3078 erratum-triggering instruction once we've settled on a solution. */
3080 struct a8_erratum_fix
3085 bfd_vma target_offset
;
3086 unsigned long orig_insn
;
3088 enum elf32_arm_stub_type stub_type
;
3089 enum arm_st_branch_type branch_type
;
3092 /* A table of relocs applied to branches which might trigger Cortex-A8
3095 struct a8_erratum_reloc
3098 bfd_vma destination
;
3099 struct elf32_arm_link_hash_entry
*hash
;
3100 const char *sym_name
;
3101 unsigned int r_type
;
3102 enum arm_st_branch_type branch_type
;
3106 /* The size of the thread control block. */
3109 /* ARM-specific information about a PLT entry, over and above the usual
3113 /* We reference count Thumb references to a PLT entry separately,
3114 so that we can emit the Thumb trampoline only if needed. */
3115 bfd_signed_vma thumb_refcount
;
3117 /* Some references from Thumb code may be eliminated by BL->BLX
3118 conversion, so record them separately. */
3119 bfd_signed_vma maybe_thumb_refcount
;
3121 /* How many of the recorded PLT accesses were from non-call relocations.
3122 This information is useful when deciding whether anything takes the
3123 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3124 non-call references to the function should resolve directly to the
3125 real runtime target. */
3126 unsigned int noncall_refcount
;
3128 /* Since PLT entries have variable size if the Thumb prologue is
3129 used, we need to record the index into .got.plt instead of
3130 recomputing it from the PLT offset. */
3131 bfd_signed_vma got_offset
;
3134 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
3135 struct arm_local_iplt_info
3137 /* The information that is usually found in the generic ELF part of
3138 the hash table entry. */
3139 union gotplt_union root
;
3141 /* The information that is usually found in the ARM-specific part of
3142 the hash table entry. */
3143 struct arm_plt_info arm
;
3145 /* A list of all potential dynamic relocations against this symbol. */
3146 struct elf_dyn_relocs
*dyn_relocs
;
3149 /* Structure to handle FDPIC support for local functions. */
3152 unsigned int funcdesc_cnt
;
3153 unsigned int gotofffuncdesc_cnt
;
3154 int funcdesc_offset
;
3157 struct elf_arm_obj_tdata
3159 struct elf_obj_tdata root
;
3161 /* Zero to warn when linking objects with incompatible enum sizes. */
3162 int no_enum_size_warning
;
3164 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3165 int no_wchar_size_warning
;
3167 /* The number of entries in each of the arrays in this strcuture.
3168 Used to avoid buffer overruns. */
3169 bfd_size_type num_entries
;
3171 /* tls_type for each local got entry. */
3172 char *local_got_tls_type
;
3174 /* GOTPLT entries for TLS descriptors. */
3175 bfd_vma
*local_tlsdesc_gotent
;
3177 /* Information for local symbols that need entries in .iplt. */
3178 struct arm_local_iplt_info
**local_iplt
;
3180 /* Maintains FDPIC counters and funcdesc info. */
3181 struct fdpic_local
*local_fdpic_cnts
;
3184 #define elf_arm_tdata(bfd) \
3185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
3187 #define elf32_arm_num_entries(bfd) \
3188 (elf_arm_tdata (bfd)->num_entries)
3190 #define elf32_arm_local_got_tls_type(bfd) \
3191 (elf_arm_tdata (bfd)->local_got_tls_type)
3193 #define elf32_arm_local_tlsdesc_gotent(bfd) \
3194 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3196 #define elf32_arm_local_iplt(bfd) \
3197 (elf_arm_tdata (bfd)->local_iplt)
3199 #define elf32_arm_local_fdpic_cnts(bfd) \
3200 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3202 #define is_arm_elf(bfd) \
3203 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3204 && elf_tdata (bfd) != NULL \
3205 && elf_object_id (bfd) == ARM_ELF_DATA)
3208 elf32_arm_mkobject (bfd
*abfd
)
3210 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
3214 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3216 /* Structure to handle FDPIC support for extern functions. */
3217 struct fdpic_global
{
3218 unsigned int gotofffuncdesc_cnt
;
3219 unsigned int gotfuncdesc_cnt
;
3220 unsigned int funcdesc_cnt
;
3221 int funcdesc_offset
;
3222 int gotfuncdesc_offset
;
3225 /* Arm ELF linker hash entry. */
3226 struct elf32_arm_link_hash_entry
3228 struct elf_link_hash_entry root
;
3230 /* ARM-specific PLT information. */
3231 struct arm_plt_info plt
;
3233 #define GOT_UNKNOWN 0
3234 #define GOT_NORMAL 1
3235 #define GOT_TLS_GD 2
3236 #define GOT_TLS_IE 4
3237 #define GOT_TLS_GDESC 8
3238 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3239 unsigned int tls_type
: 8;
3241 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3242 unsigned int is_iplt
: 1;
3244 unsigned int unused
: 23;
3246 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3247 starting at the end of the jump table. */
3248 bfd_vma tlsdesc_got
;
3250 /* The symbol marking the real symbol location for exported thumb
3251 symbols with Arm stubs. */
3252 struct elf_link_hash_entry
*export_glue
;
3254 /* A pointer to the most recently used stub hash entry against this
3256 struct elf32_arm_stub_hash_entry
*stub_cache
;
3258 /* Counter for FDPIC relocations against this symbol. */
3259 struct fdpic_global fdpic_cnts
;
3262 /* Traverse an arm ELF linker hash table. */
3263 #define elf32_arm_link_hash_traverse(table, func, info) \
3264 (elf_link_hash_traverse \
3266 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \
3269 /* Get the ARM elf linker hash table from a link_info structure. */
3270 #define elf32_arm_hash_table(p) \
3271 ((is_elf_hash_table ((p)->hash) \
3272 && elf_hash_table_id (elf_hash_table (p)) == ARM_ELF_DATA) \
3273 ? (struct elf32_arm_link_hash_table *) (p)->hash : NULL)
3275 #define arm_stub_hash_lookup(table, string, create, copy) \
3276 ((struct elf32_arm_stub_hash_entry *) \
3277 bfd_hash_lookup ((table), (string), (create), (copy)))
3279 /* Array to keep track of which stub sections have been created, and
3280 information on stub grouping. */
3283 /* This is the section to which stubs in the group will be
3286 /* The stub section. */
3290 #define elf32_arm_compute_jump_table_size(htab) \
3291 ((htab)->next_tls_desc_index * 4)
3293 /* ARM ELF linker hash table. */
3294 struct elf32_arm_link_hash_table
3296 /* The main hash table. */
3297 struct elf_link_hash_table root
;
3299 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3300 bfd_size_type thumb_glue_size
;
3302 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3303 bfd_size_type arm_glue_size
;
3305 /* The size in bytes of section containing the ARMv4 BX veneers. */
3306 bfd_size_type bx_glue_size
;
3308 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3309 veneer has been populated. */
3310 bfd_vma bx_glue_offset
[15];
3312 /* The size in bytes of the section containing glue for VFP11 erratum
3314 bfd_size_type vfp11_erratum_glue_size
;
3316 /* The size in bytes of the section containing glue for STM32L4XX erratum
3318 bfd_size_type stm32l4xx_erratum_glue_size
;
3320 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3321 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3322 elf32_arm_write_section(). */
3323 struct a8_erratum_fix
*a8_erratum_fixes
;
3324 unsigned int num_a8_erratum_fixes
;
3326 /* An arbitrary input BFD chosen to hold the glue sections. */
3327 bfd
* bfd_of_glue_owner
;
3329 /* Nonzero to output a BE8 image. */
3332 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3333 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3336 /* The relocation to use for R_ARM_TARGET2 relocations. */
3339 /* 0 = Ignore R_ARM_V4BX.
3340 1 = Convert BX to MOV PC.
3341 2 = Generate v4 interworing stubs. */
3344 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3347 /* Whether we should fix the ARM1176 BLX immediate issue. */
3350 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3353 /* What sort of code sequences we should look for which may trigger the
3354 VFP11 denorm erratum. */
3355 bfd_arm_vfp11_fix vfp11_fix
;
3357 /* Global counter for the number of fixes we have emitted. */
3358 int num_vfp11_fixes
;
3360 /* What sort of code sequences we should look for which may trigger the
3361 STM32L4XX erratum. */
3362 bfd_arm_stm32l4xx_fix stm32l4xx_fix
;
3364 /* Global counter for the number of fixes we have emitted. */
3365 int num_stm32l4xx_fixes
;
3367 /* Nonzero to force PIC branch veneers. */
3370 /* The number of bytes in the initial entry in the PLT. */
3371 bfd_size_type plt_header_size
;
3373 /* The number of bytes in the subsequent PLT etries. */
3374 bfd_size_type plt_entry_size
;
3376 /* True if the target uses REL relocations. */
3379 /* Nonzero if import library must be a secure gateway import library
3380 as per ARMv8-M Security Extensions. */
3383 /* The import library whose symbols' address must remain stable in
3384 the import library generated. */
3387 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3388 bfd_vma next_tls_desc_index
;
3390 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3391 bfd_vma num_tls_desc
;
3393 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3396 /* Offset in .plt section of tls_arm_trampoline. */
3397 bfd_vma tls_trampoline
;
3399 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
3402 bfd_signed_vma refcount
;
3406 /* For convenience in allocate_dynrelocs. */
3409 /* The amount of space used by the reserved portion of the sgotplt
3410 section, plus whatever space is used by the jump slots. */
3411 bfd_vma sgotplt_jump_table_size
;
3413 /* The stub hash table. */
3414 struct bfd_hash_table stub_hash_table
;
3416 /* Linker stub bfd. */
3419 /* Linker call-backs. */
3420 asection
* (*add_stub_section
) (const char *, asection
*, asection
*,
3422 void (*layout_sections_again
) (void);
3424 /* Array to keep track of which stub sections have been created, and
3425 information on stub grouping. */
3426 struct map_stub
*stub_group
;
3428 /* Input stub section holding secure gateway veneers. */
3429 asection
*cmse_stub_sec
;
3431 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3432 start to be allocated. */
3433 bfd_vma new_cmse_stub_offset
;
3435 /* Number of elements in stub_group. */
3436 unsigned int top_id
;
3438 /* Assorted information used by elf32_arm_size_stubs. */
3439 unsigned int bfd_count
;
3440 unsigned int top_index
;
3441 asection
**input_list
;
3443 /* True if the target system uses FDPIC. */
3446 /* Fixup section. Used for FDPIC. */
3450 /* Add an FDPIC read-only fixup. */
3452 arm_elf_add_rofixup (bfd
*output_bfd
, asection
*srofixup
, bfd_vma offset
)
3454 bfd_vma fixup_offset
;
3456 fixup_offset
= srofixup
->reloc_count
++ * 4;
3457 BFD_ASSERT (fixup_offset
< srofixup
->size
);
3458 bfd_put_32 (output_bfd
, offset
, srofixup
->contents
+ fixup_offset
);
3462 ctz (unsigned int mask
)
3464 #if GCC_VERSION >= 3004
3465 return __builtin_ctz (mask
);
3469 for (i
= 0; i
< 8 * sizeof (mask
); i
++)
3480 elf32_arm_popcount (unsigned int mask
)
3482 #if GCC_VERSION >= 3004
3483 return __builtin_popcount (mask
);
3488 for (i
= 0; i
< 8 * sizeof (mask
); i
++)
3498 static void elf32_arm_add_dynreloc (bfd
*output_bfd
, struct bfd_link_info
*info
,
3499 asection
*sreloc
, Elf_Internal_Rela
*rel
);
3502 arm_elf_fill_funcdesc (bfd
*output_bfd
,
3503 struct bfd_link_info
*info
,
3504 int *funcdesc_offset
,
3508 bfd_vma dynreloc_value
,
3511 if ((*funcdesc_offset
& 1) == 0)
3513 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
3514 asection
*sgot
= globals
->root
.sgot
;
3516 if (bfd_link_pic (info
))
3518 asection
*srelgot
= globals
->root
.srelgot
;
3519 Elf_Internal_Rela outrel
;
3521 outrel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_FUNCDESC_VALUE
);
3522 outrel
.r_offset
= sgot
->output_section
->vma
+ sgot
->output_offset
+ offset
;
3523 outrel
.r_addend
= 0;
3525 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
3526 bfd_put_32 (output_bfd
, addr
, sgot
->contents
+ offset
);
3527 bfd_put_32 (output_bfd
, seg
, sgot
->contents
+ offset
+ 4);
3531 struct elf_link_hash_entry
*hgot
= globals
->root
.hgot
;
3532 bfd_vma got_value
= hgot
->root
.u
.def
.value
3533 + hgot
->root
.u
.def
.section
->output_section
->vma
3534 + hgot
->root
.u
.def
.section
->output_offset
;
3536 arm_elf_add_rofixup (output_bfd
, globals
->srofixup
,
3537 sgot
->output_section
->vma
+ sgot
->output_offset
3539 arm_elf_add_rofixup (output_bfd
, globals
->srofixup
,
3540 sgot
->output_section
->vma
+ sgot
->output_offset
3542 bfd_put_32 (output_bfd
, dynreloc_value
, sgot
->contents
+ offset
);
3543 bfd_put_32 (output_bfd
, got_value
, sgot
->contents
+ offset
+ 4);
3545 *funcdesc_offset
|= 1;
3549 /* Create an entry in an ARM ELF linker hash table. */
3551 static struct bfd_hash_entry
*
3552 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
3553 struct bfd_hash_table
* table
,
3554 const char * string
)
3556 struct elf32_arm_link_hash_entry
* ret
=
3557 (struct elf32_arm_link_hash_entry
*) entry
;
3559 /* Allocate the structure if it has not already been allocated by a
3562 ret
= (struct elf32_arm_link_hash_entry
*)
3563 bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
3565 return (struct bfd_hash_entry
*) ret
;
3567 /* Call the allocation method of the superclass. */
3568 ret
= ((struct elf32_arm_link_hash_entry
*)
3569 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
3573 ret
->tls_type
= GOT_UNKNOWN
;
3574 ret
->tlsdesc_got
= (bfd_vma
) -1;
3575 ret
->plt
.thumb_refcount
= 0;
3576 ret
->plt
.maybe_thumb_refcount
= 0;
3577 ret
->plt
.noncall_refcount
= 0;
3578 ret
->plt
.got_offset
= -1;
3579 ret
->is_iplt
= false;
3580 ret
->export_glue
= NULL
;
3582 ret
->stub_cache
= NULL
;
3584 ret
->fdpic_cnts
.gotofffuncdesc_cnt
= 0;
3585 ret
->fdpic_cnts
.gotfuncdesc_cnt
= 0;
3586 ret
->fdpic_cnts
.funcdesc_cnt
= 0;
3587 ret
->fdpic_cnts
.funcdesc_offset
= -1;
3588 ret
->fdpic_cnts
.gotfuncdesc_offset
= -1;
3591 return (struct bfd_hash_entry
*) ret
;
3594 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3598 elf32_arm_allocate_local_sym_info (bfd
*abfd
)
3600 if (elf_local_got_refcounts (abfd
) == NULL
)
3602 bfd_size_type num_syms
;
3604 elf32_arm_num_entries (abfd
) = 0;
3606 /* Whilst it might be tempting to allocate a single block of memory and
3607 then divide it up amoungst the arrays in the elf_arm_obj_tdata
3608 structure, this interferes with the work of memory checkers looking
3609 for buffer overruns. So allocate each array individually. */
3611 num_syms
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
3613 elf_local_got_refcounts (abfd
) = bfd_zalloc
3614 (abfd
, num_syms
* sizeof (* elf_local_got_refcounts (abfd
)));
3616 if (elf_local_got_refcounts (abfd
) == NULL
)
3619 elf32_arm_local_tlsdesc_gotent (abfd
) = bfd_zalloc
3620 (abfd
, num_syms
* sizeof (* elf32_arm_local_tlsdesc_gotent (abfd
)));
3622 if (elf32_arm_local_tlsdesc_gotent (abfd
) == NULL
)
3625 elf32_arm_local_iplt (abfd
) = bfd_zalloc
3626 (abfd
, num_syms
* sizeof (* elf32_arm_local_iplt (abfd
)));
3628 if (elf32_arm_local_iplt (abfd
) == NULL
)
3631 elf32_arm_local_fdpic_cnts (abfd
) = bfd_zalloc
3632 (abfd
, num_syms
* sizeof (* elf32_arm_local_fdpic_cnts (abfd
)));
3634 if (elf32_arm_local_fdpic_cnts (abfd
) == NULL
)
3637 elf32_arm_local_got_tls_type (abfd
) = bfd_zalloc
3638 (abfd
, num_syms
* sizeof (* elf32_arm_local_got_tls_type (abfd
)));
3640 if (elf32_arm_local_got_tls_type (abfd
) == NULL
)
3643 elf32_arm_num_entries (abfd
) = num_syms
;
3645 #if GCC_VERSION >= 3000
3646 BFD_ASSERT (__alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd
))
3647 <= __alignof__ (*elf_local_got_refcounts (abfd
)));
3648 BFD_ASSERT (__alignof__ (*elf32_arm_local_iplt (abfd
))
3649 <= __alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd
)));
3650 BFD_ASSERT (__alignof__ (*elf32_arm_local_fdpic_cnts (abfd
))
3651 <= __alignof__ (*elf32_arm_local_iplt (abfd
)));
3652 BFD_ASSERT (__alignof__ (*elf32_arm_local_got_tls_type (abfd
))
3653 <= __alignof__ (*elf32_arm_local_fdpic_cnts (abfd
)));
3659 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3660 to input bfd ABFD. Create the information if it doesn't already exist.
3661 Return null if an allocation fails. */
3663 static struct arm_local_iplt_info
*
3664 elf32_arm_create_local_iplt (bfd
*abfd
, unsigned long r_symndx
)
3666 struct arm_local_iplt_info
**ptr
;
3668 if (!elf32_arm_allocate_local_sym_info (abfd
))
3671 BFD_ASSERT (r_symndx
< elf_tdata (abfd
)->symtab_hdr
.sh_info
);
3672 BFD_ASSERT (r_symndx
< elf32_arm_num_entries (abfd
));
3673 ptr
= &elf32_arm_local_iplt (abfd
)[r_symndx
];
3675 *ptr
= bfd_zalloc (abfd
, sizeof (**ptr
));
3679 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3680 in ABFD's symbol table. If the symbol is global, H points to its
3681 hash table entry, otherwise H is null.
3683 Return true if the symbol does have PLT information. When returning
3684 true, point *ROOT_PLT at the target-independent reference count/offset
3685 union and *ARM_PLT at the ARM-specific information. */
3688 elf32_arm_get_plt_info (bfd
*abfd
, struct elf32_arm_link_hash_table
*globals
,
3689 struct elf32_arm_link_hash_entry
*h
,
3690 unsigned long r_symndx
, union gotplt_union
**root_plt
,
3691 struct arm_plt_info
**arm_plt
)
3693 struct arm_local_iplt_info
*local_iplt
;
3695 if (globals
->root
.splt
== NULL
&& globals
->root
.iplt
== NULL
)
3700 *root_plt
= &h
->root
.plt
;
3705 if (elf32_arm_local_iplt (abfd
) == NULL
)
3708 if (r_symndx
>= elf32_arm_num_entries (abfd
))
3711 local_iplt
= elf32_arm_local_iplt (abfd
)[r_symndx
];
3712 if (local_iplt
== NULL
)
3715 *root_plt
= &local_iplt
->root
;
3716 *arm_plt
= &local_iplt
->arm
;
3720 static bool using_thumb_only (struct elf32_arm_link_hash_table
*globals
);
3722 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3726 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info
*info
,
3727 struct arm_plt_info
*arm_plt
)
3729 struct elf32_arm_link_hash_table
*htab
;
3731 htab
= elf32_arm_hash_table (info
);
3733 return (!using_thumb_only (htab
) && (arm_plt
->thumb_refcount
!= 0
3734 || (!htab
->use_blx
&& arm_plt
->maybe_thumb_refcount
!= 0)));
3737 /* Return a pointer to the head of the dynamic reloc list that should
3738 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3739 ABFD's symbol table. Return null if an error occurs. */
3741 static struct elf_dyn_relocs
**
3742 elf32_arm_get_local_dynreloc_list (bfd
*abfd
, unsigned long r_symndx
,
3743 Elf_Internal_Sym
*isym
)
3745 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
3747 struct arm_local_iplt_info
*local_iplt
;
3749 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
3750 if (local_iplt
== NULL
)
3752 return &local_iplt
->dyn_relocs
;
3756 /* Track dynamic relocs needed for local syms too.
3757 We really need local syms available to do this
3762 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3766 vpp
= &elf_section_data (s
)->local_dynrel
;
3767 return (struct elf_dyn_relocs
**) vpp
;
3771 /* Initialize an entry in the stub hash table. */
3773 static struct bfd_hash_entry
*
3774 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
3775 struct bfd_hash_table
*table
,
3778 /* Allocate the structure if it has not already been allocated by a
3782 entry
= (struct bfd_hash_entry
*)
3783 bfd_hash_allocate (table
, sizeof (struct elf32_arm_stub_hash_entry
));
3788 /* Call the allocation method of the superclass. */
3789 entry
= bfd_hash_newfunc (entry
, table
, string
);
3792 struct elf32_arm_stub_hash_entry
*eh
;
3794 /* Initialize the local fields. */
3795 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
3796 eh
->stub_sec
= NULL
;
3797 eh
->stub_offset
= (bfd_vma
) -1;
3798 eh
->source_value
= 0;
3799 eh
->target_value
= 0;
3800 eh
->target_section
= NULL
;
3802 eh
->stub_type
= arm_stub_none
;
3804 eh
->stub_template
= NULL
;
3805 eh
->stub_template_size
= -1;
3808 eh
->output_name
= NULL
;
3814 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3815 shortcuts to them in our hash table. */
3818 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
3820 struct elf32_arm_link_hash_table
*htab
;
3822 htab
= elf32_arm_hash_table (info
);
3826 if (! _bfd_elf_create_got_section (dynobj
, info
))
3829 /* Also create .rofixup. */
3832 htab
->srofixup
= bfd_make_section_with_flags (dynobj
, ".rofixup",
3833 (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
3834 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
| SEC_READONLY
));
3835 if (htab
->srofixup
== NULL
3836 || !bfd_set_section_alignment (htab
->srofixup
, 2))
3843 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3846 create_ifunc_sections (struct bfd_link_info
*info
)
3848 struct elf32_arm_link_hash_table
*htab
;
3849 const struct elf_backend_data
*bed
;
3854 htab
= elf32_arm_hash_table (info
);
3855 dynobj
= htab
->root
.dynobj
;
3856 bed
= get_elf_backend_data (dynobj
);
3857 flags
= bed
->dynamic_sec_flags
;
3859 if (htab
->root
.iplt
== NULL
)
3861 s
= bfd_make_section_anyway_with_flags (dynobj
, ".iplt",
3862 flags
| SEC_READONLY
| SEC_CODE
);
3864 || !bfd_set_section_alignment (s
, bed
->plt_alignment
))
3866 htab
->root
.iplt
= s
;
3869 if (htab
->root
.irelplt
== NULL
)
3871 s
= bfd_make_section_anyway_with_flags (dynobj
,
3872 RELOC_SECTION (htab
, ".iplt"),
3873 flags
| SEC_READONLY
);
3875 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
3877 htab
->root
.irelplt
= s
;
3880 if (htab
->root
.igotplt
== NULL
)
3882 s
= bfd_make_section_anyway_with_flags (dynobj
, ".igot.plt", flags
);
3884 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
3886 htab
->root
.igotplt
= s
;
3891 /* Determine if we're dealing with a Thumb only architecture. */
3894 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
3897 int profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3898 Tag_CPU_arch_profile
);
3901 return profile
== 'M';
3903 arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
, Tag_CPU_arch
);
3905 /* Force return logic to be reviewed for each new architecture. */
3906 BFD_ASSERT (arch
<= TAG_CPU_ARCH_V8_1M_MAIN
);
3908 if (arch
== TAG_CPU_ARCH_V6_M
3909 || arch
== TAG_CPU_ARCH_V6S_M
3910 || arch
== TAG_CPU_ARCH_V7E_M
3911 || arch
== TAG_CPU_ARCH_V8M_BASE
3912 || arch
== TAG_CPU_ARCH_V8M_MAIN
3913 || arch
== TAG_CPU_ARCH_V8_1M_MAIN
)
3919 /* Determine if we're dealing with a Thumb-2 object. */
3922 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
3925 int thumb_isa
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3928 /* No use of thumb permitted, or a legacy thumb-1/2 definition. */
3930 return thumb_isa
== 2;
3932 /* Variant of thumb is described by the architecture tag. */
3933 arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
, Tag_CPU_arch
);
3935 /* Force return logic to be reviewed for each new architecture. */
3936 BFD_ASSERT (arch
<= TAG_CPU_ARCH_V8_1M_MAIN
);
3938 return (arch
== TAG_CPU_ARCH_V6T2
3939 || arch
== TAG_CPU_ARCH_V7
3940 || arch
== TAG_CPU_ARCH_V7E_M
3941 || arch
== TAG_CPU_ARCH_V8
3942 || arch
== TAG_CPU_ARCH_V8R
3943 || arch
== TAG_CPU_ARCH_V8M_MAIN
3944 || arch
== TAG_CPU_ARCH_V8_1M_MAIN
);
3947 /* Determine whether Thumb-2 BL instruction is available. */
3950 using_thumb2_bl (struct elf32_arm_link_hash_table
*globals
)
3953 bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
, Tag_CPU_arch
);
3955 /* Force return logic to be reviewed for each new architecture. */
3956 BFD_ASSERT (arch
<= TAG_CPU_ARCH_V9
);
3958 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3959 return (arch
== TAG_CPU_ARCH_V6T2
3960 || arch
>= TAG_CPU_ARCH_V7
);
3963 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3964 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3968 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
3970 struct elf32_arm_link_hash_table
*htab
;
3972 htab
= elf32_arm_hash_table (info
);
3976 if (!htab
->root
.sgot
&& !create_got_section (dynobj
, info
))
3979 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
3982 if (htab
->root
.target_os
== is_vxworks
)
3984 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
3987 if (bfd_link_pic (info
))
3989 htab
->plt_header_size
= 0;
3990 htab
->plt_entry_size
3991 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
3995 htab
->plt_header_size
3996 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
3997 htab
->plt_entry_size
3998 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
4001 if (elf_elfheader (dynobj
))
4002 elf_elfheader (dynobj
)->e_ident
[EI_CLASS
] = ELFCLASS32
;
4007 Test for thumb only architectures. Note - we cannot just call
4008 using_thumb_only() as the attributes in the output bfd have not been
4009 initialised at this point, so instead we use the input bfd. */
4010 bfd
* saved_obfd
= htab
->obfd
;
4012 htab
->obfd
= dynobj
;
4013 if (using_thumb_only (htab
))
4015 htab
->plt_header_size
= 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry
);
4016 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_thumb2_plt_entry
);
4018 htab
->obfd
= saved_obfd
;
4021 if (htab
->fdpic_p
) {
4022 htab
->plt_header_size
= 0;
4023 if (info
->flags
& DF_BIND_NOW
)
4024 htab
->plt_entry_size
= 4 * (ARRAY_SIZE (elf32_arm_fdpic_plt_entry
) - 5);
4026 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_fdpic_plt_entry
);
4029 if (!htab
->root
.splt
4030 || !htab
->root
.srelplt
4031 || !htab
->root
.sdynbss
4032 || (!bfd_link_pic (info
) && !htab
->root
.srelbss
))
4038 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4041 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
4042 struct elf_link_hash_entry
*dir
,
4043 struct elf_link_hash_entry
*ind
)
4045 struct elf32_arm_link_hash_entry
*edir
, *eind
;
4047 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
4048 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
4050 if (ind
->root
.type
== bfd_link_hash_indirect
)
4052 /* Copy over PLT info. */
4053 edir
->plt
.thumb_refcount
+= eind
->plt
.thumb_refcount
;
4054 eind
->plt
.thumb_refcount
= 0;
4055 edir
->plt
.maybe_thumb_refcount
+= eind
->plt
.maybe_thumb_refcount
;
4056 eind
->plt
.maybe_thumb_refcount
= 0;
4057 edir
->plt
.noncall_refcount
+= eind
->plt
.noncall_refcount
;
4058 eind
->plt
.noncall_refcount
= 0;
4060 /* Copy FDPIC counters. */
4061 edir
->fdpic_cnts
.gotofffuncdesc_cnt
+= eind
->fdpic_cnts
.gotofffuncdesc_cnt
;
4062 edir
->fdpic_cnts
.gotfuncdesc_cnt
+= eind
->fdpic_cnts
.gotfuncdesc_cnt
;
4063 edir
->fdpic_cnts
.funcdesc_cnt
+= eind
->fdpic_cnts
.funcdesc_cnt
;
4065 /* We should only allocate a function to .iplt once the final
4066 symbol information is known. */
4067 BFD_ASSERT (!eind
->is_iplt
);
4069 if (dir
->got
.refcount
<= 0)
4071 edir
->tls_type
= eind
->tls_type
;
4072 eind
->tls_type
= GOT_UNKNOWN
;
4076 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
4079 /* Destroy an ARM elf linker hash table. */
4082 elf32_arm_link_hash_table_free (bfd
*obfd
)
4084 struct elf32_arm_link_hash_table
*ret
4085 = (struct elf32_arm_link_hash_table
*) obfd
->link
.hash
;
4087 bfd_hash_table_free (&ret
->stub_hash_table
);
4088 _bfd_elf_link_hash_table_free (obfd
);
4091 /* Create an ARM elf linker hash table. */
4093 static struct bfd_link_hash_table
*
4094 elf32_arm_link_hash_table_create (bfd
*abfd
)
4096 struct elf32_arm_link_hash_table
*ret
;
4097 size_t amt
= sizeof (struct elf32_arm_link_hash_table
);
4099 ret
= (struct elf32_arm_link_hash_table
*) bfd_zmalloc (amt
);
4103 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
4104 elf32_arm_link_hash_newfunc
,
4105 sizeof (struct elf32_arm_link_hash_entry
),
4112 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
4113 ret
->stm32l4xx_fix
= BFD_ARM_STM32L4XX_FIX_NONE
;
4114 #ifdef FOUR_WORD_PLT
4115 ret
->plt_header_size
= 16;
4116 ret
->plt_entry_size
= 16;
4118 ret
->plt_header_size
= 20;
4119 ret
->plt_entry_size
= elf32_arm_use_long_plt_entry
? 16 : 12;
4121 ret
->use_rel
= true;
4125 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
4126 sizeof (struct elf32_arm_stub_hash_entry
)))
4128 _bfd_elf_link_hash_table_free (abfd
);
4131 ret
->root
.root
.hash_table_free
= elf32_arm_link_hash_table_free
;
4133 return &ret
->root
.root
;
4136 /* Determine what kind of NOPs are available. */
4139 arch_has_arm_nop (struct elf32_arm_link_hash_table
*globals
)
4141 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
4144 /* Force return logic to be reviewed for each new architecture. */
4145 BFD_ASSERT (arch
<= TAG_CPU_ARCH_V9
);
4147 return (arch
== TAG_CPU_ARCH_V6T2
4148 || arch
== TAG_CPU_ARCH_V6K
4149 || arch
== TAG_CPU_ARCH_V7
4150 || arch
== TAG_CPU_ARCH_V8
4151 || arch
== TAG_CPU_ARCH_V8R
4152 || arch
== TAG_CPU_ARCH_V9
);
4156 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
4160 case arm_stub_long_branch_thumb_only
:
4161 case arm_stub_long_branch_thumb2_only
:
4162 case arm_stub_long_branch_thumb2_only_pure
:
4163 case arm_stub_long_branch_v4t_thumb_arm
:
4164 case arm_stub_short_branch_v4t_thumb_arm
:
4165 case arm_stub_long_branch_v4t_thumb_arm_pic
:
4166 case arm_stub_long_branch_v4t_thumb_tls_pic
:
4167 case arm_stub_long_branch_thumb_only_pic
:
4168 case arm_stub_cmse_branch_thumb_only
:
4179 /* Determine the type of stub needed, if any, for a call. */
4181 static enum elf32_arm_stub_type
4182 arm_type_of_stub (struct bfd_link_info
*info
,
4183 asection
*input_sec
,
4184 const Elf_Internal_Rela
*rel
,
4185 unsigned char st_type
,
4186 enum arm_st_branch_type
*actual_branch_type
,
4187 struct elf32_arm_link_hash_entry
*hash
,
4188 bfd_vma destination
,
4194 bfd_signed_vma branch_offset
;
4195 unsigned int r_type
;
4196 struct elf32_arm_link_hash_table
* globals
;
4197 bool thumb2
, thumb2_bl
, thumb_only
;
4198 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
4200 enum arm_st_branch_type branch_type
= *actual_branch_type
;
4201 union gotplt_union
*root_plt
;
4202 struct arm_plt_info
*arm_plt
;
4206 if (branch_type
== ST_BRANCH_LONG
)
4209 globals
= elf32_arm_hash_table (info
);
4210 if (globals
== NULL
)
4213 thumb_only
= using_thumb_only (globals
);
4214 thumb2
= using_thumb2 (globals
);
4215 thumb2_bl
= using_thumb2_bl (globals
);
4217 arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
, Tag_CPU_arch
);
4219 /* True for architectures that implement the thumb2 movw instruction. */
4220 thumb2_movw
= thumb2
|| (arch
== TAG_CPU_ARCH_V8M_BASE
);
4222 /* Determine where the call point is. */
4223 location
= (input_sec
->output_offset
4224 + input_sec
->output_section
->vma
4227 r_type
= ELF32_R_TYPE (rel
->r_info
);
4229 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4230 are considering a function call relocation. */
4231 if (thumb_only
&& (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
4232 || r_type
== R_ARM_THM_JUMP19
)
4233 && branch_type
== ST_BRANCH_TO_ARM
)
4234 branch_type
= ST_BRANCH_TO_THUMB
;
4236 /* For TLS call relocs, it is the caller's responsibility to provide
4237 the address of the appropriate trampoline. */
4238 if (r_type
!= R_ARM_TLS_CALL
4239 && r_type
!= R_ARM_THM_TLS_CALL
4240 && elf32_arm_get_plt_info (input_bfd
, globals
, hash
,
4241 ELF32_R_SYM (rel
->r_info
), &root_plt
,
4243 && root_plt
->offset
!= (bfd_vma
) -1)
4247 if (hash
== NULL
|| hash
->is_iplt
)
4248 splt
= globals
->root
.iplt
;
4250 splt
= globals
->root
.splt
;
4255 /* Note when dealing with PLT entries: the main PLT stub is in
4256 ARM mode, so if the branch is in Thumb mode, another
4257 Thumb->ARM stub will be inserted later just before the ARM
4258 PLT stub. If a long branch stub is needed, we'll add a
4259 Thumb->Arm one and branch directly to the ARM PLT entry.
4260 Here, we have to check if a pre-PLT Thumb->ARM stub
4261 is needed and if it will be close enough. */
4263 destination
= (splt
->output_section
->vma
4264 + splt
->output_offset
4265 + root_plt
->offset
);
4268 /* Thumb branch/call to PLT: it can become a branch to ARM
4269 or to Thumb. We must perform the same checks and
4270 corrections as in elf32_arm_final_link_relocate. */
4271 if ((r_type
== R_ARM_THM_CALL
)
4272 || (r_type
== R_ARM_THM_JUMP24
))
4274 if (globals
->use_blx
4275 && r_type
== R_ARM_THM_CALL
4278 /* If the Thumb BLX instruction is available, convert
4279 the BL to a BLX instruction to call the ARM-mode
4281 branch_type
= ST_BRANCH_TO_ARM
;
4286 /* Target the Thumb stub before the ARM PLT entry. */
4287 destination
-= PLT_THUMB_STUB_SIZE
;
4288 branch_type
= ST_BRANCH_TO_THUMB
;
4293 branch_type
= ST_BRANCH_TO_ARM
;
4297 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4298 BFD_ASSERT (st_type
!= STT_GNU_IFUNC
);
4300 branch_offset
= (bfd_signed_vma
)(destination
- location
);
4302 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
4303 || r_type
== R_ARM_THM_TLS_CALL
|| r_type
== R_ARM_THM_JUMP19
)
4305 /* Handle cases where:
4306 - this call goes too far (different Thumb/Thumb2 max
4308 - it's a Thumb->Arm call and blx is not available, or it's a
4309 Thumb->Arm branch (not bl). A stub is needed in this case,
4310 but only if this call is not through a PLT entry. Indeed,
4311 PLT stubs handle mode switching already. */
4313 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
4314 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
4316 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
4317 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
4319 && (branch_offset
> THM2_MAX_FWD_COND_BRANCH_OFFSET
4320 || (branch_offset
< THM2_MAX_BWD_COND_BRANCH_OFFSET
))
4321 && (r_type
== R_ARM_THM_JUMP19
))
4322 || (branch_type
== ST_BRANCH_TO_ARM
4323 && (((r_type
== R_ARM_THM_CALL
4324 || r_type
== R_ARM_THM_TLS_CALL
) && !globals
->use_blx
)
4325 || (r_type
== R_ARM_THM_JUMP24
)
4326 || (r_type
== R_ARM_THM_JUMP19
))
4329 /* If we need to insert a Thumb-Thumb long branch stub to a
4330 PLT, use one that branches directly to the ARM PLT
4331 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4332 stub, undo this now. */
4333 if ((branch_type
== ST_BRANCH_TO_THUMB
) && use_plt
&& !thumb_only
)
4335 branch_type
= ST_BRANCH_TO_ARM
;
4336 branch_offset
+= PLT_THUMB_STUB_SIZE
;
4339 if (branch_type
== ST_BRANCH_TO_THUMB
)
4341 /* Thumb to thumb. */
4344 if (input_sec
->flags
& SEC_ELF_PURECODE
)
4346 (_("%pB(%pA): warning: long branch veneers used in"
4347 " section with SHF_ARM_PURECODE section"
4348 " attribute is only supported for M-profile"
4349 " targets that implement the movw instruction"),
4350 input_bfd
, input_sec
);
4352 stub_type
= (bfd_link_pic (info
) | globals
->pic_veneer
)
4354 ? ((globals
->use_blx
4355 && (r_type
== R_ARM_THM_CALL
))
4356 /* V5T and above. Stub starts with ARM code, so
4357 we must be able to switch mode before
4358 reaching it, which is only possible for 'bl'
4359 (ie R_ARM_THM_CALL relocation). */
4360 ? arm_stub_long_branch_any_thumb_pic
4361 /* On V4T, use Thumb code only. */
4362 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
4364 /* non-PIC stubs. */
4365 : ((globals
->use_blx
4366 && (r_type
== R_ARM_THM_CALL
))
4367 /* V5T and above. */
4368 ? arm_stub_long_branch_any_any
4370 : arm_stub_long_branch_v4t_thumb_thumb
);
4374 if (thumb2_movw
&& (input_sec
->flags
& SEC_ELF_PURECODE
))
4375 stub_type
= arm_stub_long_branch_thumb2_only_pure
;
4378 if (input_sec
->flags
& SEC_ELF_PURECODE
)
4380 (_("%pB(%pA): warning: long branch veneers used in"
4381 " section with SHF_ARM_PURECODE section"
4382 " attribute is only supported for M-profile"
4383 " targets that implement the movw instruction"),
4384 input_bfd
, input_sec
);
4386 stub_type
= (bfd_link_pic (info
) | globals
->pic_veneer
)
4388 ? arm_stub_long_branch_thumb_only_pic
4390 : (thumb2
? arm_stub_long_branch_thumb2_only
4391 : arm_stub_long_branch_thumb_only
);
4397 if (input_sec
->flags
& SEC_ELF_PURECODE
)
4399 (_("%pB(%pA): warning: long branch veneers used in"
4400 " section with SHF_ARM_PURECODE section"
4401 " attribute is only supported" " for M-profile"
4402 " targets that implement the movw instruction"),
4403 input_bfd
, input_sec
);
4407 && sym_sec
->owner
!= NULL
4408 && !INTERWORK_FLAG (sym_sec
->owner
))
4411 (_("%pB(%s): warning: interworking not enabled;"
4412 " first occurrence: %pB: %s call to %s"),
4413 sym_sec
->owner
, name
, input_bfd
, "Thumb", "ARM");
4417 (bfd_link_pic (info
) | globals
->pic_veneer
)
4419 ? (r_type
== R_ARM_THM_TLS_CALL
4420 /* TLS PIC stubs. */
4421 ? (globals
->use_blx
? arm_stub_long_branch_any_tls_pic
4422 : arm_stub_long_branch_v4t_thumb_tls_pic
)
4423 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
4424 /* V5T PIC and above. */
4425 ? arm_stub_long_branch_any_arm_pic
4427 : arm_stub_long_branch_v4t_thumb_arm_pic
))
4429 /* non-PIC stubs. */
4430 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
4431 /* V5T and above. */
4432 ? arm_stub_long_branch_any_any
4434 : arm_stub_long_branch_v4t_thumb_arm
);
4436 /* Handle v4t short branches. */
4437 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
4438 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
4439 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
4440 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
4444 else if (r_type
== R_ARM_CALL
4445 || r_type
== R_ARM_JUMP24
4446 || r_type
== R_ARM_PLT32
4447 || r_type
== R_ARM_TLS_CALL
)
4449 if (input_sec
->flags
& SEC_ELF_PURECODE
)
4451 (_("%pB(%pA): warning: long branch veneers used in"
4452 " section with SHF_ARM_PURECODE section"
4453 " attribute is only supported for M-profile"
4454 " targets that implement the movw instruction"),
4455 input_bfd
, input_sec
);
4456 if (branch_type
== ST_BRANCH_TO_THUMB
)
4461 && sym_sec
->owner
!= NULL
4462 && !INTERWORK_FLAG (sym_sec
->owner
))
4465 (_("%pB(%s): warning: interworking not enabled;"
4466 " first occurrence: %pB: %s call to %s"),
4467 sym_sec
->owner
, name
, input_bfd
, "ARM", "Thumb");
4470 /* We have an extra 2-bytes reach because of
4471 the mode change (bit 24 (H) of BLX encoding). */
4472 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
4473 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
4474 || (r_type
== R_ARM_CALL
&& !globals
->use_blx
)
4475 || (r_type
== R_ARM_JUMP24
)
4476 || (r_type
== R_ARM_PLT32
))
4478 stub_type
= (bfd_link_pic (info
) | globals
->pic_veneer
)
4480 ? ((globals
->use_blx
)
4481 /* V5T and above. */
4482 ? arm_stub_long_branch_any_thumb_pic
4484 : arm_stub_long_branch_v4t_arm_thumb_pic
)
4486 /* non-PIC stubs. */
4487 : ((globals
->use_blx
)
4488 /* V5T and above. */
4489 ? arm_stub_long_branch_any_any
4491 : arm_stub_long_branch_v4t_arm_thumb
);
4497 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
4498 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
4501 (bfd_link_pic (info
) | globals
->pic_veneer
)
4503 ? (r_type
== R_ARM_TLS_CALL
4505 ? arm_stub_long_branch_any_tls_pic
4506 : (globals
->root
.target_os
== is_nacl
4507 ? arm_stub_long_branch_arm_nacl_pic
4508 : arm_stub_long_branch_any_arm_pic
))
4509 /* non-PIC stubs. */
4510 : (globals
->root
.target_os
== is_nacl
4511 ? arm_stub_long_branch_arm_nacl
4512 : arm_stub_long_branch_any_any
);
4517 /* If a stub is needed, record the actual destination type. */
4518 if (stub_type
!= arm_stub_none
)
4519 *actual_branch_type
= branch_type
;
4524 /* Build a name for an entry in the stub hash table. */
4527 elf32_arm_stub_name (const asection
*input_section
,
4528 const asection
*sym_sec
,
4529 const struct elf32_arm_link_hash_entry
*hash
,
4530 const Elf_Internal_Rela
*rel
,
4531 enum elf32_arm_stub_type stub_type
)
4538 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1 + 2 + 1;
4539 stub_name
= (char *) bfd_malloc (len
);
4540 if (stub_name
!= NULL
)
4541 sprintf (stub_name
, "%08x_%s+%x_%d",
4542 input_section
->id
& 0xffffffff,
4543 hash
->root
.root
.root
.string
,
4544 (int) rel
->r_addend
& 0xffffffff,
4549 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4550 stub_name
= (char *) bfd_malloc (len
);
4551 if (stub_name
!= NULL
)
4552 sprintf (stub_name
, "%08x_%x:%x+%x_%d",
4553 input_section
->id
& 0xffffffff,
4554 sym_sec
->id
& 0xffffffff,
4555 ELF32_R_TYPE (rel
->r_info
) == R_ARM_TLS_CALL
4556 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_THM_TLS_CALL
4557 ? 0 : (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
4558 (int) rel
->r_addend
& 0xffffffff,
4565 /* Look up an entry in the stub hash. Stub entries are cached because
4566 creating the stub name takes a bit of time. */
4568 static struct elf32_arm_stub_hash_entry
*
4569 elf32_arm_get_stub_entry (const asection
*input_section
,
4570 const asection
*sym_sec
,
4571 struct elf_link_hash_entry
*hash
,
4572 const Elf_Internal_Rela
*rel
,
4573 struct elf32_arm_link_hash_table
*htab
,
4574 enum elf32_arm_stub_type stub_type
)
4576 struct elf32_arm_stub_hash_entry
*stub_entry
;
4577 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
4578 const asection
*id_sec
;
4580 if ((input_section
->flags
& SEC_CODE
) == 0)
4583 /* If the input section is the CMSE stubs one and it needs a long
4584 branch stub to reach it's final destination, give up with an
4585 error message: this is not supported. See PR ld/24709. */
4586 if (!strncmp (input_section
->name
, CMSE_STUB_NAME
, strlen (CMSE_STUB_NAME
)))
4588 bfd
*output_bfd
= htab
->obfd
;
4589 asection
*out_sec
= bfd_get_section_by_name (output_bfd
, CMSE_STUB_NAME
);
4591 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4592 "(%#" PRIx64
") from destination (%#" PRIx64
")"),
4594 (uint64_t)out_sec
->output_section
->vma
4595 + out_sec
->output_offset
,
4596 (uint64_t)sym_sec
->output_section
->vma
4597 + sym_sec
->output_offset
4598 + h
->root
.root
.u
.def
.value
);
4599 /* Exit, rather than leave incompletely processed
4604 /* If this input section is part of a group of sections sharing one
4605 stub section, then use the id of the first section in the group.
4606 Stub names need to include a section id, as there may well be
4607 more than one stub used to reach say, printf, and we need to
4608 distinguish between them. */
4609 BFD_ASSERT (input_section
->id
<= htab
->top_id
);
4610 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
4612 if (h
!= NULL
&& h
->stub_cache
!= NULL
4613 && h
->stub_cache
->h
== h
4614 && h
->stub_cache
->id_sec
== id_sec
4615 && h
->stub_cache
->stub_type
== stub_type
)
4617 stub_entry
= h
->stub_cache
;
4623 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
, stub_type
);
4624 if (stub_name
== NULL
)
4627 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
4628 stub_name
, false, false);
4630 h
->stub_cache
= stub_entry
;
4638 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4642 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type
)
4644 if (stub_type
>= max_stub_type
)
4645 abort (); /* Should be unreachable. */
4649 case arm_stub_cmse_branch_thumb_only
:
4656 abort (); /* Should be unreachable. */
4659 /* Required alignment (as a power of 2) for the dedicated section holding
4660 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4661 with input sections. */
4664 arm_dedicated_stub_output_section_required_alignment
4665 (enum elf32_arm_stub_type stub_type
)
4667 if (stub_type
>= max_stub_type
)
4668 abort (); /* Should be unreachable. */
4672 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4674 case arm_stub_cmse_branch_thumb_only
:
4678 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type
));
4682 abort (); /* Should be unreachable. */
4685 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4686 NULL if veneers of this type are interspersed with input sections. */
4689 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type
)
4691 if (stub_type
>= max_stub_type
)
4692 abort (); /* Should be unreachable. */
4696 case arm_stub_cmse_branch_thumb_only
:
4697 return CMSE_STUB_NAME
;
4700 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type
));
4704 abort (); /* Should be unreachable. */
4707 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4708 returns the address of the hash table field in HTAB holding a pointer to the
4709 corresponding input section. Otherwise, returns NULL. */
4712 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table
*htab
,
4713 enum elf32_arm_stub_type stub_type
)
4715 if (stub_type
>= max_stub_type
)
4716 abort (); /* Should be unreachable. */
4720 case arm_stub_cmse_branch_thumb_only
:
4721 return &htab
->cmse_stub_sec
;
4724 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type
));
4728 abort (); /* Should be unreachable. */
4731 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4732 is the section that branch into veneer and can be NULL if stub should go in
4733 a dedicated output section. Returns a pointer to the stub section, and the
4734 section to which the stub section will be attached (in *LINK_SEC_P).
4735 LINK_SEC_P may be NULL. */
4738 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
4739 struct elf32_arm_link_hash_table
*htab
,
4740 enum elf32_arm_stub_type stub_type
)
4742 asection
*link_sec
, *out_sec
, **stub_sec_p
;
4743 const char *stub_sec_prefix
;
4744 bool dedicated_output_section
=
4745 arm_dedicated_stub_output_section_required (stub_type
);
4748 if (dedicated_output_section
)
4750 bfd
*output_bfd
= htab
->obfd
;
4751 const char *out_sec_name
=
4752 arm_dedicated_stub_output_section_name (stub_type
);
4754 stub_sec_p
= arm_dedicated_stub_input_section_ptr (htab
, stub_type
);
4755 stub_sec_prefix
= out_sec_name
;
4756 align
= arm_dedicated_stub_output_section_required_alignment (stub_type
);
4757 out_sec
= bfd_get_section_by_name (output_bfd
, out_sec_name
);
4758 if (out_sec
== NULL
)
4760 _bfd_error_handler (_("no address assigned to the veneers output "
4761 "section %s"), out_sec_name
);
4767 BFD_ASSERT (section
->id
<= htab
->top_id
);
4768 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
4769 BFD_ASSERT (link_sec
!= NULL
);
4770 stub_sec_p
= &htab
->stub_group
[section
->id
].stub_sec
;
4771 if (*stub_sec_p
== NULL
)
4772 stub_sec_p
= &htab
->stub_group
[link_sec
->id
].stub_sec
;
4773 stub_sec_prefix
= link_sec
->name
;
4774 out_sec
= link_sec
->output_section
;
4775 align
= htab
->root
.target_os
== is_nacl
? 4 : 3;
4778 if (*stub_sec_p
== NULL
)
4784 namelen
= strlen (stub_sec_prefix
);
4785 len
= namelen
+ sizeof (STUB_SUFFIX
);
4786 s_name
= (char *) bfd_alloc (htab
->stub_bfd
, len
);
4790 memcpy (s_name
, stub_sec_prefix
, namelen
);
4791 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
4792 *stub_sec_p
= (*htab
->add_stub_section
) (s_name
, out_sec
, link_sec
,
4794 if (*stub_sec_p
== NULL
)
4797 out_sec
->flags
|= SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
| SEC_CODE
4798 | SEC_HAS_CONTENTS
| SEC_RELOC
| SEC_IN_MEMORY
4802 if (!dedicated_output_section
)
4803 htab
->stub_group
[section
->id
].stub_sec
= *stub_sec_p
;
4806 *link_sec_p
= link_sec
;
4811 /* Add a new stub entry to the stub hash. Not all fields of the new
4812 stub entry are initialised. */
4814 static struct elf32_arm_stub_hash_entry
*
4815 elf32_arm_add_stub (const char *stub_name
, asection
*section
,
4816 struct elf32_arm_link_hash_table
*htab
,
4817 enum elf32_arm_stub_type stub_type
)
4821 struct elf32_arm_stub_hash_entry
*stub_entry
;
4823 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
,
4825 if (stub_sec
== NULL
)
4828 /* Enter this entry into the linker stub hash table. */
4829 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
4831 if (stub_entry
== NULL
)
4833 if (section
== NULL
)
4835 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4836 section
->owner
, stub_name
);
4840 stub_entry
->stub_sec
= stub_sec
;
4841 stub_entry
->stub_offset
= (bfd_vma
) -1;
4842 stub_entry
->id_sec
= link_sec
;
4847 /* Store an Arm insn into an output section not processed by
4848 elf32_arm_write_section. */
4851 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
4852 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
4854 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
4855 bfd_putl32 (val
, ptr
);
4857 bfd_putb32 (val
, ptr
);
4860 /* Store a 16-bit Thumb insn into an output section not processed by
4861 elf32_arm_write_section. */
4864 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
4865 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
4867 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
4868 bfd_putl16 (val
, ptr
);
4870 bfd_putb16 (val
, ptr
);
4873 /* Store a Thumb2 insn into an output section not processed by
4874 elf32_arm_write_section. */
4877 put_thumb2_insn (struct elf32_arm_link_hash_table
* htab
,
4878 bfd
* output_bfd
, bfd_vma val
, bfd_byte
* ptr
)
4880 /* T2 instructions are 16-bit streamed. */
4881 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
4883 bfd_putl16 ((val
>> 16) & 0xffff, ptr
);
4884 bfd_putl16 ((val
& 0xffff), ptr
+ 2);
4888 bfd_putb16 ((val
>> 16) & 0xffff, ptr
);
4889 bfd_putb16 ((val
& 0xffff), ptr
+ 2);
4893 /* If it's possible to change R_TYPE to a more efficient access
4894 model, return the new reloc type. */
4897 elf32_arm_tls_transition (struct bfd_link_info
*info
, int r_type
,
4898 struct elf_link_hash_entry
*h
)
4900 int is_local
= (h
== NULL
);
4902 if (bfd_link_dll (info
)
4903 || (h
&& h
->root
.type
== bfd_link_hash_undefweak
))
4906 /* We do not support relaxations for Old TLS models. */
4909 case R_ARM_TLS_GOTDESC
:
4910 case R_ARM_TLS_CALL
:
4911 case R_ARM_THM_TLS_CALL
:
4912 case R_ARM_TLS_DESCSEQ
:
4913 case R_ARM_THM_TLS_DESCSEQ
:
4914 return is_local
? R_ARM_TLS_LE32
: R_ARM_TLS_IE32
;
4920 static bfd_reloc_status_type elf32_arm_final_link_relocate
4921 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
4922 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
4923 const char *, unsigned char, enum arm_st_branch_type
,
4924 struct elf_link_hash_entry
*, bool *, char **);
4927 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type
)
4931 case arm_stub_a8_veneer_b_cond
:
4932 case arm_stub_a8_veneer_b
:
4933 case arm_stub_a8_veneer_bl
:
4936 case arm_stub_long_branch_any_any
:
4937 case arm_stub_long_branch_v4t_arm_thumb
:
4938 case arm_stub_long_branch_thumb_only
:
4939 case arm_stub_long_branch_thumb2_only
:
4940 case arm_stub_long_branch_thumb2_only_pure
:
4941 case arm_stub_long_branch_v4t_thumb_thumb
:
4942 case arm_stub_long_branch_v4t_thumb_arm
:
4943 case arm_stub_short_branch_v4t_thumb_arm
:
4944 case arm_stub_long_branch_any_arm_pic
:
4945 case arm_stub_long_branch_any_thumb_pic
:
4946 case arm_stub_long_branch_v4t_thumb_thumb_pic
:
4947 case arm_stub_long_branch_v4t_arm_thumb_pic
:
4948 case arm_stub_long_branch_v4t_thumb_arm_pic
:
4949 case arm_stub_long_branch_thumb_only_pic
:
4950 case arm_stub_long_branch_any_tls_pic
:
4951 case arm_stub_long_branch_v4t_thumb_tls_pic
:
4952 case arm_stub_cmse_branch_thumb_only
:
4953 case arm_stub_a8_veneer_blx
:
4956 case arm_stub_long_branch_arm_nacl
:
4957 case arm_stub_long_branch_arm_nacl_pic
:
4961 abort (); /* Should be unreachable. */
4965 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4966 veneering (TRUE) or have their own symbol (FALSE). */
4969 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type
)
4971 if (stub_type
>= max_stub_type
)
4972 abort (); /* Should be unreachable. */
4976 case arm_stub_cmse_branch_thumb_only
:
4983 abort (); /* Should be unreachable. */
4986 /* Returns the padding needed for the dedicated section used stubs of type
4990 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type
)
4992 if (stub_type
>= max_stub_type
)
4993 abort (); /* Should be unreachable. */
4997 case arm_stub_cmse_branch_thumb_only
:
5004 abort (); /* Should be unreachable. */
5007 /* If veneers of type STUB_TYPE should go in a dedicated output section,
5008 returns the address of the hash table field in HTAB holding the offset at
5009 which new veneers should be layed out in the stub section. */
5012 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table
*htab
,
5013 enum elf32_arm_stub_type stub_type
)
5017 case arm_stub_cmse_branch_thumb_only
:
5018 return &htab
->new_cmse_stub_offset
;
5021 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type
));
5027 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
5031 bool removed_sg_veneer
;
5032 struct elf32_arm_stub_hash_entry
*stub_entry
;
5033 struct elf32_arm_link_hash_table
*globals
;
5034 struct bfd_link_info
*info
;
5041 const insn_sequence
*template_sequence
;
5043 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
5044 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
5046 int just_allocated
= 0;
5048 /* Massage our args to the form they really have. */
5049 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
5050 info
= (struct bfd_link_info
*) in_arg
;
5052 /* Fail if the target section could not be assigned to an output
5053 section. The user should fix his linker script. */
5054 if (stub_entry
->target_section
->output_section
== NULL
5055 && info
->non_contiguous_regions
)
5056 info
->callbacks
->einfo (_("%F%P: Could not assign `%pA' to an output section. "
5057 "Retry without --enable-non-contiguous-regions.\n"),
5058 stub_entry
->target_section
);
5060 globals
= elf32_arm_hash_table (info
);
5061 if (globals
== NULL
)
5064 stub_sec
= stub_entry
->stub_sec
;
5066 if ((globals
->fix_cortex_a8
< 0)
5067 != (arm_stub_required_alignment (stub_entry
->stub_type
) == 2))
5068 /* We have to do less-strictly-aligned fixes last. */
5071 /* Assign a slot at the end of section if none assigned yet. */
5072 if (stub_entry
->stub_offset
== (bfd_vma
) -1)
5074 stub_entry
->stub_offset
= stub_sec
->size
;
5077 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
5079 stub_bfd
= stub_sec
->owner
;
5081 /* This is the address of the stub destination. */
5082 sym_value
= (stub_entry
->target_value
5083 + stub_entry
->target_section
->output_offset
5084 + stub_entry
->target_section
->output_section
->vma
);
5086 template_sequence
= stub_entry
->stub_template
;
5087 template_size
= stub_entry
->stub_template_size
;
5090 for (i
= 0; i
< template_size
; i
++)
5092 switch (template_sequence
[i
].type
)
5096 bfd_vma data
= (bfd_vma
) template_sequence
[i
].data
;
5097 if (template_sequence
[i
].reloc_addend
!= 0)
5099 /* We've borrowed the reloc_addend field to mean we should
5100 insert a condition code into this (Thumb-1 branch)
5101 instruction. See THUMB16_BCOND_INSN. */
5102 BFD_ASSERT ((data
& 0xff00) == 0xd000);
5103 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
5105 bfd_put_16 (stub_bfd
, data
, loc
+ size
);
5111 bfd_put_16 (stub_bfd
,
5112 (template_sequence
[i
].data
>> 16) & 0xffff,
5114 bfd_put_16 (stub_bfd
, template_sequence
[i
].data
& 0xffff,
5116 if (template_sequence
[i
].r_type
!= R_ARM_NONE
)
5118 stub_reloc_idx
[nrelocs
] = i
;
5119 stub_reloc_offset
[nrelocs
++] = size
;
5125 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
,
5127 /* Handle cases where the target is encoded within the
5129 if (template_sequence
[i
].r_type
== R_ARM_JUMP24
)
5131 stub_reloc_idx
[nrelocs
] = i
;
5132 stub_reloc_offset
[nrelocs
++] = size
;
5138 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
, loc
+ size
);
5139 stub_reloc_idx
[nrelocs
] = i
;
5140 stub_reloc_offset
[nrelocs
++] = size
;
5151 stub_sec
->size
+= size
;
5153 /* Stub size has already been computed in arm_size_one_stub. Check
5155 BFD_ASSERT (size
== stub_entry
->stub_size
);
5157 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
5158 if (stub_entry
->branch_type
== ST_BRANCH_TO_THUMB
)
5161 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5162 to relocate in each stub. */
5164 (size
== 0 && stub_entry
->stub_type
== arm_stub_cmse_branch_thumb_only
);
5165 BFD_ASSERT (removed_sg_veneer
|| (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
));
5167 for (i
= 0; i
< nrelocs
; i
++)
5169 Elf_Internal_Rela rel
;
5170 bool unresolved_reloc
;
5171 char *error_message
;
5173 sym_value
+ template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
5175 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
5176 rel
.r_info
= ELF32_R_INFO (0,
5177 template_sequence
[stub_reloc_idx
[i
]].r_type
);
5180 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
5181 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5182 template should refer back to the instruction after the original
5183 branch. We use target_section as Cortex-A8 erratum workaround stubs
5184 are only generated when both source and target are in the same
5186 points_to
= stub_entry
->target_section
->output_section
->vma
5187 + stub_entry
->target_section
->output_offset
5188 + stub_entry
->source_value
;
5190 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5191 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
5192 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
5193 points_to
, info
, stub_entry
->target_section
, "", STT_FUNC
,
5194 stub_entry
->branch_type
,
5195 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
5203 /* Calculate the template, template size and instruction size for a stub.
5204 Return value is the instruction size. */
5207 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
5208 const insn_sequence
**stub_template
,
5209 int *stub_template_size
)
5211 const insn_sequence
*template_sequence
= NULL
;
5212 int template_size
= 0, i
;
5215 template_sequence
= stub_definitions
[stub_type
].template_sequence
;
5217 *stub_template
= template_sequence
;
5219 template_size
= stub_definitions
[stub_type
].template_size
;
5220 if (stub_template_size
)
5221 *stub_template_size
= template_size
;
5224 for (i
= 0; i
< template_size
; i
++)
5226 switch (template_sequence
[i
].type
)
5247 /* As above, but don't actually build the stub. Just bump offset so
5248 we know stub section sizes. */
5251 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
5252 void *in_arg ATTRIBUTE_UNUSED
)
5254 struct elf32_arm_stub_hash_entry
*stub_entry
;
5255 const insn_sequence
*template_sequence
;
5256 int template_size
, size
;
5258 /* Massage our args to the form they really have. */
5259 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
5261 BFD_ASSERT ((stub_entry
->stub_type
> arm_stub_none
)
5262 && stub_entry
->stub_type
< ARRAY_SIZE (stub_definitions
));
5264 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template_sequence
,
5267 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5268 if (stub_entry
->stub_template_size
)
5270 stub_entry
->stub_size
= size
;
5271 stub_entry
->stub_template
= template_sequence
;
5272 stub_entry
->stub_template_size
= template_size
;
5275 /* Already accounted for. */
5276 if (stub_entry
->stub_offset
!= (bfd_vma
) -1)
5279 size
= (size
+ 7) & ~7;
5280 stub_entry
->stub_sec
->size
+= size
;
5285 /* External entry points for sizing and building linker stubs. */
5287 /* Set up various things so that we can make a list of input sections
5288 for each output section included in the link. Returns -1 on error,
5289 0 when no stubs will be needed, and 1 on success. */
5292 elf32_arm_setup_section_lists (bfd
*output_bfd
,
5293 struct bfd_link_info
*info
)
5296 unsigned int bfd_count
;
5297 unsigned int top_id
, top_index
;
5299 asection
**input_list
, **list
;
5301 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
5306 /* Count the number of input BFDs and find the top input section id. */
5307 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
5309 input_bfd
= input_bfd
->link
.next
)
5312 for (section
= input_bfd
->sections
;
5314 section
= section
->next
)
5316 if (top_id
< section
->id
)
5317 top_id
= section
->id
;
5320 htab
->bfd_count
= bfd_count
;
5322 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
5323 htab
->stub_group
= (struct map_stub
*) bfd_zmalloc (amt
);
5324 if (htab
->stub_group
== NULL
)
5326 htab
->top_id
= top_id
;
5328 /* We can't use output_bfd->section_count here to find the top output
5329 section index as some sections may have been removed, and
5330 _bfd_strip_section_from_output doesn't renumber the indices. */
5331 for (section
= output_bfd
->sections
, top_index
= 0;
5333 section
= section
->next
)
5335 if (top_index
< section
->index
)
5336 top_index
= section
->index
;
5339 htab
->top_index
= top_index
;
5340 amt
= sizeof (asection
*) * (top_index
+ 1);
5341 input_list
= (asection
**) bfd_malloc (amt
);
5342 htab
->input_list
= input_list
;
5343 if (input_list
== NULL
)
5346 /* For sections we aren't interested in, mark their entries with a
5347 value we can check later. */
5348 list
= input_list
+ top_index
;
5350 *list
= bfd_abs_section_ptr
;
5351 while (list
-- != input_list
);
5353 for (section
= output_bfd
->sections
;
5355 section
= section
->next
)
5357 if ((section
->flags
& SEC_CODE
) != 0)
5358 input_list
[section
->index
] = NULL
;
5364 /* The linker repeatedly calls this function for each input section,
5365 in the order that input sections are linked into output sections.
5366 Build lists of input sections to determine groupings between which
5367 we may insert linker stubs. */
5370 elf32_arm_next_input_section (struct bfd_link_info
*info
,
5373 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
5378 if (isec
->output_section
->index
<= htab
->top_index
)
5380 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
5382 if (*list
!= bfd_abs_section_ptr
&& (isec
->flags
& SEC_CODE
) != 0)
5384 /* Steal the link_sec pointer for our list. */
5385 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5386 /* This happens to make the list in reverse order,
5387 which we reverse later. */
5388 PREV_SEC (isec
) = *list
;
5394 /* See whether we can group stub sections together. Grouping stub
5395 sections may result in fewer stubs. More importantly, we need to
5396 put all .init* and .fini* stubs at the end of the .init or
5397 .fini output sections respectively, because glibc splits the
5398 _init and _fini functions into multiple parts. Putting a stub in
5399 the middle of a function is not a good idea. */
5402 group_sections (struct elf32_arm_link_hash_table
*htab
,
5403 bfd_size_type stub_group_size
,
5404 bool stubs_always_after_branch
)
5406 asection
**list
= htab
->input_list
;
5410 asection
*tail
= *list
;
5413 if (tail
== bfd_abs_section_ptr
)
5416 /* Reverse the list: we must avoid placing stubs at the
5417 beginning of the section because the beginning of the text
5418 section may be required for an interrupt vector in bare metal
5420 #define NEXT_SEC PREV_SEC
5422 while (tail
!= NULL
)
5424 /* Pop from tail. */
5425 asection
*item
= tail
;
5426 tail
= PREV_SEC (item
);
5429 NEXT_SEC (item
) = head
;
5433 while (head
!= NULL
)
5437 bfd_vma stub_group_start
= head
->output_offset
;
5438 bfd_vma end_of_next
;
5441 while (NEXT_SEC (curr
) != NULL
)
5443 next
= NEXT_SEC (curr
);
5444 end_of_next
= next
->output_offset
+ next
->size
;
5445 if (end_of_next
- stub_group_start
>= stub_group_size
)
5446 /* End of NEXT is too far from start, so stop. */
5448 /* Add NEXT to the group. */
5452 /* OK, the size from the start to the start of CURR is less
5453 than stub_group_size and thus can be handled by one stub
5454 section. (Or the head section is itself larger than
5455 stub_group_size, in which case we may be toast.)
5456 We should really be keeping track of the total size of
5457 stubs added here, as stubs contribute to the final output
5461 next
= NEXT_SEC (head
);
5462 /* Set up this stub group. */
5463 htab
->stub_group
[head
->id
].link_sec
= curr
;
5465 while (head
!= curr
&& (head
= next
) != NULL
);
5467 /* But wait, there's more! Input sections up to stub_group_size
5468 bytes after the stub section can be handled by it too. */
5469 if (!stubs_always_after_branch
)
5471 stub_group_start
= curr
->output_offset
+ curr
->size
;
5473 while (next
!= NULL
)
5475 end_of_next
= next
->output_offset
+ next
->size
;
5476 if (end_of_next
- stub_group_start
>= stub_group_size
)
5477 /* End of NEXT is too far from stubs, so stop. */
5479 /* Add NEXT to the stub group. */
5481 next
= NEXT_SEC (head
);
5482 htab
->stub_group
[head
->id
].link_sec
= curr
;
5488 while (list
++ != htab
->input_list
+ htab
->top_index
);
5490 free (htab
->input_list
);
5495 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5499 a8_reloc_compare (const void *a
, const void *b
)
5501 const struct a8_erratum_reloc
*ra
= (const struct a8_erratum_reloc
*) a
;
5502 const struct a8_erratum_reloc
*rb
= (const struct a8_erratum_reloc
*) b
;
5504 if (ra
->from
< rb
->from
)
5506 else if (ra
->from
> rb
->from
)
5512 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
5513 const char *, char **);
5515 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5516 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5517 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5521 cortex_a8_erratum_scan (bfd
*input_bfd
,
5522 struct bfd_link_info
*info
,
5523 struct a8_erratum_fix
**a8_fixes_p
,
5524 unsigned int *num_a8_fixes_p
,
5525 unsigned int *a8_fix_table_size_p
,
5526 struct a8_erratum_reloc
*a8_relocs
,
5527 unsigned int num_a8_relocs
,
5528 unsigned prev_num_a8_fixes
,
5529 bool *stub_changed_p
)
5532 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
5533 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
5534 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
5535 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
5540 for (section
= input_bfd
->sections
;
5542 section
= section
->next
)
5544 bfd_byte
*contents
= NULL
;
5545 struct _arm_elf_section_data
*sec_data
;
5549 if (elf_section_type (section
) != SHT_PROGBITS
5550 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
5551 || (section
->flags
& SEC_EXCLUDE
) != 0
5552 || (section
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
5553 || (section
->output_section
== bfd_abs_section_ptr
))
5556 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
5558 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
5559 contents
= elf_section_data (section
)->this_hdr
.contents
;
5560 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
5563 sec_data
= elf32_arm_section_data (section
);
5565 for (span
= 0; span
< sec_data
->mapcount
; span
++)
5567 unsigned int span_start
= sec_data
->map
[span
].vma
;
5568 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
5569 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
5571 char span_type
= sec_data
->map
[span
].type
;
5572 bool last_was_32bit
= false, last_was_branch
= false;
5574 if (span_type
!= 't')
5577 /* Span is entirely within a single 4KB region: skip scanning. */
5578 if (((base_vma
+ span_start
) & ~0xfff)
5579 == ((base_vma
+ span_end
) & ~0xfff))
5582 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5584 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5585 * The branch target is in the same 4KB region as the
5586 first half of the branch.
5587 * The instruction before the branch is a 32-bit
5588 length non-branch instruction. */
5589 for (i
= span_start
; i
< span_end
;)
5591 unsigned int insn
= bfd_getl16 (&contents
[i
]);
5592 bool insn_32bit
= false, is_blx
= false, is_b
= false;
5593 bool is_bl
= false, is_bcc
= false, is_32bit_branch
;
5595 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
5600 /* Load the rest of the insn (in manual-friendly order). */
5601 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
5603 /* Encoding T4: B<c>.W. */
5604 is_b
= (insn
& 0xf800d000) == 0xf0009000;
5605 /* Encoding T1: BL<c>.W. */
5606 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
5607 /* Encoding T2: BLX<c>.W. */
5608 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
5609 /* Encoding T3: B<c>.W (not permitted in IT block). */
5610 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
5611 && (insn
& 0x07f00000) != 0x03800000;
5614 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
5616 if (((base_vma
+ i
) & 0xfff) == 0xffe
5620 && ! last_was_branch
)
5622 bfd_signed_vma offset
= 0;
5623 bool force_target_arm
= false;
5624 bool force_target_thumb
= false;
5626 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
5627 struct a8_erratum_reloc key
, *found
;
5628 bool use_plt
= false;
5630 key
.from
= base_vma
+ i
;
5631 found
= (struct a8_erratum_reloc
*)
5632 bsearch (&key
, a8_relocs
, num_a8_relocs
,
5633 sizeof (struct a8_erratum_reloc
),
5638 char *error_message
= NULL
;
5639 struct elf_link_hash_entry
*entry
;
5641 /* We don't care about the error returned from this
5642 function, only if there is glue or not. */
5643 entry
= find_thumb_glue (info
, found
->sym_name
,
5647 found
->non_a8_stub
= true;
5649 /* Keep a simpler condition, for the sake of clarity. */
5650 if (htab
->root
.splt
!= NULL
&& found
->hash
!= NULL
5651 && found
->hash
->root
.plt
.offset
!= (bfd_vma
) -1)
5654 if (found
->r_type
== R_ARM_THM_CALL
)
5656 if (found
->branch_type
== ST_BRANCH_TO_ARM
5658 force_target_arm
= true;
5660 force_target_thumb
= true;
5664 /* Check if we have an offending branch instruction. */
5666 if (found
&& found
->non_a8_stub
)
5667 /* We've already made a stub for this instruction, e.g.
5668 it's a long branch or a Thumb->ARM stub. Assume that
5669 stub will suffice to work around the A8 erratum (see
5670 setting of always_after_branch above). */
5674 offset
= (insn
& 0x7ff) << 1;
5675 offset
|= (insn
& 0x3f0000) >> 4;
5676 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
5677 offset
|= (insn
& 0x800) ? 0x80000 : 0;
5678 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
5679 if (offset
& 0x100000)
5680 offset
|= ~ ((bfd_signed_vma
) 0xfffff);
5681 stub_type
= arm_stub_a8_veneer_b_cond
;
5683 else if (is_b
|| is_bl
|| is_blx
)
5685 int s
= (insn
& 0x4000000) != 0;
5686 int j1
= (insn
& 0x2000) != 0;
5687 int j2
= (insn
& 0x800) != 0;
5691 offset
= (insn
& 0x7ff) << 1;
5692 offset
|= (insn
& 0x3ff0000) >> 4;
5696 if (offset
& 0x1000000)
5697 offset
|= ~ ((bfd_signed_vma
) 0xffffff);
5700 offset
&= ~ ((bfd_signed_vma
) 3);
5702 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
5703 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
5706 if (stub_type
!= arm_stub_none
)
5708 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
5710 /* The original instruction is a BL, but the target is
5711 an ARM instruction. If we were not making a stub,
5712 the BL would have been converted to a BLX. Use the
5713 BLX stub instead in that case. */
5714 if (htab
->use_blx
&& force_target_arm
5715 && stub_type
== arm_stub_a8_veneer_bl
)
5717 stub_type
= arm_stub_a8_veneer_blx
;
5721 /* Conversely, if the original instruction was
5722 BLX but the target is Thumb mode, use the BL
5724 else if (force_target_thumb
5725 && stub_type
== arm_stub_a8_veneer_blx
)
5727 stub_type
= arm_stub_a8_veneer_bl
;
5733 pc_for_insn
&= ~ ((bfd_vma
) 3);
5735 /* If we found a relocation, use the proper destination,
5736 not the offset in the (unrelocated) instruction.
5737 Note this is always done if we switched the stub type
5741 (bfd_signed_vma
) (found
->destination
- pc_for_insn
);
5743 /* If the stub will use a Thumb-mode branch to a
5744 PLT target, redirect it to the preceding Thumb
5746 if (stub_type
!= arm_stub_a8_veneer_blx
&& use_plt
)
5747 offset
-= PLT_THUMB_STUB_SIZE
;
5749 target
= pc_for_insn
+ offset
;
5751 /* The BLX stub is ARM-mode code. Adjust the offset to
5752 take the different PC value (+8 instead of +4) into
5754 if (stub_type
== arm_stub_a8_veneer_blx
)
5757 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
5759 char *stub_name
= NULL
;
5761 if (num_a8_fixes
== a8_fix_table_size
)
5763 a8_fix_table_size
*= 2;
5764 a8_fixes
= (struct a8_erratum_fix
*)
5765 bfd_realloc (a8_fixes
,
5766 sizeof (struct a8_erratum_fix
)
5767 * a8_fix_table_size
);
5770 if (num_a8_fixes
< prev_num_a8_fixes
)
5772 /* If we're doing a subsequent scan,
5773 check if we've found the same fix as
5774 before, and try and reuse the stub
5776 stub_name
= a8_fixes
[num_a8_fixes
].stub_name
;
5777 if ((a8_fixes
[num_a8_fixes
].section
!= section
)
5778 || (a8_fixes
[num_a8_fixes
].offset
!= i
))
5782 *stub_changed_p
= true;
5788 stub_name
= (char *) bfd_malloc (8 + 1 + 8 + 1);
5789 if (stub_name
!= NULL
)
5790 sprintf (stub_name
, "%x:%x", section
->id
, i
);
5793 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
5794 a8_fixes
[num_a8_fixes
].section
= section
;
5795 a8_fixes
[num_a8_fixes
].offset
= i
;
5796 a8_fixes
[num_a8_fixes
].target_offset
=
5798 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
5799 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
5800 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
5801 a8_fixes
[num_a8_fixes
].branch_type
=
5802 is_blx
? ST_BRANCH_TO_ARM
: ST_BRANCH_TO_THUMB
;
5809 i
+= insn_32bit
? 4 : 2;
5810 last_was_32bit
= insn_32bit
;
5811 last_was_branch
= is_32bit_branch
;
5815 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
5819 *a8_fixes_p
= a8_fixes
;
5820 *num_a8_fixes_p
= num_a8_fixes
;
5821 *a8_fix_table_size_p
= a8_fix_table_size
;
5826 /* Create or update a stub entry depending on whether the stub can already be
5827 found in HTAB. The stub is identified by:
5828 - its type STUB_TYPE
5829 - its source branch (note that several can share the same stub) whose
5830 section and relocation (if any) are given by SECTION and IRELA
5832 - its target symbol whose input section, hash, name, value and branch type
5833 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5836 If found, the value of the stub's target symbol is updated from SYM_VALUE
5837 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5838 TRUE and the stub entry is initialized.
5840 Returns the stub that was created or updated, or NULL if an error
5843 static struct elf32_arm_stub_hash_entry
*
5844 elf32_arm_create_stub (struct elf32_arm_link_hash_table
*htab
,
5845 enum elf32_arm_stub_type stub_type
, asection
*section
,
5846 Elf_Internal_Rela
*irela
, asection
*sym_sec
,
5847 struct elf32_arm_link_hash_entry
*hash
, char *sym_name
,
5848 bfd_vma sym_value
, enum arm_st_branch_type branch_type
,
5851 const asection
*id_sec
;
5853 struct elf32_arm_stub_hash_entry
*stub_entry
;
5854 unsigned int r_type
;
5855 bool sym_claimed
= arm_stub_sym_claimed (stub_type
);
5857 BFD_ASSERT (stub_type
!= arm_stub_none
);
5861 stub_name
= sym_name
;
5865 BFD_ASSERT (section
);
5866 BFD_ASSERT (section
->id
<= htab
->top_id
);
5868 /* Support for grouping stub sections. */
5869 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
5871 /* Get the name of this stub. */
5872 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
, irela
,
5878 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
, false,
5880 /* The proper stub has already been created, just update its value. */
5881 if (stub_entry
!= NULL
)
5885 stub_entry
->target_value
= sym_value
;
5889 stub_entry
= elf32_arm_add_stub (stub_name
, section
, htab
, stub_type
);
5890 if (stub_entry
== NULL
)
5897 stub_entry
->target_value
= sym_value
;
5898 stub_entry
->target_section
= sym_sec
;
5899 stub_entry
->stub_type
= stub_type
;
5900 stub_entry
->h
= hash
;
5901 stub_entry
->branch_type
= branch_type
;
5904 stub_entry
->output_name
= sym_name
;
5907 if (sym_name
== NULL
)
5908 sym_name
= "unnamed";
5909 stub_entry
->output_name
= (char *)
5910 bfd_alloc (htab
->stub_bfd
, sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
5911 + strlen (sym_name
));
5912 if (stub_entry
->output_name
== NULL
)
5918 /* For historical reasons, use the existing names for ARM-to-Thumb and
5919 Thumb-to-ARM stubs. */
5920 r_type
= ELF32_R_TYPE (irela
->r_info
);
5921 if ((r_type
== (unsigned int) R_ARM_THM_CALL
5922 || r_type
== (unsigned int) R_ARM_THM_JUMP24
5923 || r_type
== (unsigned int) R_ARM_THM_JUMP19
)
5924 && branch_type
== ST_BRANCH_TO_ARM
)
5925 sprintf (stub_entry
->output_name
, THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
5926 else if ((r_type
== (unsigned int) R_ARM_CALL
5927 || r_type
== (unsigned int) R_ARM_JUMP24
)
5928 && branch_type
== ST_BRANCH_TO_THUMB
)
5929 sprintf (stub_entry
->output_name
, ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
5931 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
, sym_name
);
5938 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5939 gateway veneer to transition from non secure to secure state and create them
5942 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5943 defines the conditions that govern Secure Gateway veneer creation for a
5944 given symbol <SYM> as follows:
5945 - it has function type
5946 - it has non local binding
5947 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5948 same type, binding and value as <SYM> (called normal symbol).
5949 An entry function can handle secure state transition itself in which case
5950 its special symbol would have a different value from the normal symbol.
5952 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5953 entry mapping while HTAB gives the name to hash entry mapping.
5954 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5957 The return value gives whether a stub failed to be allocated. */
5960 cmse_scan (bfd
*input_bfd
, struct elf32_arm_link_hash_table
*htab
,
5961 obj_attribute
*out_attr
, struct elf_link_hash_entry
**sym_hashes
,
5962 int *cmse_stub_created
)
5964 const struct elf_backend_data
*bed
;
5965 Elf_Internal_Shdr
*symtab_hdr
;
5966 unsigned i
, j
, sym_count
, ext_start
;
5967 Elf_Internal_Sym
*cmse_sym
, *local_syms
;
5968 struct elf32_arm_link_hash_entry
*hash
, *cmse_hash
= NULL
;
5969 enum arm_st_branch_type branch_type
;
5970 char *sym_name
, *lsym_name
;
5973 struct elf32_arm_stub_hash_entry
*stub_entry
;
5974 bool is_v8m
, new_stub
, cmse_invalid
, ret
= true;
5976 bed
= get_elf_backend_data (input_bfd
);
5977 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5978 sym_count
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
5979 ext_start
= symtab_hdr
->sh_info
;
5980 is_v8m
= (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V8M_BASE
5981 && out_attr
[Tag_CPU_arch_profile
].i
== 'M');
5983 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
5984 if (local_syms
== NULL
)
5985 local_syms
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
5986 symtab_hdr
->sh_info
, 0, NULL
, NULL
,
5988 if (symtab_hdr
->sh_info
&& local_syms
== NULL
)
5992 for (i
= 0; i
< sym_count
; i
++)
5994 cmse_invalid
= false;
5998 cmse_sym
= &local_syms
[i
];
5999 sym_name
= bfd_elf_string_from_elf_section (input_bfd
,
6000 symtab_hdr
->sh_link
,
6002 if (!sym_name
|| !startswith (sym_name
, CMSE_PREFIX
))
6005 /* Special symbol with local binding. */
6006 cmse_invalid
= true;
6010 cmse_hash
= elf32_arm_hash_entry (sym_hashes
[i
- ext_start
]);
6011 if (cmse_hash
== NULL
)
6014 sym_name
= (char *) cmse_hash
->root
.root
.root
.string
;
6015 if (!startswith (sym_name
, CMSE_PREFIX
))
6018 /* Special symbol has incorrect binding or type. */
6019 if ((cmse_hash
->root
.root
.type
!= bfd_link_hash_defined
6020 && cmse_hash
->root
.root
.type
!= bfd_link_hash_defweak
)
6021 || cmse_hash
->root
.type
!= STT_FUNC
)
6022 cmse_invalid
= true;
6027 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6028 "ARMv8-M architecture or later"),
6029 input_bfd
, sym_name
);
6030 is_v8m
= true; /* Avoid multiple warning. */
6036 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6037 " a global or weak function symbol"),
6038 input_bfd
, sym_name
);
6044 sym_name
+= strlen (CMSE_PREFIX
);
6045 hash
= (struct elf32_arm_link_hash_entry
*)
6046 elf_link_hash_lookup (&(htab
)->root
, sym_name
, false, false, true);
6048 /* No associated normal symbol or it is neither global nor weak. */
6050 || (hash
->root
.root
.type
!= bfd_link_hash_defined
6051 && hash
->root
.root
.type
!= bfd_link_hash_defweak
)
6052 || hash
->root
.type
!= STT_FUNC
)
6054 /* Initialize here to avoid warning about use of possibly
6055 uninitialized variable. */
6060 /* Searching for a normal symbol with local binding. */
6061 for (; j
< ext_start
; j
++)
6064 bfd_elf_string_from_elf_section (input_bfd
,
6065 symtab_hdr
->sh_link
,
6066 local_syms
[j
].st_name
);
6067 if (!strcmp (sym_name
, lsym_name
))
6072 if (hash
|| j
< ext_start
)
6075 (_("%pB: invalid standard symbol `%s'; it must be "
6076 "a global or weak function symbol"),
6077 input_bfd
, sym_name
);
6081 (_("%pB: absent standard symbol `%s'"), input_bfd
, sym_name
);
6087 sym_value
= hash
->root
.root
.u
.def
.value
;
6088 section
= hash
->root
.root
.u
.def
.section
;
6090 if (cmse_hash
->root
.root
.u
.def
.section
!= section
)
6093 (_("%pB: `%s' and its special symbol are in different sections"),
6094 input_bfd
, sym_name
);
6097 if (cmse_hash
->root
.root
.u
.def
.value
!= sym_value
)
6098 continue; /* Ignore: could be an entry function starting with SG. */
6100 /* If this section is a link-once section that will be discarded, then
6101 don't create any stubs. */
6102 if (section
->output_section
== NULL
)
6105 (_("%pB: entry function `%s' not output"), input_bfd
, sym_name
);
6109 if (hash
->root
.size
== 0)
6112 (_("%pB: entry function `%s' is empty"), input_bfd
, sym_name
);
6118 branch_type
= ARM_GET_SYM_BRANCH_TYPE (hash
->root
.target_internal
);
6120 = elf32_arm_create_stub (htab
, arm_stub_cmse_branch_thumb_only
,
6121 NULL
, NULL
, section
, hash
, sym_name
,
6122 sym_value
, branch_type
, &new_stub
);
6124 if (stub_entry
== NULL
)
6128 BFD_ASSERT (new_stub
);
6129 (*cmse_stub_created
)++;
6133 if (!symtab_hdr
->contents
)
6138 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6139 code entry function, ie can be called from non secure code without using a
6143 cmse_entry_fct_p (struct elf32_arm_link_hash_entry
*hash
)
6145 bfd_byte contents
[4];
6146 uint32_t first_insn
;
6151 /* Defined symbol of function type. */
6152 if (hash
->root
.root
.type
!= bfd_link_hash_defined
6153 && hash
->root
.root
.type
!= bfd_link_hash_defweak
)
6155 if (hash
->root
.type
!= STT_FUNC
)
6158 /* Read first instruction. */
6159 section
= hash
->root
.root
.u
.def
.section
;
6160 abfd
= section
->owner
;
6161 offset
= hash
->root
.root
.u
.def
.value
- section
->vma
;
6162 if (!bfd_get_section_contents (abfd
, section
, contents
, offset
,
6166 first_insn
= bfd_get_32 (abfd
, contents
);
6168 /* Starts by SG instruction. */
6169 return first_insn
== 0xe97fe97f;
6172 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6173 secure gateway veneers (ie. the veneers was not in the input import library)
6174 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6177 arm_list_new_cmse_stub (struct bfd_hash_entry
*gen_entry
, void *gen_info
)
6179 struct elf32_arm_stub_hash_entry
*stub_entry
;
6180 struct bfd_link_info
*info
;
6182 /* Massage our args to the form they really have. */
6183 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
6184 info
= (struct bfd_link_info
*) gen_info
;
6186 if (info
->out_implib_bfd
)
6189 if (stub_entry
->stub_type
!= arm_stub_cmse_branch_thumb_only
)
6192 if (stub_entry
->stub_offset
== (bfd_vma
) -1)
6193 _bfd_error_handler (" %s", stub_entry
->output_name
);
6198 /* Set offset of each secure gateway veneers so that its address remain
6199 identical to the one in the input import library referred by
6200 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6201 (present in input import library but absent from the executable being
6202 linked) or if new veneers appeared and there is no output import library
6203 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6204 number of secure gateway veneers found in the input import library.
6206 The function returns whether an error occurred. If no error occurred,
6207 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6208 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6209 veneer observed set for new veneers to be layed out after. */
6212 set_cmse_veneer_addr_from_implib (struct bfd_link_info
*info
,
6213 struct elf32_arm_link_hash_table
*htab
,
6214 int *cmse_stub_created
)
6221 asection
*stub_out_sec
;
6223 Elf_Internal_Sym
*intsym
;
6224 const char *out_sec_name
;
6225 bfd_size_type cmse_stub_size
;
6226 asymbol
**sympp
= NULL
, *sym
;
6227 struct elf32_arm_link_hash_entry
*hash
;
6228 const insn_sequence
*cmse_stub_template
;
6229 struct elf32_arm_stub_hash_entry
*stub_entry
;
6230 int cmse_stub_template_size
, new_cmse_stubs_created
= *cmse_stub_created
;
6231 bfd_vma veneer_value
, stub_offset
, next_cmse_stub_offset
;
6232 bfd_vma cmse_stub_array_start
= (bfd_vma
) -1, cmse_stub_sec_vma
= 0;
6234 /* No input secure gateway import library. */
6235 if (!htab
->in_implib_bfd
)
6238 in_implib_bfd
= htab
->in_implib_bfd
;
6239 if (!htab
->cmse_implib
)
6241 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
6242 "Gateway import libraries"), in_implib_bfd
);
6246 /* Get symbol table size. */
6247 symsize
= bfd_get_symtab_upper_bound (in_implib_bfd
);
6251 /* Read in the input secure gateway import library's symbol table. */
6252 sympp
= (asymbol
**) bfd_malloc (symsize
);
6256 symcount
= bfd_canonicalize_symtab (in_implib_bfd
, sympp
);
6263 htab
->new_cmse_stub_offset
= 0;
6265 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only
,
6266 &cmse_stub_template
,
6267 &cmse_stub_template_size
);
6269 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only
);
6271 bfd_get_section_by_name (htab
->obfd
, out_sec_name
);
6272 if (stub_out_sec
!= NULL
)
6273 cmse_stub_sec_vma
= stub_out_sec
->vma
;
6275 /* Set addresses of veneers mentionned in input secure gateway import
6276 library's symbol table. */
6277 for (i
= 0; i
< symcount
; i
++)
6281 sym_name
= (char *) bfd_asymbol_name (sym
);
6282 intsym
= &((elf_symbol_type
*) sym
)->internal_elf_sym
;
6284 if (sym
->section
!= bfd_abs_section_ptr
6285 || !(flags
& (BSF_GLOBAL
| BSF_WEAK
))
6286 || (flags
& BSF_FUNCTION
) != BSF_FUNCTION
6287 || (ARM_GET_SYM_BRANCH_TYPE (intsym
->st_target_internal
)
6288 != ST_BRANCH_TO_THUMB
))
6290 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6291 "symbol should be absolute, global and "
6292 "refer to Thumb functions"),
6293 in_implib_bfd
, sym_name
);
6298 veneer_value
= bfd_asymbol_value (sym
);
6299 stub_offset
= veneer_value
- cmse_stub_sec_vma
;
6300 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, sym_name
,
6302 hash
= (struct elf32_arm_link_hash_entry
*)
6303 elf_link_hash_lookup (&(htab
)->root
, sym_name
, false, false, true);
6305 /* Stub entry should have been created by cmse_scan or the symbol be of
6306 a secure function callable from non secure code. */
6307 if (!stub_entry
&& !hash
)
6312 (_("entry function `%s' disappeared from secure code"), sym_name
);
6313 hash
= (struct elf32_arm_link_hash_entry
*)
6314 elf_link_hash_lookup (&(htab
)->root
, sym_name
, true, true, true);
6316 = elf32_arm_create_stub (htab
, arm_stub_cmse_branch_thumb_only
,
6317 NULL
, NULL
, bfd_abs_section_ptr
, hash
,
6318 sym_name
, veneer_value
,
6319 ST_BRANCH_TO_THUMB
, &new_stub
);
6320 if (stub_entry
== NULL
)
6324 BFD_ASSERT (new_stub
);
6325 new_cmse_stubs_created
++;
6326 (*cmse_stub_created
)++;
6328 stub_entry
->stub_template_size
= stub_entry
->stub_size
= 0;
6329 stub_entry
->stub_offset
= stub_offset
;
6331 /* Symbol found is not callable from non secure code. */
6332 else if (!stub_entry
)
6334 if (!cmse_entry_fct_p (hash
))
6336 _bfd_error_handler (_("`%s' refers to a non entry function"),
6344 /* Only stubs for SG veneers should have been created. */
6345 BFD_ASSERT (stub_entry
->stub_type
== arm_stub_cmse_branch_thumb_only
);
6347 /* Check visibility hasn't changed. */
6348 if (!!(flags
& BSF_GLOBAL
)
6349 != (hash
->root
.root
.type
== bfd_link_hash_defined
))
6351 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd
,
6354 stub_entry
->stub_offset
= stub_offset
;
6357 /* Size should match that of a SG veneer. */
6358 if (intsym
->st_size
!= cmse_stub_size
)
6360 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
6361 in_implib_bfd
, sym_name
);
6365 /* Previous veneer address is before current SG veneer section. */
6366 if (veneer_value
< cmse_stub_sec_vma
)
6368 /* Avoid offset underflow. */
6370 stub_entry
->stub_offset
= 0;
6375 /* Complain if stub offset not a multiple of stub size. */
6376 if (stub_offset
% cmse_stub_size
)
6379 (_("offset of veneer for entry function `%s' not a multiple of "
6380 "its size"), sym_name
);
6387 new_cmse_stubs_created
--;
6388 if (veneer_value
< cmse_stub_array_start
)
6389 cmse_stub_array_start
= veneer_value
;
6390 next_cmse_stub_offset
= stub_offset
+ ((cmse_stub_size
+ 7) & ~7);
6391 if (next_cmse_stub_offset
> htab
->new_cmse_stub_offset
)
6392 htab
->new_cmse_stub_offset
= next_cmse_stub_offset
;
6395 if (!info
->out_implib_bfd
&& new_cmse_stubs_created
!= 0)
6397 BFD_ASSERT (new_cmse_stubs_created
> 0);
6399 (_("new entry function(s) introduced but no output import library "
6401 bfd_hash_traverse (&htab
->stub_hash_table
, arm_list_new_cmse_stub
, info
);
6404 if (cmse_stub_array_start
!= cmse_stub_sec_vma
)
6407 (_("start address of `%s' is different from previous link"),
6417 /* Determine and set the size of the stub section for a final link.
6419 The basic idea here is to examine all the relocations looking for
6420 PC-relative calls to a target that is unreachable with a "bl"
6424 elf32_arm_size_stubs (bfd
*output_bfd
,
6426 struct bfd_link_info
*info
,
6427 bfd_signed_vma group_size
,
6428 asection
* (*add_stub_section
) (const char *, asection
*,
6431 void (*layout_sections_again
) (void))
6434 obj_attribute
*out_attr
;
6435 int cmse_stub_created
= 0;
6436 bfd_size_type stub_group_size
;
6437 bool m_profile
, stubs_always_after_branch
, first_veneer_scan
= true;
6438 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
6439 struct a8_erratum_fix
*a8_fixes
= NULL
;
6440 unsigned int num_a8_fixes
= 0, a8_fix_table_size
= 10;
6441 struct a8_erratum_reloc
*a8_relocs
= NULL
;
6442 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
6447 if (htab
->fix_cortex_a8
)
6449 a8_fixes
= (struct a8_erratum_fix
*)
6450 bfd_zmalloc (sizeof (struct a8_erratum_fix
) * a8_fix_table_size
);
6451 a8_relocs
= (struct a8_erratum_reloc
*)
6452 bfd_zmalloc (sizeof (struct a8_erratum_reloc
) * a8_reloc_table_size
);
6455 /* Propagate mach to stub bfd, because it may not have been
6456 finalized when we created stub_bfd. */
6457 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
6458 bfd_get_mach (output_bfd
));
6460 /* Stash our params away. */
6461 htab
->stub_bfd
= stub_bfd
;
6462 htab
->add_stub_section
= add_stub_section
;
6463 htab
->layout_sections_again
= layout_sections_again
;
6464 stubs_always_after_branch
= group_size
< 0;
6466 out_attr
= elf_known_obj_attributes_proc (output_bfd
);
6467 m_profile
= out_attr
[Tag_CPU_arch_profile
].i
== 'M';
6469 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6470 as the first half of a 32-bit branch straddling two 4K pages. This is a
6471 crude way of enforcing that. */
6472 if (htab
->fix_cortex_a8
)
6473 stubs_always_after_branch
= 1;
6476 stub_group_size
= -group_size
;
6478 stub_group_size
= group_size
;
6480 if (stub_group_size
== 1)
6482 /* Default values. */
6483 /* Thumb branch range is +-4MB has to be used as the default
6484 maximum size (a given section can contain both ARM and Thumb
6485 code, so the worst case has to be taken into account).
6487 This value is 24K less than that, which allows for 2025
6488 12-byte stubs. If we exceed that, then we will fail to link.
6489 The user will have to relink with an explicit group size
6491 stub_group_size
= 4170000;
6494 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
6496 /* If we're applying the cortex A8 fix, we need to determine the
6497 program header size now, because we cannot change it later --
6498 that could alter section placements. Notice the A8 erratum fix
6499 ends up requiring the section addresses to remain unchanged
6500 modulo the page size. That's something we cannot represent
6501 inside BFD, and we don't want to force the section alignment to
6502 be the page size. */
6503 if (htab
->fix_cortex_a8
)
6504 (*htab
->layout_sections_again
) ();
6509 unsigned int bfd_indx
;
6511 enum elf32_arm_stub_type stub_type
;
6512 bool stub_changed
= false;
6513 unsigned prev_num_a8_fixes
= num_a8_fixes
;
6516 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
6518 input_bfd
= input_bfd
->link
.next
, bfd_indx
++)
6520 Elf_Internal_Shdr
*symtab_hdr
;
6522 Elf_Internal_Sym
*local_syms
= NULL
;
6524 if (!is_arm_elf (input_bfd
))
6526 if ((input_bfd
->flags
& DYNAMIC
) != 0
6527 && (elf_sym_hashes (input_bfd
) == NULL
6528 || (elf_dyn_lib_class (input_bfd
) & DYN_AS_NEEDED
) != 0))
6533 /* We'll need the symbol table in a second. */
6534 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6535 if (symtab_hdr
->sh_info
== 0)
6538 /* Limit scan of symbols to object file whose profile is
6539 Microcontroller to not hinder performance in the general case. */
6540 if (m_profile
&& first_veneer_scan
)
6542 struct elf_link_hash_entry
**sym_hashes
;
6544 sym_hashes
= elf_sym_hashes (input_bfd
);
6545 if (!cmse_scan (input_bfd
, htab
, out_attr
, sym_hashes
,
6546 &cmse_stub_created
))
6547 goto error_ret_free_local
;
6549 if (cmse_stub_created
!= 0)
6550 stub_changed
= true;
6553 /* Walk over each section attached to the input bfd. */
6554 for (section
= input_bfd
->sections
;
6556 section
= section
->next
)
6558 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
6560 /* If there aren't any relocs, then there's nothing more
6562 if ((section
->flags
& SEC_RELOC
) == 0
6563 || section
->reloc_count
== 0
6564 || (section
->flags
& SEC_CODE
) == 0)
6567 /* If this section is a link-once section that will be
6568 discarded, then don't create any stubs. */
6569 if (section
->output_section
== NULL
6570 || section
->output_section
->owner
!= output_bfd
)
6573 /* Get the relocs. */
6575 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
6576 NULL
, info
->keep_memory
);
6577 if (internal_relocs
== NULL
)
6578 goto error_ret_free_local
;
6580 /* Now examine each relocation. */
6581 irela
= internal_relocs
;
6582 irelaend
= irela
+ section
->reloc_count
;
6583 for (; irela
< irelaend
; irela
++)
6585 unsigned int r_type
, r_indx
;
6588 bfd_vma destination
;
6589 struct elf32_arm_link_hash_entry
*hash
;
6590 const char *sym_name
;
6591 unsigned char st_type
;
6592 enum arm_st_branch_type branch_type
;
6593 bool created_stub
= false;
6595 r_type
= ELF32_R_TYPE (irela
->r_info
);
6596 r_indx
= ELF32_R_SYM (irela
->r_info
);
6598 if (r_type
>= (unsigned int) R_ARM_max
)
6600 bfd_set_error (bfd_error_bad_value
);
6601 error_ret_free_internal
:
6602 if (elf_section_data (section
)->relocs
== NULL
)
6603 free (internal_relocs
);
6605 error_ret_free_local
:
6606 if (symtab_hdr
->contents
!= (unsigned char *) local_syms
)
6612 if (r_indx
>= symtab_hdr
->sh_info
)
6613 hash
= elf32_arm_hash_entry
6614 (elf_sym_hashes (input_bfd
)
6615 [r_indx
- symtab_hdr
->sh_info
]);
6617 /* Only look for stubs on branch instructions, or
6618 non-relaxed TLSCALL */
6619 if ((r_type
!= (unsigned int) R_ARM_CALL
)
6620 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
6621 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
6622 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
6623 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
6624 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
6625 && (r_type
!= (unsigned int) R_ARM_PLT32
)
6626 && !((r_type
== (unsigned int) R_ARM_TLS_CALL
6627 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
6628 && r_type
== (elf32_arm_tls_transition
6630 (struct elf_link_hash_entry
*) hash
))
6631 && ((hash
? hash
->tls_type
6632 : (elf32_arm_local_got_tls_type
6633 (input_bfd
)[r_indx
]))
6634 & GOT_TLS_GDESC
) != 0))
6637 /* Now determine the call target, its name, value,
6644 if (r_type
== (unsigned int) R_ARM_TLS_CALL
6645 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
6647 /* A non-relaxed TLS call. The target is the
6648 plt-resident trampoline and nothing to do
6650 BFD_ASSERT (htab
->tls_trampoline
> 0);
6651 sym_sec
= htab
->root
.splt
;
6652 sym_value
= htab
->tls_trampoline
;
6655 branch_type
= ST_BRANCH_TO_ARM
;
6659 /* It's a local symbol. */
6660 Elf_Internal_Sym
*sym
;
6662 if (local_syms
== NULL
)
6665 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6666 if (local_syms
== NULL
)
6668 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
6669 symtab_hdr
->sh_info
, 0,
6671 if (local_syms
== NULL
)
6672 goto error_ret_free_internal
;
6675 sym
= local_syms
+ r_indx
;
6676 if (sym
->st_shndx
== SHN_UNDEF
)
6677 sym_sec
= bfd_und_section_ptr
;
6678 else if (sym
->st_shndx
== SHN_ABS
)
6679 sym_sec
= bfd_abs_section_ptr
;
6680 else if (sym
->st_shndx
== SHN_COMMON
)
6681 sym_sec
= bfd_com_section_ptr
;
6684 bfd_section_from_elf_index (input_bfd
, sym
->st_shndx
);
6687 /* This is an undefined symbol. It can never
6691 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
6692 sym_value
= sym
->st_value
;
6693 destination
= (sym_value
+ irela
->r_addend
6694 + sym_sec
->output_offset
6695 + sym_sec
->output_section
->vma
);
6696 st_type
= ELF_ST_TYPE (sym
->st_info
);
6698 ARM_GET_SYM_BRANCH_TYPE (sym
->st_target_internal
);
6700 = bfd_elf_string_from_elf_section (input_bfd
,
6701 symtab_hdr
->sh_link
,
6706 /* It's an external symbol. */
6707 while (hash
->root
.root
.type
== bfd_link_hash_indirect
6708 || hash
->root
.root
.type
== bfd_link_hash_warning
)
6709 hash
= ((struct elf32_arm_link_hash_entry
*)
6710 hash
->root
.root
.u
.i
.link
);
6712 if (hash
->root
.root
.type
== bfd_link_hash_defined
6713 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
6715 sym_sec
= hash
->root
.root
.u
.def
.section
;
6716 sym_value
= hash
->root
.root
.u
.def
.value
;
6718 struct elf32_arm_link_hash_table
*globals
=
6719 elf32_arm_hash_table (info
);
6721 /* For a destination in a shared library,
6722 use the PLT stub as target address to
6723 decide whether a branch stub is
6726 && globals
->root
.splt
!= NULL
6728 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
6730 sym_sec
= globals
->root
.splt
;
6731 sym_value
= hash
->root
.plt
.offset
;
6732 if (sym_sec
->output_section
!= NULL
)
6733 destination
= (sym_value
6734 + sym_sec
->output_offset
6735 + sym_sec
->output_section
->vma
);
6737 else if (sym_sec
->output_section
!= NULL
)
6738 destination
= (sym_value
+ irela
->r_addend
6739 + sym_sec
->output_offset
6740 + sym_sec
->output_section
->vma
);
6742 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
6743 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
6745 /* For a shared library, use the PLT stub as
6746 target address to decide whether a long
6747 branch stub is needed.
6748 For absolute code, they cannot be handled. */
6749 struct elf32_arm_link_hash_table
*globals
=
6750 elf32_arm_hash_table (info
);
6753 && globals
->root
.splt
!= NULL
6755 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
6757 sym_sec
= globals
->root
.splt
;
6758 sym_value
= hash
->root
.plt
.offset
;
6759 if (sym_sec
->output_section
!= NULL
)
6760 destination
= (sym_value
6761 + sym_sec
->output_offset
6762 + sym_sec
->output_section
->vma
);
6769 bfd_set_error (bfd_error_bad_value
);
6770 goto error_ret_free_internal
;
6772 st_type
= hash
->root
.type
;
6774 ARM_GET_SYM_BRANCH_TYPE (hash
->root
.target_internal
);
6775 sym_name
= hash
->root
.root
.root
.string
;
6781 struct elf32_arm_stub_hash_entry
*stub_entry
;
6783 /* Determine what (if any) linker stub is needed. */
6784 stub_type
= arm_type_of_stub (info
, section
, irela
,
6785 st_type
, &branch_type
,
6786 hash
, destination
, sym_sec
,
6787 input_bfd
, sym_name
);
6788 if (stub_type
== arm_stub_none
)
6791 /* We've either created a stub for this reloc already,
6792 or we are about to. */
6794 elf32_arm_create_stub (htab
, stub_type
, section
, irela
,
6796 (char *) sym_name
, sym_value
,
6797 branch_type
, &new_stub
);
6799 created_stub
= stub_entry
!= NULL
;
6801 goto error_ret_free_internal
;
6805 stub_changed
= true;
6809 /* Look for relocations which might trigger Cortex-A8
6811 if (htab
->fix_cortex_a8
6812 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
6813 || r_type
== (unsigned int) R_ARM_THM_JUMP19
6814 || r_type
== (unsigned int) R_ARM_THM_CALL
6815 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
6817 bfd_vma from
= section
->output_section
->vma
6818 + section
->output_offset
6821 if ((from
& 0xfff) == 0xffe)
6823 /* Found a candidate. Note we haven't checked the
6824 destination is within 4K here: if we do so (and
6825 don't create an entry in a8_relocs) we can't tell
6826 that a branch should have been relocated when
6828 if (num_a8_relocs
== a8_reloc_table_size
)
6830 a8_reloc_table_size
*= 2;
6831 a8_relocs
= (struct a8_erratum_reloc
*)
6832 bfd_realloc (a8_relocs
,
6833 sizeof (struct a8_erratum_reloc
)
6834 * a8_reloc_table_size
);
6837 a8_relocs
[num_a8_relocs
].from
= from
;
6838 a8_relocs
[num_a8_relocs
].destination
= destination
;
6839 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
6840 a8_relocs
[num_a8_relocs
].branch_type
= branch_type
;
6841 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
6842 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
6843 a8_relocs
[num_a8_relocs
].hash
= hash
;
6850 /* We're done with the internal relocs, free them. */
6851 if (elf_section_data (section
)->relocs
== NULL
)
6852 free (internal_relocs
);
6855 if (htab
->fix_cortex_a8
)
6857 /* Sort relocs which might apply to Cortex-A8 erratum. */
6858 qsort (a8_relocs
, num_a8_relocs
,
6859 sizeof (struct a8_erratum_reloc
),
6862 /* Scan for branches which might trigger Cortex-A8 erratum. */
6863 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
6864 &num_a8_fixes
, &a8_fix_table_size
,
6865 a8_relocs
, num_a8_relocs
,
6866 prev_num_a8_fixes
, &stub_changed
)
6868 goto error_ret_free_local
;
6871 if (local_syms
!= NULL
6872 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
6874 if (!info
->keep_memory
)
6877 symtab_hdr
->contents
= (unsigned char *) local_syms
;
6881 if (first_veneer_scan
6882 && !set_cmse_veneer_addr_from_implib (info
, htab
,
6883 &cmse_stub_created
))
6886 if (prev_num_a8_fixes
!= num_a8_fixes
)
6887 stub_changed
= true;
6892 /* OK, we've added some stubs. Find out the new size of the
6894 for (stub_sec
= htab
->stub_bfd
->sections
;
6896 stub_sec
= stub_sec
->next
)
6898 /* Ignore non-stub sections. */
6899 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
6905 /* Add new SG veneers after those already in the input import
6907 for (stub_type
= arm_stub_none
+ 1; stub_type
< max_stub_type
;
6910 bfd_vma
*start_offset_p
;
6911 asection
**stub_sec_p
;
6913 start_offset_p
= arm_new_stubs_start_offset_ptr (htab
, stub_type
);
6914 stub_sec_p
= arm_dedicated_stub_input_section_ptr (htab
, stub_type
);
6915 if (start_offset_p
== NULL
)
6918 BFD_ASSERT (stub_sec_p
!= NULL
);
6919 if (*stub_sec_p
!= NULL
)
6920 (*stub_sec_p
)->size
= *start_offset_p
;
6923 /* Compute stub section size, considering padding. */
6924 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
6925 for (stub_type
= arm_stub_none
+ 1; stub_type
< max_stub_type
;
6929 asection
**stub_sec_p
;
6931 padding
= arm_dedicated_stub_section_padding (stub_type
);
6932 stub_sec_p
= arm_dedicated_stub_input_section_ptr (htab
, stub_type
);
6933 /* Skip if no stub input section or no stub section padding
6935 if ((stub_sec_p
!= NULL
&& *stub_sec_p
== NULL
) || padding
== 0)
6937 /* Stub section padding required but no dedicated section. */
6938 BFD_ASSERT (stub_sec_p
);
6940 size
= (*stub_sec_p
)->size
;
6941 size
= (size
+ padding
- 1) & ~(padding
- 1);
6942 (*stub_sec_p
)->size
= size
;
6945 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6946 if (htab
->fix_cortex_a8
)
6947 for (i
= 0; i
< num_a8_fixes
; i
++)
6949 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
6950 a8_fixes
[i
].section
, htab
, a8_fixes
[i
].stub_type
);
6952 if (stub_sec
== NULL
)
6956 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
6961 /* Ask the linker to do its stuff. */
6962 (*htab
->layout_sections_again
) ();
6963 first_veneer_scan
= false;
6966 /* Add stubs for Cortex-A8 erratum fixes now. */
6967 if (htab
->fix_cortex_a8
)
6969 for (i
= 0; i
< num_a8_fixes
; i
++)
6971 struct elf32_arm_stub_hash_entry
*stub_entry
;
6972 char *stub_name
= a8_fixes
[i
].stub_name
;
6973 asection
*section
= a8_fixes
[i
].section
;
6974 unsigned int section_id
= a8_fixes
[i
].section
->id
;
6975 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
6976 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
6977 const insn_sequence
*template_sequence
;
6978 int template_size
, size
= 0;
6980 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
6982 if (stub_entry
== NULL
)
6984 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
6985 section
->owner
, stub_name
);
6989 stub_entry
->stub_sec
= stub_sec
;
6990 stub_entry
->stub_offset
= (bfd_vma
) -1;
6991 stub_entry
->id_sec
= link_sec
;
6992 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
6993 stub_entry
->source_value
= a8_fixes
[i
].offset
;
6994 stub_entry
->target_section
= a8_fixes
[i
].section
;
6995 stub_entry
->target_value
= a8_fixes
[i
].target_offset
;
6996 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
6997 stub_entry
->branch_type
= a8_fixes
[i
].branch_type
;
6999 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
,
7003 stub_entry
->stub_size
= size
;
7004 stub_entry
->stub_template
= template_sequence
;
7005 stub_entry
->stub_template_size
= template_size
;
7008 /* Stash the Cortex-A8 erratum fix array for use later in
7009 elf32_arm_write_section(). */
7010 htab
->a8_erratum_fixes
= a8_fixes
;
7011 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
7015 htab
->a8_erratum_fixes
= NULL
;
7016 htab
->num_a8_erratum_fixes
= 0;
7021 /* Build all the stubs associated with the current output file. The
7022 stubs are kept in a hash table attached to the main linker hash
7023 table. We also set up the .plt entries for statically linked PIC
7024 functions here. This function is called via arm_elf_finish in the
7028 elf32_arm_build_stubs (struct bfd_link_info
*info
)
7031 struct bfd_hash_table
*table
;
7032 enum elf32_arm_stub_type stub_type
;
7033 struct elf32_arm_link_hash_table
*htab
;
7035 htab
= elf32_arm_hash_table (info
);
7039 for (stub_sec
= htab
->stub_bfd
->sections
;
7041 stub_sec
= stub_sec
->next
)
7045 /* Ignore non-stub sections. */
7046 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
7049 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
7050 must at least be done for stub section requiring padding and for SG
7051 veneers to ensure that a non secure code branching to a removed SG
7052 veneer causes an error. */
7053 size
= stub_sec
->size
;
7054 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
7055 if (stub_sec
->contents
== NULL
&& size
!= 0)
7061 /* Add new SG veneers after those already in the input import library. */
7062 for (stub_type
= arm_stub_none
+ 1; stub_type
< max_stub_type
; stub_type
++)
7064 bfd_vma
*start_offset_p
;
7065 asection
**stub_sec_p
;
7067 start_offset_p
= arm_new_stubs_start_offset_ptr (htab
, stub_type
);
7068 stub_sec_p
= arm_dedicated_stub_input_section_ptr (htab
, stub_type
);
7069 if (start_offset_p
== NULL
)
7072 BFD_ASSERT (stub_sec_p
!= NULL
);
7073 if (*stub_sec_p
!= NULL
)
7074 (*stub_sec_p
)->size
= *start_offset_p
;
7077 /* Build the stubs as directed by the stub hash table. */
7078 table
= &htab
->stub_hash_table
;
7079 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
7080 if (htab
->fix_cortex_a8
)
7082 /* Place the cortex a8 stubs last. */
7083 htab
->fix_cortex_a8
= -1;
7084 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
7090 /* Locate the Thumb encoded calling stub for NAME. */
7092 static struct elf_link_hash_entry
*
7093 find_thumb_glue (struct bfd_link_info
*link_info
,
7095 char **error_message
)
7098 struct elf_link_hash_entry
*hash
;
7099 struct elf32_arm_link_hash_table
*hash_table
;
7101 /* We need a pointer to the armelf specific hash table. */
7102 hash_table
= elf32_arm_hash_table (link_info
);
7103 if (hash_table
== NULL
)
7106 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
7107 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
7109 BFD_ASSERT (tmp_name
);
7111 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
7113 hash
= elf_link_hash_lookup
7114 (&(hash_table
)->root
, tmp_name
, false, false, true);
7118 *error_message
= bfd_asprintf (_("unable to find %s glue '%s' for '%s'"),
7119 "Thumb", tmp_name
, name
);
7120 if (*error_message
== NULL
)
7121 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
7129 /* Locate the ARM encoded calling stub for NAME. */
7131 static struct elf_link_hash_entry
*
7132 find_arm_glue (struct bfd_link_info
*link_info
,
7134 char **error_message
)
7137 struct elf_link_hash_entry
*myh
;
7138 struct elf32_arm_link_hash_table
*hash_table
;
7140 /* We need a pointer to the elfarm specific hash table. */
7141 hash_table
= elf32_arm_hash_table (link_info
);
7142 if (hash_table
== NULL
)
7145 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
7146 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
7147 BFD_ASSERT (tmp_name
);
7149 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
7151 myh
= elf_link_hash_lookup
7152 (&(hash_table
)->root
, tmp_name
, false, false, true);
7156 *error_message
= bfd_asprintf (_("unable to find %s glue '%s' for '%s'"),
7157 "ARM", tmp_name
, name
);
7158 if (*error_message
== NULL
)
7159 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
7166 /* ARM->Thumb glue (static images):
7170 ldr r12, __func_addr
7173 .word func @ behave as if you saw a ARM_32 reloc.
7180 .word func @ behave as if you saw a ARM_32 reloc.
7182 (relocatable images)
7185 ldr r12, __func_offset
7191 #define ARM2THUMB_STATIC_GLUE_SIZE 12
7192 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
7193 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
7194 static const insn32 a2t3_func_addr_insn
= 0x00000001;
7196 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7197 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
7198 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
7200 #define ARM2THUMB_PIC_GLUE_SIZE 16
7201 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
7202 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
7203 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
7205 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
7209 __func_from_thumb: __func_from_thumb:
7211 nop ldr r6, __func_addr
7221 #define THUMB2ARM_GLUE_SIZE 8
7222 static const insn16 t2a1_bx_pc_insn
= 0x4778;
7223 static const insn16 t2a2_noop_insn
= 0x46c0;
7224 static const insn32 t2a3_b_insn
= 0xea000000;
7226 #define VFP11_ERRATUM_VENEER_SIZE 8
7227 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7228 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
7230 #define ARM_BX_VENEER_SIZE 12
7231 static const insn32 armbx1_tst_insn
= 0xe3100001;
7232 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
7233 static const insn32 armbx3_bx_insn
= 0xe12fff10;
7235 #ifndef ELFARM_NABI_C_INCLUDED
7237 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
7240 bfd_byte
* contents
;
7244 /* Do not include empty glue sections in the output. */
7247 s
= bfd_get_linker_section (abfd
, name
);
7249 s
->flags
|= SEC_EXCLUDE
;
7254 BFD_ASSERT (abfd
!= NULL
);
7256 s
= bfd_get_linker_section (abfd
, name
);
7257 BFD_ASSERT (s
!= NULL
);
7259 contents
= (bfd_byte
*) bfd_zalloc (abfd
, size
);
7261 BFD_ASSERT (s
->size
== size
);
7262 s
->contents
= contents
;
7266 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
7268 struct elf32_arm_link_hash_table
* globals
;
7270 globals
= elf32_arm_hash_table (info
);
7271 BFD_ASSERT (globals
!= NULL
);
7273 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
7274 globals
->arm_glue_size
,
7275 ARM2THUMB_GLUE_SECTION_NAME
);
7277 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
7278 globals
->thumb_glue_size
,
7279 THUMB2ARM_GLUE_SECTION_NAME
);
7281 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
7282 globals
->vfp11_erratum_glue_size
,
7283 VFP11_ERRATUM_VENEER_SECTION_NAME
);
7285 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
7286 globals
->stm32l4xx_erratum_glue_size
,
7287 STM32L4XX_ERRATUM_VENEER_SECTION_NAME
);
7289 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
7290 globals
->bx_glue_size
,
7291 ARM_BX_GLUE_SECTION_NAME
);
7296 /* Allocate space and symbols for calling a Thumb function from Arm mode.
7297 returns the symbol identifying the stub. */
7299 static struct elf_link_hash_entry
*
7300 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
7301 struct elf_link_hash_entry
* h
)
7303 const char * name
= h
->root
.root
.string
;
7306 struct elf_link_hash_entry
* myh
;
7307 struct bfd_link_hash_entry
* bh
;
7308 struct elf32_arm_link_hash_table
* globals
;
7312 globals
= elf32_arm_hash_table (link_info
);
7313 BFD_ASSERT (globals
!= NULL
);
7314 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7316 s
= bfd_get_linker_section
7317 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
7319 BFD_ASSERT (s
!= NULL
);
7321 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
7322 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
7323 BFD_ASSERT (tmp_name
);
7325 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
7327 myh
= elf_link_hash_lookup
7328 (&(globals
)->root
, tmp_name
, false, false, true);
7332 /* We've already seen this guy. */
7337 /* The only trick here is using hash_table->arm_glue_size as the value.
7338 Even though the section isn't allocated yet, this is where we will be
7339 putting it. The +1 on the value marks that the stub has not been
7340 output yet - not that it is a Thumb function. */
7342 val
= globals
->arm_glue_size
+ 1;
7343 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
7344 tmp_name
, BSF_GLOBAL
, s
, val
,
7345 NULL
, true, false, &bh
);
7347 myh
= (struct elf_link_hash_entry
*) bh
;
7348 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7349 myh
->forced_local
= 1;
7353 if (bfd_link_pic (link_info
)
7354 || globals
->root
.is_relocatable_executable
7355 || globals
->pic_veneer
)
7356 size
= ARM2THUMB_PIC_GLUE_SIZE
;
7357 else if (globals
->use_blx
)
7358 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
7360 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
7363 globals
->arm_glue_size
+= size
;
7368 /* Allocate space for ARMv4 BX veneers. */
7371 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
7374 struct elf32_arm_link_hash_table
*globals
;
7376 struct elf_link_hash_entry
*myh
;
7377 struct bfd_link_hash_entry
*bh
;
7380 /* BX PC does not need a veneer. */
7384 globals
= elf32_arm_hash_table (link_info
);
7385 BFD_ASSERT (globals
!= NULL
);
7386 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7388 /* Check if this veneer has already been allocated. */
7389 if (globals
->bx_glue_offset
[reg
])
7392 s
= bfd_get_linker_section
7393 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
7395 BFD_ASSERT (s
!= NULL
);
7397 /* Add symbol for veneer. */
7399 bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
7400 BFD_ASSERT (tmp_name
);
7402 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
7404 myh
= elf_link_hash_lookup
7405 (&(globals
)->root
, tmp_name
, false, false, false);
7407 BFD_ASSERT (myh
== NULL
);
7410 val
= globals
->bx_glue_size
;
7411 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
7412 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
7413 NULL
, true, false, &bh
);
7415 myh
= (struct elf_link_hash_entry
*) bh
;
7416 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7417 myh
->forced_local
= 1;
7419 s
->size
+= ARM_BX_VENEER_SIZE
;
7420 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
7421 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
7425 /* Add an entry to the code/data map for section SEC. */
7428 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
7430 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
7431 unsigned int newidx
;
7433 if (sec_data
->map
== NULL
)
7435 sec_data
->map
= (elf32_arm_section_map
*)
7436 bfd_malloc (sizeof (elf32_arm_section_map
));
7437 sec_data
->mapcount
= 0;
7438 sec_data
->mapsize
= 1;
7441 newidx
= sec_data
->mapcount
++;
7443 if (sec_data
->mapcount
> sec_data
->mapsize
)
7445 sec_data
->mapsize
*= 2;
7446 sec_data
->map
= (elf32_arm_section_map
*)
7447 bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
7448 * sizeof (elf32_arm_section_map
));
7453 sec_data
->map
[newidx
].vma
= vma
;
7454 sec_data
->map
[newidx
].type
= type
;
7459 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7460 veneers are handled for now. */
7463 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
7464 elf32_vfp11_erratum_list
*branch
,
7466 asection
*branch_sec
,
7467 unsigned int offset
)
7470 struct elf32_arm_link_hash_table
*hash_table
;
7472 struct elf_link_hash_entry
*myh
;
7473 struct bfd_link_hash_entry
*bh
;
7475 struct _arm_elf_section_data
*sec_data
;
7476 elf32_vfp11_erratum_list
*newerr
;
7478 hash_table
= elf32_arm_hash_table (link_info
);
7479 BFD_ASSERT (hash_table
!= NULL
);
7480 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
7482 s
= bfd_get_linker_section
7483 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
7485 sec_data
= elf32_arm_section_data (s
);
7487 BFD_ASSERT (s
!= NULL
);
7489 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
7490 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
7491 BFD_ASSERT (tmp_name
);
7493 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
7494 hash_table
->num_vfp11_fixes
);
7496 myh
= elf_link_hash_lookup
7497 (&(hash_table
)->root
, tmp_name
, false, false, false);
7499 BFD_ASSERT (myh
== NULL
);
7502 val
= hash_table
->vfp11_erratum_glue_size
;
7503 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
7504 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
7505 NULL
, true, false, &bh
);
7507 myh
= (struct elf_link_hash_entry
*) bh
;
7508 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7509 myh
->forced_local
= 1;
7511 /* Link veneer back to calling location. */
7512 sec_data
->erratumcount
+= 1;
7513 newerr
= (elf32_vfp11_erratum_list
*)
7514 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
7516 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
7518 newerr
->u
.v
.branch
= branch
;
7519 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
7520 branch
->u
.b
.veneer
= newerr
;
7522 newerr
->next
= sec_data
->erratumlist
;
7523 sec_data
->erratumlist
= newerr
;
7525 /* A symbol for the return from the veneer. */
7526 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
7527 hash_table
->num_vfp11_fixes
);
7529 myh
= elf_link_hash_lookup
7530 (&(hash_table
)->root
, tmp_name
, false, false, false);
7537 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
7538 branch_sec
, val
, NULL
, true, false, &bh
);
7540 myh
= (struct elf_link_hash_entry
*) bh
;
7541 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7542 myh
->forced_local
= 1;
7546 /* Generate a mapping symbol for the veneer section, and explicitly add an
7547 entry for that symbol to the code/data map for the section. */
7548 if (hash_table
->vfp11_erratum_glue_size
== 0)
7551 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7552 ever requires this erratum fix. */
7553 _bfd_generic_link_add_one_symbol (link_info
,
7554 hash_table
->bfd_of_glue_owner
, "$a",
7555 BSF_LOCAL
, s
, 0, NULL
,
7558 myh
= (struct elf_link_hash_entry
*) bh
;
7559 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
7560 myh
->forced_local
= 1;
7562 /* The elf32_arm_init_maps function only cares about symbols from input
7563 BFDs. We must make a note of this generated mapping symbol
7564 ourselves so that code byteswapping works properly in
7565 elf32_arm_write_section. */
7566 elf32_arm_section_map_add (s
, 'a', 0);
7569 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
7570 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
7571 hash_table
->num_vfp11_fixes
++;
7573 /* The offset of the veneer. */
7577 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7578 veneers need to be handled because used only in Cortex-M. */
7581 record_stm32l4xx_erratum_veneer (struct bfd_link_info
*link_info
,
7582 elf32_stm32l4xx_erratum_list
*branch
,
7584 asection
*branch_sec
,
7585 unsigned int offset
,
7586 bfd_size_type veneer_size
)
7589 struct elf32_arm_link_hash_table
*hash_table
;
7591 struct elf_link_hash_entry
*myh
;
7592 struct bfd_link_hash_entry
*bh
;
7594 struct _arm_elf_section_data
*sec_data
;
7595 elf32_stm32l4xx_erratum_list
*newerr
;
7597 hash_table
= elf32_arm_hash_table (link_info
);
7598 BFD_ASSERT (hash_table
!= NULL
);
7599 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
7601 s
= bfd_get_linker_section
7602 (hash_table
->bfd_of_glue_owner
, STM32L4XX_ERRATUM_VENEER_SECTION_NAME
);
7604 BFD_ASSERT (s
!= NULL
);
7606 sec_data
= elf32_arm_section_data (s
);
7608 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
7609 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME
) + 10);
7610 BFD_ASSERT (tmp_name
);
7612 sprintf (tmp_name
, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME
,
7613 hash_table
->num_stm32l4xx_fixes
);
7615 myh
= elf_link_hash_lookup
7616 (&(hash_table
)->root
, tmp_name
, false, false, false);
7618 BFD_ASSERT (myh
== NULL
);
7621 val
= hash_table
->stm32l4xx_erratum_glue_size
;
7622 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
7623 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
7624 NULL
, true, false, &bh
);
7626 myh
= (struct elf_link_hash_entry
*) bh
;
7627 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7628 myh
->forced_local
= 1;
7630 /* Link veneer back to calling location. */
7631 sec_data
->stm32l4xx_erratumcount
+= 1;
7632 newerr
= (elf32_stm32l4xx_erratum_list
*)
7633 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list
));
7635 newerr
->type
= STM32L4XX_ERRATUM_VENEER
;
7637 newerr
->u
.v
.branch
= branch
;
7638 newerr
->u
.v
.id
= hash_table
->num_stm32l4xx_fixes
;
7639 branch
->u
.b
.veneer
= newerr
;
7641 newerr
->next
= sec_data
->stm32l4xx_erratumlist
;
7642 sec_data
->stm32l4xx_erratumlist
= newerr
;
7644 /* A symbol for the return from the veneer. */
7645 sprintf (tmp_name
, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME
"_r",
7646 hash_table
->num_stm32l4xx_fixes
);
7648 myh
= elf_link_hash_lookup
7649 (&(hash_table
)->root
, tmp_name
, false, false, false);
7656 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
7657 branch_sec
, val
, NULL
, true, false, &bh
);
7659 myh
= (struct elf_link_hash_entry
*) bh
;
7660 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7661 myh
->forced_local
= 1;
7665 /* Generate a mapping symbol for the veneer section, and explicitly add an
7666 entry for that symbol to the code/data map for the section. */
7667 if (hash_table
->stm32l4xx_erratum_glue_size
== 0)
7670 /* Creates a THUMB symbol since there is no other choice. */
7671 _bfd_generic_link_add_one_symbol (link_info
,
7672 hash_table
->bfd_of_glue_owner
, "$t",
7673 BSF_LOCAL
, s
, 0, NULL
,
7676 myh
= (struct elf_link_hash_entry
*) bh
;
7677 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
7678 myh
->forced_local
= 1;
7680 /* The elf32_arm_init_maps function only cares about symbols from input
7681 BFDs. We must make a note of this generated mapping symbol
7682 ourselves so that code byteswapping works properly in
7683 elf32_arm_write_section. */
7684 elf32_arm_section_map_add (s
, 't', 0);
7687 s
->size
+= veneer_size
;
7688 hash_table
->stm32l4xx_erratum_glue_size
+= veneer_size
;
7689 hash_table
->num_stm32l4xx_fixes
++;
7691 /* The offset of the veneer. */
7695 #define ARM_GLUE_SECTION_FLAGS \
7696 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7697 | SEC_READONLY | SEC_LINKER_CREATED)
7699 /* Create a fake section for use by the ARM backend of the linker. */
7702 arm_make_glue_section (bfd
* abfd
, const char * name
)
7706 sec
= bfd_get_linker_section (abfd
, name
);
7711 sec
= bfd_make_section_anyway_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
7714 || !bfd_set_section_alignment (sec
, 2))
7717 /* Set the gc mark to prevent the section from being removed by garbage
7718 collection, despite the fact that no relocs refer to this section. */
7724 /* Set size of .plt entries. This function is called from the
7725 linker scripts in ld/emultempl/{armelf}.em. */
7728 bfd_elf32_arm_use_long_plt (void)
7730 elf32_arm_use_long_plt_entry
= true;
7733 /* Add the glue sections to ABFD. This function is called from the
7734 linker scripts in ld/emultempl/{armelf}.em. */
7737 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
7738 struct bfd_link_info
*info
)
7740 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
7741 bool dostm32l4xx
= globals
7742 && globals
->stm32l4xx_fix
!= BFD_ARM_STM32L4XX_FIX_NONE
;
7745 /* If we are only performing a partial
7746 link do not bother adding the glue. */
7747 if (bfd_link_relocatable (info
))
7750 addglue
= arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
7751 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
7752 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
7753 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
7759 && arm_make_glue_section (abfd
, STM32L4XX_ERRATUM_VENEER_SECTION_NAME
);
7762 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7763 ensures they are not marked for deletion by
7764 strip_excluded_output_sections () when veneers are going to be created
7765 later. Not doing so would trigger assert on empty section size in
7766 lang_size_sections_1 (). */
7769 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info
*info
)
7771 enum elf32_arm_stub_type stub_type
;
7773 /* If we are only performing a partial
7774 link do not bother adding the glue. */
7775 if (bfd_link_relocatable (info
))
7778 for (stub_type
= arm_stub_none
+ 1; stub_type
< max_stub_type
; stub_type
++)
7781 const char *out_sec_name
;
7783 if (!arm_dedicated_stub_output_section_required (stub_type
))
7786 out_sec_name
= arm_dedicated_stub_output_section_name (stub_type
);
7787 out_sec
= bfd_get_section_by_name (info
->output_bfd
, out_sec_name
);
7788 if (out_sec
!= NULL
)
7789 out_sec
->flags
|= SEC_KEEP
;
7793 /* Select a BFD to be used to hold the sections used by the glue code.
7794 This function is called from the linker scripts in ld/emultempl/
7798 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
7800 struct elf32_arm_link_hash_table
*globals
;
7802 /* If we are only performing a partial link
7803 do not bother getting a bfd to hold the glue. */
7804 if (bfd_link_relocatable (info
))
7807 /* Make sure we don't attach the glue sections to a dynamic object. */
7808 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
7810 globals
= elf32_arm_hash_table (info
);
7811 BFD_ASSERT (globals
!= NULL
);
7813 if (globals
->bfd_of_glue_owner
!= NULL
)
7816 /* Save the bfd for later use. */
7817 globals
->bfd_of_glue_owner
= abfd
;
7823 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
7827 cpu_arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
7830 if (globals
->fix_arm1176
)
7832 if (cpu_arch
== TAG_CPU_ARCH_V6T2
|| cpu_arch
> TAG_CPU_ARCH_V6K
)
7833 globals
->use_blx
= 1;
7837 if (cpu_arch
> TAG_CPU_ARCH_V4T
)
7838 globals
->use_blx
= 1;
7843 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
7844 struct bfd_link_info
*link_info
)
7846 Elf_Internal_Shdr
*symtab_hdr
;
7847 Elf_Internal_Rela
*internal_relocs
= NULL
;
7848 Elf_Internal_Rela
*irel
, *irelend
;
7849 bfd_byte
*contents
= NULL
;
7852 struct elf32_arm_link_hash_table
*globals
;
7854 /* If we are only performing a partial link do not bother
7855 to construct any glue. */
7856 if (bfd_link_relocatable (link_info
))
7859 /* Here we have a bfd that is to be included on the link. We have a
7860 hook to do reloc rummaging, before section sizes are nailed down. */
7861 globals
= elf32_arm_hash_table (link_info
);
7862 BFD_ASSERT (globals
!= NULL
);
7864 check_use_blx (globals
);
7866 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
7868 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
7873 /* PR 5398: If we have not decided to include any loadable sections in
7874 the output then we will not have a glue owner bfd. This is OK, it
7875 just means that there is nothing else for us to do here. */
7876 if (globals
->bfd_of_glue_owner
== NULL
)
7879 /* Rummage around all the relocs and map the glue vectors. */
7880 sec
= abfd
->sections
;
7885 for (; sec
!= NULL
; sec
= sec
->next
)
7887 if (sec
->reloc_count
== 0)
7890 if ((sec
->flags
& SEC_EXCLUDE
) != 0
7891 || (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
7894 symtab_hdr
= & elf_symtab_hdr (abfd
);
7896 /* Load the relocs. */
7898 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, false);
7900 if (internal_relocs
== NULL
)
7903 irelend
= internal_relocs
+ sec
->reloc_count
;
7904 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
7907 unsigned long r_index
;
7909 struct elf_link_hash_entry
*h
;
7911 r_type
= ELF32_R_TYPE (irel
->r_info
);
7912 r_index
= ELF32_R_SYM (irel
->r_info
);
7914 /* These are the only relocation types we care about. */
7915 if ( r_type
!= R_ARM_PC24
7916 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
7919 /* Get the section contents if we haven't done so already. */
7920 if (contents
== NULL
)
7922 /* Get cached copy if it exists. */
7923 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
7924 contents
= elf_section_data (sec
)->this_hdr
.contents
;
7927 /* Go get them off disk. */
7928 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
7933 if (r_type
== R_ARM_V4BX
)
7937 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
7938 record_arm_bx_glue (link_info
, reg
);
7942 /* If the relocation is not against a symbol it cannot concern us. */
7945 /* We don't care about local symbols. */
7946 if (r_index
< symtab_hdr
->sh_info
)
7949 /* This is an external symbol. */
7950 r_index
-= symtab_hdr
->sh_info
;
7951 h
= (struct elf_link_hash_entry
*)
7952 elf_sym_hashes (abfd
)[r_index
];
7954 /* If the relocation is against a static symbol it must be within
7955 the current section and so cannot be a cross ARM/Thumb relocation. */
7959 /* If the call will go through a PLT entry then we do not need
7961 if (globals
->root
.splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7967 /* This one is a call from arm code. We need to look up
7968 the target of the call. If it is a thumb target, we
7970 if (ARM_GET_SYM_BRANCH_TYPE (h
->target_internal
)
7971 == ST_BRANCH_TO_THUMB
)
7972 record_arm_to_thumb_glue (link_info
, h
);
7980 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
7984 if (elf_section_data (sec
)->relocs
!= internal_relocs
)
7985 free (internal_relocs
);
7986 internal_relocs
= NULL
;
7992 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
7994 if (elf_section_data (sec
)->relocs
!= internal_relocs
)
7995 free (internal_relocs
);
8002 /* Initialise maps of ARM/Thumb/data for input BFDs. */
8005 bfd_elf32_arm_init_maps (bfd
*abfd
)
8007 Elf_Internal_Sym
*isymbuf
;
8008 Elf_Internal_Shdr
*hdr
;
8009 unsigned int i
, localsyms
;
8011 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
8012 if (! is_arm_elf (abfd
))
8015 if ((abfd
->flags
& DYNAMIC
) != 0)
8018 hdr
= & elf_symtab_hdr (abfd
);
8019 localsyms
= hdr
->sh_info
;
8021 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
8022 should contain the number of local symbols, which should come before any
8023 global symbols. Mapping symbols are always local. */
8024 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
8027 /* No internal symbols read? Skip this BFD. */
8028 if (isymbuf
== NULL
)
8031 for (i
= 0; i
< localsyms
; i
++)
8033 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
8034 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
8038 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
8040 name
= bfd_elf_string_from_elf_section (abfd
,
8041 hdr
->sh_link
, isym
->st_name
);
8043 if (bfd_is_arm_special_symbol_name (name
,
8044 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
8045 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
8051 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8052 say what they wanted. */
8055 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
8057 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
8058 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
8060 if (globals
== NULL
)
8063 if (globals
->fix_cortex_a8
== -1)
8065 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8066 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
8067 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
8068 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
8069 globals
->fix_cortex_a8
= 1;
8071 globals
->fix_cortex_a8
= 0;
8077 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
8079 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
8080 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
8082 if (globals
== NULL
)
8084 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8085 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
8087 switch (globals
->vfp11_fix
)
8089 case BFD_ARM_VFP11_FIX_DEFAULT
:
8090 case BFD_ARM_VFP11_FIX_NONE
:
8091 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
8095 /* Give a warning, but do as the user requests anyway. */
8096 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
8097 "workaround is not necessary for target architecture"), obfd
);
8100 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
8101 /* For earlier architectures, we might need the workaround, but do not
8102 enable it by default. If users is running with broken hardware, they
8103 must enable the erratum fix explicitly. */
8104 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
8108 bfd_elf32_arm_set_stm32l4xx_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
8110 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
8111 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
8113 if (globals
== NULL
)
8116 /* We assume only Cortex-M4 may require the fix. */
8117 if (out_attr
[Tag_CPU_arch
].i
!= TAG_CPU_ARCH_V7E_M
8118 || out_attr
[Tag_CPU_arch_profile
].i
!= 'M')
8120 if (globals
->stm32l4xx_fix
!= BFD_ARM_STM32L4XX_FIX_NONE
)
8121 /* Give a warning, but do as the user requests anyway. */
8123 (_("%pB: warning: selected STM32L4XX erratum "
8124 "workaround is not necessary for target architecture"), obfd
);
8128 enum bfd_arm_vfp11_pipe
8136 /* Return a VFP register number. This is encoded as RX:X for single-precision
8137 registers, or X:RX for double-precision registers, where RX is the group of
8138 four bits in the instruction encoding and X is the single extension bit.
8139 RX and X fields are specified using their lowest (starting) bit. The return
8142 0...31: single-precision registers s0...s31
8143 32...63: double-precision registers d0...d31.
8145 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8146 encounter VFP3 instructions, so we allow the full range for DP registers. */
8149 bfd_arm_vfp11_regno (unsigned int insn
, bool is_double
, unsigned int rx
,
8153 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
8155 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
8158 /* Set bits in *WMASK according to a register number REG as encoded by
8159 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8162 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
8167 *wmask
|= 3 << ((reg
- 32) * 2);
8170 /* Return TRUE if WMASK overwrites anything in REGS. */
8173 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
8177 for (i
= 0; i
< numregs
; i
++)
8179 unsigned int reg
= regs
[i
];
8181 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
8189 if ((wmask
& (3 << (reg
* 2))) != 0)
8196 /* In this function, we're interested in two things: finding input registers
8197 for VFP data-processing instructions, and finding the set of registers which
8198 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8199 hold the written set, so FLDM etc. are easy to deal with (we're only
8200 interested in 32 SP registers or 16 dp registers, due to the VFP version
8201 implemented by the chip in question). DP registers are marked by setting
8202 both SP registers in the write mask). */
8204 static enum bfd_arm_vfp11_pipe
8205 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
8208 enum bfd_arm_vfp11_pipe vpipe
= VFP11_BAD
;
8209 bool is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
8211 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8214 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
8215 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
8217 pqrs
= ((insn
& 0x00800000) >> 20)
8218 | ((insn
& 0x00300000) >> 19)
8219 | ((insn
& 0x00000040) >> 6);
8223 case 0: /* fmac[sd]. */
8224 case 1: /* fnmac[sd]. */
8225 case 2: /* fmsc[sd]. */
8226 case 3: /* fnmsc[sd]. */
8228 bfd_arm_vfp11_write_mask (destmask
, fd
);
8230 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
8235 case 4: /* fmul[sd]. */
8236 case 5: /* fnmul[sd]. */
8237 case 6: /* fadd[sd]. */
8238 case 7: /* fsub[sd]. */
8242 case 8: /* fdiv[sd]. */
8245 bfd_arm_vfp11_write_mask (destmask
, fd
);
8246 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
8251 case 15: /* extended opcode. */
8253 unsigned int extn
= ((insn
>> 15) & 0x1e)
8254 | ((insn
>> 7) & 1);
8258 case 0: /* fcpy[sd]. */
8259 case 1: /* fabs[sd]. */
8260 case 2: /* fneg[sd]. */
8261 case 8: /* fcmp[sd]. */
8262 case 9: /* fcmpe[sd]. */
8263 case 10: /* fcmpz[sd]. */
8264 case 11: /* fcmpez[sd]. */
8265 case 16: /* fuito[sd]. */
8266 case 17: /* fsito[sd]. */
8267 case 24: /* ftoui[sd]. */
8268 case 25: /* ftouiz[sd]. */
8269 case 26: /* ftosi[sd]. */
8270 case 27: /* ftosiz[sd]. */
8271 /* These instructions will not bounce due to underflow. */
8276 case 3: /* fsqrt[sd]. */
8277 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8278 registers to cause the erratum in previous instructions. */
8279 bfd_arm_vfp11_write_mask (destmask
, fd
);
8283 case 15: /* fcvt{ds,sd}. */
8287 bfd_arm_vfp11_write_mask (destmask
, fd
);
8289 /* Only FCVTSD can underflow. */
8290 if ((insn
& 0x100) != 0)
8309 /* Two-register transfer. */
8310 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
8312 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
8314 if ((insn
& 0x100000) == 0)
8317 bfd_arm_vfp11_write_mask (destmask
, fm
);
8320 bfd_arm_vfp11_write_mask (destmask
, fm
);
8321 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
8327 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
8329 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
8330 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
8334 case 0: /* Two-reg transfer. We should catch these above. */
8337 case 2: /* fldm[sdx]. */
8341 unsigned int i
, offset
= insn
& 0xff;
8346 for (i
= fd
; i
< fd
+ offset
; i
++)
8347 bfd_arm_vfp11_write_mask (destmask
, i
);
8351 case 4: /* fld[sd]. */
8353 bfd_arm_vfp11_write_mask (destmask
, fd
);
8362 /* Single-register transfer. Note L==0. */
8363 else if ((insn
& 0x0f100e10) == 0x0e000a10)
8365 unsigned int opcode
= (insn
>> 21) & 7;
8366 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
8370 case 0: /* fmsr/fmdlr. */
8371 case 1: /* fmdhr. */
8372 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8373 destination register. I don't know if this is exactly right,
8374 but it is the conservative choice. */
8375 bfd_arm_vfp11_write_mask (destmask
, fn
);
8389 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
8392 /* Look for potentially-troublesome code sequences which might trigger the
8393 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8394 (available from ARM) for details of the erratum. A short version is
8395 described in ld.texinfo. */
8398 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
8401 bfd_byte
*contents
= NULL
;
8403 int regs
[3], numregs
= 0;
8404 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
8405 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
8407 if (globals
== NULL
)
8410 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8411 The states transition as follows:
8413 0 -> 1 (vector) or 0 -> 2 (scalar)
8414 A VFP FMAC-pipeline instruction has been seen. Fill
8415 regs[0]..regs[numregs-1] with its input operands. Remember this
8416 instruction in 'first_fmac'.
8419 Any instruction, except for a VFP instruction which overwrites
8424 A VFP instruction has been seen which overwrites any of regs[*].
8425 We must make a veneer! Reset state to 0 before examining next
8429 If we fail to match anything in state 2, reset to state 0 and reset
8430 the instruction pointer to the instruction after 'first_fmac'.
8432 If the VFP11 vector mode is in use, there must be at least two unrelated
8433 instructions between anti-dependent VFP11 instructions to properly avoid
8434 triggering the erratum, hence the use of the extra state 1. */
8436 /* If we are only performing a partial link do not bother
8437 to construct any glue. */
8438 if (bfd_link_relocatable (link_info
))
8441 /* Skip if this bfd does not correspond to an ELF image. */
8442 if (! is_arm_elf (abfd
))
8445 /* We should have chosen a fix type by the time we get here. */
8446 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
8448 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
8451 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8452 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
8455 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8457 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
8458 struct _arm_elf_section_data
*sec_data
;
8460 /* If we don't have executable progbits, we're not interested in this
8461 section. Also skip if section is to be excluded. */
8462 if (elf_section_type (sec
) != SHT_PROGBITS
8463 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
8464 || (sec
->flags
& SEC_EXCLUDE
) != 0
8465 || sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
8466 || sec
->output_section
== bfd_abs_section_ptr
8467 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
8470 sec_data
= elf32_arm_section_data (sec
);
8472 if (sec_data
->mapcount
== 0)
8475 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
8476 contents
= elf_section_data (sec
)->this_hdr
.contents
;
8477 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
8480 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
8481 elf32_arm_compare_mapping
);
8483 for (span
= 0; span
< sec_data
->mapcount
; span
++)
8485 unsigned int span_start
= sec_data
->map
[span
].vma
;
8486 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
8487 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
8488 char span_type
= sec_data
->map
[span
].type
;
8490 /* FIXME: Only ARM mode is supported at present. We may need to
8491 support Thumb-2 mode also at some point. */
8492 if (span_type
!= 'a')
8495 for (i
= span_start
; i
< span_end
;)
8497 unsigned int next_i
= i
+ 4;
8498 unsigned int insn
= bfd_big_endian (abfd
)
8499 ? (((unsigned) contents
[i
] << 24)
8500 | (contents
[i
+ 1] << 16)
8501 | (contents
[i
+ 2] << 8)
8503 : (((unsigned) contents
[i
+ 3] << 24)
8504 | (contents
[i
+ 2] << 16)
8505 | (contents
[i
+ 1] << 8)
8507 unsigned int writemask
= 0;
8508 enum bfd_arm_vfp11_pipe vpipe
;
8513 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
8515 /* I'm assuming the VFP11 erratum can trigger with denorm
8516 operands on either the FMAC or the DS pipeline. This might
8517 lead to slightly overenthusiastic veneer insertion. */
8518 if (vpipe
== VFP11_FMAC
|| vpipe
== VFP11_DS
)
8520 state
= use_vector
? 1 : 2;
8522 veneer_of_insn
= insn
;
8528 int other_regs
[3], other_numregs
;
8529 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
8532 if (vpipe
!= VFP11_BAD
8533 && bfd_arm_vfp11_antidependency (writemask
, regs
,
8543 int other_regs
[3], other_numregs
;
8544 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
8547 if (vpipe
!= VFP11_BAD
8548 && bfd_arm_vfp11_antidependency (writemask
, regs
,
8554 next_i
= first_fmac
+ 4;
8560 abort (); /* Should be unreachable. */
8565 elf32_vfp11_erratum_list
*newerr
=(elf32_vfp11_erratum_list
*)
8566 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
8568 elf32_arm_section_data (sec
)->erratumcount
+= 1;
8570 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
8575 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
8582 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
8587 newerr
->next
= sec_data
->erratumlist
;
8588 sec_data
->erratumlist
= newerr
;
8597 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8605 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8611 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8612 after sections have been laid out, using specially-named symbols. */
8615 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
8616 struct bfd_link_info
*link_info
)
8619 struct elf32_arm_link_hash_table
*globals
;
8622 if (bfd_link_relocatable (link_info
))
8625 /* Skip if this bfd does not correspond to an ELF image. */
8626 if (! is_arm_elf (abfd
))
8629 globals
= elf32_arm_hash_table (link_info
);
8630 if (globals
== NULL
)
8633 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
8634 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
8635 BFD_ASSERT (tmp_name
);
8637 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8639 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
8640 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
8642 for (; errnode
!= NULL
; errnode
= errnode
->next
)
8644 struct elf_link_hash_entry
*myh
;
8647 switch (errnode
->type
)
8649 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
8650 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
8651 /* Find veneer symbol. */
8652 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
8653 errnode
->u
.b
.veneer
->u
.v
.id
);
8655 myh
= elf_link_hash_lookup
8656 (&(globals
)->root
, tmp_name
, false, false, true);
8659 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8660 abfd
, "VFP11", tmp_name
);
8662 vma
= myh
->root
.u
.def
.section
->output_section
->vma
8663 + myh
->root
.u
.def
.section
->output_offset
8664 + myh
->root
.u
.def
.value
;
8666 errnode
->u
.b
.veneer
->vma
= vma
;
8669 case VFP11_ERRATUM_ARM_VENEER
:
8670 case VFP11_ERRATUM_THUMB_VENEER
:
8671 /* Find return location. */
8672 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
8675 myh
= elf_link_hash_lookup
8676 (&(globals
)->root
, tmp_name
, false, false, true);
8679 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8680 abfd
, "VFP11", tmp_name
);
8682 vma
= myh
->root
.u
.def
.section
->output_section
->vma
8683 + myh
->root
.u
.def
.section
->output_offset
8684 + myh
->root
.u
.def
.value
;
8686 errnode
->u
.v
.branch
->vma
= vma
;
8698 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8699 return locations after sections have been laid out, using
8700 specially-named symbols. */
8703 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd
*abfd
,
8704 struct bfd_link_info
*link_info
)
8707 struct elf32_arm_link_hash_table
*globals
;
8710 if (bfd_link_relocatable (link_info
))
8713 /* Skip if this bfd does not correspond to an ELF image. */
8714 if (! is_arm_elf (abfd
))
8717 globals
= elf32_arm_hash_table (link_info
);
8718 if (globals
== NULL
)
8721 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
8722 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME
) + 10);
8723 BFD_ASSERT (tmp_name
);
8725 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8727 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
8728 elf32_stm32l4xx_erratum_list
*errnode
= sec_data
->stm32l4xx_erratumlist
;
8730 for (; errnode
!= NULL
; errnode
= errnode
->next
)
8732 struct elf_link_hash_entry
*myh
;
8735 switch (errnode
->type
)
8737 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER
:
8738 /* Find veneer symbol. */
8739 sprintf (tmp_name
, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME
,
8740 errnode
->u
.b
.veneer
->u
.v
.id
);
8742 myh
= elf_link_hash_lookup
8743 (&(globals
)->root
, tmp_name
, false, false, true);
8746 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8747 abfd
, "STM32L4XX", tmp_name
);
8749 vma
= myh
->root
.u
.def
.section
->output_section
->vma
8750 + myh
->root
.u
.def
.section
->output_offset
8751 + myh
->root
.u
.def
.value
;
8753 errnode
->u
.b
.veneer
->vma
= vma
;
8756 case STM32L4XX_ERRATUM_VENEER
:
8757 /* Find return location. */
8758 sprintf (tmp_name
, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME
"_r",
8761 myh
= elf_link_hash_lookup
8762 (&(globals
)->root
, tmp_name
, false, false, true);
8765 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8766 abfd
, "STM32L4XX", tmp_name
);
8768 vma
= myh
->root
.u
.def
.section
->output_section
->vma
8769 + myh
->root
.u
.def
.section
->output_offset
8770 + myh
->root
.u
.def
.value
;
8772 errnode
->u
.v
.branch
->vma
= vma
;
8785 is_thumb2_ldmia (const insn32 insn
)
8787 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8788 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8789 return (insn
& 0xffd02000) == 0xe8900000;
8793 is_thumb2_ldmdb (const insn32 insn
)
8795 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8796 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8797 return (insn
& 0xffd02000) == 0xe9100000;
8801 is_thumb2_vldm (const insn32 insn
)
8803 /* A6.5 Extension register load or store instruction
8805 We look for SP 32-bit and DP 64-bit registers.
8806 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8807 <list> is consecutive 64-bit registers
8808 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8809 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8810 <list> is consecutive 32-bit registers
8811 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8812 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8813 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8815 (((insn
& 0xfe100f00) == 0xec100b00) ||
8816 ((insn
& 0xfe100f00) == 0xec100a00))
8817 && /* (IA without !). */
8818 (((((insn
<< 7) >> 28) & 0xd) == 0x4)
8819 /* (IA with !), includes VPOP (when reg number is SP). */
8820 || ((((insn
<< 7) >> 28) & 0xd) == 0x5)
8822 || ((((insn
<< 7) >> 28) & 0xd) == 0x9));
8825 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8827 - computes the number and the mode of memory accesses
8828 - decides if the replacement should be done:
8829 . replaces only if > 8-word accesses
8830 . or (testing purposes only) replaces all accesses. */
8833 stm32l4xx_need_create_replacing_stub (const insn32 insn
,
8834 bfd_arm_stm32l4xx_fix stm32l4xx_fix
)
8838 /* The field encoding the register list is the same for both LDMIA
8839 and LDMDB encodings. */
8840 if (is_thumb2_ldmia (insn
) || is_thumb2_ldmdb (insn
))
8841 nb_words
= elf32_arm_popcount (insn
& 0x0000ffff);
8842 else if (is_thumb2_vldm (insn
))
8843 nb_words
= (insn
& 0xff);
8845 /* DEFAULT mode accounts for the real bug condition situation,
8846 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8847 return (stm32l4xx_fix
== BFD_ARM_STM32L4XX_FIX_DEFAULT
8849 : stm32l4xx_fix
== BFD_ARM_STM32L4XX_FIX_ALL
);
8852 /* Look for potentially-troublesome code sequences which might trigger
8853 the STM STM32L4XX erratum. */
8856 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd
*abfd
,
8857 struct bfd_link_info
*link_info
)
8860 bfd_byte
*contents
= NULL
;
8861 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
8863 if (globals
== NULL
)
8866 /* If we are only performing a partial link do not bother
8867 to construct any glue. */
8868 if (bfd_link_relocatable (link_info
))
8871 /* Skip if this bfd does not correspond to an ELF image. */
8872 if (! is_arm_elf (abfd
))
8875 if (globals
->stm32l4xx_fix
== BFD_ARM_STM32L4XX_FIX_NONE
)
8878 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8879 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
8882 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8884 unsigned int i
, span
;
8885 struct _arm_elf_section_data
*sec_data
;
8887 /* If we don't have executable progbits, we're not interested in this
8888 section. Also skip if section is to be excluded. */
8889 if (elf_section_type (sec
) != SHT_PROGBITS
8890 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
8891 || (sec
->flags
& SEC_EXCLUDE
) != 0
8892 || sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
8893 || sec
->output_section
== bfd_abs_section_ptr
8894 || strcmp (sec
->name
, STM32L4XX_ERRATUM_VENEER_SECTION_NAME
) == 0)
8897 sec_data
= elf32_arm_section_data (sec
);
8899 if (sec_data
->mapcount
== 0)
8902 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
8903 contents
= elf_section_data (sec
)->this_hdr
.contents
;
8904 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
8907 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
8908 elf32_arm_compare_mapping
);
8910 for (span
= 0; span
< sec_data
->mapcount
; span
++)
8912 unsigned int span_start
= sec_data
->map
[span
].vma
;
8913 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
8914 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
8915 char span_type
= sec_data
->map
[span
].type
;
8916 int itblock_current_pos
= 0;
8918 /* Only Thumb2 mode need be supported with this CM4 specific
8919 code, we should not encounter any arm mode eg span_type
8921 if (span_type
!= 't')
8924 for (i
= span_start
; i
< span_end
;)
8926 unsigned int insn
= bfd_get_16 (abfd
, &contents
[i
]);
8927 bool insn_32bit
= false;
8928 bool is_ldm
= false;
8929 bool is_vldm
= false;
8930 bool is_not_last_in_it_block
= false;
8932 /* The first 16-bits of all 32-bit thumb2 instructions start
8933 with opcode[15..13]=0b111 and the encoded op1 can be anything
8934 except opcode[12..11]!=0b00.
8935 See 32-bit Thumb instruction encoding. */
8936 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
8939 /* Compute the predicate that tells if the instruction
8940 is concerned by the IT block
8941 - Creates an error if there is a ldm that is not
8942 last in the IT block thus cannot be replaced
8943 - Otherwise we can create a branch at the end of the
8944 IT block, it will be controlled naturally by IT
8945 with the proper pseudo-predicate
8946 - So the only interesting predicate is the one that
8947 tells that we are not on the last item of an IT
8949 if (itblock_current_pos
!= 0)
8950 is_not_last_in_it_block
= !!--itblock_current_pos
;
8954 /* Load the rest of the insn (in manual-friendly order). */
8955 insn
= (insn
<< 16) | bfd_get_16 (abfd
, &contents
[i
+ 2]);
8956 is_ldm
= is_thumb2_ldmia (insn
) || is_thumb2_ldmdb (insn
);
8957 is_vldm
= is_thumb2_vldm (insn
);
8959 /* Veneers are created for (v)ldm depending on
8960 option flags and memory accesses conditions; but
8961 if the instruction is not the last instruction of
8962 an IT block, we cannot create a jump there, so we
8964 if ((is_ldm
|| is_vldm
)
8965 && stm32l4xx_need_create_replacing_stub
8966 (insn
, globals
->stm32l4xx_fix
))
8968 if (is_not_last_in_it_block
)
8971 /* xgettext:c-format */
8972 (_("%pB(%pA+%#x): error: multiple load detected"
8973 " in non-last IT block instruction:"
8974 " STM32L4XX veneer cannot be generated; "
8975 "use gcc option -mrestrict-it to generate"
8976 " only one instruction per IT block"),
8981 elf32_stm32l4xx_erratum_list
*newerr
=
8982 (elf32_stm32l4xx_erratum_list
*)
8984 (sizeof (elf32_stm32l4xx_erratum_list
));
8986 elf32_arm_section_data (sec
)
8987 ->stm32l4xx_erratumcount
+= 1;
8988 newerr
->u
.b
.insn
= insn
;
8989 /* We create only thumb branches. */
8991 STM32L4XX_ERRATUM_BRANCH_TO_VENEER
;
8992 record_stm32l4xx_erratum_veneer
8993 (link_info
, newerr
, abfd
, sec
,
8996 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
:
8997 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE
);
8999 newerr
->next
= sec_data
->stm32l4xx_erratumlist
;
9000 sec_data
->stm32l4xx_erratumlist
= newerr
;
9007 IT blocks are only encoded in T1
9008 Encoding T1: IT{x{y{z}}} <firstcond>
9009 1 0 1 1 - 1 1 1 1 - firstcond - mask
9010 if mask = '0000' then see 'related encodings'
9011 We don't deal with UNPREDICTABLE, just ignore these.
9012 There can be no nested IT blocks so an IT block
9013 is naturally a new one for which it is worth
9014 computing its size. */
9015 bool is_newitblock
= ((insn
& 0xff00) == 0xbf00)
9016 && ((insn
& 0x000f) != 0x0000);
9017 /* If we have a new IT block we compute its size. */
9020 /* Compute the number of instructions controlled
9021 by the IT block, it will be used to decide
9022 whether we are inside an IT block or not. */
9023 unsigned int mask
= insn
& 0x000f;
9024 itblock_current_pos
= 4 - ctz (mask
);
9028 i
+= insn_32bit
? 4 : 2;
9032 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
9040 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
9046 /* Set target relocation values needed during linking. */
9049 bfd_elf32_arm_set_target_params (struct bfd
*output_bfd
,
9050 struct bfd_link_info
*link_info
,
9051 struct elf32_arm_params
*params
)
9053 struct elf32_arm_link_hash_table
*globals
;
9055 globals
= elf32_arm_hash_table (link_info
);
9056 if (globals
== NULL
)
9059 globals
->target1_is_rel
= params
->target1_is_rel
;
9060 if (globals
->fdpic_p
)
9061 globals
->target2_reloc
= R_ARM_GOT32
;
9062 else if (strcmp (params
->target2_type
, "rel") == 0)
9063 globals
->target2_reloc
= R_ARM_REL32
;
9064 else if (strcmp (params
->target2_type
, "abs") == 0)
9065 globals
->target2_reloc
= R_ARM_ABS32
;
9066 else if (strcmp (params
->target2_type
, "got-rel") == 0)
9067 globals
->target2_reloc
= R_ARM_GOT_PREL
;
9070 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
9071 params
->target2_type
);
9073 globals
->fix_v4bx
= params
->fix_v4bx
;
9074 globals
->use_blx
|= params
->use_blx
;
9075 globals
->vfp11_fix
= params
->vfp11_denorm_fix
;
9076 globals
->stm32l4xx_fix
= params
->stm32l4xx_fix
;
9077 if (globals
->fdpic_p
)
9078 globals
->pic_veneer
= 1;
9080 globals
->pic_veneer
= params
->pic_veneer
;
9081 globals
->fix_cortex_a8
= params
->fix_cortex_a8
;
9082 globals
->fix_arm1176
= params
->fix_arm1176
;
9083 globals
->cmse_implib
= params
->cmse_implib
;
9084 globals
->in_implib_bfd
= params
->in_implib_bfd
;
9086 BFD_ASSERT (is_arm_elf (output_bfd
));
9087 elf_arm_tdata (output_bfd
)->no_enum_size_warning
9088 = params
->no_enum_size_warning
;
9089 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
9090 = params
->no_wchar_size_warning
;
9093 /* Replace the target offset of a Thumb bl or b.w instruction. */
9096 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
9102 BFD_ASSERT ((offset
& 1) == 0);
9104 upper
= bfd_get_16 (abfd
, insn
);
9105 lower
= bfd_get_16 (abfd
, insn
+ 2);
9106 reloc_sign
= (offset
< 0) ? 1 : 0;
9107 upper
= (upper
& ~(bfd_vma
) 0x7ff)
9108 | ((offset
>> 12) & 0x3ff)
9109 | (reloc_sign
<< 10);
9110 lower
= (lower
& ~(bfd_vma
) 0x2fff)
9111 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
9112 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
9113 | ((offset
>> 1) & 0x7ff);
9114 bfd_put_16 (abfd
, upper
, insn
);
9115 bfd_put_16 (abfd
, lower
, insn
+ 2);
9118 /* Thumb code calling an ARM function. */
9121 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
9125 asection
* input_section
,
9126 bfd_byte
* hit_data
,
9129 bfd_signed_vma addend
,
9131 char **error_message
)
9135 long int ret_offset
;
9136 struct elf_link_hash_entry
* myh
;
9137 struct elf32_arm_link_hash_table
* globals
;
9139 myh
= find_thumb_glue (info
, name
, error_message
);
9143 globals
= elf32_arm_hash_table (info
);
9144 BFD_ASSERT (globals
!= NULL
);
9145 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
9147 my_offset
= myh
->root
.u
.def
.value
;
9149 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
9150 THUMB2ARM_GLUE_SECTION_NAME
);
9152 BFD_ASSERT (s
!= NULL
);
9153 BFD_ASSERT (s
->contents
!= NULL
);
9154 BFD_ASSERT (s
->output_section
!= NULL
);
9156 if ((my_offset
& 0x01) == 0x01)
9159 && sym_sec
->owner
!= NULL
9160 && !INTERWORK_FLAG (sym_sec
->owner
))
9163 (_("%pB(%s): warning: interworking not enabled;"
9164 " first occurrence: %pB: %s call to %s"),
9165 sym_sec
->owner
, name
, input_bfd
, "Thumb", "ARM");
9171 myh
->root
.u
.def
.value
= my_offset
;
9173 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
9174 s
->contents
+ my_offset
);
9176 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
9177 s
->contents
+ my_offset
+ 2);
9180 /* Address of destination of the stub. */
9181 ((bfd_signed_vma
) val
)
9183 /* Offset from the start of the current section
9184 to the start of the stubs. */
9186 /* Offset of the start of this stub from the start of the stubs. */
9188 /* Address of the start of the current section. */
9189 + s
->output_section
->vma
)
9190 /* The branch instruction is 4 bytes into the stub. */
9192 /* ARM branches work from the pc of the instruction + 8. */
9195 put_arm_insn (globals
, output_bfd
,
9196 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
9197 s
->contents
+ my_offset
+ 4);
9200 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
9202 /* Now go back and fix up the original BL insn to point to here. */
9204 /* Address of where the stub is located. */
9205 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
9206 /* Address of where the BL is located. */
9207 - (input_section
->output_section
->vma
+ input_section
->output_offset
9209 /* Addend in the relocation. */
9211 /* Biassing for PC-relative addressing. */
9214 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
9219 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
9221 static struct elf_link_hash_entry
*
9222 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
9229 char ** error_message
)
9232 long int ret_offset
;
9233 struct elf_link_hash_entry
* myh
;
9234 struct elf32_arm_link_hash_table
* globals
;
9236 myh
= find_arm_glue (info
, name
, error_message
);
9240 globals
= elf32_arm_hash_table (info
);
9241 BFD_ASSERT (globals
!= NULL
);
9242 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
9244 my_offset
= myh
->root
.u
.def
.value
;
9246 if ((my_offset
& 0x01) == 0x01)
9249 && sym_sec
->owner
!= NULL
9250 && !INTERWORK_FLAG (sym_sec
->owner
))
9253 (_("%pB(%s): warning: interworking not enabled;"
9254 " first occurrence: %pB: %s call to %s"),
9255 sym_sec
->owner
, name
, input_bfd
, "ARM", "Thumb");
9259 myh
->root
.u
.def
.value
= my_offset
;
9261 if (bfd_link_pic (info
)
9262 || globals
->root
.is_relocatable_executable
9263 || globals
->pic_veneer
)
9265 /* For relocatable objects we can't use absolute addresses,
9266 so construct the address from a relative offset. */
9267 /* TODO: If the offset is small it's probably worth
9268 constructing the address with adds. */
9269 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
9270 s
->contents
+ my_offset
);
9271 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
9272 s
->contents
+ my_offset
+ 4);
9273 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
9274 s
->contents
+ my_offset
+ 8);
9275 /* Adjust the offset by 4 for the position of the add,
9276 and 8 for the pipeline offset. */
9277 ret_offset
= (val
- (s
->output_offset
9278 + s
->output_section
->vma
9281 bfd_put_32 (output_bfd
, ret_offset
,
9282 s
->contents
+ my_offset
+ 12);
9284 else if (globals
->use_blx
)
9286 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
9287 s
->contents
+ my_offset
);
9289 /* It's a thumb address. Add the low order bit. */
9290 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
9291 s
->contents
+ my_offset
+ 4);
9295 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
9296 s
->contents
+ my_offset
);
9298 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
9299 s
->contents
+ my_offset
+ 4);
9301 /* It's a thumb address. Add the low order bit. */
9302 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
9303 s
->contents
+ my_offset
+ 8);
9309 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
9314 /* Arm code calling a Thumb function. */
9317 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
9321 asection
* input_section
,
9322 bfd_byte
* hit_data
,
9325 bfd_signed_vma addend
,
9327 char **error_message
)
9329 unsigned long int tmp
;
9332 long int ret_offset
;
9333 struct elf_link_hash_entry
* myh
;
9334 struct elf32_arm_link_hash_table
* globals
;
9336 globals
= elf32_arm_hash_table (info
);
9337 BFD_ASSERT (globals
!= NULL
);
9338 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
9340 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
9341 ARM2THUMB_GLUE_SECTION_NAME
);
9342 BFD_ASSERT (s
!= NULL
);
9343 BFD_ASSERT (s
->contents
!= NULL
);
9344 BFD_ASSERT (s
->output_section
!= NULL
);
9346 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
9347 sym_sec
, val
, s
, error_message
);
9351 my_offset
= myh
->root
.u
.def
.value
;
9352 tmp
= bfd_get_32 (input_bfd
, hit_data
);
9353 tmp
= tmp
& 0xFF000000;
9355 /* Somehow these are both 4 too far, so subtract 8. */
9356 ret_offset
= (s
->output_offset
9358 + s
->output_section
->vma
9359 - (input_section
->output_offset
9360 + input_section
->output_section
->vma
9364 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
9366 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
9371 /* Populate Arm stub for an exported Thumb function. */
9374 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
9376 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
9378 struct elf_link_hash_entry
* myh
;
9379 struct elf32_arm_link_hash_entry
*eh
;
9380 struct elf32_arm_link_hash_table
* globals
;
9383 char *error_message
;
9385 eh
= elf32_arm_hash_entry (h
);
9386 /* Allocate stubs for exported Thumb functions on v4t. */
9387 if (eh
->export_glue
== NULL
)
9390 globals
= elf32_arm_hash_table (info
);
9391 BFD_ASSERT (globals
!= NULL
);
9392 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
9394 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
9395 ARM2THUMB_GLUE_SECTION_NAME
);
9396 BFD_ASSERT (s
!= NULL
);
9397 BFD_ASSERT (s
->contents
!= NULL
);
9398 BFD_ASSERT (s
->output_section
!= NULL
);
9400 sec
= eh
->export_glue
->root
.u
.def
.section
;
9402 BFD_ASSERT (sec
->output_section
!= NULL
);
9404 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
9405 + sec
->output_section
->vma
;
9407 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
9408 h
->root
.u
.def
.section
->owner
,
9409 globals
->obfd
, sec
, val
, s
,
9415 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9418 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
9423 struct elf32_arm_link_hash_table
*globals
;
9425 globals
= elf32_arm_hash_table (info
);
9426 BFD_ASSERT (globals
!= NULL
);
9427 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
9429 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
9430 ARM_BX_GLUE_SECTION_NAME
);
9431 BFD_ASSERT (s
!= NULL
);
9432 BFD_ASSERT (s
->contents
!= NULL
);
9433 BFD_ASSERT (s
->output_section
!= NULL
);
9435 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
9437 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
9439 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
9441 p
= s
->contents
+ glue_addr
;
9442 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
9443 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
9444 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
9445 globals
->bx_glue_offset
[reg
] |= 1;
9448 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
9451 /* Generate Arm stubs for exported Thumb symbols. */
9453 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
9454 struct bfd_link_info
*link_info
)
9456 struct elf32_arm_link_hash_table
* globals
;
9458 if (link_info
== NULL
)
9459 /* Ignore this if we are not called by the ELF backend linker. */
9462 globals
= elf32_arm_hash_table (link_info
);
9463 if (globals
== NULL
)
9466 /* If blx is available then exported Thumb symbols are OK and there is
9468 if (globals
->use_blx
)
9471 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
9475 /* Reserve space for COUNT dynamic relocations in relocation selection
9479 elf32_arm_allocate_dynrelocs (struct bfd_link_info
*info
, asection
*sreloc
,
9480 bfd_size_type count
)
9482 struct elf32_arm_link_hash_table
*htab
;
9484 htab
= elf32_arm_hash_table (info
);
9485 BFD_ASSERT (htab
->root
.dynamic_sections_created
);
9488 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
9491 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9492 dynamic, the relocations should go in SRELOC, otherwise they should
9493 go in the special .rel.iplt section. */
9496 elf32_arm_allocate_irelocs (struct bfd_link_info
*info
, asection
*sreloc
,
9497 bfd_size_type count
)
9499 struct elf32_arm_link_hash_table
*htab
;
9501 htab
= elf32_arm_hash_table (info
);
9502 if (!htab
->root
.dynamic_sections_created
)
9503 htab
->root
.irelplt
->size
+= RELOC_SIZE (htab
) * count
;
9506 BFD_ASSERT (sreloc
!= NULL
);
9507 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
9511 /* Add relocation REL to the end of relocation section SRELOC. */
9514 elf32_arm_add_dynreloc (bfd
*output_bfd
, struct bfd_link_info
*info
,
9515 asection
*sreloc
, Elf_Internal_Rela
*rel
)
9518 struct elf32_arm_link_hash_table
*htab
;
9520 htab
= elf32_arm_hash_table (info
);
9521 if (!htab
->root
.dynamic_sections_created
9522 && ELF32_R_TYPE (rel
->r_info
) == R_ARM_IRELATIVE
)
9523 sreloc
= htab
->root
.irelplt
;
9526 loc
= sreloc
->contents
;
9527 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (htab
);
9528 if (sreloc
->reloc_count
* RELOC_SIZE (htab
) > sreloc
->size
)
9530 SWAP_RELOC_OUT (htab
) (output_bfd
, rel
, loc
);
9533 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9534 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9538 elf32_arm_allocate_plt_entry (struct bfd_link_info
*info
,
9540 union gotplt_union
*root_plt
,
9541 struct arm_plt_info
*arm_plt
)
9543 struct elf32_arm_link_hash_table
*htab
;
9547 htab
= elf32_arm_hash_table (info
);
9551 splt
= htab
->root
.iplt
;
9552 sgotplt
= htab
->root
.igotplt
;
9554 /* NaCl uses a special first entry in .iplt too. */
9555 if (htab
->root
.target_os
== is_nacl
&& splt
->size
== 0)
9556 splt
->size
+= htab
->plt_header_size
;
9558 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9559 elf32_arm_allocate_irelocs (info
, htab
->root
.irelplt
, 1);
9563 splt
= htab
->root
.splt
;
9564 sgotplt
= htab
->root
.sgotplt
;
9568 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9569 /* For lazy binding, relocations will be put into .rel.plt, in
9570 .rel.got otherwise. */
9571 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9572 if (info
->flags
& DF_BIND_NOW
)
9573 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
9575 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
9579 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9580 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
9583 /* If this is the first .plt entry, make room for the special
9585 if (splt
->size
== 0)
9586 splt
->size
+= htab
->plt_header_size
;
9588 htab
->next_tls_desc_index
++;
9591 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9592 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
9593 splt
->size
+= PLT_THUMB_STUB_SIZE
;
9594 root_plt
->offset
= splt
->size
;
9595 splt
->size
+= htab
->plt_entry_size
;
9597 /* We also need to make an entry in the .got.plt section, which
9598 will be placed in the .got section by the linker script. */
9600 arm_plt
->got_offset
= sgotplt
->size
;
9602 arm_plt
->got_offset
= sgotplt
->size
- 8 * htab
->num_tls_desc
;
9604 /* Function descriptor takes 64 bits in GOT. */
9611 arm_movw_immediate (bfd_vma value
)
9613 return (value
& 0x00000fff) | ((value
& 0x0000f000) << 4);
9617 arm_movt_immediate (bfd_vma value
)
9619 return ((value
& 0x0fff0000) >> 16) | ((value
& 0xf0000000) >> 12);
9622 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9623 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9624 Otherwise, DYNINDX is the index of the symbol in the dynamic
9625 symbol table and SYM_VALUE is undefined.
9627 ROOT_PLT points to the offset of the PLT entry from the start of its
9628 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9629 bookkeeping information.
9631 Returns FALSE if there was a problem. */
9634 elf32_arm_populate_plt_entry (bfd
*output_bfd
, struct bfd_link_info
*info
,
9635 union gotplt_union
*root_plt
,
9636 struct arm_plt_info
*arm_plt
,
9637 int dynindx
, bfd_vma sym_value
)
9639 struct elf32_arm_link_hash_table
*htab
;
9645 Elf_Internal_Rela rel
;
9646 bfd_vma got_header_size
;
9648 htab
= elf32_arm_hash_table (info
);
9650 /* Pick the appropriate sections and sizes. */
9653 splt
= htab
->root
.iplt
;
9654 sgot
= htab
->root
.igotplt
;
9655 srel
= htab
->root
.irelplt
;
9657 /* There are no reserved entries in .igot.plt, and no special
9658 first entry in .iplt. */
9659 got_header_size
= 0;
9663 splt
= htab
->root
.splt
;
9664 sgot
= htab
->root
.sgotplt
;
9665 srel
= htab
->root
.srelplt
;
9667 got_header_size
= get_elf_backend_data (output_bfd
)->got_header_size
;
9669 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
9671 bfd_vma got_offset
, got_address
, plt_address
;
9672 bfd_vma got_displacement
, initial_got_entry
;
9675 BFD_ASSERT (sgot
!= NULL
);
9677 /* Get the offset into the .(i)got.plt table of the entry that
9678 corresponds to this function. */
9679 got_offset
= (arm_plt
->got_offset
& -2);
9681 /* Get the index in the procedure linkage table which
9682 corresponds to this symbol. This is the index of this symbol
9683 in all the symbols for which we are making plt entries.
9684 After the reserved .got.plt entries, all symbols appear in
9685 the same order as in .plt. */
9687 /* Function descriptor takes 8 bytes. */
9688 plt_index
= (got_offset
- got_header_size
) / 8;
9690 plt_index
= (got_offset
- got_header_size
) / 4;
9692 /* Calculate the address of the GOT entry. */
9693 got_address
= (sgot
->output_section
->vma
9694 + sgot
->output_offset
9697 /* ...and the address of the PLT entry. */
9698 plt_address
= (splt
->output_section
->vma
9699 + splt
->output_offset
9700 + root_plt
->offset
);
9702 ptr
= splt
->contents
+ root_plt
->offset
;
9703 if (htab
->root
.target_os
== is_vxworks
&& bfd_link_pic (info
))
9708 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
9710 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
9712 val
|= got_address
- sgot
->output_section
->vma
;
9714 val
|= plt_index
* RELOC_SIZE (htab
);
9715 if (i
== 2 || i
== 5)
9716 bfd_put_32 (output_bfd
, val
, ptr
);
9718 put_arm_insn (htab
, output_bfd
, val
, ptr
);
9721 else if (htab
->root
.target_os
== is_vxworks
)
9726 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
9728 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
9732 val
|= 0xffffff & -((root_plt
->offset
+ i
* 4 + 8) >> 2);
9734 val
|= plt_index
* RELOC_SIZE (htab
);
9735 if (i
== 2 || i
== 5)
9736 bfd_put_32 (output_bfd
, val
, ptr
);
9738 put_arm_insn (htab
, output_bfd
, val
, ptr
);
9741 loc
= (htab
->srelplt2
->contents
9742 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
9744 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9745 referencing the GOT for this PLT entry. */
9746 rel
.r_offset
= plt_address
+ 8;
9747 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
9748 rel
.r_addend
= got_offset
;
9749 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
9750 loc
+= RELOC_SIZE (htab
);
9752 /* Create the R_ARM_ABS32 relocation referencing the
9753 beginning of the PLT for this GOT entry. */
9754 rel
.r_offset
= got_address
;
9755 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
9757 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
9759 else if (htab
->root
.target_os
== is_nacl
)
9761 /* Calculate the displacement between the PLT slot and the
9762 common tail that's part of the special initial PLT slot. */
9763 int32_t tail_displacement
9764 = ((splt
->output_section
->vma
+ splt
->output_offset
9765 + ARM_NACL_PLT_TAIL_OFFSET
)
9766 - (plt_address
+ htab
->plt_entry_size
+ 4));
9767 BFD_ASSERT ((tail_displacement
& 3) == 0);
9768 tail_displacement
>>= 2;
9770 BFD_ASSERT ((tail_displacement
& 0xff000000) == 0
9771 || (-tail_displacement
& 0xff000000) == 0);
9773 /* Calculate the displacement between the PLT slot and the entry
9774 in the GOT. The offset accounts for the value produced by
9775 adding to pc in the penultimate instruction of the PLT stub. */
9776 got_displacement
= (got_address
9777 - (plt_address
+ htab
->plt_entry_size
));
9779 /* NaCl does not support interworking at all. */
9780 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
));
9782 put_arm_insn (htab
, output_bfd
,
9783 elf32_arm_nacl_plt_entry
[0]
9784 | arm_movw_immediate (got_displacement
),
9786 put_arm_insn (htab
, output_bfd
,
9787 elf32_arm_nacl_plt_entry
[1]
9788 | arm_movt_immediate (got_displacement
),
9790 put_arm_insn (htab
, output_bfd
,
9791 elf32_arm_nacl_plt_entry
[2],
9793 put_arm_insn (htab
, output_bfd
,
9794 elf32_arm_nacl_plt_entry
[3]
9795 | (tail_displacement
& 0x00ffffff),
9798 else if (htab
->fdpic_p
)
9800 const bfd_vma
*plt_entry
= using_thumb_only (htab
)
9801 ? elf32_arm_fdpic_thumb_plt_entry
9802 : elf32_arm_fdpic_plt_entry
;
9804 /* Fill-up Thumb stub if needed. */
9805 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
9807 put_thumb_insn (htab
, output_bfd
,
9808 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
9809 put_thumb_insn (htab
, output_bfd
,
9810 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
9812 /* As we are using 32 bit instructions even for the Thumb
9813 version, we have to use 'put_arm_insn' instead of
9814 'put_thumb_insn'. */
9815 put_arm_insn (htab
, output_bfd
, plt_entry
[0], ptr
+ 0);
9816 put_arm_insn (htab
, output_bfd
, plt_entry
[1], ptr
+ 4);
9817 put_arm_insn (htab
, output_bfd
, plt_entry
[2], ptr
+ 8);
9818 put_arm_insn (htab
, output_bfd
, plt_entry
[3], ptr
+ 12);
9819 bfd_put_32 (output_bfd
, got_offset
, ptr
+ 16);
9821 if (!(info
->flags
& DF_BIND_NOW
))
9823 /* funcdesc_value_reloc_offset. */
9824 bfd_put_32 (output_bfd
,
9825 htab
->root
.srelplt
->reloc_count
* RELOC_SIZE (htab
),
9827 put_arm_insn (htab
, output_bfd
, plt_entry
[6], ptr
+ 24);
9828 put_arm_insn (htab
, output_bfd
, plt_entry
[7], ptr
+ 28);
9829 put_arm_insn (htab
, output_bfd
, plt_entry
[8], ptr
+ 32);
9830 put_arm_insn (htab
, output_bfd
, plt_entry
[9], ptr
+ 36);
9833 else if (using_thumb_only (htab
))
9835 /* PR ld/16017: Generate thumb only PLT entries. */
9836 if (!using_thumb2 (htab
))
9838 /* FIXME: We ought to be able to generate thumb-1 PLT
9840 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9845 /* Calculate the displacement between the PLT slot and the entry in
9846 the GOT. The 12-byte offset accounts for the value produced by
9847 adding to pc in the 3rd instruction of the PLT stub. */
9848 got_displacement
= got_address
- (plt_address
+ 12);
9850 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9851 instead of 'put_thumb_insn'. */
9852 put_arm_insn (htab
, output_bfd
,
9853 elf32_thumb2_plt_entry
[0]
9854 | ((got_displacement
& 0x000000ff) << 16)
9855 | ((got_displacement
& 0x00000700) << 20)
9856 | ((got_displacement
& 0x00000800) >> 1)
9857 | ((got_displacement
& 0x0000f000) >> 12),
9859 put_arm_insn (htab
, output_bfd
,
9860 elf32_thumb2_plt_entry
[1]
9861 | ((got_displacement
& 0x00ff0000) )
9862 | ((got_displacement
& 0x07000000) << 4)
9863 | ((got_displacement
& 0x08000000) >> 17)
9864 | ((got_displacement
& 0xf0000000) >> 28),
9866 put_arm_insn (htab
, output_bfd
,
9867 elf32_thumb2_plt_entry
[2],
9869 put_arm_insn (htab
, output_bfd
,
9870 elf32_thumb2_plt_entry
[3],
9875 /* Calculate the displacement between the PLT slot and the
9876 entry in the GOT. The eight-byte offset accounts for the
9877 value produced by adding to pc in the first instruction
9879 got_displacement
= got_address
- (plt_address
+ 8);
9881 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
9883 put_thumb_insn (htab
, output_bfd
,
9884 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
9885 put_thumb_insn (htab
, output_bfd
,
9886 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
9889 if (!elf32_arm_use_long_plt_entry
)
9891 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
9893 put_arm_insn (htab
, output_bfd
,
9894 elf32_arm_plt_entry_short
[0]
9895 | ((got_displacement
& 0x0ff00000) >> 20),
9897 put_arm_insn (htab
, output_bfd
,
9898 elf32_arm_plt_entry_short
[1]
9899 | ((got_displacement
& 0x000ff000) >> 12),
9901 put_arm_insn (htab
, output_bfd
,
9902 elf32_arm_plt_entry_short
[2]
9903 | (got_displacement
& 0x00000fff),
9905 #ifdef FOUR_WORD_PLT
9906 bfd_put_32 (output_bfd
, elf32_arm_plt_entry_short
[3], ptr
+ 12);
9911 put_arm_insn (htab
, output_bfd
,
9912 elf32_arm_plt_entry_long
[0]
9913 | ((got_displacement
& 0xf0000000) >> 28),
9915 put_arm_insn (htab
, output_bfd
,
9916 elf32_arm_plt_entry_long
[1]
9917 | ((got_displacement
& 0x0ff00000) >> 20),
9919 put_arm_insn (htab
, output_bfd
,
9920 elf32_arm_plt_entry_long
[2]
9921 | ((got_displacement
& 0x000ff000) >> 12),
9923 put_arm_insn (htab
, output_bfd
,
9924 elf32_arm_plt_entry_long
[3]
9925 | (got_displacement
& 0x00000fff),
9930 /* Fill in the entry in the .rel(a).(i)plt section. */
9931 rel
.r_offset
= got_address
;
9935 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9936 The dynamic linker or static executable then calls SYM_VALUE
9937 to determine the correct run-time value of the .igot.plt entry. */
9938 rel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
9939 initial_got_entry
= sym_value
;
9943 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9944 used by PLT entry. */
9947 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_FUNCDESC_VALUE
);
9948 initial_got_entry
= 0;
9952 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_JUMP_SLOT
);
9953 initial_got_entry
= (splt
->output_section
->vma
9954 + splt
->output_offset
);
9957 When thumb only we need to set the LSB for any address that
9958 will be used with an interworking branch instruction. */
9959 if (using_thumb_only (htab
))
9960 initial_got_entry
|= 1;
9964 /* Fill in the entry in the global offset table. */
9965 bfd_put_32 (output_bfd
, initial_got_entry
,
9966 sgot
->contents
+ got_offset
);
9968 if (htab
->fdpic_p
&& !(info
->flags
& DF_BIND_NOW
))
9970 /* Setup initial funcdesc value. */
9971 /* FIXME: we don't support lazy binding because there is a
9972 race condition between both words getting written and
9973 some other thread attempting to read them. The ARM
9974 architecture does not have an atomic 64 bit load/store
9975 instruction that could be used to prevent it; it is
9976 recommended that threaded FDPIC applications run with the
9977 LD_BIND_NOW environment variable set. */
9978 bfd_put_32 (output_bfd
, plt_address
+ 0x18,
9979 sgot
->contents
+ got_offset
);
9980 bfd_put_32 (output_bfd
, -1 /*TODO*/,
9981 sgot
->contents
+ got_offset
+ 4);
9985 elf32_arm_add_dynreloc (output_bfd
, info
, srel
, &rel
);
9990 /* For FDPIC we put PLT relocationss into .rel.got when not
9991 lazy binding otherwise we put them in .rel.plt. For now,
9992 we don't support lazy binding so put it in .rel.got. */
9993 if (info
->flags
& DF_BIND_NOW
)
9994 elf32_arm_add_dynreloc (output_bfd
, info
, htab
->root
.srelgot
, &rel
);
9996 elf32_arm_add_dynreloc (output_bfd
, info
, htab
->root
.srelplt
, &rel
);
10000 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
10001 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10008 /* Some relocations map to different relocations depending on the
10009 target. Return the real relocation. */
10012 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
10017 case R_ARM_TARGET1
:
10018 if (globals
->target1_is_rel
)
10019 return R_ARM_REL32
;
10021 return R_ARM_ABS32
;
10023 case R_ARM_TARGET2
:
10024 return globals
->target2_reloc
;
10031 /* Return the base VMA address which should be subtracted from real addresses
10032 when resolving @dtpoff relocation.
10033 This is PT_TLS segment p_vaddr. */
10036 dtpoff_base (struct bfd_link_info
*info
)
10038 /* If tls_sec is NULL, we should have signalled an error already. */
10039 if (elf_hash_table (info
)->tls_sec
== NULL
)
10041 return elf_hash_table (info
)->tls_sec
->vma
;
10044 /* Return the relocation value for @tpoff relocation
10045 if STT_TLS virtual address is ADDRESS. */
10048 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
10050 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
10053 /* If tls_sec is NULL, we should have signalled an error already. */
10054 if (htab
->tls_sec
== NULL
)
10056 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
10057 return address
- htab
->tls_sec
->vma
+ base
;
10060 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10061 VALUE is the relocation value. */
10063 static bfd_reloc_status_type
10064 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
10067 return bfd_reloc_overflow
;
10069 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
10070 bfd_put_32 (abfd
, value
, data
);
10071 return bfd_reloc_ok
;
10074 /* Handle TLS relaxations. Relaxing is possible for symbols that use
10075 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10076 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10078 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10079 is to then call final_link_relocate. Return other values in the
10082 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10083 the pre-relaxed code. It would be nice if the relocs were updated
10084 to match the optimization. */
10086 static bfd_reloc_status_type
10087 elf32_arm_tls_relax (struct elf32_arm_link_hash_table
*globals
,
10088 bfd
*input_bfd
, asection
*input_sec
, bfd_byte
*contents
,
10089 Elf_Internal_Rela
*rel
, unsigned long is_local
)
10091 unsigned long insn
;
10093 switch (ELF32_R_TYPE (rel
->r_info
))
10096 return bfd_reloc_notsupported
;
10098 case R_ARM_TLS_GOTDESC
:
10103 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10105 insn
-= 5; /* THUMB */
10107 insn
-= 8; /* ARM */
10109 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
10110 return bfd_reloc_continue
;
10112 case R_ARM_THM_TLS_DESCSEQ
:
10114 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
);
10115 if ((insn
& 0xff78) == 0x4478) /* add rx, pc */
10119 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
10121 else if ((insn
& 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10125 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
10128 bfd_put_16 (input_bfd
, insn
& 0xf83f, contents
+ rel
->r_offset
);
10130 else if ((insn
& 0xff87) == 0x4780) /* blx rx */
10134 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
10137 bfd_put_16 (input_bfd
, 0x4600 | (insn
& 0x78),
10138 contents
+ rel
->r_offset
);
10142 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
10143 /* It's a 32 bit instruction, fetch the rest of it for
10144 error generation. */
10145 insn
= (insn
<< 16)
10146 | bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
+ 2);
10148 /* xgettext:c-format */
10149 (_("%pB(%pA+%#" PRIx64
"): "
10150 "unexpected %s instruction '%#lx' in TLS trampoline"),
10151 input_bfd
, input_sec
, (uint64_t) rel
->r_offset
,
10153 return bfd_reloc_notsupported
;
10157 case R_ARM_TLS_DESCSEQ
:
10159 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10160 if ((insn
& 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10164 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xffff),
10165 contents
+ rel
->r_offset
);
10167 else if ((insn
& 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10171 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
10174 bfd_put_32 (input_bfd
, insn
& 0xfffff000,
10175 contents
+ rel
->r_offset
);
10177 else if ((insn
& 0xfffffff0) == 0xe12fff30) /* blx rx */
10181 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
10184 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xf),
10185 contents
+ rel
->r_offset
);
10190 /* xgettext:c-format */
10191 (_("%pB(%pA+%#" PRIx64
"): "
10192 "unexpected %s instruction '%#lx' in TLS trampoline"),
10193 input_bfd
, input_sec
, (uint64_t) rel
->r_offset
,
10195 return bfd_reloc_notsupported
;
10199 case R_ARM_TLS_CALL
:
10200 /* GD->IE relaxation, turn the instruction into 'nop' or
10201 'ldr r0, [pc,r0]' */
10202 insn
= is_local
? 0xe1a00000 : 0xe79f0000;
10203 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
10206 case R_ARM_THM_TLS_CALL
:
10207 /* GD->IE relaxation. */
10209 /* add r0,pc; ldr r0, [r0] */
10211 else if (using_thumb2 (globals
))
10218 bfd_put_16 (input_bfd
, insn
>> 16, contents
+ rel
->r_offset
);
10219 bfd_put_16 (input_bfd
, insn
& 0xffff, contents
+ rel
->r_offset
+ 2);
10222 return bfd_reloc_ok
;
10225 /* For a given value of n, calculate the value of G_n as required to
10226 deal with group relocations. We return it in the form of an
10227 encoded constant-and-rotation, together with the final residual. If n is
10228 specified as less than zero, then final_residual is filled with the
10229 input value and no further action is performed. */
10232 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
10236 bfd_vma encoded_g_n
= 0;
10237 bfd_vma residual
= value
; /* Also known as Y_n. */
10239 for (current_n
= 0; current_n
<= n
; current_n
++)
10243 /* Calculate which part of the value to mask. */
10250 /* Determine the most significant bit in the residual and
10251 align the resulting value to a 2-bit boundary. */
10252 for (msb
= 30; msb
>= 0; msb
-= 2)
10253 if (residual
& (3u << msb
))
10256 /* The desired shift is now (msb - 6), or zero, whichever
10263 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10264 g_n
= residual
& (0xff << shift
);
10265 encoded_g_n
= (g_n
>> shift
)
10266 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
10268 /* Calculate the residual for the next time around. */
10272 *final_residual
= residual
;
10274 return encoded_g_n
;
10277 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
10278 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
10281 identify_add_or_sub (bfd_vma insn
)
10283 int opcode
= insn
& 0x1e00000;
10285 if (opcode
== 1 << 23) /* ADD */
10288 if (opcode
== 1 << 22) /* SUB */
10294 /* Perform a relocation as part of a final link. */
10296 static bfd_reloc_status_type
10297 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
10300 asection
* input_section
,
10301 bfd_byte
* contents
,
10302 Elf_Internal_Rela
* rel
,
10304 struct bfd_link_info
* info
,
10305 asection
* sym_sec
,
10306 const char * sym_name
,
10307 unsigned char st_type
,
10308 enum arm_st_branch_type branch_type
,
10309 struct elf_link_hash_entry
* h
,
10310 bool * unresolved_reloc_p
,
10311 char ** error_message
)
10313 unsigned long r_type
= howto
->type
;
10314 unsigned long r_symndx
;
10315 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
10316 bfd_vma
* local_got_offsets
;
10317 bfd_vma
* local_tlsdesc_gotents
;
10320 asection
* sreloc
= NULL
;
10321 asection
* srelgot
;
10323 bfd_signed_vma signed_addend
;
10324 unsigned char dynreloc_st_type
;
10325 bfd_vma dynreloc_value
;
10326 struct elf32_arm_link_hash_table
* globals
;
10327 struct elf32_arm_link_hash_entry
*eh
;
10328 union gotplt_union
*root_plt
;
10329 struct arm_plt_info
*arm_plt
;
10330 bfd_vma plt_offset
;
10331 bfd_vma gotplt_offset
;
10332 bool has_iplt_entry
;
10333 bool resolved_to_zero
;
10335 globals
= elf32_arm_hash_table (info
);
10336 if (globals
== NULL
)
10337 return bfd_reloc_notsupported
;
10339 BFD_ASSERT (is_arm_elf (input_bfd
));
10340 BFD_ASSERT (howto
!= NULL
);
10342 /* Some relocation types map to different relocations depending on the
10343 target. We pick the right one here. */
10344 r_type
= arm_real_reloc_type (globals
, r_type
);
10346 /* It is possible to have linker relaxations on some TLS access
10347 models. Update our information here. */
10348 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
10350 if (r_type
!= howto
->type
)
10351 howto
= elf32_arm_howto_from_type (r_type
);
10353 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10354 sgot
= globals
->root
.sgot
;
10355 local_got_offsets
= elf_local_got_offsets (input_bfd
);
10356 local_tlsdesc_gotents
= elf32_arm_local_tlsdesc_gotent (input_bfd
);
10358 if (globals
->root
.dynamic_sections_created
)
10359 srelgot
= globals
->root
.srelgot
;
10363 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10365 if (globals
->use_rel
)
10369 switch (bfd_get_reloc_size (howto
))
10371 case 1: addend
= bfd_get_8 (input_bfd
, hit_data
); break;
10372 case 2: addend
= bfd_get_16 (input_bfd
, hit_data
); break;
10373 case 4: addend
= bfd_get_32 (input_bfd
, hit_data
); break;
10374 default: addend
= 0; break;
10376 /* Note: the addend and signed_addend calculated here are
10377 incorrect for any split field. */
10378 addend
&= howto
->src_mask
;
10379 sign
= howto
->src_mask
& ~(howto
->src_mask
>> 1);
10380 signed_addend
= (addend
^ sign
) - sign
;
10381 signed_addend
= (bfd_vma
) signed_addend
<< howto
->rightshift
;
10382 addend
<<= howto
->rightshift
;
10385 addend
= signed_addend
= rel
->r_addend
;
10387 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10388 are resolving a function call relocation. */
10389 if (using_thumb_only (globals
)
10390 && (r_type
== R_ARM_THM_CALL
10391 || r_type
== R_ARM_THM_JUMP24
)
10392 && branch_type
== ST_BRANCH_TO_ARM
)
10393 branch_type
= ST_BRANCH_TO_THUMB
;
10395 /* Record the symbol information that should be used in dynamic
10397 dynreloc_st_type
= st_type
;
10398 dynreloc_value
= value
;
10399 if (branch_type
== ST_BRANCH_TO_THUMB
)
10400 dynreloc_value
|= 1;
10402 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10403 VALUE appropriately for relocations that we resolve at link time. */
10404 has_iplt_entry
= false;
10405 if (elf32_arm_get_plt_info (input_bfd
, globals
, eh
, r_symndx
, &root_plt
,
10407 && root_plt
->offset
!= (bfd_vma
) -1)
10409 plt_offset
= root_plt
->offset
;
10410 gotplt_offset
= arm_plt
->got_offset
;
10412 if (h
== NULL
|| eh
->is_iplt
)
10414 has_iplt_entry
= true;
10415 splt
= globals
->root
.iplt
;
10417 /* Populate .iplt entries here, because not all of them will
10418 be seen by finish_dynamic_symbol. The lower bit is set if
10419 we have already populated the entry. */
10420 if (plt_offset
& 1)
10424 if (elf32_arm_populate_plt_entry (output_bfd
, info
, root_plt
, arm_plt
,
10425 -1, dynreloc_value
))
10426 root_plt
->offset
|= 1;
10428 return bfd_reloc_notsupported
;
10431 /* Static relocations always resolve to the .iplt entry. */
10432 st_type
= STT_FUNC
;
10433 value
= (splt
->output_section
->vma
10434 + splt
->output_offset
10436 branch_type
= ST_BRANCH_TO_ARM
;
10438 /* If there are non-call relocations that resolve to the .iplt
10439 entry, then all dynamic ones must too. */
10440 if (arm_plt
->noncall_refcount
!= 0)
10442 dynreloc_st_type
= st_type
;
10443 dynreloc_value
= value
;
10447 /* We populate the .plt entry in finish_dynamic_symbol. */
10448 splt
= globals
->root
.splt
;
10453 plt_offset
= (bfd_vma
) -1;
10454 gotplt_offset
= (bfd_vma
) -1;
10457 resolved_to_zero
= (h
!= NULL
10458 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
));
10463 /* We don't need to find a value for this symbol. It's just a
10465 *unresolved_reloc_p
= false;
10466 return bfd_reloc_ok
;
10469 if (globals
->root
.target_os
!= is_vxworks
)
10470 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
10471 /* Fall through. */
10475 case R_ARM_ABS32_NOI
:
10477 case R_ARM_REL32_NOI
:
10483 /* Handle relocations which should use the PLT entry. ABS32/REL32
10484 will use the symbol's value, which may point to a PLT entry, but we
10485 don't need to handle that here. If we created a PLT entry, all
10486 branches in this object should go to it, except if the PLT is too
10487 far away, in which case a long branch stub should be inserted. */
10488 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
10489 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
10490 && r_type
!= R_ARM_CALL
10491 && r_type
!= R_ARM_JUMP24
10492 && r_type
!= R_ARM_PLT32
)
10493 && plt_offset
!= (bfd_vma
) -1)
10495 /* If we've created a .plt section, and assigned a PLT entry
10496 to this function, it must either be a STT_GNU_IFUNC reference
10497 or not be known to bind locally. In other cases, we should
10498 have cleared the PLT entry by now. */
10499 BFD_ASSERT (has_iplt_entry
|| !SYMBOL_CALLS_LOCAL (info
, h
));
10501 value
= (splt
->output_section
->vma
10502 + splt
->output_offset
10504 *unresolved_reloc_p
= false;
10505 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
10506 contents
, rel
->r_offset
, value
,
10510 /* When generating a shared object or relocatable executable, these
10511 relocations are copied into the output file to be resolved at
10513 if ((bfd_link_pic (info
)
10514 || globals
->root
.is_relocatable_executable
10515 || globals
->fdpic_p
)
10516 && (input_section
->flags
& SEC_ALLOC
)
10517 && !(globals
->root
.target_os
== is_vxworks
10518 && strcmp (input_section
->output_section
->name
,
10520 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
10521 || !SYMBOL_CALLS_LOCAL (info
, h
))
10522 && !(input_bfd
== globals
->stub_bfd
10523 && strstr (input_section
->name
, STUB_SUFFIX
))
10525 || (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
10526 && !resolved_to_zero
)
10527 || h
->root
.type
!= bfd_link_hash_undefweak
)
10528 && r_type
!= R_ARM_PC24
10529 && r_type
!= R_ARM_CALL
10530 && r_type
!= R_ARM_JUMP24
10531 && r_type
!= R_ARM_PREL31
10532 && r_type
!= R_ARM_PLT32
)
10534 Elf_Internal_Rela outrel
;
10535 bool skip
, relocate
;
10538 if ((r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
10539 && !h
->def_regular
)
10541 char *v
= _("shared object");
10543 if (bfd_link_executable (info
))
10544 v
= _("PIE executable");
10547 (_("%pB: relocation %s against external or undefined symbol `%s'"
10548 " can not be used when making a %s; recompile with -fPIC"), input_bfd
,
10549 elf32_arm_howto_table_1
[r_type
].name
, h
->root
.root
.string
, v
);
10550 return bfd_reloc_notsupported
;
10553 *unresolved_reloc_p
= false;
10555 if (sreloc
== NULL
&& globals
->root
.dynamic_sections_created
)
10557 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
10558 ! globals
->use_rel
);
10560 if (sreloc
== NULL
)
10561 return bfd_reloc_notsupported
;
10567 outrel
.r_addend
= addend
;
10569 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
10571 if (outrel
.r_offset
== (bfd_vma
) -1)
10573 else if (outrel
.r_offset
== (bfd_vma
) -2)
10574 skip
= true, relocate
= true;
10575 outrel
.r_offset
+= (input_section
->output_section
->vma
10576 + input_section
->output_offset
);
10579 memset (&outrel
, 0, sizeof outrel
);
10581 && h
->dynindx
!= -1
10582 && (!bfd_link_pic (info
)
10583 || !(bfd_link_pie (info
)
10584 || SYMBOLIC_BIND (info
, h
))
10585 || !h
->def_regular
))
10586 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
10591 /* This symbol is local, or marked to become local. */
10592 BFD_ASSERT (r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
10593 || (globals
->fdpic_p
&& !bfd_link_pic (info
)));
10594 /* On SVR4-ish systems, the dynamic loader cannot
10595 relocate the text and data segments independently,
10596 so the symbol does not matter. */
10598 if (dynreloc_st_type
== STT_GNU_IFUNC
)
10599 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10600 to the .iplt entry. Instead, every non-call reference
10601 must use an R_ARM_IRELATIVE relocation to obtain the
10602 correct run-time address. */
10603 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_IRELATIVE
);
10604 else if (globals
->fdpic_p
&& !bfd_link_pic (info
))
10607 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
10608 if (globals
->use_rel
)
10611 outrel
.r_addend
+= dynreloc_value
;
10615 arm_elf_add_rofixup (output_bfd
, globals
->srofixup
, outrel
.r_offset
);
10617 elf32_arm_add_dynreloc (output_bfd
, info
, sreloc
, &outrel
);
10619 /* If this reloc is against an external symbol, we do not want to
10620 fiddle with the addend. Otherwise, we need to include the symbol
10621 value so that it becomes an addend for the dynamic reloc. */
10623 return bfd_reloc_ok
;
10625 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
10626 contents
, rel
->r_offset
,
10627 dynreloc_value
, (bfd_vma
) 0);
10629 else switch (r_type
)
10632 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
10634 case R_ARM_XPC25
: /* Arm BLX instruction. */
10637 case R_ARM_PC24
: /* Arm B/BL instruction. */
10640 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
10642 if (r_type
== R_ARM_XPC25
)
10644 /* Check for Arm calling Arm function. */
10645 /* FIXME: Should we translate the instruction into a BL
10646 instruction instead ? */
10647 if (branch_type
!= ST_BRANCH_TO_THUMB
)
10649 (_("\%pB: warning: %s BLX instruction targets"
10650 " %s function '%s'"),
10652 "ARM", h
? h
->root
.root
.string
: "(local)");
10654 else if (r_type
== R_ARM_PC24
)
10656 /* Check for Arm calling Thumb function. */
10657 if (branch_type
== ST_BRANCH_TO_THUMB
)
10659 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
10660 output_bfd
, input_section
,
10661 hit_data
, sym_sec
, rel
->r_offset
,
10662 signed_addend
, value
,
10664 return bfd_reloc_ok
;
10666 return bfd_reloc_dangerous
;
10670 /* Check if a stub has to be inserted because the
10671 destination is too far or we are changing mode. */
10672 if ( r_type
== R_ARM_CALL
10673 || r_type
== R_ARM_JUMP24
10674 || r_type
== R_ARM_PLT32
)
10676 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
10677 struct elf32_arm_link_hash_entry
*hash
;
10679 hash
= (struct elf32_arm_link_hash_entry
*) h
;
10680 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
10681 st_type
, &branch_type
,
10682 hash
, value
, sym_sec
,
10683 input_bfd
, sym_name
);
10685 if (stub_type
!= arm_stub_none
)
10687 /* The target is out of reach, so redirect the
10688 branch to the local stub for this function. */
10689 stub_entry
= elf32_arm_get_stub_entry (input_section
,
10694 if (stub_entry
!= NULL
)
10695 value
= (stub_entry
->stub_offset
10696 + stub_entry
->stub_sec
->output_offset
10697 + stub_entry
->stub_sec
->output_section
->vma
);
10699 if (plt_offset
!= (bfd_vma
) -1)
10700 *unresolved_reloc_p
= false;
10705 /* If the call goes through a PLT entry, make sure to
10706 check distance to the right destination address. */
10707 if (plt_offset
!= (bfd_vma
) -1)
10709 value
= (splt
->output_section
->vma
10710 + splt
->output_offset
10712 *unresolved_reloc_p
= false;
10713 /* The PLT entry is in ARM mode, regardless of the
10714 target function. */
10715 branch_type
= ST_BRANCH_TO_ARM
;
10720 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10722 S is the address of the symbol in the relocation.
10723 P is address of the instruction being relocated.
10724 A is the addend (extracted from the instruction) in bytes.
10726 S is held in 'value'.
10727 P is the base address of the section containing the
10728 instruction plus the offset of the reloc into that
10730 (input_section->output_section->vma +
10731 input_section->output_offset +
10733 A is the addend, converted into bytes, ie:
10734 (signed_addend * 4)
10736 Note: None of these operations have knowledge of the pipeline
10737 size of the processor, thus it is up to the assembler to
10738 encode this information into the addend. */
10739 value
-= (input_section
->output_section
->vma
10740 + input_section
->output_offset
);
10741 value
-= rel
->r_offset
;
10742 value
+= signed_addend
;
10744 signed_addend
= value
;
10745 signed_addend
>>= howto
->rightshift
;
10747 /* A branch to an undefined weak symbol is turned into a jump to
10748 the next instruction unless a PLT entry will be created.
10749 Do the same for local undefined symbols (but not for STN_UNDEF).
10750 The jump to the next instruction is optimized as a NOP depending
10751 on the architecture. */
10752 if (h
? (h
->root
.type
== bfd_link_hash_undefweak
10753 && plt_offset
== (bfd_vma
) -1)
10754 : r_symndx
!= STN_UNDEF
&& bfd_is_und_section (sym_sec
))
10756 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000);
10758 if (arch_has_arm_nop (globals
))
10759 value
|= 0x0320f000;
10761 value
|= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10765 /* Perform a signed range check. */
10766 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
10767 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
10768 return bfd_reloc_overflow
;
10770 addend
= (value
& 2);
10772 value
= (signed_addend
& howto
->dst_mask
)
10773 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
10775 if (r_type
== R_ARM_CALL
)
10777 /* Set the H bit in the BLX instruction. */
10778 if (branch_type
== ST_BRANCH_TO_THUMB
)
10781 value
|= (1 << 24);
10783 value
&= ~(bfd_vma
)(1 << 24);
10786 /* Select the correct instruction (BL or BLX). */
10787 /* Only if we are not handling a BL to a stub. In this
10788 case, mode switching is performed by the stub. */
10789 if (branch_type
== ST_BRANCH_TO_THUMB
&& !stub_entry
)
10790 value
|= (1 << 28);
10791 else if (stub_entry
|| branch_type
!= ST_BRANCH_UNKNOWN
)
10793 value
&= ~(bfd_vma
)(1 << 28);
10794 value
|= (1 << 24);
10803 if (branch_type
== ST_BRANCH_TO_THUMB
)
10807 case R_ARM_ABS32_NOI
:
10813 if (branch_type
== ST_BRANCH_TO_THUMB
)
10815 value
-= (input_section
->output_section
->vma
10816 + input_section
->output_offset
+ rel
->r_offset
);
10819 case R_ARM_REL32_NOI
:
10821 value
-= (input_section
->output_section
->vma
10822 + input_section
->output_offset
+ rel
->r_offset
);
10826 value
-= (input_section
->output_section
->vma
10827 + input_section
->output_offset
+ rel
->r_offset
);
10828 value
+= signed_addend
;
10829 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
10831 /* Check for overflow. */
10832 if ((value
^ (value
>> 1)) & (1 << 30))
10833 return bfd_reloc_overflow
;
10835 value
&= 0x7fffffff;
10836 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
10837 if (branch_type
== ST_BRANCH_TO_THUMB
)
10842 bfd_put_32 (input_bfd
, value
, hit_data
);
10843 return bfd_reloc_ok
;
10848 /* There is no way to tell whether the user intended to use a signed or
10849 unsigned addend. When checking for overflow we accept either,
10850 as specified by the AAELF. */
10851 if ((long) value
> 0xff || (long) value
< -0x80)
10852 return bfd_reloc_overflow
;
10854 bfd_put_8 (input_bfd
, value
, hit_data
);
10855 return bfd_reloc_ok
;
10860 /* See comment for R_ARM_ABS8. */
10861 if ((long) value
> 0xffff || (long) value
< -0x8000)
10862 return bfd_reloc_overflow
;
10864 bfd_put_16 (input_bfd
, value
, hit_data
);
10865 return bfd_reloc_ok
;
10867 case R_ARM_THM_ABS5
:
10868 /* Support ldr and str instructions for the thumb. */
10869 if (globals
->use_rel
)
10871 /* Need to refetch addend. */
10872 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
10873 /* ??? Need to determine shift amount from operand size. */
10874 addend
>>= howto
->rightshift
;
10878 /* ??? Isn't value unsigned? */
10879 if ((long) value
> 0x1f || (long) value
< -0x10)
10880 return bfd_reloc_overflow
;
10882 /* ??? Value needs to be properly shifted into place first. */
10883 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
10884 bfd_put_16 (input_bfd
, value
, hit_data
);
10885 return bfd_reloc_ok
;
10887 case R_ARM_THM_ALU_PREL_11_0
:
10888 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10891 bfd_signed_vma relocation
;
10893 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
10894 | bfd_get_16 (input_bfd
, hit_data
+ 2);
10896 if (globals
->use_rel
)
10898 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
10899 | ((insn
& (1 << 26)) >> 15);
10900 if (insn
& 0xf00000)
10901 signed_addend
= -signed_addend
;
10904 relocation
= value
+ signed_addend
;
10905 relocation
-= Pa (input_section
->output_section
->vma
10906 + input_section
->output_offset
10909 /* PR 21523: Use an absolute value. The user of this reloc will
10910 have already selected an ADD or SUB insn appropriately. */
10911 value
= llabs (relocation
);
10913 if (value
>= 0x1000)
10914 return bfd_reloc_overflow
;
10916 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10917 if (branch_type
== ST_BRANCH_TO_THUMB
)
10920 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
10921 | ((value
& 0x700) << 4)
10922 | ((value
& 0x800) << 15);
10923 if (relocation
< 0)
10926 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
10927 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
10929 return bfd_reloc_ok
;
10932 case R_ARM_THM_PC8
:
10933 /* PR 10073: This reloc is not generated by the GNU toolchain,
10934 but it is supported for compatibility with third party libraries
10935 generated by other compilers, specifically the ARM/IAR. */
10938 bfd_signed_vma relocation
;
10940 insn
= bfd_get_16 (input_bfd
, hit_data
);
10942 if (globals
->use_rel
)
10943 addend
= ((((insn
& 0x00ff) << 2) + 4) & 0x3ff) -4;
10945 relocation
= value
+ addend
;
10946 relocation
-= Pa (input_section
->output_section
->vma
10947 + input_section
->output_offset
10950 value
= relocation
;
10952 /* We do not check for overflow of this reloc. Although strictly
10953 speaking this is incorrect, it appears to be necessary in order
10954 to work with IAR generated relocs. Since GCC and GAS do not
10955 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10956 a problem for them. */
10959 insn
= (insn
& 0xff00) | (value
>> 2);
10961 bfd_put_16 (input_bfd
, insn
, hit_data
);
10963 return bfd_reloc_ok
;
10966 case R_ARM_THM_PC12
:
10967 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10970 bfd_signed_vma relocation
;
10972 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
10973 | bfd_get_16 (input_bfd
, hit_data
+ 2);
10975 if (globals
->use_rel
)
10977 signed_addend
= insn
& 0xfff;
10978 if (!(insn
& (1 << 23)))
10979 signed_addend
= -signed_addend
;
10982 relocation
= value
+ signed_addend
;
10983 relocation
-= Pa (input_section
->output_section
->vma
10984 + input_section
->output_offset
10987 value
= relocation
;
10989 if (value
>= 0x1000)
10990 return bfd_reloc_overflow
;
10992 insn
= (insn
& 0xff7ff000) | value
;
10993 if (relocation
>= 0)
10996 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
10997 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
10999 return bfd_reloc_ok
;
11002 case R_ARM_THM_XPC22
:
11003 case R_ARM_THM_CALL
:
11004 case R_ARM_THM_JUMP24
:
11005 /* Thumb BL (branch long instruction). */
11007 bfd_vma relocation
;
11008 bfd_vma reloc_sign
;
11009 bool overflow
= false;
11010 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
11011 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
11012 bfd_signed_vma reloc_signed_max
;
11013 bfd_signed_vma reloc_signed_min
;
11015 bfd_signed_vma signed_check
;
11017 const int thumb2
= using_thumb2 (globals
);
11018 const int thumb2_bl
= using_thumb2_bl (globals
);
11020 /* A branch to an undefined weak symbol is turned into a jump to
11021 the next instruction unless a PLT entry will be created.
11022 The jump to the next instruction is optimized as a NOP.W for
11023 Thumb-2 enabled architectures. */
11024 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
11025 && plt_offset
== (bfd_vma
) -1)
11029 bfd_put_16 (input_bfd
, 0xf3af, hit_data
);
11030 bfd_put_16 (input_bfd
, 0x8000, hit_data
+ 2);
11034 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
11035 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
11037 return bfd_reloc_ok
;
11040 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
11041 with Thumb-1) involving the J1 and J2 bits. */
11042 if (globals
->use_rel
)
11044 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
11045 bfd_vma upper
= upper_insn
& 0x3ff;
11046 bfd_vma lower
= lower_insn
& 0x7ff;
11047 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
11048 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
11049 bfd_vma i1
= j1
^ s
? 0 : 1;
11050 bfd_vma i2
= j2
^ s
? 0 : 1;
11052 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
11054 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
11056 signed_addend
= addend
;
11059 if (r_type
== R_ARM_THM_XPC22
)
11061 /* Check for Thumb to Thumb call. */
11062 /* FIXME: Should we translate the instruction into a BL
11063 instruction instead ? */
11064 if (branch_type
== ST_BRANCH_TO_THUMB
)
11066 (_("%pB: warning: %s BLX instruction targets"
11067 " %s function '%s'"),
11068 input_bfd
, "Thumb",
11069 "Thumb", h
? h
->root
.root
.string
: "(local)");
11073 /* If it is not a call to Thumb, assume call to Arm.
11074 If it is a call relative to a section name, then it is not a
11075 function call at all, but rather a long jump. Calls through
11076 the PLT do not require stubs. */
11077 if (branch_type
== ST_BRANCH_TO_ARM
&& plt_offset
== (bfd_vma
) -1)
11079 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
11081 /* Convert BL to BLX. */
11082 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
11084 else if (( r_type
!= R_ARM_THM_CALL
)
11085 && (r_type
!= R_ARM_THM_JUMP24
))
11087 if (elf32_thumb_to_arm_stub
11088 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
11089 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
11091 return bfd_reloc_ok
;
11093 return bfd_reloc_dangerous
;
11096 else if (branch_type
== ST_BRANCH_TO_THUMB
11097 && globals
->use_blx
11098 && r_type
== R_ARM_THM_CALL
)
11100 /* Make sure this is a BL. */
11101 lower_insn
|= 0x1800;
11105 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
11106 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
11108 /* Check if a stub has to be inserted because the destination
11110 struct elf32_arm_stub_hash_entry
*stub_entry
;
11111 struct elf32_arm_link_hash_entry
*hash
;
11113 hash
= (struct elf32_arm_link_hash_entry
*) h
;
11115 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
11116 st_type
, &branch_type
,
11117 hash
, value
, sym_sec
,
11118 input_bfd
, sym_name
);
11120 if (stub_type
!= arm_stub_none
)
11122 /* The target is out of reach or we are changing modes, so
11123 redirect the branch to the local stub for this
11125 stub_entry
= elf32_arm_get_stub_entry (input_section
,
11129 if (stub_entry
!= NULL
)
11131 value
= (stub_entry
->stub_offset
11132 + stub_entry
->stub_sec
->output_offset
11133 + stub_entry
->stub_sec
->output_section
->vma
);
11135 if (plt_offset
!= (bfd_vma
) -1)
11136 *unresolved_reloc_p
= false;
11139 /* If this call becomes a call to Arm, force BLX. */
11140 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
11143 && !arm_stub_is_thumb (stub_entry
->stub_type
))
11144 || branch_type
!= ST_BRANCH_TO_THUMB
)
11145 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
11150 /* Handle calls via the PLT. */
11151 if (stub_type
== arm_stub_none
&& plt_offset
!= (bfd_vma
) -1)
11153 value
= (splt
->output_section
->vma
11154 + splt
->output_offset
11157 if (globals
->use_blx
11158 && r_type
== R_ARM_THM_CALL
11159 && ! using_thumb_only (globals
))
11161 /* If the Thumb BLX instruction is available, convert
11162 the BL to a BLX instruction to call the ARM-mode
11164 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
11165 branch_type
= ST_BRANCH_TO_ARM
;
11169 if (! using_thumb_only (globals
))
11170 /* Target the Thumb stub before the ARM PLT entry. */
11171 value
-= PLT_THUMB_STUB_SIZE
;
11172 branch_type
= ST_BRANCH_TO_THUMB
;
11174 *unresolved_reloc_p
= false;
11177 relocation
= value
+ signed_addend
;
11179 relocation
-= (input_section
->output_section
->vma
11180 + input_section
->output_offset
11183 check
= relocation
>> howto
->rightshift
;
11185 /* If this is a signed value, the rightshift just dropped
11186 leading 1 bits (assuming twos complement). */
11187 if ((bfd_signed_vma
) relocation
>= 0)
11188 signed_check
= check
;
11190 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
11192 /* Calculate the permissable maximum and minimum values for
11193 this relocation according to whether we're relocating for
11195 bitsize
= howto
->bitsize
;
11198 reloc_signed_max
= (1 << (bitsize
- 1)) - 1;
11199 reloc_signed_min
= ~reloc_signed_max
;
11201 /* Assumes two's complement. */
11202 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
11205 if ((lower_insn
& 0x5000) == 0x4000)
11206 /* For a BLX instruction, make sure that the relocation is rounded up
11207 to a word boundary. This follows the semantics of the instruction
11208 which specifies that bit 1 of the target address will come from bit
11209 1 of the base address. */
11210 relocation
= (relocation
+ 2) & ~ 3;
11212 /* Put RELOCATION back into the insn. Assumes two's complement.
11213 We use the Thumb-2 encoding, which is safe even if dealing with
11214 a Thumb-1 instruction by virtue of our overflow check above. */
11215 reloc_sign
= (signed_check
< 0) ? 1 : 0;
11216 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
11217 | ((relocation
>> 12) & 0x3ff)
11218 | (reloc_sign
<< 10);
11219 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
11220 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
11221 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
11222 | ((relocation
>> 1) & 0x7ff);
11224 /* Put the relocated value back in the object file: */
11225 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
11226 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
11228 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
11232 case R_ARM_THM_JUMP19
:
11233 /* Thumb32 conditional branch instruction. */
11235 bfd_vma relocation
;
11236 bool overflow
= false;
11237 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
11238 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
11239 bfd_signed_vma reloc_signed_max
= 0xffffe;
11240 bfd_signed_vma reloc_signed_min
= -0x100000;
11241 bfd_signed_vma signed_check
;
11242 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
11243 struct elf32_arm_stub_hash_entry
*stub_entry
;
11244 struct elf32_arm_link_hash_entry
*hash
;
11246 /* Need to refetch the addend, reconstruct the top three bits,
11247 and squish the two 11 bit pieces together. */
11248 if (globals
->use_rel
)
11250 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
11251 bfd_vma upper
= (upper_insn
& 0x003f);
11252 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
11253 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
11254 bfd_vma lower
= (lower_insn
& 0x07ff);
11258 upper
|= (!S
) << 8;
11259 upper
-= 0x0100; /* Sign extend. */
11261 addend
= (upper
<< 12) | (lower
<< 1);
11262 signed_addend
= addend
;
11265 /* Handle calls via the PLT. */
11266 if (plt_offset
!= (bfd_vma
) -1)
11268 value
= (splt
->output_section
->vma
11269 + splt
->output_offset
11271 /* Target the Thumb stub before the ARM PLT entry. */
11272 value
-= PLT_THUMB_STUB_SIZE
;
11273 *unresolved_reloc_p
= false;
11276 hash
= (struct elf32_arm_link_hash_entry
*)h
;
11278 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
11279 st_type
, &branch_type
,
11280 hash
, value
, sym_sec
,
11281 input_bfd
, sym_name
);
11282 if (stub_type
!= arm_stub_none
)
11284 stub_entry
= elf32_arm_get_stub_entry (input_section
,
11288 if (stub_entry
!= NULL
)
11290 value
= (stub_entry
->stub_offset
11291 + stub_entry
->stub_sec
->output_offset
11292 + stub_entry
->stub_sec
->output_section
->vma
);
11296 relocation
= value
+ signed_addend
;
11297 relocation
-= (input_section
->output_section
->vma
11298 + input_section
->output_offset
11300 signed_check
= (bfd_signed_vma
) relocation
;
11302 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
11305 /* Put RELOCATION back into the insn. */
11307 bfd_vma S
= (relocation
& 0x00100000) >> 20;
11308 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
11309 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
11310 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
11311 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
11313 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
11314 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
11317 /* Put the relocated value back in the object file: */
11318 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
11319 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
11321 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
11324 case R_ARM_THM_JUMP11
:
11325 case R_ARM_THM_JUMP8
:
11326 case R_ARM_THM_JUMP6
:
11327 /* Thumb B (branch) instruction). */
11329 bfd_signed_vma relocation
;
11330 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
11331 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
11332 bfd_signed_vma signed_check
;
11334 /* CZB cannot jump backward. */
11335 if (r_type
== R_ARM_THM_JUMP6
)
11337 reloc_signed_min
= 0;
11338 if (globals
->use_rel
)
11339 signed_addend
= ((addend
& 0x200) >> 3) | ((addend
& 0xf8) >> 2);
11342 relocation
= value
+ signed_addend
;
11344 relocation
-= (input_section
->output_section
->vma
11345 + input_section
->output_offset
11348 relocation
>>= howto
->rightshift
;
11349 signed_check
= relocation
;
11351 if (r_type
== R_ARM_THM_JUMP6
)
11352 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
11354 relocation
&= howto
->dst_mask
;
11355 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
11357 bfd_put_16 (input_bfd
, relocation
, hit_data
);
11359 /* Assumes two's complement. */
11360 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
11361 return bfd_reloc_overflow
;
11363 return bfd_reloc_ok
;
11366 case R_ARM_ALU_PCREL7_0
:
11367 case R_ARM_ALU_PCREL15_8
:
11368 case R_ARM_ALU_PCREL23_15
:
11371 bfd_vma relocation
;
11373 insn
= bfd_get_32 (input_bfd
, hit_data
);
11374 if (globals
->use_rel
)
11376 /* Extract the addend. */
11377 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
11378 signed_addend
= addend
;
11380 relocation
= value
+ signed_addend
;
11382 relocation
-= (input_section
->output_section
->vma
11383 + input_section
->output_offset
11385 insn
= (insn
& ~0xfff)
11386 | ((howto
->bitpos
<< 7) & 0xf00)
11387 | ((relocation
>> howto
->bitpos
) & 0xff);
11388 bfd_put_32 (input_bfd
, value
, hit_data
);
11390 return bfd_reloc_ok
;
11392 case R_ARM_GNU_VTINHERIT
:
11393 case R_ARM_GNU_VTENTRY
:
11394 return bfd_reloc_ok
;
11396 case R_ARM_GOTOFF32
:
11397 /* Relocation is relative to the start of the
11398 global offset table. */
11400 BFD_ASSERT (sgot
!= NULL
);
11402 return bfd_reloc_notsupported
;
11404 /* If we are addressing a Thumb function, we need to adjust the
11405 address by one, so that attempts to call the function pointer will
11406 correctly interpret it as Thumb code. */
11407 if (branch_type
== ST_BRANCH_TO_THUMB
)
11410 /* Note that sgot->output_offset is not involved in this
11411 calculation. We always want the start of .got. If we
11412 define _GLOBAL_OFFSET_TABLE in a different way, as is
11413 permitted by the ABI, we might have to change this
11415 value
-= sgot
->output_section
->vma
;
11416 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
11417 contents
, rel
->r_offset
, value
,
11421 /* Use global offset table as symbol value. */
11422 BFD_ASSERT (sgot
!= NULL
);
11425 return bfd_reloc_notsupported
;
11427 *unresolved_reloc_p
= false;
11428 value
= sgot
->output_section
->vma
;
11429 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
11430 contents
, rel
->r_offset
, value
,
11434 case R_ARM_GOT_PREL
:
11435 /* Relocation is to the entry for this symbol in the
11436 global offset table. */
11438 return bfd_reloc_notsupported
;
11440 if (dynreloc_st_type
== STT_GNU_IFUNC
11441 && plt_offset
!= (bfd_vma
) -1
11442 && (h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, h
)))
11444 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11445 symbol, and the relocation resolves directly to the runtime
11446 target rather than to the .iplt entry. This means that any
11447 .got entry would be the same value as the .igot.plt entry,
11448 so there's no point creating both. */
11449 sgot
= globals
->root
.igotplt
;
11450 value
= sgot
->output_offset
+ gotplt_offset
;
11452 else if (h
!= NULL
)
11456 off
= h
->got
.offset
;
11457 BFD_ASSERT (off
!= (bfd_vma
) -1);
11458 if ((off
& 1) != 0)
11460 /* We have already processsed one GOT relocation against
11463 if (globals
->root
.dynamic_sections_created
11464 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
11465 *unresolved_reloc_p
= false;
11469 Elf_Internal_Rela outrel
;
11472 if (((h
->dynindx
!= -1) || globals
->fdpic_p
)
11473 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
11475 /* If the symbol doesn't resolve locally in a static
11476 object, we have an undefined reference. If the
11477 symbol doesn't resolve locally in a dynamic object,
11478 it should be resolved by the dynamic linker. */
11479 if (globals
->root
.dynamic_sections_created
)
11481 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
11482 *unresolved_reloc_p
= false;
11486 outrel
.r_addend
= 0;
11490 if (dynreloc_st_type
== STT_GNU_IFUNC
)
11491 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
11492 else if (bfd_link_pic (info
)
11493 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
11494 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
11498 if (globals
->fdpic_p
)
11501 outrel
.r_addend
= dynreloc_value
;
11504 /* The GOT entry is initialized to zero by default.
11505 See if we should install a different value. */
11506 if (outrel
.r_addend
!= 0
11507 && (globals
->use_rel
|| outrel
.r_info
== 0))
11509 bfd_put_32 (output_bfd
, outrel
.r_addend
,
11510 sgot
->contents
+ off
);
11511 outrel
.r_addend
= 0;
11515 arm_elf_add_rofixup (output_bfd
,
11516 elf32_arm_hash_table (info
)->srofixup
,
11517 sgot
->output_section
->vma
11518 + sgot
->output_offset
+ off
);
11520 else if (outrel
.r_info
!= 0)
11522 outrel
.r_offset
= (sgot
->output_section
->vma
11523 + sgot
->output_offset
11525 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
11528 h
->got
.offset
|= 1;
11530 value
= sgot
->output_offset
+ off
;
11536 BFD_ASSERT (local_got_offsets
!= NULL
11537 && local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
11539 off
= local_got_offsets
[r_symndx
];
11541 /* The offset must always be a multiple of 4. We use the
11542 least significant bit to record whether we have already
11543 generated the necessary reloc. */
11544 if ((off
& 1) != 0)
11548 Elf_Internal_Rela outrel
;
11551 if (dynreloc_st_type
== STT_GNU_IFUNC
)
11552 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
11553 else if (bfd_link_pic (info
))
11554 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
11558 if (globals
->fdpic_p
)
11562 /* The GOT entry is initialized to zero by default.
11563 See if we should install a different value. */
11564 if (globals
->use_rel
|| outrel
.r_info
== 0)
11565 bfd_put_32 (output_bfd
, dynreloc_value
, sgot
->contents
+ off
);
11568 arm_elf_add_rofixup (output_bfd
,
11570 sgot
->output_section
->vma
11571 + sgot
->output_offset
+ off
);
11573 else if (outrel
.r_info
!= 0)
11575 outrel
.r_addend
= addend
+ dynreloc_value
;
11576 outrel
.r_offset
= (sgot
->output_section
->vma
11577 + sgot
->output_offset
11579 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
11582 local_got_offsets
[r_symndx
] |= 1;
11585 value
= sgot
->output_offset
+ off
;
11587 if (r_type
!= R_ARM_GOT32
)
11588 value
+= sgot
->output_section
->vma
;
11590 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
11591 contents
, rel
->r_offset
, value
,
11594 case R_ARM_TLS_LDO32
:
11595 value
= value
- dtpoff_base (info
);
11597 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
11598 contents
, rel
->r_offset
, value
,
11601 case R_ARM_TLS_LDM32
:
11602 case R_ARM_TLS_LDM32_FDPIC
:
11609 off
= globals
->tls_ldm_got
.offset
;
11611 if ((off
& 1) != 0)
11615 /* If we don't know the module number, create a relocation
11617 if (bfd_link_dll (info
))
11619 Elf_Internal_Rela outrel
;
11621 if (srelgot
== NULL
)
11624 outrel
.r_addend
= 0;
11625 outrel
.r_offset
= (sgot
->output_section
->vma
11626 + sgot
->output_offset
+ off
);
11627 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
11629 if (globals
->use_rel
)
11630 bfd_put_32 (output_bfd
, outrel
.r_addend
,
11631 sgot
->contents
+ off
);
11633 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
11636 bfd_put_32 (output_bfd
, 1, sgot
->contents
+ off
);
11638 globals
->tls_ldm_got
.offset
|= 1;
11641 if (r_type
== R_ARM_TLS_LDM32_FDPIC
)
11643 bfd_put_32 (output_bfd
,
11644 globals
->root
.sgot
->output_offset
+ off
,
11645 contents
+ rel
->r_offset
);
11647 return bfd_reloc_ok
;
11651 value
= sgot
->output_section
->vma
+ sgot
->output_offset
+ off
11652 - (input_section
->output_section
->vma
11653 + input_section
->output_offset
+ rel
->r_offset
);
11655 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
11656 contents
, rel
->r_offset
, value
,
11661 case R_ARM_TLS_CALL
:
11662 case R_ARM_THM_TLS_CALL
:
11663 case R_ARM_TLS_GD32
:
11664 case R_ARM_TLS_GD32_FDPIC
:
11665 case R_ARM_TLS_IE32
:
11666 case R_ARM_TLS_IE32_FDPIC
:
11667 case R_ARM_TLS_GOTDESC
:
11668 case R_ARM_TLS_DESCSEQ
:
11669 case R_ARM_THM_TLS_DESCSEQ
:
11671 bfd_vma off
, offplt
;
11675 BFD_ASSERT (sgot
!= NULL
);
11680 dyn
= globals
->root
.dynamic_sections_created
;
11681 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
,
11682 bfd_link_pic (info
),
11684 && (!bfd_link_pic (info
)
11685 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
11687 *unresolved_reloc_p
= false;
11690 off
= h
->got
.offset
;
11691 offplt
= elf32_arm_hash_entry (h
)->tlsdesc_got
;
11692 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
11696 BFD_ASSERT (local_got_offsets
!= NULL
);
11698 if (r_symndx
>= elf32_arm_num_entries (input_bfd
))
11700 _bfd_error_handler (_("\
11701 %pB: expected symbol index in range 0..%lu but found local symbol with index %lu"),
11703 (unsigned long) elf32_arm_num_entries (input_bfd
),
11707 off
= local_got_offsets
[r_symndx
];
11708 offplt
= local_tlsdesc_gotents
[r_symndx
];
11709 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
11712 /* Linker relaxations happens from one of the
11713 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11714 if (ELF32_R_TYPE (rel
->r_info
) != r_type
)
11715 tls_type
= GOT_TLS_IE
;
11717 BFD_ASSERT (tls_type
!= GOT_UNKNOWN
);
11719 if ((off
& 1) != 0)
11723 bool need_relocs
= false;
11724 Elf_Internal_Rela outrel
;
11727 /* The GOT entries have not been initialized yet. Do it
11728 now, and emit any relocations. If both an IE GOT and a
11729 GD GOT are necessary, we emit the GD first. */
11731 if ((bfd_link_dll (info
) || indx
!= 0)
11733 || (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
11734 && !resolved_to_zero
)
11735 || h
->root
.type
!= bfd_link_hash_undefweak
))
11737 need_relocs
= true;
11738 BFD_ASSERT (srelgot
!= NULL
);
11741 if (tls_type
& GOT_TLS_GDESC
)
11745 /* We should have relaxed, unless this is an undefined
11747 BFD_ASSERT ((h
&& (h
->root
.type
== bfd_link_hash_undefweak
))
11748 || bfd_link_dll (info
));
11749 BFD_ASSERT (globals
->sgotplt_jump_table_size
+ offplt
+ 8
11750 <= globals
->root
.sgotplt
->size
);
11752 outrel
.r_addend
= 0;
11753 outrel
.r_offset
= (globals
->root
.sgotplt
->output_section
->vma
11754 + globals
->root
.sgotplt
->output_offset
11756 + globals
->sgotplt_jump_table_size
);
11758 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DESC
);
11759 sreloc
= globals
->root
.srelplt
;
11760 loc
= sreloc
->contents
;
11761 loc
+= globals
->next_tls_desc_index
++ * RELOC_SIZE (globals
);
11762 BFD_ASSERT (loc
+ RELOC_SIZE (globals
)
11763 <= sreloc
->contents
+ sreloc
->size
);
11765 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
11767 /* For globals, the first word in the relocation gets
11768 the relocation index and the top bit set, or zero,
11769 if we're binding now. For locals, it gets the
11770 symbol's offset in the tls section. */
11771 bfd_put_32 (output_bfd
,
11772 !h
? value
- elf_hash_table (info
)->tls_sec
->vma
11773 : info
->flags
& DF_BIND_NOW
? 0
11774 : 0x80000000 | ELF32_R_SYM (outrel
.r_info
),
11775 globals
->root
.sgotplt
->contents
+ offplt
11776 + globals
->sgotplt_jump_table_size
);
11778 /* Second word in the relocation is always zero. */
11779 bfd_put_32 (output_bfd
, 0,
11780 globals
->root
.sgotplt
->contents
+ offplt
11781 + globals
->sgotplt_jump_table_size
+ 4);
11783 if (tls_type
& GOT_TLS_GD
)
11787 outrel
.r_addend
= 0;
11788 outrel
.r_offset
= (sgot
->output_section
->vma
11789 + sgot
->output_offset
11791 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
11793 if (globals
->use_rel
)
11794 bfd_put_32 (output_bfd
, outrel
.r_addend
,
11795 sgot
->contents
+ cur_off
);
11797 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
11800 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
11801 sgot
->contents
+ cur_off
+ 4);
11804 outrel
.r_addend
= 0;
11805 outrel
.r_info
= ELF32_R_INFO (indx
,
11806 R_ARM_TLS_DTPOFF32
);
11807 outrel
.r_offset
+= 4;
11809 if (globals
->use_rel
)
11810 bfd_put_32 (output_bfd
, outrel
.r_addend
,
11811 sgot
->contents
+ cur_off
+ 4);
11813 elf32_arm_add_dynreloc (output_bfd
, info
,
11819 /* If we are not emitting relocations for a
11820 general dynamic reference, then we must be in a
11821 static link or an executable link with the
11822 symbol binding locally. Mark it as belonging
11823 to module 1, the executable. */
11824 bfd_put_32 (output_bfd
, 1,
11825 sgot
->contents
+ cur_off
);
11826 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
11827 sgot
->contents
+ cur_off
+ 4);
11833 if (tls_type
& GOT_TLS_IE
)
11838 outrel
.r_addend
= value
- dtpoff_base (info
);
11840 outrel
.r_addend
= 0;
11841 outrel
.r_offset
= (sgot
->output_section
->vma
11842 + sgot
->output_offset
11844 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
11846 if (globals
->use_rel
)
11847 bfd_put_32 (output_bfd
, outrel
.r_addend
,
11848 sgot
->contents
+ cur_off
);
11850 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
11853 bfd_put_32 (output_bfd
, tpoff (info
, value
),
11854 sgot
->contents
+ cur_off
);
11859 h
->got
.offset
|= 1;
11861 local_got_offsets
[r_symndx
] |= 1;
11864 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
&& r_type
!= R_ARM_TLS_GD32_FDPIC
)
11866 else if (tls_type
& GOT_TLS_GDESC
)
11869 if (ELF32_R_TYPE (rel
->r_info
) == R_ARM_TLS_CALL
11870 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_THM_TLS_CALL
)
11872 bfd_signed_vma offset
;
11873 /* TLS stubs are arm mode. The original symbol is a
11874 data object, so branch_type is bogus. */
11875 branch_type
= ST_BRANCH_TO_ARM
;
11876 enum elf32_arm_stub_type stub_type
11877 = arm_type_of_stub (info
, input_section
, rel
,
11878 st_type
, &branch_type
,
11879 (struct elf32_arm_link_hash_entry
*)h
,
11880 globals
->tls_trampoline
, globals
->root
.splt
,
11881 input_bfd
, sym_name
);
11883 if (stub_type
!= arm_stub_none
)
11885 struct elf32_arm_stub_hash_entry
*stub_entry
11886 = elf32_arm_get_stub_entry
11887 (input_section
, globals
->root
.splt
, 0, rel
,
11888 globals
, stub_type
);
11889 offset
= (stub_entry
->stub_offset
11890 + stub_entry
->stub_sec
->output_offset
11891 + stub_entry
->stub_sec
->output_section
->vma
);
11894 offset
= (globals
->root
.splt
->output_section
->vma
11895 + globals
->root
.splt
->output_offset
11896 + globals
->tls_trampoline
);
11898 if (ELF32_R_TYPE (rel
->r_info
) == R_ARM_TLS_CALL
)
11900 unsigned long inst
;
11902 offset
-= (input_section
->output_section
->vma
11903 + input_section
->output_offset
11904 + rel
->r_offset
+ 8);
11906 inst
= offset
>> 2;
11907 inst
&= 0x00ffffff;
11908 value
= inst
| (globals
->use_blx
? 0xfa000000 : 0xeb000000);
11912 /* Thumb blx encodes the offset in a complicated
11914 unsigned upper_insn
, lower_insn
;
11917 offset
-= (input_section
->output_section
->vma
11918 + input_section
->output_offset
11919 + rel
->r_offset
+ 4);
11921 if (stub_type
!= arm_stub_none
11922 && arm_stub_is_thumb (stub_type
))
11924 lower_insn
= 0xd000;
11928 lower_insn
= 0xc000;
11929 /* Round up the offset to a word boundary. */
11930 offset
= (offset
+ 2) & ~2;
11934 upper_insn
= (0xf000
11935 | ((offset
>> 12) & 0x3ff)
11937 lower_insn
|= (((!((offset
>> 23) & 1)) ^ neg
) << 13)
11938 | (((!((offset
>> 22) & 1)) ^ neg
) << 11)
11939 | ((offset
>> 1) & 0x7ff);
11940 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
11941 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
11942 return bfd_reloc_ok
;
11945 /* These relocations needs special care, as besides the fact
11946 they point somewhere in .gotplt, the addend must be
11947 adjusted accordingly depending on the type of instruction
11949 else if ((r_type
== R_ARM_TLS_GOTDESC
) && (tls_type
& GOT_TLS_GDESC
))
11951 unsigned long data
, insn
;
11954 data
= bfd_get_signed_32 (input_bfd
, hit_data
);
11960 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
- data
);
11961 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
11962 insn
= (insn
<< 16)
11963 | bfd_get_16 (input_bfd
,
11964 contents
+ rel
->r_offset
- data
+ 2);
11965 if ((insn
& 0xf800c000) == 0xf000c000)
11968 else if ((insn
& 0xffffff00) == 0x4400)
11974 /* xgettext:c-format */
11975 (_("%pB(%pA+%#" PRIx64
"): "
11976 "unexpected %s instruction '%#lx' "
11977 "referenced by TLS_GOTDESC"),
11978 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
11980 return bfd_reloc_notsupported
;
11985 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
- data
);
11987 switch (insn
>> 24)
11989 case 0xeb: /* bl */
11990 case 0xfa: /* blx */
11994 case 0xe0: /* add */
12000 /* xgettext:c-format */
12001 (_("%pB(%pA+%#" PRIx64
"): "
12002 "unexpected %s instruction '%#lx' "
12003 "referenced by TLS_GOTDESC"),
12004 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
12006 return bfd_reloc_notsupported
;
12010 value
+= ((globals
->root
.sgotplt
->output_section
->vma
12011 + globals
->root
.sgotplt
->output_offset
+ off
)
12012 - (input_section
->output_section
->vma
12013 + input_section
->output_offset
12015 + globals
->sgotplt_jump_table_size
);
12018 value
= ((globals
->root
.sgot
->output_section
->vma
12019 + globals
->root
.sgot
->output_offset
+ off
)
12020 - (input_section
->output_section
->vma
12021 + input_section
->output_offset
+ rel
->r_offset
));
12023 if (globals
->fdpic_p
&& (r_type
== R_ARM_TLS_GD32_FDPIC
||
12024 r_type
== R_ARM_TLS_IE32_FDPIC
))
12026 /* For FDPIC relocations, resolve to the offset of the GOT
12027 entry from the start of GOT. */
12028 bfd_put_32 (output_bfd
,
12029 globals
->root
.sgot
->output_offset
+ off
,
12030 contents
+ rel
->r_offset
);
12032 return bfd_reloc_ok
;
12036 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
12037 contents
, rel
->r_offset
, value
,
12042 case R_ARM_TLS_LE32
:
12043 if (bfd_link_dll (info
))
12046 /* xgettext:c-format */
12047 (_("%pB(%pA+%#" PRIx64
"): %s relocation not permitted "
12048 "in shared object"),
12049 input_bfd
, input_section
, (uint64_t) rel
->r_offset
, howto
->name
);
12050 return bfd_reloc_notsupported
;
12053 value
= tpoff (info
, value
);
12055 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
12056 contents
, rel
->r_offset
, value
,
12060 if (globals
->fix_v4bx
)
12062 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
12064 /* Ensure that we have a BX instruction. */
12065 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
12067 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
12069 /* Branch to veneer. */
12071 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
12072 glue_addr
-= input_section
->output_section
->vma
12073 + input_section
->output_offset
12074 + rel
->r_offset
+ 8;
12075 insn
= (insn
& 0xf0000000) | 0x0a000000
12076 | ((glue_addr
>> 2) & 0x00ffffff);
12080 /* Preserve Rm (lowest four bits) and the condition code
12081 (highest four bits). Other bits encode MOV PC,Rm. */
12082 insn
= (insn
& 0xf000000f) | 0x01a0f000;
12085 bfd_put_32 (input_bfd
, insn
, hit_data
);
12087 return bfd_reloc_ok
;
12089 case R_ARM_MOVW_ABS_NC
:
12090 case R_ARM_MOVT_ABS
:
12091 case R_ARM_MOVW_PREL_NC
:
12092 case R_ARM_MOVT_PREL
:
12093 /* Until we properly support segment-base-relative addressing then
12094 we assume the segment base to be zero, as for the group relocations.
12095 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12096 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12097 case R_ARM_MOVW_BREL_NC
:
12098 case R_ARM_MOVW_BREL
:
12099 case R_ARM_MOVT_BREL
:
12101 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
12103 if (globals
->use_rel
)
12105 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
12106 signed_addend
= (addend
^ 0x8000) - 0x8000;
12109 value
+= signed_addend
;
12111 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
12112 value
-= (input_section
->output_section
->vma
12113 + input_section
->output_offset
+ rel
->r_offset
);
12115 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
12116 return bfd_reloc_overflow
;
12118 if (branch_type
== ST_BRANCH_TO_THUMB
)
12121 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
12122 || r_type
== R_ARM_MOVT_BREL
)
12125 insn
&= 0xfff0f000;
12126 insn
|= value
& 0xfff;
12127 insn
|= (value
& 0xf000) << 4;
12128 bfd_put_32 (input_bfd
, insn
, hit_data
);
12130 return bfd_reloc_ok
;
12132 case R_ARM_THM_MOVW_ABS_NC
:
12133 case R_ARM_THM_MOVT_ABS
:
12134 case R_ARM_THM_MOVW_PREL_NC
:
12135 case R_ARM_THM_MOVT_PREL
:
12136 /* Until we properly support segment-base-relative addressing then
12137 we assume the segment base to be zero, as for the above relocations.
12138 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12139 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12140 as R_ARM_THM_MOVT_ABS. */
12141 case R_ARM_THM_MOVW_BREL_NC
:
12142 case R_ARM_THM_MOVW_BREL
:
12143 case R_ARM_THM_MOVT_BREL
:
12147 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
12148 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
12150 if (globals
->use_rel
)
12152 addend
= ((insn
>> 4) & 0xf000)
12153 | ((insn
>> 15) & 0x0800)
12154 | ((insn
>> 4) & 0x0700)
12156 signed_addend
= (addend
^ 0x8000) - 0x8000;
12159 value
+= signed_addend
;
12161 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
12162 value
-= (input_section
->output_section
->vma
12163 + input_section
->output_offset
+ rel
->r_offset
);
12165 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
12166 return bfd_reloc_overflow
;
12168 if (branch_type
== ST_BRANCH_TO_THUMB
)
12171 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
12172 || r_type
== R_ARM_THM_MOVT_BREL
)
12175 insn
&= 0xfbf08f00;
12176 insn
|= (value
& 0xf000) << 4;
12177 insn
|= (value
& 0x0800) << 15;
12178 insn
|= (value
& 0x0700) << 4;
12179 insn
|= (value
& 0x00ff);
12181 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
12182 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
12184 return bfd_reloc_ok
;
12186 case R_ARM_ALU_PC_G0_NC
:
12187 case R_ARM_ALU_PC_G1_NC
:
12188 case R_ARM_ALU_PC_G0
:
12189 case R_ARM_ALU_PC_G1
:
12190 case R_ARM_ALU_PC_G2
:
12191 case R_ARM_ALU_SB_G0_NC
:
12192 case R_ARM_ALU_SB_G1_NC
:
12193 case R_ARM_ALU_SB_G0
:
12194 case R_ARM_ALU_SB_G1
:
12195 case R_ARM_ALU_SB_G2
:
12197 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
12198 bfd_vma pc
= input_section
->output_section
->vma
12199 + input_section
->output_offset
+ rel
->r_offset
;
12200 /* sb is the origin of the *segment* containing the symbol. */
12201 bfd_vma sb
= sym_sec
? sym_sec
->output_section
->vma
: 0;
12204 bfd_signed_vma signed_value
;
12207 /* Determine which group of bits to select. */
12210 case R_ARM_ALU_PC_G0_NC
:
12211 case R_ARM_ALU_PC_G0
:
12212 case R_ARM_ALU_SB_G0_NC
:
12213 case R_ARM_ALU_SB_G0
:
12217 case R_ARM_ALU_PC_G1_NC
:
12218 case R_ARM_ALU_PC_G1
:
12219 case R_ARM_ALU_SB_G1_NC
:
12220 case R_ARM_ALU_SB_G1
:
12224 case R_ARM_ALU_PC_G2
:
12225 case R_ARM_ALU_SB_G2
:
12233 /* If REL, extract the addend from the insn. If RELA, it will
12234 have already been fetched for us. */
12235 if (globals
->use_rel
)
12238 bfd_vma constant
= insn
& 0xff;
12239 bfd_vma rotation
= (insn
& 0xf00) >> 8;
12242 signed_addend
= constant
;
12245 /* Compensate for the fact that in the instruction, the
12246 rotation is stored in multiples of 2 bits. */
12249 /* Rotate "constant" right by "rotation" bits. */
12250 signed_addend
= (constant
>> rotation
) |
12251 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
12254 /* Determine if the instruction is an ADD or a SUB.
12255 (For REL, this determines the sign of the addend.) */
12256 negative
= identify_add_or_sub (insn
);
12260 /* xgettext:c-format */
12261 (_("%pB(%pA+%#" PRIx64
"): only ADD or SUB instructions "
12262 "are allowed for ALU group relocations"),
12263 input_bfd
, input_section
, (uint64_t) rel
->r_offset
);
12264 return bfd_reloc_overflow
;
12267 signed_addend
*= negative
;
12270 /* Compute the value (X) to go in the place. */
12271 if (r_type
== R_ARM_ALU_PC_G0_NC
12272 || r_type
== R_ARM_ALU_PC_G1_NC
12273 || r_type
== R_ARM_ALU_PC_G0
12274 || r_type
== R_ARM_ALU_PC_G1
12275 || r_type
== R_ARM_ALU_PC_G2
)
12277 signed_value
= value
- pc
+ signed_addend
;
12279 /* Section base relative. */
12280 signed_value
= value
- sb
+ signed_addend
;
12282 /* If the target symbol is a Thumb function, then set the
12283 Thumb bit in the address. */
12284 if (branch_type
== ST_BRANCH_TO_THUMB
)
12287 /* Calculate the value of the relevant G_n, in encoded
12288 constant-with-rotation format. */
12289 g_n
= calculate_group_reloc_mask (signed_value
< 0 ? - signed_value
: signed_value
,
12292 /* Check for overflow if required. */
12293 if ((r_type
== R_ARM_ALU_PC_G0
12294 || r_type
== R_ARM_ALU_PC_G1
12295 || r_type
== R_ARM_ALU_PC_G2
12296 || r_type
== R_ARM_ALU_SB_G0
12297 || r_type
== R_ARM_ALU_SB_G1
12298 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
12301 /* xgettext:c-format */
12302 (_("%pB(%pA+%#" PRIx64
"): overflow whilst "
12303 "splitting %#" PRIx64
" for group relocation %s"),
12304 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
12305 (uint64_t) (signed_value
< 0 ? -signed_value
: signed_value
),
12307 return bfd_reloc_overflow
;
12310 /* Mask out the value and the ADD/SUB part of the opcode; take care
12311 not to destroy the S bit. */
12312 insn
&= 0xff1ff000;
12314 /* Set the opcode according to whether the value to go in the
12315 place is negative. */
12316 if (signed_value
< 0)
12321 /* Encode the offset. */
12324 bfd_put_32 (input_bfd
, insn
, hit_data
);
12326 return bfd_reloc_ok
;
12328 case R_ARM_LDR_PC_G0
:
12329 case R_ARM_LDR_PC_G1
:
12330 case R_ARM_LDR_PC_G2
:
12331 case R_ARM_LDR_SB_G0
:
12332 case R_ARM_LDR_SB_G1
:
12333 case R_ARM_LDR_SB_G2
:
12335 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
12336 bfd_vma pc
= input_section
->output_section
->vma
12337 + input_section
->output_offset
+ rel
->r_offset
;
12338 /* sb is the origin of the *segment* containing the symbol. */
12339 bfd_vma sb
= sym_sec
? sym_sec
->output_section
->vma
: 0;
12341 bfd_signed_vma signed_value
;
12344 /* Determine which groups of bits to calculate. */
12347 case R_ARM_LDR_PC_G0
:
12348 case R_ARM_LDR_SB_G0
:
12352 case R_ARM_LDR_PC_G1
:
12353 case R_ARM_LDR_SB_G1
:
12357 case R_ARM_LDR_PC_G2
:
12358 case R_ARM_LDR_SB_G2
:
12366 /* If REL, extract the addend from the insn. If RELA, it will
12367 have already been fetched for us. */
12368 if (globals
->use_rel
)
12370 int negative
= (insn
& (1 << 23)) ? 1 : -1;
12371 signed_addend
= negative
* (insn
& 0xfff);
12374 /* Compute the value (X) to go in the place. */
12375 if (r_type
== R_ARM_LDR_PC_G0
12376 || r_type
== R_ARM_LDR_PC_G1
12377 || r_type
== R_ARM_LDR_PC_G2
)
12379 signed_value
= value
- pc
+ signed_addend
;
12381 /* Section base relative. */
12382 signed_value
= value
- sb
+ signed_addend
;
12384 /* Calculate the value of the relevant G_{n-1} to obtain
12385 the residual at that stage. */
12386 calculate_group_reloc_mask (signed_value
< 0 ? - signed_value
: signed_value
,
12387 group
- 1, &residual
);
12389 /* Check for overflow. */
12390 if (residual
>= 0x1000)
12393 /* xgettext:c-format */
12394 (_("%pB(%pA+%#" PRIx64
"): overflow whilst "
12395 "splitting %#" PRIx64
" for group relocation %s"),
12396 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
12397 (uint64_t) (signed_value
< 0 ? -signed_value
: signed_value
),
12399 return bfd_reloc_overflow
;
12402 /* Mask out the value and U bit. */
12403 insn
&= 0xff7ff000;
12405 /* Set the U bit if the value to go in the place is non-negative. */
12406 if (signed_value
>= 0)
12409 /* Encode the offset. */
12412 bfd_put_32 (input_bfd
, insn
, hit_data
);
12414 return bfd_reloc_ok
;
12416 case R_ARM_LDRS_PC_G0
:
12417 case R_ARM_LDRS_PC_G1
:
12418 case R_ARM_LDRS_PC_G2
:
12419 case R_ARM_LDRS_SB_G0
:
12420 case R_ARM_LDRS_SB_G1
:
12421 case R_ARM_LDRS_SB_G2
:
12423 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
12424 bfd_vma pc
= input_section
->output_section
->vma
12425 + input_section
->output_offset
+ rel
->r_offset
;
12426 /* sb is the origin of the *segment* containing the symbol. */
12427 bfd_vma sb
= sym_sec
? sym_sec
->output_section
->vma
: 0;
12429 bfd_signed_vma signed_value
;
12432 /* Determine which groups of bits to calculate. */
12435 case R_ARM_LDRS_PC_G0
:
12436 case R_ARM_LDRS_SB_G0
:
12440 case R_ARM_LDRS_PC_G1
:
12441 case R_ARM_LDRS_SB_G1
:
12445 case R_ARM_LDRS_PC_G2
:
12446 case R_ARM_LDRS_SB_G2
:
12454 /* If REL, extract the addend from the insn. If RELA, it will
12455 have already been fetched for us. */
12456 if (globals
->use_rel
)
12458 int negative
= (insn
& (1 << 23)) ? 1 : -1;
12459 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
12462 /* Compute the value (X) to go in the place. */
12463 if (r_type
== R_ARM_LDRS_PC_G0
12464 || r_type
== R_ARM_LDRS_PC_G1
12465 || r_type
== R_ARM_LDRS_PC_G2
)
12467 signed_value
= value
- pc
+ signed_addend
;
12469 /* Section base relative. */
12470 signed_value
= value
- sb
+ signed_addend
;
12472 /* Calculate the value of the relevant G_{n-1} to obtain
12473 the residual at that stage. */
12474 calculate_group_reloc_mask (signed_value
< 0 ? - signed_value
: signed_value
,
12475 group
- 1, &residual
);
12477 /* Check for overflow. */
12478 if (residual
>= 0x100)
12481 /* xgettext:c-format */
12482 (_("%pB(%pA+%#" PRIx64
"): overflow whilst "
12483 "splitting %#" PRIx64
" for group relocation %s"),
12484 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
12485 (uint64_t) (signed_value
< 0 ? -signed_value
: signed_value
),
12487 return bfd_reloc_overflow
;
12490 /* Mask out the value and U bit. */
12491 insn
&= 0xff7ff0f0;
12493 /* Set the U bit if the value to go in the place is non-negative. */
12494 if (signed_value
>= 0)
12497 /* Encode the offset. */
12498 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
12500 bfd_put_32 (input_bfd
, insn
, hit_data
);
12502 return bfd_reloc_ok
;
12504 case R_ARM_LDC_PC_G0
:
12505 case R_ARM_LDC_PC_G1
:
12506 case R_ARM_LDC_PC_G2
:
12507 case R_ARM_LDC_SB_G0
:
12508 case R_ARM_LDC_SB_G1
:
12509 case R_ARM_LDC_SB_G2
:
12511 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
12512 bfd_vma pc
= input_section
->output_section
->vma
12513 + input_section
->output_offset
+ rel
->r_offset
;
12514 /* sb is the origin of the *segment* containing the symbol. */
12515 bfd_vma sb
= sym_sec
? sym_sec
->output_section
->vma
: 0;
12517 bfd_signed_vma signed_value
;
12520 /* Determine which groups of bits to calculate. */
12523 case R_ARM_LDC_PC_G0
:
12524 case R_ARM_LDC_SB_G0
:
12528 case R_ARM_LDC_PC_G1
:
12529 case R_ARM_LDC_SB_G1
:
12533 case R_ARM_LDC_PC_G2
:
12534 case R_ARM_LDC_SB_G2
:
12542 /* If REL, extract the addend from the insn. If RELA, it will
12543 have already been fetched for us. */
12544 if (globals
->use_rel
)
12546 int negative
= (insn
& (1 << 23)) ? 1 : -1;
12547 signed_addend
= negative
* ((insn
& 0xff) << 2);
12550 /* Compute the value (X) to go in the place. */
12551 if (r_type
== R_ARM_LDC_PC_G0
12552 || r_type
== R_ARM_LDC_PC_G1
12553 || r_type
== R_ARM_LDC_PC_G2
)
12555 signed_value
= value
- pc
+ signed_addend
;
12557 /* Section base relative. */
12558 signed_value
= value
- sb
+ signed_addend
;
12560 /* Calculate the value of the relevant G_{n-1} to obtain
12561 the residual at that stage. */
12562 calculate_group_reloc_mask (signed_value
< 0 ? - signed_value
: signed_value
,
12563 group
- 1, &residual
);
12565 /* Check for overflow. (The absolute value to go in the place must be
12566 divisible by four and, after having been divided by four, must
12567 fit in eight bits.) */
12568 if ((residual
& 0x3) != 0 || residual
>= 0x400)
12571 /* xgettext:c-format */
12572 (_("%pB(%pA+%#" PRIx64
"): overflow whilst "
12573 "splitting %#" PRIx64
" for group relocation %s"),
12574 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
12575 (uint64_t) (signed_value
< 0 ? -signed_value
: signed_value
),
12577 return bfd_reloc_overflow
;
12580 /* Mask out the value and U bit. */
12581 insn
&= 0xff7fff00;
12583 /* Set the U bit if the value to go in the place is non-negative. */
12584 if (signed_value
>= 0)
12587 /* Encode the offset. */
12588 insn
|= residual
>> 2;
12590 bfd_put_32 (input_bfd
, insn
, hit_data
);
12592 return bfd_reloc_ok
;
12594 case R_ARM_THM_ALU_ABS_G0_NC
:
12595 case R_ARM_THM_ALU_ABS_G1_NC
:
12596 case R_ARM_THM_ALU_ABS_G2_NC
:
12597 case R_ARM_THM_ALU_ABS_G3_NC
:
12599 const int shift_array
[4] = {0, 8, 16, 24};
12600 bfd_vma insn
= bfd_get_16 (input_bfd
, hit_data
);
12601 bfd_vma addr
= value
;
12602 int shift
= shift_array
[r_type
- R_ARM_THM_ALU_ABS_G0_NC
];
12604 /* Compute address. */
12605 if (globals
->use_rel
)
12606 signed_addend
= insn
& 0xff;
12607 addr
+= signed_addend
;
12608 if (branch_type
== ST_BRANCH_TO_THUMB
)
12610 /* Clean imm8 insn. */
12612 /* And update with correct part of address. */
12613 insn
|= (addr
>> shift
) & 0xff;
12615 bfd_put_16 (input_bfd
, insn
, hit_data
);
12618 *unresolved_reloc_p
= false;
12619 return bfd_reloc_ok
;
12621 case R_ARM_GOTOFFFUNCDESC
:
12625 struct fdpic_local
*local_fdpic_cnts
= elf32_arm_local_fdpic_cnts (input_bfd
);
12626 int dynindx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
12628 if (r_symndx
>= elf32_arm_num_entries (input_bfd
))
12630 * error_message
= _("local symbol index too big");
12631 return bfd_reloc_dangerous
;
12634 int offset
= local_fdpic_cnts
[r_symndx
].funcdesc_offset
& ~1;
12635 bfd_vma addr
= dynreloc_value
- sym_sec
->output_section
->vma
;
12638 if (bfd_link_pic (info
) && dynindx
== 0)
12640 * error_message
= _("no dynamic index information available");
12641 return bfd_reloc_dangerous
;
12644 /* Resolve relocation. */
12645 bfd_put_32 (output_bfd
, (offset
+ sgot
->output_offset
)
12646 , contents
+ rel
->r_offset
);
12647 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12649 arm_elf_fill_funcdesc (output_bfd
, info
,
12650 &local_fdpic_cnts
[r_symndx
].funcdesc_offset
,
12651 dynindx
, offset
, addr
, dynreloc_value
, seg
);
12656 int offset
= eh
->fdpic_cnts
.funcdesc_offset
& ~1;
12660 /* For static binaries, sym_sec can be null. */
12663 dynindx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
12664 addr
= dynreloc_value
- sym_sec
->output_section
->vma
;
12672 if (bfd_link_pic (info
) && dynindx
== 0)
12674 * error_message
= _("no dynamic index information available");
12675 return bfd_reloc_dangerous
;
12678 /* This case cannot occur since funcdesc is allocated by
12679 the dynamic loader so we cannot resolve the relocation. */
12680 if (h
->dynindx
!= -1)
12682 * error_message
= _("invalid dynamic index");
12683 return bfd_reloc_dangerous
;
12686 /* Resolve relocation. */
12687 bfd_put_32 (output_bfd
, (offset
+ sgot
->output_offset
),
12688 contents
+ rel
->r_offset
);
12689 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12690 arm_elf_fill_funcdesc (output_bfd
, info
,
12691 &eh
->fdpic_cnts
.funcdesc_offset
,
12692 dynindx
, offset
, addr
, dynreloc_value
, seg
);
12695 *unresolved_reloc_p
= false;
12696 return bfd_reloc_ok
;
12698 case R_ARM_GOTFUNCDESC
:
12702 Elf_Internal_Rela outrel
;
12704 /* Resolve relocation. */
12705 bfd_put_32 (output_bfd
, ((eh
->fdpic_cnts
.gotfuncdesc_offset
& ~1)
12706 + sgot
->output_offset
),
12707 contents
+ rel
->r_offset
);
12708 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12709 if (h
->dynindx
== -1)
12712 int offset
= eh
->fdpic_cnts
.funcdesc_offset
& ~1;
12716 /* For static binaries sym_sec can be null. */
12719 dynindx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
12720 addr
= dynreloc_value
- sym_sec
->output_section
->vma
;
12728 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12729 arm_elf_fill_funcdesc (output_bfd
, info
,
12730 &eh
->fdpic_cnts
.funcdesc_offset
,
12731 dynindx
, offset
, addr
, dynreloc_value
, seg
);
12734 /* Add a dynamic relocation on GOT entry if not already done. */
12735 if ((eh
->fdpic_cnts
.gotfuncdesc_offset
& 1) == 0)
12737 if (h
->dynindx
== -1)
12739 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
12740 if (h
->root
.type
== bfd_link_hash_undefweak
)
12741 bfd_put_32 (output_bfd
, 0, sgot
->contents
12742 + (eh
->fdpic_cnts
.gotfuncdesc_offset
& ~1));
12744 bfd_put_32 (output_bfd
, sgot
->output_section
->vma
12745 + sgot
->output_offset
12746 + (eh
->fdpic_cnts
.funcdesc_offset
& ~1),
12748 + (eh
->fdpic_cnts
.gotfuncdesc_offset
& ~1));
12752 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_FUNCDESC
);
12754 outrel
.r_offset
= sgot
->output_section
->vma
12755 + sgot
->output_offset
12756 + (eh
->fdpic_cnts
.gotfuncdesc_offset
& ~1);
12757 outrel
.r_addend
= 0;
12758 if (h
->dynindx
== -1 && !bfd_link_pic (info
))
12759 if (h
->root
.type
== bfd_link_hash_undefweak
)
12760 arm_elf_add_rofixup (output_bfd
, globals
->srofixup
, -1);
12762 arm_elf_add_rofixup (output_bfd
, globals
->srofixup
,
12765 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
12766 eh
->fdpic_cnts
.gotfuncdesc_offset
|= 1;
12771 /* Such relocation on static function should not have been
12772 emitted by the compiler. */
12773 return bfd_reloc_notsupported
;
12776 *unresolved_reloc_p
= false;
12777 return bfd_reloc_ok
;
12779 case R_ARM_FUNCDESC
:
12783 struct fdpic_local
*local_fdpic_cnts
= elf32_arm_local_fdpic_cnts (input_bfd
);
12784 Elf_Internal_Rela outrel
;
12785 int dynindx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
12787 if (r_symndx
>= elf32_arm_num_entries (input_bfd
))
12789 * error_message
= _("local symbol index too big");
12790 return bfd_reloc_dangerous
;
12793 int offset
= local_fdpic_cnts
[r_symndx
].funcdesc_offset
& ~1;
12794 bfd_vma addr
= dynreloc_value
- sym_sec
->output_section
->vma
;
12797 if (bfd_link_pic (info
) && dynindx
== 0)
12799 * error_message
= _("dynamic index information not available");
12800 return bfd_reloc_dangerous
;
12803 /* Replace static FUNCDESC relocation with a
12804 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12806 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
12807 outrel
.r_offset
= input_section
->output_section
->vma
12808 + input_section
->output_offset
+ rel
->r_offset
;
12809 outrel
.r_addend
= 0;
12810 if (bfd_link_pic (info
))
12811 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
12813 arm_elf_add_rofixup (output_bfd
, globals
->srofixup
, outrel
.r_offset
);
12815 bfd_put_32 (input_bfd
, sgot
->output_section
->vma
12816 + sgot
->output_offset
+ offset
, hit_data
);
12818 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12819 arm_elf_fill_funcdesc (output_bfd
, info
,
12820 &local_fdpic_cnts
[r_symndx
].funcdesc_offset
,
12821 dynindx
, offset
, addr
, dynreloc_value
, seg
);
12825 if (h
->dynindx
== -1)
12828 int offset
= eh
->fdpic_cnts
.funcdesc_offset
& ~1;
12831 Elf_Internal_Rela outrel
;
12833 /* For static binaries sym_sec can be null. */
12836 dynindx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
12837 addr
= dynreloc_value
- sym_sec
->output_section
->vma
;
12845 if (bfd_link_pic (info
) && dynindx
== 0)
12848 /* Replace static FUNCDESC relocation with a
12849 R_ARM_RELATIVE dynamic relocation. */
12850 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
12851 outrel
.r_offset
= input_section
->output_section
->vma
12852 + input_section
->output_offset
+ rel
->r_offset
;
12853 outrel
.r_addend
= 0;
12854 if (bfd_link_pic (info
))
12855 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
12857 arm_elf_add_rofixup (output_bfd
, globals
->srofixup
, outrel
.r_offset
);
12859 bfd_put_32 (input_bfd
, sgot
->output_section
->vma
12860 + sgot
->output_offset
+ offset
, hit_data
);
12862 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12863 arm_elf_fill_funcdesc (output_bfd
, info
,
12864 &eh
->fdpic_cnts
.funcdesc_offset
,
12865 dynindx
, offset
, addr
, dynreloc_value
, seg
);
12869 Elf_Internal_Rela outrel
;
12871 /* Add a dynamic relocation. */
12872 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_FUNCDESC
);
12873 outrel
.r_offset
= input_section
->output_section
->vma
12874 + input_section
->output_offset
+ rel
->r_offset
;
12875 outrel
.r_addend
= 0;
12876 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
12880 *unresolved_reloc_p
= false;
12881 return bfd_reloc_ok
;
12883 case R_ARM_THM_BF16
:
12885 bfd_vma relocation
;
12886 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
12887 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
12889 if (globals
->use_rel
)
12891 bfd_vma immA
= (upper_insn
& 0x001f);
12892 bfd_vma immB
= (lower_insn
& 0x07fe) >> 1;
12893 bfd_vma immC
= (lower_insn
& 0x0800) >> 11;
12894 addend
= (immA
<< 12);
12895 addend
|= (immB
<< 2);
12896 addend
|= (immC
<< 1);
12899 signed_addend
= (addend
& 0x10000) ? addend
- (1 << 17) : addend
;
12902 relocation
= value
+ signed_addend
;
12903 relocation
-= (input_section
->output_section
->vma
12904 + input_section
->output_offset
12907 /* Put RELOCATION back into the insn. */
12909 bfd_vma immA
= (relocation
& 0x0001f000) >> 12;
12910 bfd_vma immB
= (relocation
& 0x00000ffc) >> 2;
12911 bfd_vma immC
= (relocation
& 0x00000002) >> 1;
12913 upper_insn
= (upper_insn
& 0xffe0) | immA
;
12914 lower_insn
= (lower_insn
& 0xf001) | (immC
<< 11) | (immB
<< 1);
12917 /* Put the relocated value back in the object file: */
12918 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
12919 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
12921 return bfd_reloc_ok
;
12924 case R_ARM_THM_BF12
:
12926 bfd_vma relocation
;
12927 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
12928 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
12930 if (globals
->use_rel
)
12932 bfd_vma immA
= (upper_insn
& 0x0001);
12933 bfd_vma immB
= (lower_insn
& 0x07fe) >> 1;
12934 bfd_vma immC
= (lower_insn
& 0x0800) >> 11;
12935 addend
= (immA
<< 12);
12936 addend
|= (immB
<< 2);
12937 addend
|= (immC
<< 1);
12940 addend
= (addend
& 0x1000) ? addend
- (1 << 13) : addend
;
12941 signed_addend
= addend
;
12944 relocation
= value
+ signed_addend
;
12945 relocation
-= (input_section
->output_section
->vma
12946 + input_section
->output_offset
12949 /* Put RELOCATION back into the insn. */
12951 bfd_vma immA
= (relocation
& 0x00001000) >> 12;
12952 bfd_vma immB
= (relocation
& 0x00000ffc) >> 2;
12953 bfd_vma immC
= (relocation
& 0x00000002) >> 1;
12955 upper_insn
= (upper_insn
& 0xfffe) | immA
;
12956 lower_insn
= (lower_insn
& 0xf001) | (immC
<< 11) | (immB
<< 1);
12959 /* Put the relocated value back in the object file: */
12960 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
12961 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
12963 return bfd_reloc_ok
;
12966 case R_ARM_THM_BF18
:
12968 bfd_vma relocation
;
12969 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
12970 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
12972 if (globals
->use_rel
)
12974 bfd_vma immA
= (upper_insn
& 0x007f);
12975 bfd_vma immB
= (lower_insn
& 0x07fe) >> 1;
12976 bfd_vma immC
= (lower_insn
& 0x0800) >> 11;
12977 addend
= (immA
<< 12);
12978 addend
|= (immB
<< 2);
12979 addend
|= (immC
<< 1);
12982 addend
= (addend
& 0x40000) ? addend
- (1 << 19) : addend
;
12983 signed_addend
= addend
;
12986 relocation
= value
+ signed_addend
;
12987 relocation
-= (input_section
->output_section
->vma
12988 + input_section
->output_offset
12991 /* Put RELOCATION back into the insn. */
12993 bfd_vma immA
= (relocation
& 0x0007f000) >> 12;
12994 bfd_vma immB
= (relocation
& 0x00000ffc) >> 2;
12995 bfd_vma immC
= (relocation
& 0x00000002) >> 1;
12997 upper_insn
= (upper_insn
& 0xff80) | immA
;
12998 lower_insn
= (lower_insn
& 0xf001) | (immC
<< 11) | (immB
<< 1);
13001 /* Put the relocated value back in the object file: */
13002 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
13003 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
13005 return bfd_reloc_ok
;
13009 return bfd_reloc_notsupported
;
13013 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13015 arm_add_to_rel (bfd
* abfd
,
13016 bfd_byte
* address
,
13017 reloc_howto_type
* howto
,
13018 bfd_signed_vma increment
)
13020 bfd_signed_vma addend
;
13022 if (howto
->type
== R_ARM_THM_CALL
13023 || howto
->type
== R_ARM_THM_JUMP24
)
13025 int upper_insn
, lower_insn
;
13028 upper_insn
= bfd_get_16 (abfd
, address
);
13029 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
13030 upper
= upper_insn
& 0x7ff;
13031 lower
= lower_insn
& 0x7ff;
13033 addend
= (upper
<< 12) | (lower
<< 1);
13034 addend
+= increment
;
13037 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
13038 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
13040 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
13041 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
13047 contents
= bfd_get_32 (abfd
, address
);
13049 /* Get the (signed) value from the instruction. */
13050 addend
= contents
& howto
->src_mask
;
13051 if (addend
& ((howto
->src_mask
+ 1) >> 1))
13053 bfd_signed_vma mask
;
13056 mask
&= ~ howto
->src_mask
;
13060 /* Add in the increment, (which is a byte value). */
13061 switch (howto
->type
)
13064 addend
+= increment
;
13071 addend
*= bfd_get_reloc_size (howto
);
13072 addend
+= increment
;
13074 /* Should we check for overflow here ? */
13076 /* Drop any undesired bits. */
13077 addend
>>= howto
->rightshift
;
13081 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
13083 bfd_put_32 (abfd
, contents
, address
);
13087 #define IS_ARM_TLS_RELOC(R_TYPE) \
13088 ((R_TYPE) == R_ARM_TLS_GD32 \
13089 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
13090 || (R_TYPE) == R_ARM_TLS_LDO32 \
13091 || (R_TYPE) == R_ARM_TLS_LDM32 \
13092 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
13093 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13094 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13095 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13096 || (R_TYPE) == R_ARM_TLS_LE32 \
13097 || (R_TYPE) == R_ARM_TLS_IE32 \
13098 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
13099 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13101 /* Specific set of relocations for the gnu tls dialect. */
13102 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13103 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13104 || (R_TYPE) == R_ARM_TLS_CALL \
13105 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13106 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13107 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
13109 /* Relocate an ARM ELF section. */
13112 elf32_arm_relocate_section (bfd
* output_bfd
,
13113 struct bfd_link_info
* info
,
13115 asection
* input_section
,
13116 bfd_byte
* contents
,
13117 Elf_Internal_Rela
* relocs
,
13118 Elf_Internal_Sym
* local_syms
,
13119 asection
** local_sections
)
13121 Elf_Internal_Shdr
*symtab_hdr
;
13122 struct elf_link_hash_entry
**sym_hashes
;
13123 Elf_Internal_Rela
*rel
;
13124 Elf_Internal_Rela
*relend
;
13126 struct elf32_arm_link_hash_table
* globals
;
13128 globals
= elf32_arm_hash_table (info
);
13129 if (globals
== NULL
)
13132 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
13133 sym_hashes
= elf_sym_hashes (input_bfd
);
13136 relend
= relocs
+ input_section
->reloc_count
;
13137 for (; rel
< relend
; rel
++)
13140 reloc_howto_type
* howto
;
13141 unsigned long r_symndx
;
13142 Elf_Internal_Sym
* sym
;
13144 struct elf_link_hash_entry
* h
;
13145 bfd_vma relocation
;
13146 bfd_reloc_status_type r
;
13149 bool unresolved_reloc
= false;
13150 char *error_message
= NULL
;
13152 r_symndx
= ELF32_R_SYM (rel
->r_info
);
13153 r_type
= ELF32_R_TYPE (rel
->r_info
);
13154 r_type
= arm_real_reloc_type (globals
, r_type
);
13156 if ( r_type
== R_ARM_GNU_VTENTRY
13157 || r_type
== R_ARM_GNU_VTINHERIT
)
13160 howto
= bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
13163 return _bfd_unrecognized_reloc (input_bfd
, input_section
, r_type
);
13169 if (r_symndx
< symtab_hdr
->sh_info
)
13171 sym
= local_syms
+ r_symndx
;
13172 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
13173 sec
= local_sections
[r_symndx
];
13175 /* An object file might have a reference to a local
13176 undefined symbol. This is a daft object file, but we
13177 should at least do something about it. V4BX & NONE
13178 relocations do not use the symbol and are explicitly
13179 allowed to use the undefined symbol, so allow those.
13180 Likewise for relocations against STN_UNDEF. */
13181 if (r_type
!= R_ARM_V4BX
13182 && r_type
!= R_ARM_NONE
13183 && r_symndx
!= STN_UNDEF
13184 && bfd_is_und_section (sec
)
13185 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
13186 (*info
->callbacks
->undefined_symbol
)
13187 (info
, bfd_elf_string_from_elf_section
13188 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
13189 input_bfd
, input_section
,
13190 rel
->r_offset
, true);
13192 if (globals
->use_rel
)
13194 relocation
= (sec
->output_section
->vma
13195 + sec
->output_offset
13197 if (!bfd_link_relocatable (info
)
13198 && (sec
->flags
& SEC_MERGE
)
13199 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
13202 bfd_vma addend
, value
;
13206 case R_ARM_MOVW_ABS_NC
:
13207 case R_ARM_MOVT_ABS
:
13208 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
13209 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
13210 addend
= (addend
^ 0x8000) - 0x8000;
13213 case R_ARM_THM_MOVW_ABS_NC
:
13214 case R_ARM_THM_MOVT_ABS
:
13215 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
13217 value
|= bfd_get_16 (input_bfd
,
13218 contents
+ rel
->r_offset
+ 2);
13219 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
13220 | ((value
& 0x04000000) >> 15);
13221 addend
= (addend
^ 0x8000) - 0x8000;
13225 if (howto
->rightshift
13226 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
13229 /* xgettext:c-format */
13230 (_("%pB(%pA+%#" PRIx64
"): "
13231 "%s relocation against SEC_MERGE section"),
13232 input_bfd
, input_section
,
13233 (uint64_t) rel
->r_offset
, howto
->name
);
13237 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
13239 /* Get the (signed) value from the instruction. */
13240 addend
= value
& howto
->src_mask
;
13241 if (addend
& ((howto
->src_mask
+ 1) >> 1))
13243 bfd_signed_vma mask
;
13246 mask
&= ~ howto
->src_mask
;
13254 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
13256 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
13258 /* Cases here must match those in the preceding
13259 switch statement. */
13262 case R_ARM_MOVW_ABS_NC
:
13263 case R_ARM_MOVT_ABS
:
13264 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
13265 | (addend
& 0xfff);
13266 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
13269 case R_ARM_THM_MOVW_ABS_NC
:
13270 case R_ARM_THM_MOVT_ABS
:
13271 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
13272 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
13273 bfd_put_16 (input_bfd
, value
>> 16,
13274 contents
+ rel
->r_offset
);
13275 bfd_put_16 (input_bfd
, value
,
13276 contents
+ rel
->r_offset
+ 2);
13280 value
= (value
& ~ howto
->dst_mask
)
13281 | (addend
& howto
->dst_mask
);
13282 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
13288 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
13292 bool warned
, ignored
;
13294 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
13295 r_symndx
, symtab_hdr
, sym_hashes
,
13296 h
, sec
, relocation
,
13297 unresolved_reloc
, warned
, ignored
);
13299 sym_type
= h
->type
;
13302 if (sec
!= NULL
&& discarded_section (sec
))
13303 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
13304 rel
, 1, relend
, howto
, 0, contents
);
13306 if (bfd_link_relocatable (info
))
13308 /* This is a relocatable link. We don't have to change
13309 anything, unless the reloc is against a section symbol,
13310 in which case we have to adjust according to where the
13311 section symbol winds up in the output section. */
13312 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
13314 if (globals
->use_rel
)
13315 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
13316 howto
, (bfd_signed_vma
) sec
->output_offset
);
13318 rel
->r_addend
+= sec
->output_offset
;
13324 name
= h
->root
.root
.string
;
13327 name
= (bfd_elf_string_from_elf_section
13328 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
13329 if (name
== NULL
|| *name
== '\0')
13330 name
= bfd_section_name (sec
);
13333 if (r_symndx
!= STN_UNDEF
13334 && r_type
!= R_ARM_NONE
13336 || h
->root
.type
== bfd_link_hash_defined
13337 || h
->root
.type
== bfd_link_hash_defweak
)
13338 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
13341 ((sym_type
== STT_TLS
13342 /* xgettext:c-format */
13343 ? _("%pB(%pA+%#" PRIx64
"): %s used with TLS symbol %s")
13344 /* xgettext:c-format */
13345 : _("%pB(%pA+%#" PRIx64
"): %s used with non-TLS symbol %s")),
13348 (uint64_t) rel
->r_offset
,
13353 /* We call elf32_arm_final_link_relocate unless we're completely
13354 done, i.e., the relaxation produced the final output we want,
13355 and we won't let anybody mess with it. Also, we have to do
13356 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
13357 both in relaxed and non-relaxed cases. */
13358 if ((elf32_arm_tls_transition (info
, r_type
, h
) != (unsigned)r_type
)
13359 || (IS_ARM_TLS_GNU_RELOC (r_type
)
13360 && !((h
? elf32_arm_hash_entry (h
)->tls_type
:
13361 elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
])
13364 r
= elf32_arm_tls_relax (globals
, input_bfd
, input_section
,
13365 contents
, rel
, h
== NULL
);
13366 /* This may have been marked unresolved because it came from
13367 a shared library. But we've just dealt with that. */
13368 unresolved_reloc
= 0;
13371 r
= bfd_reloc_continue
;
13373 if (r
== bfd_reloc_continue
)
13375 unsigned char branch_type
=
13376 h
? ARM_GET_SYM_BRANCH_TYPE (h
->target_internal
)
13377 : ARM_GET_SYM_BRANCH_TYPE (sym
->st_target_internal
);
13379 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
13380 input_section
, contents
, rel
,
13381 relocation
, info
, sec
, name
,
13382 sym_type
, branch_type
, h
,
13387 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13388 because such sections are not SEC_ALLOC and thus ld.so will
13389 not process them. */
13390 if (unresolved_reloc
13391 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
13393 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
13394 rel
->r_offset
) != (bfd_vma
) -1)
13397 /* xgettext:c-format */
13398 (_("%pB(%pA+%#" PRIx64
"): "
13399 "unresolvable %s relocation against symbol `%s'"),
13402 (uint64_t) rel
->r_offset
,
13404 h
->root
.root
.string
);
13408 if (r
!= bfd_reloc_ok
)
13412 case bfd_reloc_overflow
:
13413 /* If the overflowing reloc was to an undefined symbol,
13414 we have already printed one error message and there
13415 is no point complaining again. */
13416 if (!h
|| h
->root
.type
!= bfd_link_hash_undefined
)
13417 (*info
->callbacks
->reloc_overflow
)
13418 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
13419 (bfd_vma
) 0, input_bfd
, input_section
, rel
->r_offset
);
13422 case bfd_reloc_undefined
:
13423 (*info
->callbacks
->undefined_symbol
)
13424 (info
, name
, input_bfd
, input_section
, rel
->r_offset
, true);
13427 case bfd_reloc_outofrange
:
13428 error_message
= _("out of range");
13431 case bfd_reloc_notsupported
:
13432 error_message
= _("unsupported relocation");
13435 case bfd_reloc_dangerous
:
13436 /* error_message should already be set. */
13440 error_message
= _("unknown error");
13441 /* Fall through. */
13444 BFD_ASSERT (error_message
!= NULL
);
13445 (*info
->callbacks
->reloc_dangerous
)
13446 (info
, error_message
, input_bfd
, input_section
, rel
->r_offset
);
13455 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
13456 adds the edit to the start of the list. (The list must be built in order of
13457 ascending TINDEX: the function's callers are primarily responsible for
13458 maintaining that condition). */
13461 add_unwind_table_edit (arm_unwind_table_edit
**head
,
13462 arm_unwind_table_edit
**tail
,
13463 arm_unwind_edit_type type
,
13464 asection
*linked_section
,
13465 unsigned int tindex
)
13467 arm_unwind_table_edit
*new_edit
= (arm_unwind_table_edit
*)
13468 xmalloc (sizeof (arm_unwind_table_edit
));
13470 new_edit
->type
= type
;
13471 new_edit
->linked_section
= linked_section
;
13472 new_edit
->index
= tindex
;
13476 new_edit
->next
= NULL
;
13479 (*tail
)->next
= new_edit
;
13481 (*tail
) = new_edit
;
13484 (*head
) = new_edit
;
13488 new_edit
->next
= *head
;
13497 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
13499 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13502 adjust_exidx_size (asection
*exidx_sec
, int adjust
)
13506 if (!exidx_sec
->rawsize
)
13507 exidx_sec
->rawsize
= exidx_sec
->size
;
13509 bfd_set_section_size (exidx_sec
, exidx_sec
->size
+ adjust
);
13510 out_sec
= exidx_sec
->output_section
;
13511 /* Adjust size of output section. */
13512 bfd_set_section_size (out_sec
, out_sec
->size
+ adjust
);
13515 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13518 insert_cantunwind_after (asection
*text_sec
, asection
*exidx_sec
)
13520 struct _arm_elf_section_data
*exidx_arm_data
;
13522 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
13523 add_unwind_table_edit
13524 (&exidx_arm_data
->u
.exidx
.unwind_edit_list
,
13525 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
13526 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
13528 exidx_arm_data
->additional_reloc_count
++;
13530 adjust_exidx_size (exidx_sec
, 8);
13533 /* Scan .ARM.exidx tables, and create a list describing edits which should be
13534 made to those tables, such that:
13536 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13537 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
13538 codes which have been inlined into the index).
13540 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13542 The edits are applied when the tables are written
13543 (in elf32_arm_write_section). */
13546 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
13547 unsigned int num_text_sections
,
13548 struct bfd_link_info
*info
,
13549 bool merge_exidx_entries
)
13552 unsigned int last_second_word
= 0, i
;
13553 asection
*last_exidx_sec
= NULL
;
13554 asection
*last_text_sec
= NULL
;
13555 int last_unwind_type
= -1;
13557 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13559 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link
.next
)
13563 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
13565 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
13566 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
13568 if (!hdr
|| hdr
->sh_type
!= SHT_ARM_EXIDX
)
13571 if (elf_sec
->linked_to
)
13573 Elf_Internal_Shdr
*linked_hdr
13574 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
13575 struct _arm_elf_section_data
*linked_sec_arm_data
13576 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
13578 if (linked_sec_arm_data
== NULL
)
13581 /* Link this .ARM.exidx section back from the text section it
13583 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
13588 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13589 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
13590 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
13592 for (i
= 0; i
< num_text_sections
; i
++)
13594 asection
*sec
= text_section_order
[i
];
13595 asection
*exidx_sec
;
13596 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
13597 struct _arm_elf_section_data
*exidx_arm_data
;
13598 bfd_byte
*contents
= NULL
;
13599 int deleted_exidx_bytes
= 0;
13601 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
13602 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
13603 Elf_Internal_Shdr
*hdr
;
13606 if (arm_data
== NULL
)
13609 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
13610 if (exidx_sec
== NULL
)
13612 /* Section has no unwind data. */
13613 if (last_unwind_type
== 0 || !last_exidx_sec
)
13616 /* Ignore zero sized sections. */
13617 if (sec
->size
== 0)
13620 insert_cantunwind_after (last_text_sec
, last_exidx_sec
);
13621 last_unwind_type
= 0;
13625 /* Skip /DISCARD/ sections. */
13626 if (bfd_is_abs_section (exidx_sec
->output_section
))
13629 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
13630 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
13633 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
13634 if (exidx_arm_data
== NULL
)
13637 ibfd
= exidx_sec
->owner
;
13639 if (hdr
->contents
!= NULL
)
13640 contents
= hdr
->contents
;
13641 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
13645 if (last_unwind_type
> 0)
13647 unsigned int first_word
= bfd_get_32 (ibfd
, contents
);
13648 /* Add cantunwind if first unwind item does not match section
13650 if (first_word
!= sec
->vma
)
13652 insert_cantunwind_after (last_text_sec
, last_exidx_sec
);
13653 last_unwind_type
= 0;
13657 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
13659 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
13663 /* An EXIDX_CANTUNWIND entry. */
13664 if (second_word
== 1)
13666 if (last_unwind_type
== 0)
13670 /* Inlined unwinding data. Merge if equal to previous. */
13671 else if ((second_word
& 0x80000000) != 0)
13673 if (merge_exidx_entries
13674 && last_second_word
== second_word
&& last_unwind_type
== 1)
13677 last_second_word
= second_word
;
13679 /* Normal table entry. In theory we could merge these too,
13680 but duplicate entries are likely to be much less common. */
13684 if (elide
&& !bfd_link_relocatable (info
))
13686 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
13687 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
13689 deleted_exidx_bytes
+= 8;
13692 last_unwind_type
= unwind_type
;
13695 /* Free contents if we allocated it ourselves. */
13696 if (contents
!= hdr
->contents
)
13699 /* Record edits to be applied later (in elf32_arm_write_section). */
13700 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
13701 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
13703 if (deleted_exidx_bytes
> 0)
13704 adjust_exidx_size (exidx_sec
, - deleted_exidx_bytes
);
13706 last_exidx_sec
= exidx_sec
;
13707 last_text_sec
= sec
;
13710 /* Add terminating CANTUNWIND entry. */
13711 if (!bfd_link_relocatable (info
) && last_exidx_sec
13712 && last_unwind_type
!= 0)
13713 insert_cantunwind_after (last_text_sec
, last_exidx_sec
);
13719 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
13720 bfd
*ibfd
, const char *name
)
13722 asection
*sec
, *osec
;
13724 sec
= bfd_get_linker_section (ibfd
, name
);
13725 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
13728 osec
= sec
->output_section
;
13729 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
13732 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
13733 sec
->output_offset
, sec
->size
))
13740 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
13742 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
13743 asection
*sec
, *osec
;
13745 if (globals
== NULL
)
13748 /* Invoke the regular ELF backend linker to do all the work. */
13749 if (!bfd_elf_final_link (abfd
, info
))
13752 /* Process stub sections (eg BE8 encoding, ...). */
13753 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
13755 for (i
=0; i
<htab
->top_id
; i
++)
13757 sec
= htab
->stub_group
[i
].stub_sec
;
13758 /* Only process it once, in its link_sec slot. */
13759 if (sec
&& i
== htab
->stub_group
[i
].link_sec
->id
)
13761 osec
= sec
->output_section
;
13762 elf32_arm_write_section (abfd
, info
, sec
, sec
->contents
);
13763 if (! bfd_set_section_contents (abfd
, osec
, sec
->contents
,
13764 sec
->output_offset
, sec
->size
))
13769 /* Write out any glue sections now that we have created all the
13771 if (globals
->bfd_of_glue_owner
!= NULL
)
13773 if (! elf32_arm_output_glue_section (info
, abfd
,
13774 globals
->bfd_of_glue_owner
,
13775 ARM2THUMB_GLUE_SECTION_NAME
))
13778 if (! elf32_arm_output_glue_section (info
, abfd
,
13779 globals
->bfd_of_glue_owner
,
13780 THUMB2ARM_GLUE_SECTION_NAME
))
13783 if (! elf32_arm_output_glue_section (info
, abfd
,
13784 globals
->bfd_of_glue_owner
,
13785 VFP11_ERRATUM_VENEER_SECTION_NAME
))
13788 if (! elf32_arm_output_glue_section (info
, abfd
,
13789 globals
->bfd_of_glue_owner
,
13790 STM32L4XX_ERRATUM_VENEER_SECTION_NAME
))
13793 if (! elf32_arm_output_glue_section (info
, abfd
,
13794 globals
->bfd_of_glue_owner
,
13795 ARM_BX_GLUE_SECTION_NAME
))
13802 /* Return a best guess for the machine number based on the attributes. */
13804 static unsigned int
13805 bfd_arm_get_mach_from_attributes (bfd
* abfd
)
13807 int arch
= bfd_elf_get_obj_attr_int (abfd
, OBJ_ATTR_PROC
, Tag_CPU_arch
);
13811 case TAG_CPU_ARCH_PRE_V4
: return bfd_mach_arm_3M
;
13812 case TAG_CPU_ARCH_V4
: return bfd_mach_arm_4
;
13813 case TAG_CPU_ARCH_V4T
: return bfd_mach_arm_4T
;
13814 case TAG_CPU_ARCH_V5T
: return bfd_mach_arm_5T
;
13816 case TAG_CPU_ARCH_V5TE
:
13820 BFD_ASSERT (Tag_CPU_name
< NUM_KNOWN_OBJ_ATTRIBUTES
);
13821 name
= elf_known_obj_attributes (abfd
) [OBJ_ATTR_PROC
][Tag_CPU_name
].s
;
13825 if (strcmp (name
, "IWMMXT2") == 0)
13826 return bfd_mach_arm_iWMMXt2
;
13828 if (strcmp (name
, "IWMMXT") == 0)
13829 return bfd_mach_arm_iWMMXt
;
13831 if (strcmp (name
, "XSCALE") == 0)
13835 BFD_ASSERT (Tag_WMMX_arch
< NUM_KNOWN_OBJ_ATTRIBUTES
);
13836 wmmx
= elf_known_obj_attributes (abfd
) [OBJ_ATTR_PROC
][Tag_WMMX_arch
].i
;
13839 case 1: return bfd_mach_arm_iWMMXt
;
13840 case 2: return bfd_mach_arm_iWMMXt2
;
13841 default: return bfd_mach_arm_XScale
;
13846 return bfd_mach_arm_5TE
;
13849 case TAG_CPU_ARCH_V5TEJ
:
13850 return bfd_mach_arm_5TEJ
;
13851 case TAG_CPU_ARCH_V6
:
13852 return bfd_mach_arm_6
;
13853 case TAG_CPU_ARCH_V6KZ
:
13854 return bfd_mach_arm_6KZ
;
13855 case TAG_CPU_ARCH_V6T2
:
13856 return bfd_mach_arm_6T2
;
13857 case TAG_CPU_ARCH_V6K
:
13858 return bfd_mach_arm_6K
;
13859 case TAG_CPU_ARCH_V7
:
13860 return bfd_mach_arm_7
;
13861 case TAG_CPU_ARCH_V6_M
:
13862 return bfd_mach_arm_6M
;
13863 case TAG_CPU_ARCH_V6S_M
:
13864 return bfd_mach_arm_6SM
;
13865 case TAG_CPU_ARCH_V7E_M
:
13866 return bfd_mach_arm_7EM
;
13867 case TAG_CPU_ARCH_V8
:
13868 return bfd_mach_arm_8
;
13869 case TAG_CPU_ARCH_V8R
:
13870 return bfd_mach_arm_8R
;
13871 case TAG_CPU_ARCH_V8M_BASE
:
13872 return bfd_mach_arm_8M_BASE
;
13873 case TAG_CPU_ARCH_V8M_MAIN
:
13874 return bfd_mach_arm_8M_MAIN
;
13875 case TAG_CPU_ARCH_V8_1M_MAIN
:
13876 return bfd_mach_arm_8_1M_MAIN
;
13877 case TAG_CPU_ARCH_V9
:
13878 return bfd_mach_arm_9
;
13881 /* Force entry to be added for any new known Tag_CPU_arch value. */
13882 BFD_ASSERT (arch
> MAX_TAG_CPU_ARCH
);
13884 /* Unknown Tag_CPU_arch value. */
13885 return bfd_mach_arm_unknown
;
13889 /* Set the right machine number. */
13892 elf32_arm_object_p (bfd
*abfd
)
13896 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
13898 if (mach
== bfd_mach_arm_unknown
)
13900 if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
13901 mach
= bfd_mach_arm_ep9312
;
13903 mach
= bfd_arm_get_mach_from_attributes (abfd
);
13906 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
13910 /* Function to keep ARM specific flags in the ELF header. */
13913 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
13915 if (elf_flags_init (abfd
)
13916 && elf_elfheader (abfd
)->e_flags
!= flags
)
13918 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
13920 if (flags
& EF_ARM_INTERWORK
)
13922 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
13926 (_("warning: clearing the interworking flag of %pB due to outside request"),
13932 elf_elfheader (abfd
)->e_flags
= flags
;
13933 elf_flags_init (abfd
) = true;
13939 /* Copy backend specific data from one object module to another. */
13942 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
13945 flagword out_flags
;
13947 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
13950 in_flags
= elf_elfheader (ibfd
)->e_flags
;
13951 out_flags
= elf_elfheader (obfd
)->e_flags
;
13953 if (elf_flags_init (obfd
)
13954 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
13955 && in_flags
!= out_flags
)
13957 /* Cannot mix APCS26 and APCS32 code. */
13958 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
13961 /* Cannot mix float APCS and non-float APCS code. */
13962 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
13965 /* If the src and dest have different interworking flags
13966 then turn off the interworking bit. */
13967 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
13969 if (out_flags
& EF_ARM_INTERWORK
)
13971 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
13974 in_flags
&= ~EF_ARM_INTERWORK
;
13977 /* Likewise for PIC, though don't warn for this case. */
13978 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
13979 in_flags
&= ~EF_ARM_PIC
;
13982 elf_elfheader (obfd
)->e_flags
= in_flags
;
13983 elf_flags_init (obfd
) = true;
13985 return _bfd_elf_copy_private_bfd_data (ibfd
, obfd
);
13988 /* Values for Tag_ABI_PCS_R9_use. */
13997 /* Values for Tag_ABI_PCS_RW_data. */
14000 AEABI_PCS_RW_data_absolute
,
14001 AEABI_PCS_RW_data_PCrel
,
14002 AEABI_PCS_RW_data_SBrel
,
14003 AEABI_PCS_RW_data_unused
14006 /* Values for Tag_ABI_enum_size. */
14012 AEABI_enum_forced_wide
14015 /* Determine whether an object attribute tag takes an integer, a
14019 elf32_arm_obj_attrs_arg_type (int tag
)
14021 if (tag
== Tag_compatibility
)
14022 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
14023 else if (tag
== Tag_nodefaults
)
14024 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
14025 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
14026 return ATTR_TYPE_FLAG_STR_VAL
;
14028 return ATTR_TYPE_FLAG_INT_VAL
;
14030 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
14033 /* The ABI defines that Tag_conformance should be emitted first, and that
14034 Tag_nodefaults should be second (if either is defined). This sets those
14035 two positions, and bumps up the position of all the remaining tags to
14038 elf32_arm_obj_attrs_order (int num
)
14040 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
)
14041 return Tag_conformance
;
14042 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
+ 1)
14043 return Tag_nodefaults
;
14044 if ((num
- 2) < Tag_nodefaults
)
14046 if ((num
- 1) < Tag_conformance
)
14051 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
14053 elf32_arm_obj_attrs_handle_unknown (bfd
*abfd
, int tag
)
14055 if ((tag
& 127) < 64)
14058 (_("%pB: unknown mandatory EABI object attribute %d"),
14060 bfd_set_error (bfd_error_bad_value
);
14066 (_("warning: %pB: unknown EABI object attribute %d"),
14072 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
14073 Returns -1 if no architecture could be read. */
14076 get_secondary_compatible_arch (bfd
*abfd
)
14078 obj_attribute
*attr
=
14079 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
14081 /* Note: the tag and its argument below are uleb128 values, though
14082 currently-defined values fit in one byte for each. */
14084 && attr
->s
[0] == Tag_CPU_arch
14085 && (attr
->s
[1] & 128) != 128
14086 && attr
->s
[2] == 0)
14089 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14093 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14094 The tag is removed if ARCH is -1. */
14097 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
14099 obj_attribute
*attr
=
14100 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
14108 /* Note: the tag and its argument below are uleb128 values, though
14109 currently-defined values fit in one byte for each. */
14111 attr
->s
= (char *) bfd_alloc (abfd
, 3);
14112 attr
->s
[0] = Tag_CPU_arch
;
14117 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14121 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
14122 int newtag
, int secondary_compat
, const char* name_table
[])
14124 #define T(X) TAG_CPU_ARCH_##X
14125 int tagl
, tagh
, result
;
14128 T(V6T2
), /* PRE_V4. */
14130 T(V6T2
), /* V4T. */
14131 T(V6T2
), /* V5T. */
14132 T(V6T2
), /* V5TE. */
14133 T(V6T2
), /* V5TEJ. */
14136 T(V6T2
) /* V6T2. */
14140 T(V6K
), /* PRE_V4. */
14144 T(V6K
), /* V5TE. */
14145 T(V6K
), /* V5TEJ. */
14147 T(V6KZ
), /* V6KZ. */
14153 T(V7
), /* PRE_V4. */
14158 T(V7
), /* V5TEJ. */
14171 T(V6K
), /* V5TE. */
14172 T(V6K
), /* V5TEJ. */
14174 T(V6KZ
), /* V6KZ. */
14178 T(V6_M
) /* V6_M. */
14180 const int v6s_m
[] =
14186 T(V6K
), /* V5TE. */
14187 T(V6K
), /* V5TEJ. */
14189 T(V6KZ
), /* V6KZ. */
14193 T(V6S_M
), /* V6_M. */
14194 T(V6S_M
) /* V6S_M. */
14196 const int v7e_m
[] =
14200 T(V7E_M
), /* V4T. */
14201 T(V7E_M
), /* V5T. */
14202 T(V7E_M
), /* V5TE. */
14203 T(V7E_M
), /* V5TEJ. */
14204 T(V7E_M
), /* V6. */
14205 T(V7E_M
), /* V6KZ. */
14206 T(V7E_M
), /* V6T2. */
14207 T(V7E_M
), /* V6K. */
14208 T(V7E_M
), /* V7. */
14209 T(V7E_M
), /* V6_M. */
14210 T(V7E_M
), /* V6S_M. */
14211 T(V7E_M
) /* V7E_M. */
14215 T(V8
), /* PRE_V4. */
14220 T(V8
), /* V5TEJ. */
14227 T(V8
), /* V6S_M. */
14228 T(V8
), /* V7E_M. */
14231 T(V8
), /* V8-M.BASE. */
14232 T(V8
), /* V8-M.MAIN. */
14236 T(V8
), /* V8.1-M.MAIN. */
14240 T(V8R
), /* PRE_V4. */
14244 T(V8R
), /* V5TE. */
14245 T(V8R
), /* V5TEJ. */
14247 T(V8R
), /* V6KZ. */
14248 T(V8R
), /* V6T2. */
14251 T(V8R
), /* V6_M. */
14252 T(V8R
), /* V6S_M. */
14253 T(V8R
), /* V7E_M. */
14257 const int v8m_baseline
[] =
14270 T(V8M_BASE
), /* V6_M. */
14271 T(V8M_BASE
), /* V6S_M. */
14275 T(V8M_BASE
) /* V8-M BASELINE. */
14277 const int v8m_mainline
[] =
14289 T(V8M_MAIN
), /* V7. */
14290 T(V8M_MAIN
), /* V6_M. */
14291 T(V8M_MAIN
), /* V6S_M. */
14292 T(V8M_MAIN
), /* V7E_M. */
14295 T(V8M_MAIN
), /* V8-M BASELINE. */
14296 T(V8M_MAIN
) /* V8-M MAINLINE. */
14298 const int v8_1m_mainline
[] =
14310 T(V8_1M_MAIN
), /* V7. */
14311 T(V8_1M_MAIN
), /* V6_M. */
14312 T(V8_1M_MAIN
), /* V6S_M. */
14313 T(V8_1M_MAIN
), /* V7E_M. */
14316 T(V8_1M_MAIN
), /* V8-M BASELINE. */
14317 T(V8_1M_MAIN
), /* V8-M MAINLINE. */
14318 -1, /* Unused (18). */
14319 -1, /* Unused (19). */
14320 -1, /* Unused (20). */
14321 T(V8_1M_MAIN
) /* V8.1-M MAINLINE. */
14325 T(V9
), /* PRE_V4. */
14330 T(V9
), /* V5TEJ. */
14337 T(V9
), /* V6S_M. */
14338 T(V9
), /* V7E_M. */
14341 T(V9
), /* V8-M.BASE. */
14342 T(V9
), /* V8-M.MAIN. */
14346 T(V9
), /* V8.1-M.MAIN. */
14349 const int v4t_plus_v6_m
[] =
14355 T(V5TE
), /* V5TE. */
14356 T(V5TEJ
), /* V5TEJ. */
14358 T(V6KZ
), /* V6KZ. */
14359 T(V6T2
), /* V6T2. */
14362 T(V6_M
), /* V6_M. */
14363 T(V6S_M
), /* V6S_M. */
14364 T(V7E_M
), /* V7E_M. */
14367 T(V8M_BASE
), /* V8-M BASELINE. */
14368 T(V8M_MAIN
), /* V8-M MAINLINE. */
14369 -1, /* Unused (18). */
14370 -1, /* Unused (19). */
14371 -1, /* Unused (20). */
14372 T(V8_1M_MAIN
), /* V8.1-M MAINLINE. */
14374 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
14376 const int *comb
[] =
14393 /* Pseudo-architecture. */
14397 /* Check we've not got a higher architecture than we know about. */
14399 if (oldtag
> MAX_TAG_CPU_ARCH
|| newtag
> MAX_TAG_CPU_ARCH
)
14401 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd
);
14405 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14407 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
14408 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
14409 oldtag
= T(V4T_PLUS_V6_M
);
14411 /* And override the new tag if we have a Tag_also_compatible_with on the
14414 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
14415 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
14416 newtag
= T(V4T_PLUS_V6_M
);
14418 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
14419 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
14421 /* Architectures before V6KZ add features monotonically. */
14422 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
14425 result
= comb
[tagh
- T(V6T2
)] ? comb
[tagh
- T(V6T2
)][tagl
] : -1;
14427 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14428 as the canonical version. */
14429 if (result
== T(V4T_PLUS_V6_M
))
14432 *secondary_compat_out
= T(V6_M
);
14435 *secondary_compat_out
= -1;
14439 _bfd_error_handler (_("error: conflicting CPU architectures %s vs %s in %pB"),
14440 name_table
[oldtag
], name_table
[newtag
], ibfd
);
14448 /* Query attributes object to see if integer divide instructions may be
14449 present in an object. */
14451 elf32_arm_attributes_accept_div (const obj_attribute
*attr
)
14453 int arch
= attr
[Tag_CPU_arch
].i
;
14454 int profile
= attr
[Tag_CPU_arch_profile
].i
;
14456 switch (attr
[Tag_DIV_use
].i
)
14459 /* Integer divide allowed if instruction contained in archetecture. */
14460 if (arch
== TAG_CPU_ARCH_V7
&& (profile
== 'R' || profile
== 'M'))
14462 else if (arch
>= TAG_CPU_ARCH_V7E_M
)
14468 /* Integer divide explicitly prohibited. */
14472 /* Unrecognised case - treat as allowing divide everywhere. */
14474 /* Integer divide allowed in ARM state. */
14479 /* Query attributes object to see if integer divide instructions are
14480 forbidden to be in the object. This is not the inverse of
14481 elf32_arm_attributes_accept_div. */
14483 elf32_arm_attributes_forbid_div (const obj_attribute
*attr
)
14485 return attr
[Tag_DIV_use
].i
== 1;
14488 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14489 are conflicting attributes. */
14492 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, struct bfd_link_info
*info
)
14494 bfd
*obfd
= info
->output_bfd
;
14495 obj_attribute
*in_attr
;
14496 obj_attribute
*out_attr
;
14497 /* Some tags have 0 = don't care, 1 = strong requirement,
14498 2 = weak requirement. */
14499 static const int order_021
[3] = {0, 2, 1};
14501 bool result
= true;
14502 const char *sec_name
= get_elf_backend_data (ibfd
)->obj_attrs_section
;
14504 /* Skip the linker stubs file. This preserves previous behavior
14505 of accepting unknown attributes in the first input file - but
14507 if (ibfd
->flags
& BFD_LINKER_CREATED
)
14510 /* Skip any input that hasn't attribute section.
14511 This enables to link object files without attribute section with
14513 if (bfd_get_section_by_name (ibfd
, sec_name
) == NULL
)
14516 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
14518 /* This is the first object. Copy the attributes. */
14519 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
14521 out_attr
= elf_known_obj_attributes_proc (obfd
);
14523 /* Use the Tag_null value to indicate the attributes have been
14527 /* We do not output objects with Tag_MPextension_use_legacy - we move
14528 the attribute's value to Tag_MPextension_use. */
14529 if (out_attr
[Tag_MPextension_use_legacy
].i
!= 0)
14531 if (out_attr
[Tag_MPextension_use
].i
!= 0
14532 && out_attr
[Tag_MPextension_use_legacy
].i
14533 != out_attr
[Tag_MPextension_use
].i
)
14536 (_("Error: %pB has both the current and legacy "
14537 "Tag_MPextension_use attributes"), ibfd
);
14541 out_attr
[Tag_MPextension_use
] =
14542 out_attr
[Tag_MPextension_use_legacy
];
14543 out_attr
[Tag_MPextension_use_legacy
].type
= 0;
14544 out_attr
[Tag_MPextension_use_legacy
].i
= 0;
14547 /* PR 28859 and 28848: Handle the case where the first input file,
14548 eg crti.o, has a Tag_ABI_HardFP_use of 3 but no Tag_FP_arch set.
14549 Using Tag_ABI_HardFP_use in this way is deprecated, so reset the
14551 FIXME: Should we handle other non-zero values of Tag_ABI_HardFO_use ? */
14552 if (out_attr
[Tag_ABI_HardFP_use
].i
== 3 && out_attr
[Tag_FP_arch
].i
== 0)
14553 out_attr
[Tag_ABI_HardFP_use
].i
= 0;
14558 in_attr
= elf_known_obj_attributes_proc (ibfd
);
14559 out_attr
= elf_known_obj_attributes_proc (obfd
);
14560 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14561 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
14563 /* Ignore mismatches if the object doesn't use floating point or is
14564 floating point ABI independent. */
14565 if (out_attr
[Tag_ABI_FP_number_model
].i
== AEABI_FP_number_model_none
14566 || (in_attr
[Tag_ABI_FP_number_model
].i
!= AEABI_FP_number_model_none
14567 && out_attr
[Tag_ABI_VFP_args
].i
== AEABI_VFP_args_compatible
))
14568 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
14569 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= AEABI_FP_number_model_none
14570 && in_attr
[Tag_ABI_VFP_args
].i
!= AEABI_VFP_args_compatible
)
14573 (_("error: %pB uses VFP register arguments, %pB does not"),
14574 in_attr
[Tag_ABI_VFP_args
].i
? ibfd
: obfd
,
14575 in_attr
[Tag_ABI_VFP_args
].i
? obfd
: ibfd
);
14580 for (i
= LEAST_KNOWN_OBJ_ATTRIBUTE
; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
14582 /* Merge this attribute with existing attributes. */
14585 case Tag_CPU_raw_name
:
14587 /* These are merged after Tag_CPU_arch. */
14590 case Tag_ABI_optimization_goals
:
14591 case Tag_ABI_FP_optimization_goals
:
14592 /* Use the first value seen. */
14597 int secondary_compat
= -1, secondary_compat_out
= -1;
14598 unsigned int saved_out_attr
= out_attr
[i
].i
;
14600 static const char *name_table
[] =
14602 /* These aren't real CPU names, but we can't guess
14603 that from the architecture version alone. */
14620 "ARM v8-M.baseline",
14621 "ARM v8-M.mainline",
14625 "ARM v8.1-M.mainline",
14629 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14630 secondary_compat
= get_secondary_compatible_arch (ibfd
);
14631 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
14632 arch_attr
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
14633 &secondary_compat_out
,
14638 /* Return with error if failed to merge. */
14639 if (arch_attr
== -1)
14642 out_attr
[i
].i
= arch_attr
;
14644 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
14646 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14647 if (out_attr
[i
].i
== saved_out_attr
)
14648 ; /* Leave the names alone. */
14649 else if (out_attr
[i
].i
== in_attr
[i
].i
)
14651 /* The output architecture has been changed to match the
14652 input architecture. Use the input names. */
14653 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
14654 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
14656 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
14657 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
14662 out_attr
[Tag_CPU_name
].s
= NULL
;
14663 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
14666 /* If we still don't have a value for Tag_CPU_name,
14667 make one up now. Tag_CPU_raw_name remains blank. */
14668 if (out_attr
[Tag_CPU_name
].s
== NULL
14669 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
14670 out_attr
[Tag_CPU_name
].s
=
14671 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
14675 case Tag_ARM_ISA_use
:
14676 case Tag_THUMB_ISA_use
:
14677 case Tag_WMMX_arch
:
14678 case Tag_Advanced_SIMD_arch
:
14679 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
14680 case Tag_ABI_FP_rounding
:
14681 case Tag_ABI_FP_exceptions
:
14682 case Tag_ABI_FP_user_exceptions
:
14683 case Tag_ABI_FP_number_model
:
14684 case Tag_FP_HP_extension
:
14685 case Tag_CPU_unaligned_access
:
14687 case Tag_MPextension_use
:
14689 case Tag_PAC_extension
:
14690 case Tag_BTI_extension
:
14692 case Tag_PACRET_use
:
14693 /* Use the largest value specified. */
14694 if (in_attr
[i
].i
> out_attr
[i
].i
)
14695 out_attr
[i
].i
= in_attr
[i
].i
;
14698 case Tag_ABI_align_preserved
:
14699 case Tag_ABI_PCS_RO_data
:
14700 /* Use the smallest value specified. */
14701 if (in_attr
[i
].i
< out_attr
[i
].i
)
14702 out_attr
[i
].i
= in_attr
[i
].i
;
14705 case Tag_ABI_align_needed
:
14706 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
14707 && (in_attr
[Tag_ABI_align_preserved
].i
== 0
14708 || out_attr
[Tag_ABI_align_preserved
].i
== 0))
14710 /* This error message should be enabled once all non-conformant
14711 binaries in the toolchain have had the attributes set
14714 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
14718 /* Fall through. */
14719 case Tag_ABI_FP_denormal
:
14720 case Tag_ABI_PCS_GOT_use
:
14721 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14722 value if greater than 2 (for future-proofing). */
14723 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
14724 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
14725 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
14726 out_attr
[i
].i
= in_attr
[i
].i
;
14729 case Tag_Virtualization_use
:
14730 /* The virtualization tag effectively stores two bits of
14731 information: the intended use of TrustZone (in bit 0), and the
14732 intended use of Virtualization (in bit 1). */
14733 if (out_attr
[i
].i
== 0)
14734 out_attr
[i
].i
= in_attr
[i
].i
;
14735 else if (in_attr
[i
].i
!= 0
14736 && in_attr
[i
].i
!= out_attr
[i
].i
)
14738 if (in_attr
[i
].i
<= 3 && out_attr
[i
].i
<= 3)
14743 (_("error: %pB: unable to merge virtualization attributes "
14751 case Tag_CPU_arch_profile
:
14752 if (out_attr
[i
].i
!= in_attr
[i
].i
)
14754 /* 0 will merge with anything.
14755 'A' and 'S' merge to 'A'.
14756 'R' and 'S' merge to 'R'.
14757 'M' and 'A|R|S' is an error. */
14758 if (out_attr
[i
].i
== 0
14759 || (out_attr
[i
].i
== 'S'
14760 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
14761 out_attr
[i
].i
= in_attr
[i
].i
;
14762 else if (in_attr
[i
].i
== 0
14763 || (in_attr
[i
].i
== 'S'
14764 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
14765 ; /* Do nothing. */
14769 (_("error: %pB: conflicting architecture profiles %c/%c"),
14771 in_attr
[i
].i
? in_attr
[i
].i
: '0',
14772 out_attr
[i
].i
? out_attr
[i
].i
: '0');
14778 case Tag_DSP_extension
:
14779 /* No need to change output value if any of:
14780 - pre (<=) ARMv5T input architecture (do not have DSP)
14781 - M input profile not ARMv7E-M and do not have DSP. */
14782 if (in_attr
[Tag_CPU_arch
].i
<= 3
14783 || (in_attr
[Tag_CPU_arch_profile
].i
== 'M'
14784 && in_attr
[Tag_CPU_arch
].i
!= 13
14785 && in_attr
[i
].i
== 0))
14786 ; /* Do nothing. */
14787 /* Output value should be 0 if DSP part of architecture, ie.
14788 - post (>=) ARMv5te architecture output
14789 - A, R or S profile output or ARMv7E-M output architecture. */
14790 else if (out_attr
[Tag_CPU_arch
].i
>= 4
14791 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
14792 || out_attr
[Tag_CPU_arch_profile
].i
== 'R'
14793 || out_attr
[Tag_CPU_arch_profile
].i
== 'S'
14794 || out_attr
[Tag_CPU_arch
].i
== 13))
14796 /* Otherwise, DSP instructions are added and not part of output
14804 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14805 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14806 when it's 0. It might mean absence of FP hardware if
14807 Tag_FP_arch is zero. */
14809 #define VFP_VERSION_COUNT 9
14810 static const struct
14814 } vfp_versions
[VFP_VERSION_COUNT
] =
14830 /* If the output has no requirement about FP hardware,
14831 follow the requirement of the input. */
14832 if (out_attr
[i
].i
== 0)
14834 /* This assert is still reasonable, we shouldn't
14835 produce the suspicious build attribute
14836 combination (See below for in_attr). */
14837 BFD_ASSERT (out_attr
[Tag_ABI_HardFP_use
].i
== 0);
14838 out_attr
[i
].i
= in_attr
[i
].i
;
14839 out_attr
[Tag_ABI_HardFP_use
].i
14840 = in_attr
[Tag_ABI_HardFP_use
].i
;
14843 /* If the input has no requirement about FP hardware, do
14845 else if (in_attr
[i
].i
== 0)
14847 /* We used to assert that Tag_ABI_HardFP_use was
14848 zero here, but we should never assert when
14849 consuming an object file that has suspicious
14850 build attributes. The single precision variant
14851 of 'no FP architecture' is still 'no FP
14852 architecture', so we just ignore the tag in this
14857 /* Both the input and the output have nonzero Tag_FP_arch.
14858 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
14860 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14862 if (in_attr
[Tag_ABI_HardFP_use
].i
== 0
14863 && out_attr
[Tag_ABI_HardFP_use
].i
== 0)
14865 /* If the input and the output have different Tag_ABI_HardFP_use,
14866 the combination of them is 0 (implied by Tag_FP_arch). */
14867 else if (in_attr
[Tag_ABI_HardFP_use
].i
14868 != out_attr
[Tag_ABI_HardFP_use
].i
)
14869 out_attr
[Tag_ABI_HardFP_use
].i
= 0;
14871 /* Now we can handle Tag_FP_arch. */
14873 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14874 pick the biggest. */
14875 if (in_attr
[i
].i
>= VFP_VERSION_COUNT
14876 && in_attr
[i
].i
> out_attr
[i
].i
)
14878 out_attr
[i
] = in_attr
[i
];
14881 /* The output uses the superset of input features
14882 (ISA version) and registers. */
14883 ver
= vfp_versions
[in_attr
[i
].i
].ver
;
14884 if (ver
< vfp_versions
[out_attr
[i
].i
].ver
)
14885 ver
= vfp_versions
[out_attr
[i
].i
].ver
;
14886 regs
= vfp_versions
[in_attr
[i
].i
].regs
;
14887 if (regs
< vfp_versions
[out_attr
[i
].i
].regs
)
14888 regs
= vfp_versions
[out_attr
[i
].i
].regs
;
14889 /* This assumes all possible supersets are also a valid
14891 for (newval
= VFP_VERSION_COUNT
- 1; newval
> 0; newval
--)
14893 if (regs
== vfp_versions
[newval
].regs
14894 && ver
== vfp_versions
[newval
].ver
)
14897 out_attr
[i
].i
= newval
;
14900 case Tag_PCS_config
:
14901 if (out_attr
[i
].i
== 0)
14902 out_attr
[i
].i
= in_attr
[i
].i
;
14903 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= in_attr
[i
].i
)
14905 /* It's sometimes ok to mix different configs, so this is only
14908 (_("warning: %pB: conflicting platform configuration"), ibfd
);
14911 case Tag_ABI_PCS_R9_use
:
14912 if (in_attr
[i
].i
!= out_attr
[i
].i
14913 && out_attr
[i
].i
!= AEABI_R9_unused
14914 && in_attr
[i
].i
!= AEABI_R9_unused
)
14917 (_("error: %pB: conflicting use of R9"), ibfd
);
14920 if (out_attr
[i
].i
== AEABI_R9_unused
)
14921 out_attr
[i
].i
= in_attr
[i
].i
;
14923 case Tag_ABI_PCS_RW_data
:
14924 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
14925 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
14926 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
14929 (_("error: %pB: SB relative addressing conflicts with use of R9"),
14933 /* Use the smallest value specified. */
14934 if (in_attr
[i
].i
< out_attr
[i
].i
)
14935 out_attr
[i
].i
= in_attr
[i
].i
;
14937 case Tag_ABI_PCS_wchar_t
:
14938 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
14939 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
14942 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
14943 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
14945 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
14946 out_attr
[i
].i
= in_attr
[i
].i
;
14948 case Tag_ABI_enum_size
:
14949 if (in_attr
[i
].i
!= AEABI_enum_unused
)
14951 if (out_attr
[i
].i
== AEABI_enum_unused
14952 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
14954 /* The existing object is compatible with anything.
14955 Use whatever requirements the new object has. */
14956 out_attr
[i
].i
= in_attr
[i
].i
;
14958 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
14959 && out_attr
[i
].i
!= in_attr
[i
].i
14960 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
14962 static const char *aeabi_enum_names
[] =
14963 { "", "variable-size", "32-bit", "" };
14964 const char *in_name
=
14965 in_attr
[i
].i
< ARRAY_SIZE (aeabi_enum_names
)
14966 ? aeabi_enum_names
[in_attr
[i
].i
]
14968 const char *out_name
=
14969 out_attr
[i
].i
< ARRAY_SIZE (aeabi_enum_names
)
14970 ? aeabi_enum_names
[out_attr
[i
].i
]
14973 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
14974 ibfd
, in_name
, out_name
);
14978 case Tag_ABI_VFP_args
:
14981 case Tag_ABI_WMMX_args
:
14982 if (in_attr
[i
].i
!= out_attr
[i
].i
)
14985 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
14990 case Tag_compatibility
:
14991 /* Merged in target-independent code. */
14993 case Tag_ABI_HardFP_use
:
14994 /* This is handled along with Tag_FP_arch. */
14996 case Tag_ABI_FP_16bit_format
:
14997 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
14999 if (in_attr
[i
].i
!= out_attr
[i
].i
)
15002 (_("error: fp16 format mismatch between %pB and %pB"),
15007 if (in_attr
[i
].i
!= 0)
15008 out_attr
[i
].i
= in_attr
[i
].i
;
15012 /* A value of zero on input means that the divide instruction may
15013 be used if available in the base architecture as specified via
15014 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
15015 the user did not want divide instructions. A value of 2
15016 explicitly means that divide instructions were allowed in ARM
15017 and Thumb state. */
15018 if (in_attr
[i
].i
== out_attr
[i
].i
)
15019 /* Do nothing. */ ;
15020 else if (elf32_arm_attributes_forbid_div (in_attr
)
15021 && !elf32_arm_attributes_accept_div (out_attr
))
15023 else if (elf32_arm_attributes_forbid_div (out_attr
)
15024 && elf32_arm_attributes_accept_div (in_attr
))
15025 out_attr
[i
].i
= in_attr
[i
].i
;
15026 else if (in_attr
[i
].i
== 2)
15027 out_attr
[i
].i
= in_attr
[i
].i
;
15030 case Tag_MPextension_use_legacy
:
15031 /* We don't output objects with Tag_MPextension_use_legacy - we
15032 move the value to Tag_MPextension_use. */
15033 if (in_attr
[i
].i
!= 0 && in_attr
[Tag_MPextension_use
].i
!= 0)
15035 if (in_attr
[Tag_MPextension_use
].i
!= in_attr
[i
].i
)
15038 (_("%pB has both the current and legacy "
15039 "Tag_MPextension_use attributes"),
15045 if (in_attr
[i
].i
> out_attr
[Tag_MPextension_use
].i
)
15046 out_attr
[Tag_MPextension_use
] = in_attr
[i
];
15050 case Tag_nodefaults
:
15051 /* This tag is set if it exists, but the value is unused (and is
15052 typically zero). We don't actually need to do anything here -
15053 the merge happens automatically when the type flags are merged
15056 case Tag_also_compatible_with
:
15057 /* Already done in Tag_CPU_arch. */
15059 case Tag_conformance
:
15060 /* Keep the attribute if it matches. Throw it away otherwise.
15061 No attribute means no claim to conform. */
15062 if (!in_attr
[i
].s
|| !out_attr
[i
].s
15063 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
15064 out_attr
[i
].s
= NULL
;
15069 = result
&& _bfd_elf_merge_unknown_attribute_low (ibfd
, obfd
, i
);
15072 /* If out_attr was copied from in_attr then it won't have a type yet. */
15073 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
15074 out_attr
[i
].type
= in_attr
[i
].type
;
15077 /* Merge Tag_compatibility attributes and any common GNU ones. */
15078 if (!_bfd_elf_merge_object_attributes (ibfd
, info
))
15081 /* Check for any attributes not known on ARM. */
15082 result
&= _bfd_elf_merge_unknown_attribute_list (ibfd
, obfd
);
15088 /* Return TRUE if the two EABI versions are incompatible. */
15091 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
15093 /* v4 and v5 are the same spec before and after it was released,
15094 so allow mixing them. */
15095 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
15096 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
15099 return (iver
== over
);
15102 /* Merge backend specific data from an object file to the output
15103 object file when linking. */
15106 elf32_arm_merge_private_bfd_data (bfd
*, struct bfd_link_info
*);
15108 /* Display the flags field. */
15111 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
15113 FILE * file
= (FILE *) ptr
;
15114 unsigned long flags
;
15116 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
15118 /* Print normal ELF private data. */
15119 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
15121 flags
= elf_elfheader (abfd
)->e_flags
;
15122 /* Ignore init flag - it may not be set, despite the flags field
15123 containing valid data. */
15125 fprintf (file
, _("private flags = 0x%lx:"), elf_elfheader (abfd
)->e_flags
);
15127 switch (EF_ARM_EABI_VERSION (flags
))
15129 case EF_ARM_EABI_UNKNOWN
:
15130 /* The following flag bits are GNU extensions and not part of the
15131 official ARM ELF extended ABI. Hence they are only decoded if
15132 the EABI version is not set. */
15133 if (flags
& EF_ARM_INTERWORK
)
15134 fprintf (file
, _(" [interworking enabled]"));
15136 if (flags
& EF_ARM_APCS_26
)
15137 fprintf (file
, " [APCS-26]");
15139 fprintf (file
, " [APCS-32]");
15141 if (flags
& EF_ARM_VFP_FLOAT
)
15142 fprintf (file
, _(" [VFP float format]"));
15143 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
15144 fprintf (file
, _(" [Maverick float format]"));
15146 fprintf (file
, _(" [FPA float format]"));
15148 if (flags
& EF_ARM_APCS_FLOAT
)
15149 fprintf (file
, _(" [floats passed in float registers]"));
15151 if (flags
& EF_ARM_PIC
)
15152 fprintf (file
, _(" [position independent]"));
15154 if (flags
& EF_ARM_NEW_ABI
)
15155 fprintf (file
, _(" [new ABI]"));
15157 if (flags
& EF_ARM_OLD_ABI
)
15158 fprintf (file
, _(" [old ABI]"));
15160 if (flags
& EF_ARM_SOFT_FLOAT
)
15161 fprintf (file
, _(" [software FP]"));
15163 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
15164 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
15165 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
15166 | EF_ARM_MAVERICK_FLOAT
);
15169 case EF_ARM_EABI_VER1
:
15170 fprintf (file
, _(" [Version1 EABI]"));
15172 if (flags
& EF_ARM_SYMSARESORTED
)
15173 fprintf (file
, _(" [sorted symbol table]"));
15175 fprintf (file
, _(" [unsorted symbol table]"));
15177 flags
&= ~ EF_ARM_SYMSARESORTED
;
15180 case EF_ARM_EABI_VER2
:
15181 fprintf (file
, _(" [Version2 EABI]"));
15183 if (flags
& EF_ARM_SYMSARESORTED
)
15184 fprintf (file
, _(" [sorted symbol table]"));
15186 fprintf (file
, _(" [unsorted symbol table]"));
15188 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
15189 fprintf (file
, _(" [dynamic symbols use segment index]"));
15191 if (flags
& EF_ARM_MAPSYMSFIRST
)
15192 fprintf (file
, _(" [mapping symbols precede others]"));
15194 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
15195 | EF_ARM_MAPSYMSFIRST
);
15198 case EF_ARM_EABI_VER3
:
15199 fprintf (file
, _(" [Version3 EABI]"));
15202 case EF_ARM_EABI_VER4
:
15203 fprintf (file
, _(" [Version4 EABI]"));
15206 case EF_ARM_EABI_VER5
:
15207 fprintf (file
, _(" [Version5 EABI]"));
15209 if (flags
& EF_ARM_ABI_FLOAT_SOFT
)
15210 fprintf (file
, _(" [soft-float ABI]"));
15212 if (flags
& EF_ARM_ABI_FLOAT_HARD
)
15213 fprintf (file
, _(" [hard-float ABI]"));
15215 flags
&= ~(EF_ARM_ABI_FLOAT_SOFT
| EF_ARM_ABI_FLOAT_HARD
);
15218 if (flags
& EF_ARM_BE8
)
15219 fprintf (file
, _(" [BE8]"));
15221 if (flags
& EF_ARM_LE8
)
15222 fprintf (file
, _(" [LE8]"));
15224 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
15228 fprintf (file
, _(" <EABI version unrecognised>"));
15232 flags
&= ~ EF_ARM_EABIMASK
;
15234 if (flags
& EF_ARM_RELEXEC
)
15235 fprintf (file
, _(" [relocatable executable]"));
15237 if (flags
& EF_ARM_PIC
)
15238 fprintf (file
, _(" [position independent]"));
15240 if (elf_elfheader (abfd
)->e_ident
[EI_OSABI
] == ELFOSABI_ARM_FDPIC
)
15241 fprintf (file
, _(" [FDPIC ABI supplement]"));
15243 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_PIC
);
15246 fprintf (file
, _(" <Unrecognised flag bits set>"));
15248 fputc ('\n', file
);
15254 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
15256 switch (ELF_ST_TYPE (elf_sym
->st_info
))
15258 case STT_ARM_TFUNC
:
15259 return ELF_ST_TYPE (elf_sym
->st_info
);
15261 case STT_ARM_16BIT
:
15262 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15263 This allows us to distinguish between data used by Thumb instructions
15264 and non-data (which is probably code) inside Thumb regions of an
15266 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
15267 return ELF_ST_TYPE (elf_sym
->st_info
);
15278 elf32_arm_gc_mark_hook (asection
*sec
,
15279 struct bfd_link_info
*info
,
15280 Elf_Internal_Rela
*rel
,
15281 struct elf_link_hash_entry
*h
,
15282 Elf_Internal_Sym
*sym
)
15285 switch (ELF32_R_TYPE (rel
->r_info
))
15287 case R_ARM_GNU_VTINHERIT
:
15288 case R_ARM_GNU_VTENTRY
:
15292 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
15295 /* Look through the relocs for a section during the first phase. */
15298 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
15299 asection
*sec
, const Elf_Internal_Rela
*relocs
)
15301 Elf_Internal_Shdr
*symtab_hdr
;
15302 struct elf_link_hash_entry
**sym_hashes
;
15303 const Elf_Internal_Rela
*rel
;
15304 const Elf_Internal_Rela
*rel_end
;
15307 struct elf32_arm_link_hash_table
*htab
;
15309 bool may_become_dynamic_p
;
15310 bool may_need_local_target_p
;
15311 unsigned long nsyms
;
15313 if (bfd_link_relocatable (info
))
15316 BFD_ASSERT (is_arm_elf (abfd
));
15318 htab
= elf32_arm_hash_table (info
);
15324 /* Create dynamic sections for relocatable executables so that we can
15325 copy relocations. */
15326 if (htab
->root
.is_relocatable_executable
15327 && ! htab
->root
.dynamic_sections_created
)
15329 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
15333 if (htab
->root
.dynobj
== NULL
)
15334 htab
->root
.dynobj
= abfd
;
15335 if (!create_ifunc_sections (info
))
15338 dynobj
= htab
->root
.dynobj
;
15340 symtab_hdr
= & elf_symtab_hdr (abfd
);
15341 sym_hashes
= elf_sym_hashes (abfd
);
15342 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
15344 rel_end
= relocs
+ sec
->reloc_count
;
15345 for (rel
= relocs
; rel
< rel_end
; rel
++)
15347 Elf_Internal_Sym
*isym
;
15348 struct elf_link_hash_entry
*h
;
15349 struct elf32_arm_link_hash_entry
*eh
;
15350 unsigned int r_symndx
;
15353 r_symndx
= ELF32_R_SYM (rel
->r_info
);
15354 r_type
= ELF32_R_TYPE (rel
->r_info
);
15355 r_type
= arm_real_reloc_type (htab
, r_type
);
15357 if (r_symndx
>= nsyms
15358 /* PR 9934: It is possible to have relocations that do not
15359 refer to symbols, thus it is also possible to have an
15360 object file containing relocations but no symbol table. */
15361 && (r_symndx
> STN_UNDEF
|| nsyms
> 0))
15363 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd
,
15372 if (r_symndx
< symtab_hdr
->sh_info
)
15374 /* A local symbol. */
15375 isym
= bfd_sym_from_r_symndx (&htab
->root
.sym_cache
,
15382 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
15383 while (h
->root
.type
== bfd_link_hash_indirect
15384 || h
->root
.type
== bfd_link_hash_warning
)
15385 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
15389 eh
= (struct elf32_arm_link_hash_entry
*) h
;
15391 call_reloc_p
= false;
15392 may_become_dynamic_p
= false;
15393 may_need_local_target_p
= false;
15395 /* Could be done earlier, if h were already available. */
15396 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
15399 case R_ARM_GOTOFFFUNCDESC
:
15403 if (!elf32_arm_allocate_local_sym_info (abfd
))
15405 if (r_symndx
>= elf32_arm_num_entries (abfd
))
15407 elf32_arm_local_fdpic_cnts (abfd
) [r_symndx
].gotofffuncdesc_cnt
+= 1;
15408 elf32_arm_local_fdpic_cnts (abfd
) [r_symndx
].funcdesc_offset
= -1;
15412 eh
->fdpic_cnts
.gotofffuncdesc_cnt
++;
15417 case R_ARM_GOTFUNCDESC
:
15421 /* Such a relocation is not supposed to be generated
15422 by gcc on a static function. */
15423 /* Anyway if needed it could be handled. */
15428 eh
->fdpic_cnts
.gotfuncdesc_cnt
++;
15433 case R_ARM_FUNCDESC
:
15437 if (!elf32_arm_allocate_local_sym_info (abfd
))
15439 if (r_symndx
>= elf32_arm_num_entries (abfd
))
15441 elf32_arm_local_fdpic_cnts (abfd
) [r_symndx
].funcdesc_cnt
+= 1;
15442 elf32_arm_local_fdpic_cnts (abfd
) [r_symndx
].funcdesc_offset
= -1;
15446 eh
->fdpic_cnts
.funcdesc_cnt
++;
15452 case R_ARM_GOT_PREL
:
15453 case R_ARM_TLS_GD32
:
15454 case R_ARM_TLS_GD32_FDPIC
:
15455 case R_ARM_TLS_IE32
:
15456 case R_ARM_TLS_IE32_FDPIC
:
15457 case R_ARM_TLS_GOTDESC
:
15458 case R_ARM_TLS_DESCSEQ
:
15459 case R_ARM_THM_TLS_DESCSEQ
:
15460 case R_ARM_TLS_CALL
:
15461 case R_ARM_THM_TLS_CALL
:
15462 /* This symbol requires a global offset table entry. */
15464 int tls_type
, old_tls_type
;
15468 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
15469 case R_ARM_TLS_GD32_FDPIC
: tls_type
= GOT_TLS_GD
; break;
15471 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
15472 case R_ARM_TLS_IE32_FDPIC
: tls_type
= GOT_TLS_IE
; break;
15474 case R_ARM_TLS_GOTDESC
:
15475 case R_ARM_TLS_CALL
: case R_ARM_THM_TLS_CALL
:
15476 case R_ARM_TLS_DESCSEQ
: case R_ARM_THM_TLS_DESCSEQ
:
15477 tls_type
= GOT_TLS_GDESC
; break;
15479 default: tls_type
= GOT_NORMAL
; break;
15482 if (!bfd_link_executable (info
) && (tls_type
& GOT_TLS_IE
))
15483 info
->flags
|= DF_STATIC_TLS
;
15488 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
15492 /* This is a global offset table entry for a local symbol. */
15493 if (!elf32_arm_allocate_local_sym_info (abfd
))
15495 if (r_symndx
>= elf32_arm_num_entries (abfd
))
15497 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd
,
15502 elf_local_got_refcounts (abfd
)[r_symndx
] += 1;
15503 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
15506 /* If a variable is accessed with both tls methods, two
15507 slots may be created. */
15508 if (GOT_TLS_GD_ANY_P (old_tls_type
)
15509 && GOT_TLS_GD_ANY_P (tls_type
))
15510 tls_type
|= old_tls_type
;
15512 /* We will already have issued an error message if there
15513 is a TLS/non-TLS mismatch, based on the symbol
15514 type. So just combine any TLS types needed. */
15515 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
15516 && tls_type
!= GOT_NORMAL
)
15517 tls_type
|= old_tls_type
;
15519 /* If the symbol is accessed in both IE and GDESC
15520 method, we're able to relax. Turn off the GDESC flag,
15521 without messing up with any other kind of tls types
15522 that may be involved. */
15523 if ((tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_GDESC
))
15524 tls_type
&= ~GOT_TLS_GDESC
;
15526 if (old_tls_type
!= tls_type
)
15529 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
15531 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
15534 /* Fall through. */
15536 case R_ARM_TLS_LDM32
:
15537 case R_ARM_TLS_LDM32_FDPIC
:
15538 if (r_type
== R_ARM_TLS_LDM32
|| r_type
== R_ARM_TLS_LDM32_FDPIC
)
15539 htab
->tls_ldm_got
.refcount
++;
15540 /* Fall through. */
15542 case R_ARM_GOTOFF32
:
15544 if (htab
->root
.sgot
== NULL
15545 && !create_got_section (htab
->root
.dynobj
, info
))
15554 case R_ARM_THM_CALL
:
15555 case R_ARM_THM_JUMP24
:
15556 case R_ARM_THM_JUMP19
:
15557 call_reloc_p
= true;
15558 may_need_local_target_p
= true;
15562 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15563 ldr __GOTT_INDEX__ offsets. */
15564 if (htab
->root
.target_os
!= is_vxworks
)
15566 may_need_local_target_p
= true;
15569 else goto jump_over
;
15571 /* Fall through. */
15573 case R_ARM_MOVW_ABS_NC
:
15574 case R_ARM_MOVT_ABS
:
15575 case R_ARM_THM_MOVW_ABS_NC
:
15576 case R_ARM_THM_MOVT_ABS
:
15577 if (bfd_link_pic (info
))
15580 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
15581 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
15582 (h
) ? h
->root
.root
.string
: "a local symbol");
15583 bfd_set_error (bfd_error_bad_value
);
15587 /* Fall through. */
15589 case R_ARM_ABS32_NOI
:
15591 if (h
!= NULL
&& bfd_link_executable (info
))
15593 h
->pointer_equality_needed
= 1;
15595 /* Fall through. */
15597 case R_ARM_REL32_NOI
:
15598 case R_ARM_MOVW_PREL_NC
:
15599 case R_ARM_MOVT_PREL
:
15600 case R_ARM_THM_MOVW_PREL_NC
:
15601 case R_ARM_THM_MOVT_PREL
:
15603 /* Should the interworking branches be listed here? */
15604 if ((bfd_link_pic (info
) || htab
->root
.is_relocatable_executable
15606 && (sec
->flags
& SEC_ALLOC
) != 0)
15609 && elf32_arm_howto_from_type (r_type
)->pc_relative
)
15611 /* In shared libraries and relocatable executables,
15612 we treat local relative references as calls;
15613 see the related SYMBOL_CALLS_LOCAL code in
15614 allocate_dynrelocs. */
15615 call_reloc_p
= true;
15616 may_need_local_target_p
= true;
15619 /* We are creating a shared library or relocatable
15620 executable, and this is a reloc against a global symbol,
15621 or a non-PC-relative reloc against a local symbol.
15622 We may need to copy the reloc into the output. */
15623 may_become_dynamic_p
= true;
15626 may_need_local_target_p
= true;
15629 /* This relocation describes the C++ object vtable hierarchy.
15630 Reconstruct it for later use during GC. */
15631 case R_ARM_GNU_VTINHERIT
:
15632 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
15636 /* This relocation describes which C++ vtable entries are actually
15637 used. Record for later use during GC. */
15638 case R_ARM_GNU_VTENTRY
:
15639 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
15647 /* We may need a .plt entry if the function this reloc
15648 refers to is in a different object, regardless of the
15649 symbol's type. We can't tell for sure yet, because
15650 something later might force the symbol local. */
15652 else if (may_need_local_target_p
)
15653 /* If this reloc is in a read-only section, we might
15654 need a copy reloc. We can't check reliably at this
15655 stage whether the section is read-only, as input
15656 sections have not yet been mapped to output sections.
15657 Tentatively set the flag for now, and correct in
15658 adjust_dynamic_symbol. */
15659 h
->non_got_ref
= 1;
15662 if (may_need_local_target_p
15663 && (h
!= NULL
|| ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
))
15665 union gotplt_union
*root_plt
;
15666 struct arm_plt_info
*arm_plt
;
15667 struct arm_local_iplt_info
*local_iplt
;
15671 root_plt
= &h
->plt
;
15672 arm_plt
= &eh
->plt
;
15676 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
15677 if (local_iplt
== NULL
)
15679 root_plt
= &local_iplt
->root
;
15680 arm_plt
= &local_iplt
->arm
;
15683 /* If the symbol is a function that doesn't bind locally,
15684 this relocation will need a PLT entry. */
15685 if (root_plt
->refcount
!= -1)
15686 root_plt
->refcount
+= 1;
15689 arm_plt
->noncall_refcount
++;
15691 /* It's too early to use htab->use_blx here, so we have to
15692 record possible blx references separately from
15693 relocs that definitely need a thumb stub. */
15695 if (r_type
== R_ARM_THM_CALL
)
15696 arm_plt
->maybe_thumb_refcount
+= 1;
15698 if (r_type
== R_ARM_THM_JUMP24
15699 || r_type
== R_ARM_THM_JUMP19
)
15700 arm_plt
->thumb_refcount
+= 1;
15703 if (may_become_dynamic_p
)
15705 struct elf_dyn_relocs
*p
, **head
;
15707 /* Create a reloc section in dynobj. */
15708 if (sreloc
== NULL
)
15710 sreloc
= _bfd_elf_make_dynamic_reloc_section
15711 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
15713 if (sreloc
== NULL
)
15717 /* If this is a global symbol, count the number of
15718 relocations we need for this symbol. */
15720 head
= &h
->dyn_relocs
;
15723 head
= elf32_arm_get_local_dynreloc_list (abfd
, r_symndx
, isym
);
15729 if (p
== NULL
|| p
->sec
!= sec
)
15731 size_t amt
= sizeof *p
;
15733 p
= (struct elf_dyn_relocs
*) bfd_alloc (htab
->root
.dynobj
, amt
);
15743 if (elf32_arm_howto_from_type (r_type
)->pc_relative
)
15746 if (h
== NULL
&& htab
->fdpic_p
&& !bfd_link_pic (info
)
15747 && r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_ABS32_NOI
)
15749 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15750 that will become rofixup. */
15751 /* This is due to the fact that we suppose all will become rofixup. */
15753 (_("FDPIC does not yet support %s relocation"
15754 " to become dynamic for executable"),
15755 elf32_arm_howto_table_1
[r_type
].name
);
15765 elf32_arm_update_relocs (asection
*o
,
15766 struct bfd_elf_section_reloc_data
*reldata
)
15768 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
15769 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
15770 const struct elf_backend_data
*bed
;
15771 _arm_elf_section_data
*eado
;
15772 struct bfd_link_order
*p
;
15773 bfd_byte
*erela_head
, *erela
;
15774 Elf_Internal_Rela
*irela_head
, *irela
;
15775 Elf_Internal_Shdr
*rel_hdr
;
15777 unsigned int count
;
15779 eado
= get_arm_elf_section_data (o
);
15781 if (!eado
|| eado
->elf
.this_hdr
.sh_type
!= SHT_ARM_EXIDX
)
15785 bed
= get_elf_backend_data (abfd
);
15786 rel_hdr
= reldata
->hdr
;
15788 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
15790 swap_in
= bed
->s
->swap_reloc_in
;
15791 swap_out
= bed
->s
->swap_reloc_out
;
15793 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
15795 swap_in
= bed
->s
->swap_reloca_in
;
15796 swap_out
= bed
->s
->swap_reloca_out
;
15801 erela_head
= rel_hdr
->contents
;
15802 irela_head
= (Elf_Internal_Rela
*) bfd_zmalloc
15803 ((NUM_SHDR_ENTRIES (rel_hdr
) + 1) * sizeof (*irela_head
));
15805 erela
= erela_head
;
15806 irela
= irela_head
;
15809 for (p
= o
->map_head
.link_order
; p
; p
= p
->next
)
15811 if (p
->type
== bfd_section_reloc_link_order
15812 || p
->type
== bfd_symbol_reloc_link_order
)
15814 (*swap_in
) (abfd
, erela
, irela
);
15815 erela
+= rel_hdr
->sh_entsize
;
15819 else if (p
->type
== bfd_indirect_link_order
)
15821 struct bfd_elf_section_reloc_data
*input_reldata
;
15822 arm_unwind_table_edit
*edit_list
, *edit_tail
;
15823 _arm_elf_section_data
*eadi
;
15828 i
= p
->u
.indirect
.section
;
15830 eadi
= get_arm_elf_section_data (i
);
15831 edit_list
= eadi
->u
.exidx
.unwind_edit_list
;
15832 edit_tail
= eadi
->u
.exidx
.unwind_edit_tail
;
15833 offset
= i
->output_offset
;
15835 if (eadi
->elf
.rel
.hdr
&&
15836 eadi
->elf
.rel
.hdr
->sh_entsize
== rel_hdr
->sh_entsize
)
15837 input_reldata
= &eadi
->elf
.rel
;
15838 else if (eadi
->elf
.rela
.hdr
&&
15839 eadi
->elf
.rela
.hdr
->sh_entsize
== rel_hdr
->sh_entsize
)
15840 input_reldata
= &eadi
->elf
.rela
;
15846 for (j
= 0; j
< NUM_SHDR_ENTRIES (input_reldata
->hdr
); j
++)
15848 arm_unwind_table_edit
*edit_node
, *edit_next
;
15850 bfd_vma reloc_index
;
15852 (*swap_in
) (abfd
, erela
, irela
);
15853 reloc_index
= (irela
->r_offset
- offset
) / 8;
15856 edit_node
= edit_list
;
15857 for (edit_next
= edit_list
;
15858 edit_next
&& edit_next
->index
<= reloc_index
;
15859 edit_next
= edit_node
->next
)
15862 edit_node
= edit_next
;
15865 if (edit_node
->type
!= DELETE_EXIDX_ENTRY
15866 || edit_node
->index
!= reloc_index
)
15868 irela
->r_offset
-= bias
* 8;
15873 erela
+= rel_hdr
->sh_entsize
;
15876 if (edit_tail
->type
== INSERT_EXIDX_CANTUNWIND_AT_END
)
15878 /* New relocation entity. */
15879 asection
*text_sec
= edit_tail
->linked_section
;
15880 asection
*text_out
= text_sec
->output_section
;
15881 bfd_vma exidx_offset
= offset
+ i
->size
- 8;
15883 irela
->r_addend
= 0;
15884 irela
->r_offset
= exidx_offset
;
15885 irela
->r_info
= ELF32_R_INFO
15886 (text_out
->target_index
, R_ARM_PREL31
);
15893 for (j
= 0; j
< NUM_SHDR_ENTRIES (input_reldata
->hdr
); j
++)
15895 (*swap_in
) (abfd
, erela
, irela
);
15896 erela
+= rel_hdr
->sh_entsize
;
15900 count
+= NUM_SHDR_ENTRIES (input_reldata
->hdr
);
15905 reldata
->count
= count
;
15906 rel_hdr
->sh_size
= count
* rel_hdr
->sh_entsize
;
15908 erela
= erela_head
;
15909 irela
= irela_head
;
15912 (*swap_out
) (abfd
, irela
, erela
);
15913 erela
+= rel_hdr
->sh_entsize
;
15920 /* Hashes are no longer valid. */
15921 free (reldata
->hashes
);
15922 reldata
->hashes
= NULL
;
15925 /* Unwinding tables are not referenced directly. This pass marks them as
15926 required if the corresponding code section is marked. Similarly, ARMv8-M
15927 secure entry functions can only be referenced by SG veneers which are
15928 created after the GC process. They need to be marked in case they reside in
15929 their own section (as would be the case if code was compiled with
15930 -ffunction-sections). */
15933 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
15934 elf_gc_mark_hook_fn gc_mark_hook
)
15937 Elf_Internal_Shdr
**elf_shdrp
;
15938 asection
*cmse_sec
;
15939 obj_attribute
*out_attr
;
15940 Elf_Internal_Shdr
*symtab_hdr
;
15941 unsigned i
, sym_count
, ext_start
;
15942 const struct elf_backend_data
*bed
;
15943 struct elf_link_hash_entry
**sym_hashes
;
15944 struct elf32_arm_link_hash_entry
*cmse_hash
;
15945 bool again
, is_v8m
, first_bfd_browse
= true;
15946 bool extra_marks_added
= false;
15949 _bfd_elf_gc_mark_extra_sections (info
, gc_mark_hook
);
15951 out_attr
= elf_known_obj_attributes_proc (info
->output_bfd
);
15952 is_v8m
= out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V8M_BASE
15953 && out_attr
[Tag_CPU_arch_profile
].i
== 'M';
15955 /* Marking EH data may cause additional code sections to be marked,
15956 requiring multiple passes. */
15961 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
15965 if (! is_arm_elf (sub
))
15968 elf_shdrp
= elf_elfsections (sub
);
15969 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
15971 Elf_Internal_Shdr
*hdr
;
15973 hdr
= &elf_section_data (o
)->this_hdr
;
15974 if (hdr
->sh_type
== SHT_ARM_EXIDX
15976 && hdr
->sh_link
< elf_numsections (sub
)
15978 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
15981 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
15986 /* Mark section holding ARMv8-M secure entry functions. We mark all
15987 of them so no need for a second browsing. */
15988 if (is_v8m
&& first_bfd_browse
)
15990 bool debug_sec_need_to_be_marked
= false;
15992 sym_hashes
= elf_sym_hashes (sub
);
15993 bed
= get_elf_backend_data (sub
);
15994 symtab_hdr
= &elf_tdata (sub
)->symtab_hdr
;
15995 sym_count
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
15996 ext_start
= symtab_hdr
->sh_info
;
15998 /* Scan symbols. */
15999 for (i
= ext_start
; i
< sym_count
; i
++)
16001 cmse_hash
= elf32_arm_hash_entry (sym_hashes
[i
- ext_start
]);
16002 if (cmse_hash
== NULL
)
16005 /* Assume it is a special symbol. If not, cmse_scan will
16006 warn about it and user can do something about it. */
16007 if (startswith (cmse_hash
->root
.root
.root
.string
,
16010 cmse_sec
= cmse_hash
->root
.root
.u
.def
.section
;
16011 if (!cmse_sec
->gc_mark
16012 && !_bfd_elf_gc_mark (info
, cmse_sec
, gc_mark_hook
))
16014 /* The debug sections related to these secure entry
16015 functions are marked on enabling below flag. */
16016 debug_sec_need_to_be_marked
= true;
16020 if (debug_sec_need_to_be_marked
)
16022 /* Looping over all the sections of the object file containing
16023 Armv8-M secure entry functions and marking all the debug
16025 for (isec
= sub
->sections
; isec
!= NULL
; isec
= isec
->next
)
16027 /* If not a debug sections, skip it. */
16028 if (!isec
->gc_mark
&& (isec
->flags
& SEC_DEBUGGING
))
16031 extra_marks_added
= true;
16034 debug_sec_need_to_be_marked
= false;
16039 first_bfd_browse
= false;
16042 /* PR 30354: If we have added extra marks then make sure that any
16043 dependencies of the newly marked sections are also marked. */
16044 if (extra_marks_added
)
16045 _bfd_elf_gc_mark_extra_sections (info
, gc_mark_hook
);
16050 /* Treat mapping symbols as special target symbols. */
16053 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
16055 return bfd_is_arm_special_symbol_name (sym
->name
,
16056 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
16059 /* If the ELF symbol SYM might be a function in SEC, return the
16060 function size and set *CODE_OFF to the function's entry point,
16061 otherwise return zero. */
16063 static bfd_size_type
16064 elf32_arm_maybe_function_sym (const asymbol
*sym
, asection
*sec
,
16067 bfd_size_type size
;
16068 elf_symbol_type
* elf_sym
= (elf_symbol_type
*) sym
;
16070 if ((sym
->flags
& (BSF_SECTION_SYM
| BSF_FILE
| BSF_OBJECT
16071 | BSF_THREAD_LOCAL
| BSF_RELC
| BSF_SRELC
)) != 0
16072 || sym
->section
!= sec
)
16075 size
= (sym
->flags
& BSF_SYNTHETIC
) ? 0 : elf_sym
->internal_elf_sym
.st_size
;
16077 if (!(sym
->flags
& BSF_SYNTHETIC
))
16078 switch (ELF_ST_TYPE (elf_sym
->internal_elf_sym
.st_info
))
16081 /* Ignore symbols created by the annobin plugin for gcc and clang.
16082 These symbols are hidden, local, notype and have a size of 0. */
16084 && sym
->flags
& BSF_LOCAL
16085 && ELF_ST_VISIBILITY (elf_sym
->internal_elf_sym
.st_other
) == STV_HIDDEN
)
16087 /* Fall through. */
16089 case STT_ARM_TFUNC
:
16090 /* FIXME: Allow STT_GNU_IFUNC as well ? */
16096 if ((sym
->flags
& BSF_LOCAL
)
16097 && bfd_is_arm_special_symbol_name (sym
->name
,
16098 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
16101 *code_off
= sym
->value
;
16103 /* Do not return 0 for the function's size. */
16104 return size
? size
: 1;
16109 elf32_arm_find_inliner_info (bfd
* abfd
,
16110 const char ** filename_ptr
,
16111 const char ** functionname_ptr
,
16112 unsigned int * line_ptr
)
16115 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
16116 functionname_ptr
, line_ptr
,
16117 & elf_tdata (abfd
)->dwarf2_find_line_info
);
16121 /* Adjust a symbol defined by a dynamic object and referenced by a
16122 regular object. The current definition is in some section of the
16123 dynamic object, but we're not including those sections. We have to
16124 change the definition to something the rest of the link can
16128 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
16129 struct elf_link_hash_entry
* h
)
16132 asection
*s
, *srel
;
16133 struct elf32_arm_link_hash_entry
* eh
;
16134 struct elf32_arm_link_hash_table
*globals
;
16136 globals
= elf32_arm_hash_table (info
);
16137 if (globals
== NULL
)
16140 dynobj
= elf_hash_table (info
)->dynobj
;
16142 /* Make sure we know what is going on here. */
16143 BFD_ASSERT (dynobj
!= NULL
16145 || h
->type
== STT_GNU_IFUNC
16149 && !h
->def_regular
)));
16151 eh
= (struct elf32_arm_link_hash_entry
*) h
;
16153 /* If this is a function, put it in the procedure linkage table. We
16154 will fill in the contents of the procedure linkage table later,
16155 when we know the address of the .got section. */
16156 if (h
->type
== STT_FUNC
|| h
->type
== STT_GNU_IFUNC
|| h
->needs_plt
)
16158 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16159 symbol binds locally. */
16160 if (h
->plt
.refcount
<= 0
16161 || (h
->type
!= STT_GNU_IFUNC
16162 && (SYMBOL_CALLS_LOCAL (info
, h
)
16163 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
16164 && h
->root
.type
== bfd_link_hash_undefweak
))))
16166 /* This case can occur if we saw a PLT32 reloc in an input
16167 file, but the symbol was never referred to by a dynamic
16168 object, or if all references were garbage collected. In
16169 such a case, we don't actually need to build a procedure
16170 linkage table, and we can just do a PC24 reloc instead. */
16171 h
->plt
.offset
= (bfd_vma
) -1;
16172 eh
->plt
.thumb_refcount
= 0;
16173 eh
->plt
.maybe_thumb_refcount
= 0;
16174 eh
->plt
.noncall_refcount
= 0;
16182 /* It's possible that we incorrectly decided a .plt reloc was
16183 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16184 in check_relocs. We can't decide accurately between function
16185 and non-function syms in check-relocs; Objects loaded later in
16186 the link may change h->type. So fix it now. */
16187 h
->plt
.offset
= (bfd_vma
) -1;
16188 eh
->plt
.thumb_refcount
= 0;
16189 eh
->plt
.maybe_thumb_refcount
= 0;
16190 eh
->plt
.noncall_refcount
= 0;
16193 /* If this is a weak symbol, and there is a real definition, the
16194 processor independent code will have arranged for us to see the
16195 real definition first, and we can just use the same value. */
16196 if (h
->is_weakalias
)
16198 struct elf_link_hash_entry
*def
= weakdef (h
);
16199 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
16200 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
16201 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
16205 /* If there are no non-GOT references, we do not need a copy
16207 if (!h
->non_got_ref
)
16210 /* This is a reference to a symbol defined by a dynamic object which
16211 is not a function. */
16213 /* If we are creating a shared library, we must presume that the
16214 only references to the symbol are via the global offset table.
16215 For such cases we need not do anything here; the relocations will
16216 be handled correctly by relocate_section. Relocatable executables
16217 can reference data in shared objects directly, so we don't need to
16218 do anything here. */
16219 if (bfd_link_pic (info
) || globals
->root
.is_relocatable_executable
)
16222 /* We must allocate the symbol in our .dynbss section, which will
16223 become part of the .bss section of the executable. There will be
16224 an entry for this symbol in the .dynsym section. The dynamic
16225 object will contain position independent code, so all references
16226 from the dynamic object to this symbol will go through the global
16227 offset table. The dynamic linker will use the .dynsym entry to
16228 determine the address it must put in the global offset table, so
16229 both the dynamic object and the regular object will refer to the
16230 same memory location for the variable. */
16231 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16232 linker to copy the initial value out of the dynamic object and into
16233 the runtime process image. We need to remember the offset into the
16234 .rel(a).bss section we are going to use. */
16235 if ((h
->root
.u
.def
.section
->flags
& SEC_READONLY
) != 0)
16237 s
= globals
->root
.sdynrelro
;
16238 srel
= globals
->root
.sreldynrelro
;
16242 s
= globals
->root
.sdynbss
;
16243 srel
= globals
->root
.srelbss
;
16245 if (info
->nocopyreloc
== 0
16246 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
16249 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
16253 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
16256 /* Allocate space in .plt, .got and associated reloc sections for
16260 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry
*h
, void * inf
)
16262 struct bfd_link_info
*info
;
16263 struct elf32_arm_link_hash_table
*htab
;
16264 struct elf32_arm_link_hash_entry
*eh
;
16265 struct elf_dyn_relocs
*p
;
16267 if (h
->root
.type
== bfd_link_hash_indirect
)
16270 eh
= (struct elf32_arm_link_hash_entry
*) h
;
16272 info
= (struct bfd_link_info
*) inf
;
16273 htab
= elf32_arm_hash_table (info
);
16277 if ((htab
->root
.dynamic_sections_created
|| h
->type
== STT_GNU_IFUNC
)
16278 && h
->plt
.refcount
> 0)
16280 /* Make sure this symbol is output as a dynamic symbol.
16281 Undefined weak syms won't yet be marked as dynamic. */
16282 if (h
->dynindx
== -1 && !h
->forced_local
16283 && h
->root
.type
== bfd_link_hash_undefweak
)
16285 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16289 /* If the call in the PLT entry binds locally, the associated
16290 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16291 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16292 than the .plt section. */
16293 if (h
->type
== STT_GNU_IFUNC
&& SYMBOL_CALLS_LOCAL (info
, h
))
16296 if (eh
->plt
.noncall_refcount
== 0
16297 && SYMBOL_REFERENCES_LOCAL (info
, h
))
16298 /* All non-call references can be resolved directly.
16299 This means that they can (and in some cases, must)
16300 resolve directly to the run-time target, rather than
16301 to the PLT. That in turns means that any .got entry
16302 would be equal to the .igot.plt entry, so there's
16303 no point having both. */
16304 h
->got
.refcount
= 0;
16307 if (bfd_link_pic (info
)
16309 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
16311 elf32_arm_allocate_plt_entry (info
, eh
->is_iplt
, &h
->plt
, &eh
->plt
);
16313 /* If this symbol is not defined in a regular file, and we are
16314 not generating a shared library, then set the symbol to this
16315 location in the .plt. This is required to make function
16316 pointers compare as equal between the normal executable and
16317 the shared library. */
16318 if (! bfd_link_pic (info
)
16319 && !h
->def_regular
)
16321 h
->root
.u
.def
.section
= htab
->root
.splt
;
16322 h
->root
.u
.def
.value
= h
->plt
.offset
;
16324 /* Make sure the function is not marked as Thumb, in case
16325 it is the target of an ABS32 relocation, which will
16326 point to the PLT entry. */
16327 ARM_SET_SYM_BRANCH_TYPE (h
->target_internal
, ST_BRANCH_TO_ARM
);
16330 /* VxWorks executables have a second set of relocations for
16331 each PLT entry. They go in a separate relocation section,
16332 which is processed by the kernel loader. */
16333 if (htab
->root
.target_os
== is_vxworks
&& !bfd_link_pic (info
))
16335 /* There is a relocation for the initial PLT entry:
16336 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16337 if (h
->plt
.offset
== htab
->plt_header_size
)
16338 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 1);
16340 /* There are two extra relocations for each subsequent
16341 PLT entry: an R_ARM_32 relocation for the GOT entry,
16342 and an R_ARM_32 relocation for the PLT entry. */
16343 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 2);
16348 h
->plt
.offset
= (bfd_vma
) -1;
16354 h
->plt
.offset
= (bfd_vma
) -1;
16358 eh
= (struct elf32_arm_link_hash_entry
*) h
;
16359 eh
->tlsdesc_got
= (bfd_vma
) -1;
16361 if (h
->got
.refcount
> 0)
16365 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
16368 /* Make sure this symbol is output as a dynamic symbol.
16369 Undefined weak syms won't yet be marked as dynamic. */
16370 if (htab
->root
.dynamic_sections_created
16371 && h
->dynindx
== -1
16372 && !h
->forced_local
16373 && h
->root
.type
== bfd_link_hash_undefweak
)
16375 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16379 s
= htab
->root
.sgot
;
16380 h
->got
.offset
= s
->size
;
16382 if (tls_type
== GOT_UNKNOWN
)
16385 if (tls_type
== GOT_NORMAL
)
16386 /* Non-TLS symbols need one GOT slot. */
16390 if (tls_type
& GOT_TLS_GDESC
)
16392 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16394 = (htab
->root
.sgotplt
->size
16395 - elf32_arm_compute_jump_table_size (htab
));
16396 htab
->root
.sgotplt
->size
+= 8;
16397 h
->got
.offset
= (bfd_vma
) -2;
16398 /* plt.got_offset needs to know there's a TLS_DESC
16399 reloc in the middle of .got.plt. */
16400 htab
->num_tls_desc
++;
16403 if (tls_type
& GOT_TLS_GD
)
16405 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16406 consecutive GOT slots. If the symbol is both GD
16407 and GDESC, got.offset may have been
16409 h
->got
.offset
= s
->size
;
16413 if (tls_type
& GOT_TLS_IE
)
16414 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16419 dyn
= htab
->root
.dynamic_sections_created
;
16422 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), h
)
16423 && (!bfd_link_pic (info
)
16424 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
16427 if (tls_type
!= GOT_NORMAL
16428 && (bfd_link_dll (info
) || indx
!= 0)
16429 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
16430 || h
->root
.type
!= bfd_link_hash_undefweak
))
16432 if (tls_type
& GOT_TLS_IE
)
16433 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16435 if (tls_type
& GOT_TLS_GD
)
16436 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16438 if (tls_type
& GOT_TLS_GDESC
)
16440 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
16441 /* GDESC needs a trampoline to jump to. */
16442 htab
->tls_trampoline
= -1;
16445 /* Only GD needs it. GDESC just emits one relocation per
16447 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
16448 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16450 else if (((indx
!= -1) || htab
->fdpic_p
)
16451 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
16453 if (htab
->root
.dynamic_sections_created
)
16454 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16455 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16457 else if (h
->type
== STT_GNU_IFUNC
16458 && eh
->plt
.noncall_refcount
== 0)
16459 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16460 they all resolve dynamically instead. Reserve room for the
16461 GOT entry's R_ARM_IRELATIVE relocation. */
16462 elf32_arm_allocate_irelocs (info
, htab
->root
.srelgot
, 1);
16463 else if (bfd_link_pic (info
)
16464 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
16465 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16466 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16467 else if (htab
->fdpic_p
&& tls_type
== GOT_NORMAL
)
16468 /* Reserve room for rofixup for FDPIC executable. */
16469 /* TLS relocs do not need space since they are completely
16471 htab
->srofixup
->size
+= 4;
16474 h
->got
.offset
= (bfd_vma
) -1;
16476 /* FDPIC support. */
16477 if (eh
->fdpic_cnts
.gotofffuncdesc_cnt
> 0)
16479 /* Symbol musn't be exported. */
16480 if (h
->dynindx
!= -1)
16483 /* We only allocate one function descriptor with its associated
16485 if (eh
->fdpic_cnts
.funcdesc_offset
== -1)
16487 asection
*s
= htab
->root
.sgot
;
16489 eh
->fdpic_cnts
.funcdesc_offset
= s
->size
;
16491 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16492 if (bfd_link_pic (info
))
16493 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16495 htab
->srofixup
->size
+= 8;
16499 if (eh
->fdpic_cnts
.gotfuncdesc_cnt
> 0)
16501 asection
*s
= htab
->root
.sgot
;
16503 if (htab
->root
.dynamic_sections_created
&& h
->dynindx
== -1
16504 && !h
->forced_local
)
16505 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16508 if (h
->dynindx
== -1)
16510 /* We only allocate one function descriptor with its
16511 associated relocation. */
16512 if (eh
->fdpic_cnts
.funcdesc_offset
== -1)
16515 eh
->fdpic_cnts
.funcdesc_offset
= s
->size
;
16517 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two
16519 if (bfd_link_pic (info
))
16520 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16522 htab
->srofixup
->size
+= 8;
16526 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16527 R_ARM_RELATIVE/rofixup relocation on it. */
16528 eh
->fdpic_cnts
.gotfuncdesc_offset
= s
->size
;
16530 if (h
->dynindx
== -1 && !bfd_link_pic (info
))
16531 htab
->srofixup
->size
+= 4;
16533 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16536 if (eh
->fdpic_cnts
.funcdesc_cnt
> 0)
16538 if (htab
->root
.dynamic_sections_created
&& h
->dynindx
== -1
16539 && !h
->forced_local
)
16540 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16543 if (h
->dynindx
== -1)
16545 /* We only allocate one function descriptor with its
16546 associated relocation. */
16547 if (eh
->fdpic_cnts
.funcdesc_offset
== -1)
16549 asection
*s
= htab
->root
.sgot
;
16551 eh
->fdpic_cnts
.funcdesc_offset
= s
->size
;
16553 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two
16555 if (bfd_link_pic (info
))
16556 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16558 htab
->srofixup
->size
+= 8;
16561 if (h
->dynindx
== -1 && !bfd_link_pic (info
))
16563 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16564 htab
->srofixup
->size
+= 4 * eh
->fdpic_cnts
.funcdesc_cnt
;
16568 /* Will need one dynamic reloc per reference. will be either
16569 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16570 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
,
16571 eh
->fdpic_cnts
.funcdesc_cnt
);
16575 /* Allocate stubs for exported Thumb functions on v4t. */
16576 if (!htab
->use_blx
&& h
->dynindx
!= -1
16578 && ARM_GET_SYM_BRANCH_TYPE (h
->target_internal
) == ST_BRANCH_TO_THUMB
16579 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
16581 struct elf_link_hash_entry
* th
;
16582 struct bfd_link_hash_entry
* bh
;
16583 struct elf_link_hash_entry
* myh
;
16587 /* Create a new symbol to regist the real location of the function. */
16588 s
= h
->root
.u
.def
.section
;
16589 sprintf (name
, "__real_%s", h
->root
.root
.string
);
16590 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
16591 name
, BSF_GLOBAL
, s
,
16592 h
->root
.u
.def
.value
,
16593 NULL
, true, false, &bh
);
16595 myh
= (struct elf_link_hash_entry
*) bh
;
16596 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
16597 myh
->forced_local
= 1;
16598 ARM_SET_SYM_BRANCH_TYPE (myh
->target_internal
, ST_BRANCH_TO_THUMB
);
16599 eh
->export_glue
= myh
;
16600 th
= record_arm_to_thumb_glue (info
, h
);
16601 /* Point the symbol at the stub. */
16602 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
16603 ARM_SET_SYM_BRANCH_TYPE (h
->target_internal
, ST_BRANCH_TO_ARM
);
16604 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
16605 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
16608 if (h
->dyn_relocs
== NULL
)
16611 /* In the shared -Bsymbolic case, discard space allocated for
16612 dynamic pc-relative relocs against symbols which turn out to be
16613 defined in regular objects. For the normal shared case, discard
16614 space for pc-relative relocs that have become local due to symbol
16615 visibility changes. */
16617 if (bfd_link_pic (info
)
16618 || htab
->root
.is_relocatable_executable
16621 /* Relocs that use pc_count are PC-relative forms, which will appear
16622 on something like ".long foo - ." or "movw REG, foo - .". We want
16623 calls to protected symbols to resolve directly to the function
16624 rather than going via the plt. If people want function pointer
16625 comparisons to work as expected then they should avoid writing
16626 assembly like ".long foo - .". */
16627 if (SYMBOL_CALLS_LOCAL (info
, h
))
16629 struct elf_dyn_relocs
**pp
;
16631 for (pp
= &h
->dyn_relocs
; (p
= *pp
) != NULL
; )
16633 p
->count
-= p
->pc_count
;
16642 if (htab
->root
.target_os
== is_vxworks
)
16644 struct elf_dyn_relocs
**pp
;
16646 for (pp
= &h
->dyn_relocs
; (p
= *pp
) != NULL
; )
16648 if (strcmp (p
->sec
->output_section
->name
, ".tls_vars") == 0)
16655 /* Also discard relocs on undefined weak syms with non-default
16657 if (h
->dyn_relocs
!= NULL
16658 && h
->root
.type
== bfd_link_hash_undefweak
)
16660 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
16661 || UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
16662 h
->dyn_relocs
= NULL
;
16664 /* Make sure undefined weak symbols are output as a dynamic
16666 else if (htab
->root
.dynamic_sections_created
&& h
->dynindx
== -1
16667 && !h
->forced_local
)
16669 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16674 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
16675 && h
->root
.type
== bfd_link_hash_new
)
16677 /* Output absolute symbols so that we can create relocations
16678 against them. For normal symbols we output a relocation
16679 against the section that contains them. */
16680 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16687 /* For the non-shared case, discard space for relocs against
16688 symbols which turn out to need copy relocs or are not
16691 if (!h
->non_got_ref
16692 && ((h
->def_dynamic
16693 && !h
->def_regular
)
16694 || (htab
->root
.dynamic_sections_created
16695 && (h
->root
.type
== bfd_link_hash_undefweak
16696 || h
->root
.type
== bfd_link_hash_undefined
))))
16698 /* Make sure this symbol is output as a dynamic symbol.
16699 Undefined weak syms won't yet be marked as dynamic. */
16700 if (h
->dynindx
== -1 && !h
->forced_local
16701 && h
->root
.type
== bfd_link_hash_undefweak
)
16703 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16707 /* If that succeeded, we know we'll be keeping all the
16709 if (h
->dynindx
!= -1)
16713 h
->dyn_relocs
= NULL
;
16718 /* Finally, allocate space. */
16719 for (p
= h
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
16721 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
16723 if (h
->type
== STT_GNU_IFUNC
16724 && eh
->plt
.noncall_refcount
== 0
16725 && SYMBOL_REFERENCES_LOCAL (info
, h
))
16726 elf32_arm_allocate_irelocs (info
, sreloc
, p
->count
);
16727 else if (h
->dynindx
!= -1
16728 && (!bfd_link_pic (info
) || !info
->symbolic
|| !h
->def_regular
))
16729 elf32_arm_allocate_dynrelocs (info
, sreloc
, p
->count
);
16730 else if (htab
->fdpic_p
&& !bfd_link_pic (info
))
16731 htab
->srofixup
->size
+= 4 * p
->count
;
16733 elf32_arm_allocate_dynrelocs (info
, sreloc
, p
->count
);
16740 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
16743 struct elf32_arm_link_hash_table
*globals
;
16745 globals
= elf32_arm_hash_table (info
);
16746 if (globals
== NULL
)
16749 globals
->byteswap_code
= byteswap_code
;
16752 /* Set the sizes of the dynamic sections. */
16755 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
16756 struct bfd_link_info
* info
)
16762 struct elf32_arm_link_hash_table
*htab
;
16764 htab
= elf32_arm_hash_table (info
);
16768 dynobj
= elf_hash_table (info
)->dynobj
;
16769 BFD_ASSERT (dynobj
!= NULL
);
16770 check_use_blx (htab
);
16772 if (elf_hash_table (info
)->dynamic_sections_created
)
16774 /* Set the contents of the .interp section to the interpreter. */
16775 if (bfd_link_executable (info
) && !info
->nointerp
)
16777 s
= bfd_get_linker_section (dynobj
, ".interp");
16778 BFD_ASSERT (s
!= NULL
);
16779 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
16780 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
16784 /* Set up .got offsets for local syms, and space for local dynamic
16786 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
16788 bfd_signed_vma
*local_got
;
16789 bfd_signed_vma
*end_local_got
;
16790 struct arm_local_iplt_info
**local_iplt_ptr
, *local_iplt
;
16791 char *local_tls_type
;
16792 bfd_vma
*local_tlsdesc_gotent
;
16793 bfd_size_type locsymcount
;
16794 Elf_Internal_Shdr
*symtab_hdr
;
16796 unsigned int symndx
;
16797 struct fdpic_local
*local_fdpic_cnts
;
16799 if (! is_arm_elf (ibfd
))
16802 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
16804 struct elf_dyn_relocs
*p
;
16806 for (p
= (struct elf_dyn_relocs
*)
16807 elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
16809 if (!bfd_is_abs_section (p
->sec
)
16810 && bfd_is_abs_section (p
->sec
->output_section
))
16812 /* Input section has been discarded, either because
16813 it is a copy of a linkonce section or due to
16814 linker script /DISCARD/, so we'll be discarding
16817 else if (htab
->root
.target_os
== is_vxworks
16818 && strcmp (p
->sec
->output_section
->name
,
16821 /* Relocations in vxworks .tls_vars sections are
16822 handled specially by the loader. */
16824 else if (p
->count
!= 0)
16826 srel
= elf_section_data (p
->sec
)->sreloc
;
16827 if (htab
->fdpic_p
&& !bfd_link_pic (info
))
16828 htab
->srofixup
->size
+= 4 * p
->count
;
16830 elf32_arm_allocate_dynrelocs (info
, srel
, p
->count
);
16831 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
16832 info
->flags
|= DF_TEXTREL
;
16837 local_got
= elf_local_got_refcounts (ibfd
);
16838 if (local_got
== NULL
)
16841 symtab_hdr
= & elf_symtab_hdr (ibfd
);
16842 locsymcount
= symtab_hdr
->sh_info
;
16843 end_local_got
= local_got
+ locsymcount
;
16844 local_iplt_ptr
= elf32_arm_local_iplt (ibfd
);
16845 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
16846 local_tlsdesc_gotent
= elf32_arm_local_tlsdesc_gotent (ibfd
);
16847 local_fdpic_cnts
= elf32_arm_local_fdpic_cnts (ibfd
);
16849 s
= htab
->root
.sgot
;
16850 srel
= htab
->root
.srelgot
;
16851 for (; local_got
< end_local_got
;
16852 ++local_got
, ++local_iplt_ptr
, ++local_tls_type
,
16853 ++local_tlsdesc_gotent
, ++symndx
, ++local_fdpic_cnts
)
16855 if (symndx
>= elf32_arm_num_entries (ibfd
))
16858 *local_tlsdesc_gotent
= (bfd_vma
) -1;
16859 local_iplt
= *local_iplt_ptr
;
16861 /* FDPIC support. */
16862 if (local_fdpic_cnts
->gotofffuncdesc_cnt
> 0)
16864 if (local_fdpic_cnts
->funcdesc_offset
== -1)
16866 local_fdpic_cnts
->funcdesc_offset
= s
->size
;
16869 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16870 if (bfd_link_pic (info
))
16871 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
16873 htab
->srofixup
->size
+= 8;
16877 if (local_fdpic_cnts
->funcdesc_cnt
> 0)
16879 if (local_fdpic_cnts
->funcdesc_offset
== -1)
16881 local_fdpic_cnts
->funcdesc_offset
= s
->size
;
16884 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16885 if (bfd_link_pic (info
))
16886 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
16888 htab
->srofixup
->size
+= 8;
16891 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16892 if (bfd_link_pic (info
))
16893 elf32_arm_allocate_dynrelocs (info
, srel
, local_fdpic_cnts
->funcdesc_cnt
);
16895 htab
->srofixup
->size
+= 4 * local_fdpic_cnts
->funcdesc_cnt
;
16898 if (local_iplt
!= NULL
)
16900 struct elf_dyn_relocs
*p
;
16902 if (local_iplt
->root
.refcount
> 0)
16904 elf32_arm_allocate_plt_entry (info
, true,
16907 if (local_iplt
->arm
.noncall_refcount
== 0)
16908 /* All references to the PLT are calls, so all
16909 non-call references can resolve directly to the
16910 run-time target. This means that the .got entry
16911 would be the same as the .igot.plt entry, so there's
16912 no point creating both. */
16917 BFD_ASSERT (local_iplt
->arm
.noncall_refcount
== 0);
16918 local_iplt
->root
.offset
= (bfd_vma
) -1;
16921 for (p
= local_iplt
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
16925 psrel
= elf_section_data (p
->sec
)->sreloc
;
16926 if (local_iplt
->arm
.noncall_refcount
== 0)
16927 elf32_arm_allocate_irelocs (info
, psrel
, p
->count
);
16929 elf32_arm_allocate_dynrelocs (info
, psrel
, p
->count
);
16932 if (*local_got
> 0)
16934 Elf_Internal_Sym
*isym
;
16936 *local_got
= s
->size
;
16937 if (*local_tls_type
& GOT_TLS_GD
)
16938 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16940 if (*local_tls_type
& GOT_TLS_GDESC
)
16942 *local_tlsdesc_gotent
= htab
->root
.sgotplt
->size
16943 - elf32_arm_compute_jump_table_size (htab
);
16944 htab
->root
.sgotplt
->size
+= 8;
16945 *local_got
= (bfd_vma
) -2;
16946 /* plt.got_offset needs to know there's a TLS_DESC
16947 reloc in the middle of .got.plt. */
16948 htab
->num_tls_desc
++;
16950 if (*local_tls_type
& GOT_TLS_IE
)
16953 if (*local_tls_type
& GOT_NORMAL
)
16955 /* If the symbol is both GD and GDESC, *local_got
16956 may have been overwritten. */
16957 *local_got
= s
->size
;
16961 isym
= bfd_sym_from_r_symndx (&htab
->root
.sym_cache
, ibfd
,
16966 /* If all references to an STT_GNU_IFUNC PLT are calls,
16967 then all non-call references, including this GOT entry,
16968 resolve directly to the run-time target. */
16969 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
16970 && (local_iplt
== NULL
16971 || local_iplt
->arm
.noncall_refcount
== 0))
16972 elf32_arm_allocate_irelocs (info
, srel
, 1);
16973 else if (bfd_link_pic (info
) || output_bfd
->flags
& DYNAMIC
|| htab
->fdpic_p
)
16975 if ((bfd_link_pic (info
) && !(*local_tls_type
& GOT_TLS_GDESC
)))
16976 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
16977 else if (htab
->fdpic_p
&& *local_tls_type
& GOT_NORMAL
)
16978 htab
->srofixup
->size
+= 4;
16980 if ((bfd_link_pic (info
) || htab
->fdpic_p
)
16981 && *local_tls_type
& GOT_TLS_GDESC
)
16983 elf32_arm_allocate_dynrelocs (info
,
16984 htab
->root
.srelplt
, 1);
16985 htab
->tls_trampoline
= -1;
16990 *local_got
= (bfd_vma
) -1;
16994 if (htab
->tls_ldm_got
.refcount
> 0)
16996 /* Allocate two GOT entries and one dynamic relocation (if necessary)
16997 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
16998 htab
->tls_ldm_got
.offset
= htab
->root
.sgot
->size
;
16999 htab
->root
.sgot
->size
+= 8;
17000 if (bfd_link_pic (info
))
17001 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
17004 htab
->tls_ldm_got
.offset
= -1;
17006 /* At the very end of the .rofixup section is a pointer to the GOT,
17007 reserve space for it. */
17008 if (htab
->fdpic_p
&& htab
->srofixup
!= NULL
)
17009 htab
->srofixup
->size
+= 4;
17011 /* Allocate global sym .plt and .got entries, and space for global
17012 sym dynamic relocs. */
17013 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs_for_symbol
, info
);
17015 /* Here we rummage through the found bfds to collect glue information. */
17016 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
17018 if (! is_arm_elf (ibfd
))
17021 /* Initialise mapping tables for code/data. */
17022 bfd_elf32_arm_init_maps (ibfd
);
17024 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
17025 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
)
17026 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd
, info
))
17027 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd
);
17030 /* Allocate space for the glue sections now that we've sized them. */
17031 bfd_elf32_arm_allocate_interworking_sections (info
);
17033 /* For every jump slot reserved in the sgotplt, reloc_count is
17034 incremented. However, when we reserve space for TLS descriptors,
17035 it's not incremented, so in order to compute the space reserved
17036 for them, it suffices to multiply the reloc count by the jump
17038 if (htab
->root
.srelplt
)
17039 htab
->sgotplt_jump_table_size
= elf32_arm_compute_jump_table_size (htab
);
17041 if (htab
->tls_trampoline
)
17043 if (htab
->root
.splt
->size
== 0)
17044 htab
->root
.splt
->size
+= htab
->plt_header_size
;
17046 htab
->tls_trampoline
= htab
->root
.splt
->size
;
17047 htab
->root
.splt
->size
+= htab
->plt_entry_size
;
17049 /* If we're not using lazy TLS relocations, don't generate the
17050 PLT and GOT entries they require. */
17051 if ((info
->flags
& DF_BIND_NOW
))
17052 htab
->root
.tlsdesc_plt
= 0;
17055 htab
->root
.tlsdesc_got
= htab
->root
.sgot
->size
;
17056 htab
->root
.sgot
->size
+= 4;
17058 htab
->root
.tlsdesc_plt
= htab
->root
.splt
->size
;
17059 htab
->root
.splt
->size
+= 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline
);
17063 /* The check_relocs and adjust_dynamic_symbol entry points have
17064 determined the sizes of the various dynamic sections. Allocate
17065 memory for them. */
17067 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
17071 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
17074 /* It's OK to base decisions on the section name, because none
17075 of the dynobj section names depend upon the input files. */
17076 name
= bfd_section_name (s
);
17078 if (s
== htab
->root
.splt
)
17080 /* Remember whether there is a PLT. */
17083 else if (startswith (name
, ".rel"))
17087 /* Remember whether there are any reloc sections other
17088 than .rel(a).plt and .rela.plt.unloaded. */
17089 if (s
!= htab
->root
.srelplt
&& s
!= htab
->srelplt2
)
17092 /* We use the reloc_count field as a counter if we need
17093 to copy relocs into the output file. */
17094 s
->reloc_count
= 0;
17097 else if (s
!= htab
->root
.sgot
17098 && s
!= htab
->root
.sgotplt
17099 && s
!= htab
->root
.iplt
17100 && s
!= htab
->root
.igotplt
17101 && s
!= htab
->root
.sdynbss
17102 && s
!= htab
->root
.sdynrelro
17103 && s
!= htab
->srofixup
)
17105 /* It's not one of our sections, so don't allocate space. */
17111 /* If we don't need this section, strip it from the
17112 output file. This is mostly to handle .rel(a).bss and
17113 .rel(a).plt. We must create both sections in
17114 create_dynamic_sections, because they must be created
17115 before the linker maps input sections to output
17116 sections. The linker does that before
17117 adjust_dynamic_symbol is called, and it is that
17118 function which decides whether anything needs to go
17119 into these sections. */
17120 s
->flags
|= SEC_EXCLUDE
;
17124 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
17127 /* Allocate memory for the section contents. */
17128 s
->contents
= (unsigned char *) bfd_zalloc (dynobj
, s
->size
);
17129 if (s
->contents
== NULL
)
17133 return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd
, info
,
17137 /* Size sections even though they're not dynamic. We use it to setup
17138 _TLS_MODULE_BASE_, if needed. */
17141 elf32_arm_always_size_sections (bfd
*output_bfd
,
17142 struct bfd_link_info
*info
)
17145 struct elf32_arm_link_hash_table
*htab
;
17147 htab
= elf32_arm_hash_table (info
);
17149 if (bfd_link_relocatable (info
))
17152 tls_sec
= elf_hash_table (info
)->tls_sec
;
17156 struct elf_link_hash_entry
*tlsbase
;
17158 tlsbase
= elf_link_hash_lookup
17159 (elf_hash_table (info
), "_TLS_MODULE_BASE_", true, true, false);
17163 struct bfd_link_hash_entry
*bh
= NULL
;
17164 const struct elf_backend_data
*bed
17165 = get_elf_backend_data (output_bfd
);
17167 if (!(_bfd_generic_link_add_one_symbol
17168 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
17169 tls_sec
, 0, NULL
, false,
17170 bed
->collect
, &bh
)))
17173 tlsbase
->type
= STT_TLS
;
17174 tlsbase
= (struct elf_link_hash_entry
*)bh
;
17175 tlsbase
->def_regular
= 1;
17176 tlsbase
->other
= STV_HIDDEN
;
17177 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, true);
17181 if (htab
->fdpic_p
&& !bfd_link_relocatable (info
)
17182 && !bfd_elf_stack_segment_size (output_bfd
, info
,
17183 "__stacksize", DEFAULT_STACK_SIZE
))
17189 /* Finish up dynamic symbol handling. We set the contents of various
17190 dynamic sections here. */
17193 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
17194 struct bfd_link_info
* info
,
17195 struct elf_link_hash_entry
* h
,
17196 Elf_Internal_Sym
* sym
)
17198 struct elf32_arm_link_hash_table
*htab
;
17199 struct elf32_arm_link_hash_entry
*eh
;
17201 htab
= elf32_arm_hash_table (info
);
17205 eh
= (struct elf32_arm_link_hash_entry
*) h
;
17207 if (h
->plt
.offset
!= (bfd_vma
) -1)
17211 BFD_ASSERT (h
->dynindx
!= -1);
17212 if (! elf32_arm_populate_plt_entry (output_bfd
, info
, &h
->plt
, &eh
->plt
,
17217 if (!h
->def_regular
)
17219 /* Mark the symbol as undefined, rather than as defined in
17220 the .plt section. */
17221 sym
->st_shndx
= SHN_UNDEF
;
17222 /* If the symbol is weak we need to clear the value.
17223 Otherwise, the PLT entry would provide a definition for
17224 the symbol even if the symbol wasn't defined anywhere,
17225 and so the symbol would never be NULL. Leave the value if
17226 there were any relocations where pointer equality matters
17227 (this is a clue for the dynamic linker, to make function
17228 pointer comparisons work between an application and shared
17230 if (!h
->ref_regular_nonweak
|| !h
->pointer_equality_needed
)
17233 else if (eh
->is_iplt
&& eh
->plt
.noncall_refcount
!= 0)
17235 /* At least one non-call relocation references this .iplt entry,
17236 so the .iplt entry is the function's canonical address. */
17237 sym
->st_info
= ELF_ST_INFO (ELF_ST_BIND (sym
->st_info
), STT_FUNC
);
17238 ARM_SET_SYM_BRANCH_TYPE (sym
->st_target_internal
, ST_BRANCH_TO_ARM
);
17239 sym
->st_shndx
= (_bfd_elf_section_from_bfd_section
17240 (output_bfd
, htab
->root
.iplt
->output_section
));
17241 sym
->st_value
= (h
->plt
.offset
17242 + htab
->root
.iplt
->output_section
->vma
17243 + htab
->root
.iplt
->output_offset
);
17250 Elf_Internal_Rela rel
;
17252 /* This symbol needs a copy reloc. Set it up. */
17253 BFD_ASSERT (h
->dynindx
!= -1
17254 && (h
->root
.type
== bfd_link_hash_defined
17255 || h
->root
.type
== bfd_link_hash_defweak
));
17258 rel
.r_offset
= (h
->root
.u
.def
.value
17259 + h
->root
.u
.def
.section
->output_section
->vma
17260 + h
->root
.u
.def
.section
->output_offset
);
17261 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
17262 if (h
->root
.u
.def
.section
== htab
->root
.sdynrelro
)
17263 s
= htab
->root
.sreldynrelro
;
17265 s
= htab
->root
.srelbss
;
17266 elf32_arm_add_dynreloc (output_bfd
, info
, s
, &rel
);
17269 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
17270 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17271 it is relative to the ".got" section. */
17272 if (h
== htab
->root
.hdynamic
17274 && htab
->root
.target_os
!= is_vxworks
17275 && h
== htab
->root
.hgot
))
17276 sym
->st_shndx
= SHN_ABS
;
17282 arm_put_trampoline (struct elf32_arm_link_hash_table
*htab
, bfd
*output_bfd
,
17284 const unsigned long *template, unsigned count
)
17288 for (ix
= 0; ix
!= count
; ix
++)
17290 unsigned long insn
= template[ix
];
17292 /* Emit mov pc,rx if bx is not permitted. */
17293 if (htab
->fix_v4bx
== 1 && (insn
& 0x0ffffff0) == 0x012fff10)
17294 insn
= (insn
& 0xf000000f) | 0x01a0f000;
17295 put_arm_insn (htab
, output_bfd
, insn
, (char *)contents
+ ix
*4);
17299 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
17300 other variants, NaCl needs this entry in a static executable's
17301 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17302 zero. For .iplt really only the last bundle is useful, and .iplt
17303 could have a shorter first entry, with each individual PLT entry's
17304 relative branch calculated differently so it targets the last
17305 bundle instead of the instruction before it (labelled .Lplt_tail
17306 above). But it's simpler to keep the size and layout of PLT0
17307 consistent with the dynamic case, at the cost of some dead code at
17308 the start of .iplt and the one dead store to the stack at the start
17311 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table
*htab
, bfd
*output_bfd
,
17312 asection
*plt
, bfd_vma got_displacement
)
17316 put_arm_insn (htab
, output_bfd
,
17317 elf32_arm_nacl_plt0_entry
[0]
17318 | arm_movw_immediate (got_displacement
),
17319 plt
->contents
+ 0);
17320 put_arm_insn (htab
, output_bfd
,
17321 elf32_arm_nacl_plt0_entry
[1]
17322 | arm_movt_immediate (got_displacement
),
17323 plt
->contents
+ 4);
17325 for (i
= 2; i
< ARRAY_SIZE (elf32_arm_nacl_plt0_entry
); ++i
)
17326 put_arm_insn (htab
, output_bfd
,
17327 elf32_arm_nacl_plt0_entry
[i
],
17328 plt
->contents
+ (i
* 4));
17331 /* Finish up the dynamic sections. */
17334 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
17339 struct elf32_arm_link_hash_table
*htab
;
17341 htab
= elf32_arm_hash_table (info
);
17345 dynobj
= elf_hash_table (info
)->dynobj
;
17347 sgot
= htab
->root
.sgotplt
;
17348 /* A broken linker script might have discarded the dynamic sections.
17349 Catch this here so that we do not seg-fault later on. */
17350 if (sgot
!= NULL
&& bfd_is_abs_section (sgot
->output_section
))
17352 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
17354 if (elf_hash_table (info
)->dynamic_sections_created
)
17357 Elf32_External_Dyn
*dyncon
, *dynconend
;
17359 splt
= htab
->root
.splt
;
17360 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
17361 BFD_ASSERT (sgot
!= NULL
);
17363 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
17364 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
17366 for (; dyncon
< dynconend
; dyncon
++)
17368 Elf_Internal_Dyn dyn
;
17372 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
17377 if (htab
->root
.target_os
== is_vxworks
17378 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
17379 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17394 name
= RELOC_SECTION (htab
, ".plt");
17396 s
= bfd_get_linker_section (dynobj
, name
);
17400 (_("could not find section %s"), name
);
17401 bfd_set_error (bfd_error_invalid_operation
);
17404 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
17405 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17409 s
= htab
->root
.srelplt
;
17410 BFD_ASSERT (s
!= NULL
);
17411 dyn
.d_un
.d_val
= s
->size
;
17412 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17421 case DT_TLSDESC_PLT
:
17422 s
= htab
->root
.splt
;
17423 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
17424 + htab
->root
.tlsdesc_plt
);
17425 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17428 case DT_TLSDESC_GOT
:
17429 s
= htab
->root
.sgot
;
17430 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
17431 + htab
->root
.tlsdesc_got
);
17432 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17435 /* Set the bottom bit of DT_INIT/FINI if the
17436 corresponding function is Thumb. */
17438 name
= info
->init_function
;
17441 name
= info
->fini_function
;
17443 /* If it wasn't set by elf_bfd_final_link
17444 then there is nothing to adjust. */
17445 if (dyn
.d_un
.d_val
!= 0)
17447 struct elf_link_hash_entry
* eh
;
17449 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
17450 false, false, true);
17452 && ARM_GET_SYM_BRANCH_TYPE (eh
->target_internal
)
17453 == ST_BRANCH_TO_THUMB
)
17455 dyn
.d_un
.d_val
|= 1;
17456 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17463 /* Fill in the first entry in the procedure linkage table. */
17464 if (splt
->size
> 0 && htab
->plt_header_size
)
17466 const bfd_vma
*plt0_entry
;
17467 bfd_vma got_address
, plt_address
, got_displacement
;
17469 /* Calculate the addresses of the GOT and PLT. */
17470 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
17471 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
17473 if (htab
->root
.target_os
== is_vxworks
)
17475 /* The VxWorks GOT is relocated by the dynamic linker.
17476 Therefore, we must emit relocations rather than simply
17477 computing the values now. */
17478 Elf_Internal_Rela rel
;
17480 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
17481 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
17482 splt
->contents
+ 0);
17483 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
17484 splt
->contents
+ 4);
17485 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
17486 splt
->contents
+ 8);
17487 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
17489 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
17490 rel
.r_offset
= plt_address
+ 12;
17491 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
17493 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
17494 htab
->srelplt2
->contents
);
17496 else if (htab
->root
.target_os
== is_nacl
)
17497 arm_nacl_put_plt0 (htab
, output_bfd
, splt
,
17498 got_address
+ 8 - (plt_address
+ 16));
17499 else if (using_thumb_only (htab
))
17501 got_displacement
= got_address
- (plt_address
+ 12);
17503 plt0_entry
= elf32_thumb2_plt0_entry
;
17504 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
17505 splt
->contents
+ 0);
17506 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
17507 splt
->contents
+ 4);
17508 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
17509 splt
->contents
+ 8);
17511 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 12);
17515 got_displacement
= got_address
- (plt_address
+ 16);
17517 plt0_entry
= elf32_arm_plt0_entry
;
17518 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
17519 splt
->contents
+ 0);
17520 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
17521 splt
->contents
+ 4);
17522 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
17523 splt
->contents
+ 8);
17524 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
17525 splt
->contents
+ 12);
17527 #ifdef FOUR_WORD_PLT
17528 /* The displacement value goes in the otherwise-unused
17529 last word of the second entry. */
17530 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
17532 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
17537 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17538 really seem like the right value. */
17539 if (splt
->output_section
->owner
== output_bfd
)
17540 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
17542 if (htab
->root
.tlsdesc_plt
)
17544 bfd_vma got_address
17545 = sgot
->output_section
->vma
+ sgot
->output_offset
;
17546 bfd_vma gotplt_address
= (htab
->root
.sgot
->output_section
->vma
17547 + htab
->root
.sgot
->output_offset
);
17548 bfd_vma plt_address
17549 = splt
->output_section
->vma
+ splt
->output_offset
;
17551 arm_put_trampoline (htab
, output_bfd
,
17552 splt
->contents
+ htab
->root
.tlsdesc_plt
,
17553 dl_tlsdesc_lazy_trampoline
, 6);
17555 bfd_put_32 (output_bfd
,
17556 gotplt_address
+ htab
->root
.tlsdesc_got
17557 - (plt_address
+ htab
->root
.tlsdesc_plt
)
17558 - dl_tlsdesc_lazy_trampoline
[6],
17559 splt
->contents
+ htab
->root
.tlsdesc_plt
+ 24);
17560 bfd_put_32 (output_bfd
,
17561 got_address
- (plt_address
+ htab
->root
.tlsdesc_plt
)
17562 - dl_tlsdesc_lazy_trampoline
[7],
17563 splt
->contents
+ htab
->root
.tlsdesc_plt
+ 24 + 4);
17566 if (htab
->tls_trampoline
)
17568 arm_put_trampoline (htab
, output_bfd
,
17569 splt
->contents
+ htab
->tls_trampoline
,
17570 tls_trampoline
, 3);
17571 #ifdef FOUR_WORD_PLT
17572 bfd_put_32 (output_bfd
, 0x00000000,
17573 splt
->contents
+ htab
->tls_trampoline
+ 12);
17577 if (htab
->root
.target_os
== is_vxworks
17578 && !bfd_link_pic (info
)
17579 && htab
->root
.splt
->size
> 0)
17581 /* Correct the .rel(a).plt.unloaded relocations. They will have
17582 incorrect symbol indexes. */
17586 num_plts
= ((htab
->root
.splt
->size
- htab
->plt_header_size
)
17587 / htab
->plt_entry_size
);
17588 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
17590 for (; num_plts
; num_plts
--)
17592 Elf_Internal_Rela rel
;
17594 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
17595 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
17596 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
17597 p
+= RELOC_SIZE (htab
);
17599 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
17600 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
17601 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
17602 p
+= RELOC_SIZE (htab
);
17607 if (htab
->root
.target_os
== is_nacl
17608 && htab
->root
.iplt
!= NULL
17609 && htab
->root
.iplt
->size
> 0)
17610 /* NaCl uses a special first entry in .iplt too. */
17611 arm_nacl_put_plt0 (htab
, output_bfd
, htab
->root
.iplt
, 0);
17613 /* Fill in the first three entries in the global offset table. */
17616 if (sgot
->size
> 0)
17619 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
17621 bfd_put_32 (output_bfd
,
17622 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
17624 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
17625 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
17628 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
17631 /* At the very end of the .rofixup section is a pointer to the GOT. */
17632 if (htab
->fdpic_p
&& htab
->srofixup
!= NULL
)
17634 struct elf_link_hash_entry
*hgot
= htab
->root
.hgot
;
17636 bfd_vma got_value
= hgot
->root
.u
.def
.value
17637 + hgot
->root
.u
.def
.section
->output_section
->vma
17638 + hgot
->root
.u
.def
.section
->output_offset
;
17640 arm_elf_add_rofixup (output_bfd
, htab
->srofixup
, got_value
);
17642 /* Make sure we allocated and generated the same number of fixups. */
17643 BFD_ASSERT (htab
->srofixup
->reloc_count
* 4 == htab
->srofixup
->size
);
17650 elf32_arm_init_file_header (bfd
*abfd
, struct bfd_link_info
*link_info
)
17652 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
17653 struct elf32_arm_link_hash_table
*globals
;
17654 struct elf_segment_map
*m
;
17656 if (!_bfd_elf_init_file_header (abfd
, link_info
))
17659 i_ehdrp
= elf_elfheader (abfd
);
17661 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
17662 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
17663 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
17667 globals
= elf32_arm_hash_table (link_info
);
17668 if (globals
!= NULL
&& globals
->byteswap_code
)
17669 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
17671 if (globals
->fdpic_p
)
17672 i_ehdrp
->e_ident
[EI_OSABI
] |= ELFOSABI_ARM_FDPIC
;
17675 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_VER5
17676 && ((i_ehdrp
->e_type
== ET_DYN
) || (i_ehdrp
->e_type
== ET_EXEC
)))
17678 int abi
= bfd_elf_get_obj_attr_int (abfd
, OBJ_ATTR_PROC
, Tag_ABI_VFP_args
);
17679 if (abi
== AEABI_VFP_args_vfp
)
17680 i_ehdrp
->e_flags
|= EF_ARM_ABI_FLOAT_HARD
;
17682 i_ehdrp
->e_flags
|= EF_ARM_ABI_FLOAT_SOFT
;
17685 /* Scan segment to set p_flags attribute if it contains only sections with
17686 SHF_ARM_PURECODE flag. */
17687 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
17693 for (j
= 0; j
< m
->count
; j
++)
17695 if (!(elf_section_flags (m
->sections
[j
]) & SHF_ARM_PURECODE
))
17701 m
->p_flags_valid
= 1;
17707 static enum elf_reloc_type_class
17708 elf32_arm_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
17709 const asection
*rel_sec ATTRIBUTE_UNUSED
,
17710 const Elf_Internal_Rela
*rela
)
17712 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
17714 if (htab
->root
.dynsym
!= NULL
17715 && htab
->root
.dynsym
->contents
!= NULL
)
17717 /* Check relocation against STT_GNU_IFUNC symbol if there are
17718 dynamic symbols. */
17719 bfd
*abfd
= info
->output_bfd
;
17720 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
17721 unsigned long r_symndx
= ELF32_R_SYM (rela
->r_info
);
17722 if (r_symndx
!= STN_UNDEF
)
17724 Elf_Internal_Sym sym
;
17725 if (!bed
->s
->swap_symbol_in (abfd
,
17726 (htab
->root
.dynsym
->contents
17727 + r_symndx
* bed
->s
->sizeof_sym
),
17730 /* xgettext:c-format */
17731 _bfd_error_handler (_("%pB symbol number %lu references"
17732 " nonexistent SHT_SYMTAB_SHNDX section"),
17734 /* Ideally an error class should be returned here. */
17736 else if (ELF_ST_TYPE (sym
.st_info
) == STT_GNU_IFUNC
)
17737 return reloc_class_ifunc
;
17741 switch ((int) ELF32_R_TYPE (rela
->r_info
))
17743 case R_ARM_RELATIVE
:
17744 return reloc_class_relative
;
17745 case R_ARM_JUMP_SLOT
:
17746 return reloc_class_plt
;
17748 return reloc_class_copy
;
17749 case R_ARM_IRELATIVE
:
17750 return reloc_class_ifunc
;
17752 return reloc_class_normal
;
17757 arm_final_write_processing (bfd
*abfd
)
17759 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
17763 elf32_arm_final_write_processing (bfd
*abfd
)
17765 arm_final_write_processing (abfd
);
17766 return _bfd_elf_final_write_processing (abfd
);
17769 /* Return TRUE if this is an unwinding table entry. */
17772 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
17774 return (startswith (name
, ELF_STRING_ARM_unwind
)
17775 || startswith (name
, ELF_STRING_ARM_unwind_once
));
17779 /* Set the type and flags for an ARM section. We do this by
17780 the section name, which is a hack, but ought to work. */
17783 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
17787 name
= bfd_section_name (sec
);
17789 if (is_arm_elf_unwind_section_name (abfd
, name
))
17791 hdr
->sh_type
= SHT_ARM_EXIDX
;
17792 hdr
->sh_flags
|= SHF_LINK_ORDER
;
17795 if (sec
->flags
& SEC_ELF_PURECODE
)
17796 hdr
->sh_flags
|= SHF_ARM_PURECODE
;
17801 /* Handle an ARM specific section when reading an object file. This is
17802 called when bfd_section_from_shdr finds a section with an unknown
17806 elf32_arm_section_from_shdr (bfd
*abfd
,
17807 Elf_Internal_Shdr
* hdr
,
17811 /* There ought to be a place to keep ELF backend specific flags, but
17812 at the moment there isn't one. We just keep track of the
17813 sections by their name, instead. Fortunately, the ABI gives
17814 names for all the ARM specific sections, so we will probably get
17816 switch (hdr
->sh_type
)
17818 case SHT_ARM_EXIDX
:
17819 case SHT_ARM_PREEMPTMAP
:
17820 case SHT_ARM_ATTRIBUTES
:
17827 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
17833 static _arm_elf_section_data
*
17834 get_arm_elf_section_data (asection
* sec
)
17836 if (sec
&& sec
->owner
&& is_arm_elf (sec
->owner
))
17837 return elf32_arm_section_data (sec
);
17845 struct bfd_link_info
*info
;
17848 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
17849 asection
*, struct elf_link_hash_entry
*);
17850 } output_arch_syminfo
;
17852 enum map_symbol_type
17860 /* Output a single mapping symbol. */
17863 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
17864 enum map_symbol_type type
,
17867 static const char *names
[3] = {"$a", "$t", "$d"};
17868 Elf_Internal_Sym sym
;
17870 sym
.st_value
= osi
->sec
->output_section
->vma
17871 + osi
->sec
->output_offset
17875 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
17876 sym
.st_shndx
= osi
->sec_shndx
;
17877 sym
.st_target_internal
= 0;
17878 elf32_arm_section_map_add (osi
->sec
, names
[type
][1], offset
);
17879 return osi
->func (osi
->flaginfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
17882 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17883 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
17886 elf32_arm_output_plt_map_1 (output_arch_syminfo
*osi
,
17887 bool is_iplt_entry_p
,
17888 union gotplt_union
*root_plt
,
17889 struct arm_plt_info
*arm_plt
)
17891 struct elf32_arm_link_hash_table
*htab
;
17892 bfd_vma addr
, plt_header_size
;
17894 if (root_plt
->offset
== (bfd_vma
) -1)
17897 htab
= elf32_arm_hash_table (osi
->info
);
17901 if (is_iplt_entry_p
)
17903 osi
->sec
= htab
->root
.iplt
;
17904 plt_header_size
= 0;
17908 osi
->sec
= htab
->root
.splt
;
17909 plt_header_size
= htab
->plt_header_size
;
17911 osi
->sec_shndx
= (_bfd_elf_section_from_bfd_section
17912 (osi
->info
->output_bfd
, osi
->sec
->output_section
));
17914 addr
= root_plt
->offset
& -2;
17915 if (htab
->root
.target_os
== is_vxworks
)
17917 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
17919 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
17921 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
17923 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
17926 else if (htab
->root
.target_os
== is_nacl
)
17928 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
17931 else if (htab
->fdpic_p
)
17933 enum map_symbol_type type
= using_thumb_only (htab
)
17937 if (elf32_arm_plt_needs_thumb_stub_p (osi
->info
, arm_plt
))
17938 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
17940 if (!elf32_arm_output_map_sym (osi
, type
, addr
))
17942 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 16))
17944 if (htab
->plt_entry_size
== 4 * ARRAY_SIZE (elf32_arm_fdpic_plt_entry
))
17945 if (!elf32_arm_output_map_sym (osi
, type
, addr
+ 24))
17948 else if (using_thumb_only (htab
))
17950 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
))
17957 thumb_stub_p
= elf32_arm_plt_needs_thumb_stub_p (osi
->info
, arm_plt
);
17960 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
17963 #ifdef FOUR_WORD_PLT
17964 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
17966 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
17969 /* A three-word PLT with no Thumb thunk contains only Arm code,
17970 so only need to output a mapping symbol for the first PLT entry and
17971 entries with thumb thunks. */
17972 if (thumb_stub_p
|| addr
== plt_header_size
)
17974 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
17983 /* Output mapping symbols for PLT entries associated with H. */
17986 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
17988 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
17989 struct elf32_arm_link_hash_entry
*eh
;
17991 if (h
->root
.type
== bfd_link_hash_indirect
)
17994 if (h
->root
.type
== bfd_link_hash_warning
)
17995 /* When warning symbols are created, they **replace** the "real"
17996 entry in the hash table, thus we never get to see the real
17997 symbol in a hash traversal. So look at it now. */
17998 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
18000 eh
= (struct elf32_arm_link_hash_entry
*) h
;
18001 return elf32_arm_output_plt_map_1 (osi
, SYMBOL_CALLS_LOCAL (osi
->info
, h
),
18002 &h
->plt
, &eh
->plt
);
18005 /* Bind a veneered symbol to its veneer identified by its hash entry
18006 STUB_ENTRY. The veneered location thus loose its symbol. */
18009 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry
*stub_entry
)
18011 struct elf32_arm_link_hash_entry
*hash
= stub_entry
->h
;
18014 hash
->root
.root
.u
.def
.section
= stub_entry
->stub_sec
;
18015 hash
->root
.root
.u
.def
.value
= stub_entry
->stub_offset
;
18016 hash
->root
.size
= stub_entry
->stub_size
;
18019 /* Output a single local symbol for a generated stub. */
18022 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
18023 bfd_vma offset
, bfd_vma size
)
18025 Elf_Internal_Sym sym
;
18027 sym
.st_value
= osi
->sec
->output_section
->vma
18028 + osi
->sec
->output_offset
18030 sym
.st_size
= size
;
18032 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
18033 sym
.st_shndx
= osi
->sec_shndx
;
18034 sym
.st_target_internal
= 0;
18035 return osi
->func (osi
->flaginfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
18039 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
18042 struct elf32_arm_stub_hash_entry
*stub_entry
;
18043 asection
*stub_sec
;
18046 output_arch_syminfo
*osi
;
18047 const insn_sequence
*template_sequence
;
18048 enum stub_insn_type prev_type
;
18051 enum map_symbol_type sym_type
;
18053 /* Massage our args to the form they really have. */
18054 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
18055 osi
= (output_arch_syminfo
*) in_arg
;
18057 stub_sec
= stub_entry
->stub_sec
;
18059 /* Ensure this stub is attached to the current section being
18061 if (stub_sec
!= osi
->sec
)
18064 addr
= (bfd_vma
) stub_entry
->stub_offset
;
18065 template_sequence
= stub_entry
->stub_template
;
18067 if (arm_stub_sym_claimed (stub_entry
->stub_type
))
18068 arm_stub_claim_sym (stub_entry
);
18071 stub_name
= stub_entry
->output_name
;
18072 switch (template_sequence
[0].type
)
18075 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
,
18076 stub_entry
->stub_size
))
18081 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
18082 stub_entry
->stub_size
))
18091 prev_type
= DATA_TYPE
;
18093 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
18095 switch (template_sequence
[i
].type
)
18098 sym_type
= ARM_MAP_ARM
;
18103 sym_type
= ARM_MAP_THUMB
;
18107 sym_type
= ARM_MAP_DATA
;
18115 if (template_sequence
[i
].type
!= prev_type
)
18117 prev_type
= template_sequence
[i
].type
;
18118 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
18122 switch (template_sequence
[i
].type
)
18146 /* Output mapping symbols for linker generated sections,
18147 and for those data-only sections that do not have a
18151 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
18152 struct bfd_link_info
*info
,
18154 int (*func
) (void *, const char *,
18155 Elf_Internal_Sym
*,
18157 struct elf_link_hash_entry
*))
18159 output_arch_syminfo osi
;
18160 struct elf32_arm_link_hash_table
*htab
;
18162 bfd_size_type size
;
18165 if (info
->strip
== strip_all
18166 && !info
->emitrelocations
18167 && !bfd_link_relocatable (info
))
18170 htab
= elf32_arm_hash_table (info
);
18174 check_use_blx (htab
);
18176 osi
.flaginfo
= flaginfo
;
18180 /* Add a $d mapping symbol to data-only sections that
18181 don't have any mapping symbol. This may result in (harmless) redundant
18182 mapping symbols. */
18183 for (input_bfd
= info
->input_bfds
;
18185 input_bfd
= input_bfd
->link
.next
)
18187 if ((input_bfd
->flags
& (BFD_LINKER_CREATED
| HAS_SYMS
)) == HAS_SYMS
)
18188 for (osi
.sec
= input_bfd
->sections
;
18190 osi
.sec
= osi
.sec
->next
)
18192 if (osi
.sec
->output_section
!= NULL
18193 && ((osi
.sec
->output_section
->flags
& (SEC_ALLOC
| SEC_CODE
))
18195 && (osi
.sec
->flags
& (SEC_HAS_CONTENTS
| SEC_LINKER_CREATED
))
18196 == SEC_HAS_CONTENTS
18197 && get_arm_elf_section_data (osi
.sec
) != NULL
18198 && get_arm_elf_section_data (osi
.sec
)->mapcount
== 0
18199 && osi
.sec
->size
> 0
18200 && (osi
.sec
->flags
& SEC_EXCLUDE
) == 0)
18202 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
18203 (output_bfd
, osi
.sec
->output_section
);
18204 if (osi
.sec_shndx
!= (int)SHN_BAD
)
18205 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 0);
18210 /* ARM->Thumb glue. */
18211 if (htab
->arm_glue_size
> 0)
18213 osi
.sec
= bfd_get_linker_section (htab
->bfd_of_glue_owner
,
18214 ARM2THUMB_GLUE_SECTION_NAME
);
18216 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
18217 (output_bfd
, osi
.sec
->output_section
);
18218 if (bfd_link_pic (info
) || htab
->root
.is_relocatable_executable
18219 || htab
->pic_veneer
)
18220 size
= ARM2THUMB_PIC_GLUE_SIZE
;
18221 else if (htab
->use_blx
)
18222 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
18224 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
18226 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
18228 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
18229 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
18233 /* Thumb->ARM glue. */
18234 if (htab
->thumb_glue_size
> 0)
18236 osi
.sec
= bfd_get_linker_section (htab
->bfd_of_glue_owner
,
18237 THUMB2ARM_GLUE_SECTION_NAME
);
18239 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
18240 (output_bfd
, osi
.sec
->output_section
);
18241 size
= THUMB2ARM_GLUE_SIZE
;
18243 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
18245 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
18246 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
18250 /* ARMv4 BX veneers. */
18251 if (htab
->bx_glue_size
> 0)
18253 osi
.sec
= bfd_get_linker_section (htab
->bfd_of_glue_owner
,
18254 ARM_BX_GLUE_SECTION_NAME
);
18256 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
18257 (output_bfd
, osi
.sec
->output_section
);
18259 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
18262 /* Long calls stubs. */
18263 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
18265 asection
* stub_sec
;
18267 for (stub_sec
= htab
->stub_bfd
->sections
;
18269 stub_sec
= stub_sec
->next
)
18271 /* Ignore non-stub sections. */
18272 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
18275 osi
.sec
= stub_sec
;
18277 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
18278 (output_bfd
, osi
.sec
->output_section
);
18280 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
18284 /* Finally, output mapping symbols for the PLT. */
18285 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
18287 osi
.sec
= htab
->root
.splt
;
18288 osi
.sec_shndx
= (_bfd_elf_section_from_bfd_section
18289 (output_bfd
, osi
.sec
->output_section
));
18291 /* Output mapping symbols for the plt header. */
18292 if (htab
->root
.target_os
== is_vxworks
)
18294 /* VxWorks shared libraries have no PLT header. */
18295 if (!bfd_link_pic (info
))
18297 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
18299 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
18303 else if (htab
->root
.target_os
== is_nacl
)
18305 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
18308 else if (using_thumb_only (htab
) && !htab
->fdpic_p
)
18310 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, 0))
18312 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
18314 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, 16))
18317 else if (!htab
->fdpic_p
)
18319 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
18321 #ifndef FOUR_WORD_PLT
18322 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
18327 if (htab
->root
.target_os
== is_nacl
18329 && htab
->root
.iplt
->size
> 0)
18331 /* NaCl uses a special first entry in .iplt too. */
18332 osi
.sec
= htab
->root
.iplt
;
18333 osi
.sec_shndx
= (_bfd_elf_section_from_bfd_section
18334 (output_bfd
, osi
.sec
->output_section
));
18335 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
18338 if ((htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
18339 || (htab
->root
.iplt
&& htab
->root
.iplt
->size
> 0))
18341 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, &osi
);
18342 for (input_bfd
= info
->input_bfds
;
18344 input_bfd
= input_bfd
->link
.next
)
18346 struct arm_local_iplt_info
**local_iplt
;
18347 unsigned int i
, num_syms
;
18349 local_iplt
= elf32_arm_local_iplt (input_bfd
);
18350 if (local_iplt
!= NULL
)
18352 num_syms
= elf_symtab_hdr (input_bfd
).sh_info
;
18353 if (num_syms
> elf32_arm_num_entries (input_bfd
))
18355 _bfd_error_handler (_("\
18356 %pB: Number of symbols in input file has increased from %lu to %u\n"),
18358 (unsigned long) elf32_arm_num_entries (input_bfd
),
18362 for (i
= 0; i
< num_syms
; i
++)
18363 if (local_iplt
[i
] != NULL
18364 && !elf32_arm_output_plt_map_1 (&osi
, true,
18365 &local_iplt
[i
]->root
,
18366 &local_iplt
[i
]->arm
))
18371 if (htab
->root
.tlsdesc_plt
!= 0)
18373 /* Mapping symbols for the lazy tls trampoline. */
18374 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
,
18375 htab
->root
.tlsdesc_plt
))
18378 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
18379 htab
->root
.tlsdesc_plt
+ 24))
18382 if (htab
->tls_trampoline
!= 0)
18384 /* Mapping symbols for the tls trampoline. */
18385 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->tls_trampoline
))
18387 #ifdef FOUR_WORD_PLT
18388 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
18389 htab
->tls_trampoline
+ 12))
18397 /* Filter normal symbols of CMSE entry functions of ABFD to include in
18398 the import library. All SYMCOUNT symbols of ABFD can be examined
18399 from their pointers in SYMS. Pointers of symbols to keep should be
18400 stored continuously at the beginning of that array.
18402 Returns the number of symbols to keep. */
18404 static unsigned int
18405 elf32_arm_filter_cmse_symbols (bfd
*abfd ATTRIBUTE_UNUSED
,
18406 struct bfd_link_info
*info
,
18407 asymbol
**syms
, long symcount
)
18411 long src_count
, dst_count
= 0;
18412 struct elf32_arm_link_hash_table
*htab
;
18414 htab
= elf32_arm_hash_table (info
);
18415 if (!htab
->stub_bfd
|| !htab
->stub_bfd
->sections
)
18419 cmse_name
= (char *) bfd_malloc (maxnamelen
);
18420 BFD_ASSERT (cmse_name
);
18422 for (src_count
= 0; src_count
< symcount
; src_count
++)
18424 struct elf32_arm_link_hash_entry
*cmse_hash
;
18430 sym
= syms
[src_count
];
18431 flags
= sym
->flags
;
18432 name
= (char *) bfd_asymbol_name (sym
);
18434 if ((flags
& BSF_FUNCTION
) != BSF_FUNCTION
)
18436 if (!(flags
& (BSF_GLOBAL
| BSF_WEAK
)))
18439 namelen
= strlen (name
) + sizeof (CMSE_PREFIX
) + 1;
18440 if (namelen
> maxnamelen
)
18442 cmse_name
= (char *)
18443 bfd_realloc (cmse_name
, namelen
);
18444 maxnamelen
= namelen
;
18446 snprintf (cmse_name
, maxnamelen
, "%s%s", CMSE_PREFIX
, name
);
18447 cmse_hash
= (struct elf32_arm_link_hash_entry
*)
18448 elf_link_hash_lookup (&(htab
)->root
, cmse_name
, false, false, true);
18451 || (cmse_hash
->root
.root
.type
!= bfd_link_hash_defined
18452 && cmse_hash
->root
.root
.type
!= bfd_link_hash_defweak
)
18453 || cmse_hash
->root
.type
!= STT_FUNC
)
18456 syms
[dst_count
++] = sym
;
18460 syms
[dst_count
] = NULL
;
18465 /* Filter symbols of ABFD to include in the import library. All
18466 SYMCOUNT symbols of ABFD can be examined from their pointers in
18467 SYMS. Pointers of symbols to keep should be stored continuously at
18468 the beginning of that array.
18470 Returns the number of symbols to keep. */
18472 static unsigned int
18473 elf32_arm_filter_implib_symbols (bfd
*abfd ATTRIBUTE_UNUSED
,
18474 struct bfd_link_info
*info
,
18475 asymbol
**syms
, long symcount
)
18477 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
18479 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18480 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18481 library to be a relocatable object file. */
18482 BFD_ASSERT (!(bfd_get_file_flags (info
->out_implib_bfd
) & EXEC_P
));
18483 if (globals
->cmse_implib
)
18484 return elf32_arm_filter_cmse_symbols (abfd
, info
, syms
, symcount
);
18486 return _bfd_elf_filter_global_symbols (abfd
, info
, syms
, symcount
);
18489 /* Allocate target specific section data. */
18492 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
18494 if (!sec
->used_by_bfd
)
18496 _arm_elf_section_data
*sdata
;
18497 size_t amt
= sizeof (*sdata
);
18499 sdata
= (_arm_elf_section_data
*) bfd_zalloc (abfd
, amt
);
18502 sec
->used_by_bfd
= sdata
;
18505 return _bfd_elf_new_section_hook (abfd
, sec
);
18509 /* Used to order a list of mapping symbols by address. */
18512 elf32_arm_compare_mapping (const void * a
, const void * b
)
18514 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
18515 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
18517 if (amap
->vma
> bmap
->vma
)
18519 else if (amap
->vma
< bmap
->vma
)
18521 else if (amap
->type
> bmap
->type
)
18522 /* Ensure results do not depend on the host qsort for objects with
18523 multiple mapping symbols at the same address by sorting on type
18526 else if (amap
->type
< bmap
->type
)
18532 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18534 static unsigned long
18535 offset_prel31 (unsigned long addr
, bfd_vma offset
)
18537 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
18540 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18544 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
18546 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
18547 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
18549 /* High bit of first word is supposed to be zero. */
18550 if ((first_word
& 0x80000000ul
) == 0)
18551 first_word
= offset_prel31 (first_word
, offset
);
18553 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18554 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18555 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
18556 second_word
= offset_prel31 (second_word
, offset
);
18558 bfd_put_32 (output_bfd
, first_word
, to
);
18559 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
18562 /* Data for make_branch_to_a8_stub(). */
18564 struct a8_branch_to_stub_data
18566 asection
*writing_section
;
18567 bfd_byte
*contents
;
18571 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
18572 places for a particular section. */
18575 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
18578 struct elf32_arm_stub_hash_entry
*stub_entry
;
18579 struct a8_branch_to_stub_data
*data
;
18580 bfd_byte
*contents
;
18581 unsigned long branch_insn
;
18582 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
18583 bfd_signed_vma branch_offset
;
18587 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
18588 data
= (struct a8_branch_to_stub_data
*) in_arg
;
18590 if (stub_entry
->target_section
!= data
->writing_section
18591 || stub_entry
->stub_type
< arm_stub_a8_veneer_lwm
)
18594 contents
= data
->contents
;
18596 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18597 generated when both source and target are in the same section. */
18598 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
18599 + stub_entry
->target_section
->output_offset
18600 + stub_entry
->source_value
;
18602 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
18603 + stub_entry
->stub_sec
->output_offset
18604 + stub_entry
->stub_offset
;
18606 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
18607 veneered_insn_loc
&= ~3u;
18609 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
18611 abfd
= stub_entry
->target_section
->owner
;
18612 loc
= stub_entry
->source_value
;
18614 /* We attempt to avoid this condition by setting stubs_always_after_branch
18615 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18616 This check is just to be on the safe side... */
18617 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
18619 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
18620 "allocated in unsafe location"), abfd
);
18624 switch (stub_entry
->stub_type
)
18626 case arm_stub_a8_veneer_b
:
18627 case arm_stub_a8_veneer_b_cond
:
18628 branch_insn
= 0xf0009000;
18631 case arm_stub_a8_veneer_blx
:
18632 branch_insn
= 0xf000e800;
18635 case arm_stub_a8_veneer_bl
:
18637 unsigned int i1
, j1
, i2
, j2
, s
;
18639 branch_insn
= 0xf000d000;
18642 if (branch_offset
< -16777216 || branch_offset
> 16777214)
18644 /* There's not much we can do apart from complain if this
18646 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
18647 "of range (input file too large)"), abfd
);
18651 /* i1 = not(j1 eor s), so:
18653 j1 = (not i1) eor s. */
18655 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
18656 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
18657 i2
= (branch_offset
>> 22) & 1;
18658 i1
= (branch_offset
>> 23) & 1;
18659 s
= (branch_offset
>> 24) & 1;
18662 branch_insn
|= j2
<< 11;
18663 branch_insn
|= j1
<< 13;
18664 branch_insn
|= s
<< 26;
18673 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[loc
]);
18674 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[loc
+ 2]);
18679 /* Beginning of stm32l4xx work-around. */
18681 /* Functions encoding instructions necessary for the emission of the
18682 fix-stm32l4xx-629360.
18683 Encoding is extracted from the
18684 ARM (C) Architecture Reference Manual
18685 ARMv7-A and ARMv7-R edition
18686 ARM DDI 0406C.b (ID072512). */
18688 static inline bfd_vma
18689 create_instruction_branch_absolute (int branch_offset
)
18691 /* A8.8.18 B (A8-334)
18692 B target_address (Encoding T4). */
18693 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18694 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18695 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18697 int s
= ((branch_offset
& 0x1000000) >> 24);
18698 int j1
= s
^ !((branch_offset
& 0x800000) >> 23);
18699 int j2
= s
^ !((branch_offset
& 0x400000) >> 22);
18701 if (branch_offset
< -(1 << 24) || branch_offset
>= (1 << 24))
18702 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18704 bfd_vma patched_inst
= 0xf0009000
18706 | (((unsigned long) (branch_offset
) >> 12) & 0x3ff) << 16 /* imm10. */
18707 | j1
<< 13 /* J1. */
18708 | j2
<< 11 /* J2. */
18709 | (((unsigned long) (branch_offset
) >> 1) & 0x7ff); /* imm11. */
18711 return patched_inst
;
18714 static inline bfd_vma
18715 create_instruction_ldmia (int base_reg
, int wback
, int reg_mask
)
18717 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18718 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18719 bfd_vma patched_inst
= 0xe8900000
18720 | (/*W=*/wback
<< 21)
18722 | (reg_mask
& 0x0000ffff);
18724 return patched_inst
;
18727 static inline bfd_vma
18728 create_instruction_ldmdb (int base_reg
, int wback
, int reg_mask
)
18730 /* A8.8.60 LDMDB/LDMEA (A8-402)
18731 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18732 bfd_vma patched_inst
= 0xe9100000
18733 | (/*W=*/wback
<< 21)
18735 | (reg_mask
& 0x0000ffff);
18737 return patched_inst
;
18740 static inline bfd_vma
18741 create_instruction_mov (int target_reg
, int source_reg
)
18743 /* A8.8.103 MOV (register) (A8-486)
18744 MOV Rd, Rm (Encoding T1). */
18745 bfd_vma patched_inst
= 0x4600
18746 | (target_reg
& 0x7)
18747 | ((target_reg
& 0x8) >> 3) << 7
18748 | (source_reg
<< 3);
18750 return patched_inst
;
18753 static inline bfd_vma
18754 create_instruction_sub (int target_reg
, int source_reg
, int value
)
18756 /* A8.8.221 SUB (immediate) (A8-708)
18757 SUB Rd, Rn, #value (Encoding T3). */
18758 bfd_vma patched_inst
= 0xf1a00000
18759 | (target_reg
<< 8)
18760 | (source_reg
<< 16)
18762 | ((value
& 0x800) >> 11) << 26
18763 | ((value
& 0x700) >> 8) << 12
18766 return patched_inst
;
18769 static inline bfd_vma
18770 create_instruction_vldmia (int base_reg
, int is_dp
, int wback
, int num_words
,
18773 /* A8.8.332 VLDM (A8-922)
18774 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18775 bfd_vma patched_inst
= (is_dp
? 0xec900b00 : 0xec900a00)
18776 | (/*W=*/wback
<< 21)
18778 | (num_words
& 0x000000ff)
18779 | (((unsigned)first_reg
>> 1) & 0x0000000f) << 12
18780 | (first_reg
& 0x00000001) << 22;
18782 return patched_inst
;
18785 static inline bfd_vma
18786 create_instruction_vldmdb (int base_reg
, int is_dp
, int num_words
,
18789 /* A8.8.332 VLDM (A8-922)
18790 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18791 bfd_vma patched_inst
= (is_dp
? 0xed300b00 : 0xed300a00)
18793 | (num_words
& 0x000000ff)
18794 | (((unsigned)first_reg
>>1 ) & 0x0000000f) << 12
18795 | (first_reg
& 0x00000001) << 22;
18797 return patched_inst
;
18800 static inline bfd_vma
18801 create_instruction_udf_w (int value
)
18803 /* A8.8.247 UDF (A8-758)
18804 Undefined (Encoding T2). */
18805 bfd_vma patched_inst
= 0xf7f0a000
18806 | (value
& 0x00000fff)
18807 | (value
& 0x000f0000) << 16;
18809 return patched_inst
;
18812 static inline bfd_vma
18813 create_instruction_udf (int value
)
18815 /* A8.8.247 UDF (A8-758)
18816 Undefined (Encoding T1). */
18817 bfd_vma patched_inst
= 0xde00
18820 return patched_inst
;
18823 /* Functions writing an instruction in memory, returning the next
18824 memory position to write to. */
18826 static inline bfd_byte
*
18827 push_thumb2_insn32 (struct elf32_arm_link_hash_table
* htab
,
18828 bfd
* output_bfd
, bfd_byte
*pt
, insn32 insn
)
18830 put_thumb2_insn (htab
, output_bfd
, insn
, pt
);
18834 static inline bfd_byte
*
18835 push_thumb2_insn16 (struct elf32_arm_link_hash_table
* htab
,
18836 bfd
* output_bfd
, bfd_byte
*pt
, insn32 insn
)
18838 put_thumb_insn (htab
, output_bfd
, insn
, pt
);
18842 /* Function filling up a region in memory with T1 and T2 UDFs taking
18843 care of alignment. */
18846 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table
* htab
,
18848 const bfd_byte
* const base_stub_contents
,
18849 bfd_byte
* const from_stub_contents
,
18850 const bfd_byte
* const end_stub_contents
)
18852 bfd_byte
*current_stub_contents
= from_stub_contents
;
18854 /* Fill the remaining of the stub with deterministic contents : UDF
18856 Check if realignment is needed on modulo 4 frontier using T1, to
18858 if ((current_stub_contents
< end_stub_contents
)
18859 && !((current_stub_contents
- base_stub_contents
) % 2)
18860 && ((current_stub_contents
- base_stub_contents
) % 4))
18861 current_stub_contents
=
18862 push_thumb2_insn16 (htab
, output_bfd
, current_stub_contents
,
18863 create_instruction_udf (0));
18865 for (; current_stub_contents
< end_stub_contents
;)
18866 current_stub_contents
=
18867 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18868 create_instruction_udf_w (0));
18870 return current_stub_contents
;
18873 /* Functions writing the stream of instructions equivalent to the
18874 derived sequence for ldmia, ldmdb, vldm respectively. */
18877 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table
* htab
,
18879 const insn32 initial_insn
,
18880 const bfd_byte
*const initial_insn_addr
,
18881 bfd_byte
*const base_stub_contents
)
18883 int wback
= (initial_insn
& 0x00200000) >> 21;
18884 int ri
, rn
= (initial_insn
& 0x000F0000) >> 16;
18885 int insn_all_registers
= initial_insn
& 0x0000ffff;
18886 int insn_low_registers
, insn_high_registers
;
18887 int usable_register_mask
;
18888 int nb_registers
= elf32_arm_popcount (insn_all_registers
);
18889 int restore_pc
= (insn_all_registers
& (1 << 15)) ? 1 : 0;
18890 int restore_rn
= (insn_all_registers
& (1 << rn
)) ? 1 : 0;
18891 bfd_byte
*current_stub_contents
= base_stub_contents
;
18893 BFD_ASSERT (is_thumb2_ldmia (initial_insn
));
18895 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18896 smaller than 8 registers load sequences that do not cause the
18898 if (nb_registers
<= 8)
18900 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18901 current_stub_contents
=
18902 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18905 /* B initial_insn_addr+4. */
18907 current_stub_contents
=
18908 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18909 create_instruction_branch_absolute
18910 (initial_insn_addr
- current_stub_contents
));
18912 /* Fill the remaining of the stub with deterministic contents. */
18913 current_stub_contents
=
18914 stm32l4xx_fill_stub_udf (htab
, output_bfd
,
18915 base_stub_contents
, current_stub_contents
,
18916 base_stub_contents
+
18917 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
);
18922 /* - reg_list[13] == 0. */
18923 BFD_ASSERT ((insn_all_registers
& (1 << 13))==0);
18925 /* - reg_list[14] & reg_list[15] != 1. */
18926 BFD_ASSERT ((insn_all_registers
& 0xC000) != 0xC000);
18928 /* - if (wback==1) reg_list[rn] == 0. */
18929 BFD_ASSERT (!wback
|| !restore_rn
);
18931 /* - nb_registers > 8. */
18932 BFD_ASSERT (elf32_arm_popcount (insn_all_registers
) > 8);
18934 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18936 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
18937 - One with the 7 lowest registers (register mask 0x007F)
18938 This LDM will finally contain between 2 and 7 registers
18939 - One with the 7 highest registers (register mask 0xDF80)
18940 This ldm will finally contain between 2 and 7 registers. */
18941 insn_low_registers
= insn_all_registers
& 0x007F;
18942 insn_high_registers
= insn_all_registers
& 0xDF80;
18944 /* A spare register may be needed during this veneer to temporarily
18945 handle the base register. This register will be restored with the
18946 last LDM operation.
18947 The usable register may be any general purpose register (that
18948 excludes PC, SP, LR : register mask is 0x1FFF). */
18949 usable_register_mask
= 0x1FFF;
18951 /* Generate the stub function. */
18954 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
18955 current_stub_contents
=
18956 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18957 create_instruction_ldmia
18958 (rn
, /*wback=*/1, insn_low_registers
));
18960 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
18961 current_stub_contents
=
18962 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18963 create_instruction_ldmia
18964 (rn
, /*wback=*/1, insn_high_registers
));
18967 /* B initial_insn_addr+4. */
18968 current_stub_contents
=
18969 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18970 create_instruction_branch_absolute
18971 (initial_insn_addr
- current_stub_contents
));
18974 else /* if (!wback). */
18978 /* If Rn is not part of the high-register-list, move it there. */
18979 if (!(insn_high_registers
& (1 << rn
)))
18981 /* Choose a Ri in the high-register-list that will be restored. */
18982 ri
= ctz (insn_high_registers
& usable_register_mask
& ~(1 << rn
));
18985 current_stub_contents
=
18986 push_thumb2_insn16 (htab
, output_bfd
, current_stub_contents
,
18987 create_instruction_mov (ri
, rn
));
18990 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18991 current_stub_contents
=
18992 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18993 create_instruction_ldmia
18994 (ri
, /*wback=*/1, insn_low_registers
));
18996 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18997 current_stub_contents
=
18998 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18999 create_instruction_ldmia
19000 (ri
, /*wback=*/0, insn_high_registers
));
19004 /* B initial_insn_addr+4. */
19005 current_stub_contents
=
19006 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19007 create_instruction_branch_absolute
19008 (initial_insn_addr
- current_stub_contents
));
19012 /* Fill the remaining of the stub with deterministic contents. */
19013 current_stub_contents
=
19014 stm32l4xx_fill_stub_udf (htab
, output_bfd
,
19015 base_stub_contents
, current_stub_contents
,
19016 base_stub_contents
+
19017 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
);
19021 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table
* htab
,
19023 const insn32 initial_insn
,
19024 const bfd_byte
*const initial_insn_addr
,
19025 bfd_byte
*const base_stub_contents
)
19027 int wback
= (initial_insn
& 0x00200000) >> 21;
19028 int ri
, rn
= (initial_insn
& 0x000f0000) >> 16;
19029 int insn_all_registers
= initial_insn
& 0x0000ffff;
19030 int insn_low_registers
, insn_high_registers
;
19031 int usable_register_mask
;
19032 int restore_pc
= (insn_all_registers
& (1 << 15)) ? 1 : 0;
19033 int restore_rn
= (insn_all_registers
& (1 << rn
)) ? 1 : 0;
19034 int nb_registers
= elf32_arm_popcount (insn_all_registers
);
19035 bfd_byte
*current_stub_contents
= base_stub_contents
;
19037 BFD_ASSERT (is_thumb2_ldmdb (initial_insn
));
19039 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19040 smaller than 8 registers load sequences that do not cause the
19042 if (nb_registers
<= 8)
19044 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19045 current_stub_contents
=
19046 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19049 /* B initial_insn_addr+4. */
19050 current_stub_contents
=
19051 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19052 create_instruction_branch_absolute
19053 (initial_insn_addr
- current_stub_contents
));
19055 /* Fill the remaining of the stub with deterministic contents. */
19056 current_stub_contents
=
19057 stm32l4xx_fill_stub_udf (htab
, output_bfd
,
19058 base_stub_contents
, current_stub_contents
,
19059 base_stub_contents
+
19060 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
);
19065 /* - reg_list[13] == 0. */
19066 BFD_ASSERT ((insn_all_registers
& (1 << 13)) == 0);
19068 /* - reg_list[14] & reg_list[15] != 1. */
19069 BFD_ASSERT ((insn_all_registers
& 0xC000) != 0xC000);
19071 /* - if (wback==1) reg_list[rn] == 0. */
19072 BFD_ASSERT (!wback
|| !restore_rn
);
19074 /* - nb_registers > 8. */
19075 BFD_ASSERT (elf32_arm_popcount (insn_all_registers
) > 8);
19077 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19079 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19080 - One with the 7 lowest registers (register mask 0x007F)
19081 This LDM will finally contain between 2 and 7 registers
19082 - One with the 7 highest registers (register mask 0xDF80)
19083 This ldm will finally contain between 2 and 7 registers. */
19084 insn_low_registers
= insn_all_registers
& 0x007F;
19085 insn_high_registers
= insn_all_registers
& 0xDF80;
19087 /* A spare register may be needed during this veneer to temporarily
19088 handle the base register. This register will be restored with
19089 the last LDM operation.
19090 The usable register may be any general purpose register (that excludes
19091 PC, SP, LR : register mask is 0x1FFF). */
19092 usable_register_mask
= 0x1FFF;
19094 /* Generate the stub function. */
19095 if (!wback
&& !restore_pc
&& !restore_rn
)
19097 /* Choose a Ri in the low-register-list that will be restored. */
19098 ri
= ctz (insn_low_registers
& usable_register_mask
& ~(1 << rn
));
19101 current_stub_contents
=
19102 push_thumb2_insn16 (htab
, output_bfd
, current_stub_contents
,
19103 create_instruction_mov (ri
, rn
));
19105 /* LDMDB Ri!, {R-high-register-list}. */
19106 current_stub_contents
=
19107 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19108 create_instruction_ldmdb
19109 (ri
, /*wback=*/1, insn_high_registers
));
19111 /* LDMDB Ri, {R-low-register-list}. */
19112 current_stub_contents
=
19113 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19114 create_instruction_ldmdb
19115 (ri
, /*wback=*/0, insn_low_registers
));
19117 /* B initial_insn_addr+4. */
19118 current_stub_contents
=
19119 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19120 create_instruction_branch_absolute
19121 (initial_insn_addr
- current_stub_contents
));
19123 else if (wback
&& !restore_pc
&& !restore_rn
)
19125 /* LDMDB Rn!, {R-high-register-list}. */
19126 current_stub_contents
=
19127 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19128 create_instruction_ldmdb
19129 (rn
, /*wback=*/1, insn_high_registers
));
19131 /* LDMDB Rn!, {R-low-register-list}. */
19132 current_stub_contents
=
19133 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19134 create_instruction_ldmdb
19135 (rn
, /*wback=*/1, insn_low_registers
));
19137 /* B initial_insn_addr+4. */
19138 current_stub_contents
=
19139 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19140 create_instruction_branch_absolute
19141 (initial_insn_addr
- current_stub_contents
));
19143 else if (!wback
&& restore_pc
&& !restore_rn
)
19145 /* Choose a Ri in the high-register-list that will be restored. */
19146 ri
= ctz (insn_high_registers
& usable_register_mask
& ~(1 << rn
));
19148 /* SUB Ri, Rn, #(4*nb_registers). */
19149 current_stub_contents
=
19150 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19151 create_instruction_sub (ri
, rn
, (4 * nb_registers
)));
19153 /* LDMIA Ri!, {R-low-register-list}. */
19154 current_stub_contents
=
19155 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19156 create_instruction_ldmia
19157 (ri
, /*wback=*/1, insn_low_registers
));
19159 /* LDMIA Ri, {R-high-register-list}. */
19160 current_stub_contents
=
19161 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19162 create_instruction_ldmia
19163 (ri
, /*wback=*/0, insn_high_registers
));
19165 else if (wback
&& restore_pc
&& !restore_rn
)
19167 /* Choose a Ri in the high-register-list that will be restored. */
19168 ri
= ctz (insn_high_registers
& usable_register_mask
& ~(1 << rn
));
19170 /* SUB Rn, Rn, #(4*nb_registers) */
19171 current_stub_contents
=
19172 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19173 create_instruction_sub (rn
, rn
, (4 * nb_registers
)));
19176 current_stub_contents
=
19177 push_thumb2_insn16 (htab
, output_bfd
, current_stub_contents
,
19178 create_instruction_mov (ri
, rn
));
19180 /* LDMIA Ri!, {R-low-register-list}. */
19181 current_stub_contents
=
19182 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19183 create_instruction_ldmia
19184 (ri
, /*wback=*/1, insn_low_registers
));
19186 /* LDMIA Ri, {R-high-register-list}. */
19187 current_stub_contents
=
19188 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19189 create_instruction_ldmia
19190 (ri
, /*wback=*/0, insn_high_registers
));
19192 else if (!wback
&& !restore_pc
&& restore_rn
)
19195 if (!(insn_low_registers
& (1 << rn
)))
19197 /* Choose a Ri in the low-register-list that will be restored. */
19198 ri
= ctz (insn_low_registers
& usable_register_mask
& ~(1 << rn
));
19201 current_stub_contents
=
19202 push_thumb2_insn16 (htab
, output_bfd
, current_stub_contents
,
19203 create_instruction_mov (ri
, rn
));
19206 /* LDMDB Ri!, {R-high-register-list}. */
19207 current_stub_contents
=
19208 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19209 create_instruction_ldmdb
19210 (ri
, /*wback=*/1, insn_high_registers
));
19212 /* LDMDB Ri, {R-low-register-list}. */
19213 current_stub_contents
=
19214 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19215 create_instruction_ldmdb
19216 (ri
, /*wback=*/0, insn_low_registers
));
19218 /* B initial_insn_addr+4. */
19219 current_stub_contents
=
19220 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19221 create_instruction_branch_absolute
19222 (initial_insn_addr
- current_stub_contents
));
19224 else if (!wback
&& restore_pc
&& restore_rn
)
19227 if (!(insn_high_registers
& (1 << rn
)))
19229 /* Choose a Ri in the high-register-list that will be restored. */
19230 ri
= ctz (insn_high_registers
& usable_register_mask
& ~(1 << rn
));
19233 /* SUB Ri, Rn, #(4*nb_registers). */
19234 current_stub_contents
=
19235 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19236 create_instruction_sub (ri
, rn
, (4 * nb_registers
)));
19238 /* LDMIA Ri!, {R-low-register-list}. */
19239 current_stub_contents
=
19240 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19241 create_instruction_ldmia
19242 (ri
, /*wback=*/1, insn_low_registers
));
19244 /* LDMIA Ri, {R-high-register-list}. */
19245 current_stub_contents
=
19246 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19247 create_instruction_ldmia
19248 (ri
, /*wback=*/0, insn_high_registers
));
19250 else if (wback
&& restore_rn
)
19252 /* The assembler should not have accepted to encode this. */
19253 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19254 "undefined behavior.\n");
19257 /* Fill the remaining of the stub with deterministic contents. */
19258 current_stub_contents
=
19259 stm32l4xx_fill_stub_udf (htab
, output_bfd
,
19260 base_stub_contents
, current_stub_contents
,
19261 base_stub_contents
+
19262 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
);
19267 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table
* htab
,
19269 const insn32 initial_insn
,
19270 const bfd_byte
*const initial_insn_addr
,
19271 bfd_byte
*const base_stub_contents
)
19273 int num_words
= initial_insn
& 0xff;
19274 bfd_byte
*current_stub_contents
= base_stub_contents
;
19276 BFD_ASSERT (is_thumb2_vldm (initial_insn
));
19278 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19279 smaller than 8 words load sequences that do not cause the
19281 if (num_words
<= 8)
19283 /* Untouched instruction. */
19284 current_stub_contents
=
19285 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19288 /* B initial_insn_addr+4. */
19289 current_stub_contents
=
19290 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19291 create_instruction_branch_absolute
19292 (initial_insn_addr
- current_stub_contents
));
19296 bool is_dp
= /* DP encoding. */
19297 (initial_insn
& 0xfe100f00) == 0xec100b00;
19298 bool is_ia_nobang
= /* (IA without !). */
19299 (((initial_insn
<< 7) >> 28) & 0xd) == 0x4;
19300 bool is_ia_bang
= /* (IA with !) - includes VPOP. */
19301 (((initial_insn
<< 7) >> 28) & 0xd) == 0x5;
19302 bool is_db_bang
= /* (DB with !). */
19303 (((initial_insn
<< 7) >> 28) & 0xd) == 0x9;
19304 int base_reg
= ((unsigned int) initial_insn
<< 12) >> 28;
19305 /* d = UInt (Vd:D);. */
19306 int first_reg
= ((((unsigned int) initial_insn
<< 16) >> 28) << 1)
19307 | (((unsigned int)initial_insn
<< 9) >> 31);
19309 /* Compute the number of 8-words chunks needed to split. */
19310 int chunks
= (num_words
% 8) ? (num_words
/ 8 + 1) : (num_words
/ 8);
19313 /* The test coverage has been done assuming the following
19314 hypothesis that exactly one of the previous is_ predicates is
19316 BFD_ASSERT ( (is_ia_nobang
^ is_ia_bang
^ is_db_bang
)
19317 && !(is_ia_nobang
& is_ia_bang
& is_db_bang
));
19319 /* We treat the cutting of the words in one pass for all
19320 cases, then we emit the adjustments:
19323 -> vldm rx!, {8_words_or_less} for each needed 8_word
19324 -> sub rx, rx, #size (list)
19327 -> vldm rx!, {8_words_or_less} for each needed 8_word
19328 This also handles vpop instruction (when rx is sp)
19331 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
19332 for (chunk
= 0; chunk
< chunks
; ++chunk
)
19334 bfd_vma new_insn
= 0;
19336 if (is_ia_nobang
|| is_ia_bang
)
19338 new_insn
= create_instruction_vldmia
19342 chunks
- (chunk
+ 1) ?
19343 8 : num_words
- chunk
* 8,
19344 first_reg
+ chunk
* 8);
19346 else if (is_db_bang
)
19348 new_insn
= create_instruction_vldmdb
19351 chunks
- (chunk
+ 1) ?
19352 8 : num_words
- chunk
* 8,
19353 first_reg
+ chunk
* 8);
19357 current_stub_contents
=
19358 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19362 /* Only this case requires the base register compensation
19366 current_stub_contents
=
19367 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19368 create_instruction_sub
19369 (base_reg
, base_reg
, 4*num_words
));
19372 /* B initial_insn_addr+4. */
19373 current_stub_contents
=
19374 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19375 create_instruction_branch_absolute
19376 (initial_insn_addr
- current_stub_contents
));
19379 /* Fill the remaining of the stub with deterministic contents. */
19380 current_stub_contents
=
19381 stm32l4xx_fill_stub_udf (htab
, output_bfd
,
19382 base_stub_contents
, current_stub_contents
,
19383 base_stub_contents
+
19384 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE
);
19388 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table
* htab
,
19390 const insn32 wrong_insn
,
19391 const bfd_byte
*const wrong_insn_addr
,
19392 bfd_byte
*const stub_contents
)
19394 if (is_thumb2_ldmia (wrong_insn
))
19395 stm32l4xx_create_replacing_stub_ldmia (htab
, output_bfd
,
19396 wrong_insn
, wrong_insn_addr
,
19398 else if (is_thumb2_ldmdb (wrong_insn
))
19399 stm32l4xx_create_replacing_stub_ldmdb (htab
, output_bfd
,
19400 wrong_insn
, wrong_insn_addr
,
19402 else if (is_thumb2_vldm (wrong_insn
))
19403 stm32l4xx_create_replacing_stub_vldm (htab
, output_bfd
,
19404 wrong_insn
, wrong_insn_addr
,
19408 /* End of stm32l4xx work-around. */
19411 /* Do code byteswapping. Return FALSE afterwards so that the section is
19412 written out as normal. */
19415 elf32_arm_write_section (bfd
*output_bfd
,
19416 struct bfd_link_info
*link_info
,
19418 bfd_byte
*contents
)
19420 unsigned int mapcount
, errcount
;
19421 _arm_elf_section_data
*arm_data
;
19422 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
19423 elf32_arm_section_map
*map
;
19424 elf32_vfp11_erratum_list
*errnode
;
19425 elf32_stm32l4xx_erratum_list
*stm32l4xx_errnode
;
19428 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
19432 if (globals
== NULL
)
19435 /* If this section has not been allocated an _arm_elf_section_data
19436 structure then we cannot record anything. */
19437 arm_data
= get_arm_elf_section_data (sec
);
19438 if (arm_data
== NULL
)
19441 mapcount
= arm_data
->mapcount
;
19442 map
= arm_data
->map
;
19443 errcount
= arm_data
->erratumcount
;
19447 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
19449 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
19450 errnode
= errnode
->next
)
19452 bfd_vma target
= errnode
->vma
- offset
;
19454 switch (errnode
->type
)
19456 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
19458 bfd_vma branch_to_veneer
;
19459 /* Original condition code of instruction, plus bit mask for
19460 ARM B instruction. */
19461 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
19464 /* The instruction is before the label. */
19467 /* Above offset included in -4 below. */
19468 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
19469 - errnode
->vma
- 4;
19471 if ((signed) branch_to_veneer
< -(1 << 25)
19472 || (signed) branch_to_veneer
>= (1 << 25))
19473 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19474 "range"), output_bfd
);
19476 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
19477 contents
[endianflip
^ target
] = insn
& 0xff;
19478 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
19479 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
19480 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
19484 case VFP11_ERRATUM_ARM_VENEER
:
19486 bfd_vma branch_from_veneer
;
19489 /* Take size of veneer into account. */
19490 branch_from_veneer
= errnode
->u
.v
.branch
->vma
19491 - errnode
->vma
- 12;
19493 if ((signed) branch_from_veneer
< -(1 << 25)
19494 || (signed) branch_from_veneer
>= (1 << 25))
19495 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19496 "range"), output_bfd
);
19498 /* Original instruction. */
19499 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
19500 contents
[endianflip
^ target
] = insn
& 0xff;
19501 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
19502 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
19503 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
19505 /* Branch back to insn after original insn. */
19506 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
19507 contents
[endianflip
^ (target
+ 4)] = insn
& 0xff;
19508 contents
[endianflip
^ (target
+ 5)] = (insn
>> 8) & 0xff;
19509 contents
[endianflip
^ (target
+ 6)] = (insn
>> 16) & 0xff;
19510 contents
[endianflip
^ (target
+ 7)] = (insn
>> 24) & 0xff;
19520 if (arm_data
->stm32l4xx_erratumcount
!= 0)
19522 for (stm32l4xx_errnode
= arm_data
->stm32l4xx_erratumlist
;
19523 stm32l4xx_errnode
!= 0;
19524 stm32l4xx_errnode
= stm32l4xx_errnode
->next
)
19526 bfd_vma target
= stm32l4xx_errnode
->vma
- offset
;
19528 switch (stm32l4xx_errnode
->type
)
19530 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER
:
19533 bfd_vma branch_to_veneer
=
19534 stm32l4xx_errnode
->u
.b
.veneer
->vma
- stm32l4xx_errnode
->vma
;
19536 if ((signed) branch_to_veneer
< -(1 << 24)
19537 || (signed) branch_to_veneer
>= (1 << 24))
19539 bfd_vma out_of_range
=
19540 ((signed) branch_to_veneer
< -(1 << 24)) ?
19541 - branch_to_veneer
- (1 << 24) :
19542 ((signed) branch_to_veneer
>= (1 << 24)) ?
19543 branch_to_veneer
- (1 << 24) : 0;
19546 (_("%pB(%#" PRIx64
"): error: "
19547 "cannot create STM32L4XX veneer; "
19548 "jump out of range by %" PRId64
" bytes; "
19549 "cannot encode branch instruction"),
19551 (uint64_t) (stm32l4xx_errnode
->vma
- 4),
19552 (int64_t) out_of_range
);
19556 insn
= create_instruction_branch_absolute
19557 (stm32l4xx_errnode
->u
.b
.veneer
->vma
- stm32l4xx_errnode
->vma
);
19559 /* The instruction is before the label. */
19562 put_thumb2_insn (globals
, output_bfd
,
19563 (bfd_vma
) insn
, contents
+ target
);
19567 case STM32L4XX_ERRATUM_VENEER
:
19570 bfd_byte
* veneer_r
;
19573 veneer
= contents
+ target
;
19575 + stm32l4xx_errnode
->u
.b
.veneer
->vma
19576 - stm32l4xx_errnode
->vma
- 4;
19578 if ((signed) (veneer_r
- veneer
-
19579 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE
>
19580 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
?
19581 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE
:
19582 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
) < -(1 << 24)
19583 || (signed) (veneer_r
- veneer
) >= (1 << 24))
19585 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19586 "veneer"), output_bfd
);
19590 /* Original instruction. */
19591 insn
= stm32l4xx_errnode
->u
.v
.branch
->u
.b
.insn
;
19593 stm32l4xx_create_replacing_stub
19594 (globals
, output_bfd
, insn
, (void*)veneer_r
, (void*)veneer
);
19604 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
19606 arm_unwind_table_edit
*edit_node
19607 = arm_data
->u
.exidx
.unwind_edit_list
;
19608 /* Now, sec->size is the size of the section we will write. The original
19609 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
19610 markers) was sec->rawsize. (This isn't the case if we perform no
19611 edits, then rawsize will be zero and we should use size). */
19612 bfd_byte
*edited_contents
= (bfd_byte
*) bfd_malloc (sec
->size
);
19613 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
19614 unsigned int in_index
, out_index
;
19615 bfd_vma add_to_offsets
= 0;
19617 if (edited_contents
== NULL
)
19619 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
19623 unsigned int edit_index
= edit_node
->index
;
19625 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
19627 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
19628 contents
+ in_index
* 8, add_to_offsets
);
19632 else if (in_index
== edit_index
19633 || (in_index
* 8 >= input_size
19634 && edit_index
== UINT_MAX
))
19636 switch (edit_node
->type
)
19638 case DELETE_EXIDX_ENTRY
:
19640 add_to_offsets
+= 8;
19643 case INSERT_EXIDX_CANTUNWIND_AT_END
:
19645 asection
*text_sec
= edit_node
->linked_section
;
19646 bfd_vma text_offset
= text_sec
->output_section
->vma
19647 + text_sec
->output_offset
19649 bfd_vma exidx_offset
= offset
+ out_index
* 8;
19650 unsigned long prel31_offset
;
19652 /* Note: this is meant to be equivalent to an
19653 R_ARM_PREL31 relocation. These synthetic
19654 EXIDX_CANTUNWIND markers are not relocated by the
19655 usual BFD method. */
19656 prel31_offset
= (text_offset
- exidx_offset
)
19658 if (bfd_link_relocatable (link_info
))
19660 /* Here relocation for new EXIDX_CANTUNWIND is
19661 created, so there is no need to
19662 adjust offset by hand. */
19663 prel31_offset
= text_sec
->output_offset
19667 /* First address we can't unwind. */
19668 bfd_put_32 (output_bfd
, prel31_offset
,
19669 &edited_contents
[out_index
* 8]);
19671 /* Code for EXIDX_CANTUNWIND. */
19672 bfd_put_32 (output_bfd
, 0x1,
19673 &edited_contents
[out_index
* 8 + 4]);
19676 add_to_offsets
-= 8;
19681 edit_node
= edit_node
->next
;
19686 /* No more edits, copy remaining entries verbatim. */
19687 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
19688 contents
+ in_index
* 8, add_to_offsets
);
19694 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
19695 bfd_set_section_contents (output_bfd
, sec
->output_section
,
19697 (file_ptr
) sec
->output_offset
, sec
->size
);
19702 /* Fix code to point to Cortex-A8 erratum stubs. */
19703 if (globals
->fix_cortex_a8
)
19705 struct a8_branch_to_stub_data data
;
19707 data
.writing_section
= sec
;
19708 data
.contents
= contents
;
19710 bfd_hash_traverse (& globals
->stub_hash_table
, make_branch_to_a8_stub
,
19717 if (globals
->byteswap_code
)
19719 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
19722 for (i
= 0; i
< mapcount
; i
++)
19724 if (i
== mapcount
- 1)
19727 end
= map
[i
+ 1].vma
;
19729 switch (map
[i
].type
)
19732 /* Byte swap code words. */
19733 while (ptr
+ 3 < end
)
19735 tmp
= contents
[ptr
];
19736 contents
[ptr
] = contents
[ptr
+ 3];
19737 contents
[ptr
+ 3] = tmp
;
19738 tmp
= contents
[ptr
+ 1];
19739 contents
[ptr
+ 1] = contents
[ptr
+ 2];
19740 contents
[ptr
+ 2] = tmp
;
19746 /* Byte swap code halfwords. */
19747 while (ptr
+ 1 < end
)
19749 tmp
= contents
[ptr
];
19750 contents
[ptr
] = contents
[ptr
+ 1];
19751 contents
[ptr
+ 1] = tmp
;
19757 /* Leave data alone. */
19765 arm_data
->mapcount
= -1;
19766 arm_data
->mapsize
= 0;
19767 arm_data
->map
= NULL
;
19772 /* Mangle thumb function symbols as we read them in. */
19775 elf32_arm_swap_symbol_in (bfd
* abfd
,
19778 Elf_Internal_Sym
*dst
)
19780 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
19782 dst
->st_target_internal
= 0;
19784 /* New EABI objects mark thumb function symbols by setting the low bit of
19786 if (ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
19787 || ELF_ST_TYPE (dst
->st_info
) == STT_GNU_IFUNC
)
19789 if (dst
->st_value
& 1)
19791 dst
->st_value
&= ~(bfd_vma
) 1;
19792 ARM_SET_SYM_BRANCH_TYPE (dst
->st_target_internal
,
19793 ST_BRANCH_TO_THUMB
);
19796 ARM_SET_SYM_BRANCH_TYPE (dst
->st_target_internal
, ST_BRANCH_TO_ARM
);
19798 else if (ELF_ST_TYPE (dst
->st_info
) == STT_ARM_TFUNC
)
19800 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_FUNC
);
19801 ARM_SET_SYM_BRANCH_TYPE (dst
->st_target_internal
, ST_BRANCH_TO_THUMB
);
19803 else if (ELF_ST_TYPE (dst
->st_info
) == STT_SECTION
)
19804 ARM_SET_SYM_BRANCH_TYPE (dst
->st_target_internal
, ST_BRANCH_LONG
);
19806 ARM_SET_SYM_BRANCH_TYPE (dst
->st_target_internal
, ST_BRANCH_UNKNOWN
);
19812 /* Mangle thumb function symbols as we write them out. */
19815 elf32_arm_swap_symbol_out (bfd
*abfd
,
19816 const Elf_Internal_Sym
*src
,
19820 Elf_Internal_Sym newsym
;
19822 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19823 of the address set, as per the new EABI. We do this unconditionally
19824 because objcopy does not set the elf header flags until after
19825 it writes out the symbol table. */
19826 if (ARM_GET_SYM_BRANCH_TYPE (src
->st_target_internal
) == ST_BRANCH_TO_THUMB
)
19829 if (ELF_ST_TYPE (src
->st_info
) != STT_GNU_IFUNC
)
19830 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
19831 if (newsym
.st_shndx
!= SHN_UNDEF
)
19833 /* Do this only for defined symbols. At link type, the static
19834 linker will simulate the work of dynamic linker of resolving
19835 symbols and will carry over the thumbness of found symbols to
19836 the output symbol table. It's not clear how it happens, but
19837 the thumbness of undefined symbols can well be different at
19838 runtime, and writing '1' for them will be confusing for users
19839 and possibly for dynamic linker itself.
19841 newsym
.st_value
|= 1;
19846 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
19849 /* Add the PT_ARM_EXIDX program header. */
19852 elf32_arm_modify_segment_map (bfd
*abfd
,
19853 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
19855 struct elf_segment_map
*m
;
19858 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
19859 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
19861 /* If there is already a PT_ARM_EXIDX header, then we do not
19862 want to add another one. This situation arises when running
19863 "strip"; the input binary already has the header. */
19864 m
= elf_seg_map (abfd
);
19865 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
19869 m
= (struct elf_segment_map
*)
19870 bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
19873 m
->p_type
= PT_ARM_EXIDX
;
19875 m
->sections
[0] = sec
;
19877 m
->next
= elf_seg_map (abfd
);
19878 elf_seg_map (abfd
) = m
;
19885 /* We may add a PT_ARM_EXIDX program header. */
19888 elf32_arm_additional_program_headers (bfd
*abfd
,
19889 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
19893 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
19894 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
19900 /* Hook called by the linker routine which adds symbols from an object
19904 elf32_arm_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
19905 Elf_Internal_Sym
*sym
, const char **namep
,
19906 flagword
*flagsp
, asection
**secp
, bfd_vma
*valp
)
19908 if (elf32_arm_hash_table (info
) == NULL
)
19911 if (elf32_arm_hash_table (info
)->root
.target_os
== is_vxworks
19912 && !elf_vxworks_add_symbol_hook (abfd
, info
, sym
, namep
,
19913 flagsp
, secp
, valp
))
19919 /* We use this to override swap_symbol_in and swap_symbol_out. */
19920 const struct elf_size_info elf32_arm_size_info
=
19922 sizeof (Elf32_External_Ehdr
),
19923 sizeof (Elf32_External_Phdr
),
19924 sizeof (Elf32_External_Shdr
),
19925 sizeof (Elf32_External_Rel
),
19926 sizeof (Elf32_External_Rela
),
19927 sizeof (Elf32_External_Sym
),
19928 sizeof (Elf32_External_Dyn
),
19929 sizeof (Elf_External_Note
),
19933 ELFCLASS32
, EV_CURRENT
,
19934 bfd_elf32_write_out_phdrs
,
19935 bfd_elf32_write_shdrs_and_ehdr
,
19936 bfd_elf32_checksum_contents
,
19937 bfd_elf32_write_relocs
,
19938 elf32_arm_swap_symbol_in
,
19939 elf32_arm_swap_symbol_out
,
19940 bfd_elf32_slurp_reloc_table
,
19941 bfd_elf32_slurp_symbol_table
,
19942 bfd_elf32_swap_dyn_in
,
19943 bfd_elf32_swap_dyn_out
,
19944 bfd_elf32_swap_reloc_in
,
19945 bfd_elf32_swap_reloc_out
,
19946 bfd_elf32_swap_reloca_in
,
19947 bfd_elf32_swap_reloca_out
19951 read_code32 (const bfd
*abfd
, const bfd_byte
*addr
)
19953 /* V7 BE8 code is always little endian. */
19954 if ((elf_elfheader (abfd
)->e_flags
& EF_ARM_BE8
) != 0)
19955 return bfd_getl32 (addr
);
19957 return bfd_get_32 (abfd
, addr
);
19961 read_code16 (const bfd
*abfd
, const bfd_byte
*addr
)
19963 /* V7 BE8 code is always little endian. */
19964 if ((elf_elfheader (abfd
)->e_flags
& EF_ARM_BE8
) != 0)
19965 return bfd_getl16 (addr
);
19967 return bfd_get_16 (abfd
, addr
);
19970 /* Return size of plt0 entry starting at ADDR
19971 or (bfd_vma) -1 if size can not be determined. */
19974 elf32_arm_plt0_size (const bfd
*abfd
, const bfd_byte
*addr
)
19976 bfd_vma first_word
;
19979 first_word
= read_code32 (abfd
, addr
);
19981 if (first_word
== elf32_arm_plt0_entry
[0])
19982 plt0_size
= 4 * ARRAY_SIZE (elf32_arm_plt0_entry
);
19983 else if (first_word
== elf32_thumb2_plt0_entry
[0])
19984 plt0_size
= 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry
);
19986 /* We don't yet handle this PLT format. */
19987 return (bfd_vma
) -1;
19992 /* Return size of plt entry starting at offset OFFSET
19993 of plt section located at address START
19994 or (bfd_vma) -1 if size can not be determined. */
19997 elf32_arm_plt_size (const bfd
*abfd
, const bfd_byte
*start
, bfd_vma offset
)
19999 bfd_vma first_insn
;
20000 bfd_vma plt_size
= 0;
20001 const bfd_byte
*addr
= start
+ offset
;
20003 /* PLT entry size if fixed on Thumb-only platforms. */
20004 if (read_code32 (abfd
, start
) == elf32_thumb2_plt0_entry
[0])
20005 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry
);
20007 /* Respect Thumb stub if necessary. */
20008 if (read_code16 (abfd
, addr
) == elf32_arm_plt_thumb_stub
[0])
20010 plt_size
+= 2 * ARRAY_SIZE (elf32_arm_plt_thumb_stub
);
20013 /* Strip immediate from first add. */
20014 first_insn
= read_code32 (abfd
, addr
+ plt_size
) & 0xffffff00;
20016 #ifdef FOUR_WORD_PLT
20017 if (first_insn
== elf32_arm_plt_entry
[0])
20018 plt_size
+= 4 * ARRAY_SIZE (elf32_arm_plt_entry
);
20020 if (first_insn
== elf32_arm_plt_entry_long
[0])
20021 plt_size
+= 4 * ARRAY_SIZE (elf32_arm_plt_entry_long
);
20022 else if (first_insn
== elf32_arm_plt_entry_short
[0])
20023 plt_size
+= 4 * ARRAY_SIZE (elf32_arm_plt_entry_short
);
20026 /* We don't yet handle this PLT format. */
20027 return (bfd_vma
) -1;
20032 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20035 elf32_arm_get_synthetic_symtab (bfd
*abfd
,
20036 long symcount ATTRIBUTE_UNUSED
,
20037 asymbol
**syms ATTRIBUTE_UNUSED
,
20047 Elf_Internal_Shdr
*hdr
;
20055 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
20058 if (dynsymcount
<= 0)
20061 relplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
20062 if (relplt
== NULL
)
20065 hdr
= &elf_section_data (relplt
)->this_hdr
;
20066 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
20067 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
20070 plt
= bfd_get_section_by_name (abfd
, ".plt");
20074 if (!elf32_arm_size_info
.slurp_reloc_table (abfd
, relplt
, dynsyms
, true))
20078 if (!bfd_get_full_section_contents (abfd
, plt
, &data
))
20081 count
= NUM_SHDR_ENTRIES (hdr
);
20082 size
= count
* sizeof (asymbol
);
20083 p
= relplt
->relocation
;
20084 for (i
= 0; i
< count
; i
++, p
+= elf32_arm_size_info
.int_rels_per_ext_rel
)
20086 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
20087 if (p
->addend
!= 0)
20088 size
+= sizeof ("+0x") - 1 + 8;
20091 offset
= elf32_arm_plt0_size (abfd
, data
);
20092 if (offset
== (bfd_vma
) -1
20093 || (s
= *ret
= (asymbol
*) bfd_malloc (size
)) == NULL
)
20099 names
= (char *) (s
+ count
);
20100 p
= relplt
->relocation
;
20102 for (i
= 0; i
< count
; i
++, p
+= elf32_arm_size_info
.int_rels_per_ext_rel
)
20106 bfd_vma plt_size
= elf32_arm_plt_size (abfd
, data
, offset
);
20107 if (plt_size
== (bfd_vma
) -1)
20110 *s
= **p
->sym_ptr_ptr
;
20111 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20112 we are defining a symbol, ensure one of them is set. */
20113 if ((s
->flags
& BSF_LOCAL
) == 0)
20114 s
->flags
|= BSF_GLOBAL
;
20115 s
->flags
|= BSF_SYNTHETIC
;
20120 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
20121 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
20123 if (p
->addend
!= 0)
20127 memcpy (names
, "+0x", sizeof ("+0x") - 1);
20128 names
+= sizeof ("+0x") - 1;
20129 bfd_sprintf_vma (abfd
, buf
, p
->addend
);
20130 for (a
= buf
; *a
== '0'; ++a
)
20133 memcpy (names
, a
, len
);
20136 memcpy (names
, "@plt", sizeof ("@plt"));
20137 names
+= sizeof ("@plt");
20139 offset
+= plt_size
;
20147 elf32_arm_section_flags (const Elf_Internal_Shdr
*hdr
)
20149 if (hdr
->sh_flags
& SHF_ARM_PURECODE
)
20150 hdr
->bfd_section
->flags
|= SEC_ELF_PURECODE
;
20155 elf32_arm_lookup_section_flags (char *flag_name
)
20157 if (!strcmp (flag_name
, "SHF_ARM_PURECODE"))
20158 return SHF_ARM_PURECODE
;
20160 return SEC_NO_FLAGS
;
20163 static unsigned int
20164 elf32_arm_count_additional_relocs (asection
*sec
)
20166 struct _arm_elf_section_data
*arm_data
;
20167 arm_data
= get_arm_elf_section_data (sec
);
20169 return arm_data
== NULL
? 0 : arm_data
->additional_reloc_count
;
20172 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
20173 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
20174 FALSE otherwise. ISECTION is the best guess matching section from the
20175 input bfd IBFD, but it might be NULL. */
20178 elf32_arm_copy_special_section_fields (const bfd
*ibfd ATTRIBUTE_UNUSED
,
20179 bfd
*obfd ATTRIBUTE_UNUSED
,
20180 const Elf_Internal_Shdr
*isection ATTRIBUTE_UNUSED
,
20181 Elf_Internal_Shdr
*osection
)
20183 switch (osection
->sh_type
)
20185 case SHT_ARM_EXIDX
:
20187 Elf_Internal_Shdr
**oheaders
= elf_elfsections (obfd
);
20188 Elf_Internal_Shdr
**iheaders
= elf_elfsections (ibfd
);
20191 osection
->sh_flags
= SHF_ALLOC
| SHF_LINK_ORDER
;
20192 osection
->sh_info
= 0;
20194 /* The sh_link field must be set to the text section associated with
20195 this index section. Unfortunately the ARM EHABI does not specify
20196 exactly how to determine this association. Our caller does try
20197 to match up OSECTION with its corresponding input section however
20198 so that is a good first guess. */
20199 if (isection
!= NULL
20200 && osection
->bfd_section
!= NULL
20201 && isection
->bfd_section
!= NULL
20202 && isection
->bfd_section
->output_section
!= NULL
20203 && isection
->bfd_section
->output_section
== osection
->bfd_section
20204 && iheaders
!= NULL
20205 && isection
->sh_link
> 0
20206 && isection
->sh_link
< elf_numsections (ibfd
)
20207 && iheaders
[isection
->sh_link
]->bfd_section
!= NULL
20208 && iheaders
[isection
->sh_link
]->bfd_section
->output_section
!= NULL
20211 for (i
= elf_numsections (obfd
); i
-- > 0;)
20212 if (oheaders
[i
]->bfd_section
20213 == iheaders
[isection
->sh_link
]->bfd_section
->output_section
)
20219 /* Failing that we have to find a matching section ourselves. If
20220 we had the output section name available we could compare that
20221 with input section names. Unfortunately we don't. So instead
20222 we use a simple heuristic and look for the nearest executable
20223 section before this one. */
20224 for (i
= elf_numsections (obfd
); i
-- > 0;)
20225 if (oheaders
[i
] == osection
)
20231 if (oheaders
[i
]->sh_type
== SHT_PROGBITS
20232 && (oheaders
[i
]->sh_flags
& (SHF_ALLOC
| SHF_EXECINSTR
))
20233 == (SHF_ALLOC
| SHF_EXECINSTR
))
20239 osection
->sh_link
= i
;
20240 /* If the text section was part of a group
20241 then the index section should be too. */
20242 if (oheaders
[i
]->sh_flags
& SHF_GROUP
)
20243 osection
->sh_flags
|= SHF_GROUP
;
20249 case SHT_ARM_PREEMPTMAP
:
20250 osection
->sh_flags
= SHF_ALLOC
;
20253 case SHT_ARM_ATTRIBUTES
:
20254 case SHT_ARM_DEBUGOVERLAY
:
20255 case SHT_ARM_OVERLAYSECTION
:
20263 /* Returns TRUE if NAME is an ARM mapping symbol.
20264 Traditionally the symbols $a, $d and $t have been used.
20265 The ARM ELF standard also defines $x (for A64 code). It also allows a
20266 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20267 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20268 not support them here. $t.x indicates the start of ThumbEE instructions. */
20271 is_arm_mapping_symbol (const char * name
)
20273 return name
!= NULL
/* Paranoia. */
20274 && name
[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20275 the mapping symbols could have acquired a prefix.
20276 We do not support this here, since such symbols no
20277 longer conform to the ARM ELF ABI. */
20278 && (name
[1] == 'a' || name
[1] == 'd' || name
[1] == 't' || name
[1] == 'x')
20279 && (name
[2] == 0 || name
[2] == '.');
20280 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20281 any characters that follow the period are legal characters for the body
20282 of a symbol's name. For now we just assume that this is the case. */
20285 /* Make sure that mapping symbols in object files are not removed via the
20286 "strip --strip-unneeded" tool. These symbols are needed in order to
20287 correctly generate interworking veneers, and for byte swapping code
20288 regions. Once an object file has been linked, it is safe to remove the
20289 symbols as they will no longer be needed. */
20292 elf32_arm_backend_symbol_processing (bfd
*abfd
, asymbol
*sym
)
20294 if (((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
20295 && sym
->section
!= bfd_abs_section_ptr
20296 && is_arm_mapping_symbol (sym
->name
))
20297 sym
->flags
|= BSF_KEEP
;
20300 #undef elf_backend_copy_special_section_fields
20301 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20303 #define ELF_ARCH bfd_arch_arm
20304 #define ELF_TARGET_ID ARM_ELF_DATA
20305 #define ELF_MACHINE_CODE EM_ARM
20306 #define ELF_MAXPAGESIZE 0x1000
20307 #define ELF_COMMONPAGESIZE 0x1000
20309 #define bfd_elf32_mkobject elf32_arm_mkobject
20311 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20312 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
20313 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20314 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
20315 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
20316 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
20317 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
20318 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
20319 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
20320 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
20321 #define bfd_elf32_bfd_final_link elf32_arm_final_link
20322 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
20324 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20325 #define elf_backend_maybe_function_sym elf32_arm_maybe_function_sym
20326 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
20327 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
20328 #define elf_backend_check_relocs elf32_arm_check_relocs
20329 #define elf_backend_update_relocs elf32_arm_update_relocs
20330 #define elf_backend_relocate_section elf32_arm_relocate_section
20331 #define elf_backend_write_section elf32_arm_write_section
20332 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
20333 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
20334 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20335 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20336 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
20337 #define elf_backend_always_size_sections elf32_arm_always_size_sections
20338 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
20339 #define elf_backend_init_file_header elf32_arm_init_file_header
20340 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
20341 #define elf_backend_object_p elf32_arm_object_p
20342 #define elf_backend_fake_sections elf32_arm_fake_sections
20343 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20344 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20345 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
20346 #define elf_backend_size_info elf32_arm_size_info
20347 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20348 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20349 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
20350 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
20351 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
20352 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
20353 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
20354 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
20356 #define elf_backend_can_refcount 1
20357 #define elf_backend_can_gc_sections 1
20358 #define elf_backend_plt_readonly 1
20359 #define elf_backend_want_got_plt 1
20360 #define elf_backend_want_plt_sym 0
20361 #define elf_backend_want_dynrelro 1
20362 #define elf_backend_may_use_rel_p 1
20363 #define elf_backend_may_use_rela_p 0
20364 #define elf_backend_default_use_rela_p 0
20365 #define elf_backend_dtrel_excludes_plt 1
20367 #define elf_backend_got_header_size 12
20368 #define elf_backend_extern_protected_data 0
20370 #undef elf_backend_obj_attrs_vendor
20371 #define elf_backend_obj_attrs_vendor "aeabi"
20372 #undef elf_backend_obj_attrs_section
20373 #define elf_backend_obj_attrs_section ".ARM.attributes"
20374 #undef elf_backend_obj_attrs_arg_type
20375 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
20376 #undef elf_backend_obj_attrs_section_type
20377 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
20378 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
20379 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
20381 #undef elf_backend_section_flags
20382 #define elf_backend_section_flags elf32_arm_section_flags
20383 #undef elf_backend_lookup_section_flags_hook
20384 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
20386 #define elf_backend_linux_prpsinfo32_ugid16 true
20388 #include "elf32-target.h"
20390 /* Native Client targets. */
20392 #undef TARGET_LITTLE_SYM
20393 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
20394 #undef TARGET_LITTLE_NAME
20395 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20396 #undef TARGET_BIG_SYM
20397 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
20398 #undef TARGET_BIG_NAME
20399 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
20401 /* Like elf32_arm_link_hash_table_create -- but overrides
20402 appropriately for NaCl. */
20404 static struct bfd_link_hash_table
*
20405 elf32_arm_nacl_link_hash_table_create (bfd
*abfd
)
20407 struct bfd_link_hash_table
*ret
;
20409 ret
= elf32_arm_link_hash_table_create (abfd
);
20412 struct elf32_arm_link_hash_table
*htab
20413 = (struct elf32_arm_link_hash_table
*) ret
;
20415 htab
->plt_header_size
= 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry
);
20416 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry
);
20421 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
20422 really need to use elf32_arm_modify_segment_map. But we do it
20423 anyway just to reduce gratuitous differences with the stock ARM backend. */
20426 elf32_arm_nacl_modify_segment_map (bfd
*abfd
, struct bfd_link_info
*info
)
20428 return (elf32_arm_modify_segment_map (abfd
, info
)
20429 && nacl_modify_segment_map (abfd
, info
));
20433 elf32_arm_nacl_final_write_processing (bfd
*abfd
)
20435 arm_final_write_processing (abfd
);
20436 return nacl_final_write_processing (abfd
);
20440 elf32_arm_nacl_plt_sym_val (bfd_vma i
, const asection
*plt
,
20441 const arelent
*rel ATTRIBUTE_UNUSED
)
20444 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry
) +
20445 i
* ARRAY_SIZE (elf32_arm_nacl_plt_entry
));
20449 #define elf32_bed elf32_arm_nacl_bed
20450 #undef bfd_elf32_bfd_link_hash_table_create
20451 #define bfd_elf32_bfd_link_hash_table_create \
20452 elf32_arm_nacl_link_hash_table_create
20453 #undef elf_backend_plt_alignment
20454 #define elf_backend_plt_alignment 4
20455 #undef elf_backend_modify_segment_map
20456 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20457 #undef elf_backend_modify_headers
20458 #define elf_backend_modify_headers nacl_modify_headers
20459 #undef elf_backend_final_write_processing
20460 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
20461 #undef bfd_elf32_get_synthetic_symtab
20462 #undef elf_backend_plt_sym_val
20463 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
20464 #undef elf_backend_copy_special_section_fields
20466 #undef ELF_MINPAGESIZE
20467 #undef ELF_COMMONPAGESIZE
20469 #undef ELF_TARGET_OS
20470 #define ELF_TARGET_OS is_nacl
20472 #include "elf32-target.h"
20474 /* Reset to defaults. */
20475 #undef elf_backend_plt_alignment
20476 #undef elf_backend_modify_segment_map
20477 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20478 #undef elf_backend_modify_headers
20479 #undef elf_backend_final_write_processing
20480 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20481 #undef ELF_MINPAGESIZE
20482 #undef ELF_COMMONPAGESIZE
20483 #define ELF_COMMONPAGESIZE 0x1000
20486 /* FDPIC Targets. */
20488 #undef TARGET_LITTLE_SYM
20489 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20490 #undef TARGET_LITTLE_NAME
20491 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20492 #undef TARGET_BIG_SYM
20493 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20494 #undef TARGET_BIG_NAME
20495 #define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20496 #undef elf_match_priority
20497 #define elf_match_priority 128
20499 #define ELF_OSABI ELFOSABI_ARM_FDPIC
20501 /* Like elf32_arm_link_hash_table_create -- but overrides
20502 appropriately for FDPIC. */
20504 static struct bfd_link_hash_table
*
20505 elf32_arm_fdpic_link_hash_table_create (bfd
*abfd
)
20507 struct bfd_link_hash_table
*ret
;
20509 ret
= elf32_arm_link_hash_table_create (abfd
);
20512 struct elf32_arm_link_hash_table
*htab
= (struct elf32_arm_link_hash_table
*) ret
;
20519 /* We need dynamic symbols for every section, since segments can
20520 relocate independently. */
20522 elf32_arm_fdpic_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
20523 struct bfd_link_info
*info
20525 asection
*p ATTRIBUTE_UNUSED
)
20527 switch (elf_section_data (p
)->this_hdr
.sh_type
)
20531 /* If sh_type is yet undecided, assume it could be
20532 SHT_PROGBITS/SHT_NOBITS. */
20536 /* There shouldn't be section relative relocations
20537 against any other section. */
20544 #define elf32_bed elf32_arm_fdpic_bed
20546 #undef bfd_elf32_bfd_link_hash_table_create
20547 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20549 #undef elf_backend_omit_section_dynsym
20550 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20552 #undef ELF_TARGET_OS
20554 #include "elf32-target.h"
20556 #undef elf_match_priority
20558 #undef elf_backend_omit_section_dynsym
20560 /* VxWorks Targets. */
20562 #undef TARGET_LITTLE_SYM
20563 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20564 #undef TARGET_LITTLE_NAME
20565 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20566 #undef TARGET_BIG_SYM
20567 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20568 #undef TARGET_BIG_NAME
20569 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
20571 /* Like elf32_arm_link_hash_table_create -- but overrides
20572 appropriately for VxWorks. */
20574 static struct bfd_link_hash_table
*
20575 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
20577 struct bfd_link_hash_table
*ret
;
20579 ret
= elf32_arm_link_hash_table_create (abfd
);
20582 struct elf32_arm_link_hash_table
*htab
20583 = (struct elf32_arm_link_hash_table
*) ret
;
20590 elf32_arm_vxworks_final_write_processing (bfd
*abfd
)
20592 arm_final_write_processing (abfd
);
20593 return elf_vxworks_final_write_processing (abfd
);
20597 #define elf32_bed elf32_arm_vxworks_bed
20599 #undef bfd_elf32_bfd_link_hash_table_create
20600 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
20601 #undef elf_backend_final_write_processing
20602 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20603 #undef elf_backend_emit_relocs
20604 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
20606 #undef elf_backend_may_use_rel_p
20607 #define elf_backend_may_use_rel_p 0
20608 #undef elf_backend_may_use_rela_p
20609 #define elf_backend_may_use_rela_p 1
20610 #undef elf_backend_default_use_rela_p
20611 #define elf_backend_default_use_rela_p 1
20612 #undef elf_backend_want_plt_sym
20613 #define elf_backend_want_plt_sym 1
20614 #undef ELF_MAXPAGESIZE
20615 #define ELF_MAXPAGESIZE 0x1000
20616 #undef ELF_TARGET_OS
20617 #define ELF_TARGET_OS is_vxworks
20619 #include "elf32-target.h"
20622 /* Merge backend specific data from an object file to the output
20623 object file when linking. */
20626 elf32_arm_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
20628 bfd
*obfd
= info
->output_bfd
;
20629 flagword out_flags
;
20631 bool flags_compatible
= true;
20634 /* Check if we have the same endianness. */
20635 if (! _bfd_generic_verify_endian_match (ibfd
, info
))
20638 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
20641 if (!elf32_arm_merge_eabi_attributes (ibfd
, info
))
20644 /* The input BFD must have had its flags initialised. */
20645 /* The following seems bogus to me -- The flags are initialized in
20646 the assembler but I don't think an elf_flags_init field is
20647 written into the object. */
20648 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20650 in_flags
= elf_elfheader (ibfd
)->e_flags
;
20651 out_flags
= elf_elfheader (obfd
)->e_flags
;
20653 /* In theory there is no reason why we couldn't handle this. However
20654 in practice it isn't even close to working and there is no real
20655 reason to want it. */
20656 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
20657 && !(ibfd
->flags
& DYNAMIC
)
20658 && (in_flags
& EF_ARM_BE8
))
20660 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
20665 if (!elf_flags_init (obfd
))
20667 /* If the input is the default architecture and had the default
20668 flags then do not bother setting the flags for the output
20669 architecture, instead allow future merges to do this. If no
20670 future merges ever set these flags then they will retain their
20671 uninitialised values, which surprise surprise, correspond
20672 to the default values. */
20673 if (bfd_get_arch_info (ibfd
)->the_default
20674 && elf_elfheader (ibfd
)->e_flags
== 0)
20677 elf_flags_init (obfd
) = true;
20678 elf_elfheader (obfd
)->e_flags
= in_flags
;
20680 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
20681 && bfd_get_arch_info (obfd
)->the_default
)
20682 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
20687 /* Determine what should happen if the input ARM architecture
20688 does not match the output ARM architecture. */
20689 if (! bfd_arm_merge_machines (ibfd
, obfd
))
20692 /* Identical flags must be compatible. */
20693 if (in_flags
== out_flags
)
20696 /* Check to see if the input BFD actually contains any sections. If
20697 not, its flags may not have been initialised either, but it
20698 cannot actually cause any incompatiblity. Do not short-circuit
20699 dynamic objects; their section list may be emptied by
20700 elf_link_add_object_symbols.
20702 Also check to see if there are no code sections in the input.
20703 In this case there is no need to check for code specific flags.
20704 XXX - do we need to worry about floating-point format compatability
20705 in data sections ? */
20706 if (!(ibfd
->flags
& DYNAMIC
))
20708 bool null_input_bfd
= true;
20709 bool only_data_sections
= true;
20711 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
20713 /* Ignore synthetic glue sections. */
20714 if (strcmp (sec
->name
, ".glue_7")
20715 && strcmp (sec
->name
, ".glue_7t"))
20717 if ((bfd_section_flags (sec
)
20718 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
20719 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
20720 only_data_sections
= false;
20722 null_input_bfd
= false;
20727 if (null_input_bfd
|| only_data_sections
)
20731 /* Complain about various flag mismatches. */
20732 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
20733 EF_ARM_EABI_VERSION (out_flags
)))
20736 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
20737 ibfd
, (in_flags
& EF_ARM_EABIMASK
) >> 24,
20738 obfd
, (out_flags
& EF_ARM_EABIMASK
) >> 24);
20742 /* Not sure what needs to be checked for EABI versions >= 1. */
20743 /* VxWorks libraries do not use these flags. */
20744 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
20745 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
20746 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
20748 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
20751 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
20752 ibfd
, in_flags
& EF_ARM_APCS_26
? 26 : 32,
20753 obfd
, out_flags
& EF_ARM_APCS_26
? 26 : 32);
20754 flags_compatible
= false;
20757 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
20759 if (in_flags
& EF_ARM_APCS_FLOAT
)
20761 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
20765 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
20768 flags_compatible
= false;
20771 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
20773 if (in_flags
& EF_ARM_VFP_FLOAT
)
20775 (_("error: %pB uses %s instructions, whereas %pB does not"),
20776 ibfd
, "VFP", obfd
);
20779 (_("error: %pB uses %s instructions, whereas %pB does not"),
20780 ibfd
, "FPA", obfd
);
20782 flags_compatible
= false;
20785 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
20787 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
20789 (_("error: %pB uses %s instructions, whereas %pB does not"),
20790 ibfd
, "Maverick", obfd
);
20793 (_("error: %pB does not use %s instructions, whereas %pB does"),
20794 ibfd
, "Maverick", obfd
);
20796 flags_compatible
= false;
20799 #ifdef EF_ARM_SOFT_FLOAT
20800 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
20802 /* We can allow interworking between code that is VFP format
20803 layout, and uses either soft float or integer regs for
20804 passing floating point arguments and results. We already
20805 know that the APCS_FLOAT flags match; similarly for VFP
20807 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
20808 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
20810 if (in_flags
& EF_ARM_SOFT_FLOAT
)
20812 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
20816 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
20819 flags_compatible
= false;
20824 /* Interworking mismatch is only a warning. */
20825 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
20827 if (in_flags
& EF_ARM_INTERWORK
)
20830 (_("warning: %pB supports interworking, whereas %pB does not"),
20836 (_("warning: %pB does not support interworking, whereas %pB does"),
20842 return flags_compatible
;