1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
3 Copyright (C) 1996-2023 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "frame-base.h"
23 #include "trad-frame.h"
24 #include "frame-unwind.h"
25 #include "dwarf2/frame.h"
29 #include "arch-utils.h"
39 /* General purpose registers. */
43 E_R3_REGNUM
, E_SP_REGNUM
= E_R3_REGNUM
,
46 E_R6_REGNUM
, E_ARG0_REGNUM
= E_R6_REGNUM
,
49 E_R9_REGNUM
, E_ARGLAST_REGNUM
= E_R9_REGNUM
,
50 E_R10_REGNUM
, E_V0_REGNUM
= E_R10_REGNUM
,
51 E_R11_REGNUM
, E_V1_REGNUM
= E_R11_REGNUM
,
69 E_R29_REGNUM
, E_FP_REGNUM
= E_R29_REGNUM
,
70 E_R30_REGNUM
, E_EP_REGNUM
= E_R30_REGNUM
,
71 E_R31_REGNUM
, E_LP_REGNUM
= E_R31_REGNUM
,
73 /* System registers - main banks. */
74 E_R32_REGNUM
, E_SR0_REGNUM
= E_R32_REGNUM
,
79 E_R37_REGNUM
, E_PS_REGNUM
= E_R37_REGNUM
,
94 E_R52_REGNUM
, E_CTBP_REGNUM
= E_R52_REGNUM
,
108 E_R64_REGNUM
, E_PC_REGNUM
= E_R64_REGNUM
,
111 E_NUM_OF_V850E_REGS
= E_NUM_OF_V850_REGS
,
113 /* System registers - MPV (PROT00) bank. */
114 E_R66_REGNUM
= E_NUM_OF_V850_REGS
,
143 /* System registers - MPU (PROT01) bank. */
173 /* FPU system registers. */
180 E_R128_REGNUM
, E_FPSR_REGNUM
= E_R128_REGNUM
,
181 E_R129_REGNUM
, E_FPEPC_REGNUM
= E_R129_REGNUM
,
182 E_R130_REGNUM
, E_FPST_REGNUM
= E_R130_REGNUM
,
183 E_R131_REGNUM
, E_FPCC_REGNUM
= E_R131_REGNUM
,
184 E_R132_REGNUM
, E_FPCFG_REGNUM
= E_R132_REGNUM
,
202 E_NUM_OF_V850E2_REGS
,
204 /* v850e3v5 system registers, selID 1 thru 7. */
205 E_SELID_1_R0_REGNUM
= E_NUM_OF_V850E2_REGS
,
206 E_SELID_1_R31_REGNUM
= E_SELID_1_R0_REGNUM
+ 31,
209 E_SELID_2_R31_REGNUM
= E_SELID_2_R0_REGNUM
+ 31,
212 E_SELID_3_R31_REGNUM
= E_SELID_3_R0_REGNUM
+ 31,
215 E_SELID_4_R31_REGNUM
= E_SELID_4_R0_REGNUM
+ 31,
218 E_SELID_5_R31_REGNUM
= E_SELID_5_R0_REGNUM
+ 31,
221 E_SELID_6_R31_REGNUM
= E_SELID_6_R0_REGNUM
+ 31,
224 E_SELID_7_R31_REGNUM
= E_SELID_7_R0_REGNUM
+ 31,
226 /* v850e3v5 vector registers. */
228 E_VR31_REGNUM
= E_VR0_REGNUM
+ 31,
230 E_NUM_OF_V850E3V5_REGS
,
232 /* Total number of possible registers. */
233 E_NUM_REGS
= E_NUM_OF_V850E3V5_REGS
241 /* Size of return datatype which fits into all return registers. */
244 E_MAX_RETTYPE_SIZE_IN_REGS
= 2 * v850_reg_size
247 /* When v850 support was added to GCC in the late nineties, the intention
248 was to follow the Green Hills ABI for v850. In fact, the authors of
249 that support at the time thought that they were doing so. As far as
250 I can tell, the calling conventions are correct, but the return value
251 conventions were not quite right. Over time, the return value code
252 in this file was modified to mostly reflect what GCC was actually
253 doing instead of to actually follow the Green Hills ABI as it did
254 when the code was first written.
256 Renesas defined the RH850 ABI which they use in their compiler. It
257 is similar to the original Green Hills ABI with some minor
266 /* Architecture specific data. */
268 struct v850_gdbarch_tdep
: gdbarch_tdep_base
270 /* Fields from the ELF header. */
274 /* Which ABI are we using? */
275 enum v850_abi abi
{};
276 int eight_byte_align
= 0;
279 struct v850_frame_cache
286 /* Flag showing that a frame has been created in the prologue code. */
289 /* Saved registers. */
290 trad_frame_saved_reg
*saved_regs
;
293 /* Info gleaned from scanning a function's prologue. */
294 struct pifsr
/* Info about one saved register. */
296 int offset
; /* Offset from sp or fp. */
297 int cur_frameoffset
; /* Current frameoffset. */
298 int reg
; /* Saved register number. */
302 v850_register_name (struct gdbarch
*gdbarch
, int regnum
)
304 static const char *v850_reg_names
[] =
305 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
306 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
307 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
308 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
309 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
310 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
311 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
312 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
315 gdb_static_assert (E_NUM_OF_V850_REGS
== ARRAY_SIZE (v850_reg_names
));
316 return v850_reg_names
[regnum
];
320 v850e_register_name (struct gdbarch
*gdbarch
, int regnum
)
322 static const char *v850e_reg_names
[] =
324 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
325 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
326 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
327 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
328 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
329 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
330 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
331 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
334 gdb_static_assert (E_NUM_OF_V850E_REGS
== ARRAY_SIZE (v850e_reg_names
));
335 return v850e_reg_names
[regnum
];
339 v850e2_register_name (struct gdbarch
*gdbarch
, int regnum
)
341 static const char *v850e2_reg_names
[] =
343 /* General purpose registers. */
344 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
345 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
346 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
347 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
349 /* System registers - main banks. */
350 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg",
351 "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic",
352 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "",
353 "", "", "", "", "eiwr", "fewr", "dbwr", "bsel",
359 /* System registers - MPV (PROT00) bank. */
360 "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "",
361 "vpecr", "vptid", "vpadr", "", "", "", "", "",
362 "", "", "", "", "", "", "", "",
363 "mca", "mcs", "mcc", "mcr",
365 /* System registers - MPU (PROT01) bank. */
366 "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u",
367 "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u",
368 "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u",
369 "dpa4l", "dpa4u", "dpa5l", "dpa5u",
371 /* FPU system registers. */
372 "", "", "", "", "", "", "fpsr", "fpepc",
373 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
374 "", "", "", "", "", "", "", "",
377 if (regnum
>= E_NUM_OF_V850E2_REGS
)
379 return v850e2_reg_names
[regnum
];
382 /* Implement the "register_name" gdbarch method for v850e3v5. */
385 v850e3v5_register_name (struct gdbarch
*gdbarch
, int regnum
)
387 static const char *v850e3v5_reg_names
[] =
389 /* General purpose registers. */
390 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
391 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
392 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
393 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
395 /* selID 0, not including FPU registers. The FPU registers are
397 "eipc", "eipsw", "fepc", "fepsw",
398 "", "psw", "" /* fpsr */, "" /* fpepc */,
399 "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */,
400 "sesr", "eiic", "feic", "",
401 "ctpc", "ctpsw", "", "", "ctbp", "", "", "",
402 "", "", "", "", "eiwr", "fewr", "", "bsel",
408 /* v850e2 MPV bank. */
409 "", "", "", "", "", "", "", "",
410 "", "", "", "", "", "", "", "",
411 "", "", "", "", "", "", "", "",
414 /* Skip v850e2 MPU bank. It's tempting to reuse these, but we need
415 32 entries for this bank. */
416 "", "", "", "", "", "", "", "",
417 "", "", "", "", "", "", "", "",
418 "", "", "", "", "", "", "", "",
421 /* FPU system registers. These are actually in selID 0, but
422 are placed here to preserve register numbering compatibility
423 with previous architectures. */
424 "", "", "", "", "", "", "fpsr", "fpepc",
425 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
426 "", "", "", "", "", "", "", "",
430 "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr",
431 "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel",
432 "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl",
433 "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "",
436 "htcfg0", "", "", "", "", "htctl", "mea", "asid",
437 "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "",
438 "tlbsch", "", "", "", "", "", "", "htscctl",
439 "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3",
440 "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7",
443 "", "", "", "", "", "", "", "",
444 "", "", "", "", "", "", "", "",
445 "", "", "", "", "", "", "", "",
446 "", "", "", "", "", "", "", "",
449 "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1",
450 "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh",
451 "ictagl", "ictagh", "icdatl", "icdath",
452 "dctagl", "dctagh", "dcdatl", "dcdath",
453 "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "",
456 "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "",
457 "mca", "mcs", "mcc", "mcr", "", "", "", "",
458 "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "",
459 "", "", "", "", "", "", "", "",
462 "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "",
463 "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "",
464 "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "",
465 "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "",
468 "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "",
469 "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "",
470 "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "",
471 "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "",
473 /* Vector Registers */
474 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
475 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
476 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
477 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31",
480 gdb_static_assert (E_NUM_OF_V850E3V5_REGS
481 == ARRAY_SIZE (v850e3v5_reg_names
));
482 return v850e3v5_reg_names
[regnum
];
485 /* Returns the default type for register N. */
488 v850_register_type (struct gdbarch
*gdbarch
, int regnum
)
490 if (regnum
== E_PC_REGNUM
)
491 return builtin_type (gdbarch
)->builtin_func_ptr
;
492 else if (E_VR0_REGNUM
<= regnum
&& regnum
<= E_VR31_REGNUM
)
493 return builtin_type (gdbarch
)->builtin_uint64
;
494 return builtin_type (gdbarch
)->builtin_int32
;
498 v850_type_is_scalar (struct type
*t
)
500 return (t
->code () != TYPE_CODE_STRUCT
501 && t
->code () != TYPE_CODE_UNION
502 && t
->code () != TYPE_CODE_ARRAY
);
505 /* Should call_function allocate stack space for a struct return? */
508 v850_use_struct_convention (struct gdbarch
*gdbarch
, struct type
*type
)
511 struct type
*fld_type
, *tgt_type
;
512 v850_gdbarch_tdep
*tdep
= gdbarch_tdep
<v850_gdbarch_tdep
> (gdbarch
);
514 if (tdep
->abi
== V850_ABI_RH850
)
516 if (v850_type_is_scalar (type
) && type
->length () <= 8)
519 /* Structs are never returned in registers for this ABI. */
522 /* 1. The value is greater than 8 bytes -> returned by copying. */
523 if (type
->length () > 8)
526 /* 2. The value is a single basic type -> returned in register. */
527 if (v850_type_is_scalar (type
))
530 /* The value is a structure or union with a single element and that
531 element is either a single basic type or an array of a single basic
532 type whose size is greater than or equal to 4 -> returned in register. */
533 if ((type
->code () == TYPE_CODE_STRUCT
534 || type
->code () == TYPE_CODE_UNION
)
535 && type
->num_fields () == 1)
537 fld_type
= type
->field (0).type ();
538 if (v850_type_is_scalar (fld_type
) && fld_type
->length () >= 4)
541 if (fld_type
->code () == TYPE_CODE_ARRAY
)
543 tgt_type
= fld_type
->target_type ();
544 if (v850_type_is_scalar (tgt_type
) && tgt_type
->length () >= 4)
549 /* The value is a structure whose first element is an integer or a float,
550 and which contains no arrays of more than two elements -> returned in
552 if (type
->code () == TYPE_CODE_STRUCT
553 && v850_type_is_scalar (type
->field (0).type ())
554 && type
->field (0).type ()->length () == 4)
556 for (i
= 1; i
< type
->num_fields (); ++i
)
558 fld_type
= type
->field (0).type ();
559 if (fld_type
->code () == TYPE_CODE_ARRAY
)
561 tgt_type
= fld_type
->target_type ();
562 if (tgt_type
->length () > 0
563 && fld_type
->length () / tgt_type
->length () > 2)
570 /* The value is a union which contains at least one field which
571 would be returned in registers according to these rules ->
572 returned in register. */
573 if (type
->code () == TYPE_CODE_UNION
)
575 for (i
= 0; i
< type
->num_fields (); ++i
)
577 fld_type
= type
->field (0).type ();
578 if (!v850_use_struct_convention (gdbarch
, fld_type
))
586 /* Structure for mapping bits in register lists to register numbers. */
594 /* Helper function for v850_scan_prologue to handle prepare instruction. */
597 v850_handle_prepare (int insn
, int insn2
, CORE_ADDR
* current_pc_ptr
,
598 struct v850_frame_cache
*pi
, struct pifsr
**pifsr_ptr
)
600 CORE_ADDR current_pc
= *current_pc_ptr
;
601 struct pifsr
*pifsr
= *pifsr_ptr
;
602 long next
= insn2
& 0xffff;
603 long list12
= ((insn
& 1) << 16) + (next
& 0xffe0);
604 long offset
= (insn
& 0x3e) << 1;
605 static struct reg_list reg_table
[] =
607 {0x00800, 20}, /* r20 */
608 {0x00400, 21}, /* r21 */
609 {0x00200, 22}, /* r22 */
610 {0x00100, 23}, /* r23 */
611 {0x08000, 24}, /* r24 */
612 {0x04000, 25}, /* r25 */
613 {0x02000, 26}, /* r26 */
614 {0x01000, 27}, /* r27 */
615 {0x00080, 28}, /* r28 */
616 {0x00040, 29}, /* r29 */
617 {0x10000, 30}, /* ep */
618 {0x00020, 31}, /* lp */
619 {0, 0} /* end of table */
623 if ((next
& 0x1f) == 0x0b) /* skip imm16 argument */
625 else if ((next
& 0x1f) == 0x13) /* skip imm16 argument */
627 else if ((next
& 0x1f) == 0x1b) /* skip imm32 argument */
630 /* Calculate the total size of the saved registers, and add it to the
631 immediate value used to adjust SP. */
632 for (i
= 0; reg_table
[i
].mask
!= 0; i
++)
633 if (list12
& reg_table
[i
].mask
)
634 offset
+= v850_reg_size
;
635 pi
->sp_offset
-= offset
;
637 /* Calculate the offsets of the registers relative to the value the SP
638 will have after the registers have been pushed and the imm5 value has
639 been subtracted from it. */
642 for (i
= 0; reg_table
[i
].mask
!= 0; i
++)
644 if (list12
& reg_table
[i
].mask
)
646 int reg
= reg_table
[i
].regno
;
647 offset
-= v850_reg_size
;
649 pifsr
->offset
= offset
;
650 pifsr
->cur_frameoffset
= pi
->sp_offset
;
656 /* Set result parameters. */
657 *current_pc_ptr
= current_pc
;
662 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
663 The SR bit of the register list is not supported. gcc does not generate
667 v850_handle_pushm (int insn
, int insn2
, struct v850_frame_cache
*pi
,
668 struct pifsr
**pifsr_ptr
)
670 struct pifsr
*pifsr
= *pifsr_ptr
;
671 long list12
= ((insn
& 0x0f) << 16) + (insn2
& 0xfff0);
673 static struct reg_list pushml_reg_table
[] =
675 {0x80000, E_PS_REGNUM
}, /* PSW */
676 {0x40000, 1}, /* r1 */
677 {0x20000, 2}, /* r2 */
678 {0x10000, 3}, /* r3 */
679 {0x00800, 4}, /* r4 */
680 {0x00400, 5}, /* r5 */
681 {0x00200, 6}, /* r6 */
682 {0x00100, 7}, /* r7 */
683 {0x08000, 8}, /* r8 */
684 {0x04000, 9}, /* r9 */
685 {0x02000, 10}, /* r10 */
686 {0x01000, 11}, /* r11 */
687 {0x00080, 12}, /* r12 */
688 {0x00040, 13}, /* r13 */
689 {0x00020, 14}, /* r14 */
690 {0x00010, 15}, /* r15 */
691 {0, 0} /* end of table */
693 static struct reg_list pushmh_reg_table
[] =
695 {0x80000, 16}, /* r16 */
696 {0x40000, 17}, /* r17 */
697 {0x20000, 18}, /* r18 */
698 {0x10000, 19}, /* r19 */
699 {0x00800, 20}, /* r20 */
700 {0x00400, 21}, /* r21 */
701 {0x00200, 22}, /* r22 */
702 {0x00100, 23}, /* r23 */
703 {0x08000, 24}, /* r24 */
704 {0x04000, 25}, /* r25 */
705 {0x02000, 26}, /* r26 */
706 {0x01000, 27}, /* r27 */
707 {0x00080, 28}, /* r28 */
708 {0x00040, 29}, /* r29 */
709 {0x00010, 30}, /* r30 */
710 {0x00020, 31}, /* r31 */
711 {0, 0} /* end of table */
713 struct reg_list
*reg_table
;
716 /* Is this a pushml or a pushmh? */
717 if ((insn2
& 7) == 1)
718 reg_table
= pushml_reg_table
;
720 reg_table
= pushmh_reg_table
;
722 /* Calculate the total size of the saved registers, and add it to the
723 immediate value used to adjust SP. */
724 for (i
= 0; reg_table
[i
].mask
!= 0; i
++)
725 if (list12
& reg_table
[i
].mask
)
726 offset
+= v850_reg_size
;
727 pi
->sp_offset
-= offset
;
729 /* Calculate the offsets of the registers relative to the value the SP
730 will have after the registers have been pushed and the imm5 value is
731 subtracted from it. */
734 for (i
= 0; reg_table
[i
].mask
!= 0; i
++)
736 if (list12
& reg_table
[i
].mask
)
738 int reg
= reg_table
[i
].regno
;
739 offset
-= v850_reg_size
;
741 pifsr
->offset
= offset
;
742 pifsr
->cur_frameoffset
= pi
->sp_offset
;
748 /* Set result parameters. */
752 /* Helper function to evaluate if register is one of the "save" registers.
753 This allows to simplify conditionals in v850_analyze_prologue a lot. */
756 v850_is_save_register (int reg
)
758 /* The caller-save registers are R2, R20 - R29 and R31. All other
759 registers are either special purpose (PC, SP), argument registers,
760 or just considered free for use in the caller. */
761 return reg
== E_R2_REGNUM
762 || (reg
>= E_R20_REGNUM
&& reg
<= E_R29_REGNUM
)
763 || reg
== E_R31_REGNUM
;
766 /* Scan the prologue of the function that contains PC, and record what
767 we find in PI. Returns the pc after the prologue. Note that the
768 addresses saved in frame->saved_regs are just frame relative (negative
769 offsets from the frame pointer). This is because we don't know the
770 actual value of the frame pointer yet. In some circumstances, the
771 frame pointer can't be determined till after we have scanned the
775 v850_analyze_prologue (struct gdbarch
*gdbarch
,
776 CORE_ADDR func_addr
, CORE_ADDR pc
,
777 struct v850_frame_cache
*pi
, ULONGEST ctbp
)
779 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
780 CORE_ADDR prologue_end
, current_pc
;
781 struct pifsr pifsrs
[E_NUM_REGS
+ 1];
782 struct pifsr
*pifsr
, *pifsr_tmp
;
785 CORE_ADDR save_pc
, save_end
;
789 memset (&pifsrs
, 0, sizeof pifsrs
);
794 /* Now, search the prologue looking for instructions that setup fp, save
795 rp, adjust sp and such. We also record the frame offset of any saved
806 for (current_pc
= func_addr
; current_pc
< prologue_end
;)
809 int insn2
= -1; /* dummy value */
811 insn
= read_memory_integer (current_pc
, 2, byte_order
);
813 if ((insn
& 0x0780) >= 0x0600) /* Four byte instruction? */
815 insn2
= read_memory_integer (current_pc
, 2, byte_order
);
819 if ((insn
& 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p
)
820 { /* jarl <func>,10 */
821 long low_disp
= insn2
& ~(long) 1;
822 long disp
= (((((insn
& 0x3f) << 16) + low_disp
)
823 & ~(long) 1) ^ 0x00200000) - 0x00200000;
825 save_pc
= current_pc
;
826 save_end
= prologue_end
;
828 current_pc
+= disp
- 4;
829 prologue_end
= (current_pc
830 + (2 * 3) /* moves to/from ep */
831 + 4 /* addi <const>,sp,sp */
833 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
834 + 20); /* slop area */
836 else if ((insn
& 0xffc0) == 0x0200 && !regsave_func_p
)
838 long adr
= ctbp
+ ((insn
& 0x3f) << 1);
840 save_pc
= current_pc
;
841 save_end
= prologue_end
;
843 current_pc
= ctbp
+ (read_memory_unsigned_integer (adr
, 2, byte_order
)
845 prologue_end
= (current_pc
846 + (2 * 3) /* prepare list2,imm5,sp/imm */
848 + 20); /* slop area */
851 else if ((insn
& 0xffc0) == 0x0780) /* prepare list2,imm5 */
853 v850_handle_prepare (insn
, insn2
, ¤t_pc
, pi
, &pifsr
);
856 else if (insn
== 0x07e0 && regsave_func_p
&& insn2
== 0x0144)
857 { /* ctret after processing register save. */
858 current_pc
= save_pc
;
859 prologue_end
= save_end
;
863 else if ((insn
& 0xfff0) == 0x07e0 && (insn2
& 5) == 1)
864 { /* pushml, pushmh */
865 v850_handle_pushm (insn
, insn2
, pi
, &pifsr
);
868 else if ((insn
& 0xffe0) == 0x0060 && regsave_func_p
)
869 { /* jmp after processing register save. */
870 current_pc
= save_pc
;
871 prologue_end
= save_end
;
875 else if ((insn
& 0x07c0) == 0x0780 /* jarl or jr */
876 || (insn
& 0xffe0) == 0x0060 /* jmp */
877 || (insn
& 0x0780) == 0x0580) /* branch */
879 break; /* Ran into end of prologue. */
882 else if ((insn
& 0xffe0) == ((E_SP_REGNUM
<< 11) | 0x0240))
884 pi
->sp_offset
+= ((insn
& 0x1f) ^ 0x10) - 0x10;
885 else if (insn
== ((E_SP_REGNUM
<< 11) | 0x0600 | E_SP_REGNUM
))
886 /* addi <imm>,sp,sp */
887 pi
->sp_offset
+= insn2
;
888 else if (insn
== ((E_FP_REGNUM
<< 11) | 0x0000 | E_SP_REGNUM
))
891 else if (insn
== ((E_R12_REGNUM
<< 11) | 0x0640 | E_R0_REGNUM
))
892 /* movhi hi(const),r0,r12 */
893 r12_tmp
= insn2
<< 16;
894 else if (insn
== ((E_R12_REGNUM
<< 11) | 0x0620 | E_R12_REGNUM
))
895 /* movea lo(const),r12,r12 */
897 else if (insn
== ((E_SP_REGNUM
<< 11) | 0x01c0 | E_R12_REGNUM
) && r12_tmp
)
899 pi
->sp_offset
+= r12_tmp
;
900 else if (insn
== ((E_EP_REGNUM
<< 11) | 0x0000 | E_SP_REGNUM
))
903 else if (insn
== ((E_EP_REGNUM
<< 11) | 0x0000 | E_R1_REGNUM
))
906 else if (((insn
& 0x07ff) == (0x0760 | E_SP_REGNUM
)
908 && (insn
& 0x07ff) == (0x0760 | E_FP_REGNUM
)))
910 && v850_is_save_register (reg
= (insn
>> 11) & 0x1f))
912 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
914 pifsr
->offset
= insn2
& ~1;
915 pifsr
->cur_frameoffset
= pi
->sp_offset
;
919 && ((insn
& 0x0781) == 0x0501)
921 && v850_is_save_register (reg
= (insn
>> 11) & 0x1f))
923 /* sst.w <reg>,<offset>[ep] */
925 pifsr
->offset
= (insn
& 0x007e) << 1;
926 pifsr
->cur_frameoffset
= pi
->sp_offset
;
931 /* Fix up any offsets to the final offset. If a frame pointer was created,
932 use it instead of the stack pointer. */
933 for (pifsr_tmp
= pifsrs
; pifsr_tmp
!= pifsr
; pifsr_tmp
++)
935 pifsr_tmp
->offset
-= pi
->sp_offset
- pifsr_tmp
->cur_frameoffset
;
936 pi
->saved_regs
[pifsr_tmp
->reg
].set_addr (pifsr_tmp
->offset
);
942 /* Return the address of the first code past the prologue of the function. */
945 v850_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
947 CORE_ADDR func_addr
, func_end
;
949 /* See what the symbol table says. */
951 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
953 struct symtab_and_line sal
;
955 sal
= find_pc_line (func_addr
, 0);
956 if (sal
.line
!= 0 && sal
.end
< func_end
)
959 /* Either there's no line info, or the line after the prologue is after
960 the end of the function. In this case, there probably isn't a
965 /* We can't find the start of this function, so there's nothing we
970 /* Return 1 if the data structure has any 8-byte fields that'll require
971 the entire data structure to be aligned. Otherwise, return 0. */
974 v850_eight_byte_align_p (struct type
*type
)
976 type
= check_typedef (type
);
978 if (v850_type_is_scalar (type
))
979 return (type
->length () == 8);
984 for (i
= 0; i
< type
->num_fields (); i
++)
986 if (v850_eight_byte_align_p (type
->field (i
).type ()))
994 v850_frame_align (struct gdbarch
*ignore
, CORE_ADDR sp
)
999 /* Setup arguments and LP for a call to the target. First four args
1000 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
1001 are passed by reference. 64 bit quantities (doubles and long longs)
1002 may be split between the regs and the stack. When calling a function
1003 that returns a struct, a pointer to the struct is passed in as a secret
1004 first argument (always in R6).
1006 Stack space for the args has NOT been allocated: that job is up to us. */
1009 v850_push_dummy_call (struct gdbarch
*gdbarch
,
1010 struct value
*function
,
1011 struct regcache
*regcache
,
1014 struct value
**args
,
1016 function_call_return_method return_method
,
1017 CORE_ADDR struct_addr
)
1019 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1024 v850_gdbarch_tdep
*tdep
= gdbarch_tdep
<v850_gdbarch_tdep
> (gdbarch
);
1026 if (tdep
->abi
== V850_ABI_RH850
)
1030 /* The offset onto the stack at which we will start copying parameters
1031 (after the registers are used up) begins at 16 rather than at zero.
1032 That's how the ABI is defined, though there's no indication that these
1033 16 bytes are used for anything, not even for saving incoming
1034 argument registers. */
1038 /* Now make space on the stack for the args. */
1039 for (argnum
= 0; argnum
< nargs
; argnum
++)
1040 arg_space
+= ((args
[argnum
]->type ()->length () + 3) & ~3);
1041 sp
-= arg_space
+ stack_offset
;
1043 argreg
= E_ARG0_REGNUM
;
1044 /* The struct_return pointer occupies the first parameter register. */
1045 if (return_method
== return_method_struct
)
1046 regcache_cooked_write_unsigned (regcache
, argreg
++, struct_addr
);
1048 /* Now load as many as possible of the first arguments into
1049 registers, and push the rest onto the stack. There are 16 bytes
1050 in four registers available. Loop thru args from first to last. */
1051 for (argnum
= 0; argnum
< nargs
; argnum
++)
1055 gdb_byte valbuf
[v850_reg_size
];
1057 if (!v850_type_is_scalar ((*args
)->type ())
1058 && tdep
->abi
== V850_ABI_GCC
1059 && (*args
)->type ()->length () > E_MAX_RETTYPE_SIZE_IN_REGS
)
1061 store_unsigned_integer (valbuf
, 4, byte_order
,
1062 (*args
)->address ());
1068 len
= (*args
)->type ()->length ();
1069 val
= (gdb_byte
*) (*args
)->contents ().data ();
1072 if (tdep
->eight_byte_align
1073 && v850_eight_byte_align_p ((*args
)->type ()))
1075 if (argreg
<= E_ARGLAST_REGNUM
&& (argreg
& 1))
1077 else if (stack_offset
& 0x4)
1082 if (argreg
<= E_ARGLAST_REGNUM
)
1086 regval
= extract_unsigned_integer (val
, v850_reg_size
, byte_order
);
1087 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
1089 len
-= v850_reg_size
;
1090 val
+= v850_reg_size
;
1095 write_memory (sp
+ stack_offset
, val
, 4);
1104 /* Store return address. */
1105 regcache_cooked_write_unsigned (regcache
, E_LP_REGNUM
, bp_addr
);
1107 /* Update stack pointer. */
1108 regcache_cooked_write_unsigned (regcache
, E_SP_REGNUM
, sp
);
1114 v850_extract_return_value (struct type
*type
, struct regcache
*regcache
,
1117 struct gdbarch
*gdbarch
= regcache
->arch ();
1118 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1119 int len
= type
->length ();
1121 if (len
<= v850_reg_size
)
1125 regcache_cooked_read_unsigned (regcache
, E_V0_REGNUM
, &val
);
1126 store_unsigned_integer (valbuf
, len
, byte_order
, val
);
1128 else if (len
<= 2 * v850_reg_size
)
1130 int i
, regnum
= E_V0_REGNUM
;
1131 gdb_byte buf
[v850_reg_size
];
1132 for (i
= 0; len
> 0; i
+= 4, len
-= 4)
1134 regcache
->raw_read (regnum
++, buf
);
1135 memcpy (valbuf
+ i
, buf
, len
> 4 ? 4 : len
);
1141 v850_store_return_value (struct type
*type
, struct regcache
*regcache
,
1142 const gdb_byte
*valbuf
)
1144 struct gdbarch
*gdbarch
= regcache
->arch ();
1145 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1146 int len
= type
->length ();
1148 if (len
<= v850_reg_size
)
1149 regcache_cooked_write_unsigned
1150 (regcache
, E_V0_REGNUM
,
1151 extract_unsigned_integer (valbuf
, len
, byte_order
));
1152 else if (len
<= 2 * v850_reg_size
)
1154 int i
, regnum
= E_V0_REGNUM
;
1155 for (i
= 0; i
< len
; i
+= 4)
1156 regcache
->raw_write (regnum
++, valbuf
+ i
);
1160 static enum return_value_convention
1161 v850_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
1162 struct type
*type
, struct regcache
*regcache
,
1163 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1165 if (v850_use_struct_convention (gdbarch
, type
))
1166 return RETURN_VALUE_STRUCT_CONVENTION
;
1168 v850_store_return_value (type
, regcache
, writebuf
);
1170 v850_extract_return_value (type
, regcache
, readbuf
);
1171 return RETURN_VALUE_REGISTER_CONVENTION
;
1174 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1177 v850_breakpoint_kind_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pcptr
)
1182 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1184 static const gdb_byte
*
1185 v850_sw_breakpoint_from_kind (struct gdbarch
*gdbarch
, int kind
, int *size
)
1189 switch (gdbarch_bfd_arch_info (gdbarch
)->mach
)
1191 case bfd_mach_v850e2
:
1192 case bfd_mach_v850e2v3
:
1193 case bfd_mach_v850e3v5
:
1195 /* Implement software breakpoints by using the dbtrap instruction.
1196 Older architectures had no such instruction. For those, an
1197 unconditional branch to self instruction is used. */
1199 static unsigned char dbtrap_breakpoint
[] = { 0x40, 0xf8 };
1201 return dbtrap_breakpoint
;
1206 static unsigned char breakpoint
[] = { 0x85, 0x05 };
1214 static struct v850_frame_cache
*
1215 v850_alloc_frame_cache (frame_info_ptr this_frame
)
1217 struct v850_frame_cache
*cache
;
1219 cache
= FRAME_OBSTACK_ZALLOC (struct v850_frame_cache
);
1220 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
1224 cache
->sp_offset
= 0;
1227 /* Frameless until proven otherwise. */
1233 static struct v850_frame_cache
*
1234 v850_frame_cache (frame_info_ptr this_frame
, void **this_cache
)
1236 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1237 struct v850_frame_cache
*cache
;
1238 CORE_ADDR current_pc
;
1242 return (struct v850_frame_cache
*) *this_cache
;
1244 cache
= v850_alloc_frame_cache (this_frame
);
1245 *this_cache
= cache
;
1247 /* In principle, for normal frames, fp holds the frame pointer,
1248 which holds the base address for the current stack frame.
1249 However, for functions that don't need it, the frame pointer is
1250 optional. For these "frameless" functions the frame pointer is
1251 actually the frame pointer of the calling frame. */
1252 cache
->base
= get_frame_register_unsigned (this_frame
, E_FP_REGNUM
);
1253 if (cache
->base
== 0)
1256 cache
->pc
= get_frame_func (this_frame
);
1257 current_pc
= get_frame_pc (this_frame
);
1261 ctbp
= get_frame_register_unsigned (this_frame
, E_CTBP_REGNUM
);
1262 v850_analyze_prologue (gdbarch
, cache
->pc
, current_pc
, cache
, ctbp
);
1265 if (!cache
->uses_fp
)
1267 /* We didn't find a valid frame, which means that CACHE->base
1268 currently holds the frame pointer for our calling frame. If
1269 we're at the start of a function, or somewhere half-way its
1270 prologue, the function's frame probably hasn't been fully
1271 setup yet. Try to reconstruct the base address for the stack
1272 frame by looking at the stack pointer. For truly "frameless"
1273 functions this might work too. */
1274 cache
->base
= get_frame_register_unsigned (this_frame
, E_SP_REGNUM
);
1277 /* Now that we have the base address for the stack frame we can
1278 calculate the value of sp in the calling frame. */
1279 cache
->saved_regs
[E_SP_REGNUM
].set_value (cache
->base
- cache
->sp_offset
);
1281 /* Adjust all the saved registers such that they contain addresses
1282 instead of offsets. */
1283 for (i
= 0; i
< gdbarch_num_regs (gdbarch
); i
++)
1284 if (cache
->saved_regs
[i
].is_addr ())
1285 cache
->saved_regs
[i
].set_addr (cache
->saved_regs
[i
].addr ()
1288 /* The call instruction moves the caller's PC in the callee's LP.
1289 Since this is an unwind, do the reverse. Copy the location of LP
1290 into PC (the address / regnum) so that a request for PC will be
1291 converted into a request for the LP. */
1293 cache
->saved_regs
[E_PC_REGNUM
] = cache
->saved_regs
[E_LP_REGNUM
];
1299 static struct value
*
1300 v850_frame_prev_register (frame_info_ptr this_frame
,
1301 void **this_cache
, int regnum
)
1303 struct v850_frame_cache
*cache
= v850_frame_cache (this_frame
, this_cache
);
1305 gdb_assert (regnum
>= 0);
1307 return trad_frame_get_prev_register (this_frame
, cache
->saved_regs
, regnum
);
1311 v850_frame_this_id (frame_info_ptr this_frame
, void **this_cache
,
1312 struct frame_id
*this_id
)
1314 struct v850_frame_cache
*cache
= v850_frame_cache (this_frame
, this_cache
);
1316 /* This marks the outermost frame. */
1317 if (cache
->base
== 0)
1320 *this_id
= frame_id_build (cache
->saved_regs
[E_SP_REGNUM
].addr (), cache
->pc
);
1323 static const struct frame_unwind v850_frame_unwind
= {
1326 default_frame_unwind_stop_reason
,
1328 v850_frame_prev_register
,
1330 default_frame_sniffer
1334 v850_frame_base_address (frame_info_ptr this_frame
, void **this_cache
)
1336 struct v850_frame_cache
*cache
= v850_frame_cache (this_frame
, this_cache
);
1341 static const struct frame_base v850_frame_base
= {
1343 v850_frame_base_address
,
1344 v850_frame_base_address
,
1345 v850_frame_base_address
1348 static struct gdbarch
*
1349 v850_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
1351 int e_flags
, e_machine
;
1353 /* Extract the elf_flags if available. */
1354 if (info
.abfd
!= NULL
1355 && bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
)
1357 e_flags
= elf_elfheader (info
.abfd
)->e_flags
;
1358 e_machine
= elf_elfheader (info
.abfd
)->e_machine
;
1367 /* Try to find the architecture in the list of already defined
1369 for (arches
= gdbarch_list_lookup_by_info (arches
, &info
);
1371 arches
= gdbarch_list_lookup_by_info (arches
->next
, &info
))
1373 v850_gdbarch_tdep
*tdep
1374 = gdbarch_tdep
<v850_gdbarch_tdep
> (arches
->gdbarch
);
1376 if (tdep
->e_flags
!= e_flags
|| tdep
->e_machine
!= e_machine
)
1379 return arches
->gdbarch
;
1383 = gdbarch_alloc (&info
, gdbarch_tdep_up (new v850_gdbarch_tdep
));
1384 v850_gdbarch_tdep
*tdep
= gdbarch_tdep
<v850_gdbarch_tdep
> (gdbarch
);
1386 tdep
->e_flags
= e_flags
;
1387 tdep
->e_machine
= e_machine
;
1389 switch (tdep
->e_machine
)
1392 tdep
->abi
= V850_ABI_RH850
;
1395 tdep
->abi
= V850_ABI_GCC
;
1399 tdep
->eight_byte_align
= (tdep
->e_flags
& EF_RH850_DATA_ALIGN8
) ? 1 : 0;
1401 switch (info
.bfd_arch_info
->mach
)
1404 set_gdbarch_register_name (gdbarch
, v850_register_name
);
1405 set_gdbarch_num_regs (gdbarch
, E_NUM_OF_V850_REGS
);
1407 case bfd_mach_v850e
:
1408 case bfd_mach_v850e1
:
1409 set_gdbarch_register_name (gdbarch
, v850e_register_name
);
1410 set_gdbarch_num_regs (gdbarch
, E_NUM_OF_V850E_REGS
);
1412 case bfd_mach_v850e2
:
1413 case bfd_mach_v850e2v3
:
1414 set_gdbarch_register_name (gdbarch
, v850e2_register_name
);
1415 set_gdbarch_num_regs (gdbarch
, E_NUM_REGS
);
1417 case bfd_mach_v850e3v5
:
1418 set_gdbarch_register_name (gdbarch
, v850e3v5_register_name
);
1419 set_gdbarch_num_regs (gdbarch
, E_NUM_OF_V850E3V5_REGS
);
1423 set_gdbarch_num_pseudo_regs (gdbarch
, 0);
1424 set_gdbarch_sp_regnum (gdbarch
, E_SP_REGNUM
);
1425 set_gdbarch_pc_regnum (gdbarch
, E_PC_REGNUM
);
1426 set_gdbarch_fp0_regnum (gdbarch
, -1);
1428 set_gdbarch_register_type (gdbarch
, v850_register_type
);
1430 set_gdbarch_char_signed (gdbarch
, 1);
1431 set_gdbarch_short_bit (gdbarch
, 2 * TARGET_CHAR_BIT
);
1432 set_gdbarch_int_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1433 set_gdbarch_long_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1434 set_gdbarch_long_long_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
1436 set_gdbarch_float_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1437 set_gdbarch_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
1438 set_gdbarch_long_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
1440 set_gdbarch_ptr_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1441 set_gdbarch_addr_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1443 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1445 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, v850_breakpoint_kind_from_pc
);
1446 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, v850_sw_breakpoint_from_kind
);
1447 set_gdbarch_return_value (gdbarch
, v850_return_value
);
1448 set_gdbarch_push_dummy_call (gdbarch
, v850_push_dummy_call
);
1449 set_gdbarch_skip_prologue (gdbarch
, v850_skip_prologue
);
1451 set_gdbarch_frame_align (gdbarch
, v850_frame_align
);
1452 frame_base_set_default (gdbarch
, &v850_frame_base
);
1454 /* Hook in ABI-specific overrides, if they have been registered. */
1455 gdbarch_init_osabi (info
, gdbarch
);
1457 dwarf2_append_unwinders (gdbarch
);
1458 frame_unwind_append_unwinder (gdbarch
, &v850_frame_unwind
);
1463 void _initialize_v850_tdep ();
1465 _initialize_v850_tdep ()
1467 gdbarch_register (bfd_arch_v850
, v850_gdbarch_init
);
1468 gdbarch_register (bfd_arch_v850_rh850
, v850_gdbarch_init
);