* infrun.c (resume): If following a fork, also reset regcache,
[binutils-gdb.git] / gdb / infrun.c
blob4043e75e5b32d8c09e1d20920174904e0edd0bd0
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
53 /* Prototypes for local functions */
55 static void signals_info (char *, int);
57 static void handle_command (char *, int);
59 static void sig_print_info (enum target_signal);
61 static void sig_print_header (void);
63 static void resume_cleanups (void *);
65 static int hook_stop_stub (void *);
67 static int restore_selected_frame (void *);
69 static void build_infrun (void);
71 static int follow_fork (void);
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
76 static int currently_stepping (struct thread_info *tp);
78 static int currently_stepping_callback (struct thread_info *tp, void *data);
80 static void xdb_handle_command (char *args, int from_tty);
82 static int prepare_to_proceed (int);
84 void _initialize_infrun (void);
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90 static void
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
97 /* In asynchronous mode, but simulating synchronous execution. */
99 int sync_execution = 0;
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
103 running in. */
105 static ptid_t previous_inferior_ptid;
107 int debug_displaced = 0;
108 static void
109 show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
115 static int debug_infrun = 0;
116 static void
117 show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123 /* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
149 in_solib_dynsym_resolve_code() can generally be implemented in a
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
162 /* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
170 #ifndef SOLIB_IN_DYNAMIC_LINKER
171 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172 #endif
175 /* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
178 #ifndef CANNOT_STEP_HW_WATCHPOINTS
179 #define CANNOT_STEP_HW_WATCHPOINTS 0
180 #else
181 #undef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 1
183 #endif
185 /* Tables of how to react to signals; the user sets them. */
187 static unsigned char *signal_stop;
188 static unsigned char *signal_print;
189 static unsigned char *signal_program;
191 #define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
199 #define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
207 /* Value to pass to target_resume() to cause all threads to resume */
209 #define RESUME_ALL (pid_to_ptid (-1))
211 /* Command list pointer for the "stop" placeholder. */
213 static struct cmd_list_element *stop_command;
215 /* Function inferior was in as of last step command. */
217 static struct symbol *step_start_function;
219 /* Nonzero if we want to give control to the user when we're notified
220 of shared library events by the dynamic linker. */
221 static int stop_on_solib_events;
222 static void
223 show_stop_on_solib_events (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
226 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
227 value);
230 /* Nonzero means expecting a trace trap
231 and should stop the inferior and return silently when it happens. */
233 int stop_after_trap;
235 /* Save register contents here when executing a "finish" command or are
236 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
237 Thus this contains the return value from the called function (assuming
238 values are returned in a register). */
240 struct regcache *stop_registers;
242 /* Nonzero after stop if current stack frame should be printed. */
244 static int stop_print_frame;
246 /* This is a cached copy of the pid/waitstatus of the last event
247 returned by target_wait()/deprecated_target_wait_hook(). This
248 information is returned by get_last_target_status(). */
249 static ptid_t target_last_wait_ptid;
250 static struct target_waitstatus target_last_waitstatus;
252 static void context_switch (ptid_t ptid);
254 void init_thread_stepping_state (struct thread_info *tss);
256 void init_infwait_state (void);
258 /* This is used to remember when a fork, vfork or exec event
259 was caught by a catchpoint, and thus the event is to be
260 followed at the next resume of the inferior, and not
261 immediately. */
262 static struct
264 enum target_waitkind kind;
265 struct
267 ptid_t parent_pid;
268 ptid_t child_pid;
270 fork_event;
271 char *execd_pathname;
273 pending_follow;
275 static const char follow_fork_mode_child[] = "child";
276 static const char follow_fork_mode_parent[] = "parent";
278 static const char *follow_fork_mode_kind_names[] = {
279 follow_fork_mode_child,
280 follow_fork_mode_parent,
281 NULL
284 static const char *follow_fork_mode_string = follow_fork_mode_parent;
285 static void
286 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
289 fprintf_filtered (file, _("\
290 Debugger response to a program call of fork or vfork is \"%s\".\n"),
291 value);
295 static int
296 follow_fork (void)
298 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
300 return target_follow_fork (follow_child);
303 void
304 follow_inferior_reset_breakpoints (void)
306 struct thread_info *tp = inferior_thread ();
308 /* Was there a step_resume breakpoint? (There was if the user
309 did a "next" at the fork() call.) If so, explicitly reset its
310 thread number.
312 step_resumes are a form of bp that are made to be per-thread.
313 Since we created the step_resume bp when the parent process
314 was being debugged, and now are switching to the child process,
315 from the breakpoint package's viewpoint, that's a switch of
316 "threads". We must update the bp's notion of which thread
317 it is for, or it'll be ignored when it triggers. */
319 if (tp->step_resume_breakpoint)
320 breakpoint_re_set_thread (tp->step_resume_breakpoint);
322 /* Reinsert all breakpoints in the child. The user may have set
323 breakpoints after catching the fork, in which case those
324 were never set in the child, but only in the parent. This makes
325 sure the inserted breakpoints match the breakpoint list. */
327 breakpoint_re_set ();
328 insert_breakpoints ();
331 /* EXECD_PATHNAME is assumed to be non-NULL. */
333 static void
334 follow_exec (ptid_t pid, char *execd_pathname)
336 struct target_ops *tgt;
337 struct thread_info *th = inferior_thread ();
339 /* This is an exec event that we actually wish to pay attention to.
340 Refresh our symbol table to the newly exec'd program, remove any
341 momentary bp's, etc.
343 If there are breakpoints, they aren't really inserted now,
344 since the exec() transformed our inferior into a fresh set
345 of instructions.
347 We want to preserve symbolic breakpoints on the list, since
348 we have hopes that they can be reset after the new a.out's
349 symbol table is read.
351 However, any "raw" breakpoints must be removed from the list
352 (e.g., the solib bp's), since their address is probably invalid
353 now.
355 And, we DON'T want to call delete_breakpoints() here, since
356 that may write the bp's "shadow contents" (the instruction
357 value that was overwritten witha TRAP instruction). Since
358 we now have a new a.out, those shadow contents aren't valid. */
359 update_breakpoints_after_exec ();
361 /* If there was one, it's gone now. We cannot truly step-to-next
362 statement through an exec(). */
363 th->step_resume_breakpoint = NULL;
364 th->step_range_start = 0;
365 th->step_range_end = 0;
367 /* What is this a.out's name? */
368 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
370 /* We've followed the inferior through an exec. Therefore, the
371 inferior has essentially been killed & reborn. */
373 gdb_flush (gdb_stdout);
375 breakpoint_init_inferior (inf_execd);
377 if (gdb_sysroot && *gdb_sysroot)
379 char *name = alloca (strlen (gdb_sysroot)
380 + strlen (execd_pathname)
381 + 1);
382 strcpy (name, gdb_sysroot);
383 strcat (name, execd_pathname);
384 execd_pathname = name;
387 /* That a.out is now the one to use. */
388 exec_file_attach (execd_pathname, 0);
390 /* Reset the shared library package. This ensures that we get a
391 shlib event when the child reaches "_start", at which point the
392 dld will have had a chance to initialize the child. */
393 /* Also, loading a symbol file below may trigger symbol lookups, and
394 we don't want those to be satisfied by the libraries of the
395 previous incarnation of this process. */
396 no_shared_libraries (NULL, 0);
398 /* Load the main file's symbols. */
399 symbol_file_add_main (execd_pathname, 0);
401 #ifdef SOLIB_CREATE_INFERIOR_HOOK
402 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
403 #else
404 solib_create_inferior_hook ();
405 #endif
407 /* Reinsert all breakpoints. (Those which were symbolic have
408 been reset to the proper address in the new a.out, thanks
409 to symbol_file_command...) */
410 insert_breakpoints ();
412 /* The next resume of this inferior should bring it to the shlib
413 startup breakpoints. (If the user had also set bp's on
414 "main" from the old (parent) process, then they'll auto-
415 matically get reset there in the new process.) */
418 /* Non-zero if we just simulating a single-step. This is needed
419 because we cannot remove the breakpoints in the inferior process
420 until after the `wait' in `wait_for_inferior'. */
421 static int singlestep_breakpoints_inserted_p = 0;
423 /* The thread we inserted single-step breakpoints for. */
424 static ptid_t singlestep_ptid;
426 /* PC when we started this single-step. */
427 static CORE_ADDR singlestep_pc;
429 /* If another thread hit the singlestep breakpoint, we save the original
430 thread here so that we can resume single-stepping it later. */
431 static ptid_t saved_singlestep_ptid;
432 static int stepping_past_singlestep_breakpoint;
434 /* If not equal to null_ptid, this means that after stepping over breakpoint
435 is finished, we need to switch to deferred_step_ptid, and step it.
437 The use case is when one thread has hit a breakpoint, and then the user
438 has switched to another thread and issued 'step'. We need to step over
439 breakpoint in the thread which hit the breakpoint, but then continue
440 stepping the thread user has selected. */
441 static ptid_t deferred_step_ptid;
443 /* Displaced stepping. */
445 /* In non-stop debugging mode, we must take special care to manage
446 breakpoints properly; in particular, the traditional strategy for
447 stepping a thread past a breakpoint it has hit is unsuitable.
448 'Displaced stepping' is a tactic for stepping one thread past a
449 breakpoint it has hit while ensuring that other threads running
450 concurrently will hit the breakpoint as they should.
452 The traditional way to step a thread T off a breakpoint in a
453 multi-threaded program in all-stop mode is as follows:
455 a0) Initially, all threads are stopped, and breakpoints are not
456 inserted.
457 a1) We single-step T, leaving breakpoints uninserted.
458 a2) We insert breakpoints, and resume all threads.
460 In non-stop debugging, however, this strategy is unsuitable: we
461 don't want to have to stop all threads in the system in order to
462 continue or step T past a breakpoint. Instead, we use displaced
463 stepping:
465 n0) Initially, T is stopped, other threads are running, and
466 breakpoints are inserted.
467 n1) We copy the instruction "under" the breakpoint to a separate
468 location, outside the main code stream, making any adjustments
469 to the instruction, register, and memory state as directed by
470 T's architecture.
471 n2) We single-step T over the instruction at its new location.
472 n3) We adjust the resulting register and memory state as directed
473 by T's architecture. This includes resetting T's PC to point
474 back into the main instruction stream.
475 n4) We resume T.
477 This approach depends on the following gdbarch methods:
479 - gdbarch_max_insn_length and gdbarch_displaced_step_location
480 indicate where to copy the instruction, and how much space must
481 be reserved there. We use these in step n1.
483 - gdbarch_displaced_step_copy_insn copies a instruction to a new
484 address, and makes any necessary adjustments to the instruction,
485 register contents, and memory. We use this in step n1.
487 - gdbarch_displaced_step_fixup adjusts registers and memory after
488 we have successfuly single-stepped the instruction, to yield the
489 same effect the instruction would have had if we had executed it
490 at its original address. We use this in step n3.
492 - gdbarch_displaced_step_free_closure provides cleanup.
494 The gdbarch_displaced_step_copy_insn and
495 gdbarch_displaced_step_fixup functions must be written so that
496 copying an instruction with gdbarch_displaced_step_copy_insn,
497 single-stepping across the copied instruction, and then applying
498 gdbarch_displaced_insn_fixup should have the same effects on the
499 thread's memory and registers as stepping the instruction in place
500 would have. Exactly which responsibilities fall to the copy and
501 which fall to the fixup is up to the author of those functions.
503 See the comments in gdbarch.sh for details.
505 Note that displaced stepping and software single-step cannot
506 currently be used in combination, although with some care I think
507 they could be made to. Software single-step works by placing
508 breakpoints on all possible subsequent instructions; if the
509 displaced instruction is a PC-relative jump, those breakpoints
510 could fall in very strange places --- on pages that aren't
511 executable, or at addresses that are not proper instruction
512 boundaries. (We do generally let other threads run while we wait
513 to hit the software single-step breakpoint, and they might
514 encounter such a corrupted instruction.) One way to work around
515 this would be to have gdbarch_displaced_step_copy_insn fully
516 simulate the effect of PC-relative instructions (and return NULL)
517 on architectures that use software single-stepping.
519 In non-stop mode, we can have independent and simultaneous step
520 requests, so more than one thread may need to simultaneously step
521 over a breakpoint. The current implementation assumes there is
522 only one scratch space per process. In this case, we have to
523 serialize access to the scratch space. If thread A wants to step
524 over a breakpoint, but we are currently waiting for some other
525 thread to complete a displaced step, we leave thread A stopped and
526 place it in the displaced_step_request_queue. Whenever a displaced
527 step finishes, we pick the next thread in the queue and start a new
528 displaced step operation on it. See displaced_step_prepare and
529 displaced_step_fixup for details. */
531 /* If this is not null_ptid, this is the thread carrying out a
532 displaced single-step. This thread's state will require fixing up
533 once it has completed its step. */
534 static ptid_t displaced_step_ptid;
536 struct displaced_step_request
538 ptid_t ptid;
539 struct displaced_step_request *next;
542 /* A queue of pending displaced stepping requests. */
543 struct displaced_step_request *displaced_step_request_queue;
545 /* The architecture the thread had when we stepped it. */
546 static struct gdbarch *displaced_step_gdbarch;
548 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
549 for post-step cleanup. */
550 static struct displaced_step_closure *displaced_step_closure;
552 /* The address of the original instruction, and the copy we made. */
553 static CORE_ADDR displaced_step_original, displaced_step_copy;
555 /* Saved contents of copy area. */
556 static gdb_byte *displaced_step_saved_copy;
558 /* Enum strings for "set|show displaced-stepping". */
560 static const char can_use_displaced_stepping_auto[] = "auto";
561 static const char can_use_displaced_stepping_on[] = "on";
562 static const char can_use_displaced_stepping_off[] = "off";
563 static const char *can_use_displaced_stepping_enum[] =
565 can_use_displaced_stepping_auto,
566 can_use_displaced_stepping_on,
567 can_use_displaced_stepping_off,
568 NULL,
571 /* If ON, and the architecture supports it, GDB will use displaced
572 stepping to step over breakpoints. If OFF, or if the architecture
573 doesn't support it, GDB will instead use the traditional
574 hold-and-step approach. If AUTO (which is the default), GDB will
575 decide which technique to use to step over breakpoints depending on
576 which of all-stop or non-stop mode is active --- displaced stepping
577 in non-stop mode; hold-and-step in all-stop mode. */
579 static const char *can_use_displaced_stepping =
580 can_use_displaced_stepping_auto;
582 static void
583 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
584 struct cmd_list_element *c,
585 const char *value)
587 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
588 fprintf_filtered (file, _("\
589 Debugger's willingness to use displaced stepping to step over \
590 breakpoints is %s (currently %s).\n"),
591 value, non_stop ? "on" : "off");
592 else
593 fprintf_filtered (file, _("\
594 Debugger's willingness to use displaced stepping to step over \
595 breakpoints is %s.\n"), value);
598 /* Return non-zero if displaced stepping can/should be used to step
599 over breakpoints. */
601 static int
602 use_displaced_stepping (struct gdbarch *gdbarch)
604 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
605 && non_stop)
606 || can_use_displaced_stepping == can_use_displaced_stepping_on)
607 && gdbarch_displaced_step_copy_insn_p (gdbarch));
610 /* Clean out any stray displaced stepping state. */
611 static void
612 displaced_step_clear (void)
614 /* Indicate that there is no cleanup pending. */
615 displaced_step_ptid = null_ptid;
617 if (displaced_step_closure)
619 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
620 displaced_step_closure);
621 displaced_step_closure = NULL;
625 static void
626 cleanup_displaced_step_closure (void *ptr)
628 struct displaced_step_closure *closure = ptr;
630 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
633 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
634 void
635 displaced_step_dump_bytes (struct ui_file *file,
636 const gdb_byte *buf,
637 size_t len)
639 int i;
641 for (i = 0; i < len; i++)
642 fprintf_unfiltered (file, "%02x ", buf[i]);
643 fputs_unfiltered ("\n", file);
646 /* Prepare to single-step, using displaced stepping.
648 Note that we cannot use displaced stepping when we have a signal to
649 deliver. If we have a signal to deliver and an instruction to step
650 over, then after the step, there will be no indication from the
651 target whether the thread entered a signal handler or ignored the
652 signal and stepped over the instruction successfully --- both cases
653 result in a simple SIGTRAP. In the first case we mustn't do a
654 fixup, and in the second case we must --- but we can't tell which.
655 Comments in the code for 'random signals' in handle_inferior_event
656 explain how we handle this case instead.
658 Returns 1 if preparing was successful -- this thread is going to be
659 stepped now; or 0 if displaced stepping this thread got queued. */
660 static int
661 displaced_step_prepare (ptid_t ptid)
663 struct cleanup *old_cleanups, *ignore_cleanups;
664 struct regcache *regcache = get_thread_regcache (ptid);
665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
666 CORE_ADDR original, copy;
667 ULONGEST len;
668 struct displaced_step_closure *closure;
670 /* We should never reach this function if the architecture does not
671 support displaced stepping. */
672 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
674 /* For the first cut, we're displaced stepping one thread at a
675 time. */
677 if (!ptid_equal (displaced_step_ptid, null_ptid))
679 /* Already waiting for a displaced step to finish. Defer this
680 request and place in queue. */
681 struct displaced_step_request *req, *new_req;
683 if (debug_displaced)
684 fprintf_unfiltered (gdb_stdlog,
685 "displaced: defering step of %s\n",
686 target_pid_to_str (ptid));
688 new_req = xmalloc (sizeof (*new_req));
689 new_req->ptid = ptid;
690 new_req->next = NULL;
692 if (displaced_step_request_queue)
694 for (req = displaced_step_request_queue;
695 req && req->next;
696 req = req->next)
698 req->next = new_req;
700 else
701 displaced_step_request_queue = new_req;
703 return 0;
705 else
707 if (debug_displaced)
708 fprintf_unfiltered (gdb_stdlog,
709 "displaced: stepping %s now\n",
710 target_pid_to_str (ptid));
713 displaced_step_clear ();
715 old_cleanups = save_inferior_ptid ();
716 inferior_ptid = ptid;
718 original = regcache_read_pc (regcache);
720 copy = gdbarch_displaced_step_location (gdbarch);
721 len = gdbarch_max_insn_length (gdbarch);
723 /* Save the original contents of the copy area. */
724 displaced_step_saved_copy = xmalloc (len);
725 ignore_cleanups = make_cleanup (free_current_contents,
726 &displaced_step_saved_copy);
727 read_memory (copy, displaced_step_saved_copy, len);
728 if (debug_displaced)
730 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
731 paddr_nz (copy));
732 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
735 closure = gdbarch_displaced_step_copy_insn (gdbarch,
736 original, copy, regcache);
738 /* We don't support the fully-simulated case at present. */
739 gdb_assert (closure);
741 make_cleanup (cleanup_displaced_step_closure, closure);
743 /* Resume execution at the copy. */
744 regcache_write_pc (regcache, copy);
746 discard_cleanups (ignore_cleanups);
748 do_cleanups (old_cleanups);
750 if (debug_displaced)
751 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
752 paddr_nz (copy));
754 /* Save the information we need to fix things up if the step
755 succeeds. */
756 displaced_step_ptid = ptid;
757 displaced_step_gdbarch = gdbarch;
758 displaced_step_closure = closure;
759 displaced_step_original = original;
760 displaced_step_copy = copy;
761 return 1;
764 static void
765 displaced_step_clear_cleanup (void *ignore)
767 displaced_step_clear ();
770 static void
771 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
773 struct cleanup *ptid_cleanup = save_inferior_ptid ();
774 inferior_ptid = ptid;
775 write_memory (memaddr, myaddr, len);
776 do_cleanups (ptid_cleanup);
779 static void
780 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
782 struct cleanup *old_cleanups;
784 /* Was this event for the pid we displaced? */
785 if (ptid_equal (displaced_step_ptid, null_ptid)
786 || ! ptid_equal (displaced_step_ptid, event_ptid))
787 return;
789 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
791 /* Restore the contents of the copy area. */
793 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
794 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
795 displaced_step_saved_copy, len);
796 if (debug_displaced)
797 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
798 paddr_nz (displaced_step_copy));
801 /* Did the instruction complete successfully? */
802 if (signal == TARGET_SIGNAL_TRAP)
804 /* Fix up the resulting state. */
805 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
806 displaced_step_closure,
807 displaced_step_original,
808 displaced_step_copy,
809 get_thread_regcache (displaced_step_ptid));
811 else
813 /* Since the instruction didn't complete, all we can do is
814 relocate the PC. */
815 struct regcache *regcache = get_thread_regcache (event_ptid);
816 CORE_ADDR pc = regcache_read_pc (regcache);
817 pc = displaced_step_original + (pc - displaced_step_copy);
818 regcache_write_pc (regcache, pc);
821 do_cleanups (old_cleanups);
823 displaced_step_ptid = null_ptid;
825 /* Are there any pending displaced stepping requests? If so, run
826 one now. */
827 while (displaced_step_request_queue)
829 struct displaced_step_request *head;
830 ptid_t ptid;
831 CORE_ADDR actual_pc;
833 head = displaced_step_request_queue;
834 ptid = head->ptid;
835 displaced_step_request_queue = head->next;
836 xfree (head);
838 context_switch (ptid);
840 actual_pc = read_pc ();
842 if (breakpoint_here_p (actual_pc))
844 if (debug_displaced)
845 fprintf_unfiltered (gdb_stdlog,
846 "displaced: stepping queued %s now\n",
847 target_pid_to_str (ptid));
849 displaced_step_prepare (ptid);
851 if (debug_displaced)
853 gdb_byte buf[4];
855 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
856 paddr_nz (actual_pc));
857 read_memory (actual_pc, buf, sizeof (buf));
858 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
861 target_resume (ptid, 1, TARGET_SIGNAL_0);
863 /* Done, we're stepping a thread. */
864 break;
866 else
868 int step;
869 struct thread_info *tp = inferior_thread ();
871 /* The breakpoint we were sitting under has since been
872 removed. */
873 tp->trap_expected = 0;
875 /* Go back to what we were trying to do. */
876 step = currently_stepping (tp);
878 if (debug_displaced)
879 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
880 target_pid_to_str (tp->ptid), step);
882 target_resume (ptid, step, TARGET_SIGNAL_0);
883 tp->stop_signal = TARGET_SIGNAL_0;
885 /* This request was discarded. See if there's any other
886 thread waiting for its turn. */
891 /* Update global variables holding ptids to hold NEW_PTID if they were
892 holding OLD_PTID. */
893 static void
894 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
896 struct displaced_step_request *it;
898 if (ptid_equal (inferior_ptid, old_ptid))
899 inferior_ptid = new_ptid;
901 if (ptid_equal (singlestep_ptid, old_ptid))
902 singlestep_ptid = new_ptid;
904 if (ptid_equal (displaced_step_ptid, old_ptid))
905 displaced_step_ptid = new_ptid;
907 if (ptid_equal (deferred_step_ptid, old_ptid))
908 deferred_step_ptid = new_ptid;
910 for (it = displaced_step_request_queue; it; it = it->next)
911 if (ptid_equal (it->ptid, old_ptid))
912 it->ptid = new_ptid;
916 /* Resuming. */
918 /* Things to clean up if we QUIT out of resume (). */
919 static void
920 resume_cleanups (void *ignore)
922 normal_stop ();
925 static const char schedlock_off[] = "off";
926 static const char schedlock_on[] = "on";
927 static const char schedlock_step[] = "step";
928 static const char *scheduler_enums[] = {
929 schedlock_off,
930 schedlock_on,
931 schedlock_step,
932 NULL
934 static const char *scheduler_mode = schedlock_off;
935 static void
936 show_scheduler_mode (struct ui_file *file, int from_tty,
937 struct cmd_list_element *c, const char *value)
939 fprintf_filtered (file, _("\
940 Mode for locking scheduler during execution is \"%s\".\n"),
941 value);
944 static void
945 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
947 if (!target_can_lock_scheduler)
949 scheduler_mode = schedlock_off;
950 error (_("Target '%s' cannot support this command."), target_shortname);
955 /* Resume the inferior, but allow a QUIT. This is useful if the user
956 wants to interrupt some lengthy single-stepping operation
957 (for child processes, the SIGINT goes to the inferior, and so
958 we get a SIGINT random_signal, but for remote debugging and perhaps
959 other targets, that's not true).
961 STEP nonzero if we should step (zero to continue instead).
962 SIG is the signal to give the inferior (zero for none). */
963 void
964 resume (int step, enum target_signal sig)
966 int should_resume = 1;
967 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
969 /* Note that these must be reset if we follow a fork below. */
970 struct regcache *regcache = get_current_regcache ();
971 struct gdbarch *gdbarch = get_regcache_arch (regcache);
972 struct thread_info *tp = inferior_thread ();
973 CORE_ADDR pc = regcache_read_pc (regcache);
975 QUIT;
977 if (debug_infrun)
978 fprintf_unfiltered (gdb_stdlog,
979 "infrun: resume (step=%d, signal=%d), "
980 "trap_expected=%d\n",
981 step, sig, tp->trap_expected);
983 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
984 over an instruction that causes a page fault without triggering
985 a hardware watchpoint. The kernel properly notices that it shouldn't
986 stop, because the hardware watchpoint is not triggered, but it forgets
987 the step request and continues the program normally.
988 Work around the problem by removing hardware watchpoints if a step is
989 requested, GDB will check for a hardware watchpoint trigger after the
990 step anyway. */
991 if (CANNOT_STEP_HW_WATCHPOINTS && step)
992 remove_hw_watchpoints ();
995 /* Normally, by the time we reach `resume', the breakpoints are either
996 removed or inserted, as appropriate. The exception is if we're sitting
997 at a permanent breakpoint; we need to step over it, but permanent
998 breakpoints can't be removed. So we have to test for it here. */
999 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
1001 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1002 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1003 else
1004 error (_("\
1005 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1006 how to step past a permanent breakpoint on this architecture. Try using\n\
1007 a command like `return' or `jump' to continue execution."));
1010 /* If enabled, step over breakpoints by executing a copy of the
1011 instruction at a different address.
1013 We can't use displaced stepping when we have a signal to deliver;
1014 the comments for displaced_step_prepare explain why. The
1015 comments in the handle_inferior event for dealing with 'random
1016 signals' explain what we do instead. */
1017 if (use_displaced_stepping (gdbarch)
1018 && tp->trap_expected
1019 && sig == TARGET_SIGNAL_0)
1021 if (!displaced_step_prepare (inferior_ptid))
1023 /* Got placed in displaced stepping queue. Will be resumed
1024 later when all the currently queued displaced stepping
1025 requests finish. The thread is not executing at this point,
1026 and the call to set_executing will be made later. But we
1027 need to call set_running here, since from frontend point of view,
1028 the thread is running. */
1029 set_running (inferior_ptid, 1);
1030 discard_cleanups (old_cleanups);
1031 return;
1035 if (step && gdbarch_software_single_step_p (gdbarch))
1037 /* Do it the hard way, w/temp breakpoints */
1038 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1040 /* ...and don't ask hardware to do it. */
1041 step = 0;
1042 /* and do not pull these breakpoints until after a `wait' in
1043 `wait_for_inferior' */
1044 singlestep_breakpoints_inserted_p = 1;
1045 singlestep_ptid = inferior_ptid;
1046 singlestep_pc = pc;
1050 /* If there were any forks/vforks/execs that were caught and are
1051 now to be followed, then do so. */
1052 switch (pending_follow.kind)
1054 case TARGET_WAITKIND_FORKED:
1055 case TARGET_WAITKIND_VFORKED:
1056 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1057 if (follow_fork ())
1058 should_resume = 0;
1060 /* Following a child fork will change our notion of current
1061 thread. */
1062 tp = inferior_thread ();
1063 regcache = get_current_regcache ();
1064 gdbarch = get_regcache_arch (regcache);
1065 pc = regcache_read_pc (regcache);
1066 break;
1068 case TARGET_WAITKIND_EXECD:
1069 /* follow_exec is called as soon as the exec event is seen. */
1070 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1071 break;
1073 default:
1074 break;
1077 /* Install inferior's terminal modes. */
1078 target_terminal_inferior ();
1080 if (should_resume)
1082 ptid_t resume_ptid;
1084 resume_ptid = RESUME_ALL; /* Default */
1086 /* If STEP is set, it's a request to use hardware stepping
1087 facilities. But in that case, we should never
1088 use singlestep breakpoint. */
1089 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1091 if (singlestep_breakpoints_inserted_p
1092 && stepping_past_singlestep_breakpoint)
1094 /* The situation here is as follows. In thread T1 we wanted to
1095 single-step. Lacking hardware single-stepping we've
1096 set breakpoint at the PC of the next instruction -- call it
1097 P. After resuming, we've hit that breakpoint in thread T2.
1098 Now we've removed original breakpoint, inserted breakpoint
1099 at P+1, and try to step to advance T2 past breakpoint.
1100 We need to step only T2, as if T1 is allowed to freely run,
1101 it can run past P, and if other threads are allowed to run,
1102 they can hit breakpoint at P+1, and nested hits of single-step
1103 breakpoints is not something we'd want -- that's complicated
1104 to support, and has no value. */
1105 resume_ptid = inferior_ptid;
1108 if ((step || singlestep_breakpoints_inserted_p)
1109 && tp->trap_expected)
1111 /* We're allowing a thread to run past a breakpoint it has
1112 hit, by single-stepping the thread with the breakpoint
1113 removed. In which case, we need to single-step only this
1114 thread, and keep others stopped, as they can miss this
1115 breakpoint if allowed to run.
1117 The current code actually removes all breakpoints when
1118 doing this, not just the one being stepped over, so if we
1119 let other threads run, we can actually miss any
1120 breakpoint, not just the one at PC. */
1121 resume_ptid = inferior_ptid;
1124 if (non_stop)
1126 /* With non-stop mode on, threads are always handled
1127 individually. */
1128 resume_ptid = inferior_ptid;
1130 else if ((scheduler_mode == schedlock_on)
1131 || (scheduler_mode == schedlock_step
1132 && (step || singlestep_breakpoints_inserted_p)))
1134 /* User-settable 'scheduler' mode requires solo thread resume. */
1135 resume_ptid = inferior_ptid;
1138 if (gdbarch_cannot_step_breakpoint (gdbarch))
1140 /* Most targets can step a breakpoint instruction, thus
1141 executing it normally. But if this one cannot, just
1142 continue and we will hit it anyway. */
1143 if (step && breakpoint_inserted_here_p (pc))
1144 step = 0;
1147 if (debug_displaced
1148 && use_displaced_stepping (gdbarch)
1149 && tp->trap_expected)
1151 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1152 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1153 gdb_byte buf[4];
1155 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1156 paddr_nz (actual_pc));
1157 read_memory (actual_pc, buf, sizeof (buf));
1158 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1161 /* Avoid confusing the next resume, if the next stop/resume
1162 happens to apply to another thread. */
1163 tp->stop_signal = TARGET_SIGNAL_0;
1165 target_resume (resume_ptid, step, sig);
1168 discard_cleanups (old_cleanups);
1171 /* Proceeding. */
1173 /* Clear out all variables saying what to do when inferior is continued.
1174 First do this, then set the ones you want, then call `proceed'. */
1176 static void
1177 clear_proceed_status_thread (struct thread_info *tp)
1179 if (debug_infrun)
1180 fprintf_unfiltered (gdb_stdlog,
1181 "infrun: clear_proceed_status_thread (%s)\n",
1182 target_pid_to_str (tp->ptid));
1184 tp->trap_expected = 0;
1185 tp->step_range_start = 0;
1186 tp->step_range_end = 0;
1187 tp->step_frame_id = null_frame_id;
1188 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1189 tp->stop_requested = 0;
1191 tp->stop_step = 0;
1193 tp->proceed_to_finish = 0;
1195 /* Discard any remaining commands or status from previous stop. */
1196 bpstat_clear (&tp->stop_bpstat);
1199 static int
1200 clear_proceed_status_callback (struct thread_info *tp, void *data)
1202 if (is_exited (tp->ptid))
1203 return 0;
1205 clear_proceed_status_thread (tp);
1206 return 0;
1209 void
1210 clear_proceed_status (void)
1212 if (!ptid_equal (inferior_ptid, null_ptid))
1214 struct inferior *inferior;
1216 if (non_stop)
1218 /* If in non-stop mode, only delete the per-thread status
1219 of the current thread. */
1220 clear_proceed_status_thread (inferior_thread ());
1222 else
1224 /* In all-stop mode, delete the per-thread status of
1225 *all* threads. */
1226 iterate_over_threads (clear_proceed_status_callback, NULL);
1229 inferior = current_inferior ();
1230 inferior->stop_soon = NO_STOP_QUIETLY;
1233 stop_after_trap = 0;
1234 breakpoint_proceeded = 1; /* We're about to proceed... */
1236 if (stop_registers)
1238 regcache_xfree (stop_registers);
1239 stop_registers = NULL;
1243 /* This should be suitable for any targets that support threads. */
1245 static int
1246 prepare_to_proceed (int step)
1248 ptid_t wait_ptid;
1249 struct target_waitstatus wait_status;
1251 /* Get the last target status returned by target_wait(). */
1252 get_last_target_status (&wait_ptid, &wait_status);
1254 /* Make sure we were stopped at a breakpoint. */
1255 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1256 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1258 return 0;
1261 /* Switched over from WAIT_PID. */
1262 if (!ptid_equal (wait_ptid, minus_one_ptid)
1263 && !ptid_equal (inferior_ptid, wait_ptid))
1265 struct regcache *regcache = get_thread_regcache (wait_ptid);
1267 if (breakpoint_here_p (regcache_read_pc (regcache)))
1269 /* If stepping, remember current thread to switch back to. */
1270 if (step)
1271 deferred_step_ptid = inferior_ptid;
1273 /* Switch back to WAIT_PID thread. */
1274 switch_to_thread (wait_ptid);
1276 /* We return 1 to indicate that there is a breakpoint here,
1277 so we need to step over it before continuing to avoid
1278 hitting it straight away. */
1279 return 1;
1283 return 0;
1286 /* Basic routine for continuing the program in various fashions.
1288 ADDR is the address to resume at, or -1 for resume where stopped.
1289 SIGGNAL is the signal to give it, or 0 for none,
1290 or -1 for act according to how it stopped.
1291 STEP is nonzero if should trap after one instruction.
1292 -1 means return after that and print nothing.
1293 You should probably set various step_... variables
1294 before calling here, if you are stepping.
1296 You should call clear_proceed_status before calling proceed. */
1298 void
1299 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1301 struct regcache *regcache = get_current_regcache ();
1302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1303 struct thread_info *tp;
1304 CORE_ADDR pc = regcache_read_pc (regcache);
1305 int oneproc = 0;
1306 enum target_signal stop_signal;
1308 if (step > 0)
1309 step_start_function = find_pc_function (pc);
1310 if (step < 0)
1311 stop_after_trap = 1;
1313 if (addr == (CORE_ADDR) -1)
1315 if (pc == stop_pc && breakpoint_here_p (pc)
1316 && execution_direction != EXEC_REVERSE)
1317 /* There is a breakpoint at the address we will resume at,
1318 step one instruction before inserting breakpoints so that
1319 we do not stop right away (and report a second hit at this
1320 breakpoint).
1322 Note, we don't do this in reverse, because we won't
1323 actually be executing the breakpoint insn anyway.
1324 We'll be (un-)executing the previous instruction. */
1326 oneproc = 1;
1327 else if (gdbarch_single_step_through_delay_p (gdbarch)
1328 && gdbarch_single_step_through_delay (gdbarch,
1329 get_current_frame ()))
1330 /* We stepped onto an instruction that needs to be stepped
1331 again before re-inserting the breakpoint, do so. */
1332 oneproc = 1;
1334 else
1336 regcache_write_pc (regcache, addr);
1339 if (debug_infrun)
1340 fprintf_unfiltered (gdb_stdlog,
1341 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1342 paddr_nz (addr), siggnal, step);
1344 if (non_stop)
1345 /* In non-stop, each thread is handled individually. The context
1346 must already be set to the right thread here. */
1348 else
1350 /* In a multi-threaded task we may select another thread and
1351 then continue or step.
1353 But if the old thread was stopped at a breakpoint, it will
1354 immediately cause another breakpoint stop without any
1355 execution (i.e. it will report a breakpoint hit incorrectly).
1356 So we must step over it first.
1358 prepare_to_proceed checks the current thread against the
1359 thread that reported the most recent event. If a step-over
1360 is required it returns TRUE and sets the current thread to
1361 the old thread. */
1362 if (prepare_to_proceed (step))
1363 oneproc = 1;
1366 /* prepare_to_proceed may change the current thread. */
1367 tp = inferior_thread ();
1369 if (oneproc)
1371 tp->trap_expected = 1;
1372 /* If displaced stepping is enabled, we can step over the
1373 breakpoint without hitting it, so leave all breakpoints
1374 inserted. Otherwise we need to disable all breakpoints, step
1375 one instruction, and then re-add them when that step is
1376 finished. */
1377 if (!use_displaced_stepping (gdbarch))
1378 remove_breakpoints ();
1381 /* We can insert breakpoints if we're not trying to step over one,
1382 or if we are stepping over one but we're using displaced stepping
1383 to do so. */
1384 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1385 insert_breakpoints ();
1387 if (!non_stop)
1389 /* Pass the last stop signal to the thread we're resuming,
1390 irrespective of whether the current thread is the thread that
1391 got the last event or not. This was historically GDB's
1392 behaviour before keeping a stop_signal per thread. */
1394 struct thread_info *last_thread;
1395 ptid_t last_ptid;
1396 struct target_waitstatus last_status;
1398 get_last_target_status (&last_ptid, &last_status);
1399 if (!ptid_equal (inferior_ptid, last_ptid)
1400 && !ptid_equal (last_ptid, null_ptid)
1401 && !ptid_equal (last_ptid, minus_one_ptid))
1403 last_thread = find_thread_pid (last_ptid);
1404 if (last_thread)
1406 tp->stop_signal = last_thread->stop_signal;
1407 last_thread->stop_signal = TARGET_SIGNAL_0;
1412 if (siggnal != TARGET_SIGNAL_DEFAULT)
1413 tp->stop_signal = siggnal;
1414 /* If this signal should not be seen by program,
1415 give it zero. Used for debugging signals. */
1416 else if (!signal_program[tp->stop_signal])
1417 tp->stop_signal = TARGET_SIGNAL_0;
1419 annotate_starting ();
1421 /* Make sure that output from GDB appears before output from the
1422 inferior. */
1423 gdb_flush (gdb_stdout);
1425 /* Refresh prev_pc value just prior to resuming. This used to be
1426 done in stop_stepping, however, setting prev_pc there did not handle
1427 scenarios such as inferior function calls or returning from
1428 a function via the return command. In those cases, the prev_pc
1429 value was not set properly for subsequent commands. The prev_pc value
1430 is used to initialize the starting line number in the ecs. With an
1431 invalid value, the gdb next command ends up stopping at the position
1432 represented by the next line table entry past our start position.
1433 On platforms that generate one line table entry per line, this
1434 is not a problem. However, on the ia64, the compiler generates
1435 extraneous line table entries that do not increase the line number.
1436 When we issue the gdb next command on the ia64 after an inferior call
1437 or a return command, we often end up a few instructions forward, still
1438 within the original line we started.
1440 An attempt was made to have init_execution_control_state () refresh
1441 the prev_pc value before calculating the line number. This approach
1442 did not work because on platforms that use ptrace, the pc register
1443 cannot be read unless the inferior is stopped. At that point, we
1444 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1445 call can fail. Setting the prev_pc value here ensures the value is
1446 updated correctly when the inferior is stopped. */
1447 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1449 /* Fill in with reasonable starting values. */
1450 init_thread_stepping_state (tp);
1452 /* Reset to normal state. */
1453 init_infwait_state ();
1455 /* Resume inferior. */
1456 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1458 /* Wait for it to stop (if not standalone)
1459 and in any case decode why it stopped, and act accordingly. */
1460 /* Do this only if we are not using the event loop, or if the target
1461 does not support asynchronous execution. */
1462 if (!target_can_async_p ())
1464 wait_for_inferior (0);
1465 normal_stop ();
1470 /* Start remote-debugging of a machine over a serial link. */
1472 void
1473 start_remote (int from_tty)
1475 struct inferior *inferior;
1476 init_wait_for_inferior ();
1478 inferior = current_inferior ();
1479 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1481 /* Always go on waiting for the target, regardless of the mode. */
1482 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1483 indicate to wait_for_inferior that a target should timeout if
1484 nothing is returned (instead of just blocking). Because of this,
1485 targets expecting an immediate response need to, internally, set
1486 things up so that the target_wait() is forced to eventually
1487 timeout. */
1488 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1489 differentiate to its caller what the state of the target is after
1490 the initial open has been performed. Here we're assuming that
1491 the target has stopped. It should be possible to eventually have
1492 target_open() return to the caller an indication that the target
1493 is currently running and GDB state should be set to the same as
1494 for an async run. */
1495 wait_for_inferior (0);
1497 /* Now that the inferior has stopped, do any bookkeeping like
1498 loading shared libraries. We want to do this before normal_stop,
1499 so that the displayed frame is up to date. */
1500 post_create_inferior (&current_target, from_tty);
1502 normal_stop ();
1505 /* Initialize static vars when a new inferior begins. */
1507 void
1508 init_wait_for_inferior (void)
1510 /* These are meaningless until the first time through wait_for_inferior. */
1512 breakpoint_init_inferior (inf_starting);
1514 /* The first resume is not following a fork/vfork/exec. */
1515 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1517 clear_proceed_status ();
1519 stepping_past_singlestep_breakpoint = 0;
1520 deferred_step_ptid = null_ptid;
1522 target_last_wait_ptid = minus_one_ptid;
1524 previous_inferior_ptid = null_ptid;
1525 init_infwait_state ();
1527 displaced_step_clear ();
1531 /* This enum encodes possible reasons for doing a target_wait, so that
1532 wfi can call target_wait in one place. (Ultimately the call will be
1533 moved out of the infinite loop entirely.) */
1535 enum infwait_states
1537 infwait_normal_state,
1538 infwait_thread_hop_state,
1539 infwait_step_watch_state,
1540 infwait_nonstep_watch_state
1543 /* Why did the inferior stop? Used to print the appropriate messages
1544 to the interface from within handle_inferior_event(). */
1545 enum inferior_stop_reason
1547 /* Step, next, nexti, stepi finished. */
1548 END_STEPPING_RANGE,
1549 /* Inferior terminated by signal. */
1550 SIGNAL_EXITED,
1551 /* Inferior exited. */
1552 EXITED,
1553 /* Inferior received signal, and user asked to be notified. */
1554 SIGNAL_RECEIVED,
1555 /* Reverse execution -- target ran out of history info. */
1556 NO_HISTORY
1559 /* The PTID we'll do a target_wait on.*/
1560 ptid_t waiton_ptid;
1562 /* Current inferior wait state. */
1563 enum infwait_states infwait_state;
1565 /* Data to be passed around while handling an event. This data is
1566 discarded between events. */
1567 struct execution_control_state
1569 ptid_t ptid;
1570 /* The thread that got the event, if this was a thread event; NULL
1571 otherwise. */
1572 struct thread_info *event_thread;
1574 struct target_waitstatus ws;
1575 int random_signal;
1576 CORE_ADDR stop_func_start;
1577 CORE_ADDR stop_func_end;
1578 char *stop_func_name;
1579 int new_thread_event;
1580 int wait_some_more;
1583 void init_execution_control_state (struct execution_control_state *ecs);
1585 void handle_inferior_event (struct execution_control_state *ecs);
1587 static void handle_step_into_function (struct execution_control_state *ecs);
1588 static void handle_step_into_function_backward (struct execution_control_state *ecs);
1589 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1590 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1591 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1592 struct frame_id sr_id);
1593 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1595 static void stop_stepping (struct execution_control_state *ecs);
1596 static void prepare_to_wait (struct execution_control_state *ecs);
1597 static void keep_going (struct execution_control_state *ecs);
1598 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1599 int stop_info);
1601 /* Callback for iterate over threads. If the thread is stopped, but
1602 the user/frontend doesn't know about that yet, go through
1603 normal_stop, as if the thread had just stopped now. ARG points at
1604 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1605 ptid_is_pid(PTID) is true, applies to all threads of the process
1606 pointed at by PTID. Otherwise, apply only to the thread pointed by
1607 PTID. */
1609 static int
1610 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1612 ptid_t ptid = * (ptid_t *) arg;
1614 if ((ptid_equal (info->ptid, ptid)
1615 || ptid_equal (minus_one_ptid, ptid)
1616 || (ptid_is_pid (ptid)
1617 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1618 && is_running (info->ptid)
1619 && !is_executing (info->ptid))
1621 struct cleanup *old_chain;
1622 struct execution_control_state ecss;
1623 struct execution_control_state *ecs = &ecss;
1625 memset (ecs, 0, sizeof (*ecs));
1627 old_chain = make_cleanup_restore_current_thread ();
1629 switch_to_thread (info->ptid);
1631 /* Go through handle_inferior_event/normal_stop, so we always
1632 have consistent output as if the stop event had been
1633 reported. */
1634 ecs->ptid = info->ptid;
1635 ecs->event_thread = find_thread_pid (info->ptid);
1636 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1637 ecs->ws.value.sig = TARGET_SIGNAL_0;
1639 handle_inferior_event (ecs);
1641 if (!ecs->wait_some_more)
1643 struct thread_info *tp;
1645 normal_stop ();
1647 /* Finish off the continuations. The continations
1648 themselves are responsible for realising the thread
1649 didn't finish what it was supposed to do. */
1650 tp = inferior_thread ();
1651 do_all_intermediate_continuations_thread (tp);
1652 do_all_continuations_thread (tp);
1655 do_cleanups (old_chain);
1658 return 0;
1661 /* This function is attached as a "thread_stop_requested" observer.
1662 Cleanup local state that assumed the PTID was to be resumed, and
1663 report the stop to the frontend. */
1665 void
1666 infrun_thread_stop_requested (ptid_t ptid)
1668 struct displaced_step_request *it, *next, *prev = NULL;
1670 /* PTID was requested to stop. Remove it from the displaced
1671 stepping queue, so we don't try to resume it automatically. */
1672 for (it = displaced_step_request_queue; it; it = next)
1674 next = it->next;
1676 if (ptid_equal (it->ptid, ptid)
1677 || ptid_equal (minus_one_ptid, ptid)
1678 || (ptid_is_pid (ptid)
1679 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1681 if (displaced_step_request_queue == it)
1682 displaced_step_request_queue = it->next;
1683 else
1684 prev->next = it->next;
1686 xfree (it);
1688 else
1689 prev = it;
1692 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1695 /* Callback for iterate_over_threads. */
1697 static int
1698 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1700 if (is_exited (info->ptid))
1701 return 0;
1703 delete_step_resume_breakpoint (info);
1704 return 0;
1707 /* In all-stop, delete the step resume breakpoint of any thread that
1708 had one. In non-stop, delete the step resume breakpoint of the
1709 thread that just stopped. */
1711 static void
1712 delete_step_thread_step_resume_breakpoint (void)
1714 if (!target_has_execution
1715 || ptid_equal (inferior_ptid, null_ptid))
1716 /* If the inferior has exited, we have already deleted the step
1717 resume breakpoints out of GDB's lists. */
1718 return;
1720 if (non_stop)
1722 /* If in non-stop mode, only delete the step-resume or
1723 longjmp-resume breakpoint of the thread that just stopped
1724 stepping. */
1725 struct thread_info *tp = inferior_thread ();
1726 delete_step_resume_breakpoint (tp);
1728 else
1729 /* In all-stop mode, delete all step-resume and longjmp-resume
1730 breakpoints of any thread that had them. */
1731 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1734 /* A cleanup wrapper. */
1736 static void
1737 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1739 delete_step_thread_step_resume_breakpoint ();
1742 /* Wait for control to return from inferior to debugger.
1744 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1745 as if they were SIGTRAP signals. This can be useful during
1746 the startup sequence on some targets such as HP/UX, where
1747 we receive an EXEC event instead of the expected SIGTRAP.
1749 If inferior gets a signal, we may decide to start it up again
1750 instead of returning. That is why there is a loop in this function.
1751 When this function actually returns it means the inferior
1752 should be left stopped and GDB should read more commands. */
1754 void
1755 wait_for_inferior (int treat_exec_as_sigtrap)
1757 struct cleanup *old_cleanups;
1758 struct execution_control_state ecss;
1759 struct execution_control_state *ecs;
1761 if (debug_infrun)
1762 fprintf_unfiltered
1763 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1764 treat_exec_as_sigtrap);
1766 old_cleanups =
1767 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1769 ecs = &ecss;
1770 memset (ecs, 0, sizeof (*ecs));
1772 overlay_cache_invalid = 1;
1774 /* We'll update this if & when we switch to a new thread. */
1775 previous_inferior_ptid = inferior_ptid;
1777 /* We have to invalidate the registers BEFORE calling target_wait
1778 because they can be loaded from the target while in target_wait.
1779 This makes remote debugging a bit more efficient for those
1780 targets that provide critical registers as part of their normal
1781 status mechanism. */
1783 registers_changed ();
1785 while (1)
1787 if (deprecated_target_wait_hook)
1788 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1789 else
1790 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1792 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1794 xfree (ecs->ws.value.execd_pathname);
1795 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1796 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1799 /* Now figure out what to do with the result of the result. */
1800 handle_inferior_event (ecs);
1802 if (!ecs->wait_some_more)
1803 break;
1806 do_cleanups (old_cleanups);
1809 /* Asynchronous version of wait_for_inferior. It is called by the
1810 event loop whenever a change of state is detected on the file
1811 descriptor corresponding to the target. It can be called more than
1812 once to complete a single execution command. In such cases we need
1813 to keep the state in a global variable ECSS. If it is the last time
1814 that this function is called for a single execution command, then
1815 report to the user that the inferior has stopped, and do the
1816 necessary cleanups. */
1818 void
1819 fetch_inferior_event (void *client_data)
1821 struct execution_control_state ecss;
1822 struct execution_control_state *ecs = &ecss;
1823 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1824 int was_sync = sync_execution;
1826 memset (ecs, 0, sizeof (*ecs));
1828 overlay_cache_invalid = 1;
1830 /* We can only rely on wait_for_more being correct before handling
1831 the event in all-stop, but previous_inferior_ptid isn't used in
1832 non-stop. */
1833 if (!ecs->wait_some_more)
1834 /* We'll update this if & when we switch to a new thread. */
1835 previous_inferior_ptid = inferior_ptid;
1837 if (non_stop)
1838 /* In non-stop mode, the user/frontend should not notice a thread
1839 switch due to internal events. Make sure we reverse to the
1840 user selected thread and frame after handling the event and
1841 running any breakpoint commands. */
1842 make_cleanup_restore_current_thread ();
1844 /* We have to invalidate the registers BEFORE calling target_wait
1845 because they can be loaded from the target while in target_wait.
1846 This makes remote debugging a bit more efficient for those
1847 targets that provide critical registers as part of their normal
1848 status mechanism. */
1850 registers_changed ();
1852 if (deprecated_target_wait_hook)
1853 ecs->ptid =
1854 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1855 else
1856 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1858 if (non_stop
1859 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1860 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1861 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1862 /* In non-stop mode, each thread is handled individually. Switch
1863 early, so the global state is set correctly for this
1864 thread. */
1865 context_switch (ecs->ptid);
1867 /* Now figure out what to do with the result of the result. */
1868 handle_inferior_event (ecs);
1870 if (!ecs->wait_some_more)
1872 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1874 delete_step_thread_step_resume_breakpoint ();
1876 /* We may not find an inferior if this was a process exit. */
1877 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
1878 normal_stop ();
1880 if (target_has_execution
1881 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1882 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1883 && ecs->event_thread->step_multi
1884 && ecs->event_thread->stop_step)
1885 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1886 else
1887 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1890 /* Revert thread and frame. */
1891 do_cleanups (old_chain);
1893 /* If the inferior was in sync execution mode, and now isn't,
1894 restore the prompt. */
1895 if (was_sync && !sync_execution)
1896 display_gdb_prompt (0);
1899 /* Prepare an execution control state for looping through a
1900 wait_for_inferior-type loop. */
1902 void
1903 init_execution_control_state (struct execution_control_state *ecs)
1905 ecs->random_signal = 0;
1908 /* Clear context switchable stepping state. */
1910 void
1911 init_thread_stepping_state (struct thread_info *tss)
1913 struct symtab_and_line sal;
1915 tss->stepping_over_breakpoint = 0;
1916 tss->step_after_step_resume_breakpoint = 0;
1917 tss->stepping_through_solib_after_catch = 0;
1918 tss->stepping_through_solib_catchpoints = NULL;
1920 sal = find_pc_line (tss->prev_pc, 0);
1921 tss->current_line = sal.line;
1922 tss->current_symtab = sal.symtab;
1925 /* Return the cached copy of the last pid/waitstatus returned by
1926 target_wait()/deprecated_target_wait_hook(). The data is actually
1927 cached by handle_inferior_event(), which gets called immediately
1928 after target_wait()/deprecated_target_wait_hook(). */
1930 void
1931 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1933 *ptidp = target_last_wait_ptid;
1934 *status = target_last_waitstatus;
1937 void
1938 nullify_last_target_wait_ptid (void)
1940 target_last_wait_ptid = minus_one_ptid;
1943 /* Switch thread contexts. */
1945 static void
1946 context_switch (ptid_t ptid)
1948 if (debug_infrun)
1950 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1951 target_pid_to_str (inferior_ptid));
1952 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1953 target_pid_to_str (ptid));
1956 switch_to_thread (ptid);
1959 static void
1960 adjust_pc_after_break (struct execution_control_state *ecs)
1962 struct regcache *regcache;
1963 struct gdbarch *gdbarch;
1964 CORE_ADDR breakpoint_pc;
1966 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1967 we aren't, just return.
1969 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1970 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1971 implemented by software breakpoints should be handled through the normal
1972 breakpoint layer.
1974 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1975 different signals (SIGILL or SIGEMT for instance), but it is less
1976 clear where the PC is pointing afterwards. It may not match
1977 gdbarch_decr_pc_after_break. I don't know any specific target that
1978 generates these signals at breakpoints (the code has been in GDB since at
1979 least 1992) so I can not guess how to handle them here.
1981 In earlier versions of GDB, a target with
1982 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1983 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1984 target with both of these set in GDB history, and it seems unlikely to be
1985 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1987 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1988 return;
1990 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1991 return;
1993 /* In reverse execution, when a breakpoint is hit, the instruction
1994 under it has already been de-executed. The reported PC always
1995 points at the breakpoint address, so adjusting it further would
1996 be wrong. E.g., consider this case on a decr_pc_after_break == 1
1997 architecture:
1999 B1 0x08000000 : INSN1
2000 B2 0x08000001 : INSN2
2001 0x08000002 : INSN3
2002 PC -> 0x08000003 : INSN4
2004 Say you're stopped at 0x08000003 as above. Reverse continuing
2005 from that point should hit B2 as below. Reading the PC when the
2006 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2007 been de-executed already.
2009 B1 0x08000000 : INSN1
2010 B2 PC -> 0x08000001 : INSN2
2011 0x08000002 : INSN3
2012 0x08000003 : INSN4
2014 We can't apply the same logic as for forward execution, because
2015 we would wrongly adjust the PC to 0x08000000, since there's a
2016 breakpoint at PC - 1. We'd then report a hit on B1, although
2017 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2018 behaviour. */
2019 if (execution_direction == EXEC_REVERSE)
2020 return;
2022 /* If this target does not decrement the PC after breakpoints, then
2023 we have nothing to do. */
2024 regcache = get_thread_regcache (ecs->ptid);
2025 gdbarch = get_regcache_arch (regcache);
2026 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2027 return;
2029 /* Find the location where (if we've hit a breakpoint) the
2030 breakpoint would be. */
2031 breakpoint_pc = regcache_read_pc (regcache)
2032 - gdbarch_decr_pc_after_break (gdbarch);
2034 /* Check whether there actually is a software breakpoint inserted at
2035 that location.
2037 If in non-stop mode, a race condition is possible where we've
2038 removed a breakpoint, but stop events for that breakpoint were
2039 already queued and arrive later. To suppress those spurious
2040 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2041 and retire them after a number of stop events are reported. */
2042 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2043 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2045 /* When using hardware single-step, a SIGTRAP is reported for both
2046 a completed single-step and a software breakpoint. Need to
2047 differentiate between the two, as the latter needs adjusting
2048 but the former does not.
2050 The SIGTRAP can be due to a completed hardware single-step only if
2051 - we didn't insert software single-step breakpoints
2052 - the thread to be examined is still the current thread
2053 - this thread is currently being stepped
2055 If any of these events did not occur, we must have stopped due
2056 to hitting a software breakpoint, and have to back up to the
2057 breakpoint address.
2059 As a special case, we could have hardware single-stepped a
2060 software breakpoint. In this case (prev_pc == breakpoint_pc),
2061 we also need to back up to the breakpoint address. */
2063 if (singlestep_breakpoints_inserted_p
2064 || !ptid_equal (ecs->ptid, inferior_ptid)
2065 || !currently_stepping (ecs->event_thread)
2066 || ecs->event_thread->prev_pc == breakpoint_pc)
2067 regcache_write_pc (regcache, breakpoint_pc);
2071 void
2072 init_infwait_state (void)
2074 waiton_ptid = pid_to_ptid (-1);
2075 infwait_state = infwait_normal_state;
2078 void
2079 error_is_running (void)
2081 error (_("\
2082 Cannot execute this command while the selected thread is running."));
2085 void
2086 ensure_not_running (void)
2088 if (is_running (inferior_ptid))
2089 error_is_running ();
2092 /* Given an execution control state that has been freshly filled in
2093 by an event from the inferior, figure out what it means and take
2094 appropriate action. */
2096 void
2097 handle_inferior_event (struct execution_control_state *ecs)
2099 int sw_single_step_trap_p = 0;
2100 int stopped_by_watchpoint;
2101 int stepped_after_stopped_by_watchpoint = 0;
2102 struct symtab_and_line stop_pc_sal;
2103 enum stop_kind stop_soon;
2105 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2106 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2107 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2109 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2110 gdb_assert (inf);
2111 stop_soon = inf->stop_soon;
2113 else
2114 stop_soon = NO_STOP_QUIETLY;
2116 /* Cache the last pid/waitstatus. */
2117 target_last_wait_ptid = ecs->ptid;
2118 target_last_waitstatus = ecs->ws;
2120 /* Always clear state belonging to the previous time we stopped. */
2121 stop_stack_dummy = 0;
2123 /* If it's a new process, add it to the thread database */
2125 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2126 && !ptid_equal (ecs->ptid, minus_one_ptid)
2127 && !in_thread_list (ecs->ptid));
2129 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2130 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2131 add_thread (ecs->ptid);
2133 ecs->event_thread = find_thread_pid (ecs->ptid);
2135 /* Dependent on valid ECS->EVENT_THREAD. */
2136 adjust_pc_after_break (ecs);
2138 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2139 reinit_frame_cache ();
2141 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2143 breakpoint_retire_moribund ();
2145 /* Mark the non-executing threads accordingly. */
2146 if (!non_stop
2147 || ecs->ws.kind == TARGET_WAITKIND_EXITED
2148 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
2149 set_executing (pid_to_ptid (-1), 0);
2150 else
2151 set_executing (ecs->ptid, 0);
2154 switch (infwait_state)
2156 case infwait_thread_hop_state:
2157 if (debug_infrun)
2158 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2159 /* Cancel the waiton_ptid. */
2160 waiton_ptid = pid_to_ptid (-1);
2161 break;
2163 case infwait_normal_state:
2164 if (debug_infrun)
2165 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2166 break;
2168 case infwait_step_watch_state:
2169 if (debug_infrun)
2170 fprintf_unfiltered (gdb_stdlog,
2171 "infrun: infwait_step_watch_state\n");
2173 stepped_after_stopped_by_watchpoint = 1;
2174 break;
2176 case infwait_nonstep_watch_state:
2177 if (debug_infrun)
2178 fprintf_unfiltered (gdb_stdlog,
2179 "infrun: infwait_nonstep_watch_state\n");
2180 insert_breakpoints ();
2182 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2183 handle things like signals arriving and other things happening
2184 in combination correctly? */
2185 stepped_after_stopped_by_watchpoint = 1;
2186 break;
2188 default:
2189 internal_error (__FILE__, __LINE__, _("bad switch"));
2191 infwait_state = infwait_normal_state;
2193 switch (ecs->ws.kind)
2195 case TARGET_WAITKIND_LOADED:
2196 if (debug_infrun)
2197 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2198 /* Ignore gracefully during startup of the inferior, as it might
2199 be the shell which has just loaded some objects, otherwise
2200 add the symbols for the newly loaded objects. Also ignore at
2201 the beginning of an attach or remote session; we will query
2202 the full list of libraries once the connection is
2203 established. */
2204 if (stop_soon == NO_STOP_QUIETLY)
2206 /* Check for any newly added shared libraries if we're
2207 supposed to be adding them automatically. Switch
2208 terminal for any messages produced by
2209 breakpoint_re_set. */
2210 target_terminal_ours_for_output ();
2211 /* NOTE: cagney/2003-11-25: Make certain that the target
2212 stack's section table is kept up-to-date. Architectures,
2213 (e.g., PPC64), use the section table to perform
2214 operations such as address => section name and hence
2215 require the table to contain all sections (including
2216 those found in shared libraries). */
2217 /* NOTE: cagney/2003-11-25: Pass current_target and not
2218 exec_ops to SOLIB_ADD. This is because current GDB is
2219 only tooled to propagate section_table changes out from
2220 the "current_target" (see target_resize_to_sections), and
2221 not up from the exec stratum. This, of course, isn't
2222 right. "infrun.c" should only interact with the
2223 exec/process stratum, instead relying on the target stack
2224 to propagate relevant changes (stop, section table
2225 changed, ...) up to other layers. */
2226 #ifdef SOLIB_ADD
2227 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2228 #else
2229 solib_add (NULL, 0, &current_target, auto_solib_add);
2230 #endif
2231 target_terminal_inferior ();
2233 /* If requested, stop when the dynamic linker notifies
2234 gdb of events. This allows the user to get control
2235 and place breakpoints in initializer routines for
2236 dynamically loaded objects (among other things). */
2237 if (stop_on_solib_events)
2239 stop_stepping (ecs);
2240 return;
2243 /* NOTE drow/2007-05-11: This might be a good place to check
2244 for "catch load". */
2247 /* If we are skipping through a shell, or through shared library
2248 loading that we aren't interested in, resume the program. If
2249 we're running the program normally, also resume. But stop if
2250 we're attaching or setting up a remote connection. */
2251 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2253 /* Loading of shared libraries might have changed breakpoint
2254 addresses. Make sure new breakpoints are inserted. */
2255 if (stop_soon == NO_STOP_QUIETLY
2256 && !breakpoints_always_inserted_mode ())
2257 insert_breakpoints ();
2258 resume (0, TARGET_SIGNAL_0);
2259 prepare_to_wait (ecs);
2260 return;
2263 break;
2265 case TARGET_WAITKIND_SPURIOUS:
2266 if (debug_infrun)
2267 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2268 resume (0, TARGET_SIGNAL_0);
2269 prepare_to_wait (ecs);
2270 return;
2272 case TARGET_WAITKIND_EXITED:
2273 if (debug_infrun)
2274 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2275 target_terminal_ours (); /* Must do this before mourn anyway */
2276 print_stop_reason (EXITED, ecs->ws.value.integer);
2278 /* Record the exit code in the convenience variable $_exitcode, so
2279 that the user can inspect this again later. */
2280 set_internalvar (lookup_internalvar ("_exitcode"),
2281 value_from_longest (builtin_type_int32,
2282 (LONGEST) ecs->ws.value.integer));
2283 gdb_flush (gdb_stdout);
2284 target_mourn_inferior ();
2285 singlestep_breakpoints_inserted_p = 0;
2286 stop_print_frame = 0;
2287 stop_stepping (ecs);
2288 return;
2290 case TARGET_WAITKIND_SIGNALLED:
2291 if (debug_infrun)
2292 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2293 stop_print_frame = 0;
2294 target_terminal_ours (); /* Must do this before mourn anyway */
2296 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2297 reach here unless the inferior is dead. However, for years
2298 target_kill() was called here, which hints that fatal signals aren't
2299 really fatal on some systems. If that's true, then some changes
2300 may be needed. */
2301 target_mourn_inferior ();
2303 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2304 singlestep_breakpoints_inserted_p = 0;
2305 stop_stepping (ecs);
2306 return;
2308 /* The following are the only cases in which we keep going;
2309 the above cases end in a continue or goto. */
2310 case TARGET_WAITKIND_FORKED:
2311 case TARGET_WAITKIND_VFORKED:
2312 if (debug_infrun)
2313 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2314 pending_follow.kind = ecs->ws.kind;
2316 pending_follow.fork_event.parent_pid = ecs->ptid;
2317 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2319 if (!ptid_equal (ecs->ptid, inferior_ptid))
2321 context_switch (ecs->ptid);
2322 reinit_frame_cache ();
2325 stop_pc = read_pc ();
2327 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2329 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2331 /* If no catchpoint triggered for this, then keep going. */
2332 if (ecs->random_signal)
2334 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2335 keep_going (ecs);
2336 return;
2338 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2339 goto process_event_stop_test;
2341 case TARGET_WAITKIND_EXECD:
2342 if (debug_infrun)
2343 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2344 pending_follow.execd_pathname =
2345 savestring (ecs->ws.value.execd_pathname,
2346 strlen (ecs->ws.value.execd_pathname));
2348 if (!ptid_equal (ecs->ptid, inferior_ptid))
2350 context_switch (ecs->ptid);
2351 reinit_frame_cache ();
2354 stop_pc = read_pc ();
2356 /* This causes the eventpoints and symbol table to be reset.
2357 Must do this now, before trying to determine whether to
2358 stop. */
2359 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2360 xfree (pending_follow.execd_pathname);
2362 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2363 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2365 /* If no catchpoint triggered for this, then keep going. */
2366 if (ecs->random_signal)
2368 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2369 keep_going (ecs);
2370 return;
2372 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2373 goto process_event_stop_test;
2375 /* Be careful not to try to gather much state about a thread
2376 that's in a syscall. It's frequently a losing proposition. */
2377 case TARGET_WAITKIND_SYSCALL_ENTRY:
2378 if (debug_infrun)
2379 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2380 resume (0, TARGET_SIGNAL_0);
2381 prepare_to_wait (ecs);
2382 return;
2384 /* Before examining the threads further, step this thread to
2385 get it entirely out of the syscall. (We get notice of the
2386 event when the thread is just on the verge of exiting a
2387 syscall. Stepping one instruction seems to get it back
2388 into user code.) */
2389 case TARGET_WAITKIND_SYSCALL_RETURN:
2390 if (debug_infrun)
2391 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2392 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2393 prepare_to_wait (ecs);
2394 return;
2396 case TARGET_WAITKIND_STOPPED:
2397 if (debug_infrun)
2398 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2399 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2400 break;
2402 case TARGET_WAITKIND_NO_HISTORY:
2403 /* Reverse execution: target ran out of history info. */
2404 stop_pc = read_pc ();
2405 print_stop_reason (NO_HISTORY, 0);
2406 stop_stepping (ecs);
2407 return;
2409 /* We had an event in the inferior, but we are not interested
2410 in handling it at this level. The lower layers have already
2411 done what needs to be done, if anything.
2413 One of the possible circumstances for this is when the
2414 inferior produces output for the console. The inferior has
2415 not stopped, and we are ignoring the event. Another possible
2416 circumstance is any event which the lower level knows will be
2417 reported multiple times without an intervening resume. */
2418 case TARGET_WAITKIND_IGNORE:
2419 if (debug_infrun)
2420 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2421 prepare_to_wait (ecs);
2422 return;
2425 if (ecs->new_thread_event)
2427 if (non_stop)
2428 /* Non-stop assumes that the target handles adding new threads
2429 to the thread list. */
2430 internal_error (__FILE__, __LINE__, "\
2431 targets should add new threads to the thread list themselves in non-stop mode.");
2433 /* We may want to consider not doing a resume here in order to
2434 give the user a chance to play with the new thread. It might
2435 be good to make that a user-settable option. */
2437 /* At this point, all threads are stopped (happens automatically
2438 in either the OS or the native code). Therefore we need to
2439 continue all threads in order to make progress. */
2441 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2442 prepare_to_wait (ecs);
2443 return;
2446 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2448 /* Do we need to clean up the state of a thread that has
2449 completed a displaced single-step? (Doing so usually affects
2450 the PC, so do it here, before we set stop_pc.) */
2451 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2453 /* If we either finished a single-step or hit a breakpoint, but
2454 the user wanted this thread to be stopped, pretend we got a
2455 SIG0 (generic unsignaled stop). */
2457 if (ecs->event_thread->stop_requested
2458 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2459 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2462 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2464 if (debug_infrun)
2466 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2467 paddr_nz (stop_pc));
2468 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2470 CORE_ADDR addr;
2471 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2473 if (target_stopped_data_address (&current_target, &addr))
2474 fprintf_unfiltered (gdb_stdlog,
2475 "infrun: stopped data address = 0x%s\n",
2476 paddr_nz (addr));
2477 else
2478 fprintf_unfiltered (gdb_stdlog,
2479 "infrun: (no data address available)\n");
2483 if (stepping_past_singlestep_breakpoint)
2485 gdb_assert (singlestep_breakpoints_inserted_p);
2486 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2487 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2489 stepping_past_singlestep_breakpoint = 0;
2491 /* We've either finished single-stepping past the single-step
2492 breakpoint, or stopped for some other reason. It would be nice if
2493 we could tell, but we can't reliably. */
2494 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2496 if (debug_infrun)
2497 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2498 /* Pull the single step breakpoints out of the target. */
2499 remove_single_step_breakpoints ();
2500 singlestep_breakpoints_inserted_p = 0;
2502 ecs->random_signal = 0;
2504 context_switch (saved_singlestep_ptid);
2505 if (deprecated_context_hook)
2506 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2508 resume (1, TARGET_SIGNAL_0);
2509 prepare_to_wait (ecs);
2510 return;
2514 stepping_past_singlestep_breakpoint = 0;
2516 if (!ptid_equal (deferred_step_ptid, null_ptid))
2518 /* In non-stop mode, there's never a deferred_step_ptid set. */
2519 gdb_assert (!non_stop);
2521 /* If we stopped for some other reason than single-stepping, ignore
2522 the fact that we were supposed to switch back. */
2523 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2525 struct thread_info *tp;
2527 if (debug_infrun)
2528 fprintf_unfiltered (gdb_stdlog,
2529 "infrun: handling deferred step\n");
2531 /* Pull the single step breakpoints out of the target. */
2532 if (singlestep_breakpoints_inserted_p)
2534 remove_single_step_breakpoints ();
2535 singlestep_breakpoints_inserted_p = 0;
2538 /* Note: We do not call context_switch at this point, as the
2539 context is already set up for stepping the original thread. */
2540 switch_to_thread (deferred_step_ptid);
2541 deferred_step_ptid = null_ptid;
2542 /* Suppress spurious "Switching to ..." message. */
2543 previous_inferior_ptid = inferior_ptid;
2545 resume (1, TARGET_SIGNAL_0);
2546 prepare_to_wait (ecs);
2547 return;
2550 deferred_step_ptid = null_ptid;
2553 /* See if a thread hit a thread-specific breakpoint that was meant for
2554 another thread. If so, then step that thread past the breakpoint,
2555 and continue it. */
2557 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2559 int thread_hop_needed = 0;
2561 /* Check if a regular breakpoint has been hit before checking
2562 for a potential single step breakpoint. Otherwise, GDB will
2563 not see this breakpoint hit when stepping onto breakpoints. */
2564 if (regular_breakpoint_inserted_here_p (stop_pc))
2566 ecs->random_signal = 0;
2567 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2568 thread_hop_needed = 1;
2570 else if (singlestep_breakpoints_inserted_p)
2572 /* We have not context switched yet, so this should be true
2573 no matter which thread hit the singlestep breakpoint. */
2574 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2575 if (debug_infrun)
2576 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2577 "trap for %s\n",
2578 target_pid_to_str (ecs->ptid));
2580 ecs->random_signal = 0;
2581 /* The call to in_thread_list is necessary because PTIDs sometimes
2582 change when we go from single-threaded to multi-threaded. If
2583 the singlestep_ptid is still in the list, assume that it is
2584 really different from ecs->ptid. */
2585 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2586 && in_thread_list (singlestep_ptid))
2588 /* If the PC of the thread we were trying to single-step
2589 has changed, discard this event (which we were going
2590 to ignore anyway), and pretend we saw that thread
2591 trap. This prevents us continuously moving the
2592 single-step breakpoint forward, one instruction at a
2593 time. If the PC has changed, then the thread we were
2594 trying to single-step has trapped or been signalled,
2595 but the event has not been reported to GDB yet.
2597 There might be some cases where this loses signal
2598 information, if a signal has arrived at exactly the
2599 same time that the PC changed, but this is the best
2600 we can do with the information available. Perhaps we
2601 should arrange to report all events for all threads
2602 when they stop, or to re-poll the remote looking for
2603 this particular thread (i.e. temporarily enable
2604 schedlock). */
2606 CORE_ADDR new_singlestep_pc
2607 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2609 if (new_singlestep_pc != singlestep_pc)
2611 enum target_signal stop_signal;
2613 if (debug_infrun)
2614 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2615 " but expected thread advanced also\n");
2617 /* The current context still belongs to
2618 singlestep_ptid. Don't swap here, since that's
2619 the context we want to use. Just fudge our
2620 state and continue. */
2621 stop_signal = ecs->event_thread->stop_signal;
2622 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2623 ecs->ptid = singlestep_ptid;
2624 ecs->event_thread = find_thread_pid (ecs->ptid);
2625 ecs->event_thread->stop_signal = stop_signal;
2626 stop_pc = new_singlestep_pc;
2628 else
2630 if (debug_infrun)
2631 fprintf_unfiltered (gdb_stdlog,
2632 "infrun: unexpected thread\n");
2634 thread_hop_needed = 1;
2635 stepping_past_singlestep_breakpoint = 1;
2636 saved_singlestep_ptid = singlestep_ptid;
2641 if (thread_hop_needed)
2643 int remove_status = 0;
2645 if (debug_infrun)
2646 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2648 /* Saw a breakpoint, but it was hit by the wrong thread.
2649 Just continue. */
2651 if (singlestep_breakpoints_inserted_p)
2653 /* Pull the single step breakpoints out of the target. */
2654 remove_single_step_breakpoints ();
2655 singlestep_breakpoints_inserted_p = 0;
2658 /* If the arch can displace step, don't remove the
2659 breakpoints. */
2660 if (!use_displaced_stepping (current_gdbarch))
2661 remove_status = remove_breakpoints ();
2663 /* Did we fail to remove breakpoints? If so, try
2664 to set the PC past the bp. (There's at least
2665 one situation in which we can fail to remove
2666 the bp's: On HP-UX's that use ttrace, we can't
2667 change the address space of a vforking child
2668 process until the child exits (well, okay, not
2669 then either :-) or execs. */
2670 if (remove_status != 0)
2671 error (_("Cannot step over breakpoint hit in wrong thread"));
2672 else
2673 { /* Single step */
2674 if (!ptid_equal (inferior_ptid, ecs->ptid))
2675 context_switch (ecs->ptid);
2677 if (!non_stop)
2679 /* Only need to require the next event from this
2680 thread in all-stop mode. */
2681 waiton_ptid = ecs->ptid;
2682 infwait_state = infwait_thread_hop_state;
2685 ecs->event_thread->stepping_over_breakpoint = 1;
2686 keep_going (ecs);
2687 registers_changed ();
2688 return;
2691 else if (singlestep_breakpoints_inserted_p)
2693 sw_single_step_trap_p = 1;
2694 ecs->random_signal = 0;
2697 else
2698 ecs->random_signal = 1;
2700 /* See if something interesting happened to the non-current thread. If
2701 so, then switch to that thread. */
2702 if (!ptid_equal (ecs->ptid, inferior_ptid))
2704 if (debug_infrun)
2705 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2707 context_switch (ecs->ptid);
2709 if (deprecated_context_hook)
2710 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2713 if (singlestep_breakpoints_inserted_p)
2715 /* Pull the single step breakpoints out of the target. */
2716 remove_single_step_breakpoints ();
2717 singlestep_breakpoints_inserted_p = 0;
2720 if (stepped_after_stopped_by_watchpoint)
2721 stopped_by_watchpoint = 0;
2722 else
2723 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2725 /* If necessary, step over this watchpoint. We'll be back to display
2726 it in a moment. */
2727 if (stopped_by_watchpoint
2728 && (HAVE_STEPPABLE_WATCHPOINT
2729 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2731 /* At this point, we are stopped at an instruction which has
2732 attempted to write to a piece of memory under control of
2733 a watchpoint. The instruction hasn't actually executed
2734 yet. If we were to evaluate the watchpoint expression
2735 now, we would get the old value, and therefore no change
2736 would seem to have occurred.
2738 In order to make watchpoints work `right', we really need
2739 to complete the memory write, and then evaluate the
2740 watchpoint expression. We do this by single-stepping the
2741 target.
2743 It may not be necessary to disable the watchpoint to stop over
2744 it. For example, the PA can (with some kernel cooperation)
2745 single step over a watchpoint without disabling the watchpoint.
2747 It is far more common to need to disable a watchpoint to step
2748 the inferior over it. If we have non-steppable watchpoints,
2749 we must disable the current watchpoint; it's simplest to
2750 disable all watchpoints and breakpoints. */
2752 if (!HAVE_STEPPABLE_WATCHPOINT)
2753 remove_breakpoints ();
2754 registers_changed ();
2755 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2756 waiton_ptid = ecs->ptid;
2757 if (HAVE_STEPPABLE_WATCHPOINT)
2758 infwait_state = infwait_step_watch_state;
2759 else
2760 infwait_state = infwait_nonstep_watch_state;
2761 prepare_to_wait (ecs);
2762 return;
2765 ecs->stop_func_start = 0;
2766 ecs->stop_func_end = 0;
2767 ecs->stop_func_name = 0;
2768 /* Don't care about return value; stop_func_start and stop_func_name
2769 will both be 0 if it doesn't work. */
2770 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2771 &ecs->stop_func_start, &ecs->stop_func_end);
2772 ecs->stop_func_start
2773 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2774 ecs->event_thread->stepping_over_breakpoint = 0;
2775 bpstat_clear (&ecs->event_thread->stop_bpstat);
2776 ecs->event_thread->stop_step = 0;
2777 stop_print_frame = 1;
2778 ecs->random_signal = 0;
2779 stopped_by_random_signal = 0;
2781 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2782 && ecs->event_thread->trap_expected
2783 && gdbarch_single_step_through_delay_p (current_gdbarch)
2784 && currently_stepping (ecs->event_thread))
2786 /* We're trying to step off a breakpoint. Turns out that we're
2787 also on an instruction that needs to be stepped multiple
2788 times before it's been fully executing. E.g., architectures
2789 with a delay slot. It needs to be stepped twice, once for
2790 the instruction and once for the delay slot. */
2791 int step_through_delay
2792 = gdbarch_single_step_through_delay (current_gdbarch,
2793 get_current_frame ());
2794 if (debug_infrun && step_through_delay)
2795 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2796 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2798 /* The user issued a continue when stopped at a breakpoint.
2799 Set up for another trap and get out of here. */
2800 ecs->event_thread->stepping_over_breakpoint = 1;
2801 keep_going (ecs);
2802 return;
2804 else if (step_through_delay)
2806 /* The user issued a step when stopped at a breakpoint.
2807 Maybe we should stop, maybe we should not - the delay
2808 slot *might* correspond to a line of source. In any
2809 case, don't decide that here, just set
2810 ecs->stepping_over_breakpoint, making sure we
2811 single-step again before breakpoints are re-inserted. */
2812 ecs->event_thread->stepping_over_breakpoint = 1;
2816 /* Look at the cause of the stop, and decide what to do.
2817 The alternatives are:
2818 1) stop_stepping and return; to really stop and return to the debugger,
2819 2) keep_going and return to start up again
2820 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2821 3) set ecs->random_signal to 1, and the decision between 1 and 2
2822 will be made according to the signal handling tables. */
2824 /* First, distinguish signals caused by the debugger from signals
2825 that have to do with the program's own actions. Note that
2826 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2827 on the operating system version. Here we detect when a SIGILL or
2828 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2829 something similar for SIGSEGV, since a SIGSEGV will be generated
2830 when we're trying to execute a breakpoint instruction on a
2831 non-executable stack. This happens for call dummy breakpoints
2832 for architectures like SPARC that place call dummies on the
2833 stack.
2835 If we're doing a displaced step past a breakpoint, then the
2836 breakpoint is always inserted at the original instruction;
2837 non-standard signals can't be explained by the breakpoint. */
2838 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2839 || (! ecs->event_thread->trap_expected
2840 && breakpoint_inserted_here_p (stop_pc)
2841 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2842 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2843 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
2844 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2845 || stop_soon == STOP_QUIETLY_REMOTE)
2847 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2849 if (debug_infrun)
2850 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2851 stop_print_frame = 0;
2852 stop_stepping (ecs);
2853 return;
2856 /* This is originated from start_remote(), start_inferior() and
2857 shared libraries hook functions. */
2858 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2860 if (debug_infrun)
2861 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2862 stop_stepping (ecs);
2863 return;
2866 /* This originates from attach_command(). We need to overwrite
2867 the stop_signal here, because some kernels don't ignore a
2868 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2869 See more comments in inferior.h. On the other hand, if we
2870 get a non-SIGSTOP, report it to the user - assume the backend
2871 will handle the SIGSTOP if it should show up later.
2873 Also consider that the attach is complete when we see a
2874 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2875 target extended-remote report it instead of a SIGSTOP
2876 (e.g. gdbserver). We already rely on SIGTRAP being our
2877 signal, so this is no exception.
2879 Also consider that the attach is complete when we see a
2880 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
2881 the target to stop all threads of the inferior, in case the
2882 low level attach operation doesn't stop them implicitly. If
2883 they weren't stopped implicitly, then the stub will report a
2884 TARGET_SIGNAL_0, meaning: stopped for no particular reason
2885 other than GDB's request. */
2886 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2887 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2888 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2889 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
2891 stop_stepping (ecs);
2892 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2893 return;
2896 /* See if there is a breakpoint at the current PC. */
2897 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2899 /* Following in case break condition called a
2900 function. */
2901 stop_print_frame = 1;
2903 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2904 at one stage in the past included checks for an inferior
2905 function call's call dummy's return breakpoint. The original
2906 comment, that went with the test, read:
2908 ``End of a stack dummy. Some systems (e.g. Sony news) give
2909 another signal besides SIGTRAP, so check here as well as
2910 above.''
2912 If someone ever tries to get call dummys on a
2913 non-executable stack to work (where the target would stop
2914 with something like a SIGSEGV), then those tests might need
2915 to be re-instated. Given, however, that the tests were only
2916 enabled when momentary breakpoints were not being used, I
2917 suspect that it won't be the case.
2919 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2920 be necessary for call dummies on a non-executable stack on
2921 SPARC. */
2923 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2924 ecs->random_signal
2925 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2926 || ecs->event_thread->trap_expected
2927 || (ecs->event_thread->step_range_end
2928 && ecs->event_thread->step_resume_breakpoint == NULL));
2929 else
2931 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2932 if (!ecs->random_signal)
2933 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2937 /* When we reach this point, we've pretty much decided
2938 that the reason for stopping must've been a random
2939 (unexpected) signal. */
2941 else
2942 ecs->random_signal = 1;
2944 process_event_stop_test:
2945 /* For the program's own signals, act according to
2946 the signal handling tables. */
2948 if (ecs->random_signal)
2950 /* Signal not for debugging purposes. */
2951 int printed = 0;
2953 if (debug_infrun)
2954 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2955 ecs->event_thread->stop_signal);
2957 stopped_by_random_signal = 1;
2959 if (signal_print[ecs->event_thread->stop_signal])
2961 printed = 1;
2962 target_terminal_ours_for_output ();
2963 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
2965 /* Always stop on signals if we're either just gaining control
2966 of the program, or the user explicitly requested this thread
2967 to remain stopped. */
2968 if (stop_soon != NO_STOP_QUIETLY
2969 || ecs->event_thread->stop_requested
2970 || signal_stop_state (ecs->event_thread->stop_signal))
2972 stop_stepping (ecs);
2973 return;
2975 /* If not going to stop, give terminal back
2976 if we took it away. */
2977 else if (printed)
2978 target_terminal_inferior ();
2980 /* Clear the signal if it should not be passed. */
2981 if (signal_program[ecs->event_thread->stop_signal] == 0)
2982 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2984 if (ecs->event_thread->prev_pc == read_pc ()
2985 && ecs->event_thread->trap_expected
2986 && ecs->event_thread->step_resume_breakpoint == NULL)
2988 /* We were just starting a new sequence, attempting to
2989 single-step off of a breakpoint and expecting a SIGTRAP.
2990 Instead this signal arrives. This signal will take us out
2991 of the stepping range so GDB needs to remember to, when
2992 the signal handler returns, resume stepping off that
2993 breakpoint. */
2994 /* To simplify things, "continue" is forced to use the same
2995 code paths as single-step - set a breakpoint at the
2996 signal return address and then, once hit, step off that
2997 breakpoint. */
2998 if (debug_infrun)
2999 fprintf_unfiltered (gdb_stdlog,
3000 "infrun: signal arrived while stepping over "
3001 "breakpoint\n");
3003 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3004 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3005 keep_going (ecs);
3006 return;
3009 if (ecs->event_thread->step_range_end != 0
3010 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3011 && (ecs->event_thread->step_range_start <= stop_pc
3012 && stop_pc < ecs->event_thread->step_range_end)
3013 && frame_id_eq (get_frame_id (get_current_frame ()),
3014 ecs->event_thread->step_frame_id)
3015 && ecs->event_thread->step_resume_breakpoint == NULL)
3017 /* The inferior is about to take a signal that will take it
3018 out of the single step range. Set a breakpoint at the
3019 current PC (which is presumably where the signal handler
3020 will eventually return) and then allow the inferior to
3021 run free.
3023 Note that this is only needed for a signal delivered
3024 while in the single-step range. Nested signals aren't a
3025 problem as they eventually all return. */
3026 if (debug_infrun)
3027 fprintf_unfiltered (gdb_stdlog,
3028 "infrun: signal may take us out of "
3029 "single-step range\n");
3031 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3032 keep_going (ecs);
3033 return;
3036 /* Note: step_resume_breakpoint may be non-NULL. This occures
3037 when either there's a nested signal, or when there's a
3038 pending signal enabled just as the signal handler returns
3039 (leaving the inferior at the step-resume-breakpoint without
3040 actually executing it). Either way continue until the
3041 breakpoint is really hit. */
3042 keep_going (ecs);
3043 return;
3046 /* Handle cases caused by hitting a breakpoint. */
3048 CORE_ADDR jmp_buf_pc;
3049 struct bpstat_what what;
3051 what = bpstat_what (ecs->event_thread->stop_bpstat);
3053 if (what.call_dummy)
3055 stop_stack_dummy = 1;
3058 switch (what.main_action)
3060 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3061 /* If we hit the breakpoint at longjmp while stepping, we
3062 install a momentary breakpoint at the target of the
3063 jmp_buf. */
3065 if (debug_infrun)
3066 fprintf_unfiltered (gdb_stdlog,
3067 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3069 ecs->event_thread->stepping_over_breakpoint = 1;
3071 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
3072 || !gdbarch_get_longjmp_target (current_gdbarch,
3073 get_current_frame (), &jmp_buf_pc))
3075 if (debug_infrun)
3076 fprintf_unfiltered (gdb_stdlog, "\
3077 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3078 keep_going (ecs);
3079 return;
3082 /* We're going to replace the current step-resume breakpoint
3083 with a longjmp-resume breakpoint. */
3084 delete_step_resume_breakpoint (ecs->event_thread);
3086 /* Insert a breakpoint at resume address. */
3087 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3089 keep_going (ecs);
3090 return;
3092 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3093 if (debug_infrun)
3094 fprintf_unfiltered (gdb_stdlog,
3095 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3097 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3098 delete_step_resume_breakpoint (ecs->event_thread);
3100 ecs->event_thread->stop_step = 1;
3101 print_stop_reason (END_STEPPING_RANGE, 0);
3102 stop_stepping (ecs);
3103 return;
3105 case BPSTAT_WHAT_SINGLE:
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3108 ecs->event_thread->stepping_over_breakpoint = 1;
3109 /* Still need to check other stuff, at least the case
3110 where we are stepping and step out of the right range. */
3111 break;
3113 case BPSTAT_WHAT_STOP_NOISY:
3114 if (debug_infrun)
3115 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3116 stop_print_frame = 1;
3118 /* We are about to nuke the step_resume_breakpointt via the
3119 cleanup chain, so no need to worry about it here. */
3121 stop_stepping (ecs);
3122 return;
3124 case BPSTAT_WHAT_STOP_SILENT:
3125 if (debug_infrun)
3126 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3127 stop_print_frame = 0;
3129 /* We are about to nuke the step_resume_breakpoin via the
3130 cleanup chain, so no need to worry about it here. */
3132 stop_stepping (ecs);
3133 return;
3135 case BPSTAT_WHAT_STEP_RESUME:
3136 if (debug_infrun)
3137 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3139 delete_step_resume_breakpoint (ecs->event_thread);
3140 if (ecs->event_thread->step_after_step_resume_breakpoint)
3142 /* Back when the step-resume breakpoint was inserted, we
3143 were trying to single-step off a breakpoint. Go back
3144 to doing that. */
3145 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3146 ecs->event_thread->stepping_over_breakpoint = 1;
3147 keep_going (ecs);
3148 return;
3150 if (stop_pc == ecs->stop_func_start
3151 && execution_direction == EXEC_REVERSE)
3153 /* We are stepping over a function call in reverse, and
3154 just hit the step-resume breakpoint at the start
3155 address of the function. Go back to single-stepping,
3156 which should take us back to the function call. */
3157 ecs->event_thread->stepping_over_breakpoint = 1;
3158 keep_going (ecs);
3159 return;
3161 break;
3163 case BPSTAT_WHAT_CHECK_SHLIBS:
3164 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3169 /* Check for any newly added shared libraries if we're
3170 supposed to be adding them automatically. Switch
3171 terminal for any messages produced by
3172 breakpoint_re_set. */
3173 target_terminal_ours_for_output ();
3174 /* NOTE: cagney/2003-11-25: Make certain that the target
3175 stack's section table is kept up-to-date. Architectures,
3176 (e.g., PPC64), use the section table to perform
3177 operations such as address => section name and hence
3178 require the table to contain all sections (including
3179 those found in shared libraries). */
3180 /* NOTE: cagney/2003-11-25: Pass current_target and not
3181 exec_ops to SOLIB_ADD. This is because current GDB is
3182 only tooled to propagate section_table changes out from
3183 the "current_target" (see target_resize_to_sections), and
3184 not up from the exec stratum. This, of course, isn't
3185 right. "infrun.c" should only interact with the
3186 exec/process stratum, instead relying on the target stack
3187 to propagate relevant changes (stop, section table
3188 changed, ...) up to other layers. */
3189 #ifdef SOLIB_ADD
3190 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3191 #else
3192 solib_add (NULL, 0, &current_target, auto_solib_add);
3193 #endif
3194 target_terminal_inferior ();
3196 /* If requested, stop when the dynamic linker notifies
3197 gdb of events. This allows the user to get control
3198 and place breakpoints in initializer routines for
3199 dynamically loaded objects (among other things). */
3200 if (stop_on_solib_events || stop_stack_dummy)
3202 stop_stepping (ecs);
3203 return;
3205 else
3207 /* We want to step over this breakpoint, then keep going. */
3208 ecs->event_thread->stepping_over_breakpoint = 1;
3209 break;
3212 break;
3214 case BPSTAT_WHAT_LAST:
3215 /* Not a real code, but listed here to shut up gcc -Wall. */
3217 case BPSTAT_WHAT_KEEP_CHECKING:
3218 break;
3222 /* We come here if we hit a breakpoint but should not
3223 stop for it. Possibly we also were stepping
3224 and should stop for that. So fall through and
3225 test for stepping. But, if not stepping,
3226 do not stop. */
3228 /* In all-stop mode, if we're currently stepping but have stopped in
3229 some other thread, we need to switch back to the stepped thread. */
3230 if (!non_stop)
3232 struct thread_info *tp;
3233 tp = iterate_over_threads (currently_stepping_callback,
3234 ecs->event_thread);
3235 if (tp)
3237 /* However, if the current thread is blocked on some internal
3238 breakpoint, and we simply need to step over that breakpoint
3239 to get it going again, do that first. */
3240 if ((ecs->event_thread->trap_expected
3241 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3242 || ecs->event_thread->stepping_over_breakpoint)
3244 keep_going (ecs);
3245 return;
3248 /* Otherwise, we no longer expect a trap in the current thread.
3249 Clear the trap_expected flag before switching back -- this is
3250 what keep_going would do as well, if we called it. */
3251 ecs->event_thread->trap_expected = 0;
3253 if (debug_infrun)
3254 fprintf_unfiltered (gdb_stdlog,
3255 "infrun: switching back to stepped thread\n");
3257 ecs->event_thread = tp;
3258 ecs->ptid = tp->ptid;
3259 context_switch (ecs->ptid);
3260 keep_going (ecs);
3261 return;
3265 /* Are we stepping to get the inferior out of the dynamic linker's
3266 hook (and possibly the dld itself) after catching a shlib
3267 event? */
3268 if (ecs->event_thread->stepping_through_solib_after_catch)
3270 #if defined(SOLIB_ADD)
3271 /* Have we reached our destination? If not, keep going. */
3272 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3274 if (debug_infrun)
3275 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3276 ecs->event_thread->stepping_over_breakpoint = 1;
3277 keep_going (ecs);
3278 return;
3280 #endif
3281 if (debug_infrun)
3282 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3283 /* Else, stop and report the catchpoint(s) whose triggering
3284 caused us to begin stepping. */
3285 ecs->event_thread->stepping_through_solib_after_catch = 0;
3286 bpstat_clear (&ecs->event_thread->stop_bpstat);
3287 ecs->event_thread->stop_bpstat
3288 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3289 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3290 stop_print_frame = 1;
3291 stop_stepping (ecs);
3292 return;
3295 if (ecs->event_thread->step_resume_breakpoint)
3297 if (debug_infrun)
3298 fprintf_unfiltered (gdb_stdlog,
3299 "infrun: step-resume breakpoint is inserted\n");
3301 /* Having a step-resume breakpoint overrides anything
3302 else having to do with stepping commands until
3303 that breakpoint is reached. */
3304 keep_going (ecs);
3305 return;
3308 if (ecs->event_thread->step_range_end == 0)
3310 if (debug_infrun)
3311 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3312 /* Likewise if we aren't even stepping. */
3313 keep_going (ecs);
3314 return;
3317 /* If stepping through a line, keep going if still within it.
3319 Note that step_range_end is the address of the first instruction
3320 beyond the step range, and NOT the address of the last instruction
3321 within it! */
3322 if (stop_pc >= ecs->event_thread->step_range_start
3323 && stop_pc < ecs->event_thread->step_range_end)
3325 if (debug_infrun)
3326 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3327 paddr_nz (ecs->event_thread->step_range_start),
3328 paddr_nz (ecs->event_thread->step_range_end));
3330 /* When stepping backward, stop at beginning of line range
3331 (unless it's the function entry point, in which case
3332 keep going back to the call point). */
3333 if (stop_pc == ecs->event_thread->step_range_start
3334 && stop_pc != ecs->stop_func_start
3335 && execution_direction == EXEC_REVERSE)
3337 ecs->event_thread->stop_step = 1;
3338 print_stop_reason (END_STEPPING_RANGE, 0);
3339 stop_stepping (ecs);
3341 else
3342 keep_going (ecs);
3344 return;
3347 /* We stepped out of the stepping range. */
3349 /* If we are stepping at the source level and entered the runtime
3350 loader dynamic symbol resolution code, we keep on single stepping
3351 until we exit the run time loader code and reach the callee's
3352 address. */
3353 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3354 && in_solib_dynsym_resolve_code (stop_pc))
3356 CORE_ADDR pc_after_resolver =
3357 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3359 if (debug_infrun)
3360 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3362 if (pc_after_resolver)
3364 /* Set up a step-resume breakpoint at the address
3365 indicated by SKIP_SOLIB_RESOLVER. */
3366 struct symtab_and_line sr_sal;
3367 init_sal (&sr_sal);
3368 sr_sal.pc = pc_after_resolver;
3370 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3373 keep_going (ecs);
3374 return;
3377 if (ecs->event_thread->step_range_end != 1
3378 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3379 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3380 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3382 if (debug_infrun)
3383 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3384 /* The inferior, while doing a "step" or "next", has ended up in
3385 a signal trampoline (either by a signal being delivered or by
3386 the signal handler returning). Just single-step until the
3387 inferior leaves the trampoline (either by calling the handler
3388 or returning). */
3389 keep_going (ecs);
3390 return;
3393 /* Check for subroutine calls. The check for the current frame
3394 equalling the step ID is not necessary - the check of the
3395 previous frame's ID is sufficient - but it is a common case and
3396 cheaper than checking the previous frame's ID.
3398 NOTE: frame_id_eq will never report two invalid frame IDs as
3399 being equal, so to get into this block, both the current and
3400 previous frame must have valid frame IDs. */
3401 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3402 ecs->event_thread->step_frame_id)
3403 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3404 ecs->event_thread->step_frame_id)
3405 || execution_direction == EXEC_REVERSE))
3407 CORE_ADDR real_stop_pc;
3409 if (debug_infrun)
3410 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3412 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3413 || ((ecs->event_thread->step_range_end == 1)
3414 && in_prologue (ecs->event_thread->prev_pc,
3415 ecs->stop_func_start)))
3417 /* I presume that step_over_calls is only 0 when we're
3418 supposed to be stepping at the assembly language level
3419 ("stepi"). Just stop. */
3420 /* Also, maybe we just did a "nexti" inside a prolog, so we
3421 thought it was a subroutine call but it was not. Stop as
3422 well. FENN */
3423 ecs->event_thread->stop_step = 1;
3424 print_stop_reason (END_STEPPING_RANGE, 0);
3425 stop_stepping (ecs);
3426 return;
3429 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3431 /* We're doing a "next".
3433 Normal (forward) execution: set a breakpoint at the
3434 callee's return address (the address at which the caller
3435 will resume).
3437 Reverse (backward) execution. set the step-resume
3438 breakpoint at the start of the function that we just
3439 stepped into (backwards), and continue to there. When we
3440 get there, we'll need to single-step back to the caller. */
3442 if (execution_direction == EXEC_REVERSE)
3444 struct symtab_and_line sr_sal;
3446 if (ecs->stop_func_start == 0
3447 && in_solib_dynsym_resolve_code (stop_pc))
3449 /* Stepped into runtime loader dynamic symbol
3450 resolution code. Since we're in reverse,
3451 we have already backed up through the runtime
3452 loader and the dynamic function. This is just
3453 the trampoline (jump table).
3455 Just keep stepping, we'll soon be home.
3457 keep_going (ecs);
3458 return;
3460 /* Normal (staticly linked) function call return. */
3461 init_sal (&sr_sal);
3462 sr_sal.pc = ecs->stop_func_start;
3463 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3465 else
3466 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3468 keep_going (ecs);
3469 return;
3472 /* If we are in a function call trampoline (a stub between the
3473 calling routine and the real function), locate the real
3474 function. That's what tells us (a) whether we want to step
3475 into it at all, and (b) what prologue we want to run to the
3476 end of, if we do step into it. */
3477 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3478 if (real_stop_pc == 0)
3479 real_stop_pc = gdbarch_skip_trampoline_code
3480 (current_gdbarch, get_current_frame (), stop_pc);
3481 if (real_stop_pc != 0)
3482 ecs->stop_func_start = real_stop_pc;
3484 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3486 struct symtab_and_line sr_sal;
3487 init_sal (&sr_sal);
3488 sr_sal.pc = ecs->stop_func_start;
3490 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3491 keep_going (ecs);
3492 return;
3495 /* If we have line number information for the function we are
3496 thinking of stepping into, step into it.
3498 If there are several symtabs at that PC (e.g. with include
3499 files), just want to know whether *any* of them have line
3500 numbers. find_pc_line handles this. */
3502 struct symtab_and_line tmp_sal;
3504 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3505 if (tmp_sal.line != 0)
3507 if (execution_direction == EXEC_REVERSE)
3508 handle_step_into_function_backward (ecs);
3509 else
3510 handle_step_into_function (ecs);
3511 return;
3515 /* If we have no line number and the step-stop-if-no-debug is
3516 set, we stop the step so that the user has a chance to switch
3517 in assembly mode. */
3518 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3519 && step_stop_if_no_debug)
3521 ecs->event_thread->stop_step = 1;
3522 print_stop_reason (END_STEPPING_RANGE, 0);
3523 stop_stepping (ecs);
3524 return;
3527 if (execution_direction == EXEC_REVERSE)
3529 /* Set a breakpoint at callee's start address.
3530 From there we can step once and be back in the caller. */
3531 struct symtab_and_line sr_sal;
3532 init_sal (&sr_sal);
3533 sr_sal.pc = ecs->stop_func_start;
3534 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3536 else
3537 /* Set a breakpoint at callee's return address (the address
3538 at which the caller will resume). */
3539 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3541 keep_going (ecs);
3542 return;
3545 /* If we're in the return path from a shared library trampoline,
3546 we want to proceed through the trampoline when stepping. */
3547 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3548 stop_pc, ecs->stop_func_name))
3550 /* Determine where this trampoline returns. */
3551 CORE_ADDR real_stop_pc;
3552 real_stop_pc = gdbarch_skip_trampoline_code
3553 (current_gdbarch, get_current_frame (), stop_pc);
3555 if (debug_infrun)
3556 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3558 /* Only proceed through if we know where it's going. */
3559 if (real_stop_pc)
3561 /* And put the step-breakpoint there and go until there. */
3562 struct symtab_and_line sr_sal;
3564 init_sal (&sr_sal); /* initialize to zeroes */
3565 sr_sal.pc = real_stop_pc;
3566 sr_sal.section = find_pc_overlay (sr_sal.pc);
3568 /* Do not specify what the fp should be when we stop since
3569 on some machines the prologue is where the new fp value
3570 is established. */
3571 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3573 /* Restart without fiddling with the step ranges or
3574 other state. */
3575 keep_going (ecs);
3576 return;
3580 stop_pc_sal = find_pc_line (stop_pc, 0);
3582 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3583 the trampoline processing logic, however, there are some trampolines
3584 that have no names, so we should do trampoline handling first. */
3585 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3586 && ecs->stop_func_name == NULL
3587 && stop_pc_sal.line == 0)
3589 if (debug_infrun)
3590 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3592 /* The inferior just stepped into, or returned to, an
3593 undebuggable function (where there is no debugging information
3594 and no line number corresponding to the address where the
3595 inferior stopped). Since we want to skip this kind of code,
3596 we keep going until the inferior returns from this
3597 function - unless the user has asked us not to (via
3598 set step-mode) or we no longer know how to get back
3599 to the call site. */
3600 if (step_stop_if_no_debug
3601 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3603 /* If we have no line number and the step-stop-if-no-debug
3604 is set, we stop the step so that the user has a chance to
3605 switch in assembly mode. */
3606 ecs->event_thread->stop_step = 1;
3607 print_stop_reason (END_STEPPING_RANGE, 0);
3608 stop_stepping (ecs);
3609 return;
3611 else
3613 /* Set a breakpoint at callee's return address (the address
3614 at which the caller will resume). */
3615 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3616 keep_going (ecs);
3617 return;
3621 if (ecs->event_thread->step_range_end == 1)
3623 /* It is stepi or nexti. We always want to stop stepping after
3624 one instruction. */
3625 if (debug_infrun)
3626 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3627 ecs->event_thread->stop_step = 1;
3628 print_stop_reason (END_STEPPING_RANGE, 0);
3629 stop_stepping (ecs);
3630 return;
3633 if (stop_pc_sal.line == 0)
3635 /* We have no line number information. That means to stop
3636 stepping (does this always happen right after one instruction,
3637 when we do "s" in a function with no line numbers,
3638 or can this happen as a result of a return or longjmp?). */
3639 if (debug_infrun)
3640 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3641 ecs->event_thread->stop_step = 1;
3642 print_stop_reason (END_STEPPING_RANGE, 0);
3643 stop_stepping (ecs);
3644 return;
3647 if ((stop_pc == stop_pc_sal.pc)
3648 && (ecs->event_thread->current_line != stop_pc_sal.line
3649 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3651 /* We are at the start of a different line. So stop. Note that
3652 we don't stop if we step into the middle of a different line.
3653 That is said to make things like for (;;) statements work
3654 better. */
3655 if (debug_infrun)
3656 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3657 ecs->event_thread->stop_step = 1;
3658 print_stop_reason (END_STEPPING_RANGE, 0);
3659 stop_stepping (ecs);
3660 return;
3663 /* We aren't done stepping.
3665 Optimize by setting the stepping range to the line.
3666 (We might not be in the original line, but if we entered a
3667 new line in mid-statement, we continue stepping. This makes
3668 things like for(;;) statements work better.) */
3670 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3671 ecs->event_thread->step_range_end = stop_pc_sal.end;
3672 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3673 ecs->event_thread->current_line = stop_pc_sal.line;
3674 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3676 if (debug_infrun)
3677 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3678 keep_going (ecs);
3681 /* Are we in the middle of stepping? */
3683 static int
3684 currently_stepping_thread (struct thread_info *tp)
3686 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3687 || tp->trap_expected
3688 || tp->stepping_through_solib_after_catch;
3691 static int
3692 currently_stepping_callback (struct thread_info *tp, void *data)
3694 /* Return true if any thread *but* the one passed in "data" is
3695 in the middle of stepping. */
3696 return tp != data && currently_stepping_thread (tp);
3699 static int
3700 currently_stepping (struct thread_info *tp)
3702 return currently_stepping_thread (tp) || bpstat_should_step ();
3705 /* Inferior has stepped into a subroutine call with source code that
3706 we should not step over. Do step to the first line of code in
3707 it. */
3709 static void
3710 handle_step_into_function (struct execution_control_state *ecs)
3712 struct symtab *s;
3713 struct symtab_and_line stop_func_sal, sr_sal;
3715 s = find_pc_symtab (stop_pc);
3716 if (s && s->language != language_asm)
3717 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3718 ecs->stop_func_start);
3720 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3721 /* Use the step_resume_break to step until the end of the prologue,
3722 even if that involves jumps (as it seems to on the vax under
3723 4.2). */
3724 /* If the prologue ends in the middle of a source line, continue to
3725 the end of that source line (if it is still within the function).
3726 Otherwise, just go to end of prologue. */
3727 if (stop_func_sal.end
3728 && stop_func_sal.pc != ecs->stop_func_start
3729 && stop_func_sal.end < ecs->stop_func_end)
3730 ecs->stop_func_start = stop_func_sal.end;
3732 /* Architectures which require breakpoint adjustment might not be able
3733 to place a breakpoint at the computed address. If so, the test
3734 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3735 ecs->stop_func_start to an address at which a breakpoint may be
3736 legitimately placed.
3738 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3739 made, GDB will enter an infinite loop when stepping through
3740 optimized code consisting of VLIW instructions which contain
3741 subinstructions corresponding to different source lines. On
3742 FR-V, it's not permitted to place a breakpoint on any but the
3743 first subinstruction of a VLIW instruction. When a breakpoint is
3744 set, GDB will adjust the breakpoint address to the beginning of
3745 the VLIW instruction. Thus, we need to make the corresponding
3746 adjustment here when computing the stop address. */
3748 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3750 ecs->stop_func_start
3751 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3752 ecs->stop_func_start);
3755 if (ecs->stop_func_start == stop_pc)
3757 /* We are already there: stop now. */
3758 ecs->event_thread->stop_step = 1;
3759 print_stop_reason (END_STEPPING_RANGE, 0);
3760 stop_stepping (ecs);
3761 return;
3763 else
3765 /* Put the step-breakpoint there and go until there. */
3766 init_sal (&sr_sal); /* initialize to zeroes */
3767 sr_sal.pc = ecs->stop_func_start;
3768 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3770 /* Do not specify what the fp should be when we stop since on
3771 some machines the prologue is where the new fp value is
3772 established. */
3773 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3775 /* And make sure stepping stops right away then. */
3776 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3778 keep_going (ecs);
3781 /* Inferior has stepped backward into a subroutine call with source
3782 code that we should not step over. Do step to the beginning of the
3783 last line of code in it. */
3785 static void
3786 handle_step_into_function_backward (struct execution_control_state *ecs)
3788 struct symtab *s;
3789 struct symtab_and_line stop_func_sal, sr_sal;
3791 s = find_pc_symtab (stop_pc);
3792 if (s && s->language != language_asm)
3793 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3794 ecs->stop_func_start);
3796 stop_func_sal = find_pc_line (stop_pc, 0);
3798 /* OK, we're just going to keep stepping here. */
3799 if (stop_func_sal.pc == stop_pc)
3801 /* We're there already. Just stop stepping now. */
3802 ecs->event_thread->stop_step = 1;
3803 print_stop_reason (END_STEPPING_RANGE, 0);
3804 stop_stepping (ecs);
3806 else
3808 /* Else just reset the step range and keep going.
3809 No step-resume breakpoint, they don't work for
3810 epilogues, which can have multiple entry paths. */
3811 ecs->event_thread->step_range_start = stop_func_sal.pc;
3812 ecs->event_thread->step_range_end = stop_func_sal.end;
3813 keep_going (ecs);
3815 return;
3818 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3819 This is used to both functions and to skip over code. */
3821 static void
3822 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3823 struct frame_id sr_id)
3825 /* There should never be more than one step-resume or longjmp-resume
3826 breakpoint per thread, so we should never be setting a new
3827 step_resume_breakpoint when one is already active. */
3828 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3830 if (debug_infrun)
3831 fprintf_unfiltered (gdb_stdlog,
3832 "infrun: inserting step-resume breakpoint at 0x%s\n",
3833 paddr_nz (sr_sal.pc));
3835 inferior_thread ()->step_resume_breakpoint
3836 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3839 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3840 to skip a potential signal handler.
3842 This is called with the interrupted function's frame. The signal
3843 handler, when it returns, will resume the interrupted function at
3844 RETURN_FRAME.pc. */
3846 static void
3847 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3849 struct symtab_and_line sr_sal;
3851 gdb_assert (return_frame != NULL);
3852 init_sal (&sr_sal); /* initialize to zeros */
3854 sr_sal.pc = gdbarch_addr_bits_remove
3855 (current_gdbarch, get_frame_pc (return_frame));
3856 sr_sal.section = find_pc_overlay (sr_sal.pc);
3858 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3861 /* Similar to insert_step_resume_breakpoint_at_frame, except
3862 but a breakpoint at the previous frame's PC. This is used to
3863 skip a function after stepping into it (for "next" or if the called
3864 function has no debugging information).
3866 The current function has almost always been reached by single
3867 stepping a call or return instruction. NEXT_FRAME belongs to the
3868 current function, and the breakpoint will be set at the caller's
3869 resume address.
3871 This is a separate function rather than reusing
3872 insert_step_resume_breakpoint_at_frame in order to avoid
3873 get_prev_frame, which may stop prematurely (see the implementation
3874 of frame_unwind_id for an example). */
3876 static void
3877 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3879 struct symtab_and_line sr_sal;
3881 /* We shouldn't have gotten here if we don't know where the call site
3882 is. */
3883 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3885 init_sal (&sr_sal); /* initialize to zeros */
3887 sr_sal.pc = gdbarch_addr_bits_remove
3888 (current_gdbarch, frame_pc_unwind (next_frame));
3889 sr_sal.section = find_pc_overlay (sr_sal.pc);
3891 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3894 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3895 new breakpoint at the target of a jmp_buf. The handling of
3896 longjmp-resume uses the same mechanisms used for handling
3897 "step-resume" breakpoints. */
3899 static void
3900 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3902 /* There should never be more than one step-resume or longjmp-resume
3903 breakpoint per thread, so we should never be setting a new
3904 longjmp_resume_breakpoint when one is already active. */
3905 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3907 if (debug_infrun)
3908 fprintf_unfiltered (gdb_stdlog,
3909 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3910 paddr_nz (pc));
3912 inferior_thread ()->step_resume_breakpoint =
3913 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3916 static void
3917 stop_stepping (struct execution_control_state *ecs)
3919 if (debug_infrun)
3920 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3922 /* Let callers know we don't want to wait for the inferior anymore. */
3923 ecs->wait_some_more = 0;
3926 /* This function handles various cases where we need to continue
3927 waiting for the inferior. */
3928 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3930 static void
3931 keep_going (struct execution_control_state *ecs)
3933 /* Save the pc before execution, to compare with pc after stop. */
3934 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3936 /* If we did not do break;, it means we should keep running the
3937 inferior and not return to debugger. */
3939 if (ecs->event_thread->trap_expected
3940 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3942 /* We took a signal (which we are supposed to pass through to
3943 the inferior, else we'd not get here) and we haven't yet
3944 gotten our trap. Simply continue. */
3945 resume (currently_stepping (ecs->event_thread),
3946 ecs->event_thread->stop_signal);
3948 else
3950 /* Either the trap was not expected, but we are continuing
3951 anyway (the user asked that this signal be passed to the
3952 child)
3953 -- or --
3954 The signal was SIGTRAP, e.g. it was our signal, but we
3955 decided we should resume from it.
3957 We're going to run this baby now!
3959 Note that insert_breakpoints won't try to re-insert
3960 already inserted breakpoints. Therefore, we don't
3961 care if breakpoints were already inserted, or not. */
3963 if (ecs->event_thread->stepping_over_breakpoint)
3965 if (! use_displaced_stepping (current_gdbarch))
3966 /* Since we can't do a displaced step, we have to remove
3967 the breakpoint while we step it. To keep things
3968 simple, we remove them all. */
3969 remove_breakpoints ();
3971 else
3973 struct gdb_exception e;
3974 /* Stop stepping when inserting breakpoints
3975 has failed. */
3976 TRY_CATCH (e, RETURN_MASK_ERROR)
3978 insert_breakpoints ();
3980 if (e.reason < 0)
3982 stop_stepping (ecs);
3983 return;
3987 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
3989 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3990 specifies that such a signal should be delivered to the
3991 target program).
3993 Typically, this would occure when a user is debugging a
3994 target monitor on a simulator: the target monitor sets a
3995 breakpoint; the simulator encounters this break-point and
3996 halts the simulation handing control to GDB; GDB, noteing
3997 that the break-point isn't valid, returns control back to the
3998 simulator; the simulator then delivers the hardware
3999 equivalent of a SIGNAL_TRAP to the program being debugged. */
4001 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4002 && !signal_program[ecs->event_thread->stop_signal])
4003 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4005 resume (currently_stepping (ecs->event_thread),
4006 ecs->event_thread->stop_signal);
4009 prepare_to_wait (ecs);
4012 /* This function normally comes after a resume, before
4013 handle_inferior_event exits. It takes care of any last bits of
4014 housekeeping, and sets the all-important wait_some_more flag. */
4016 static void
4017 prepare_to_wait (struct execution_control_state *ecs)
4019 if (debug_infrun)
4020 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4021 if (infwait_state == infwait_normal_state)
4023 overlay_cache_invalid = 1;
4025 /* We have to invalidate the registers BEFORE calling
4026 target_wait because they can be loaded from the target while
4027 in target_wait. This makes remote debugging a bit more
4028 efficient for those targets that provide critical registers
4029 as part of their normal status mechanism. */
4031 registers_changed ();
4032 waiton_ptid = pid_to_ptid (-1);
4034 /* This is the old end of the while loop. Let everybody know we
4035 want to wait for the inferior some more and get called again
4036 soon. */
4037 ecs->wait_some_more = 1;
4040 /* Print why the inferior has stopped. We always print something when
4041 the inferior exits, or receives a signal. The rest of the cases are
4042 dealt with later on in normal_stop() and print_it_typical(). Ideally
4043 there should be a call to this function from handle_inferior_event()
4044 each time stop_stepping() is called.*/
4045 static void
4046 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4048 switch (stop_reason)
4050 case END_STEPPING_RANGE:
4051 /* We are done with a step/next/si/ni command. */
4052 /* For now print nothing. */
4053 /* Print a message only if not in the middle of doing a "step n"
4054 operation for n > 1 */
4055 if (!inferior_thread ()->step_multi
4056 || !inferior_thread ()->stop_step)
4057 if (ui_out_is_mi_like_p (uiout))
4058 ui_out_field_string
4059 (uiout, "reason",
4060 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4061 break;
4062 case SIGNAL_EXITED:
4063 /* The inferior was terminated by a signal. */
4064 annotate_signalled ();
4065 if (ui_out_is_mi_like_p (uiout))
4066 ui_out_field_string
4067 (uiout, "reason",
4068 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4069 ui_out_text (uiout, "\nProgram terminated with signal ");
4070 annotate_signal_name ();
4071 ui_out_field_string (uiout, "signal-name",
4072 target_signal_to_name (stop_info));
4073 annotate_signal_name_end ();
4074 ui_out_text (uiout, ", ");
4075 annotate_signal_string ();
4076 ui_out_field_string (uiout, "signal-meaning",
4077 target_signal_to_string (stop_info));
4078 annotate_signal_string_end ();
4079 ui_out_text (uiout, ".\n");
4080 ui_out_text (uiout, "The program no longer exists.\n");
4081 break;
4082 case EXITED:
4083 /* The inferior program is finished. */
4084 annotate_exited (stop_info);
4085 if (stop_info)
4087 if (ui_out_is_mi_like_p (uiout))
4088 ui_out_field_string (uiout, "reason",
4089 async_reason_lookup (EXEC_ASYNC_EXITED));
4090 ui_out_text (uiout, "\nProgram exited with code ");
4091 ui_out_field_fmt (uiout, "exit-code", "0%o",
4092 (unsigned int) stop_info);
4093 ui_out_text (uiout, ".\n");
4095 else
4097 if (ui_out_is_mi_like_p (uiout))
4098 ui_out_field_string
4099 (uiout, "reason",
4100 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4101 ui_out_text (uiout, "\nProgram exited normally.\n");
4103 /* Support the --return-child-result option. */
4104 return_child_result_value = stop_info;
4105 break;
4106 case SIGNAL_RECEIVED:
4107 /* Signal received. The signal table tells us to print about
4108 it. */
4109 annotate_signal ();
4111 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4113 struct thread_info *t = inferior_thread ();
4115 ui_out_text (uiout, "\n[");
4116 ui_out_field_string (uiout, "thread-name",
4117 target_pid_to_str (t->ptid));
4118 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4119 ui_out_text (uiout, " stopped");
4121 else
4123 ui_out_text (uiout, "\nProgram received signal ");
4124 annotate_signal_name ();
4125 if (ui_out_is_mi_like_p (uiout))
4126 ui_out_field_string
4127 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4128 ui_out_field_string (uiout, "signal-name",
4129 target_signal_to_name (stop_info));
4130 annotate_signal_name_end ();
4131 ui_out_text (uiout, ", ");
4132 annotate_signal_string ();
4133 ui_out_field_string (uiout, "signal-meaning",
4134 target_signal_to_string (stop_info));
4135 annotate_signal_string_end ();
4137 ui_out_text (uiout, ".\n");
4138 break;
4139 case NO_HISTORY:
4140 /* Reverse execution: target ran out of history info. */
4141 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4142 break;
4143 default:
4144 internal_error (__FILE__, __LINE__,
4145 _("print_stop_reason: unrecognized enum value"));
4146 break;
4151 /* Here to return control to GDB when the inferior stops for real.
4152 Print appropriate messages, remove breakpoints, give terminal our modes.
4154 STOP_PRINT_FRAME nonzero means print the executing frame
4155 (pc, function, args, file, line number and line text).
4156 BREAKPOINTS_FAILED nonzero means stop was due to error
4157 attempting to insert breakpoints. */
4159 void
4160 normal_stop (void)
4162 struct target_waitstatus last;
4163 ptid_t last_ptid;
4165 get_last_target_status (&last_ptid, &last);
4167 /* In non-stop mode, we don't want GDB to switch threads behind the
4168 user's back, to avoid races where the user is typing a command to
4169 apply to thread x, but GDB switches to thread y before the user
4170 finishes entering the command. */
4172 /* As with the notification of thread events, we want to delay
4173 notifying the user that we've switched thread context until
4174 the inferior actually stops.
4176 There's no point in saying anything if the inferior has exited.
4177 Note that SIGNALLED here means "exited with a signal", not
4178 "received a signal". */
4179 if (!non_stop
4180 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4181 && target_has_execution
4182 && last.kind != TARGET_WAITKIND_SIGNALLED
4183 && last.kind != TARGET_WAITKIND_EXITED)
4185 target_terminal_ours_for_output ();
4186 printf_filtered (_("[Switching to %s]\n"),
4187 target_pid_to_str (inferior_ptid));
4188 annotate_thread_changed ();
4189 previous_inferior_ptid = inferior_ptid;
4192 /* NOTE drow/2004-01-17: Is this still necessary? */
4193 /* Make sure that the current_frame's pc is correct. This
4194 is a correction for setting up the frame info before doing
4195 gdbarch_decr_pc_after_break */
4196 if (target_has_execution)
4197 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
4198 gdbarch_decr_pc_after_break, the program counter can change. Ask the
4199 frame code to check for this and sort out any resultant mess.
4200 gdbarch_decr_pc_after_break needs to just go away. */
4201 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
4203 if (!breakpoints_always_inserted_mode () && target_has_execution)
4205 if (remove_breakpoints ())
4207 target_terminal_ours_for_output ();
4208 printf_filtered (_("\
4209 Cannot remove breakpoints because program is no longer writable.\n\
4210 It might be running in another process.\n\
4211 Further execution is probably impossible.\n"));
4215 /* If an auto-display called a function and that got a signal,
4216 delete that auto-display to avoid an infinite recursion. */
4218 if (stopped_by_random_signal)
4219 disable_current_display ();
4221 /* Don't print a message if in the middle of doing a "step n"
4222 operation for n > 1 */
4223 if (target_has_execution
4224 && last.kind != TARGET_WAITKIND_SIGNALLED
4225 && last.kind != TARGET_WAITKIND_EXITED
4226 && inferior_thread ()->step_multi
4227 && inferior_thread ()->stop_step)
4228 goto done;
4230 target_terminal_ours ();
4232 /* Set the current source location. This will also happen if we
4233 display the frame below, but the current SAL will be incorrect
4234 during a user hook-stop function. */
4235 if (target_has_stack && !stop_stack_dummy)
4236 set_current_sal_from_frame (get_current_frame (), 1);
4238 if (!target_has_stack)
4239 goto done;
4241 if (last.kind == TARGET_WAITKIND_SIGNALLED
4242 || last.kind == TARGET_WAITKIND_EXITED)
4243 goto done;
4245 /* Select innermost stack frame - i.e., current frame is frame 0,
4246 and current location is based on that.
4247 Don't do this on return from a stack dummy routine,
4248 or if the program has exited. */
4250 if (!stop_stack_dummy)
4252 select_frame (get_current_frame ());
4254 /* Print current location without a level number, if
4255 we have changed functions or hit a breakpoint.
4256 Print source line if we have one.
4257 bpstat_print() contains the logic deciding in detail
4258 what to print, based on the event(s) that just occurred. */
4260 /* If --batch-silent is enabled then there's no need to print the current
4261 source location, and to try risks causing an error message about
4262 missing source files. */
4263 if (stop_print_frame && !batch_silent)
4265 int bpstat_ret;
4266 int source_flag;
4267 int do_frame_printing = 1;
4268 struct thread_info *tp = inferior_thread ();
4270 bpstat_ret = bpstat_print (tp->stop_bpstat);
4271 switch (bpstat_ret)
4273 case PRINT_UNKNOWN:
4274 /* If we had hit a shared library event breakpoint,
4275 bpstat_print would print out this message. If we hit
4276 an OS-level shared library event, do the same
4277 thing. */
4278 if (last.kind == TARGET_WAITKIND_LOADED)
4280 printf_filtered (_("Stopped due to shared library event\n"));
4281 source_flag = SRC_LINE; /* something bogus */
4282 do_frame_printing = 0;
4283 break;
4286 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4287 (or should) carry around the function and does (or
4288 should) use that when doing a frame comparison. */
4289 if (tp->stop_step
4290 && frame_id_eq (tp->step_frame_id,
4291 get_frame_id (get_current_frame ()))
4292 && step_start_function == find_pc_function (stop_pc))
4293 source_flag = SRC_LINE; /* finished step, just print source line */
4294 else
4295 source_flag = SRC_AND_LOC; /* print location and source line */
4296 break;
4297 case PRINT_SRC_AND_LOC:
4298 source_flag = SRC_AND_LOC; /* print location and source line */
4299 break;
4300 case PRINT_SRC_ONLY:
4301 source_flag = SRC_LINE;
4302 break;
4303 case PRINT_NOTHING:
4304 source_flag = SRC_LINE; /* something bogus */
4305 do_frame_printing = 0;
4306 break;
4307 default:
4308 internal_error (__FILE__, __LINE__, _("Unknown value."));
4311 if (ui_out_is_mi_like_p (uiout))
4314 ui_out_field_int (uiout, "thread-id",
4315 pid_to_thread_id (inferior_ptid));
4316 if (non_stop)
4318 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
4319 (uiout, "stopped-threads");
4320 ui_out_field_int (uiout, NULL,
4321 pid_to_thread_id (inferior_ptid));
4322 do_cleanups (back_to);
4324 else
4325 ui_out_field_string (uiout, "stopped-threads", "all");
4327 /* The behavior of this routine with respect to the source
4328 flag is:
4329 SRC_LINE: Print only source line
4330 LOCATION: Print only location
4331 SRC_AND_LOC: Print location and source line */
4332 if (do_frame_printing)
4333 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4335 /* Display the auto-display expressions. */
4336 do_displays ();
4340 /* Save the function value return registers, if we care.
4341 We might be about to restore their previous contents. */
4342 if (inferior_thread ()->proceed_to_finish)
4344 /* This should not be necessary. */
4345 if (stop_registers)
4346 regcache_xfree (stop_registers);
4348 /* NB: The copy goes through to the target picking up the value of
4349 all the registers. */
4350 stop_registers = regcache_dup (get_current_regcache ());
4353 if (stop_stack_dummy)
4355 /* Pop the empty frame that contains the stack dummy. POP_FRAME
4356 ends with a setting of the current frame, so we can use that
4357 next. */
4358 frame_pop (get_current_frame ());
4359 /* Set stop_pc to what it was before we called the function.
4360 Can't rely on restore_inferior_status because that only gets
4361 called if we don't stop in the called function. */
4362 stop_pc = read_pc ();
4363 select_frame (get_current_frame ());
4366 done:
4367 annotate_stopped ();
4368 if (!suppress_stop_observer
4369 && !(target_has_execution
4370 && last.kind != TARGET_WAITKIND_SIGNALLED
4371 && last.kind != TARGET_WAITKIND_EXITED
4372 && inferior_thread ()->step_multi))
4374 if (!ptid_equal (inferior_ptid, null_ptid))
4375 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
4376 else
4377 observer_notify_normal_stop (NULL);
4379 if (target_has_execution
4380 && last.kind != TARGET_WAITKIND_SIGNALLED
4381 && last.kind != TARGET_WAITKIND_EXITED)
4383 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4384 Delete any breakpoint that is to be deleted at the next stop. */
4385 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4387 if (!non_stop)
4388 set_running (pid_to_ptid (-1), 0);
4389 else
4390 set_running (inferior_ptid, 0);
4393 /* Look up the hook_stop and run it (CLI internally handles problem
4394 of stop_command's pre-hook not existing). */
4395 if (stop_command)
4396 catch_errors (hook_stop_stub, stop_command,
4397 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4401 static int
4402 hook_stop_stub (void *cmd)
4404 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4405 return (0);
4409 signal_stop_state (int signo)
4411 return signal_stop[signo];
4415 signal_print_state (int signo)
4417 return signal_print[signo];
4421 signal_pass_state (int signo)
4423 return signal_program[signo];
4427 signal_stop_update (int signo, int state)
4429 int ret = signal_stop[signo];
4430 signal_stop[signo] = state;
4431 return ret;
4435 signal_print_update (int signo, int state)
4437 int ret = signal_print[signo];
4438 signal_print[signo] = state;
4439 return ret;
4443 signal_pass_update (int signo, int state)
4445 int ret = signal_program[signo];
4446 signal_program[signo] = state;
4447 return ret;
4450 static void
4451 sig_print_header (void)
4453 printf_filtered (_("\
4454 Signal Stop\tPrint\tPass to program\tDescription\n"));
4457 static void
4458 sig_print_info (enum target_signal oursig)
4460 char *name = target_signal_to_name (oursig);
4461 int name_padding = 13 - strlen (name);
4463 if (name_padding <= 0)
4464 name_padding = 0;
4466 printf_filtered ("%s", name);
4467 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4468 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4469 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4470 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4471 printf_filtered ("%s\n", target_signal_to_string (oursig));
4474 /* Specify how various signals in the inferior should be handled. */
4476 static void
4477 handle_command (char *args, int from_tty)
4479 char **argv;
4480 int digits, wordlen;
4481 int sigfirst, signum, siglast;
4482 enum target_signal oursig;
4483 int allsigs;
4484 int nsigs;
4485 unsigned char *sigs;
4486 struct cleanup *old_chain;
4488 if (args == NULL)
4490 error_no_arg (_("signal to handle"));
4493 /* Allocate and zero an array of flags for which signals to handle. */
4495 nsigs = (int) TARGET_SIGNAL_LAST;
4496 sigs = (unsigned char *) alloca (nsigs);
4497 memset (sigs, 0, nsigs);
4499 /* Break the command line up into args. */
4501 argv = gdb_buildargv (args);
4502 old_chain = make_cleanup_freeargv (argv);
4504 /* Walk through the args, looking for signal oursigs, signal names, and
4505 actions. Signal numbers and signal names may be interspersed with
4506 actions, with the actions being performed for all signals cumulatively
4507 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4509 while (*argv != NULL)
4511 wordlen = strlen (*argv);
4512 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4515 allsigs = 0;
4516 sigfirst = siglast = -1;
4518 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4520 /* Apply action to all signals except those used by the
4521 debugger. Silently skip those. */
4522 allsigs = 1;
4523 sigfirst = 0;
4524 siglast = nsigs - 1;
4526 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4528 SET_SIGS (nsigs, sigs, signal_stop);
4529 SET_SIGS (nsigs, sigs, signal_print);
4531 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4533 UNSET_SIGS (nsigs, sigs, signal_program);
4535 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4537 SET_SIGS (nsigs, sigs, signal_print);
4539 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4541 SET_SIGS (nsigs, sigs, signal_program);
4543 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4545 UNSET_SIGS (nsigs, sigs, signal_stop);
4547 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4549 SET_SIGS (nsigs, sigs, signal_program);
4551 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4553 UNSET_SIGS (nsigs, sigs, signal_print);
4554 UNSET_SIGS (nsigs, sigs, signal_stop);
4556 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4558 UNSET_SIGS (nsigs, sigs, signal_program);
4560 else if (digits > 0)
4562 /* It is numeric. The numeric signal refers to our own
4563 internal signal numbering from target.h, not to host/target
4564 signal number. This is a feature; users really should be
4565 using symbolic names anyway, and the common ones like
4566 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4568 sigfirst = siglast = (int)
4569 target_signal_from_command (atoi (*argv));
4570 if ((*argv)[digits] == '-')
4572 siglast = (int)
4573 target_signal_from_command (atoi ((*argv) + digits + 1));
4575 if (sigfirst > siglast)
4577 /* Bet he didn't figure we'd think of this case... */
4578 signum = sigfirst;
4579 sigfirst = siglast;
4580 siglast = signum;
4583 else
4585 oursig = target_signal_from_name (*argv);
4586 if (oursig != TARGET_SIGNAL_UNKNOWN)
4588 sigfirst = siglast = (int) oursig;
4590 else
4592 /* Not a number and not a recognized flag word => complain. */
4593 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4597 /* If any signal numbers or symbol names were found, set flags for
4598 which signals to apply actions to. */
4600 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4602 switch ((enum target_signal) signum)
4604 case TARGET_SIGNAL_TRAP:
4605 case TARGET_SIGNAL_INT:
4606 if (!allsigs && !sigs[signum])
4608 if (query ("%s is used by the debugger.\n\
4609 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4611 sigs[signum] = 1;
4613 else
4615 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4616 gdb_flush (gdb_stdout);
4619 break;
4620 case TARGET_SIGNAL_0:
4621 case TARGET_SIGNAL_DEFAULT:
4622 case TARGET_SIGNAL_UNKNOWN:
4623 /* Make sure that "all" doesn't print these. */
4624 break;
4625 default:
4626 sigs[signum] = 1;
4627 break;
4631 argv++;
4634 target_notice_signals (inferior_ptid);
4636 if (from_tty)
4638 /* Show the results. */
4639 sig_print_header ();
4640 for (signum = 0; signum < nsigs; signum++)
4642 if (sigs[signum])
4644 sig_print_info (signum);
4649 do_cleanups (old_chain);
4652 static void
4653 xdb_handle_command (char *args, int from_tty)
4655 char **argv;
4656 struct cleanup *old_chain;
4658 if (args == NULL)
4659 error_no_arg (_("xdb command"));
4661 /* Break the command line up into args. */
4663 argv = gdb_buildargv (args);
4664 old_chain = make_cleanup_freeargv (argv);
4665 if (argv[1] != (char *) NULL)
4667 char *argBuf;
4668 int bufLen;
4670 bufLen = strlen (argv[0]) + 20;
4671 argBuf = (char *) xmalloc (bufLen);
4672 if (argBuf)
4674 int validFlag = 1;
4675 enum target_signal oursig;
4677 oursig = target_signal_from_name (argv[0]);
4678 memset (argBuf, 0, bufLen);
4679 if (strcmp (argv[1], "Q") == 0)
4680 sprintf (argBuf, "%s %s", argv[0], "noprint");
4681 else
4683 if (strcmp (argv[1], "s") == 0)
4685 if (!signal_stop[oursig])
4686 sprintf (argBuf, "%s %s", argv[0], "stop");
4687 else
4688 sprintf (argBuf, "%s %s", argv[0], "nostop");
4690 else if (strcmp (argv[1], "i") == 0)
4692 if (!signal_program[oursig])
4693 sprintf (argBuf, "%s %s", argv[0], "pass");
4694 else
4695 sprintf (argBuf, "%s %s", argv[0], "nopass");
4697 else if (strcmp (argv[1], "r") == 0)
4699 if (!signal_print[oursig])
4700 sprintf (argBuf, "%s %s", argv[0], "print");
4701 else
4702 sprintf (argBuf, "%s %s", argv[0], "noprint");
4704 else
4705 validFlag = 0;
4707 if (validFlag)
4708 handle_command (argBuf, from_tty);
4709 else
4710 printf_filtered (_("Invalid signal handling flag.\n"));
4711 if (argBuf)
4712 xfree (argBuf);
4715 do_cleanups (old_chain);
4718 /* Print current contents of the tables set by the handle command.
4719 It is possible we should just be printing signals actually used
4720 by the current target (but for things to work right when switching
4721 targets, all signals should be in the signal tables). */
4723 static void
4724 signals_info (char *signum_exp, int from_tty)
4726 enum target_signal oursig;
4727 sig_print_header ();
4729 if (signum_exp)
4731 /* First see if this is a symbol name. */
4732 oursig = target_signal_from_name (signum_exp);
4733 if (oursig == TARGET_SIGNAL_UNKNOWN)
4735 /* No, try numeric. */
4736 oursig =
4737 target_signal_from_command (parse_and_eval_long (signum_exp));
4739 sig_print_info (oursig);
4740 return;
4743 printf_filtered ("\n");
4744 /* These ugly casts brought to you by the native VAX compiler. */
4745 for (oursig = TARGET_SIGNAL_FIRST;
4746 (int) oursig < (int) TARGET_SIGNAL_LAST;
4747 oursig = (enum target_signal) ((int) oursig + 1))
4749 QUIT;
4751 if (oursig != TARGET_SIGNAL_UNKNOWN
4752 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4753 sig_print_info (oursig);
4756 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4759 struct inferior_status
4761 enum target_signal stop_signal;
4762 CORE_ADDR stop_pc;
4763 bpstat stop_bpstat;
4764 int stop_step;
4765 int stop_stack_dummy;
4766 int stopped_by_random_signal;
4767 int stepping_over_breakpoint;
4768 CORE_ADDR step_range_start;
4769 CORE_ADDR step_range_end;
4770 struct frame_id step_frame_id;
4771 enum step_over_calls_kind step_over_calls;
4772 CORE_ADDR step_resume_break_address;
4773 int stop_after_trap;
4774 int stop_soon;
4776 /* These are here because if call_function_by_hand has written some
4777 registers and then decides to call error(), we better not have changed
4778 any registers. */
4779 struct regcache *registers;
4781 /* A frame unique identifier. */
4782 struct frame_id selected_frame_id;
4784 int breakpoint_proceeded;
4785 int restore_stack_info;
4786 int proceed_to_finish;
4789 /* Save all of the information associated with the inferior<==>gdb
4790 connection. INF_STATUS is a pointer to a "struct inferior_status"
4791 (defined in inferior.h). */
4793 struct inferior_status *
4794 save_inferior_status (int restore_stack_info)
4796 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4797 struct thread_info *tp = inferior_thread ();
4798 struct inferior *inf = current_inferior ();
4800 inf_status->stop_signal = tp->stop_signal;
4801 inf_status->stop_pc = stop_pc;
4802 inf_status->stop_step = tp->stop_step;
4803 inf_status->stop_stack_dummy = stop_stack_dummy;
4804 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4805 inf_status->stepping_over_breakpoint = tp->trap_expected;
4806 inf_status->step_range_start = tp->step_range_start;
4807 inf_status->step_range_end = tp->step_range_end;
4808 inf_status->step_frame_id = tp->step_frame_id;
4809 inf_status->step_over_calls = tp->step_over_calls;
4810 inf_status->stop_after_trap = stop_after_trap;
4811 inf_status->stop_soon = inf->stop_soon;
4812 /* Save original bpstat chain here; replace it with copy of chain.
4813 If caller's caller is walking the chain, they'll be happier if we
4814 hand them back the original chain when restore_inferior_status is
4815 called. */
4816 inf_status->stop_bpstat = tp->stop_bpstat;
4817 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
4818 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4819 inf_status->restore_stack_info = restore_stack_info;
4820 inf_status->proceed_to_finish = tp->proceed_to_finish;
4822 inf_status->registers = regcache_dup (get_current_regcache ());
4824 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4825 return inf_status;
4828 static int
4829 restore_selected_frame (void *args)
4831 struct frame_id *fid = (struct frame_id *) args;
4832 struct frame_info *frame;
4834 frame = frame_find_by_id (*fid);
4836 /* If inf_status->selected_frame_id is NULL, there was no previously
4837 selected frame. */
4838 if (frame == NULL)
4840 warning (_("Unable to restore previously selected frame."));
4841 return 0;
4844 select_frame (frame);
4846 return (1);
4849 void
4850 restore_inferior_status (struct inferior_status *inf_status)
4852 struct thread_info *tp = inferior_thread ();
4853 struct inferior *inf = current_inferior ();
4855 tp->stop_signal = inf_status->stop_signal;
4856 stop_pc = inf_status->stop_pc;
4857 tp->stop_step = inf_status->stop_step;
4858 stop_stack_dummy = inf_status->stop_stack_dummy;
4859 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4860 tp->trap_expected = inf_status->stepping_over_breakpoint;
4861 tp->step_range_start = inf_status->step_range_start;
4862 tp->step_range_end = inf_status->step_range_end;
4863 tp->step_frame_id = inf_status->step_frame_id;
4864 tp->step_over_calls = inf_status->step_over_calls;
4865 stop_after_trap = inf_status->stop_after_trap;
4866 inf->stop_soon = inf_status->stop_soon;
4867 bpstat_clear (&tp->stop_bpstat);
4868 tp->stop_bpstat = inf_status->stop_bpstat;
4869 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4870 tp->proceed_to_finish = inf_status->proceed_to_finish;
4872 /* The inferior can be gone if the user types "print exit(0)"
4873 (and perhaps other times). */
4874 if (target_has_execution)
4875 /* NB: The register write goes through to the target. */
4876 regcache_cpy (get_current_regcache (), inf_status->registers);
4877 regcache_xfree (inf_status->registers);
4879 /* FIXME: If we are being called after stopping in a function which
4880 is called from gdb, we should not be trying to restore the
4881 selected frame; it just prints a spurious error message (The
4882 message is useful, however, in detecting bugs in gdb (like if gdb
4883 clobbers the stack)). In fact, should we be restoring the
4884 inferior status at all in that case? . */
4886 if (target_has_stack && inf_status->restore_stack_info)
4888 /* The point of catch_errors is that if the stack is clobbered,
4889 walking the stack might encounter a garbage pointer and
4890 error() trying to dereference it. */
4891 if (catch_errors
4892 (restore_selected_frame, &inf_status->selected_frame_id,
4893 "Unable to restore previously selected frame:\n",
4894 RETURN_MASK_ERROR) == 0)
4895 /* Error in restoring the selected frame. Select the innermost
4896 frame. */
4897 select_frame (get_current_frame ());
4901 xfree (inf_status);
4904 static void
4905 do_restore_inferior_status_cleanup (void *sts)
4907 restore_inferior_status (sts);
4910 struct cleanup *
4911 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4913 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4916 void
4917 discard_inferior_status (struct inferior_status *inf_status)
4919 /* See save_inferior_status for info on stop_bpstat. */
4920 bpstat_clear (&inf_status->stop_bpstat);
4921 regcache_xfree (inf_status->registers);
4922 xfree (inf_status);
4926 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4928 struct target_waitstatus last;
4929 ptid_t last_ptid;
4931 get_last_target_status (&last_ptid, &last);
4933 if (last.kind != TARGET_WAITKIND_FORKED)
4934 return 0;
4936 if (!ptid_equal (last_ptid, pid))
4937 return 0;
4939 *child_pid = last.value.related_pid;
4940 return 1;
4944 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4946 struct target_waitstatus last;
4947 ptid_t last_ptid;
4949 get_last_target_status (&last_ptid, &last);
4951 if (last.kind != TARGET_WAITKIND_VFORKED)
4952 return 0;
4954 if (!ptid_equal (last_ptid, pid))
4955 return 0;
4957 *child_pid = last.value.related_pid;
4958 return 1;
4962 inferior_has_execd (ptid_t pid, char **execd_pathname)
4964 struct target_waitstatus last;
4965 ptid_t last_ptid;
4967 get_last_target_status (&last_ptid, &last);
4969 if (last.kind != TARGET_WAITKIND_EXECD)
4970 return 0;
4972 if (!ptid_equal (last_ptid, pid))
4973 return 0;
4975 *execd_pathname = xstrdup (last.value.execd_pathname);
4976 return 1;
4979 /* Oft used ptids */
4980 ptid_t null_ptid;
4981 ptid_t minus_one_ptid;
4983 /* Create a ptid given the necessary PID, LWP, and TID components. */
4985 ptid_t
4986 ptid_build (int pid, long lwp, long tid)
4988 ptid_t ptid;
4990 ptid.pid = pid;
4991 ptid.lwp = lwp;
4992 ptid.tid = tid;
4993 return ptid;
4996 /* Create a ptid from just a pid. */
4998 ptid_t
4999 pid_to_ptid (int pid)
5001 return ptid_build (pid, 0, 0);
5004 /* Fetch the pid (process id) component from a ptid. */
5007 ptid_get_pid (ptid_t ptid)
5009 return ptid.pid;
5012 /* Fetch the lwp (lightweight process) component from a ptid. */
5014 long
5015 ptid_get_lwp (ptid_t ptid)
5017 return ptid.lwp;
5020 /* Fetch the tid (thread id) component from a ptid. */
5022 long
5023 ptid_get_tid (ptid_t ptid)
5025 return ptid.tid;
5028 /* ptid_equal() is used to test equality of two ptids. */
5031 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5033 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5034 && ptid1.tid == ptid2.tid);
5037 /* Returns true if PTID represents a process. */
5040 ptid_is_pid (ptid_t ptid)
5042 if (ptid_equal (minus_one_ptid, ptid))
5043 return 0;
5044 if (ptid_equal (null_ptid, ptid))
5045 return 0;
5047 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5050 /* restore_inferior_ptid() will be used by the cleanup machinery
5051 to restore the inferior_ptid value saved in a call to
5052 save_inferior_ptid(). */
5054 static void
5055 restore_inferior_ptid (void *arg)
5057 ptid_t *saved_ptid_ptr = arg;
5058 inferior_ptid = *saved_ptid_ptr;
5059 xfree (arg);
5062 /* Save the value of inferior_ptid so that it may be restored by a
5063 later call to do_cleanups(). Returns the struct cleanup pointer
5064 needed for later doing the cleanup. */
5066 struct cleanup *
5067 save_inferior_ptid (void)
5069 ptid_t *saved_ptid_ptr;
5071 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5072 *saved_ptid_ptr = inferior_ptid;
5073 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5077 /* User interface for reverse debugging:
5078 Set exec-direction / show exec-direction commands
5079 (returns error unless target implements to_set_exec_direction method). */
5081 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5082 static const char exec_forward[] = "forward";
5083 static const char exec_reverse[] = "reverse";
5084 static const char *exec_direction = exec_forward;
5085 static const char *exec_direction_names[] = {
5086 exec_forward,
5087 exec_reverse,
5088 NULL
5091 static void
5092 set_exec_direction_func (char *args, int from_tty,
5093 struct cmd_list_element *cmd)
5095 if (target_can_execute_reverse)
5097 if (!strcmp (exec_direction, exec_forward))
5098 execution_direction = EXEC_FORWARD;
5099 else if (!strcmp (exec_direction, exec_reverse))
5100 execution_direction = EXEC_REVERSE;
5104 static void
5105 show_exec_direction_func (struct ui_file *out, int from_tty,
5106 struct cmd_list_element *cmd, const char *value)
5108 switch (execution_direction) {
5109 case EXEC_FORWARD:
5110 fprintf_filtered (out, _("Forward.\n"));
5111 break;
5112 case EXEC_REVERSE:
5113 fprintf_filtered (out, _("Reverse.\n"));
5114 break;
5115 case EXEC_ERROR:
5116 default:
5117 fprintf_filtered (out,
5118 _("Forward (target `%s' does not support exec-direction).\n"),
5119 target_shortname);
5120 break;
5124 /* User interface for non-stop mode. */
5126 int non_stop = 0;
5127 static int non_stop_1 = 0;
5129 static void
5130 set_non_stop (char *args, int from_tty,
5131 struct cmd_list_element *c)
5133 if (target_has_execution)
5135 non_stop_1 = non_stop;
5136 error (_("Cannot change this setting while the inferior is running."));
5139 non_stop = non_stop_1;
5142 static void
5143 show_non_stop (struct ui_file *file, int from_tty,
5144 struct cmd_list_element *c, const char *value)
5146 fprintf_filtered (file,
5147 _("Controlling the inferior in non-stop mode is %s.\n"),
5148 value);
5152 void
5153 _initialize_infrun (void)
5155 int i;
5156 int numsigs;
5157 struct cmd_list_element *c;
5159 add_info ("signals", signals_info, _("\
5160 What debugger does when program gets various signals.\n\
5161 Specify a signal as argument to print info on that signal only."));
5162 add_info_alias ("handle", "signals", 0);
5164 add_com ("handle", class_run, handle_command, _("\
5165 Specify how to handle a signal.\n\
5166 Args are signals and actions to apply to those signals.\n\
5167 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5168 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5169 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5170 The special arg \"all\" is recognized to mean all signals except those\n\
5171 used by the debugger, typically SIGTRAP and SIGINT.\n\
5172 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5173 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5174 Stop means reenter debugger if this signal happens (implies print).\n\
5175 Print means print a message if this signal happens.\n\
5176 Pass means let program see this signal; otherwise program doesn't know.\n\
5177 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5178 Pass and Stop may be combined."));
5179 if (xdb_commands)
5181 add_com ("lz", class_info, signals_info, _("\
5182 What debugger does when program gets various signals.\n\
5183 Specify a signal as argument to print info on that signal only."));
5184 add_com ("z", class_run, xdb_handle_command, _("\
5185 Specify how to handle a signal.\n\
5186 Args are signals and actions to apply to those signals.\n\
5187 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5188 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5189 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5190 The special arg \"all\" is recognized to mean all signals except those\n\
5191 used by the debugger, typically SIGTRAP and SIGINT.\n\
5192 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5193 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5194 nopass), \"Q\" (noprint)\n\
5195 Stop means reenter debugger if this signal happens (implies print).\n\
5196 Print means print a message if this signal happens.\n\
5197 Pass means let program see this signal; otherwise program doesn't know.\n\
5198 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5199 Pass and Stop may be combined."));
5202 if (!dbx_commands)
5203 stop_command = add_cmd ("stop", class_obscure,
5204 not_just_help_class_command, _("\
5205 There is no `stop' command, but you can set a hook on `stop'.\n\
5206 This allows you to set a list of commands to be run each time execution\n\
5207 of the program stops."), &cmdlist);
5209 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5210 Set inferior debugging."), _("\
5211 Show inferior debugging."), _("\
5212 When non-zero, inferior specific debugging is enabled."),
5213 NULL,
5214 show_debug_infrun,
5215 &setdebuglist, &showdebuglist);
5217 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5218 Set displaced stepping debugging."), _("\
5219 Show displaced stepping debugging."), _("\
5220 When non-zero, displaced stepping specific debugging is enabled."),
5221 NULL,
5222 show_debug_displaced,
5223 &setdebuglist, &showdebuglist);
5225 add_setshow_boolean_cmd ("non-stop", no_class,
5226 &non_stop_1, _("\
5227 Set whether gdb controls the inferior in non-stop mode."), _("\
5228 Show whether gdb controls the inferior in non-stop mode."), _("\
5229 When debugging a multi-threaded program and this setting is\n\
5230 off (the default, also called all-stop mode), when one thread stops\n\
5231 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5232 all other threads in the program while you interact with the thread of\n\
5233 interest. When you continue or step a thread, you can allow the other\n\
5234 threads to run, or have them remain stopped, but while you inspect any\n\
5235 thread's state, all threads stop.\n\
5237 In non-stop mode, when one thread stops, other threads can continue\n\
5238 to run freely. You'll be able to step each thread independently,\n\
5239 leave it stopped or free to run as needed."),
5240 set_non_stop,
5241 show_non_stop,
5242 &setlist,
5243 &showlist);
5245 numsigs = (int) TARGET_SIGNAL_LAST;
5246 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5247 signal_print = (unsigned char *)
5248 xmalloc (sizeof (signal_print[0]) * numsigs);
5249 signal_program = (unsigned char *)
5250 xmalloc (sizeof (signal_program[0]) * numsigs);
5251 for (i = 0; i < numsigs; i++)
5253 signal_stop[i] = 1;
5254 signal_print[i] = 1;
5255 signal_program[i] = 1;
5258 /* Signals caused by debugger's own actions
5259 should not be given to the program afterwards. */
5260 signal_program[TARGET_SIGNAL_TRAP] = 0;
5261 signal_program[TARGET_SIGNAL_INT] = 0;
5263 /* Signals that are not errors should not normally enter the debugger. */
5264 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5265 signal_print[TARGET_SIGNAL_ALRM] = 0;
5266 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5267 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5268 signal_stop[TARGET_SIGNAL_PROF] = 0;
5269 signal_print[TARGET_SIGNAL_PROF] = 0;
5270 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5271 signal_print[TARGET_SIGNAL_CHLD] = 0;
5272 signal_stop[TARGET_SIGNAL_IO] = 0;
5273 signal_print[TARGET_SIGNAL_IO] = 0;
5274 signal_stop[TARGET_SIGNAL_POLL] = 0;
5275 signal_print[TARGET_SIGNAL_POLL] = 0;
5276 signal_stop[TARGET_SIGNAL_URG] = 0;
5277 signal_print[TARGET_SIGNAL_URG] = 0;
5278 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5279 signal_print[TARGET_SIGNAL_WINCH] = 0;
5281 /* These signals are used internally by user-level thread
5282 implementations. (See signal(5) on Solaris.) Like the above
5283 signals, a healthy program receives and handles them as part of
5284 its normal operation. */
5285 signal_stop[TARGET_SIGNAL_LWP] = 0;
5286 signal_print[TARGET_SIGNAL_LWP] = 0;
5287 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5288 signal_print[TARGET_SIGNAL_WAITING] = 0;
5289 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5290 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5292 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5293 &stop_on_solib_events, _("\
5294 Set stopping for shared library events."), _("\
5295 Show stopping for shared library events."), _("\
5296 If nonzero, gdb will give control to the user when the dynamic linker\n\
5297 notifies gdb of shared library events. The most common event of interest\n\
5298 to the user would be loading/unloading of a new library."),
5299 NULL,
5300 show_stop_on_solib_events,
5301 &setlist, &showlist);
5303 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5304 follow_fork_mode_kind_names,
5305 &follow_fork_mode_string, _("\
5306 Set debugger response to a program call of fork or vfork."), _("\
5307 Show debugger response to a program call of fork or vfork."), _("\
5308 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5309 parent - the original process is debugged after a fork\n\
5310 child - the new process is debugged after a fork\n\
5311 The unfollowed process will continue to run.\n\
5312 By default, the debugger will follow the parent process."),
5313 NULL,
5314 show_follow_fork_mode_string,
5315 &setlist, &showlist);
5317 add_setshow_enum_cmd ("scheduler-locking", class_run,
5318 scheduler_enums, &scheduler_mode, _("\
5319 Set mode for locking scheduler during execution."), _("\
5320 Show mode for locking scheduler during execution."), _("\
5321 off == no locking (threads may preempt at any time)\n\
5322 on == full locking (no thread except the current thread may run)\n\
5323 step == scheduler locked during every single-step operation.\n\
5324 In this mode, no other thread may run during a step command.\n\
5325 Other threads may run while stepping over a function call ('next')."),
5326 set_schedlock_func, /* traps on target vector */
5327 show_scheduler_mode,
5328 &setlist, &showlist);
5330 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5331 Set mode of the step operation."), _("\
5332 Show mode of the step operation."), _("\
5333 When set, doing a step over a function without debug line information\n\
5334 will stop at the first instruction of that function. Otherwise, the\n\
5335 function is skipped and the step command stops at a different source line."),
5336 NULL,
5337 show_step_stop_if_no_debug,
5338 &setlist, &showlist);
5340 add_setshow_enum_cmd ("displaced-stepping", class_run,
5341 can_use_displaced_stepping_enum,
5342 &can_use_displaced_stepping, _("\
5343 Set debugger's willingness to use displaced stepping."), _("\
5344 Show debugger's willingness to use displaced stepping."), _("\
5345 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5346 supported by the target architecture. If off, gdb will not use displaced\n\
5347 stepping to step over breakpoints, even if such is supported by the target\n\
5348 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5349 if the target architecture supports it and non-stop mode is active, but will not\n\
5350 use it in all-stop mode (see help set non-stop)."),
5351 NULL,
5352 show_can_use_displaced_stepping,
5353 &setlist, &showlist);
5355 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5356 &exec_direction, _("Set direction of execution.\n\
5357 Options are 'forward' or 'reverse'."),
5358 _("Show direction of execution (forward/reverse)."),
5359 _("Tells gdb whether to execute forward or backward."),
5360 set_exec_direction_func, show_exec_direction_func,
5361 &setlist, &showlist);
5363 /* ptid initializations */
5364 null_ptid = ptid_build (0, 0, 0);
5365 minus_one_ptid = ptid_build (-1, 0, 0);
5366 inferior_ptid = null_ptid;
5367 target_last_wait_ptid = minus_one_ptid;
5368 displaced_step_ptid = null_ptid;
5370 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5371 observer_attach_thread_stop_requested (infrun_thread_stop_requested);