aarch64: Add +fcma alias for +compnum
[binutils-gdb.git] / bfd / elfnn-kvx.c
blobae5ed6bf3f75eaa81421ea6c697d0fdb00f0dc8d
1 /* KVX-specific support for NN-bit ELF.
2 Copyright (C) 2009-2024 Free Software Foundation, Inc.
3 Contributed by Kalray SA.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libiberty.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "bfdlink.h"
27 #include "objalloc.h"
28 #include "elf/kvx.h"
29 #include "elfxx-kvx.h"
31 #define ARCH_SIZE NN
33 #if ARCH_SIZE == 64
34 #define LOG_FILE_ALIGN 3
35 #endif
37 #if ARCH_SIZE == 32
38 #define LOG_FILE_ALIGN 2
39 #endif
41 #define IS_KVX_TLS_RELOC(R_TYPE) \
42 ((R_TYPE) == BFD_RELOC_KVX_S37_TLS_LE_LO10 \
43 || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_LE_UP27 \
44 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LE_LO10 \
45 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LE_UP27 \
46 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LE_EX6 \
47 || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_DTPOFF_LO10 \
48 || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_DTPOFF_UP27 \
49 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_DTPOFF_LO10 \
50 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_DTPOFF_UP27 \
51 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_DTPOFF_EX6 \
52 || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_IE_LO10 \
53 || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_IE_UP27 \
54 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_IE_LO10 \
55 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_IE_UP27 \
56 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_IE_EX6 \
57 || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_GD_LO10 \
58 || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_GD_UP27 \
59 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_GD_LO10 \
60 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_GD_UP27 \
61 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_GD_EX6 \
62 || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_LD_LO10 \
63 || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_LD_UP27 \
64 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LD_LO10 \
65 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LD_UP27 \
66 || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LD_EX6 \
69 #define IS_KVX_TLS_RELAX_RELOC(R_TYPE) 0
71 #define ELIMINATE_COPY_RELOCS 0
73 /* Return size of a relocation entry. HTAB is the bfd's
74 elf_kvx_link_hash_entry. */
75 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
77 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
78 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
79 #define PLT_ENTRY_SIZE (32)
81 #define PLT_SMALL_ENTRY_SIZE (4*4)
83 /* Encoding of the nop instruction */
84 #define INSN_NOP 0x00f0037f
86 #define kvx_compute_jump_table_size(htab) \
87 (((htab)->root.srelplt == NULL) ? 0 \
88 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
90 static const bfd_byte elfNN_kvx_small_plt0_entry[PLT_ENTRY_SIZE] =
92 /* FIXME KVX: no first entry, not used yet */
96 /* Per function entry in a procedure linkage table looks like this
97 if the distance between the PLTGOT and the PLT is < 4GB use
98 these PLT entries. */
99 static const bfd_byte elfNN_kvx_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
101 0x10, 0x00, 0xc4, 0x0f, /* get $r16 = $pc ;; */
102 #if ARCH_SIZE == 32
103 0x10, 0x00, 0x40, 0xb0, /* lwz $r16 = 0[$r16] ;; */
104 #else
105 0x10, 0x00, 0x40, 0xb8, /* ld $r16 = 0[$r16] ;; */
106 #endif
107 0x00, 0x00, 0x00, 0x18, /* upper 27 bits for LSU */
108 0x10, 0x00, 0xd8, 0x0f, /* igoto $r16 ;; */
111 /* Long stub use 43bits format of make. */
112 static const uint32_t elfNN_kvx_long_branch_stub[] =
114 0xe0400000, /* make $r16 = LO10<emm43> EX6<imm43> */
115 0x00000000, /* UP27<imm43> ;; */
116 0x0fd80010, /* igoto "r16 ;; */
119 #define elf_info_to_howto elfNN_kvx_info_to_howto
120 #define elf_info_to_howto_rel elfNN_kvx_info_to_howto
122 #define KVX_ELF_ABI_VERSION 0
124 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
125 #define ALL_ONES (~ (bfd_vma) 0)
127 /* Indexed by the bfd interal reloc enumerators.
128 Therefore, the table needs to be synced with BFD_RELOC_KVX_*
129 in reloc.c. */
131 #define KVX_KV3_V1_KV3_V2_KV4_V1
132 #include "elfxx-kvx-relocs.h"
133 #undef KVX_KV3_V1_KV3_V2_KV4_V1
135 /* Given HOWTO, return the bfd internal relocation enumerator. */
137 static bfd_reloc_code_real_type
138 elfNN_kvx_bfd_reloc_from_howto (reloc_howto_type *howto)
140 const int size = (int) ARRAY_SIZE (elf_kvx_howto_table);
141 const ptrdiff_t offset = howto - elf_kvx_howto_table;
143 if (offset >= 0 && offset < size)
144 return BFD_RELOC_KVX_RELOC_START + offset + 1;
146 return BFD_RELOC_KVX_RELOC_START + 1;
149 /* Given R_TYPE, return the bfd internal relocation enumerator. */
151 static bfd_reloc_code_real_type
152 elfNN_kvx_bfd_reloc_from_type (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type)
154 static bool initialized_p = false;
155 /* Indexed by R_TYPE, values are offsets in the howto_table. */
156 static unsigned int offsets[R_KVX_end];
158 if (!initialized_p)
160 unsigned int i;
162 for (i = 0; i < ARRAY_SIZE (elf_kvx_howto_table); ++i)
163 offsets[elf_kvx_howto_table[i].type] = i;
165 initialized_p = true;
168 /* PR 17512: file: b371e70a. */
169 if (r_type >= R_KVX_end)
171 bfd_set_error (bfd_error_bad_value);
172 return BFD_RELOC_KVX_RELOC_END;
175 return (BFD_RELOC_KVX_RELOC_START + 1) + offsets[r_type];
178 struct elf_kvx_reloc_map
180 bfd_reloc_code_real_type from;
181 bfd_reloc_code_real_type to;
184 /* Map bfd generic reloc to KVX-specific reloc. */
185 static const struct elf_kvx_reloc_map elf_kvx_reloc_map[] =
187 {BFD_RELOC_NONE, BFD_RELOC_KVX_NONE},
189 /* Basic data relocations. */
190 {BFD_RELOC_CTOR, BFD_RELOC_KVX_NN},
191 {BFD_RELOC_64, BFD_RELOC_KVX_64},
192 {BFD_RELOC_32, BFD_RELOC_KVX_32},
193 {BFD_RELOC_16, BFD_RELOC_KVX_16},
194 {BFD_RELOC_8, BFD_RELOC_KVX_8},
196 {BFD_RELOC_64_PCREL, BFD_RELOC_KVX_64_PCREL},
197 {BFD_RELOC_32_PCREL, BFD_RELOC_KVX_32_PCREL},
200 /* Given the bfd internal relocation enumerator in CODE, return the
201 corresponding howto entry. */
203 static reloc_howto_type *
204 elfNN_kvx_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
206 unsigned int i;
208 /* Convert bfd generic reloc to KVX-specific reloc. */
209 if (code < BFD_RELOC_KVX_RELOC_START || code > BFD_RELOC_KVX_RELOC_END)
210 for (i = 0; i < ARRAY_SIZE (elf_kvx_reloc_map) ; i++)
211 if (elf_kvx_reloc_map[i].from == code)
213 code = elf_kvx_reloc_map[i].to;
214 break;
217 if (code > BFD_RELOC_KVX_RELOC_START && code < BFD_RELOC_KVX_RELOC_END)
218 return &elf_kvx_howto_table[code - (BFD_RELOC_KVX_RELOC_START + 1)];
220 return NULL;
223 static reloc_howto_type *
224 elfNN_kvx_howto_from_type (bfd *abfd, unsigned int r_type)
226 bfd_reloc_code_real_type val;
227 reloc_howto_type *howto;
229 #if ARCH_SIZE == 32
230 if (r_type > 256)
232 bfd_set_error (bfd_error_bad_value);
233 return NULL;
235 #endif
237 val = elfNN_kvx_bfd_reloc_from_type (abfd, r_type);
238 howto = elfNN_kvx_howto_from_bfd_reloc (val);
240 if (howto != NULL)
241 return howto;
243 bfd_set_error (bfd_error_bad_value);
244 return NULL;
247 static bool
248 elfNN_kvx_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
249 Elf_Internal_Rela *elf_reloc)
251 unsigned int r_type;
253 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
254 bfd_reloc->howto = elfNN_kvx_howto_from_type (abfd, r_type);
256 if (bfd_reloc->howto == NULL)
258 /* xgettext:c-format */
259 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
260 abfd, r_type);
261 return false;
263 return true;
266 static reloc_howto_type *
267 elfNN_kvx_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
268 bfd_reloc_code_real_type code)
270 reloc_howto_type *howto = elfNN_kvx_howto_from_bfd_reloc (code);
272 if (howto != NULL)
273 return howto;
275 bfd_set_error (bfd_error_bad_value);
276 return NULL;
279 static reloc_howto_type *
280 elfNN_kvx_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
281 const char *r_name)
283 unsigned int i;
285 for (i = 0; i < ARRAY_SIZE (elf_kvx_howto_table); ++i)
286 if (elf_kvx_howto_table[i].name != NULL
287 && strcasecmp (elf_kvx_howto_table[i].name, r_name) == 0)
288 return &elf_kvx_howto_table[i];
290 return NULL;
293 #define TARGET_LITTLE_SYM kvx_elfNN_vec
294 #define TARGET_LITTLE_NAME "elfNN-kvx"
296 /* The linker script knows the section names for placement.
297 The entry_names are used to do simple name mangling on the stubs.
298 Given a function name, and its type, the stub can be found. The
299 name can be changed. The only requirement is the %s be present. */
300 #define STUB_ENTRY_NAME "__%s_veneer"
302 /* The name of the dynamic interpreter. This is put in the .interp
303 section. */
304 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
307 /* PCREL 27 is signed-extended and scaled by 4 */
308 #define KVX_MAX_FWD_CALL_OFFSET \
309 (((1 << 26) - 1) << 2)
310 #define KVX_MAX_BWD_CALL_OFFSET \
311 (-((1 << 26) << 2))
313 /* Check that the destination of the call is within the PCREL27
314 range. */
315 static int
316 kvx_valid_call_p (bfd_vma value, bfd_vma place)
318 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
319 return (offset <= KVX_MAX_FWD_CALL_OFFSET
320 && offset >= KVX_MAX_BWD_CALL_OFFSET);
323 /* Section name for stubs is the associated section name plus this
324 string. */
325 #define STUB_SUFFIX ".stub"
327 enum elf_kvx_stub_type
329 kvx_stub_none,
330 kvx_stub_long_branch,
333 struct elf_kvx_stub_hash_entry
335 /* Base hash table entry structure. */
336 struct bfd_hash_entry root;
338 /* The stub section. */
339 asection *stub_sec;
341 /* Offset within stub_sec of the beginning of this stub. */
342 bfd_vma stub_offset;
344 /* Given the symbol's value and its section we can determine its final
345 value when building the stubs (so the stub knows where to jump). */
346 bfd_vma target_value;
347 asection *target_section;
349 enum elf_kvx_stub_type stub_type;
351 /* The symbol table entry, if any, that this was derived from. */
352 struct elf_kvx_link_hash_entry *h;
354 /* Destination symbol type */
355 unsigned char st_type;
357 /* Where this stub is being called from, or, in the case of combined
358 stub sections, the first input section in the group. */
359 asection *id_sec;
361 /* The name for the local symbol at the start of this stub. The
362 stub name in the hash table has to be unique; this does not, so
363 it can be friendlier. */
364 char *output_name;
367 /* Used to build a map of a section. This is required for mixed-endian
368 code/data. */
370 typedef struct elf_elf_section_map
372 bfd_vma vma;
373 char type;
375 elf_kvx_section_map;
378 typedef struct _kvx_elf_section_data
380 struct bfd_elf_section_data elf;
381 unsigned int mapcount;
382 unsigned int mapsize;
383 elf_kvx_section_map *map;
385 _kvx_elf_section_data;
387 #define elf_kvx_section_data(sec) \
388 ((_kvx_elf_section_data *) elf_section_data (sec))
390 struct elf_kvx_local_symbol
392 unsigned int got_type;
393 bfd_signed_vma got_refcount;
394 bfd_vma got_offset;
397 struct elf_kvx_obj_tdata
399 struct elf_obj_tdata root;
401 /* local symbol descriptors */
402 struct elf_kvx_local_symbol *locals;
404 /* Zero to warn when linking objects with incompatible enum sizes. */
405 int no_enum_size_warning;
407 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
408 int no_wchar_size_warning;
411 #define elf_kvx_tdata(bfd) \
412 ((struct elf_kvx_obj_tdata *) (bfd)->tdata.any)
414 #define elf_kvx_locals(bfd) (elf_kvx_tdata (bfd)->locals)
416 #define is_kvx_elf(bfd) \
417 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
418 && elf_tdata (bfd) != NULL \
419 && elf_object_id (bfd) == KVX_ELF_DATA)
421 static bool
422 elfNN_kvx_mkobject (bfd *abfd)
424 return bfd_elf_allocate_object (abfd, sizeof (struct elf_kvx_obj_tdata),
425 KVX_ELF_DATA);
428 #define elf_kvx_hash_entry(ent) \
429 ((struct elf_kvx_link_hash_entry *)(ent))
431 #define GOT_UNKNOWN 0
432 #define GOT_NORMAL 1
434 #define GOT_TLS_GD 2
435 #define GOT_TLS_IE 4
436 #define GOT_TLS_LD 8
438 /* KVX ELF linker hash entry. */
439 struct elf_kvx_link_hash_entry
441 struct elf_link_hash_entry root;
443 /* Since PLT entries have variable size, we need to record the
444 index into .got.plt instead of recomputing it from the PLT
445 offset. */
446 bfd_signed_vma plt_got_offset;
448 /* Bit mask representing the type of GOT entry(s) if any required by
449 this symbol. */
450 unsigned int got_type;
452 /* A pointer to the most recently used stub hash entry against this
453 symbol. */
454 struct elf_kvx_stub_hash_entry *stub_cache;
457 /* Get the KVX elf linker hash table from a link_info structure. */
458 #define elf_kvx_hash_table(info) \
459 ((struct elf_kvx_link_hash_table *) ((info)->hash))
461 #define kvx_stub_hash_lookup(table, string, create, copy) \
462 ((struct elf_kvx_stub_hash_entry *) \
463 bfd_hash_lookup ((table), (string), (create), (copy)))
465 /* KVX ELF linker hash table. */
466 struct elf_kvx_link_hash_table
468 /* The main hash table. */
469 struct elf_link_hash_table root;
471 /* Nonzero to force PIC branch veneers. */
472 int pic_veneer;
474 /* The number of bytes in the initial entry in the PLT. */
475 bfd_size_type plt_header_size;
477 /* The number of bytes in the subsequent PLT etries. */
478 bfd_size_type plt_entry_size;
480 /* The bytes of the subsequent PLT entry. */
481 const bfd_byte *plt_entry;
483 /* Short-cuts to get to dynamic linker sections. */
484 asection *sdynbss;
485 asection *srelbss;
487 /* Small local sym cache. */
488 struct sym_cache sym_cache;
490 /* For convenience in allocate_dynrelocs. */
491 bfd *obfd;
493 /* The amount of space used by the reserved portion of the sgotplt
494 section, plus whatever space is used by the jump slots. */
495 bfd_vma sgotplt_jump_table_size;
497 /* The stub hash table. */
498 struct bfd_hash_table stub_hash_table;
500 /* Linker stub bfd. */
501 bfd *stub_bfd;
503 /* Linker call-backs. */
504 asection *(*add_stub_section) (const char *, asection *);
505 void (*layout_sections_again) (void);
507 /* Array to keep track of which stub sections have been created, and
508 information on stub grouping. */
509 struct map_stub
511 /* This is the section to which stubs in the group will be
512 attached. */
513 asection *link_sec;
514 /* The stub section. */
515 asection *stub_sec;
516 } *stub_group;
518 /* Assorted information used by elfNN_kvx_size_stubs. */
519 unsigned int bfd_count;
520 unsigned int top_index;
521 asection **input_list;
524 /* Create an entry in an KVX ELF linker hash table. */
526 static struct bfd_hash_entry *
527 elfNN_kvx_link_hash_newfunc (struct bfd_hash_entry *entry,
528 struct bfd_hash_table *table,
529 const char *string)
531 struct elf_kvx_link_hash_entry *ret =
532 (struct elf_kvx_link_hash_entry *) entry;
534 /* Allocate the structure if it has not already been allocated by a
535 subclass. */
536 if (ret == NULL)
537 ret = bfd_hash_allocate (table,
538 sizeof (struct elf_kvx_link_hash_entry));
539 if (ret == NULL)
540 return (struct bfd_hash_entry *) ret;
542 /* Call the allocation method of the superclass. */
543 ret = ((struct elf_kvx_link_hash_entry *)
544 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
545 table, string));
546 if (ret != NULL)
548 ret->got_type = GOT_UNKNOWN;
549 ret->plt_got_offset = (bfd_vma) - 1;
550 ret->stub_cache = NULL;
553 return (struct bfd_hash_entry *) ret;
556 /* Initialize an entry in the stub hash table. */
558 static struct bfd_hash_entry *
559 stub_hash_newfunc (struct bfd_hash_entry *entry,
560 struct bfd_hash_table *table, const char *string)
562 /* Allocate the structure if it has not already been allocated by a
563 subclass. */
564 if (entry == NULL)
566 entry = bfd_hash_allocate (table,
567 sizeof (struct
568 elf_kvx_stub_hash_entry));
569 if (entry == NULL)
570 return entry;
573 /* Call the allocation method of the superclass. */
574 entry = bfd_hash_newfunc (entry, table, string);
575 if (entry != NULL)
577 struct elf_kvx_stub_hash_entry *eh;
579 /* Initialize the local fields. */
580 eh = (struct elf_kvx_stub_hash_entry *) entry;
581 eh->stub_sec = NULL;
582 eh->stub_offset = 0;
583 eh->target_value = 0;
584 eh->target_section = NULL;
585 eh->stub_type = kvx_stub_none;
586 eh->h = NULL;
587 eh->id_sec = NULL;
590 return entry;
593 /* Copy the extra info we tack onto an elf_link_hash_entry. */
595 static void
596 elfNN_kvx_copy_indirect_symbol (struct bfd_link_info *info,
597 struct elf_link_hash_entry *dir,
598 struct elf_link_hash_entry *ind)
600 struct elf_kvx_link_hash_entry *edir, *eind;
602 edir = (struct elf_kvx_link_hash_entry *) dir;
603 eind = (struct elf_kvx_link_hash_entry *) ind;
605 if (ind->root.type == bfd_link_hash_indirect)
607 /* Copy over PLT info. */
608 if (dir->got.refcount <= 0)
610 edir->got_type = eind->got_type;
611 eind->got_type = GOT_UNKNOWN;
615 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
618 /* Destroy a KVX elf linker hash table. */
620 static void
621 elfNN_kvx_link_hash_table_free (bfd *obfd)
623 struct elf_kvx_link_hash_table *ret
624 = (struct elf_kvx_link_hash_table *) obfd->link.hash;
626 bfd_hash_table_free (&ret->stub_hash_table);
627 _bfd_elf_link_hash_table_free (obfd);
630 /* Create a KVX elf linker hash table. */
632 static struct bfd_link_hash_table *
633 elfNN_kvx_link_hash_table_create (bfd *abfd)
635 struct elf_kvx_link_hash_table *ret;
636 bfd_size_type amt = sizeof (struct elf_kvx_link_hash_table);
638 ret = bfd_zmalloc (amt);
639 if (ret == NULL)
640 return NULL;
642 if (!_bfd_elf_link_hash_table_init
643 (&ret->root, abfd, elfNN_kvx_link_hash_newfunc,
644 sizeof (struct elf_kvx_link_hash_entry), KVX_ELF_DATA))
646 free (ret);
647 return NULL;
650 ret->plt_header_size = PLT_ENTRY_SIZE;
651 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
652 ret->plt_entry = elfNN_kvx_small_plt_entry;
654 ret->obfd = abfd;
656 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
657 sizeof (struct elf_kvx_stub_hash_entry)))
659 _bfd_elf_link_hash_table_free (abfd);
660 return NULL;
663 ret->root.root.hash_table_free = elfNN_kvx_link_hash_table_free;
665 return &ret->root.root;
668 static bfd_reloc_status_type
669 kvx_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
670 bfd_vma offset, bfd_vma value)
672 reloc_howto_type *howto;
674 howto = elfNN_kvx_howto_from_type (input_bfd, r_type);
675 r_type = elfNN_kvx_bfd_reloc_from_type (input_bfd, r_type);
676 return _bfd_kvx_elf_put_addend (input_bfd,
677 input_section->contents + offset, r_type,
678 howto, value);
681 /* Determine the type of stub needed, if any, for a call. */
683 static enum elf_kvx_stub_type
684 kvx_type_of_stub (asection *input_sec,
685 const Elf_Internal_Rela *rel,
686 asection *sym_sec,
687 unsigned char st_type,
688 bfd_vma destination)
690 bfd_vma location;
691 bfd_signed_vma branch_offset;
692 unsigned int r_type;
693 enum elf_kvx_stub_type stub_type = kvx_stub_none;
695 if (st_type != STT_FUNC
696 && (sym_sec == input_sec))
697 return stub_type;
699 /* Determine where the call point is. */
700 location = (input_sec->output_offset
701 + input_sec->output_section->vma + rel->r_offset);
703 branch_offset = (bfd_signed_vma) (destination - location);
705 r_type = ELFNN_R_TYPE (rel->r_info);
707 /* We don't want to redirect any old unconditional jump in this way,
708 only one which is being used for a sibcall, where it is
709 acceptable for the R16 and R17 registers to be clobbered. */
710 if (r_type == R_KVX_PCREL27
711 && (branch_offset > KVX_MAX_FWD_CALL_OFFSET
712 || branch_offset < KVX_MAX_BWD_CALL_OFFSET))
714 stub_type = kvx_stub_long_branch;
717 return stub_type;
720 /* Build a name for an entry in the stub hash table. */
722 static char *
723 elfNN_kvx_stub_name (const asection *input_section,
724 const asection *sym_sec,
725 const struct elf_kvx_link_hash_entry *hash,
726 const Elf_Internal_Rela *rel)
728 char *stub_name;
729 bfd_size_type len;
731 if (hash)
733 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
734 stub_name = bfd_malloc (len);
735 if (stub_name != NULL)
736 snprintf (stub_name, len, "%08x_%s+%" PRIx64 "x",
737 (unsigned int) input_section->id,
738 hash->root.root.root.string,
739 (uint64_t) rel->r_addend);
741 else
743 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
744 stub_name = bfd_malloc (len);
745 if (stub_name != NULL)
746 snprintf (stub_name, len, "%08x_%x:%x+%" PRIx64 "x",
747 (unsigned int) input_section->id,
748 (unsigned int) sym_sec->id,
749 (unsigned int) ELFNN_R_SYM (rel->r_info),
750 (uint64_t) rel->r_addend);
753 return stub_name;
756 /* Return true if symbol H should be hashed in the `.gnu.hash' section. For
757 executable PLT slots where the executable never takes the address of those
758 functions, the function symbols are not added to the hash table. */
760 static bool
761 elf_kvx_hash_symbol (struct elf_link_hash_entry *h)
763 if (h->plt.offset != (bfd_vma) -1
764 && !h->def_regular
765 && !h->pointer_equality_needed)
766 return false;
768 return _bfd_elf_hash_symbol (h);
772 /* Look up an entry in the stub hash. Stub entries are cached because
773 creating the stub name takes a bit of time. */
775 static struct elf_kvx_stub_hash_entry *
776 elfNN_kvx_get_stub_entry (const asection *input_section,
777 const asection *sym_sec,
778 struct elf_link_hash_entry *hash,
779 const Elf_Internal_Rela *rel,
780 struct elf_kvx_link_hash_table *htab)
782 struct elf_kvx_stub_hash_entry *stub_entry;
783 struct elf_kvx_link_hash_entry *h =
784 (struct elf_kvx_link_hash_entry *) hash;
785 const asection *id_sec;
787 if ((input_section->flags & SEC_CODE) == 0)
788 return NULL;
790 /* If this input section is part of a group of sections sharing one
791 stub section, then use the id of the first section in the group.
792 Stub names need to include a section id, as there may well be
793 more than one stub used to reach say, printf, and we need to
794 distinguish between them. */
795 id_sec = htab->stub_group[input_section->id].link_sec;
797 if (h != NULL && h->stub_cache != NULL
798 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
800 stub_entry = h->stub_cache;
802 else
804 char *stub_name;
806 stub_name = elfNN_kvx_stub_name (id_sec, sym_sec, h, rel);
807 if (stub_name == NULL)
808 return NULL;
810 stub_entry = kvx_stub_hash_lookup (&htab->stub_hash_table,
811 stub_name, false, false);
812 if (h != NULL)
813 h->stub_cache = stub_entry;
815 free (stub_name);
818 return stub_entry;
822 /* Create a stub section. */
824 static asection *
825 _bfd_kvx_create_stub_section (asection *section,
826 struct elf_kvx_link_hash_table *htab)
829 size_t namelen;
830 bfd_size_type len;
831 char *s_name;
833 namelen = strlen (section->name);
834 len = namelen + sizeof (STUB_SUFFIX);
835 s_name = bfd_alloc (htab->stub_bfd, len);
836 if (s_name == NULL)
837 return NULL;
839 memcpy (s_name, section->name, namelen);
840 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
841 return (*htab->add_stub_section) (s_name, section);
845 /* Find or create a stub section for a link section.
847 Fix or create the stub section used to collect stubs attached to
848 the specified link section. */
850 static asection *
851 _bfd_kvx_get_stub_for_link_section (asection *link_section,
852 struct elf_kvx_link_hash_table *htab)
854 if (htab->stub_group[link_section->id].stub_sec == NULL)
855 htab->stub_group[link_section->id].stub_sec
856 = _bfd_kvx_create_stub_section (link_section, htab);
857 return htab->stub_group[link_section->id].stub_sec;
861 /* Find or create a stub section in the stub group for an input
862 section. */
864 static asection *
865 _bfd_kvx_create_or_find_stub_sec (asection *section,
866 struct elf_kvx_link_hash_table *htab)
868 asection *link_sec = htab->stub_group[section->id].link_sec;
869 return _bfd_kvx_get_stub_for_link_section (link_sec, htab);
873 /* Add a new stub entry in the stub group associated with an input
874 section to the stub hash. Not all fields of the new stub entry are
875 initialised. */
877 static struct elf_kvx_stub_hash_entry *
878 _bfd_kvx_add_stub_entry_in_group (const char *stub_name,
879 asection *section,
880 struct elf_kvx_link_hash_table *htab)
882 asection *link_sec;
883 asection *stub_sec;
884 struct elf_kvx_stub_hash_entry *stub_entry;
886 link_sec = htab->stub_group[section->id].link_sec;
887 stub_sec = _bfd_kvx_create_or_find_stub_sec (section, htab);
889 /* Enter this entry into the linker stub hash table. */
890 stub_entry = kvx_stub_hash_lookup (&htab->stub_hash_table, stub_name,
891 true, false);
892 if (stub_entry == NULL)
894 /* xgettext:c-format */
895 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
896 section->owner, stub_name);
897 return NULL;
900 stub_entry->stub_sec = stub_sec;
901 stub_entry->stub_offset = 0;
902 stub_entry->id_sec = link_sec;
904 return stub_entry;
907 static bool
908 kvx_build_one_stub (struct bfd_hash_entry *gen_entry,
909 void *in_arg)
911 struct elf_kvx_stub_hash_entry *stub_entry;
912 asection *stub_sec;
913 bfd *stub_bfd;
914 bfd_byte *loc;
915 bfd_vma sym_value;
916 unsigned int template_size;
917 const uint32_t *template;
918 unsigned int i;
919 struct bfd_link_info *info;
921 /* Massage our args to the form they really have. */
922 stub_entry = (struct elf_kvx_stub_hash_entry *) gen_entry;
924 info = (struct bfd_link_info *) in_arg;
926 /* Fail if the target section could not be assigned to an output
927 section. The user should fix his linker script. */
928 if (stub_entry->target_section->output_section == NULL
929 && info->non_contiguous_regions)
930 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
931 "Retry without "
932 "--enable-non-contiguous-regions.\n"),
933 stub_entry->target_section);
935 stub_sec = stub_entry->stub_sec;
937 /* Make a note of the offset within the stubs for this entry. */
938 stub_entry->stub_offset = stub_sec->size;
939 loc = stub_sec->contents + stub_entry->stub_offset;
941 stub_bfd = stub_sec->owner;
943 /* This is the address of the stub destination. */
944 sym_value = (stub_entry->target_value
945 + stub_entry->target_section->output_offset
946 + stub_entry->target_section->output_section->vma);
948 switch (stub_entry->stub_type)
950 case kvx_stub_long_branch:
951 template = elfNN_kvx_long_branch_stub;
952 template_size = sizeof (elfNN_kvx_long_branch_stub);
953 break;
954 default:
955 abort ();
958 for (i = 0; i < (template_size / sizeof template[0]); i++)
960 bfd_putl32 (template[i], loc);
961 loc += 4;
964 stub_sec->size += template_size;
966 switch (stub_entry->stub_type)
968 case kvx_stub_long_branch:
969 /* The stub uses a make insn with 43bits immediate.
970 We need to apply 3 relocations:
971 BFD_RELOC_KVX_S43_LO10,
972 BFD_RELOC_KVX_S43_UP27,
973 BFD_RELOC_KVX_S43_EX6. */
974 if (kvx_relocate (R_KVX_S43_LO10, stub_bfd, stub_sec,
975 stub_entry->stub_offset, sym_value) != bfd_reloc_ok)
976 BFD_FAIL ();
977 if (kvx_relocate (R_KVX_S43_EX6, stub_bfd, stub_sec,
978 stub_entry->stub_offset, sym_value) != bfd_reloc_ok)
979 BFD_FAIL ();
980 if (kvx_relocate (R_KVX_S43_UP27, stub_bfd, stub_sec,
981 stub_entry->stub_offset + 4, sym_value) != bfd_reloc_ok)
982 BFD_FAIL ();
983 break;
984 default:
985 abort ();
988 return true;
991 /* As above, but don't actually build the stub. Just bump offset so
992 we know stub section sizes. */
994 static bool
995 kvx_size_one_stub (struct bfd_hash_entry *gen_entry,
996 void *in_arg ATTRIBUTE_UNUSED)
998 struct elf_kvx_stub_hash_entry *stub_entry;
999 int size;
1001 /* Massage our args to the form they really have. */
1002 stub_entry = (struct elf_kvx_stub_hash_entry *) gen_entry;
1004 switch (stub_entry->stub_type)
1006 case kvx_stub_long_branch:
1007 size = sizeof (elfNN_kvx_long_branch_stub);
1008 break;
1009 default:
1010 abort ();
1013 stub_entry->stub_sec->size += size;
1014 return true;
1017 /* External entry points for sizing and building linker stubs. */
1019 /* Set up various things so that we can make a list of input sections
1020 for each output section included in the link. Returns -1 on error,
1021 0 when no stubs will be needed, and 1 on success. */
1024 elfNN_kvx_setup_section_lists (bfd *output_bfd,
1025 struct bfd_link_info *info)
1027 bfd *input_bfd;
1028 unsigned int bfd_count;
1029 unsigned int top_id, top_index;
1030 asection *section;
1031 asection **input_list, **list;
1032 bfd_size_type amt;
1033 struct elf_kvx_link_hash_table *htab =
1034 elf_kvx_hash_table (info);
1036 if (!is_elf_hash_table ((const struct bfd_link_hash_table *)htab))
1037 return 0;
1039 /* Count the number of input BFDs and find the top input section id. */
1040 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
1041 input_bfd != NULL; input_bfd = input_bfd->link.next)
1043 bfd_count += 1;
1044 for (section = input_bfd->sections;
1045 section != NULL; section = section->next)
1047 if (top_id < section->id)
1048 top_id = section->id;
1051 htab->bfd_count = bfd_count;
1053 amt = sizeof (struct map_stub) * (top_id + 1);
1054 htab->stub_group = bfd_zmalloc (amt);
1055 if (htab->stub_group == NULL)
1056 return -1;
1058 /* We can't use output_bfd->section_count here to find the top output
1059 section index as some sections may have been removed, and
1060 _bfd_strip_section_from_output doesn't renumber the indices. */
1061 for (section = output_bfd->sections, top_index = 0;
1062 section != NULL; section = section->next)
1064 if (top_index < section->index)
1065 top_index = section->index;
1068 htab->top_index = top_index;
1069 amt = sizeof (asection *) * (top_index + 1);
1070 input_list = bfd_malloc (amt);
1071 htab->input_list = input_list;
1072 if (input_list == NULL)
1073 return -1;
1075 /* For sections we aren't interested in, mark their entries with a
1076 value we can check later. */
1077 list = input_list + top_index;
1079 *list = bfd_abs_section_ptr;
1080 while (list-- != input_list);
1082 for (section = output_bfd->sections;
1083 section != NULL; section = section->next)
1085 if ((section->flags & SEC_CODE) != 0)
1086 input_list[section->index] = NULL;
1089 return 1;
1092 /* Used by elfNN_kvx_next_input_section and group_sections. */
1093 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
1095 /* The linker repeatedly calls this function for each input section,
1096 in the order that input sections are linked into output sections.
1097 Build lists of input sections to determine groupings between which
1098 we may insert linker stubs. */
1100 void
1101 elfNN_kvx_next_input_section (struct bfd_link_info *info, asection *isec)
1103 struct elf_kvx_link_hash_table *htab =
1104 elf_kvx_hash_table (info);
1106 if (isec->output_section->index <= htab->top_index)
1108 asection **list = htab->input_list + isec->output_section->index;
1110 if (*list != bfd_abs_section_ptr)
1112 /* Steal the link_sec pointer for our list. */
1113 /* This happens to make the list in reverse order,
1114 which is what we want. */
1115 PREV_SEC (isec) = *list;
1116 *list = isec;
1121 /* See whether we can group stub sections together. Grouping stub
1122 sections may result in fewer stubs. More importantly, we need to
1123 put all .init* and .fini* stubs at the beginning of the .init or
1124 .fini output sections respectively, because glibc splits the
1125 _init and _fini functions into multiple parts. Putting a stub in
1126 the middle of a function is not a good idea. */
1128 static void
1129 group_sections (struct elf_kvx_link_hash_table *htab,
1130 bfd_size_type stub_group_size,
1131 bool stubs_always_after_branch)
1133 asection **list = htab->input_list;
1137 asection *tail = *list;
1138 asection *head;
1140 if (tail == bfd_abs_section_ptr)
1141 continue;
1143 /* Reverse the list: we must avoid placing stubs at the
1144 beginning of the section because the beginning of the text
1145 section may be required for an interrupt vector in bare metal
1146 code. */
1147 #define NEXT_SEC PREV_SEC
1148 head = NULL;
1149 while (tail != NULL)
1151 /* Pop from tail. */
1152 asection *item = tail;
1153 tail = PREV_SEC (item);
1155 /* Push on head. */
1156 NEXT_SEC (item) = head;
1157 head = item;
1160 while (head != NULL)
1162 asection *curr;
1163 asection *next;
1164 bfd_vma stub_group_start = head->output_offset;
1165 bfd_vma end_of_next;
1167 curr = head;
1168 while (NEXT_SEC (curr) != NULL)
1170 next = NEXT_SEC (curr);
1171 end_of_next = next->output_offset + next->size;
1172 if (end_of_next - stub_group_start >= stub_group_size)
1173 /* End of NEXT is too far from start, so stop. */
1174 break;
1175 /* Add NEXT to the group. */
1176 curr = next;
1179 /* OK, the size from the start to the start of CURR is less
1180 than stub_group_size and thus can be handled by one stub
1181 section. (Or the head section is itself larger than
1182 stub_group_size, in which case we may be toast.)
1183 We should really be keeping track of the total size of
1184 stubs added here, as stubs contribute to the final output
1185 section size. */
1188 next = NEXT_SEC (head);
1189 /* Set up this stub group. */
1190 htab->stub_group[head->id].link_sec = curr;
1192 while (head != curr && (head = next) != NULL);
1194 /* But wait, there's more! Input sections up to stub_group_size
1195 bytes after the stub section can be handled by it too. */
1196 if (!stubs_always_after_branch)
1198 stub_group_start = curr->output_offset + curr->size;
1200 while (next != NULL)
1202 end_of_next = next->output_offset + next->size;
1203 if (end_of_next - stub_group_start >= stub_group_size)
1204 /* End of NEXT is too far from stubs, so stop. */
1205 break;
1206 /* Add NEXT to the stub group. */
1207 head = next;
1208 next = NEXT_SEC (head);
1209 htab->stub_group[head->id].link_sec = curr;
1212 head = next;
1215 while (list++ != htab->input_list + htab->top_index);
1217 free (htab->input_list);
1220 static void
1221 _bfd_kvx_resize_stubs (struct elf_kvx_link_hash_table *htab)
1223 asection *section;
1225 /* OK, we've added some stubs. Find out the new size of the
1226 stub sections. */
1227 for (section = htab->stub_bfd->sections;
1228 section != NULL; section = section->next)
1230 /* Ignore non-stub sections. */
1231 if (!strstr (section->name, STUB_SUFFIX))
1232 continue;
1233 section->size = 0;
1236 bfd_hash_traverse (&htab->stub_hash_table, kvx_size_one_stub, htab);
1239 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
1241 bool
1242 kvx_elfNN_init_stub_bfd (struct bfd_link_info *info,
1243 bfd *stub_bfd)
1245 struct elf_kvx_link_hash_table *htab;
1247 elf_elfheader (stub_bfd)->e_ident[EI_CLASS] = ELFCLASSNN;
1249 /* Always hook our dynamic sections into the first bfd, which is the
1250 linker created stub bfd. This ensures that the GOT header is at
1251 the start of the output TOC section. */
1252 htab = elf_kvx_hash_table (info);
1253 if (htab == NULL)
1254 return false;
1256 return true;
1259 /* Determine and set the size of the stub section for a final link.
1261 The basic idea here is to examine all the relocations looking for
1262 PC-relative calls to a target that is unreachable with a 27bits
1263 immediate (found in call and goto). */
1265 bool
1266 elfNN_kvx_size_stubs (bfd *output_bfd,
1267 bfd *stub_bfd,
1268 struct bfd_link_info *info,
1269 bfd_signed_vma group_size,
1270 asection * (*add_stub_section) (const char *,
1271 asection *),
1272 void (*layout_sections_again) (void))
1274 bfd_size_type stub_group_size;
1275 bool stubs_always_before_branch;
1276 bool stub_changed = false;
1277 struct elf_kvx_link_hash_table *htab = elf_kvx_hash_table (info);
1279 /* Propagate mach to stub bfd, because it may not have been
1280 finalized when we created stub_bfd. */
1281 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
1282 bfd_get_mach (output_bfd));
1284 /* Stash our params away. */
1285 htab->stub_bfd = stub_bfd;
1286 htab->add_stub_section = add_stub_section;
1287 htab->layout_sections_again = layout_sections_again;
1288 stubs_always_before_branch = group_size < 0;
1289 if (group_size < 0)
1290 stub_group_size = -group_size;
1291 else
1292 stub_group_size = group_size;
1294 if (stub_group_size == 1)
1296 /* Default values. */
1297 /* KVX branch range is +-256MB. The value used is 1MB less. */
1298 stub_group_size = 255 * 1024 * 1024;
1301 group_sections (htab, stub_group_size, stubs_always_before_branch);
1303 (*htab->layout_sections_again) ();
1305 while (1)
1307 bfd *input_bfd;
1309 for (input_bfd = info->input_bfds;
1310 input_bfd != NULL; input_bfd = input_bfd->link.next)
1312 Elf_Internal_Shdr *symtab_hdr;
1313 asection *section;
1314 Elf_Internal_Sym *local_syms = NULL;
1316 if (!is_kvx_elf (input_bfd)
1317 || (input_bfd->flags & BFD_LINKER_CREATED) != 0)
1318 continue;
1320 /* We'll need the symbol table in a second. */
1321 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1322 if (symtab_hdr->sh_info == 0)
1323 continue;
1325 /* Walk over each section attached to the input bfd. */
1326 for (section = input_bfd->sections;
1327 section != NULL; section = section->next)
1329 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
1331 /* If there aren't any relocs, then there's nothing more
1332 to do. */
1333 if ((section->flags & SEC_RELOC) == 0
1334 || section->reloc_count == 0
1335 || (section->flags & SEC_CODE) == 0)
1336 continue;
1338 /* If this section is a link-once section that will be
1339 discarded, then don't create any stubs. */
1340 if (section->output_section == NULL
1341 || section->output_section->owner != output_bfd)
1342 continue;
1344 /* Get the relocs. */
1345 internal_relocs
1346 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
1347 NULL, info->keep_memory);
1348 if (internal_relocs == NULL)
1349 goto error_ret_free_local;
1351 /* Now examine each relocation. */
1352 irela = internal_relocs;
1353 irelaend = irela + section->reloc_count;
1354 for (; irela < irelaend; irela++)
1356 unsigned int r_type, r_indx;
1357 enum elf_kvx_stub_type stub_type;
1358 struct elf_kvx_stub_hash_entry *stub_entry;
1359 asection *sym_sec;
1360 bfd_vma sym_value;
1361 bfd_vma destination;
1362 struct elf_kvx_link_hash_entry *hash;
1363 const char *sym_name;
1364 char *stub_name;
1365 const asection *id_sec;
1366 unsigned char st_type;
1367 bfd_size_type len;
1369 r_type = ELFNN_R_TYPE (irela->r_info);
1370 r_indx = ELFNN_R_SYM (irela->r_info);
1372 if (r_type >= (unsigned int) R_KVX_end)
1374 bfd_set_error (bfd_error_bad_value);
1375 error_ret_free_internal:
1376 if (elf_section_data (section)->relocs == NULL)
1377 free (internal_relocs);
1378 goto error_ret_free_local;
1381 /* Only look for stubs on unconditional branch and
1382 branch and link instructions. */
1383 /* This catches CALL and GOTO insn */
1384 if (r_type != (unsigned int) R_KVX_PCREL27)
1385 continue;
1387 /* Now determine the call target, its name, value,
1388 section. */
1389 sym_sec = NULL;
1390 sym_value = 0;
1391 destination = 0;
1392 hash = NULL;
1393 sym_name = NULL;
1394 if (r_indx < symtab_hdr->sh_info)
1396 /* It's a local symbol. */
1397 Elf_Internal_Sym *sym;
1398 Elf_Internal_Shdr *hdr;
1400 if (local_syms == NULL)
1402 local_syms
1403 = (Elf_Internal_Sym *) symtab_hdr->contents;
1404 if (local_syms == NULL)
1405 local_syms
1406 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
1407 symtab_hdr->sh_info, 0,
1408 NULL, NULL, NULL);
1409 if (local_syms == NULL)
1410 goto error_ret_free_internal;
1413 sym = local_syms + r_indx;
1414 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
1415 sym_sec = hdr->bfd_section;
1416 if (!sym_sec)
1417 /* This is an undefined symbol. It can never
1418 be resolved. */
1419 continue;
1421 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
1422 sym_value = sym->st_value;
1423 destination = (sym_value + irela->r_addend
1424 + sym_sec->output_offset
1425 + sym_sec->output_section->vma);
1426 st_type = ELF_ST_TYPE (sym->st_info);
1427 sym_name
1428 = bfd_elf_string_from_elf_section (input_bfd,
1429 symtab_hdr->sh_link,
1430 sym->st_name);
1432 else
1434 int e_indx;
1436 e_indx = r_indx - symtab_hdr->sh_info;
1437 hash = ((struct elf_kvx_link_hash_entry *)
1438 elf_sym_hashes (input_bfd)[e_indx]);
1440 while (hash->root.root.type == bfd_link_hash_indirect
1441 || hash->root.root.type == bfd_link_hash_warning)
1442 hash = ((struct elf_kvx_link_hash_entry *)
1443 hash->root.root.u.i.link);
1445 if (hash->root.root.type == bfd_link_hash_defined
1446 || hash->root.root.type == bfd_link_hash_defweak)
1448 struct elf_kvx_link_hash_table *globals =
1449 elf_kvx_hash_table (info);
1450 sym_sec = hash->root.root.u.def.section;
1451 sym_value = hash->root.root.u.def.value;
1452 /* For a destination in a shared library,
1453 use the PLT stub as target address to
1454 decide whether a branch stub is
1455 needed. */
1456 if (globals->root.splt != NULL && hash != NULL
1457 && hash->root.plt.offset != (bfd_vma) - 1)
1459 sym_sec = globals->root.splt;
1460 sym_value = hash->root.plt.offset;
1461 if (sym_sec->output_section != NULL)
1462 destination = (sym_value
1463 + sym_sec->output_offset
1464 + sym_sec->output_section->vma);
1466 else if (sym_sec->output_section != NULL)
1467 destination = (sym_value + irela->r_addend
1468 + sym_sec->output_offset
1469 + sym_sec->output_section->vma);
1471 else if (hash->root.root.type == bfd_link_hash_undefined
1472 || (hash->root.root.type
1473 == bfd_link_hash_undefweak))
1475 /* For a shared library, use the PLT stub as
1476 target address to decide whether a long
1477 branch stub is needed.
1478 For absolute code, they cannot be handled. */
1479 struct elf_kvx_link_hash_table *globals =
1480 elf_kvx_hash_table (info);
1482 if (globals->root.splt != NULL && hash != NULL
1483 && hash->root.plt.offset != (bfd_vma) - 1)
1485 sym_sec = globals->root.splt;
1486 sym_value = hash->root.plt.offset;
1487 if (sym_sec->output_section != NULL)
1488 destination = (sym_value
1489 + sym_sec->output_offset
1490 + sym_sec->output_section->vma);
1492 else
1493 continue;
1495 else
1497 bfd_set_error (bfd_error_bad_value);
1498 goto error_ret_free_internal;
1500 st_type = ELF_ST_TYPE (hash->root.type);
1501 sym_name = hash->root.root.root.string;
1504 /* Determine what (if any) linker stub is needed. */
1505 stub_type = kvx_type_of_stub (section, irela, sym_sec,
1506 st_type, destination);
1507 if (stub_type == kvx_stub_none)
1508 continue;
1510 /* Support for grouping stub sections. */
1511 id_sec = htab->stub_group[section->id].link_sec;
1513 /* Get the name of this stub. */
1514 stub_name = elfNN_kvx_stub_name (id_sec, sym_sec, hash,
1515 irela);
1516 if (!stub_name)
1517 goto error_ret_free_internal;
1519 stub_entry =
1520 kvx_stub_hash_lookup (&htab->stub_hash_table,
1521 stub_name, false, false);
1522 if (stub_entry != NULL)
1524 /* The proper stub has already been created. */
1525 free (stub_name);
1526 /* Always update this stub's target since it may have
1527 changed after layout. */
1528 stub_entry->target_value = sym_value + irela->r_addend;
1529 continue;
1532 stub_entry = _bfd_kvx_add_stub_entry_in_group
1533 (stub_name, section, htab);
1534 if (stub_entry == NULL)
1536 free (stub_name);
1537 goto error_ret_free_internal;
1540 stub_entry->target_value = sym_value + irela->r_addend;
1541 stub_entry->target_section = sym_sec;
1542 stub_entry->stub_type = stub_type;
1543 stub_entry->h = hash;
1544 stub_entry->st_type = st_type;
1546 if (sym_name == NULL)
1547 sym_name = "unnamed";
1548 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
1549 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
1550 if (stub_entry->output_name == NULL)
1552 free (stub_name);
1553 goto error_ret_free_internal;
1556 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
1557 sym_name);
1559 stub_changed = true;
1562 /* We're done with the internal relocs, free them. */
1563 if (elf_section_data (section)->relocs == NULL)
1564 free (internal_relocs);
1568 if (!stub_changed)
1569 break;
1571 _bfd_kvx_resize_stubs (htab);
1573 /* Ask the linker to do its stuff. */
1574 (*htab->layout_sections_again) ();
1575 stub_changed = false;
1578 return true;
1580 error_ret_free_local:
1581 return false;
1585 /* Build all the stubs associated with the current output file. The
1586 stubs are kept in a hash table attached to the main linker hash
1587 table. We also set up the .plt entries for statically linked PIC
1588 functions here. This function is called via kvx_elf_finish in the
1589 linker. */
1591 bool
1592 elfNN_kvx_build_stubs (struct bfd_link_info *info)
1594 asection *stub_sec;
1595 struct bfd_hash_table *table;
1596 struct elf_kvx_link_hash_table *htab;
1598 htab = elf_kvx_hash_table (info);
1600 for (stub_sec = htab->stub_bfd->sections;
1601 stub_sec != NULL; stub_sec = stub_sec->next)
1603 bfd_size_type size;
1605 /* Ignore non-stub sections. */
1606 if (!strstr (stub_sec->name, STUB_SUFFIX))
1607 continue;
1609 /* Allocate memory to hold the linker stubs. */
1610 size = stub_sec->size;
1611 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
1612 if (stub_sec->contents == NULL && size != 0)
1613 return false;
1614 stub_sec->size = 0;
1617 /* Build the stubs as directed by the stub hash table. */
1618 table = &htab->stub_hash_table;
1619 bfd_hash_traverse (table, kvx_build_one_stub, info);
1621 return true;
1624 static bfd_vma
1625 kvx_calculate_got_entry_vma (struct elf_link_hash_entry *h,
1626 struct elf_kvx_link_hash_table
1627 *globals, struct bfd_link_info *info,
1628 bfd_vma value, bfd *output_bfd,
1629 bool *unresolved_reloc_p)
1631 bfd_vma off = (bfd_vma) - 1;
1632 asection *basegot = globals->root.sgot;
1633 bool dyn = globals->root.dynamic_sections_created;
1635 if (h != NULL)
1637 BFD_ASSERT (basegot != NULL);
1638 off = h->got.offset;
1639 BFD_ASSERT (off != (bfd_vma) - 1);
1640 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
1641 || (bfd_link_pic (info)
1642 && SYMBOL_REFERENCES_LOCAL (info, h))
1643 || (ELF_ST_VISIBILITY (h->other)
1644 && h->root.type == bfd_link_hash_undefweak))
1646 /* This is actually a static link, or it is a -Bsymbolic link
1647 and the symbol is defined locally. We must initialize this
1648 entry in the global offset table. Since the offset must
1649 always be a multiple of 8 (4 in the case of ILP32), we use
1650 the least significant bit to record whether we have
1651 initialized it already.
1652 When doing a dynamic link, we create a .rel(a).got relocation
1653 entry to initialize the value. This is done in the
1654 finish_dynamic_symbol routine. */
1655 if ((off & 1) != 0)
1656 off &= ~1;
1657 else
1659 bfd_put_NN (output_bfd, value, basegot->contents + off);
1660 h->got.offset |= 1;
1663 else
1664 *unresolved_reloc_p = false;
1667 return off;
1670 static unsigned int
1671 kvx_reloc_got_type (bfd_reloc_code_real_type r_type)
1673 switch (r_type)
1675 /* Extracted with:
1676 awk 'match ($0, /HOWTO.*R_(KVX.*_GOT(OFF)?(64)?_.*),/,ary) \
1677 {print "case BFD_RELOC_" ary[1] ":";}' elfxx-kvxc.def */
1678 case BFD_RELOC_KVX_S37_GOTOFF_LO10:
1679 case BFD_RELOC_KVX_S37_GOTOFF_UP27:
1681 case BFD_RELOC_KVX_S37_GOT_LO10:
1682 case BFD_RELOC_KVX_S37_GOT_UP27:
1684 case BFD_RELOC_KVX_S43_GOTOFF_LO10:
1685 case BFD_RELOC_KVX_S43_GOTOFF_UP27:
1686 case BFD_RELOC_KVX_S43_GOTOFF_EX6:
1688 case BFD_RELOC_KVX_S43_GOT_LO10:
1689 case BFD_RELOC_KVX_S43_GOT_UP27:
1690 case BFD_RELOC_KVX_S43_GOT_EX6:
1691 return GOT_NORMAL;
1693 case BFD_RELOC_KVX_S37_TLS_GD_LO10:
1694 case BFD_RELOC_KVX_S37_TLS_GD_UP27:
1695 case BFD_RELOC_KVX_S43_TLS_GD_LO10:
1696 case BFD_RELOC_KVX_S43_TLS_GD_UP27:
1697 case BFD_RELOC_KVX_S43_TLS_GD_EX6:
1698 return GOT_TLS_GD;
1700 case BFD_RELOC_KVX_S37_TLS_LD_LO10:
1701 case BFD_RELOC_KVX_S37_TLS_LD_UP27:
1702 case BFD_RELOC_KVX_S43_TLS_LD_LO10:
1703 case BFD_RELOC_KVX_S43_TLS_LD_UP27:
1704 case BFD_RELOC_KVX_S43_TLS_LD_EX6:
1705 return GOT_TLS_LD;
1707 case BFD_RELOC_KVX_S37_TLS_IE_LO10:
1708 case BFD_RELOC_KVX_S37_TLS_IE_UP27:
1709 case BFD_RELOC_KVX_S43_TLS_IE_LO10:
1710 case BFD_RELOC_KVX_S43_TLS_IE_UP27:
1711 case BFD_RELOC_KVX_S43_TLS_IE_EX6:
1712 return GOT_TLS_IE;
1714 default:
1715 break;
1717 return GOT_UNKNOWN;
1720 static bool
1721 kvx_can_relax_tls (bfd *input_bfd ATTRIBUTE_UNUSED,
1722 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1723 bfd_reloc_code_real_type r_type ATTRIBUTE_UNUSED,
1724 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
1725 unsigned long r_symndx ATTRIBUTE_UNUSED)
1727 if (! IS_KVX_TLS_RELAX_RELOC (r_type))
1728 return false;
1730 /* Relaxing hook. Disabled on KVX. */
1731 /* See elfnn-aarch64.c */
1732 return true;
1735 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
1736 enumerator. */
1738 static bfd_reloc_code_real_type
1739 kvx_tls_transition (bfd *input_bfd,
1740 struct bfd_link_info *info,
1741 unsigned int r_type,
1742 struct elf_link_hash_entry *h,
1743 unsigned long r_symndx)
1745 bfd_reloc_code_real_type bfd_r_type
1746 = elfNN_kvx_bfd_reloc_from_type (input_bfd, r_type);
1748 if (! kvx_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
1749 return bfd_r_type;
1751 return bfd_r_type;
1754 /* Return the base VMA address which should be subtracted from real addresses
1755 when resolving R_KVX_*_TLS_GD_* and R_KVX_*_TLS_LD_* relocation. */
1757 static bfd_vma
1758 dtpoff_base (struct bfd_link_info *info)
1760 /* If tls_sec is NULL, we should have signalled an error already. */
1761 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
1762 return elf_hash_table (info)->tls_sec->vma;
1765 /* Return the base VMA address which should be subtracted from real addresses
1766 when resolving R_KVX_*_TLS_IE_* and R_KVX_*_TLS_LE_* relocations. */
1768 static bfd_vma
1769 tpoff_base (struct bfd_link_info *info)
1771 struct elf_link_hash_table *htab = elf_hash_table (info);
1773 /* If tls_sec is NULL, we should have signalled an error already. */
1774 BFD_ASSERT (htab->tls_sec != NULL);
1776 bfd_vma base = align_power ((bfd_vma) 0,
1777 htab->tls_sec->alignment_power);
1778 return htab->tls_sec->vma - base;
1781 static bfd_vma *
1782 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
1783 unsigned long r_symndx)
1785 /* Calculate the address of the GOT entry for symbol
1786 referred to in h. */
1787 if (h != NULL)
1788 return &h->got.offset;
1789 else
1791 /* local symbol */
1792 struct elf_kvx_local_symbol *l;
1794 l = elf_kvx_locals (input_bfd);
1795 return &l[r_symndx].got_offset;
1799 static void
1800 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
1801 unsigned long r_symndx)
1803 bfd_vma *p;
1804 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
1805 *p |= 1;
1808 static int
1809 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
1810 unsigned long r_symndx)
1812 bfd_vma value;
1813 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
1814 return value & 1;
1817 static bfd_vma
1818 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
1819 unsigned long r_symndx)
1821 bfd_vma value;
1822 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
1823 value &= ~1;
1824 return value;
1827 /* N_ONES produces N one bits, without overflowing machine arithmetic. */
1828 #define N_ONES(n) (((((bfd_vma) 1 << ((n) -1)) - 1) << 1) | 1)
1830 /* This is a copy/paste + modification from
1831 reloc.c:_bfd_relocate_contents. Relocations are applied to 32bits
1832 words, so all overflow checks will overflow for values above
1833 32bits. */
1834 static bfd_reloc_status_type
1835 check_signed_overflow (enum complain_overflow complain_on_overflow,
1836 bfd_reloc_code_real_type bfd_r_type, bfd *input_bfd,
1837 bfd_vma relocation)
1839 bfd_reloc_status_type flag = bfd_reloc_ok;
1840 bfd_vma addrmask, fieldmask, signmask, ss;
1841 bfd_vma a, b, sum;
1842 bfd_vma x = 0;
1844 /* These usually come from howto struct. As we don't check for
1845 values fitting in bitfields or in subpart of words, we set all
1846 these to values to check as if the field is starting from first
1847 bit. */
1848 unsigned int rightshift = 0;
1849 unsigned int bitpos = 0;
1850 unsigned int bitsize = 0;
1851 bfd_vma src_mask = -1;
1853 /* Only regular symbol relocations are checked here. Others
1854 relocations (GOT, TLS) could be checked if the need is
1855 confirmed. At the moment, we keep previous behavior
1856 (ie. unchecked) for those. */
1857 switch (bfd_r_type)
1859 case BFD_RELOC_KVX_S37_LO10:
1860 case BFD_RELOC_KVX_S37_UP27:
1861 bitsize = 37;
1862 break;
1864 case BFD_RELOC_KVX_S32_LO5:
1865 case BFD_RELOC_KVX_S32_UP27:
1866 bitsize = 32;
1867 break;
1869 case BFD_RELOC_KVX_S43_LO10:
1870 case BFD_RELOC_KVX_S43_UP27:
1871 case BFD_RELOC_KVX_S43_EX6:
1872 bitsize = 43;
1873 break;
1875 case BFD_RELOC_KVX_S64_LO10:
1876 case BFD_RELOC_KVX_S64_UP27:
1877 case BFD_RELOC_KVX_S64_EX27:
1878 bitsize = 64;
1879 break;
1881 default:
1882 return bfd_reloc_ok;
1885 /* direct copy/paste from reloc.c below */
1887 /* Get the values to be added together. For signed and unsigned
1888 relocations, we assume that all values should be truncated to
1889 the size of an address. For bitfields, all the bits matter.
1890 See also bfd_check_overflow. */
1891 fieldmask = N_ONES (bitsize);
1892 signmask = ~fieldmask;
1893 addrmask = (N_ONES (bfd_arch_bits_per_address (input_bfd))
1894 | (fieldmask << rightshift));
1895 a = (relocation & addrmask) >> rightshift;
1896 b = (x & src_mask & addrmask) >> bitpos;
1897 addrmask >>= rightshift;
1899 switch (complain_on_overflow)
1901 case complain_overflow_signed:
1902 /* If any sign bits are set, all sign bits must be set.
1903 That is, A must be a valid negative address after
1904 shifting. */
1905 signmask = ~(fieldmask >> 1);
1906 /* Fall thru */
1908 case complain_overflow_bitfield:
1909 /* Much like the signed check, but for a field one bit
1910 wider. We allow a bitfield to represent numbers in the
1911 range -2**n to 2**n-1, where n is the number of bits in the
1912 field. Note that when bfd_vma is 32 bits, a 32-bit reloc
1913 can't overflow, which is exactly what we want. */
1914 ss = a & signmask;
1915 if (ss != 0 && ss != (addrmask & signmask))
1916 flag = bfd_reloc_overflow;
1918 /* We only need this next bit of code if the sign bit of B
1919 is below the sign bit of A. This would only happen if
1920 SRC_MASK had fewer bits than BITSIZE. Note that if
1921 SRC_MASK has more bits than BITSIZE, we can get into
1922 trouble; we would need to verify that B is in range, as
1923 we do for A above. */
1924 ss = ((~src_mask) >> 1) & src_mask;
1925 ss >>= bitpos;
1927 /* Set all the bits above the sign bit. */
1928 b = (b ^ ss) - ss;
1930 /* Now we can do the addition. */
1931 sum = a + b;
1933 /* See if the result has the correct sign. Bits above the
1934 sign bit are junk now; ignore them. If the sum is
1935 positive, make sure we did not have all negative inputs;
1936 if the sum is negative, make sure we did not have all
1937 positive inputs. The test below looks only at the sign
1938 bits, and it really just
1939 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1941 We mask with addrmask here to explicitly allow an address
1942 wrap-around. The Linux kernel relies on it, and it is
1943 the only way to write assembler code which can run when
1944 loaded at a location 0x80000000 away from the location at
1945 which it is linked. */
1946 if (((~(a ^ b)) & (a ^ sum)) & signmask & addrmask)
1947 flag = bfd_reloc_overflow;
1948 break;
1950 case complain_overflow_unsigned:
1951 /* Checking for an unsigned overflow is relatively easy:
1952 trim the addresses and add, and trim the result as well.
1953 Overflow is normally indicated when the result does not
1954 fit in the field. However, we also need to consider the
1955 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1956 input is 0x80000000, and bfd_vma is only 32 bits; then we
1957 will get sum == 0, but there is an overflow, since the
1958 inputs did not fit in the field. Instead of doing a
1959 separate test, we can check for this by or-ing in the
1960 operands when testing for the sum overflowing its final
1961 field. */
1962 sum = (a + b) & addrmask;
1963 if ((a | b | sum) & signmask)
1964 flag = bfd_reloc_overflow;
1965 break;
1967 default:
1968 abort ();
1970 return flag;
1973 /* Perform a relocation as part of a final link. */
1974 static bfd_reloc_status_type
1975 elfNN_kvx_final_link_relocate (reloc_howto_type *howto,
1976 bfd *input_bfd,
1977 bfd *output_bfd,
1978 asection *input_section,
1979 bfd_byte *contents,
1980 Elf_Internal_Rela *rel,
1981 bfd_vma value,
1982 struct bfd_link_info *info,
1983 asection *sym_sec,
1984 struct elf_link_hash_entry *h,
1985 bool *unresolved_reloc_p,
1986 bool save_addend,
1987 bfd_vma *saved_addend,
1988 Elf_Internal_Sym *sym)
1990 Elf_Internal_Shdr *symtab_hdr;
1991 unsigned int r_type = howto->type;
1992 bfd_reloc_code_real_type bfd_r_type
1993 = elfNN_kvx_bfd_reloc_from_howto (howto);
1994 bfd_reloc_code_real_type new_bfd_r_type;
1995 unsigned long r_symndx;
1996 bfd_byte *hit_data = contents + rel->r_offset;
1997 bfd_vma place, off;
1998 bfd_vma addend;
1999 struct elf_kvx_link_hash_table *globals;
2000 bool weak_undef_p;
2001 asection *base_got;
2002 bfd_reloc_status_type rret = bfd_reloc_ok;
2003 bool resolved_to_zero;
2004 globals = elf_kvx_hash_table (info);
2006 symtab_hdr = &elf_symtab_hdr (input_bfd);
2008 BFD_ASSERT (is_kvx_elf (input_bfd));
2010 r_symndx = ELFNN_R_SYM (rel->r_info);
2012 /* It is possible to have linker relaxations on some TLS access
2013 models. Update our information here. */
2014 new_bfd_r_type = kvx_tls_transition (input_bfd, info, r_type, h, r_symndx);
2015 if (new_bfd_r_type != bfd_r_type)
2017 bfd_r_type = new_bfd_r_type;
2018 howto = elfNN_kvx_howto_from_bfd_reloc (bfd_r_type);
2019 BFD_ASSERT (howto != NULL);
2020 r_type = howto->type;
2023 place = input_section->output_section->vma
2024 + input_section->output_offset + rel->r_offset;
2026 /* Get addend, accumulating the addend for consecutive relocs
2027 which refer to the same offset. */
2028 addend = saved_addend ? *saved_addend : 0;
2029 addend += rel->r_addend;
2031 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
2032 : bfd_is_und_section (sym_sec));
2033 resolved_to_zero = (h != NULL
2034 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
2036 switch (bfd_r_type)
2038 case BFD_RELOC_KVX_NN:
2039 #if ARCH_SIZE == 64
2040 case BFD_RELOC_KVX_32:
2041 #endif
2042 case BFD_RELOC_KVX_S37_LO10:
2043 case BFD_RELOC_KVX_S37_UP27:
2045 case BFD_RELOC_KVX_S32_LO5:
2046 case BFD_RELOC_KVX_S32_UP27:
2048 case BFD_RELOC_KVX_S43_LO10:
2049 case BFD_RELOC_KVX_S43_UP27:
2050 case BFD_RELOC_KVX_S43_EX6:
2052 case BFD_RELOC_KVX_S64_LO10:
2053 case BFD_RELOC_KVX_S64_UP27:
2054 case BFD_RELOC_KVX_S64_EX27:
2055 /* When generating a shared object or relocatable executable, these
2056 relocations are copied into the output file to be resolved at
2057 run time. */
2058 if (((bfd_link_pic (info) == true)
2059 || globals->root.is_relocatable_executable)
2060 && (input_section->flags & SEC_ALLOC)
2061 && (h == NULL
2062 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2063 && !resolved_to_zero)
2064 || h->root.type != bfd_link_hash_undefweak))
2066 Elf_Internal_Rela outrel;
2067 bfd_byte *loc;
2068 bool skip, relocate;
2069 asection *sreloc;
2071 *unresolved_reloc_p = false;
2073 skip = false;
2074 relocate = false;
2076 outrel.r_addend = addend;
2077 outrel.r_offset =
2078 _bfd_elf_section_offset (output_bfd, info, input_section,
2079 rel->r_offset);
2080 if (outrel.r_offset == (bfd_vma) - 1)
2081 skip = true;
2082 else if (outrel.r_offset == (bfd_vma) - 2)
2084 skip = true;
2085 relocate = true;
2088 outrel.r_offset += (input_section->output_section->vma
2089 + input_section->output_offset);
2091 if (skip)
2092 memset (&outrel, 0, sizeof outrel);
2093 else if (h != NULL
2094 && h->dynindx != -1
2095 && (!bfd_link_pic (info) || !info->symbolic
2096 || !h->def_regular))
2097 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2098 else if (bfd_r_type == BFD_RELOC_KVX_32
2099 || bfd_r_type == BFD_RELOC_KVX_64)
2101 int symbol;
2103 /* On SVR4-ish systems, the dynamic loader cannot
2104 relocate the text and data segments independently,
2105 so the symbol does not matter. */
2106 symbol = 0;
2107 outrel.r_info = ELFNN_R_INFO (symbol, R_KVX_RELATIVE);
2108 outrel.r_addend += value;
2110 else if (bfd_link_pic (info) && info->symbolic)
2112 goto skip_because_pic;
2114 else
2116 /* We may endup here from bad input code trying to
2117 insert relocation on symbols within code. We do not
2118 want that currently, and such code should use GOT +
2119 KVX_32/64 reloc that translate in KVX_RELATIVE. */
2120 const char *name;
2121 if (h && h->root.root.string)
2122 name = h->root.root.string;
2123 else
2124 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
2125 NULL);
2127 (*_bfd_error_handler)
2128 /* xgettext:c-format */
2129 (_("%pB(%pA+%#" PRIx64 "): "
2130 "unresolvable %s relocation in section `%s'"),
2131 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
2132 name);
2133 return bfd_reloc_notsupported;
2136 sreloc = elf_section_data (input_section)->sreloc;
2137 if (sreloc == NULL || sreloc->contents == NULL)
2138 return bfd_reloc_notsupported;
2140 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
2141 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
2143 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
2145 /* Sanity to check that we have previously allocated
2146 sufficient space in the relocation section for the
2147 number of relocations we actually want to emit. */
2148 abort ();
2151 /* If this reloc is against an external symbol, we do not want to
2152 fiddle with the addend. Otherwise, we need to include the symbol
2153 value so that it becomes an addend for the dynamic reloc. */
2154 if (!relocate)
2155 return bfd_reloc_ok;
2157 rret = check_signed_overflow (complain_overflow_signed, bfd_r_type,
2158 input_bfd, value + addend);
2159 if (rret != bfd_reloc_ok)
2160 return rret;
2162 return _bfd_final_link_relocate (howto, input_bfd, input_section,
2163 contents, rel->r_offset, value,
2164 addend);
2167 skip_because_pic:
2168 rret = check_signed_overflow (complain_overflow_signed, bfd_r_type,
2169 input_bfd, value + addend);
2170 if (rret != bfd_reloc_ok)
2171 return rret;
2173 return _bfd_final_link_relocate (howto, input_bfd, input_section,
2174 contents, rel->r_offset, value,
2175 addend);
2176 break;
2178 case BFD_RELOC_KVX_PCREL17:
2179 case BFD_RELOC_KVX_PCREL27:
2181 /* BCU insn are always first in a bundle, so there is no need
2182 to correct the address using offset within bundle. */
2184 asection *splt = globals->root.splt;
2185 bool via_plt_p =
2186 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
2188 /* A call to an undefined weak symbol is converted to a jump to
2189 the next instruction unless a PLT entry will be created.
2190 The jump to the next instruction is optimized as a NOP.
2191 Do the same for local undefined symbols. */
2192 if (weak_undef_p && ! via_plt_p)
2194 bfd_putl32 (INSN_NOP, hit_data);
2195 return bfd_reloc_ok;
2198 /* If the call goes through a PLT entry, make sure to
2199 check distance to the right destination address. */
2200 if (via_plt_p)
2201 value = (splt->output_section->vma
2202 + splt->output_offset + h->plt.offset);
2204 /* Check if a stub has to be inserted because the destination
2205 is too far away. */
2206 struct elf_kvx_stub_hash_entry *stub_entry = NULL;
2208 /* If the target symbol is global and marked as a function the
2209 relocation applies a function call or a tail call. In this
2210 situation we can veneer out of range branches. The veneers
2211 use R16 and R17 hence cannot be used arbitrary out of range
2212 branches that occur within the body of a function. */
2214 /* Check if a stub has to be inserted because the destination
2215 is too far away. */
2216 if (! kvx_valid_call_p (value, place))
2218 /* The target is out of reach, so redirect the branch to
2219 the local stub for this function. */
2220 stub_entry = elfNN_kvx_get_stub_entry (input_section,
2221 sym_sec, h,
2222 rel, globals);
2223 if (stub_entry != NULL)
2224 value = (stub_entry->stub_offset
2225 + stub_entry->stub_sec->output_offset
2226 + stub_entry->stub_sec->output_section->vma);
2227 /* We have redirected the destination to stub entry address,
2228 so ignore any addend record in the original rela entry. */
2229 addend = 0;
2232 *unresolved_reloc_p = false;
2234 /* FALLTHROUGH */
2236 /* PCREL 32 are used in dwarf2 table for exception handling */
2237 case BFD_RELOC_KVX_32_PCREL:
2238 case BFD_RELOC_KVX_S64_PCREL_LO10:
2239 case BFD_RELOC_KVX_S64_PCREL_UP27:
2240 case BFD_RELOC_KVX_S64_PCREL_EX27:
2241 case BFD_RELOC_KVX_S37_PCREL_LO10:
2242 case BFD_RELOC_KVX_S37_PCREL_UP27:
2243 case BFD_RELOC_KVX_S43_PCREL_LO10:
2244 case BFD_RELOC_KVX_S43_PCREL_UP27:
2245 case BFD_RELOC_KVX_S43_PCREL_EX6:
2246 return _bfd_final_link_relocate (howto, input_bfd, input_section,
2247 contents, rel->r_offset, value,
2248 addend);
2249 break;
2251 case BFD_RELOC_KVX_S37_TLS_LE_LO10:
2252 case BFD_RELOC_KVX_S37_TLS_LE_UP27:
2254 case BFD_RELOC_KVX_S43_TLS_LE_LO10:
2255 case BFD_RELOC_KVX_S43_TLS_LE_UP27:
2256 case BFD_RELOC_KVX_S43_TLS_LE_EX6:
2257 return _bfd_final_link_relocate (howto, input_bfd, input_section,
2258 contents, rel->r_offset,
2259 value - tpoff_base (info), addend);
2260 break;
2262 case BFD_RELOC_KVX_S37_TLS_DTPOFF_LO10:
2263 case BFD_RELOC_KVX_S37_TLS_DTPOFF_UP27:
2265 case BFD_RELOC_KVX_S43_TLS_DTPOFF_LO10:
2266 case BFD_RELOC_KVX_S43_TLS_DTPOFF_UP27:
2267 case BFD_RELOC_KVX_S43_TLS_DTPOFF_EX6:
2268 return _bfd_final_link_relocate (howto, input_bfd, input_section,
2269 contents, rel->r_offset,
2270 value - dtpoff_base (info), addend);
2272 case BFD_RELOC_KVX_S37_TLS_GD_UP27:
2273 case BFD_RELOC_KVX_S37_TLS_GD_LO10:
2275 case BFD_RELOC_KVX_S43_TLS_GD_UP27:
2276 case BFD_RELOC_KVX_S43_TLS_GD_EX6:
2277 case BFD_RELOC_KVX_S43_TLS_GD_LO10:
2279 case BFD_RELOC_KVX_S37_TLS_IE_UP27:
2280 case BFD_RELOC_KVX_S37_TLS_IE_LO10:
2282 case BFD_RELOC_KVX_S43_TLS_IE_UP27:
2283 case BFD_RELOC_KVX_S43_TLS_IE_EX6:
2284 case BFD_RELOC_KVX_S43_TLS_IE_LO10:
2286 case BFD_RELOC_KVX_S37_TLS_LD_UP27:
2287 case BFD_RELOC_KVX_S37_TLS_LD_LO10:
2289 case BFD_RELOC_KVX_S43_TLS_LD_UP27:
2290 case BFD_RELOC_KVX_S43_TLS_LD_EX6:
2291 case BFD_RELOC_KVX_S43_TLS_LD_LO10:
2293 if (globals->root.sgot == NULL)
2294 return bfd_reloc_notsupported;
2295 value = symbol_got_offset (input_bfd, h, r_symndx);
2297 _bfd_final_link_relocate (howto, input_bfd, input_section,
2298 contents, rel->r_offset, value, addend);
2299 *unresolved_reloc_p = false;
2300 break;
2302 case BFD_RELOC_KVX_S37_GOTADDR_UP27:
2303 case BFD_RELOC_KVX_S37_GOTADDR_LO10:
2305 case BFD_RELOC_KVX_S43_GOTADDR_UP27:
2306 case BFD_RELOC_KVX_S43_GOTADDR_EX6:
2307 case BFD_RELOC_KVX_S43_GOTADDR_LO10:
2309 case BFD_RELOC_KVX_S64_GOTADDR_UP27:
2310 case BFD_RELOC_KVX_S64_GOTADDR_EX27:
2311 case BFD_RELOC_KVX_S64_GOTADDR_LO10:
2313 if (globals->root.sgot == NULL)
2314 BFD_ASSERT (h != NULL);
2316 value = globals->root.sgot->output_section->vma
2317 + globals->root.sgot->output_offset;
2319 return _bfd_final_link_relocate (howto, input_bfd, input_section,
2320 contents, rel->r_offset, value,
2321 addend);
2323 break;
2325 case BFD_RELOC_KVX_S37_GOTOFF_LO10:
2326 case BFD_RELOC_KVX_S37_GOTOFF_UP27:
2328 case BFD_RELOC_KVX_32_GOTOFF:
2329 case BFD_RELOC_KVX_64_GOTOFF:
2331 case BFD_RELOC_KVX_S43_GOTOFF_LO10:
2332 case BFD_RELOC_KVX_S43_GOTOFF_UP27:
2333 case BFD_RELOC_KVX_S43_GOTOFF_EX6:
2336 asection *basegot = globals->root.sgot;
2337 /* BFD_ASSERT(h == NULL); */
2338 BFD_ASSERT(globals->root.sgot != NULL);
2339 value -= basegot->output_section->vma + basegot->output_offset;
2340 return _bfd_final_link_relocate (howto, input_bfd, input_section,
2341 contents, rel->r_offset, value,
2342 addend);
2344 break;
2346 case BFD_RELOC_KVX_S37_GOT_LO10:
2347 case BFD_RELOC_KVX_S37_GOT_UP27:
2349 case BFD_RELOC_KVX_32_GOT:
2350 case BFD_RELOC_KVX_64_GOT:
2352 case BFD_RELOC_KVX_S43_GOT_LO10:
2353 case BFD_RELOC_KVX_S43_GOT_UP27:
2354 case BFD_RELOC_KVX_S43_GOT_EX6:
2356 if (globals->root.sgot == NULL)
2357 BFD_ASSERT (h != NULL);
2359 if (h != NULL)
2361 value = kvx_calculate_got_entry_vma (h, globals, info, value,
2362 output_bfd,
2363 unresolved_reloc_p);
2364 #ifdef UGLY_DEBUG
2365 printf("GOT_LO/HI for %s, value %x\n", h->root.root.string, value);
2366 #endif
2368 return _bfd_final_link_relocate (howto, input_bfd, input_section,
2369 contents, rel->r_offset, value,
2370 addend);
2372 else
2374 #ifdef UGLY_DEBUG
2375 printf("GOT_LO/HI with h NULL, initial value %x\n", value);
2376 #endif
2377 struct elf_kvx_local_symbol *locals = elf_kvx_locals (input_bfd);
2379 if (locals == NULL)
2381 int howto_index = bfd_r_type - BFD_RELOC_KVX_RELOC_START;
2382 _bfd_error_handler
2383 /* xgettext:c-format */
2384 (_("%pB: local symbol descriptor table be NULL when applying "
2385 "relocation %s against local symbol"),
2386 input_bfd, elf_kvx_howto_table[howto_index].name);
2387 abort ();
2390 off = symbol_got_offset (input_bfd, h, r_symndx);
2391 base_got = globals->root.sgot;
2392 bfd_vma got_entry_addr = (base_got->output_section->vma
2393 + base_got->output_offset + off);
2395 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
2397 bfd_put_64 (output_bfd, value, base_got->contents + off);
2399 if (bfd_link_pic (info))
2401 asection *s;
2402 Elf_Internal_Rela outrel;
2404 /* For PIC executables and shared libraries we need
2405 to relocate the GOT entry at run time. */
2406 s = globals->root.srelgot;
2407 if (s == NULL)
2408 abort ();
2410 outrel.r_offset = got_entry_addr;
2411 outrel.r_info = ELFNN_R_INFO (0, R_KVX_RELATIVE);
2412 outrel.r_addend = value;
2413 elf_append_rela (output_bfd, s, &outrel);
2416 symbol_got_offset_mark (input_bfd, h, r_symndx);
2419 /* Update the relocation value to GOT entry addr as we have
2420 transformed the direct data access into an indirect data
2421 access through GOT. */
2422 value = got_entry_addr;
2424 return _bfd_final_link_relocate (howto, input_bfd, input_section,
2425 contents, rel->r_offset, off, 0);
2427 break;
2429 default:
2430 return bfd_reloc_notsupported;
2433 if (saved_addend)
2434 *saved_addend = value;
2436 /* Only apply the final relocation in a sequence. */
2437 if (save_addend)
2438 return bfd_reloc_continue;
2440 return _bfd_kvx_elf_put_addend (input_bfd, hit_data, bfd_r_type,
2441 howto, value);
2446 /* Relocate a KVX ELF section. */
2448 static int
2449 elfNN_kvx_relocate_section (bfd *output_bfd,
2450 struct bfd_link_info *info,
2451 bfd *input_bfd,
2452 asection *input_section,
2453 bfd_byte *contents,
2454 Elf_Internal_Rela *relocs,
2455 Elf_Internal_Sym *local_syms,
2456 asection **local_sections)
2458 Elf_Internal_Shdr *symtab_hdr;
2459 struct elf_link_hash_entry **sym_hashes;
2460 Elf_Internal_Rela *rel;
2461 Elf_Internal_Rela *relend;
2462 const char *name;
2463 struct elf_kvx_link_hash_table *globals;
2464 bool save_addend = false;
2465 bfd_vma addend = 0;
2467 globals = elf_kvx_hash_table (info);
2469 symtab_hdr = &elf_symtab_hdr (input_bfd);
2470 sym_hashes = elf_sym_hashes (input_bfd);
2472 rel = relocs;
2473 relend = relocs + input_section->reloc_count;
2474 for (; rel < relend; rel++)
2476 unsigned int r_type;
2477 bfd_reloc_code_real_type bfd_r_type;
2478 reloc_howto_type *howto;
2479 unsigned long r_symndx;
2480 Elf_Internal_Sym *sym;
2481 asection *sec;
2482 struct elf_link_hash_entry *h;
2483 bfd_vma relocation;
2484 bfd_reloc_status_type r;
2485 arelent bfd_reloc;
2486 char sym_type;
2487 bool unresolved_reloc = false;
2488 char *error_message = NULL;
2490 r_symndx = ELFNN_R_SYM (rel->r_info);
2491 r_type = ELFNN_R_TYPE (rel->r_info);
2493 bfd_reloc.howto = elfNN_kvx_howto_from_type (input_bfd, r_type);
2494 howto = bfd_reloc.howto;
2496 if (howto == NULL)
2497 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
2499 bfd_r_type = elfNN_kvx_bfd_reloc_from_howto (howto);
2501 h = NULL;
2502 sym = NULL;
2503 sec = NULL;
2505 if (r_symndx < symtab_hdr->sh_info) /* A local symbol. */
2507 sym = local_syms + r_symndx;
2508 sym_type = ELFNN_ST_TYPE (sym->st_info);
2509 sec = local_sections[r_symndx];
2511 /* An object file might have a reference to a local
2512 undefined symbol. This is a draft object file, but we
2513 should at least do something about it. */
2514 if (r_type != R_KVX_NONE
2515 && r_type != R_KVX_S37_GOTADDR_LO10
2516 && r_type != R_KVX_S37_GOTADDR_UP27
2517 && r_type != R_KVX_S64_GOTADDR_LO10
2518 && r_type != R_KVX_S64_GOTADDR_UP27
2519 && r_type != R_KVX_S64_GOTADDR_EX27
2520 && r_type != R_KVX_S43_GOTADDR_LO10
2521 && r_type != R_KVX_S43_GOTADDR_UP27
2522 && r_type != R_KVX_S43_GOTADDR_EX6
2523 && bfd_is_und_section (sec)
2524 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
2525 (*info->callbacks->undefined_symbol)
2526 (info, bfd_elf_string_from_elf_section
2527 (input_bfd, symtab_hdr->sh_link, sym->st_name),
2528 input_bfd, input_section, rel->r_offset, true);
2530 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2532 else
2534 bool warned, ignored;
2536 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2537 r_symndx, symtab_hdr, sym_hashes,
2538 h, sec, relocation,
2539 unresolved_reloc, warned, ignored);
2541 sym_type = h->type;
2544 if (sec != NULL && discarded_section (sec))
2545 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2546 rel, 1, relend, howto, 0, contents);
2548 if (bfd_link_relocatable (info))
2549 continue;
2551 if (h != NULL)
2552 name = h->root.root.string;
2553 else
2555 name = (bfd_elf_string_from_elf_section
2556 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2557 if (name == NULL || *name == '\0')
2558 name = bfd_section_name (sec);
2561 if (r_symndx != 0
2562 && r_type != R_KVX_NONE
2563 && (h == NULL
2564 || h->root.type == bfd_link_hash_defined
2565 || h->root.type == bfd_link_hash_defweak)
2566 && IS_KVX_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
2568 (*_bfd_error_handler)
2569 ((sym_type == STT_TLS
2570 /* xgettext:c-format */
2571 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2572 /* xgettext:c-format */
2573 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2574 input_bfd,
2575 input_section, (uint64_t) rel->r_offset, howto->name, name);
2578 /* Original aarch64 has relaxation handling for TLS here. */
2579 r = bfd_reloc_continue;
2581 /* There may be multiple consecutive relocations for the
2582 same offset. In that case we are supposed to treat the
2583 output of each relocation as the addend for the next. */
2584 if (rel + 1 < relend
2585 && rel->r_offset == rel[1].r_offset
2586 && ELFNN_R_TYPE (rel[1].r_info) != R_KVX_NONE)
2588 save_addend = true;
2589 else
2590 save_addend = false;
2592 if (r == bfd_reloc_continue)
2593 r = elfNN_kvx_final_link_relocate (howto, input_bfd, output_bfd,
2594 input_section, contents, rel,
2595 relocation, info, sec,
2596 h, &unresolved_reloc,
2597 save_addend, &addend, sym);
2599 switch (elfNN_kvx_bfd_reloc_from_type (input_bfd, r_type))
2601 case BFD_RELOC_KVX_S37_TLS_GD_LO10:
2602 case BFD_RELOC_KVX_S37_TLS_GD_UP27:
2604 case BFD_RELOC_KVX_S43_TLS_GD_LO10:
2605 case BFD_RELOC_KVX_S43_TLS_GD_UP27:
2606 case BFD_RELOC_KVX_S43_TLS_GD_EX6:
2608 case BFD_RELOC_KVX_S37_TLS_LD_LO10:
2609 case BFD_RELOC_KVX_S37_TLS_LD_UP27:
2611 case BFD_RELOC_KVX_S43_TLS_LD_LO10:
2612 case BFD_RELOC_KVX_S43_TLS_LD_UP27:
2613 case BFD_RELOC_KVX_S43_TLS_LD_EX6:
2615 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
2617 bool need_relocs = false;
2618 bfd_byte *loc;
2619 int indx;
2620 bfd_vma off;
2622 off = symbol_got_offset (input_bfd, h, r_symndx);
2623 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2625 need_relocs =
2626 (bfd_link_pic (info) || indx != 0) &&
2627 (h == NULL
2628 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2629 || h->root.type != bfd_link_hash_undefweak);
2631 BFD_ASSERT (globals->root.srelgot != NULL);
2633 if (need_relocs)
2635 Elf_Internal_Rela rela;
2636 rela.r_info = ELFNN_R_INFO (indx, R_KVX_64_DTPMOD);
2637 rela.r_addend = 0;
2638 rela.r_offset = globals->root.sgot->output_section->vma +
2639 globals->root.sgot->output_offset + off;
2641 loc = globals->root.srelgot->contents;
2642 loc += globals->root.srelgot->reloc_count++
2643 * RELOC_SIZE (htab);
2644 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
2646 bfd_reloc_code_real_type real_type =
2647 elfNN_kvx_bfd_reloc_from_type (input_bfd, r_type);
2649 if (real_type == BFD_RELOC_KVX_S37_TLS_LD_LO10
2650 || real_type == BFD_RELOC_KVX_S37_TLS_LD_UP27
2651 || real_type == BFD_RELOC_KVX_S43_TLS_LD_LO10
2652 || real_type == BFD_RELOC_KVX_S43_TLS_LD_UP27
2653 || real_type == BFD_RELOC_KVX_S43_TLS_LD_EX6)
2655 /* For local dynamic, don't generate DTPOFF in any case.
2656 Initialize the DTPOFF slot into zero, so we get module
2657 base address when invoke runtime TLS resolver. */
2658 bfd_put_NN (output_bfd, 0,
2659 globals->root.sgot->contents + off
2660 + GOT_ENTRY_SIZE);
2662 else if (indx == 0)
2664 bfd_put_NN (output_bfd,
2665 relocation - dtpoff_base (info),
2666 globals->root.sgot->contents + off
2667 + GOT_ENTRY_SIZE);
2669 else
2671 /* This TLS symbol is global. We emit a
2672 relocation to fixup the tls offset at load
2673 time. */
2674 rela.r_info =
2675 ELFNN_R_INFO (indx, R_KVX_64_DTPOFF);
2676 rela.r_addend = 0;
2677 rela.r_offset =
2678 (globals->root.sgot->output_section->vma
2679 + globals->root.sgot->output_offset + off
2680 + GOT_ENTRY_SIZE);
2682 loc = globals->root.srelgot->contents;
2683 loc += globals->root.srelgot->reloc_count++
2684 * RELOC_SIZE (globals);
2685 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
2686 bfd_put_NN (output_bfd, (bfd_vma) 0,
2687 globals->root.sgot->contents + off
2688 + GOT_ENTRY_SIZE);
2691 else
2693 bfd_put_NN (output_bfd, (bfd_vma) 1,
2694 globals->root.sgot->contents + off);
2695 bfd_put_NN (output_bfd,
2696 relocation - dtpoff_base (info),
2697 globals->root.sgot->contents + off
2698 + GOT_ENTRY_SIZE);
2701 symbol_got_offset_mark (input_bfd, h, r_symndx);
2703 break;
2705 case BFD_RELOC_KVX_S37_TLS_IE_LO10:
2706 case BFD_RELOC_KVX_S37_TLS_IE_UP27:
2708 case BFD_RELOC_KVX_S43_TLS_IE_LO10:
2709 case BFD_RELOC_KVX_S43_TLS_IE_UP27:
2710 case BFD_RELOC_KVX_S43_TLS_IE_EX6:
2711 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
2713 bool need_relocs = false;
2714 bfd_byte *loc;
2715 int indx;
2716 bfd_vma off;
2718 off = symbol_got_offset (input_bfd, h, r_symndx);
2720 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2722 need_relocs =
2723 (bfd_link_pic (info) || indx != 0) &&
2724 (h == NULL
2725 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2726 || h->root.type != bfd_link_hash_undefweak);
2728 BFD_ASSERT (globals->root.srelgot != NULL);
2730 if (need_relocs)
2732 Elf_Internal_Rela rela;
2734 if (indx == 0)
2735 rela.r_addend = relocation - dtpoff_base (info);
2736 else
2737 rela.r_addend = 0;
2739 rela.r_info = ELFNN_R_INFO (indx, R_KVX_64_TPOFF);
2740 rela.r_offset = globals->root.sgot->output_section->vma +
2741 globals->root.sgot->output_offset + off;
2743 loc = globals->root.srelgot->contents;
2744 loc += globals->root.srelgot->reloc_count++
2745 * RELOC_SIZE (htab);
2747 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
2749 bfd_put_NN (output_bfd, rela.r_addend,
2750 globals->root.sgot->contents + off);
2752 else
2753 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
2754 globals->root.sgot->contents + off);
2756 symbol_got_offset_mark (input_bfd, h, r_symndx);
2758 break;
2760 default:
2761 break;
2764 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2765 because such sections are not SEC_ALLOC and thus ld.so will
2766 not process them. */
2767 if (unresolved_reloc
2768 && !((input_section->flags & SEC_DEBUGGING) != 0
2769 && h->def_dynamic)
2770 && _bfd_elf_section_offset (output_bfd, info, input_section,
2771 +rel->r_offset) != (bfd_vma) - 1)
2773 (*_bfd_error_handler)
2774 /* xgettext:c-format */
2775 (_("%pB(%pA+%#" PRIx64 "): "
2776 "unresolvable %s relocation against symbol `%s'"),
2777 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
2778 h->root.root.string);
2779 return false;
2782 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
2784 switch (r)
2786 case bfd_reloc_overflow:
2787 (*info->callbacks->reloc_overflow)
2788 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
2789 input_bfd, input_section, rel->r_offset);
2791 /* Original aarch64 code had a check for alignement correctness */
2792 break;
2794 case bfd_reloc_undefined:
2795 (*info->callbacks->undefined_symbol)
2796 (info, name, input_bfd, input_section, rel->r_offset, true);
2797 break;
2799 case bfd_reloc_outofrange:
2800 error_message = _("out of range");
2801 goto common_error;
2803 case bfd_reloc_notsupported:
2804 error_message = _("unsupported relocation");
2805 goto common_error;
2807 case bfd_reloc_dangerous:
2808 /* error_message should already be set. */
2809 goto common_error;
2811 default:
2812 error_message = _("unknown error");
2813 /* Fall through. */
2815 common_error:
2816 BFD_ASSERT (error_message != NULL);
2817 (*info->callbacks->reloc_dangerous)
2818 (info, error_message, input_bfd, input_section, rel->r_offset);
2819 break;
2823 if (!save_addend)
2824 addend = 0;
2827 return true;
2830 /* Set the right machine number. */
2832 static bool
2833 elfNN_kvx_object_p (bfd *abfd)
2835 /* must be coherent with default arch in cpu-kvx.c */
2836 int e_set = bfd_mach_kv3_1;
2838 if (elf_elfheader (abfd)->e_machine == EM_KVX)
2840 int e_core = elf_elfheader (abfd)->e_flags & ELF_KVX_CORE_MASK;
2841 switch(e_core)
2843 #if ARCH_SIZE == 64
2844 case ELF_KVX_CORE_KV3_1 : e_set = bfd_mach_kv3_1_64; break;
2845 case ELF_KVX_CORE_KV3_2 : e_set = bfd_mach_kv3_2_64; break;
2846 case ELF_KVX_CORE_KV4_1 : e_set = bfd_mach_kv4_1_64; break;
2847 #else
2848 case ELF_KVX_CORE_KV3_1 : e_set = bfd_mach_kv3_1; break;
2849 case ELF_KVX_CORE_KV3_2 : e_set = bfd_mach_kv3_2; break;
2850 case ELF_KVX_CORE_KV4_1 : e_set = bfd_mach_kv4_1; break;
2851 #endif
2852 default:
2853 (*_bfd_error_handler)(_("%s: Bad ELF id: `%d'"),
2854 abfd->filename, e_core);
2857 return bfd_default_set_arch_mach (abfd, bfd_arch_kvx, e_set);
2860 /* Function to keep KVX specific flags in the ELF header. */
2862 static bool
2863 elfNN_kvx_set_private_flags (bfd *abfd, flagword flags)
2865 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
2868 else
2870 elf_elfheader (abfd)->e_flags = flags;
2871 elf_flags_init (abfd) = true;
2874 return true;
2877 /* Merge backend specific data from an object file to the output
2878 object file when linking. */
2880 static bool
2881 elfNN_kvx_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2883 bfd *obfd = info->output_bfd;
2884 flagword out_flags;
2885 flagword in_flags;
2886 bool flags_compatible = true;
2887 asection *sec;
2889 /* Check if we have the same endianess. */
2890 if (!_bfd_generic_verify_endian_match (ibfd, info))
2891 return false;
2893 if (!is_kvx_elf (ibfd) || !is_kvx_elf (obfd))
2894 return true;
2896 /* The input BFD must have had its flags initialised. */
2897 /* The following seems bogus to me -- The flags are initialized in
2898 the assembler but I don't think an elf_flags_init field is
2899 written into the object. */
2900 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2902 if (bfd_get_arch_size (ibfd) != bfd_get_arch_size (obfd))
2904 const char *msg;
2906 if (bfd_get_arch_size (ibfd) == 32
2907 && bfd_get_arch_size (obfd) == 64)
2908 msg = _("%s: compiled as 32-bit object and %s is 64-bit");
2909 else if (bfd_get_arch_size (ibfd) == 64
2910 && bfd_get_arch_size (obfd) == 32)
2911 msg = _("%s: compiled as 64-bit object and %s is 32-bit");
2912 else
2913 msg = _("%s: object size does not match that of target %s");
2915 (*_bfd_error_handler) (msg, bfd_get_filename (ibfd),
2916 bfd_get_filename (obfd));
2917 bfd_set_error (bfd_error_wrong_format);
2918 return false;
2921 in_flags = elf_elfheader (ibfd)->e_flags;
2922 out_flags = elf_elfheader (obfd)->e_flags;
2924 if (!elf_flags_init (obfd))
2926 /* If the input is the default architecture and had the default
2927 flags then do not bother setting the flags for the output
2928 architecture, instead allow future merges to do this. If no
2929 future merges ever set these flags then they will retain their
2930 uninitialised values, which surprise surprise, correspond
2931 to the default values. */
2932 if (bfd_get_arch_info (ibfd)->the_default
2933 && elf_elfheader (ibfd)->e_flags == 0)
2934 return true;
2936 elf_flags_init (obfd) = true;
2937 elf_elfheader (obfd)->e_flags = in_flags;
2939 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2940 && bfd_get_arch_info (obfd)->the_default)
2941 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2942 bfd_get_mach (ibfd));
2944 return true;
2947 /* Identical flags must be compatible. */
2948 if (in_flags == out_flags)
2949 return true;
2951 /* Check to see if the input BFD actually contains any sections. If
2952 not, its flags may not have been initialised either, but it
2953 cannot actually cause any incompatiblity. Do not short-circuit
2954 dynamic objects; their section list may be emptied by
2955 elf_link_add_object_symbols.
2957 Also check to see if there are no code sections in the input.
2958 In this case there is no need to check for code specific flags.
2959 XXX - do we need to worry about floating-point format compatability
2960 in data sections ? */
2961 if (!(ibfd->flags & DYNAMIC))
2963 bool null_input_bfd = true;
2964 bool only_data_sections = true;
2966 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2968 if ((bfd_section_flags (sec)
2969 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2970 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2971 only_data_sections = false;
2973 null_input_bfd = false;
2974 break;
2977 if (null_input_bfd || only_data_sections)
2978 return true;
2980 return flags_compatible;
2983 /* Display the flags field. */
2985 static bool
2986 elfNN_kvx_print_private_bfd_data (bfd *abfd, void *ptr)
2988 FILE *file = (FILE *) ptr;
2989 unsigned long flags;
2991 BFD_ASSERT (abfd != NULL && ptr != NULL);
2993 /* Print normal ELF private data. */
2994 _bfd_elf_print_private_bfd_data (abfd, ptr);
2996 flags = elf_elfheader (abfd)->e_flags;
2997 /* Ignore init flag - it may not be set, despite the flags field
2998 containing valid data. */
3000 /* xgettext:c-format */
3001 fprintf (file, _("Private flags = 0x%lx : "), elf_elfheader (abfd)->e_flags);
3002 if((flags & ELF_KVX_ABI_64B_ADDR_BIT) == ELF_KVX_ABI_64B_ADDR_BIT)
3004 if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV3_1))
3005 fprintf (file, _("Coolidge (kv3) V1 64 bits"));
3006 else if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV3_2))
3007 fprintf (file, _("Coolidge (kv3) V2 64 bits"));
3008 else if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV4_1))
3009 fprintf (file, _("Coolidge (kv4) V1 64 bits"));
3011 else
3013 if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV3_1))
3014 fprintf (file, _("Coolidge (kv3) V1 32 bits"));
3015 else if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV3_2))
3016 fprintf (file, _("Coolidge (kv3) V2 32 bits"));
3017 else if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV4_1))
3018 fprintf (file, _("Coolidge (kv4) V1 32 bits"));
3021 fputc ('\n', file);
3023 return true;
3026 /* Adjust a symbol defined by a dynamic object and referenced by a
3027 regular object. The current definition is in some section of the
3028 dynamic object, but we're not including those sections. We have to
3029 change the definition to something the rest of the link can
3030 understand. */
3032 static bool
3033 elfNN_kvx_adjust_dynamic_symbol (struct bfd_link_info *info,
3034 struct elf_link_hash_entry *h)
3036 struct elf_kvx_link_hash_table *htab;
3037 asection *s;
3039 /* If this is a function, put it in the procedure linkage table. We
3040 will fill in the contents of the procedure linkage table later,
3041 when we know the address of the .got section. */
3042 if (h->type == STT_FUNC || h->needs_plt)
3044 if (h->plt.refcount <= 0
3045 || ((SYMBOL_CALLS_LOCAL (info, h)
3046 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3047 && h->root.type == bfd_link_hash_undefweak))))
3049 /* This case can occur if we saw a CALL26 reloc in
3050 an input file, but the symbol wasn't referred to
3051 by a dynamic object or all references were
3052 garbage collected. In which case we can end up
3053 resolving. */
3054 h->plt.offset = (bfd_vma) - 1;
3055 h->needs_plt = 0;
3058 return true;
3060 else
3061 /* Otherwise, reset to -1. */
3062 h->plt.offset = (bfd_vma) - 1;
3065 /* If this is a weak symbol, and there is a real definition, the
3066 processor independent code will have arranged for us to see the
3067 real definition first, and we can just use the same value. */
3068 if (h->is_weakalias)
3070 struct elf_link_hash_entry *def = weakdef (h);
3071 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
3072 h->root.u.def.section = def->root.u.def.section;
3073 h->root.u.def.value = def->root.u.def.value;
3074 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
3075 h->non_got_ref = def->non_got_ref;
3076 return true;
3079 /* If we are creating a shared library, we must presume that the
3080 only references to the symbol are via the global offset table.
3081 For such cases we need not do anything here; the relocations will
3082 be handled correctly by relocate_section. */
3083 if (bfd_link_pic (info))
3084 return true;
3086 /* If there are no references to this symbol that do not use the
3087 GOT, we don't need to generate a copy reloc. */
3088 if (!h->non_got_ref)
3089 return true;
3091 /* If -z nocopyreloc was given, we won't generate them either. */
3092 if (info->nocopyreloc)
3094 h->non_got_ref = 0;
3095 return true;
3098 /* We must allocate the symbol in our .dynbss section, which will
3099 become part of the .bss section of the executable. There will be
3100 an entry for this symbol in the .dynsym section. The dynamic
3101 object will contain position independent code, so all references
3102 from the dynamic object to this symbol will go through the global
3103 offset table. The dynamic linker will use the .dynsym entry to
3104 determine the address it must put in the global offset table, so
3105 both the dynamic object and the regular object will refer to the
3106 same memory location for the variable. */
3108 htab = elf_kvx_hash_table (info);
3110 /* We must generate a R_KVX_COPY reloc to tell the dynamic linker
3111 to copy the initial value out of the dynamic object and into the
3112 runtime process image. */
3113 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3115 htab->srelbss->size += RELOC_SIZE (htab);
3116 h->needs_copy = 1;
3119 s = htab->sdynbss;
3121 return _bfd_elf_adjust_dynamic_copy (info, h, s);
3124 static bool
3125 elfNN_kvx_allocate_local_symbols (bfd *abfd, unsigned number)
3127 struct elf_kvx_local_symbol *locals;
3128 locals = elf_kvx_locals (abfd);
3129 if (locals == NULL)
3131 locals = (struct elf_kvx_local_symbol *)
3132 bfd_zalloc (abfd, number * sizeof (struct elf_kvx_local_symbol));
3133 if (locals == NULL)
3134 return false;
3135 elf_kvx_locals (abfd) = locals;
3137 return true;
3140 /* Create the .got section to hold the global offset table. */
3142 static bool
3143 kvx_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
3145 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3146 flagword flags;
3147 asection *s;
3148 struct elf_link_hash_entry *h;
3149 struct elf_link_hash_table *htab = elf_hash_table (info);
3151 /* This function may be called more than once. */
3152 s = bfd_get_linker_section (abfd, ".got");
3153 if (s != NULL)
3154 return true;
3156 flags = bed->dynamic_sec_flags;
3158 s = bfd_make_section_anyway_with_flags (abfd,
3159 (bed->rela_plts_and_copies_p
3160 ? ".rela.got" : ".rel.got"),
3161 (bed->dynamic_sec_flags
3162 | SEC_READONLY));
3163 if (s == NULL
3164 || !bfd_set_section_alignment (s, bed->s->log_file_align))
3166 return false;
3167 htab->srelgot = s;
3169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3170 if (s == NULL
3171 || !bfd_set_section_alignment (s, bed->s->log_file_align))
3172 return false;
3173 htab->sgot = s;
3174 htab->sgot->size += GOT_ENTRY_SIZE;
3176 if (bed->want_got_sym)
3178 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
3179 (or .got.plt) section. We don't do this in the linker script
3180 because we don't want to define the symbol if we are not creating
3181 a global offset table. */
3182 h = _bfd_elf_define_linkage_sym (abfd, info, s,
3183 "_GLOBAL_OFFSET_TABLE_");
3184 elf_hash_table (info)->hgot = h;
3185 if (h == NULL)
3186 return false;
3189 if (bed->want_got_plt)
3191 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
3192 if (s == NULL
3193 || !bfd_set_section_alignment (s,
3194 bed->s->log_file_align))
3195 return false;
3196 htab->sgotplt = s;
3199 /* The first bit of the global offset table is the header. */
3200 s->size += bed->got_header_size;
3202 /* we still need to handle got content when doing static link with PIC */
3203 if (bfd_link_executable (info) && !bfd_link_pic (info)) {
3204 htab->dynobj = abfd;
3207 return true;
3210 /* Look through the relocs for a section during the first phase. */
3212 static bool
3213 elfNN_kvx_check_relocs (bfd *abfd, struct bfd_link_info *info,
3214 asection *sec, const Elf_Internal_Rela *relocs)
3216 Elf_Internal_Shdr *symtab_hdr;
3217 struct elf_link_hash_entry **sym_hashes;
3218 const Elf_Internal_Rela *rel;
3219 const Elf_Internal_Rela *rel_end;
3220 asection *sreloc;
3222 struct elf_kvx_link_hash_table *htab;
3224 if (bfd_link_relocatable (info))
3225 return true;
3227 BFD_ASSERT (is_kvx_elf (abfd));
3229 htab = elf_kvx_hash_table (info);
3230 sreloc = NULL;
3232 symtab_hdr = &elf_symtab_hdr (abfd);
3233 sym_hashes = elf_sym_hashes (abfd);
3235 rel_end = relocs + sec->reloc_count;
3236 for (rel = relocs; rel < rel_end; rel++)
3238 struct elf_link_hash_entry *h;
3239 unsigned int r_symndx;
3240 unsigned int r_type;
3241 bfd_reloc_code_real_type bfd_r_type;
3242 Elf_Internal_Sym *isym;
3244 r_symndx = ELFNN_R_SYM (rel->r_info);
3245 r_type = ELFNN_R_TYPE (rel->r_info);
3247 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
3249 /* xgettext:c-format */
3250 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
3251 return false;
3254 if (r_symndx < symtab_hdr->sh_info)
3256 /* A local symbol. */
3257 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
3258 abfd, r_symndx);
3259 if (isym == NULL)
3260 return false;
3262 h = NULL;
3264 else
3266 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
3267 while (h->root.type == bfd_link_hash_indirect
3268 || h->root.type == bfd_link_hash_warning)
3269 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3272 /* Could be done earlier, if h were already available. */
3273 bfd_r_type = kvx_tls_transition (abfd, info, r_type, h, r_symndx);
3275 if (h != NULL)
3277 /* Create the ifunc sections for static executables. If we
3278 never see an indirect function symbol nor we are building
3279 a static executable, those sections will be empty and
3280 won't appear in output. */
3281 switch (bfd_r_type)
3283 default:
3284 break;
3287 /* It is referenced by a non-shared object. */
3288 h->ref_regular = 1;
3291 switch (bfd_r_type)
3294 case BFD_RELOC_KVX_S43_LO10:
3295 case BFD_RELOC_KVX_S43_UP27:
3296 case BFD_RELOC_KVX_S43_EX6:
3298 case BFD_RELOC_KVX_S37_LO10:
3299 case BFD_RELOC_KVX_S37_UP27:
3301 case BFD_RELOC_KVX_S64_LO10:
3302 case BFD_RELOC_KVX_S64_UP27:
3303 case BFD_RELOC_KVX_S64_EX27:
3305 case BFD_RELOC_KVX_32:
3306 case BFD_RELOC_KVX_64:
3308 /* We don't need to handle relocs into sections not going into
3309 the "real" output. */
3310 if ((sec->flags & SEC_ALLOC) == 0)
3311 break;
3313 if (h != NULL)
3315 if (!bfd_link_pic (info))
3316 h->non_got_ref = 1;
3318 h->plt.refcount += 1;
3319 h->pointer_equality_needed = 1;
3322 /* No need to do anything if we're not creating a shared
3323 object. */
3324 if (! bfd_link_pic (info))
3325 break;
3328 struct elf_dyn_relocs *p;
3329 struct elf_dyn_relocs **head;
3331 /* We must copy these reloc types into the output file.
3332 Create a reloc section in dynobj and make room for
3333 this reloc. */
3334 if (sreloc == NULL)
3336 if (htab->root.dynobj == NULL)
3337 htab->root.dynobj = abfd;
3339 sreloc = _bfd_elf_make_dynamic_reloc_section
3340 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ true);
3342 if (sreloc == NULL)
3343 return false;
3346 /* If this is a global symbol, we count the number of
3347 relocations we need for this symbol. */
3348 if (h != NULL)
3350 head = &h->dyn_relocs;
3352 else
3354 /* Track dynamic relocs needed for local syms too.
3355 We really need local syms available to do this
3356 easily. Oh well. */
3358 asection *s;
3359 void **vpp;
3361 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
3362 abfd, r_symndx);
3363 if (isym == NULL)
3364 return false;
3366 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3367 if (s == NULL)
3368 s = sec;
3370 /* Beware of type punned pointers vs strict aliasing
3371 rules. */
3372 vpp = &(elf_section_data (s)->local_dynrel);
3373 head = (struct elf_dyn_relocs **) vpp;
3376 p = *head;
3377 if (p == NULL || p->sec != sec)
3379 bfd_size_type amt = sizeof *p;
3380 p = ((struct elf_dyn_relocs *)
3381 bfd_zalloc (htab->root.dynobj, amt));
3382 if (p == NULL)
3383 return false;
3384 p->next = *head;
3385 *head = p;
3386 p->sec = sec;
3389 p->count += 1;
3392 break;
3394 case BFD_RELOC_KVX_S37_GOT_LO10:
3395 case BFD_RELOC_KVX_S37_GOT_UP27:
3397 case BFD_RELOC_KVX_S37_GOTOFF_LO10:
3398 case BFD_RELOC_KVX_S37_GOTOFF_UP27:
3400 case BFD_RELOC_KVX_S43_GOT_LO10:
3401 case BFD_RELOC_KVX_S43_GOT_UP27:
3402 case BFD_RELOC_KVX_S43_GOT_EX6:
3404 case BFD_RELOC_KVX_S43_GOTOFF_LO10:
3405 case BFD_RELOC_KVX_S43_GOTOFF_UP27:
3406 case BFD_RELOC_KVX_S43_GOTOFF_EX6:
3408 case BFD_RELOC_KVX_S37_TLS_GD_LO10:
3409 case BFD_RELOC_KVX_S37_TLS_GD_UP27:
3411 case BFD_RELOC_KVX_S43_TLS_GD_LO10:
3412 case BFD_RELOC_KVX_S43_TLS_GD_UP27:
3413 case BFD_RELOC_KVX_S43_TLS_GD_EX6:
3415 case BFD_RELOC_KVX_S37_TLS_IE_LO10:
3416 case BFD_RELOC_KVX_S37_TLS_IE_UP27:
3418 case BFD_RELOC_KVX_S43_TLS_IE_LO10:
3419 case BFD_RELOC_KVX_S43_TLS_IE_UP27:
3420 case BFD_RELOC_KVX_S43_TLS_IE_EX6:
3422 case BFD_RELOC_KVX_S37_TLS_LD_LO10:
3423 case BFD_RELOC_KVX_S37_TLS_LD_UP27:
3425 case BFD_RELOC_KVX_S43_TLS_LD_LO10:
3426 case BFD_RELOC_KVX_S43_TLS_LD_UP27:
3427 case BFD_RELOC_KVX_S43_TLS_LD_EX6:
3429 unsigned got_type;
3430 unsigned old_got_type;
3432 got_type = kvx_reloc_got_type (bfd_r_type);
3434 if (h)
3436 h->got.refcount += 1;
3437 old_got_type = elf_kvx_hash_entry (h)->got_type;
3439 else
3441 struct elf_kvx_local_symbol *locals;
3443 if (!elfNN_kvx_allocate_local_symbols
3444 (abfd, symtab_hdr->sh_info))
3445 return false;
3447 locals = elf_kvx_locals (abfd);
3448 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
3449 locals[r_symndx].got_refcount += 1;
3450 old_got_type = locals[r_symndx].got_type;
3453 /* We will already have issued an error message if there
3454 is a TLS/non-TLS mismatch, based on the symbol type.
3455 So just combine any TLS types needed. */
3456 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
3457 && got_type != GOT_NORMAL)
3458 got_type |= old_got_type;
3460 /* If the symbol is accessed by both IE and GD methods, we
3461 are able to relax. Turn off the GD flag, without
3462 messing up with any other kind of TLS types that may be
3463 involved. */
3464 /* Disabled untested and unused TLS */
3465 /* if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type)) */
3466 /* got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD); */
3468 if (old_got_type != got_type)
3470 if (h != NULL)
3471 elf_kvx_hash_entry (h)->got_type = got_type;
3472 else
3474 struct elf_kvx_local_symbol *locals;
3475 locals = elf_kvx_locals (abfd);
3476 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
3477 locals[r_symndx].got_type = got_type;
3481 if (htab->root.dynobj == NULL)
3482 htab->root.dynobj = abfd;
3483 if (! kvx_elf_create_got_section (htab->root.dynobj, info))
3484 return false;
3485 break;
3488 case BFD_RELOC_KVX_S64_GOTADDR_LO10:
3489 case BFD_RELOC_KVX_S64_GOTADDR_UP27:
3490 case BFD_RELOC_KVX_S64_GOTADDR_EX27:
3492 case BFD_RELOC_KVX_S43_GOTADDR_LO10:
3493 case BFD_RELOC_KVX_S43_GOTADDR_UP27:
3494 case BFD_RELOC_KVX_S43_GOTADDR_EX6:
3496 case BFD_RELOC_KVX_S37_GOTADDR_LO10:
3497 case BFD_RELOC_KVX_S37_GOTADDR_UP27:
3499 if (htab->root.dynobj == NULL)
3500 htab->root.dynobj = abfd;
3501 if (! kvx_elf_create_got_section (htab->root.dynobj, info))
3502 return false;
3503 break;
3505 case BFD_RELOC_KVX_PCREL27:
3506 case BFD_RELOC_KVX_PCREL17:
3507 /* If this is a local symbol then we resolve it
3508 directly without creating a PLT entry. */
3509 if (h == NULL)
3510 continue;
3512 h->needs_plt = 1;
3513 if (h->plt.refcount <= 0)
3514 h->plt.refcount = 1;
3515 else
3516 h->plt.refcount += 1;
3517 break;
3519 default:
3520 break;
3524 return true;
3527 static bool
3528 elfNN_kvx_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
3530 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
3532 if (!_bfd_elf_init_file_header (abfd, link_info))
3533 return false;
3535 i_ehdrp = elf_elfheader (abfd);
3536 i_ehdrp->e_ident[EI_ABIVERSION] = KVX_ELF_ABI_VERSION;
3537 return true;
3540 static enum elf_reloc_type_class
3541 elfNN_kvx_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3542 const asection *rel_sec ATTRIBUTE_UNUSED,
3543 const Elf_Internal_Rela *rela)
3545 switch ((int) ELFNN_R_TYPE (rela->r_info))
3547 case R_KVX_RELATIVE:
3548 return reloc_class_relative;
3549 case R_KVX_JMP_SLOT:
3550 return reloc_class_plt;
3551 case R_KVX_COPY:
3552 return reloc_class_copy;
3553 default:
3554 return reloc_class_normal;
3558 /* A structure used to record a list of sections, independently
3559 of the next and prev fields in the asection structure. */
3560 typedef struct section_list
3562 asection *sec;
3563 struct section_list *next;
3564 struct section_list *prev;
3566 section_list;
3568 typedef struct
3570 void *finfo;
3571 struct bfd_link_info *info;
3572 asection *sec;
3573 int sec_shndx;
3574 int (*func) (void *, const char *, Elf_Internal_Sym *,
3575 asection *, struct elf_link_hash_entry *);
3576 } output_arch_syminfo;
3578 /* Output a single local symbol for a generated stub. */
3580 static bool
3581 elfNN_kvx_output_stub_sym (output_arch_syminfo *osi, const char *name,
3582 bfd_vma offset, bfd_vma size)
3584 Elf_Internal_Sym sym;
3586 sym.st_value = (osi->sec->output_section->vma
3587 + osi->sec->output_offset + offset);
3588 sym.st_size = size;
3589 sym.st_other = 0;
3590 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3591 sym.st_shndx = osi->sec_shndx;
3592 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
3595 static bool
3596 kvx_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3598 struct elf_kvx_stub_hash_entry *stub_entry;
3599 asection *stub_sec;
3600 bfd_vma addr;
3601 char *stub_name;
3602 output_arch_syminfo *osi;
3604 /* Massage our args to the form they really have. */
3605 stub_entry = (struct elf_kvx_stub_hash_entry *) gen_entry;
3606 osi = (output_arch_syminfo *) in_arg;
3608 stub_sec = stub_entry->stub_sec;
3610 /* Ensure this stub is attached to the current section being
3611 processed. */
3612 if (stub_sec != osi->sec)
3613 return true;
3615 addr = (bfd_vma) stub_entry->stub_offset;
3617 stub_name = stub_entry->output_name;
3619 switch (stub_entry->stub_type)
3621 case kvx_stub_long_branch:
3622 if (!elfNN_kvx_output_stub_sym
3623 (osi, stub_name, addr, sizeof (elfNN_kvx_long_branch_stub)))
3624 return false;
3625 break;
3627 default:
3628 abort ();
3631 return true;
3634 /* Output mapping symbols for linker generated sections. */
3636 static bool
3637 elfNN_kvx_output_arch_local_syms (bfd *output_bfd,
3638 struct bfd_link_info *info,
3639 void *finfo,
3640 int (*func) (void *, const char *,
3641 Elf_Internal_Sym *,
3642 asection *,
3643 struct elf_link_hash_entry *))
3645 output_arch_syminfo osi;
3646 struct elf_kvx_link_hash_table *htab;
3648 htab = elf_kvx_hash_table (info);
3650 osi.finfo = finfo;
3651 osi.info = info;
3652 osi.func = func;
3654 /* Long calls stubs. */
3655 if (htab->stub_bfd && htab->stub_bfd->sections)
3657 asection *stub_sec;
3659 for (stub_sec = htab->stub_bfd->sections;
3660 stub_sec != NULL; stub_sec = stub_sec->next)
3662 /* Ignore non-stub sections. */
3663 if (!strstr (stub_sec->name, STUB_SUFFIX))
3664 continue;
3666 osi.sec = stub_sec;
3668 osi.sec_shndx = _bfd_elf_section_from_bfd_section
3669 (output_bfd, osi.sec->output_section);
3671 bfd_hash_traverse (&htab->stub_hash_table, kvx_map_one_stub,
3672 &osi);
3676 /* Finally, output mapping symbols for the PLT. */
3677 if (!htab->root.splt || htab->root.splt->size == 0)
3678 return true;
3680 osi.sec_shndx = _bfd_elf_section_from_bfd_section
3681 (output_bfd, htab->root.splt->output_section);
3682 osi.sec = htab->root.splt;
3684 return true;
3688 /* Allocate target specific section data. */
3690 static bool
3691 elfNN_kvx_new_section_hook (bfd *abfd, asection *sec)
3693 if (!sec->used_by_bfd)
3695 _kvx_elf_section_data *sdata;
3696 bfd_size_type amt = sizeof (*sdata);
3698 sdata = bfd_zalloc (abfd, amt);
3699 if (sdata == NULL)
3700 return false;
3701 sec->used_by_bfd = sdata;
3704 return _bfd_elf_new_section_hook (abfd, sec);
3707 /* Create dynamic sections. This is different from the ARM backend in that
3708 the got, plt, gotplt and their relocation sections are all created in the
3709 standard part of the bfd elf backend. */
3711 static bool
3712 elfNN_kvx_create_dynamic_sections (bfd *dynobj,
3713 struct bfd_link_info *info)
3715 struct elf_kvx_link_hash_table *htab;
3717 /* We need to create .got section. */
3718 if (!kvx_elf_create_got_section (dynobj, info))
3719 return false;
3721 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3722 return false;
3724 htab = elf_kvx_hash_table (info);
3725 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3726 if (!bfd_link_pic (info))
3727 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
3729 if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss))
3730 abort ();
3732 return true;
3736 /* Allocate space in .plt, .got and associated reloc sections for
3737 dynamic relocs. */
3739 static bool
3740 elfNN_kvx_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
3742 struct bfd_link_info *info;
3743 struct elf_kvx_link_hash_table *htab;
3744 struct elf_dyn_relocs *p;
3746 /* An example of a bfd_link_hash_indirect symbol is versioned
3747 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
3748 -> __gxx_personality_v0(bfd_link_hash_defined)
3750 There is no need to process bfd_link_hash_indirect symbols here
3751 because we will also be presented with the concrete instance of
3752 the symbol and elfNN_kvx_copy_indirect_symbol () will have been
3753 called to copy all relevant data from the generic to the concrete
3754 symbol instance. */
3755 if (h->root.type == bfd_link_hash_indirect)
3756 return true;
3758 if (h->root.type == bfd_link_hash_warning)
3759 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3761 info = (struct bfd_link_info *) inf;
3762 htab = elf_kvx_hash_table (info);
3764 if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
3766 /* Make sure this symbol is output as a dynamic symbol.
3767 Undefined weak syms won't yet be marked as dynamic. */
3768 if (h->dynindx == -1 && !h->forced_local)
3770 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3771 return false;
3774 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
3776 asection *s = htab->root.splt;
3778 /* If this is the first .plt entry, make room for the special
3779 first entry. */
3780 if (s->size == 0)
3781 s->size += htab->plt_header_size;
3783 h->plt.offset = s->size;
3785 /* If this symbol is not defined in a regular file, and we are
3786 not generating a shared library, then set the symbol to this
3787 location in the .plt. This is required to make function
3788 pointers compare as equal between the normal executable and
3789 the shared library. */
3790 if (!bfd_link_pic (info) && !h->def_regular)
3792 h->root.u.def.section = s;
3793 h->root.u.def.value = h->plt.offset;
3796 /* Make room for this entry. For now we only create the
3797 small model PLT entries. We later need to find a way
3798 of relaxing into these from the large model PLT entries. */
3799 s->size += PLT_SMALL_ENTRY_SIZE;
3801 /* We also need to make an entry in the .got.plt section, which
3802 will be placed in the .got section by the linker script. */
3803 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
3805 /* We also need to make an entry in the .rela.plt section. */
3806 htab->root.srelplt->size += RELOC_SIZE (htab);
3808 /* We need to ensure that all GOT entries that serve the PLT
3809 are consecutive with the special GOT slots [0] [1] and
3810 [2]. Any addtional relocations must be placed after the
3811 PLT related entries. We abuse the reloc_count such that
3812 during sizing we adjust reloc_count to indicate the
3813 number of PLT related reserved entries. In subsequent
3814 phases when filling in the contents of the reloc entries,
3815 PLT related entries are placed by computing their PLT
3816 index (0 .. reloc_count). While other none PLT relocs are
3817 placed at the slot indicated by reloc_count and
3818 reloc_count is updated. */
3820 htab->root.srelplt->reloc_count++;
3822 else
3824 h->plt.offset = (bfd_vma) - 1;
3825 h->needs_plt = 0;
3828 else
3830 h->plt.offset = (bfd_vma) - 1;
3831 h->needs_plt = 0;
3834 if (h->got.refcount > 0)
3836 bool dyn;
3837 unsigned got_type = elf_kvx_hash_entry (h)->got_type;
3839 h->got.offset = (bfd_vma) - 1;
3841 dyn = htab->root.dynamic_sections_created;
3843 /* Make sure this symbol is output as a dynamic symbol.
3844 Undefined weak syms won't yet be marked as dynamic. */
3845 if (dyn && h->dynindx == -1 && !h->forced_local)
3847 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3848 return false;
3851 if (got_type == GOT_UNKNOWN)
3853 (*_bfd_error_handler)
3854 (_("relocation against `%s' has faulty GOT type "),
3855 (h) ? h->root.root.string : "a local symbol");
3856 bfd_set_error (bfd_error_bad_value);
3857 return false;
3859 else if (got_type == GOT_NORMAL)
3861 h->got.offset = htab->root.sgot->size;
3862 htab->root.sgot->size += GOT_ENTRY_SIZE;
3863 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3864 || h->root.type != bfd_link_hash_undefweak)
3865 && (bfd_link_pic (info)
3866 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
3868 htab->root.srelgot->size += RELOC_SIZE (htab);
3871 else
3873 int indx;
3875 /* Any of these will require 2 GOT slots because
3876 * they use __tls_get_addr() */
3877 if (got_type & (GOT_TLS_GD | GOT_TLS_LD))
3879 h->got.offset = htab->root.sgot->size;
3880 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
3883 if (got_type & GOT_TLS_IE)
3885 h->got.offset = htab->root.sgot->size;
3886 htab->root.sgot->size += GOT_ENTRY_SIZE;
3889 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3890 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3891 || h->root.type != bfd_link_hash_undefweak)
3892 && (bfd_link_pic (info)
3893 || indx != 0
3894 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
3896 /* Only the GD case requires 2 relocations. */
3897 if (got_type & GOT_TLS_GD)
3898 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
3900 /* LD needs a DTPMOD reloc, IE needs a DTPOFF. */
3901 if (got_type & (GOT_TLS_LD | GOT_TLS_IE))
3902 htab->root.srelgot->size += RELOC_SIZE (htab);
3906 else
3908 h->got.offset = (bfd_vma) - 1;
3911 if (h->dyn_relocs == NULL)
3912 return true;
3914 /* In the shared -Bsymbolic case, discard space allocated for
3915 dynamic pc-relative relocs against symbols which turn out to be
3916 defined in regular objects. For the normal shared case, discard
3917 space for pc-relative relocs that have become local due to symbol
3918 visibility changes. */
3920 if (bfd_link_pic (info))
3922 /* Relocs that use pc_count are those that appear on a call
3923 insn, or certain REL relocs that can generated via assembly.
3924 We want calls to protected symbols to resolve directly to the
3925 function rather than going via the plt. If people want
3926 function pointer comparisons to work as expected then they
3927 should avoid writing weird assembly. */
3928 if (SYMBOL_CALLS_LOCAL (info, h))
3930 struct elf_dyn_relocs **pp;
3932 for (pp = &h->dyn_relocs; (p = *pp) != NULL;)
3934 p->count -= p->pc_count;
3935 p->pc_count = 0;
3936 if (p->count == 0)
3937 *pp = p->next;
3938 else
3939 pp = &p->next;
3943 /* Also discard relocs on undefined weak syms with non-default
3944 visibility. */
3945 if (h->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
3947 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3948 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
3949 h->dyn_relocs = NULL;
3951 /* Make sure undefined weak symbols are output as a dynamic
3952 symbol in PIEs. */
3953 else if (h->dynindx == -1
3954 && !h->forced_local
3955 && !bfd_elf_link_record_dynamic_symbol (info, h))
3956 return false;
3960 else if (ELIMINATE_COPY_RELOCS)
3962 /* For the non-shared case, discard space for relocs against
3963 symbols which turn out to need copy relocs or are not
3964 dynamic. */
3966 if (!h->non_got_ref
3967 && ((h->def_dynamic
3968 && !h->def_regular)
3969 || (htab->root.dynamic_sections_created
3970 && (h->root.type == bfd_link_hash_undefweak
3971 || h->root.type == bfd_link_hash_undefined))))
3973 /* Make sure this symbol is output as a dynamic symbol.
3974 Undefined weak syms won't yet be marked as dynamic. */
3975 if (h->dynindx == -1
3976 && !h->forced_local
3977 && !bfd_elf_link_record_dynamic_symbol (info, h))
3978 return false;
3980 /* If that succeeded, we know we'll be keeping all the
3981 relocs. */
3982 if (h->dynindx != -1)
3983 goto keep;
3986 h->dyn_relocs = NULL;
3988 keep:;
3991 /* Finally, allocate space. */
3992 for (p = h->dyn_relocs; p != NULL; p = p->next)
3994 asection *sreloc;
3996 sreloc = elf_section_data (p->sec)->sreloc;
3998 BFD_ASSERT (sreloc != NULL);
4000 sreloc->size += p->count * RELOC_SIZE (htab);
4003 return true;
4006 /* Find any dynamic relocs that apply to read-only sections. */
4008 static bool
4009 kvx_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
4011 struct elf_dyn_relocs * p;
4013 for (p = h->dyn_relocs; p != NULL; p = p->next)
4015 asection *s = p->sec;
4017 if (s != NULL && (s->flags & SEC_READONLY) != 0)
4019 struct bfd_link_info *info = (struct bfd_link_info *) inf;
4021 info->flags |= DF_TEXTREL;
4022 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' in "
4023 "read-only section `%pA'\n"),
4024 s->owner, h->root.root.string, s);
4026 /* Not an error, just cut short the traversal. */
4027 return false;
4030 return true;
4033 /* This is the most important function of all . Innocuosly named
4034 though ! */
4035 static bool
4036 elfNN_kvx_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
4037 struct bfd_link_info *info)
4039 struct elf_kvx_link_hash_table *htab;
4040 bfd *dynobj;
4041 asection *s;
4042 bool relocs;
4043 bfd *ibfd;
4045 htab = elf_kvx_hash_table ((info));
4046 dynobj = htab->root.dynobj;
4048 BFD_ASSERT (dynobj != NULL);
4050 if (htab->root.dynamic_sections_created)
4052 if (bfd_link_executable (info) && !info->nointerp)
4054 s = bfd_get_linker_section (dynobj, ".interp");
4055 if (s == NULL)
4056 abort ();
4057 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
4058 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
4062 /* Set up .got offsets for local syms, and space for local dynamic
4063 relocs. */
4064 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
4066 struct elf_kvx_local_symbol *locals = NULL;
4067 Elf_Internal_Shdr *symtab_hdr;
4068 asection *srel;
4069 unsigned int i;
4071 if (!is_kvx_elf (ibfd))
4072 continue;
4074 for (s = ibfd->sections; s != NULL; s = s->next)
4076 struct elf_dyn_relocs *p;
4078 for (p = (struct elf_dyn_relocs *)
4079 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
4081 if (!bfd_is_abs_section (p->sec)
4082 && bfd_is_abs_section (p->sec->output_section))
4084 /* Input section has been discarded, either because
4085 it is a copy of a linkonce section or due to
4086 linker script /DISCARD/, so we'll be discarding
4087 the relocs too. */
4089 else if (p->count != 0)
4091 srel = elf_section_data (p->sec)->sreloc;
4092 srel->size += p->count * RELOC_SIZE (htab);
4093 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
4094 info->flags |= DF_TEXTREL;
4099 locals = elf_kvx_locals (ibfd);
4100 if (!locals)
4101 continue;
4103 symtab_hdr = &elf_symtab_hdr (ibfd);
4104 srel = htab->root.srelgot;
4105 for (i = 0; i < symtab_hdr->sh_info; i++)
4107 locals[i].got_offset = (bfd_vma) - 1;
4108 if (locals[i].got_refcount > 0)
4110 unsigned got_type = locals[i].got_type;
4111 if (got_type & (GOT_TLS_GD | GOT_TLS_LD))
4113 locals[i].got_offset = htab->root.sgot->size;
4114 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
4117 if (got_type & (GOT_NORMAL | GOT_TLS_IE ))
4119 locals[i].got_offset = htab->root.sgot->size;
4120 htab->root.sgot->size += GOT_ENTRY_SIZE;
4123 if (got_type == GOT_UNKNOWN)
4127 if (bfd_link_pic (info))
4129 if (got_type & GOT_TLS_GD)
4130 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
4132 if (got_type & GOT_TLS_IE
4133 || got_type & GOT_TLS_LD
4134 || got_type & GOT_NORMAL)
4135 htab->root.srelgot->size += RELOC_SIZE (htab);
4138 else
4140 locals[i].got_refcount = (bfd_vma) - 1;
4146 /* Allocate global sym .plt and .got entries, and space for global
4147 sym dynamic relocs. */
4148 elf_link_hash_traverse (&htab->root, elfNN_kvx_allocate_dynrelocs,
4149 info);
4151 /* For every jump slot reserved in the sgotplt, reloc_count is
4152 incremented. However, when we reserve space for TLS descriptors,
4153 it's not incremented, so in order to compute the space reserved
4154 for them, it suffices to multiply the reloc count by the jump
4155 slot size. */
4157 if (htab->root.srelplt)
4158 htab->sgotplt_jump_table_size = kvx_compute_jump_table_size (htab);
4160 /* We now have determined the sizes of the various dynamic sections.
4161 Allocate memory for them. */
4162 relocs = false;
4163 for (s = dynobj->sections; s != NULL; s = s->next)
4165 if ((s->flags & SEC_LINKER_CREATED) == 0)
4166 continue;
4168 if (s == htab->root.splt
4169 || s == htab->root.sgot
4170 || s == htab->root.sgotplt
4171 || s == htab->root.iplt
4172 || s == htab->root.igotplt || s == htab->sdynbss)
4174 /* Strip this section if we don't need it; see the
4175 comment below. */
4177 else if (startswith (bfd_section_name (s), ".rela"))
4179 if (s->size != 0 && s != htab->root.srelplt)
4180 relocs = true;
4182 /* We use the reloc_count field as a counter if we need
4183 to copy relocs into the output file. */
4184 if (s != htab->root.srelplt)
4185 s->reloc_count = 0;
4187 else
4189 /* It's not one of our sections, so don't allocate space. */
4190 continue;
4193 if (s->size == 0)
4195 /* If we don't need this section, strip it from the
4196 output file. This is mostly to handle .rela.bss and
4197 .rela.plt. We must create both sections in
4198 create_dynamic_sections, because they must be created
4199 before the linker maps input sections to output
4200 sections. The linker does that before
4201 adjust_dynamic_symbol is called, and it is that
4202 function which decides whether anything needs to go
4203 into these sections. */
4205 s->flags |= SEC_EXCLUDE;
4206 continue;
4209 if ((s->flags & SEC_HAS_CONTENTS) == 0)
4210 continue;
4212 /* Allocate memory for the section contents. We use bfd_zalloc
4213 here in case unused entries are not reclaimed before the
4214 section's contents are written out. This should not happen,
4215 but this way if it does, we get a R_KVX_NONE reloc instead
4216 of garbage. */
4217 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
4218 if (s->contents == NULL)
4219 return false;
4222 if (htab->root.dynamic_sections_created)
4224 /* Add some entries to the .dynamic section. We fill in the
4225 values later, in elfNN_kvx_finish_dynamic_sections, but we
4226 must add the entries now so that we get the correct size for
4227 the .dynamic section. The DT_DEBUG entry is filled in by the
4228 dynamic linker and used by the debugger. */
4229 #define add_dynamic_entry(TAG, VAL) \
4230 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
4232 if (bfd_link_executable (info))
4234 if (!add_dynamic_entry (DT_DEBUG, 0))
4235 return false;
4238 if (htab->root.splt->size != 0)
4240 if (!add_dynamic_entry (DT_PLTGOT, 0)
4241 || !add_dynamic_entry (DT_PLTRELSZ, 0)
4242 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
4243 || !add_dynamic_entry (DT_JMPREL, 0))
4244 return false;
4247 if (relocs)
4249 if (!add_dynamic_entry (DT_RELA, 0)
4250 || !add_dynamic_entry (DT_RELASZ, 0)
4251 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
4252 return false;
4254 /* If any dynamic relocs apply to a read-only section,
4255 then we need a DT_TEXTREL entry. */
4256 if ((info->flags & DF_TEXTREL) == 0)
4257 elf_link_hash_traverse (&htab->root, kvx_readonly_dynrelocs,
4258 info);
4260 if ((info->flags & DF_TEXTREL) != 0)
4262 if (!add_dynamic_entry (DT_TEXTREL, 0))
4263 return false;
4267 #undef add_dynamic_entry
4269 return true;
4272 static inline void
4273 elf_kvx_update_plt_entry (bfd *output_bfd,
4274 bfd_reloc_code_real_type r_type,
4275 bfd_byte *plt_entry, bfd_vma value)
4277 reloc_howto_type *howto = elfNN_kvx_howto_from_bfd_reloc (r_type);
4278 BFD_ASSERT(howto != NULL);
4279 _bfd_kvx_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
4282 static void
4283 elfNN_kvx_create_small_pltn_entry (struct elf_link_hash_entry *h,
4284 struct elf_kvx_link_hash_table *htab,
4285 bfd *output_bfd)
4287 bfd_byte *plt_entry;
4288 bfd_vma plt_index;
4289 bfd_vma got_offset;
4290 bfd_vma gotplt_entry_address;
4291 bfd_vma plt_entry_address;
4292 Elf_Internal_Rela rela;
4293 bfd_byte *loc;
4294 asection *plt, *gotplt, *relplt;
4296 plt = htab->root.splt;
4297 gotplt = htab->root.sgotplt;
4298 relplt = htab->root.srelplt;
4300 /* Get the index in the procedure linkage table which
4301 corresponds to this symbol. This is the index of this symbol
4302 in all the symbols for which we are making plt entries. The
4303 first entry in the procedure linkage table is reserved.
4305 Get the offset into the .got table of the entry that
4306 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4307 bytes. The first three are reserved for the dynamic linker.
4309 For static executables, we don't reserve anything. */
4311 if (plt == htab->root.splt)
4313 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
4314 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
4316 else
4318 plt_index = h->plt.offset / htab->plt_entry_size;
4319 got_offset = plt_index * GOT_ENTRY_SIZE;
4322 plt_entry = plt->contents + h->plt.offset;
4323 plt_entry_address = plt->output_section->vma
4324 + plt->output_offset + h->plt.offset;
4325 gotplt_entry_address = gotplt->output_section->vma +
4326 gotplt->output_offset + got_offset;
4328 /* Copy in the boiler-plate for the PLTn entry. */
4329 memcpy (plt_entry, elfNN_kvx_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
4331 /* Patch the loading of the GOT entry, relative to the PLT entry
4332 address. */
4334 /* Use 37bits offset for both 32 and 64bits mode.
4335 Fill the LO10 of of lw $r9 = 0[$r14]. */
4336 elf_kvx_update_plt_entry(output_bfd, BFD_RELOC_KVX_S37_LO10,
4337 plt_entry+4,
4338 gotplt_entry_address - plt_entry_address);
4340 /* Fill the UP27 of of lw $r9 = 0[$r14]. */
4341 elf_kvx_update_plt_entry(output_bfd, BFD_RELOC_KVX_S37_UP27,
4342 plt_entry+8,
4343 gotplt_entry_address - plt_entry_address);
4345 rela.r_offset = gotplt_entry_address;
4347 /* Fill in the entry in the .rela.plt section. */
4348 rela.r_info = ELFNN_R_INFO (h->dynindx, R_KVX_JMP_SLOT);
4349 rela.r_addend = 0;
4351 /* Compute the relocation entry to used based on PLT index and do
4352 not adjust reloc_count. The reloc_count has already been adjusted
4353 to account for this entry. */
4354 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
4355 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4358 /* Size sections even though they're not dynamic. We use it to setup
4359 _TLS_MODULE_BASE_, if needed. */
4361 static bool
4362 elfNN_kvx_always_size_sections (bfd *output_bfd,
4363 struct bfd_link_info *info)
4365 asection *tls_sec;
4367 if (bfd_link_relocatable (info))
4368 return true;
4370 tls_sec = elf_hash_table (info)->tls_sec;
4372 if (tls_sec)
4374 struct elf_link_hash_entry *tlsbase;
4376 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
4377 "_TLS_MODULE_BASE_", true, true, false);
4379 if (tlsbase)
4381 struct bfd_link_hash_entry *h = NULL;
4382 const struct elf_backend_data *bed =
4383 get_elf_backend_data (output_bfd);
4385 if (!(_bfd_generic_link_add_one_symbol
4386 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
4387 tls_sec, 0, NULL, false, bed->collect, &h)))
4388 return false;
4390 tlsbase->type = STT_TLS;
4391 tlsbase = (struct elf_link_hash_entry *) h;
4392 tlsbase->def_regular = 1;
4393 tlsbase->other = STV_HIDDEN;
4394 (*bed->elf_backend_hide_symbol) (info, tlsbase, true);
4398 return true;
4401 /* Finish up dynamic symbol handling. We set the contents of various
4402 dynamic sections here. */
4403 static bool
4404 elfNN_kvx_finish_dynamic_symbol (bfd *output_bfd,
4405 struct bfd_link_info *info,
4406 struct elf_link_hash_entry *h,
4407 Elf_Internal_Sym *sym)
4409 struct elf_kvx_link_hash_table *htab;
4410 htab = elf_kvx_hash_table (info);
4412 if (h->plt.offset != (bfd_vma) - 1)
4414 asection *plt = NULL, *gotplt = NULL, *relplt = NULL;
4416 /* This symbol has an entry in the procedure linkage table. Set
4417 it up. */
4419 if (htab->root.splt != NULL)
4421 plt = htab->root.splt;
4422 gotplt = htab->root.sgotplt;
4423 relplt = htab->root.srelplt;
4426 /* This symbol has an entry in the procedure linkage table. Set
4427 it up. */
4428 if ((h->dynindx == -1
4429 && !((h->forced_local || bfd_link_executable (info))
4430 && h->def_regular
4431 && h->type == STT_GNU_IFUNC))
4432 || plt == NULL
4433 || gotplt == NULL
4434 || relplt == NULL)
4435 abort ();
4437 elfNN_kvx_create_small_pltn_entry (h, htab, output_bfd);
4438 if (!h->def_regular)
4440 /* Mark the symbol as undefined, rather than as defined in
4441 the .plt section. */
4442 sym->st_shndx = SHN_UNDEF;
4443 /* If the symbol is weak we need to clear the value.
4444 Otherwise, the PLT entry would provide a definition for
4445 the symbol even if the symbol wasn't defined anywhere,
4446 and so the symbol would never be NULL. Leave the value if
4447 there were any relocations where pointer equality matters
4448 (this is a clue for the dynamic linker, to make function
4449 pointer comparisons work between an application and shared
4450 library). */
4451 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
4452 sym->st_value = 0;
4456 if (h->got.offset != (bfd_vma) - 1
4457 && elf_kvx_hash_entry (h)->got_type == GOT_NORMAL)
4459 Elf_Internal_Rela rela;
4460 bfd_byte *loc;
4462 /* This symbol has an entry in the global offset table. Set it
4463 up. */
4464 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
4465 abort ();
4467 rela.r_offset = (htab->root.sgot->output_section->vma
4468 + htab->root.sgot->output_offset
4469 + (h->got.offset & ~(bfd_vma) 1));
4471 #ifdef UGLY_DEBUG
4472 printf("setting rela at offset 0x%x(0x%x + 0x%x + 0x%x) for %s\n",
4473 rela.r_offset,
4474 htab->root.sgot->output_section->vma,
4475 htab->root.sgot->output_offset,
4476 h->got.offset,
4477 h->root.root.string);
4478 #endif
4480 if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
4482 if (!h->def_regular)
4483 return false;
4485 /* in case of PLT related GOT entry, it is not clear who is
4486 supposed to set the LSB of GOT entry...
4487 kvx_calculate_got_entry_vma() would be a good candidate,
4488 but it is not called currently
4489 So we are commenting it ATM. */
4490 // BFD_ASSERT ((h->got.offset & 1) != 0);
4491 rela.r_info = ELFNN_R_INFO (0, R_KVX_RELATIVE);
4492 rela.r_addend = (h->root.u.def.value
4493 + h->root.u.def.section->output_section->vma
4494 + h->root.u.def.section->output_offset);
4496 else
4498 BFD_ASSERT ((h->got.offset & 1) == 0);
4499 bfd_put_NN (output_bfd, (bfd_vma) 0,
4500 htab->root.sgot->contents + h->got.offset);
4501 rela.r_info = ELFNN_R_INFO (h->dynindx, R_KVX_GLOB_DAT);
4502 rela.r_addend = 0;
4505 loc = htab->root.srelgot->contents;
4506 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
4507 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4510 if (h->needs_copy)
4512 Elf_Internal_Rela rela;
4513 bfd_byte *loc;
4515 /* This symbol needs a copy reloc. Set it up. */
4517 if (h->dynindx == -1
4518 || (h->root.type != bfd_link_hash_defined
4519 && h->root.type != bfd_link_hash_defweak)
4520 || htab->srelbss == NULL)
4521 abort ();
4523 rela.r_offset = (h->root.u.def.value
4524 + h->root.u.def.section->output_section->vma
4525 + h->root.u.def.section->output_offset);
4526 rela.r_info = ELFNN_R_INFO (h->dynindx, R_KVX_COPY);
4527 rela.r_addend = 0;
4528 loc = htab->srelbss->contents;
4529 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
4530 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4533 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4534 be NULL for local symbols. */
4535 if (sym != NULL
4536 && (h == elf_hash_table (info)->hdynamic
4537 || h == elf_hash_table (info)->hgot))
4538 sym->st_shndx = SHN_ABS;
4540 return true;
4543 static void
4544 elfNN_kvx_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
4545 struct elf_kvx_link_hash_table *htab)
4547 memcpy (htab->root.splt->contents, elfNN_kvx_small_plt0_entry,
4548 PLT_ENTRY_SIZE);
4549 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
4550 PLT_ENTRY_SIZE;
4553 static bool
4554 elfNN_kvx_finish_dynamic_sections (bfd *output_bfd,
4555 struct bfd_link_info *info)
4557 struct elf_kvx_link_hash_table *htab;
4558 bfd *dynobj;
4559 asection *sdyn;
4561 htab = elf_kvx_hash_table (info);
4562 dynobj = htab->root.dynobj;
4563 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4565 if (htab->root.dynamic_sections_created)
4567 ElfNN_External_Dyn *dyncon, *dynconend;
4569 if (sdyn == NULL || htab->root.sgot == NULL)
4570 abort ();
4572 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
4573 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
4574 for (; dyncon < dynconend; dyncon++)
4576 Elf_Internal_Dyn dyn;
4577 asection *s;
4579 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
4581 switch (dyn.d_tag)
4583 default:
4584 continue;
4586 case DT_PLTGOT:
4587 s = htab->root.sgotplt;
4588 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4589 break;
4591 case DT_JMPREL:
4592 s = htab->root.srelplt;
4593 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4594 break;
4596 case DT_PLTRELSZ:
4597 s = htab->root.srelplt;
4598 dyn.d_un.d_val = s->size;
4599 break;
4601 case DT_RELASZ:
4602 /* The procedure linkage table relocs (DT_JMPREL) should
4603 not be included in the overall relocs (DT_RELA).
4604 Therefore, we override the DT_RELASZ entry here to
4605 make it not include the JMPREL relocs. Since the
4606 linker script arranges for .rela.plt to follow all
4607 other relocation sections, we don't have to worry
4608 about changing the DT_RELA entry. */
4609 if (htab->root.srelplt != NULL)
4611 s = htab->root.srelplt;
4612 dyn.d_un.d_val -= s->size;
4614 break;
4617 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
4622 /* Fill in the special first entry in the procedure linkage table. */
4623 if (htab->root.splt && htab->root.splt->size > 0)
4625 elfNN_kvx_init_small_plt0_entry (output_bfd, htab);
4627 elf_section_data (htab->root.splt->output_section)->
4628 this_hdr.sh_entsize = htab->plt_entry_size;
4631 if (htab->root.sgotplt)
4633 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
4635 (*_bfd_error_handler)
4636 (_("discarded output section: `%pA'"), htab->root.sgotplt);
4637 return false;
4640 /* Fill in the first three entries in the global offset table. */
4641 if (htab->root.sgotplt->size > 0)
4643 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
4645 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4646 bfd_put_NN (output_bfd,
4647 (bfd_vma) 0,
4648 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
4649 bfd_put_NN (output_bfd,
4650 (bfd_vma) 0,
4651 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
4654 if (htab->root.sgot)
4656 if (htab->root.sgot->size > 0)
4658 bfd_vma addr =
4659 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
4660 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
4664 elf_section_data (htab->root.sgotplt->output_section)->
4665 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4668 if (htab->root.sgot && htab->root.sgot->size > 0)
4669 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
4670 = GOT_ENTRY_SIZE;
4672 return true;
4675 /* Return address for Ith PLT stub in section PLT, for relocation REL
4676 or (bfd_vma) -1 if it should not be included. */
4678 static bfd_vma
4679 elfNN_kvx_plt_sym_val (bfd_vma i, const asection *plt,
4680 const arelent *rel ATTRIBUTE_UNUSED)
4682 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
4685 #define ELF_ARCH bfd_arch_kvx
4686 #define ELF_MACHINE_CODE EM_KVX
4687 #define ELF_MAXPAGESIZE 0x10000
4688 #define ELF_MINPAGESIZE 0x1000
4689 #define ELF_COMMONPAGESIZE 0x1000
4691 #define bfd_elfNN_bfd_link_hash_table_create \
4692 elfNN_kvx_link_hash_table_create
4694 #define bfd_elfNN_bfd_merge_private_bfd_data \
4695 elfNN_kvx_merge_private_bfd_data
4697 #define bfd_elfNN_bfd_print_private_bfd_data \
4698 elfNN_kvx_print_private_bfd_data
4700 #define bfd_elfNN_bfd_reloc_type_lookup \
4701 elfNN_kvx_reloc_type_lookup
4703 #define bfd_elfNN_bfd_reloc_name_lookup \
4704 elfNN_kvx_reloc_name_lookup
4706 #define bfd_elfNN_bfd_set_private_flags \
4707 elfNN_kvx_set_private_flags
4709 #define bfd_elfNN_mkobject \
4710 elfNN_kvx_mkobject
4712 #define bfd_elfNN_new_section_hook \
4713 elfNN_kvx_new_section_hook
4715 #define elf_backend_adjust_dynamic_symbol \
4716 elfNN_kvx_adjust_dynamic_symbol
4718 #define elf_backend_always_size_sections \
4719 elfNN_kvx_always_size_sections
4721 #define elf_backend_check_relocs \
4722 elfNN_kvx_check_relocs
4724 #define elf_backend_copy_indirect_symbol \
4725 elfNN_kvx_copy_indirect_symbol
4727 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
4728 to them in our hash. */
4729 #define elf_backend_create_dynamic_sections \
4730 elfNN_kvx_create_dynamic_sections
4732 #define elf_backend_init_index_section \
4733 _bfd_elf_init_2_index_sections
4735 #define elf_backend_finish_dynamic_sections \
4736 elfNN_kvx_finish_dynamic_sections
4738 #define elf_backend_finish_dynamic_symbol \
4739 elfNN_kvx_finish_dynamic_symbol
4741 #define elf_backend_object_p \
4742 elfNN_kvx_object_p
4744 #define elf_backend_output_arch_local_syms \
4745 elfNN_kvx_output_arch_local_syms
4747 #define elf_backend_plt_sym_val \
4748 elfNN_kvx_plt_sym_val
4750 #define elf_backend_init_file_header \
4751 elfNN_kvx_init_file_header
4753 #define elf_backend_init_process_headers \
4754 elfNN_kvx_init_process_headers
4756 #define elf_backend_relocate_section \
4757 elfNN_kvx_relocate_section
4759 #define elf_backend_reloc_type_class \
4760 elfNN_kvx_reloc_type_class
4762 #define elf_backend_size_dynamic_sections \
4763 elfNN_kvx_size_dynamic_sections
4765 #define elf_backend_can_refcount 1
4766 #define elf_backend_can_gc_sections 1
4767 #define elf_backend_plt_readonly 1
4768 #define elf_backend_want_got_plt 1
4769 #define elf_backend_want_plt_sym 0
4770 #define elf_backend_may_use_rel_p 0
4771 #define elf_backend_may_use_rela_p 1
4772 #define elf_backend_default_use_rela_p 1
4773 #define elf_backend_rela_normal 1
4774 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
4775 #define elf_backend_default_execstack 0
4776 #define elf_backend_extern_protected_data 1
4777 #define elf_backend_hash_symbol elf_kvx_hash_symbol
4779 #include "elfNN-target.h"