Set development and experimental to false. Update version number to 2.40. Add relea...
[binutils-gdb.git] / gdb / rl78-tdep.c
blob206b9e2794f82de9e60b9a9a5b46c2c2c5d0b147
1 /* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger.
3 Copyright (C) 2011-2022 Free Software Foundation, Inc.
5 Contributed by Red Hat, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "prologue-value.h"
25 #include "target.h"
26 #include "regcache.h"
27 #include "opcode/rl78.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2/frame.h"
36 #include "reggroups.h"
37 #include "gdbarch.h"
39 #include "elf/rl78.h"
40 #include "elf-bfd.h"
42 /* Register Banks. */
44 enum
46 RL78_BANK0 = 0,
47 RL78_BANK1 = 1,
48 RL78_BANK2 = 2,
49 RL78_BANK3 = 3,
50 RL78_NUMBANKS = 4,
51 RL78_REGS_PER_BANK = 8
54 /* Register Numbers. */
56 enum
58 /* All general purpose registers are 8 bits wide. */
59 RL78_RAW_BANK0_R0_REGNUM = 0,
60 RL78_RAW_BANK0_R1_REGNUM,
61 RL78_RAW_BANK0_R2_REGNUM,
62 RL78_RAW_BANK0_R3_REGNUM,
63 RL78_RAW_BANK0_R4_REGNUM,
64 RL78_RAW_BANK0_R5_REGNUM,
65 RL78_RAW_BANK0_R6_REGNUM,
66 RL78_RAW_BANK0_R7_REGNUM,
68 RL78_RAW_BANK1_R0_REGNUM,
69 RL78_RAW_BANK1_R1_REGNUM,
70 RL78_RAW_BANK1_R2_REGNUM,
71 RL78_RAW_BANK1_R3_REGNUM,
72 RL78_RAW_BANK1_R4_REGNUM,
73 RL78_RAW_BANK1_R5_REGNUM,
74 RL78_RAW_BANK1_R6_REGNUM,
75 RL78_RAW_BANK1_R7_REGNUM,
77 RL78_RAW_BANK2_R0_REGNUM,
78 RL78_RAW_BANK2_R1_REGNUM,
79 RL78_RAW_BANK2_R2_REGNUM,
80 RL78_RAW_BANK2_R3_REGNUM,
81 RL78_RAW_BANK2_R4_REGNUM,
82 RL78_RAW_BANK2_R5_REGNUM,
83 RL78_RAW_BANK2_R6_REGNUM,
84 RL78_RAW_BANK2_R7_REGNUM,
86 RL78_RAW_BANK3_R0_REGNUM,
87 RL78_RAW_BANK3_R1_REGNUM,
88 RL78_RAW_BANK3_R2_REGNUM,
89 RL78_RAW_BANK3_R3_REGNUM,
90 RL78_RAW_BANK3_R4_REGNUM,
91 RL78_RAW_BANK3_R5_REGNUM,
92 RL78_RAW_BANK3_R6_REGNUM,
93 RL78_RAW_BANK3_R7_REGNUM,
95 RL78_PSW_REGNUM, /* 8 bits */
96 RL78_ES_REGNUM, /* 8 bits */
97 RL78_CS_REGNUM, /* 8 bits */
98 RL78_RAW_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */
100 /* Fixed address SFRs (some of those above are SFRs too.) */
101 RL78_SPL_REGNUM, /* 8 bits; lower half of SP */
102 RL78_SPH_REGNUM, /* 8 bits; upper half of SP */
103 RL78_PMC_REGNUM, /* 8 bits */
104 RL78_MEM_REGNUM, /* 8 bits ?? */
106 RL78_NUM_REGS,
108 /* Pseudo registers. */
109 RL78_PC_REGNUM = RL78_NUM_REGS,
110 RL78_SP_REGNUM,
112 RL78_X_REGNUM,
113 RL78_A_REGNUM,
114 RL78_C_REGNUM,
115 RL78_B_REGNUM,
116 RL78_E_REGNUM,
117 RL78_D_REGNUM,
118 RL78_L_REGNUM,
119 RL78_H_REGNUM,
121 RL78_AX_REGNUM,
122 RL78_BC_REGNUM,
123 RL78_DE_REGNUM,
124 RL78_HL_REGNUM,
126 RL78_BANK0_R0_REGNUM,
127 RL78_BANK0_R1_REGNUM,
128 RL78_BANK0_R2_REGNUM,
129 RL78_BANK0_R3_REGNUM,
130 RL78_BANK0_R4_REGNUM,
131 RL78_BANK0_R5_REGNUM,
132 RL78_BANK0_R6_REGNUM,
133 RL78_BANK0_R7_REGNUM,
135 RL78_BANK1_R0_REGNUM,
136 RL78_BANK1_R1_REGNUM,
137 RL78_BANK1_R2_REGNUM,
138 RL78_BANK1_R3_REGNUM,
139 RL78_BANK1_R4_REGNUM,
140 RL78_BANK1_R5_REGNUM,
141 RL78_BANK1_R6_REGNUM,
142 RL78_BANK1_R7_REGNUM,
144 RL78_BANK2_R0_REGNUM,
145 RL78_BANK2_R1_REGNUM,
146 RL78_BANK2_R2_REGNUM,
147 RL78_BANK2_R3_REGNUM,
148 RL78_BANK2_R4_REGNUM,
149 RL78_BANK2_R5_REGNUM,
150 RL78_BANK2_R6_REGNUM,
151 RL78_BANK2_R7_REGNUM,
153 RL78_BANK3_R0_REGNUM,
154 RL78_BANK3_R1_REGNUM,
155 RL78_BANK3_R2_REGNUM,
156 RL78_BANK3_R3_REGNUM,
157 RL78_BANK3_R4_REGNUM,
158 RL78_BANK3_R5_REGNUM,
159 RL78_BANK3_R6_REGNUM,
160 RL78_BANK3_R7_REGNUM,
162 RL78_BANK0_RP0_REGNUM,
163 RL78_BANK0_RP1_REGNUM,
164 RL78_BANK0_RP2_REGNUM,
165 RL78_BANK0_RP3_REGNUM,
167 RL78_BANK1_RP0_REGNUM,
168 RL78_BANK1_RP1_REGNUM,
169 RL78_BANK1_RP2_REGNUM,
170 RL78_BANK1_RP3_REGNUM,
172 RL78_BANK2_RP0_REGNUM,
173 RL78_BANK2_RP1_REGNUM,
174 RL78_BANK2_RP2_REGNUM,
175 RL78_BANK2_RP3_REGNUM,
177 RL78_BANK3_RP0_REGNUM,
178 RL78_BANK3_RP1_REGNUM,
179 RL78_BANK3_RP2_REGNUM,
180 RL78_BANK3_RP3_REGNUM,
182 /* These are the same as the above 16 registers, but have
183 a pointer type for use as base registers in expression
184 evaluation. These are not user visible registers. */
185 RL78_BANK0_RP0_PTR_REGNUM,
186 RL78_BANK0_RP1_PTR_REGNUM,
187 RL78_BANK0_RP2_PTR_REGNUM,
188 RL78_BANK0_RP3_PTR_REGNUM,
190 RL78_BANK1_RP0_PTR_REGNUM,
191 RL78_BANK1_RP1_PTR_REGNUM,
192 RL78_BANK1_RP2_PTR_REGNUM,
193 RL78_BANK1_RP3_PTR_REGNUM,
195 RL78_BANK2_RP0_PTR_REGNUM,
196 RL78_BANK2_RP1_PTR_REGNUM,
197 RL78_BANK2_RP2_PTR_REGNUM,
198 RL78_BANK2_RP3_PTR_REGNUM,
200 RL78_BANK3_RP0_PTR_REGNUM,
201 RL78_BANK3_RP1_PTR_REGNUM,
202 RL78_BANK3_RP2_PTR_REGNUM,
203 RL78_BANK3_RP3_PTR_REGNUM,
205 RL78_NUM_TOTAL_REGS,
206 RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS
209 #define RL78_SP_ADDR 0xffff8
211 /* Architecture specific data. */
213 struct rl78_gdbarch_tdep : gdbarch_tdep_base
215 /* The ELF header flags specify the multilib used. */
216 int elf_flags = 0;
218 struct type *rl78_void = nullptr,
219 *rl78_uint8 = nullptr,
220 *rl78_int8 = nullptr,
221 *rl78_uint16 = nullptr,
222 *rl78_int16 = nullptr,
223 *rl78_uint32 = nullptr,
224 *rl78_int32 = nullptr,
225 *rl78_data_pointer = nullptr,
226 *rl78_code_pointer = nullptr,
227 *rl78_psw_type = nullptr;
230 /* This structure holds the results of a prologue analysis. */
232 struct rl78_prologue
234 /* The offset from the frame base to the stack pointer --- always
235 zero or negative.
237 Calling this a "size" is a bit misleading, but given that the
238 stack grows downwards, using offsets for everything keeps one
239 from going completely sign-crazy: you never change anything's
240 sign for an ADD instruction; always change the second operand's
241 sign for a SUB instruction; and everything takes care of
242 itself. */
243 int frame_size;
245 /* Non-zero if this function has initialized the frame pointer from
246 the stack pointer, zero otherwise. */
247 int has_frame_ptr;
249 /* If has_frame_ptr is non-zero, this is the offset from the frame
250 base to where the frame pointer points. This is always zero or
251 negative. */
252 int frame_ptr_offset;
254 /* The address of the first instruction at which the frame has been
255 set up and the arguments are where the debug info says they are
256 --- as best as we can tell. */
257 CORE_ADDR prologue_end;
259 /* reg_offset[R] is the offset from the CFA at which register R is
260 saved, or 1 if register R has not been saved. (Real values are
261 always zero or negative.) */
262 int reg_offset[RL78_NUM_TOTAL_REGS];
265 /* Construct type for PSW register. */
267 static struct type *
268 rl78_psw_type (struct gdbarch *gdbarch)
270 rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
272 if (tdep->rl78_psw_type == NULL)
274 tdep->rl78_psw_type = arch_flags_type (gdbarch,
275 "builtin_type_rl78_psw", 8);
276 append_flags_type_flag (tdep->rl78_psw_type, 0, "CY");
277 append_flags_type_flag (tdep->rl78_psw_type, 1, "ISP0");
278 append_flags_type_flag (tdep->rl78_psw_type, 2, "ISP1");
279 append_flags_type_flag (tdep->rl78_psw_type, 3, "RBS0");
280 append_flags_type_flag (tdep->rl78_psw_type, 4, "AC");
281 append_flags_type_flag (tdep->rl78_psw_type, 5, "RBS1");
282 append_flags_type_flag (tdep->rl78_psw_type, 6, "Z");
283 append_flags_type_flag (tdep->rl78_psw_type, 7, "IE");
286 return tdep->rl78_psw_type;
289 /* Implement the "register_type" gdbarch method. */
291 static struct type *
292 rl78_register_type (struct gdbarch *gdbarch, int reg_nr)
294 rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
296 if (reg_nr == RL78_PC_REGNUM)
297 return tdep->rl78_code_pointer;
298 else if (reg_nr == RL78_RAW_PC_REGNUM)
299 return tdep->rl78_uint32;
300 else if (reg_nr == RL78_PSW_REGNUM)
301 return rl78_psw_type (gdbarch);
302 else if (reg_nr <= RL78_MEM_REGNUM
303 || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)
304 || (RL78_BANK0_R0_REGNUM <= reg_nr
305 && reg_nr <= RL78_BANK3_R7_REGNUM))
306 return tdep->rl78_int8;
307 else if (reg_nr == RL78_SP_REGNUM
308 || (RL78_BANK0_RP0_PTR_REGNUM <= reg_nr
309 && reg_nr <= RL78_BANK3_RP3_PTR_REGNUM))
310 return tdep->rl78_data_pointer;
311 else
312 return tdep->rl78_int16;
315 /* Implement the "register_name" gdbarch method. */
317 static const char *
318 rl78_register_name (struct gdbarch *gdbarch, int regnr)
320 static const char *const reg_names[] =
322 "", /* bank0_r0 */
323 "", /* bank0_r1 */
324 "", /* bank0_r2 */
325 "", /* bank0_r3 */
326 "", /* bank0_r4 */
327 "", /* bank0_r5 */
328 "", /* bank0_r6 */
329 "", /* bank0_r7 */
331 "", /* bank1_r0 */
332 "", /* bank1_r1 */
333 "", /* bank1_r2 */
334 "", /* bank1_r3 */
335 "", /* bank1_r4 */
336 "", /* bank1_r5 */
337 "", /* bank1_r6 */
338 "", /* bank1_r7 */
340 "", /* bank2_r0 */
341 "", /* bank2_r1 */
342 "", /* bank2_r2 */
343 "", /* bank2_r3 */
344 "", /* bank2_r4 */
345 "", /* bank2_r5 */
346 "", /* bank2_r6 */
347 "", /* bank2_r7 */
349 "", /* bank3_r0 */
350 "", /* bank3_r1 */
351 "", /* bank3_r2 */
352 "", /* bank3_r3 */
353 "", /* bank3_r4 */
354 "", /* bank3_r5 */
355 "", /* bank3_r6 */
356 "", /* bank3_r7 */
358 "psw",
359 "es",
360 "cs",
363 "", /* spl */
364 "", /* sph */
365 "pmc",
366 "mem",
368 "pc",
369 "sp",
371 "x",
372 "a",
373 "c",
374 "b",
375 "e",
376 "d",
377 "l",
378 "h",
380 "ax",
381 "bc",
382 "de",
383 "hl",
385 "bank0_r0",
386 "bank0_r1",
387 "bank0_r2",
388 "bank0_r3",
389 "bank0_r4",
390 "bank0_r5",
391 "bank0_r6",
392 "bank0_r7",
394 "bank1_r0",
395 "bank1_r1",
396 "bank1_r2",
397 "bank1_r3",
398 "bank1_r4",
399 "bank1_r5",
400 "bank1_r6",
401 "bank1_r7",
403 "bank2_r0",
404 "bank2_r1",
405 "bank2_r2",
406 "bank2_r3",
407 "bank2_r4",
408 "bank2_r5",
409 "bank2_r6",
410 "bank2_r7",
412 "bank3_r0",
413 "bank3_r1",
414 "bank3_r2",
415 "bank3_r3",
416 "bank3_r4",
417 "bank3_r5",
418 "bank3_r6",
419 "bank3_r7",
421 "bank0_rp0",
422 "bank0_rp1",
423 "bank0_rp2",
424 "bank0_rp3",
426 "bank1_rp0",
427 "bank1_rp1",
428 "bank1_rp2",
429 "bank1_rp3",
431 "bank2_rp0",
432 "bank2_rp1",
433 "bank2_rp2",
434 "bank2_rp3",
436 "bank3_rp0",
437 "bank3_rp1",
438 "bank3_rp2",
439 "bank3_rp3",
441 /* The 16 register slots would be named
442 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
443 want these to be user visible registers. */
444 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
447 return reg_names[regnr];
450 /* Implement the "register_name" gdbarch method for the g10 variant. */
452 static const char *
453 rl78_g10_register_name (struct gdbarch *gdbarch, int regnr)
455 static const char *const reg_names[] =
457 "", /* bank0_r0 */
458 "", /* bank0_r1 */
459 "", /* bank0_r2 */
460 "", /* bank0_r3 */
461 "", /* bank0_r4 */
462 "", /* bank0_r5 */
463 "", /* bank0_r6 */
464 "", /* bank0_r7 */
466 "", /* bank1_r0 */
467 "", /* bank1_r1 */
468 "", /* bank1_r2 */
469 "", /* bank1_r3 */
470 "", /* bank1_r4 */
471 "", /* bank1_r5 */
472 "", /* bank1_r6 */
473 "", /* bank1_r7 */
475 "", /* bank2_r0 */
476 "", /* bank2_r1 */
477 "", /* bank2_r2 */
478 "", /* bank2_r3 */
479 "", /* bank2_r4 */
480 "", /* bank2_r5 */
481 "", /* bank2_r6 */
482 "", /* bank2_r7 */
484 "", /* bank3_r0 */
485 "", /* bank3_r1 */
486 "", /* bank3_r2 */
487 "", /* bank3_r3 */
488 "", /* bank3_r4 */
489 "", /* bank3_r5 */
490 "", /* bank3_r6 */
491 "", /* bank3_r7 */
493 "psw",
494 "es",
495 "cs",
498 "", /* spl */
499 "", /* sph */
500 "pmc",
501 "mem",
503 "pc",
504 "sp",
506 "x",
507 "a",
508 "c",
509 "b",
510 "e",
511 "d",
512 "l",
513 "h",
515 "ax",
516 "bc",
517 "de",
518 "hl",
520 "bank0_r0",
521 "bank0_r1",
522 "bank0_r2",
523 "bank0_r3",
524 "bank0_r4",
525 "bank0_r5",
526 "bank0_r6",
527 "bank0_r7",
556 "bank0_rp0",
557 "bank0_rp1",
558 "bank0_rp2",
559 "bank0_rp3",
576 /* The 16 register slots would be named
577 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
578 want these to be user visible registers. */
579 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
582 return reg_names[regnr];
585 /* Implement the "register_reggroup_p" gdbarch method. */
587 static int
588 rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
589 const struct reggroup *group)
591 if (group == all_reggroup)
592 return 1;
594 /* All other registers are saved and restored. */
595 if (group == save_reggroup || group == restore_reggroup)
597 if ((regnum < RL78_NUM_REGS
598 && regnum != RL78_SPL_REGNUM
599 && regnum != RL78_SPH_REGNUM
600 && regnum != RL78_RAW_PC_REGNUM)
601 || regnum == RL78_SP_REGNUM
602 || regnum == RL78_PC_REGNUM)
603 return 1;
604 else
605 return 0;
608 if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM)
609 || regnum == RL78_ES_REGNUM
610 || regnum == RL78_CS_REGNUM
611 || regnum == RL78_SPL_REGNUM
612 || regnum == RL78_SPH_REGNUM
613 || regnum == RL78_PMC_REGNUM
614 || regnum == RL78_MEM_REGNUM
615 || regnum == RL78_RAW_PC_REGNUM
616 || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM))
617 return group == system_reggroup;
619 return group == general_reggroup;
622 /* Strip bits to form an instruction address. (When fetching a
623 32-bit address from the stack, the high eight bits are garbage.
624 This function strips off those unused bits.) */
626 static CORE_ADDR
627 rl78_make_instruction_address (CORE_ADDR addr)
629 return addr & 0xffffff;
632 /* Set / clear bits necessary to make a data address. */
634 static CORE_ADDR
635 rl78_make_data_address (CORE_ADDR addr)
637 return (addr & 0xffff) | 0xf0000;
640 /* Implement the "pseudo_register_read" gdbarch method. */
642 static enum register_status
643 rl78_pseudo_register_read (struct gdbarch *gdbarch,
644 readable_regcache *regcache,
645 int reg, gdb_byte *buffer)
647 enum register_status status;
649 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
651 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
652 + (reg - RL78_BANK0_R0_REGNUM);
654 status = regcache->raw_read (raw_regnum, buffer);
656 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
658 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
659 + RL78_RAW_BANK0_R0_REGNUM;
661 status = regcache->raw_read (raw_regnum, buffer);
662 if (status == REG_VALID)
663 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
665 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
667 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
668 + RL78_RAW_BANK0_R0_REGNUM;
670 status = regcache->raw_read (raw_regnum, buffer);
671 if (status == REG_VALID)
672 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
674 else if (reg == RL78_SP_REGNUM)
676 status = regcache->raw_read (RL78_SPL_REGNUM, buffer);
677 if (status == REG_VALID)
678 status = regcache->raw_read (RL78_SPH_REGNUM, buffer + 1);
680 else if (reg == RL78_PC_REGNUM)
682 gdb_byte rawbuf[4];
684 status = regcache->raw_read (RL78_RAW_PC_REGNUM, rawbuf);
685 memcpy (buffer, rawbuf, 3);
687 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
689 ULONGEST psw;
691 status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
692 if (status == REG_VALID)
694 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
695 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
696 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
697 + (reg - RL78_X_REGNUM);
698 status = regcache->raw_read (raw_regnum, buffer);
701 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
703 ULONGEST psw;
705 status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
706 if (status == REG_VALID)
708 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
709 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
710 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
711 + 2 * (reg - RL78_AX_REGNUM);
712 status = regcache->raw_read (raw_regnum, buffer);
713 if (status == REG_VALID)
714 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
717 else
718 gdb_assert_not_reached ("invalid pseudo register number");
719 return status;
722 /* Implement the "pseudo_register_write" gdbarch method. */
724 static void
725 rl78_pseudo_register_write (struct gdbarch *gdbarch,
726 struct regcache *regcache,
727 int reg, const gdb_byte *buffer)
729 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
731 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
732 + (reg - RL78_BANK0_R0_REGNUM);
734 regcache->raw_write (raw_regnum, buffer);
736 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
738 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
739 + RL78_RAW_BANK0_R0_REGNUM;
741 regcache->raw_write (raw_regnum, buffer);
742 regcache->raw_write (raw_regnum + 1, buffer + 1);
744 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
746 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
747 + RL78_RAW_BANK0_R0_REGNUM;
749 regcache->raw_write (raw_regnum, buffer);
750 regcache->raw_write (raw_regnum + 1, buffer + 1);
752 else if (reg == RL78_SP_REGNUM)
754 regcache->raw_write (RL78_SPL_REGNUM, buffer);
755 regcache->raw_write (RL78_SPH_REGNUM, buffer + 1);
757 else if (reg == RL78_PC_REGNUM)
759 gdb_byte rawbuf[4];
761 memcpy (rawbuf, buffer, 3);
762 rawbuf[3] = 0;
763 regcache->raw_write (RL78_RAW_PC_REGNUM, rawbuf);
765 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
767 ULONGEST psw;
768 int bank;
769 int raw_regnum;
771 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
772 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
773 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
774 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
775 + (reg - RL78_X_REGNUM);
776 regcache->raw_write (raw_regnum, buffer);
778 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
780 ULONGEST psw;
781 int bank, raw_regnum;
783 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
784 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
785 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
786 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
787 + 2 * (reg - RL78_AX_REGNUM);
788 regcache->raw_write (raw_regnum, buffer);
789 regcache->raw_write (raw_regnum + 1, buffer + 1);
791 else
792 gdb_assert_not_reached ("invalid pseudo register number");
795 /* The documented BRK instruction is actually a two byte sequence,
796 {0x61, 0xcc}, but instructions may be as short as one byte.
797 Correspondence with Renesas revealed that the one byte sequence
798 0xff is used when a one byte breakpoint instruction is required. */
799 constexpr gdb_byte rl78_break_insn[] = { 0xff };
801 typedef BP_MANIPULATION (rl78_break_insn) rl78_breakpoint;
803 /* Define a "handle" struct for fetching the next opcode. */
805 struct rl78_get_opcode_byte_handle
807 CORE_ADDR pc;
810 static int
811 opc_reg_to_gdb_regnum (int opcreg)
813 switch (opcreg)
815 case RL78_Reg_X:
816 return RL78_X_REGNUM;
817 case RL78_Reg_A:
818 return RL78_A_REGNUM;
819 case RL78_Reg_C:
820 return RL78_C_REGNUM;
821 case RL78_Reg_B:
822 return RL78_B_REGNUM;
823 case RL78_Reg_E:
824 return RL78_E_REGNUM;
825 case RL78_Reg_D:
826 return RL78_D_REGNUM;
827 case RL78_Reg_L:
828 return RL78_L_REGNUM;
829 case RL78_Reg_H:
830 return RL78_H_REGNUM;
831 case RL78_Reg_AX:
832 return RL78_AX_REGNUM;
833 case RL78_Reg_BC:
834 return RL78_BC_REGNUM;
835 case RL78_Reg_DE:
836 return RL78_DE_REGNUM;
837 case RL78_Reg_HL:
838 return RL78_HL_REGNUM;
839 case RL78_Reg_SP:
840 return RL78_SP_REGNUM;
841 case RL78_Reg_PSW:
842 return RL78_PSW_REGNUM;
843 case RL78_Reg_CS:
844 return RL78_CS_REGNUM;
845 case RL78_Reg_ES:
846 return RL78_ES_REGNUM;
847 case RL78_Reg_PMC:
848 return RL78_PMC_REGNUM;
849 case RL78_Reg_MEM:
850 return RL78_MEM_REGNUM;
851 default:
852 internal_error (_("Undefined mapping for opc reg %d"),
853 opcreg);
856 /* Not reached. */
857 return 0;
860 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
861 the memory address of the next byte to fetch. If successful,
862 the address in the handle is updated and the byte fetched is
863 returned as the value of the function. If not successful, -1
864 is returned. */
866 static int
867 rl78_get_opcode_byte (void *handle)
869 struct rl78_get_opcode_byte_handle *opcdata
870 = (struct rl78_get_opcode_byte_handle *) handle;
871 int status;
872 gdb_byte byte;
874 status = target_read_memory (opcdata->pc, &byte, 1);
875 if (status == 0)
877 opcdata->pc += 1;
878 return byte;
880 else
881 return -1;
884 /* Function for finding saved registers in a 'struct pv_area'; this
885 function is passed to pv_area::scan.
887 If VALUE is a saved register, ADDR says it was saved at a constant
888 offset from the frame base, and SIZE indicates that the whole
889 register was saved, record its offset. */
891 static void
892 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size,
893 pv_t value)
895 struct rl78_prologue *result = (struct rl78_prologue *) result_untyped;
897 if (value.kind == pvk_register
898 && value.k == 0
899 && pv_is_register (addr, RL78_SP_REGNUM)
900 && size == register_size (target_gdbarch (), value.reg))
901 result->reg_offset[value.reg] = addr.k;
904 /* Analyze a prologue starting at START_PC, going no further than
905 LIMIT_PC. Fill in RESULT as appropriate. */
907 static void
908 rl78_analyze_prologue (CORE_ADDR start_pc,
909 CORE_ADDR limit_pc, struct rl78_prologue *result)
911 CORE_ADDR pc, next_pc;
912 int rn;
913 pv_t reg[RL78_NUM_TOTAL_REGS];
914 CORE_ADDR after_last_frame_setup_insn = start_pc;
915 int bank = 0;
917 memset (result, 0, sizeof (*result));
919 for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++)
921 reg[rn] = pv_register (rn, 0);
922 result->reg_offset[rn] = 1;
925 pv_area stack (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
927 /* The call instruction has saved the return address on the stack. */
928 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4);
929 stack.store (reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]);
931 pc = start_pc;
932 while (pc < limit_pc)
934 int bytes_read;
935 struct rl78_get_opcode_byte_handle opcode_handle;
936 RL78_Opcode_Decoded opc;
938 opcode_handle.pc = pc;
939 bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte,
940 &opcode_handle, RL78_ISA_DEFAULT);
941 next_pc = pc + bytes_read;
943 if (opc.id == RLO_sel)
945 bank = opc.op[1].addend;
947 else if (opc.id == RLO_mov
948 && opc.op[0].type == RL78_Operand_PreDec
949 && opc.op[0].reg == RL78_Reg_SP
950 && opc.op[1].type == RL78_Operand_Register)
952 int rsrc = (bank * RL78_REGS_PER_BANK)
953 + 2 * (opc.op[1].reg - RL78_Reg_AX);
955 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
956 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc]);
957 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
958 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]);
959 after_last_frame_setup_insn = next_pc;
961 else if (opc.id == RLO_sub
962 && opc.op[0].type == RL78_Operand_Register
963 && opc.op[0].reg == RL78_Reg_SP
964 && opc.op[1].type == RL78_Operand_Immediate)
966 int addend = opc.op[1].addend;
968 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM],
969 -addend);
970 after_last_frame_setup_insn = next_pc;
972 else if (opc.id == RLO_mov
973 && opc.size == RL78_Word
974 && opc.op[0].type == RL78_Operand_Register
975 && opc.op[1].type == RL78_Operand_Indirect
976 && opc.op[1].addend == RL78_SP_ADDR)
978 reg[opc_reg_to_gdb_regnum (opc.op[0].reg)]
979 = reg[RL78_SP_REGNUM];
981 else if (opc.id == RLO_sub
982 && opc.size == RL78_Word
983 && opc.op[0].type == RL78_Operand_Register
984 && opc.op[1].type == RL78_Operand_Immediate)
986 int addend = opc.op[1].addend;
987 int regnum = opc_reg_to_gdb_regnum (opc.op[0].reg);
989 reg[regnum] = pv_add_constant (reg[regnum], -addend);
991 else if (opc.id == RLO_mov
992 && opc.size == RL78_Word
993 && opc.op[0].type == RL78_Operand_Indirect
994 && opc.op[0].addend == RL78_SP_ADDR
995 && opc.op[1].type == RL78_Operand_Register)
997 reg[RL78_SP_REGNUM]
998 = reg[opc_reg_to_gdb_regnum (opc.op[1].reg)];
999 after_last_frame_setup_insn = next_pc;
1001 else
1003 /* Terminate the prologue scan. */
1004 break;
1007 pc = next_pc;
1010 /* Is the frame size (offset, really) a known constant? */
1011 if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM))
1012 result->frame_size = reg[RL78_SP_REGNUM].k;
1014 /* Record where all the registers were saved. */
1015 stack.scan (check_for_saved, (void *) result);
1017 result->prologue_end = after_last_frame_setup_insn;
1020 /* Implement the "addr_bits_remove" gdbarch method. */
1022 static CORE_ADDR
1023 rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1025 return addr & 0xffffff;
1028 /* Implement the "address_to_pointer" gdbarch method. */
1030 static void
1031 rl78_address_to_pointer (struct gdbarch *gdbarch,
1032 struct type *type, gdb_byte *buf, CORE_ADDR addr)
1034 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1036 store_unsigned_integer (buf, type->length (), byte_order,
1037 addr & 0xffffff);
1040 /* Implement the "pointer_to_address" gdbarch method. */
1042 static CORE_ADDR
1043 rl78_pointer_to_address (struct gdbarch *gdbarch,
1044 struct type *type, const gdb_byte *buf)
1046 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1047 CORE_ADDR addr
1048 = extract_unsigned_integer (buf, type->length (), byte_order);
1050 /* Is it a code address? */
1051 if (type->target_type ()->code () == TYPE_CODE_FUNC
1052 || type->target_type ()->code () == TYPE_CODE_METHOD
1053 || TYPE_CODE_SPACE (type->target_type ())
1054 || type->length () == 4)
1055 return rl78_make_instruction_address (addr);
1056 else
1057 return rl78_make_data_address (addr);
1060 /* Implement the "skip_prologue" gdbarch method. */
1062 static CORE_ADDR
1063 rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1065 const char *name;
1066 CORE_ADDR func_addr, func_end;
1067 struct rl78_prologue p;
1069 /* Try to find the extent of the function that contains PC. */
1070 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
1071 return pc;
1073 rl78_analyze_prologue (pc, func_end, &p);
1074 return p.prologue_end;
1077 /* Implement the "unwind_pc" gdbarch method. */
1079 static CORE_ADDR
1080 rl78_unwind_pc (struct gdbarch *arch, frame_info_ptr next_frame)
1082 return rl78_addr_bits_remove
1083 (arch, frame_unwind_register_unsigned (next_frame,
1084 RL78_PC_REGNUM));
1087 /* Given a frame described by THIS_FRAME, decode the prologue of its
1088 associated function if there is not cache entry as specified by
1089 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
1090 return that struct as the value of this function. */
1092 static struct rl78_prologue *
1093 rl78_analyze_frame_prologue (frame_info_ptr this_frame,
1094 void **this_prologue_cache)
1096 if (!*this_prologue_cache)
1098 CORE_ADDR func_start, stop_addr;
1100 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue);
1102 func_start = get_frame_func (this_frame);
1103 stop_addr = get_frame_pc (this_frame);
1105 /* If we couldn't find any function containing the PC, then
1106 just initialize the prologue cache, but don't do anything. */
1107 if (!func_start)
1108 stop_addr = func_start;
1110 rl78_analyze_prologue (func_start, stop_addr,
1111 (struct rl78_prologue *) *this_prologue_cache);
1114 return (struct rl78_prologue *) *this_prologue_cache;
1117 /* Given a frame and a prologue cache, return this frame's base. */
1119 static CORE_ADDR
1120 rl78_frame_base (frame_info_ptr this_frame, void **this_prologue_cache)
1122 struct rl78_prologue *p
1123 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1124 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM);
1126 return rl78_make_data_address (sp - p->frame_size);
1129 /* Implement the "frame_this_id" method for unwinding frames. */
1131 static void
1132 rl78_this_id (frame_info_ptr this_frame,
1133 void **this_prologue_cache, struct frame_id *this_id)
1135 *this_id = frame_id_build (rl78_frame_base (this_frame,
1136 this_prologue_cache),
1137 get_frame_func (this_frame));
1140 /* Implement the "frame_prev_register" method for unwinding frames. */
1142 static struct value *
1143 rl78_prev_register (frame_info_ptr this_frame,
1144 void **this_prologue_cache, int regnum)
1146 struct rl78_prologue *p
1147 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1148 CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache);
1150 if (regnum == RL78_SP_REGNUM)
1151 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1153 else if (regnum == RL78_SPL_REGNUM)
1154 return frame_unwind_got_constant (this_frame, regnum,
1155 (frame_base & 0xff));
1157 else if (regnum == RL78_SPH_REGNUM)
1158 return frame_unwind_got_constant (this_frame, regnum,
1159 ((frame_base >> 8) & 0xff));
1161 /* If prologue analysis says we saved this register somewhere,
1162 return a description of the stack slot holding it. */
1163 else if (p->reg_offset[regnum] != 1)
1165 struct value *rv =
1166 frame_unwind_got_memory (this_frame, regnum,
1167 frame_base + p->reg_offset[regnum]);
1169 if (regnum == RL78_PC_REGNUM)
1171 ULONGEST pc = rl78_make_instruction_address (value_as_long (rv));
1173 return frame_unwind_got_constant (this_frame, regnum, pc);
1175 return rv;
1178 /* Otherwise, presume we haven't changed the value of this
1179 register, and get it from the next frame. */
1180 else
1181 return frame_unwind_got_register (this_frame, regnum, regnum);
1184 static const struct frame_unwind rl78_unwind =
1186 "rl78 prologue",
1187 NORMAL_FRAME,
1188 default_frame_unwind_stop_reason,
1189 rl78_this_id,
1190 rl78_prev_register,
1191 NULL,
1192 default_frame_sniffer
1195 /* Implement the "dwarf_reg_to_regnum" gdbarch method. */
1197 static int
1198 rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1200 if (0 <= reg && reg <= 31)
1202 if ((reg & 1) == 0)
1203 /* Map even registers to their 16-bit counterparts which have a
1204 pointer type. This is usually what is required from the DWARF
1205 info. */
1206 return (reg >> 1) + RL78_BANK0_RP0_PTR_REGNUM;
1207 else
1208 return reg;
1210 else if (reg == 32)
1211 return RL78_SP_REGNUM;
1212 else if (reg == 33)
1213 return -1; /* ap */
1214 else if (reg == 34)
1215 return RL78_PSW_REGNUM;
1216 else if (reg == 35)
1217 return RL78_ES_REGNUM;
1218 else if (reg == 36)
1219 return RL78_CS_REGNUM;
1220 else if (reg == 37)
1221 return RL78_PC_REGNUM;
1222 else
1223 return -1;
1226 /* Implement the `register_sim_regno' gdbarch method. */
1228 static int
1229 rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum)
1231 gdb_assert (regnum < RL78_NUM_REGS);
1233 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
1234 just want to override the default here which disallows register
1235 numbers which have no names. */
1236 return regnum;
1239 /* Implement the "return_value" gdbarch method. */
1241 static enum return_value_convention
1242 rl78_return_value (struct gdbarch *gdbarch,
1243 struct value *function,
1244 struct type *valtype,
1245 struct regcache *regcache,
1246 gdb_byte *readbuf, const gdb_byte *writebuf)
1248 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1249 ULONGEST valtype_len = valtype->length ();
1250 rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
1251 int is_g10 = tdep->elf_flags & E_FLAG_RL78_G10;
1253 if (valtype_len > 8)
1254 return RETURN_VALUE_STRUCT_CONVENTION;
1256 if (readbuf)
1258 ULONGEST u;
1259 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1260 CORE_ADDR g10_raddr = 0xffec8;
1261 int offset = 0;
1263 while (valtype_len > 0)
1265 if (is_g10)
1266 u = read_memory_integer (g10_raddr, 1,
1267 gdbarch_byte_order (gdbarch));
1268 else
1269 regcache_cooked_read_unsigned (regcache, argreg, &u);
1270 store_unsigned_integer (readbuf + offset, 1, byte_order, u);
1271 valtype_len -= 1;
1272 offset += 1;
1273 argreg++;
1274 g10_raddr++;
1278 if (writebuf)
1280 ULONGEST u;
1281 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1282 CORE_ADDR g10_raddr = 0xffec8;
1283 int offset = 0;
1285 while (valtype_len > 0)
1287 u = extract_unsigned_integer (writebuf + offset, 1, byte_order);
1288 if (is_g10) {
1289 gdb_byte b = u & 0xff;
1290 write_memory (g10_raddr, &b, 1);
1292 else
1293 regcache_cooked_write_unsigned (regcache, argreg, u);
1294 valtype_len -= 1;
1295 offset += 1;
1296 argreg++;
1297 g10_raddr++;
1301 return RETURN_VALUE_REGISTER_CONVENTION;
1305 /* Implement the "frame_align" gdbarch method. */
1307 static CORE_ADDR
1308 rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1310 return rl78_make_data_address (align_down (sp, 2));
1314 /* Implement the "dummy_id" gdbarch method. */
1316 static struct frame_id
1317 rl78_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame)
1319 return
1320 frame_id_build (rl78_make_data_address
1321 (get_frame_register_unsigned
1322 (this_frame, RL78_SP_REGNUM)),
1323 get_frame_pc (this_frame));
1327 /* Implement the "push_dummy_call" gdbarch method. */
1329 static CORE_ADDR
1330 rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1331 struct regcache *regcache, CORE_ADDR bp_addr,
1332 int nargs, struct value **args, CORE_ADDR sp,
1333 function_call_return_method return_method,
1334 CORE_ADDR struct_addr)
1336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1337 gdb_byte buf[4];
1338 int i;
1340 /* Push arguments in reverse order. */
1341 for (i = nargs - 1; i >= 0; i--)
1343 struct type *value_type = value_enclosing_type (args[i]);
1344 int len = value_type->length ();
1345 int container_len = (len + 1) & ~1;
1347 sp -= container_len;
1348 write_memory (rl78_make_data_address (sp),
1349 value_contents_all (args[i]).data (), len);
1352 /* Store struct value address. */
1353 if (return_method == return_method_struct)
1355 store_unsigned_integer (buf, 2, byte_order, struct_addr);
1356 sp -= 2;
1357 write_memory (rl78_make_data_address (sp), buf, 2);
1360 /* Store return address. */
1361 sp -= 4;
1362 store_unsigned_integer (buf, 4, byte_order, bp_addr);
1363 write_memory (rl78_make_data_address (sp), buf, 4);
1365 /* Finally, update the stack pointer... */
1366 regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp);
1368 /* DWARF2/GCC uses the stack address *before* the function call as a
1369 frame's CFA. */
1370 return rl78_make_data_address (sp + 4);
1373 /* Allocate and initialize a gdbarch object. */
1375 static struct gdbarch *
1376 rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1378 struct gdbarch *gdbarch;
1379 int elf_flags;
1381 /* Extract the elf_flags if available. */
1382 if (info.abfd != NULL
1383 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1384 elf_flags = elf_elfheader (info.abfd)->e_flags;
1385 else
1386 elf_flags = 0;
1389 /* Try to find the architecture in the list of already defined
1390 architectures. */
1391 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1392 arches != NULL;
1393 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1395 rl78_gdbarch_tdep *tdep
1396 = gdbarch_tdep<rl78_gdbarch_tdep> (arches->gdbarch);
1398 if (tdep->elf_flags != elf_flags)
1399 continue;
1401 return arches->gdbarch;
1404 /* None found, create a new architecture from the information
1405 provided. */
1406 rl78_gdbarch_tdep * tdep = new rl78_gdbarch_tdep;
1407 gdbarch = gdbarch_alloc (&info, tdep);
1408 tdep->elf_flags = elf_flags;
1410 /* Initialize types. */
1411 tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1412 "void");
1413 tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
1414 tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t");
1415 tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
1416 tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t");
1417 tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
1418 tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t");
1420 tdep->rl78_data_pointer
1421 = arch_pointer_type (gdbarch, 16, "rl78_data_addr_t", tdep->rl78_void);
1422 tdep->rl78_code_pointer
1423 = arch_pointer_type (gdbarch, 32, "rl78_code_addr_t", tdep->rl78_void);
1425 /* Registers. */
1426 set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS);
1427 set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS);
1428 if (tdep->elf_flags & E_FLAG_RL78_G10)
1429 set_gdbarch_register_name (gdbarch, rl78_g10_register_name);
1430 else
1431 set_gdbarch_register_name (gdbarch, rl78_register_name);
1432 set_gdbarch_register_type (gdbarch, rl78_register_type);
1433 set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM);
1434 set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM);
1435 set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read);
1436 set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write);
1437 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum);
1438 set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p);
1439 set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno);
1441 /* Data types. */
1442 set_gdbarch_char_signed (gdbarch, 0);
1443 set_gdbarch_short_bit (gdbarch, 16);
1444 set_gdbarch_int_bit (gdbarch, 16);
1445 set_gdbarch_long_bit (gdbarch, 32);
1446 set_gdbarch_long_long_bit (gdbarch, 64);
1447 set_gdbarch_ptr_bit (gdbarch, 16);
1448 set_gdbarch_addr_bit (gdbarch, 32);
1449 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
1450 set_gdbarch_float_bit (gdbarch, 32);
1451 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1452 set_gdbarch_double_bit (gdbarch, 32);
1453 set_gdbarch_long_double_bit (gdbarch, 64);
1454 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1455 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1456 set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address);
1457 set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer);
1458 set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove);
1460 /* Breakpoints. */
1461 set_gdbarch_breakpoint_kind_from_pc (gdbarch, rl78_breakpoint::kind_from_pc);
1462 set_gdbarch_sw_breakpoint_from_kind (gdbarch, rl78_breakpoint::bp_from_kind);
1463 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1465 /* Frames, prologues, etc. */
1466 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1467 set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue);
1468 set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc);
1469 set_gdbarch_frame_align (gdbarch, rl78_frame_align);
1471 dwarf2_append_unwinders (gdbarch);
1472 frame_unwind_append_unwinder (gdbarch, &rl78_unwind);
1474 /* Dummy frames, return values. */
1475 set_gdbarch_dummy_id (gdbarch, rl78_dummy_id);
1476 set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call);
1477 set_gdbarch_return_value (gdbarch, rl78_return_value);
1479 /* Virtual tables. */
1480 set_gdbarch_vbit_in_delta (gdbarch, 1);
1482 return gdbarch;
1485 /* Register the above initialization routine. */
1487 void _initialize_rl78_tdep ();
1488 void
1489 _initialize_rl78_tdep ()
1491 gdbarch_register (bfd_arch_rl78, rl78_gdbarch_init);