Set development and experimental to false. Update version number to 2.40. Add relea...
[binutils-gdb.git] / gdb / elfread.c
blob64aeb239670cf5900dd7ded276fb527fed24cf83
1 /* Read ELF (Executable and Linking Format) object files for GDB.
3 Copyright (C) 1991-2022 Free Software Foundation, Inc.
5 Written by Fred Fish at Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "demangle.h"
33 #include "psympriv.h"
34 #include "filenames.h"
35 #include "probe.h"
36 #include "arch-utils.h"
37 #include "gdbtypes.h"
38 #include "value.h"
39 #include "infcall.h"
40 #include "gdbthread.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "bcache.h"
44 #include "gdb_bfd.h"
45 #include "build-id.h"
46 #include "location.h"
47 #include "auxv.h"
48 #include "mdebugread.h"
49 #include "ctfread.h"
50 #include "gdbsupport/gdb_string_view.h"
51 #include "gdbsupport/scoped_fd.h"
52 #include "debuginfod-support.h"
53 #include "dwarf2/public.h"
55 /* The struct elfinfo is available only during ELF symbol table and
56 psymtab reading. It is destroyed at the completion of psymtab-reading.
57 It's local to elf_symfile_read. */
59 struct elfinfo
61 asection *stabsect; /* Section pointer for .stab section */
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 asection *ctfsect; /* Section pointer for .ctf section */
66 /* Type for per-BFD data. */
68 typedef std::vector<std::unique_ptr<probe>> elfread_data;
70 /* Per-BFD data for probe info. */
72 static const registry<bfd>::key<elfread_data> probe_key;
74 /* Minimal symbols located at the GOT entries for .plt - that is the real
75 pointer where the given entry will jump to. It gets updated by the real
76 function address during lazy ld.so resolving in the inferior. These
77 minimal symbols are indexed for <tab>-completion. */
79 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
81 /* Locate the segments in ABFD. */
83 static symfile_segment_data_up
84 elf_symfile_segments (bfd *abfd)
86 Elf_Internal_Phdr *phdrs, **segments;
87 long phdrs_size;
88 int num_phdrs, num_segments, num_sections, i;
89 asection *sect;
91 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
92 if (phdrs_size == -1)
93 return NULL;
95 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
96 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
97 if (num_phdrs == -1)
98 return NULL;
100 num_segments = 0;
101 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
102 for (i = 0; i < num_phdrs; i++)
103 if (phdrs[i].p_type == PT_LOAD)
104 segments[num_segments++] = &phdrs[i];
106 if (num_segments == 0)
107 return NULL;
109 symfile_segment_data_up data (new symfile_segment_data);
110 data->segments.reserve (num_segments);
112 for (i = 0; i < num_segments; i++)
113 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
115 num_sections = bfd_count_sections (abfd);
117 /* All elements are initialized to 0 (map to no segment). */
118 data->segment_info.resize (num_sections);
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 int j;
124 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
125 continue;
127 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
129 for (j = 0; j < num_segments; j++)
130 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
132 data->segment_info[i] = j + 1;
133 break;
136 /* We should have found a segment for every non-empty section.
137 If we haven't, we will not relocate this section by any
138 offsets we apply to the segments. As an exception, do not
139 warn about SHT_NOBITS sections; in normal ELF execution
140 environments, SHT_NOBITS means zero-initialized and belongs
141 in a segment, but in no-OS environments some tools (e.g. ARM
142 RealView) use SHT_NOBITS for uninitialized data. Since it is
143 uninitialized, it doesn't need a program header. Such
144 binaries are not relocatable. */
146 /* Exclude debuginfo files from this warning, too, since those
147 are often not strictly compliant with the standard. See, e.g.,
148 ld/24717 for more discussion. */
149 if (!is_debuginfo_file (abfd)
150 && bfd_section_size (sect) > 0 && j == num_segments
151 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments\n in %s"),
153 bfd_section_name (sect), bfd_get_filename (abfd));
156 return data;
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
178 static void
179 elf_locate_sections (asection *sectp, struct elfinfo *ei)
181 if (strcmp (sectp->name, ".stab") == 0)
183 ei->stabsect = sectp;
185 else if (strcmp (sectp->name, ".mdebug") == 0)
187 ei->mdebugsect = sectp;
189 else if (strcmp (sectp->name, ".ctf") == 0)
191 ei->ctfsect = sectp;
195 static struct minimal_symbol *
196 record_minimal_symbol (minimal_symbol_reader &reader,
197 gdb::string_view name, bool copy_name,
198 CORE_ADDR address,
199 enum minimal_symbol_type ms_type,
200 asection *bfd_section, struct objfile *objfile)
202 struct gdbarch *gdbarch = objfile->arch ();
204 if (ms_type == mst_text || ms_type == mst_file_text
205 || ms_type == mst_text_gnu_ifunc)
206 address = gdbarch_addr_bits_remove (gdbarch, address);
208 /* We only setup section information for allocatable sections. Usually
209 we'd only expect to find msymbols for allocatable sections, but if the
210 ELF is malformed then this might not be the case. In that case don't
211 create an msymbol that references an uninitialised section object. */
212 int section_index = 0;
213 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
214 section_index = gdb_bfd_section_index (objfile->obfd.get (), bfd_section);
216 struct minimal_symbol *result
217 = reader.record_full (name, copy_name, address, ms_type, section_index);
218 if ((objfile->flags & OBJF_MAINLINE) == 0
219 && (ms_type == mst_data || ms_type == mst_bss))
220 result->maybe_copied = 1;
222 return result;
225 /* Read the symbol table of an ELF file.
227 Given an objfile, a symbol table, and a flag indicating whether the
228 symbol table contains regular, dynamic, or synthetic symbols, add all
229 the global function and data symbols to the minimal symbol table.
231 In stabs-in-ELF, as implemented by Sun, there are some local symbols
232 defined in the ELF symbol table, which can be used to locate
233 the beginnings of sections from each ".o" file that was linked to
234 form the executable objfile. We gather any such info and record it
235 in data structures hung off the objfile's private data. */
237 #define ST_REGULAR 0
238 #define ST_DYNAMIC 1
239 #define ST_SYNTHETIC 2
241 static void
242 elf_symtab_read (minimal_symbol_reader &reader,
243 struct objfile *objfile, int type,
244 long number_of_symbols, asymbol **symbol_table,
245 bool copy_names)
247 struct gdbarch *gdbarch = objfile->arch ();
248 asymbol *sym;
249 long i;
250 CORE_ADDR symaddr;
251 enum minimal_symbol_type ms_type;
252 /* Name of the last file symbol. This is either a constant string or is
253 saved on the objfile's filename cache. */
254 const char *filesymname = "";
255 int stripped = (bfd_get_symcount (objfile->obfd.get ()) == 0);
256 int elf_make_msymbol_special_p
257 = gdbarch_elf_make_msymbol_special_p (gdbarch);
259 for (i = 0; i < number_of_symbols; i++)
261 sym = symbol_table[i];
262 if (sym->name == NULL || *sym->name == '\0')
264 /* Skip names that don't exist (shouldn't happen), or names
265 that are null strings (may happen). */
266 continue;
269 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
271 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
272 symbols which do not correspond to objects in the symbol table,
273 but have some other target-specific meaning. */
274 if (bfd_is_target_special_symbol (objfile->obfd.get (), sym))
276 if (gdbarch_record_special_symbol_p (gdbarch))
277 gdbarch_record_special_symbol (gdbarch, objfile, sym);
278 continue;
281 if (type == ST_DYNAMIC
282 && sym->section == bfd_und_section_ptr
283 && (sym->flags & BSF_FUNCTION))
285 struct minimal_symbol *msym;
286 bfd *abfd = objfile->obfd.get ();
287 asection *sect;
289 /* Symbol is a reference to a function defined in
290 a shared library.
291 If its value is non zero then it is usually the address
292 of the corresponding entry in the procedure linkage table,
293 plus the desired section offset.
294 If its value is zero then the dynamic linker has to resolve
295 the symbol. We are unable to find any meaningful address
296 for this symbol in the executable file, so we skip it. */
297 symaddr = sym->value;
298 if (symaddr == 0)
299 continue;
301 /* sym->section is the undefined section. However, we want to
302 record the section where the PLT stub resides with the
303 minimal symbol. Search the section table for the one that
304 covers the stub's address. */
305 for (sect = abfd->sections; sect != NULL; sect = sect->next)
307 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
308 continue;
310 if (symaddr >= bfd_section_vma (sect)
311 && symaddr < bfd_section_vma (sect)
312 + bfd_section_size (sect))
313 break;
315 if (!sect)
316 continue;
318 /* On ia64-hpux, we have discovered that the system linker
319 adds undefined symbols with nonzero addresses that cannot
320 be right (their address points inside the code of another
321 function in the .text section). This creates problems
322 when trying to determine which symbol corresponds to
323 a given address.
325 We try to detect those buggy symbols by checking which
326 section we think they correspond to. Normally, PLT symbols
327 are stored inside their own section, and the typical name
328 for that section is ".plt". So, if there is a ".plt"
329 section, and yet the section name of our symbol does not
330 start with ".plt", we ignore that symbol. */
331 if (!startswith (sect->name, ".plt")
332 && bfd_get_section_by_name (abfd, ".plt") != NULL)
333 continue;
335 msym = record_minimal_symbol
336 (reader, sym->name, copy_names,
337 symaddr, mst_solib_trampoline, sect, objfile);
338 if (msym != NULL)
340 msym->filename = filesymname;
341 if (elf_make_msymbol_special_p)
342 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
344 continue;
347 /* If it is a nonstripped executable, do not enter dynamic
348 symbols, as the dynamic symbol table is usually a subset
349 of the main symbol table. */
350 if (type == ST_DYNAMIC && !stripped)
351 continue;
352 if (sym->flags & BSF_FILE)
353 filesymname = objfile->intern (sym->name);
354 else if (sym->flags & BSF_SECTION_SYM)
355 continue;
356 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
357 | BSF_GNU_UNIQUE))
359 struct minimal_symbol *msym;
361 /* Select global/local/weak symbols. Note that bfd puts abs
362 symbols in their own section, so all symbols we are
363 interested in will have a section. */
364 /* Bfd symbols are section relative. */
365 symaddr = sym->value + sym->section->vma;
366 /* For non-absolute symbols, use the type of the section
367 they are relative to, to intuit text/data. Bfd provides
368 no way of figuring this out for absolute symbols. */
369 if (sym->section == bfd_abs_section_ptr)
371 /* This is a hack to get the minimal symbol type
372 right for Irix 5, which has absolute addresses
373 with special section indices for dynamic symbols.
375 NOTE: uweigand-20071112: Synthetic symbols do not
376 have an ELF-private part, so do not touch those. */
377 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
378 elf_sym->internal_elf_sym.st_shndx;
380 switch (shndx)
382 case SHN_MIPS_TEXT:
383 ms_type = mst_text;
384 break;
385 case SHN_MIPS_DATA:
386 ms_type = mst_data;
387 break;
388 case SHN_MIPS_ACOMMON:
389 ms_type = mst_bss;
390 break;
391 default:
392 ms_type = mst_abs;
395 /* If it is an Irix dynamic symbol, skip section name
396 symbols, relocate all others by section offset. */
397 if (ms_type != mst_abs)
399 if (sym->name[0] == '.')
400 continue;
403 else if (sym->section->flags & SEC_CODE)
405 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
407 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
408 ms_type = mst_text_gnu_ifunc;
409 else
410 ms_type = mst_text;
412 /* The BSF_SYNTHETIC check is there to omit ppc64 function
413 descriptors mistaken for static functions starting with 'L'.
415 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
416 && (sym->flags & BSF_SYNTHETIC) == 0)
417 || ((sym->flags & BSF_LOCAL)
418 && sym->name[0] == '$'
419 && sym->name[1] == 'L'))
420 /* Looks like a compiler-generated label. Skip
421 it. The assembler should be skipping these (to
422 keep executables small), but apparently with
423 gcc on the (deleted) delta m88k SVR4, it loses.
424 So to have us check too should be harmless (but
425 I encourage people to fix this in the assembler
426 instead of adding checks here). */
427 continue;
428 else
430 ms_type = mst_file_text;
433 else if (sym->section->flags & SEC_ALLOC)
435 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
437 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
439 ms_type = mst_data_gnu_ifunc;
441 else if (sym->section->flags & SEC_LOAD)
443 ms_type = mst_data;
445 else
447 ms_type = mst_bss;
450 else if (sym->flags & BSF_LOCAL)
452 if (sym->section->flags & SEC_LOAD)
454 ms_type = mst_file_data;
456 else
458 ms_type = mst_file_bss;
461 else
463 ms_type = mst_unknown;
466 else
468 /* FIXME: Solaris2 shared libraries include lots of
469 odd "absolute" and "undefined" symbols, that play
470 hob with actions like finding what function the PC
471 is in. Ignore them if they aren't text, data, or bss. */
472 /* ms_type = mst_unknown; */
473 continue; /* Skip this symbol. */
475 msym = record_minimal_symbol
476 (reader, sym->name, copy_names, symaddr,
477 ms_type, sym->section, objfile);
479 if (msym)
481 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
482 ELF-private part. */
483 if (type != ST_SYNTHETIC)
485 /* Pass symbol size field in via BFD. FIXME!!! */
486 msym->set_size (elf_sym->internal_elf_sym.st_size);
489 msym->filename = filesymname;
490 if (elf_make_msymbol_special_p)
491 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
494 /* If we see a default versioned symbol, install it under
495 its version-less name. */
496 if (msym != NULL)
498 const char *atsign = strchr (sym->name, '@');
499 bool is_at_symbol = atsign != nullptr && atsign > sym->name;
500 bool is_plt = is_at_symbol && strcmp (atsign, "@plt") == 0;
501 int len = is_at_symbol ? atsign - sym->name : 0;
503 if (is_at_symbol
504 && !is_plt
505 && (elf_sym->version & VERSYM_HIDDEN) == 0)
506 record_minimal_symbol (reader,
507 gdb::string_view (sym->name, len),
508 true, symaddr, ms_type, sym->section,
509 objfile);
510 else if (is_plt)
512 /* For @plt symbols, also record a trampoline to the
513 destination symbol. The @plt symbol will be used
514 in disassembly, and the trampoline will be used
515 when we are trying to find the target. */
516 if (ms_type == mst_text && type == ST_SYNTHETIC)
518 struct minimal_symbol *mtramp;
520 mtramp = record_minimal_symbol
521 (reader, gdb::string_view (sym->name, len), true,
522 symaddr, mst_solib_trampoline, sym->section, objfile);
523 if (mtramp)
525 mtramp->set_size (msym->size());
526 mtramp->created_by_gdb = 1;
527 mtramp->filename = filesymname;
528 if (elf_make_msymbol_special_p)
529 gdbarch_elf_make_msymbol_special (gdbarch,
530 sym, mtramp);
539 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
540 for later look ups of which function to call when user requests
541 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
542 library defining `function' we cannot yet know while reading OBJFILE which
543 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
544 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
546 static void
547 elf_rel_plt_read (minimal_symbol_reader &reader,
548 struct objfile *objfile, asymbol **dyn_symbol_table)
550 bfd *obfd = objfile->obfd.get ();
551 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
552 asection *relplt, *got_plt;
553 bfd_size_type reloc_count, reloc;
554 struct gdbarch *gdbarch = objfile->arch ();
555 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
556 size_t ptr_size = ptr_type->length ();
558 if (objfile->separate_debug_objfile_backlink)
559 return;
561 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
562 if (got_plt == NULL)
564 /* For platforms where there is no separate .got.plt. */
565 got_plt = bfd_get_section_by_name (obfd, ".got");
566 if (got_plt == NULL)
567 return;
570 /* Depending on system, we may find jump slots in a relocation
571 section for either .got.plt or .plt. */
572 asection *plt = bfd_get_section_by_name (obfd, ".plt");
573 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
575 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
577 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
578 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
580 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
582 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
584 if (this_hdr.sh_info == plt_elf_idx
585 || this_hdr.sh_info == got_plt_elf_idx)
586 break;
589 if (relplt == NULL)
590 return;
592 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
593 return;
595 std::string string_buffer;
597 /* Does ADDRESS reside in SECTION of OBFD? */
598 auto within_section = [obfd] (asection *section, CORE_ADDR address)
600 if (section == NULL)
601 return false;
603 return (bfd_section_vma (section) <= address
604 && (address < bfd_section_vma (section)
605 + bfd_section_size (section)));
608 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
609 for (reloc = 0; reloc < reloc_count; reloc++)
611 const char *name;
612 struct minimal_symbol *msym;
613 CORE_ADDR address;
614 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
615 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
617 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
618 address = relplt->relocation[reloc].address;
620 asection *msym_section;
622 /* Does the pointer reside in either the .got.plt or .plt
623 sections? */
624 if (within_section (got_plt, address))
625 msym_section = got_plt;
626 else if (within_section (plt, address))
627 msym_section = plt;
628 else
629 continue;
631 /* We cannot check if NAME is a reference to
632 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
633 symbol is undefined and the objfile having NAME defined may
634 not yet have been loaded. */
636 string_buffer.assign (name);
637 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
639 msym = record_minimal_symbol (reader, string_buffer,
640 true, address, mst_slot_got_plt,
641 msym_section, objfile);
642 if (msym)
643 msym->set_size (ptr_size);
647 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
649 static const registry<objfile>::key<htab, htab_deleter>
650 elf_objfile_gnu_ifunc_cache_data;
652 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
654 struct elf_gnu_ifunc_cache
656 /* This is always a function entry address, not a function descriptor. */
657 CORE_ADDR addr;
659 char name[1];
662 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
664 static hashval_t
665 elf_gnu_ifunc_cache_hash (const void *a_voidp)
667 const struct elf_gnu_ifunc_cache *a
668 = (const struct elf_gnu_ifunc_cache *) a_voidp;
670 return htab_hash_string (a->name);
673 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
675 static int
676 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
678 const struct elf_gnu_ifunc_cache *a
679 = (const struct elf_gnu_ifunc_cache *) a_voidp;
680 const struct elf_gnu_ifunc_cache *b
681 = (const struct elf_gnu_ifunc_cache *) b_voidp;
683 return strcmp (a->name, b->name) == 0;
686 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
687 function entry address ADDR. Return 1 if NAME and ADDR are considered as
688 valid and therefore they were successfully recorded, return 0 otherwise.
690 Function does not expect a duplicate entry. Use
691 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
692 exists. */
694 static int
695 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
697 struct bound_minimal_symbol msym;
698 struct objfile *objfile;
699 htab_t htab;
700 struct elf_gnu_ifunc_cache entry_local, *entry_p;
701 void **slot;
703 msym = lookup_minimal_symbol_by_pc (addr);
704 if (msym.minsym == NULL)
705 return 0;
706 if (msym.value_address () != addr)
707 return 0;
708 objfile = msym.objfile;
710 /* If .plt jumps back to .plt the symbol is still deferred for later
711 resolution and it has no use for GDB. */
712 const char *target_name = msym.minsym->linkage_name ();
713 size_t len = strlen (target_name);
715 /* Note we check the symbol's name instead of checking whether the
716 symbol is in the .plt section because some systems have @plt
717 symbols in the .text section. */
718 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
719 return 0;
721 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
722 if (htab == NULL)
724 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
725 elf_gnu_ifunc_cache_eq,
726 NULL, xcalloc, xfree);
727 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
730 entry_local.addr = addr;
731 obstack_grow (&objfile->objfile_obstack, &entry_local,
732 offsetof (struct elf_gnu_ifunc_cache, name));
733 obstack_grow_str0 (&objfile->objfile_obstack, name);
734 entry_p
735 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
737 slot = htab_find_slot (htab, entry_p, INSERT);
738 if (*slot != NULL)
740 struct elf_gnu_ifunc_cache *entry_found_p
741 = (struct elf_gnu_ifunc_cache *) *slot;
742 struct gdbarch *gdbarch = objfile->arch ();
744 if (entry_found_p->addr != addr)
746 /* This case indicates buggy inferior program, the resolved address
747 should never change. */
749 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
750 "function_address from %s to %s"),
751 name, paddress (gdbarch, entry_found_p->addr),
752 paddress (gdbarch, addr));
755 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
757 *slot = entry_p;
759 return 1;
762 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
763 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
764 is not NULL) and the function returns 1. It returns 0 otherwise.
766 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
767 function. */
769 static int
770 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
772 int found = 0;
774 /* FIXME: we only search the initial namespace.
776 To search other namespaces, we would need to provide context, e.g. in
777 form of an objfile in that namespace. */
778 gdbarch_iterate_over_objfiles_in_search_order
779 (target_gdbarch (),
780 [name, &addr_p, &found] (struct objfile *objfile)
782 htab_t htab;
783 elf_gnu_ifunc_cache *entry_p;
784 void **slot;
786 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
787 if (htab == NULL)
788 return 0;
790 entry_p = ((elf_gnu_ifunc_cache *)
791 alloca (sizeof (*entry_p) + strlen (name)));
792 strcpy (entry_p->name, name);
794 slot = htab_find_slot (htab, entry_p, NO_INSERT);
795 if (slot == NULL)
796 return 0;
797 entry_p = (elf_gnu_ifunc_cache *) *slot;
798 gdb_assert (entry_p != NULL);
800 if (addr_p)
801 *addr_p = entry_p->addr;
803 found = 1;
804 return 1;
805 }, nullptr);
807 return found;
810 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
811 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
812 is not NULL) and the function returns 1. It returns 0 otherwise.
814 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
815 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
816 prevent cache entries duplicates. */
818 static int
819 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
821 char *name_got_plt;
822 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
823 int found = 0;
825 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
826 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
828 /* FIXME: we only search the initial namespace.
830 To search other namespaces, we would need to provide context, e.g. in
831 form of an objfile in that namespace. */
832 gdbarch_iterate_over_objfiles_in_search_order
833 (target_gdbarch (),
834 [name, name_got_plt, &addr_p, &found] (struct objfile *objfile)
836 bfd *obfd = objfile->obfd.get ();
837 struct gdbarch *gdbarch = objfile->arch ();
838 type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
839 size_t ptr_size = ptr_type->length ();
840 CORE_ADDR pointer_address, addr;
841 asection *plt;
842 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
843 bound_minimal_symbol msym;
845 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
846 if (msym.minsym == NULL)
847 return 0;
848 if (msym.minsym->type () != mst_slot_got_plt)
849 return 0;
850 pointer_address = msym.value_address ();
852 plt = bfd_get_section_by_name (obfd, ".plt");
853 if (plt == NULL)
854 return 0;
856 if (msym.minsym->size () != ptr_size)
857 return 0;
858 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
859 return 0;
860 addr = extract_typed_address (buf, ptr_type);
861 addr = gdbarch_convert_from_func_ptr_addr
862 (gdbarch, addr, current_inferior ()->top_target ());
863 addr = gdbarch_addr_bits_remove (gdbarch, addr);
865 if (elf_gnu_ifunc_record_cache (name, addr))
867 if (addr_p != NULL)
868 *addr_p = addr;
870 found = 1;
871 return 1;
874 return 0;
875 }, nullptr);
877 return found;
880 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
881 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
882 is not NULL) and the function returns true. It returns false otherwise.
884 Both the elf_objfile_gnu_ifunc_cache_data hash table and
885 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
887 static bool
888 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
890 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
891 return true;
893 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
894 return true;
896 return false;
899 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
900 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
901 is the entry point of the resolved STT_GNU_IFUNC target function to call.
904 static CORE_ADDR
905 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
907 const char *name_at_pc;
908 CORE_ADDR start_at_pc, address;
909 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
910 struct value *function, *address_val;
911 CORE_ADDR hwcap = 0;
912 struct value *hwcap_val;
914 /* Try first any non-intrusive methods without an inferior call. */
916 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
917 && start_at_pc == pc)
919 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
920 return address;
922 else
923 name_at_pc = NULL;
925 function = allocate_value (func_func_type);
926 VALUE_LVAL (function) = lval_memory;
927 set_value_address (function, pc);
929 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
930 parameter. FUNCTION is the function entry address. ADDRESS may be a
931 function descriptor. */
933 target_auxv_search (AT_HWCAP, &hwcap);
934 hwcap_val = value_from_longest (builtin_type (gdbarch)
935 ->builtin_unsigned_long, hwcap);
936 address_val = call_function_by_hand (function, NULL, hwcap_val);
937 address = value_as_address (address_val);
938 address = gdbarch_convert_from_func_ptr_addr
939 (gdbarch, address, current_inferior ()->top_target ());
940 address = gdbarch_addr_bits_remove (gdbarch, address);
942 if (name_at_pc)
943 elf_gnu_ifunc_record_cache (name_at_pc, address);
945 return address;
948 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
950 static void
951 elf_gnu_ifunc_resolver_stop (code_breakpoint *b)
953 struct breakpoint *b_return;
954 frame_info_ptr prev_frame = get_prev_frame (get_current_frame ());
955 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
956 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
957 int thread_id = inferior_thread ()->global_num;
959 gdb_assert (b->type == bp_gnu_ifunc_resolver);
961 for (b_return = b->related_breakpoint; b_return != b;
962 b_return = b_return->related_breakpoint)
964 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
965 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
966 gdb_assert (frame_id_p (b_return->frame_id));
968 if (b_return->thread == thread_id
969 && b_return->loc->requested_address == prev_pc
970 && b_return->frame_id == prev_frame_id)
971 break;
974 if (b_return == b)
976 /* No need to call find_pc_line for symbols resolving as this is only
977 a helper breakpointer never shown to the user. */
979 symtab_and_line sal;
980 sal.pspace = current_inferior ()->pspace;
981 sal.pc = prev_pc;
982 sal.section = find_pc_overlay (sal.pc);
983 sal.explicit_pc = 1;
984 b_return
985 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
986 prev_frame_id,
987 bp_gnu_ifunc_resolver_return).release ();
989 /* set_momentary_breakpoint invalidates PREV_FRAME. */
990 prev_frame = NULL;
992 /* Add new b_return to the ring list b->related_breakpoint. */
993 gdb_assert (b_return->related_breakpoint == b_return);
994 b_return->related_breakpoint = b->related_breakpoint;
995 b->related_breakpoint = b_return;
999 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1001 static void
1002 elf_gnu_ifunc_resolver_return_stop (code_breakpoint *b)
1004 thread_info *thread = inferior_thread ();
1005 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1006 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1007 struct type *value_type = func_func_type->target_type ();
1008 struct regcache *regcache = get_thread_regcache (thread);
1009 struct value *func_func;
1010 struct value *value;
1011 CORE_ADDR resolved_address, resolved_pc;
1013 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1015 while (b->related_breakpoint != b)
1017 struct breakpoint *b_next = b->related_breakpoint;
1019 switch (b->type)
1021 case bp_gnu_ifunc_resolver:
1022 break;
1023 case bp_gnu_ifunc_resolver_return:
1024 delete_breakpoint (b);
1025 break;
1026 default:
1027 internal_error (_("handle_inferior_event: Invalid "
1028 "gnu-indirect-function breakpoint type %d"),
1029 (int) b->type);
1031 b = (code_breakpoint *) b_next;
1033 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1034 gdb_assert (b->loc->next == NULL);
1036 func_func = allocate_value (func_func_type);
1037 VALUE_LVAL (func_func) = lval_memory;
1038 set_value_address (func_func, b->loc->related_address);
1040 value = allocate_value (value_type);
1041 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1042 value_contents_raw (value).data (), NULL);
1043 resolved_address = value_as_address (value);
1044 resolved_pc = gdbarch_convert_from_func_ptr_addr
1045 (gdbarch, resolved_address, current_inferior ()->top_target ());
1046 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1048 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1049 elf_gnu_ifunc_record_cache (b->locspec->to_string (), resolved_pc);
1051 b->type = bp_breakpoint;
1052 update_breakpoint_locations (b, current_program_space,
1053 find_function_start_sal (resolved_pc, NULL, true),
1054 {});
1057 /* A helper function for elf_symfile_read that reads the minimal
1058 symbols. */
1060 static void
1061 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1062 const struct elfinfo *ei)
1064 bfd *synth_abfd, *abfd = objfile->obfd.get ();
1065 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1066 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1067 asymbol *synthsyms;
1069 symtab_create_debug_printf ("reading minimal symbols of objfile %s",
1070 objfile_name (objfile));
1072 /* If we already have minsyms, then we can skip some work here.
1073 However, if there were stabs or mdebug sections, we go ahead and
1074 redo all the work anyway, because the psym readers for those
1075 kinds of debuginfo need extra information found here. This can
1076 go away once all types of symbols are in the per-BFD object. */
1077 if (objfile->per_bfd->minsyms_read
1078 && ei->stabsect == NULL
1079 && ei->mdebugsect == NULL
1080 && ei->ctfsect == NULL)
1082 symtab_create_debug_printf ("minimal symbols were previously read");
1083 return;
1086 minimal_symbol_reader reader (objfile);
1088 /* Process the normal ELF symbol table first. */
1090 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd.get ());
1091 if (storage_needed < 0)
1092 error (_("Can't read symbols from %s: %s"),
1093 bfd_get_filename (objfile->obfd.get ()),
1094 bfd_errmsg (bfd_get_error ()));
1096 if (storage_needed > 0)
1098 /* Memory gets permanently referenced from ABFD after
1099 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1101 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1102 symcount = bfd_canonicalize_symtab (objfile->obfd.get (), symbol_table);
1104 if (symcount < 0)
1105 error (_("Can't read symbols from %s: %s"),
1106 bfd_get_filename (objfile->obfd.get ()),
1107 bfd_errmsg (bfd_get_error ()));
1109 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1110 false);
1113 /* Add the dynamic symbols. */
1115 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd.get ());
1117 if (storage_needed > 0)
1119 /* Memory gets permanently referenced from ABFD after
1120 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1121 It happens only in the case when elf_slurp_reloc_table sees
1122 asection->relocation NULL. Determining which section is asection is
1123 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1124 implementation detail, though. */
1126 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1127 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd.get (),
1128 dyn_symbol_table);
1130 if (dynsymcount < 0)
1131 error (_("Can't read symbols from %s: %s"),
1132 bfd_get_filename (objfile->obfd.get ()),
1133 bfd_errmsg (bfd_get_error ()));
1135 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1136 dyn_symbol_table, false);
1138 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1141 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1142 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1144 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1145 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1146 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1147 read the code address from .opd while it reads the .symtab section from
1148 a separate debug info file as the .opd section is SHT_NOBITS there.
1150 With SYNTH_ABFD the .opd section will be read from the original
1151 backlinked binary where it is valid. */
1153 if (objfile->separate_debug_objfile_backlink)
1154 synth_abfd = objfile->separate_debug_objfile_backlink->obfd.get ();
1155 else
1156 synth_abfd = abfd;
1158 /* Add synthetic symbols - for instance, names for any PLT entries. */
1160 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1161 dynsymcount, dyn_symbol_table,
1162 &synthsyms);
1163 if (synthcount > 0)
1165 long i;
1167 std::unique_ptr<asymbol *[]>
1168 synth_symbol_table (new asymbol *[synthcount]);
1169 for (i = 0; i < synthcount; i++)
1170 synth_symbol_table[i] = synthsyms + i;
1171 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1172 synth_symbol_table.get (), true);
1174 xfree (synthsyms);
1175 synthsyms = NULL;
1178 /* Install any minimal symbols that have been collected as the current
1179 minimal symbols for this objfile. The debug readers below this point
1180 should not generate new minimal symbols; if they do it's their
1181 responsibility to install them. "mdebug" appears to be the only one
1182 which will do this. */
1184 reader.install ();
1186 symtab_create_debug_printf ("done reading minimal symbols");
1189 /* Dwarf-specific helper for elf_symfile_read. Return true if we managed to
1190 load dwarf debug info. */
1192 static bool
1193 elf_symfile_read_dwarf2 (struct objfile *objfile,
1194 symfile_add_flags symfile_flags)
1196 bool has_dwarf2 = true;
1198 if (dwarf2_has_info (objfile, NULL, true))
1199 dwarf2_initialize_objfile (objfile);
1200 /* If the file has its own symbol tables it has no separate debug
1201 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1202 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1203 `.note.gnu.build-id'.
1205 .gnu_debugdata is !objfile::has_partial_symbols because it contains only
1206 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1207 an objfile via find_separate_debug_file_in_section there was no separate
1208 debug info available. Therefore do not attempt to search for another one,
1209 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1210 be NULL and we would possibly violate it. */
1212 else if (!objfile->has_partial_symbols ()
1213 && objfile->separate_debug_objfile == NULL
1214 && objfile->separate_debug_objfile_backlink == NULL)
1216 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1218 if (debugfile.empty ())
1219 debugfile = find_separate_debug_file_by_debuglink (objfile);
1221 if (!debugfile.empty ())
1223 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1225 symbol_file_add_separate (debug_bfd, debugfile.c_str (),
1226 symfile_flags, objfile);
1228 else
1230 has_dwarf2 = false;
1231 const struct bfd_build_id *build_id
1232 = build_id_bfd_get (objfile->obfd.get ());
1233 const char *filename = bfd_get_filename (objfile->obfd.get ());
1235 if (build_id != nullptr)
1237 gdb::unique_xmalloc_ptr<char> symfile_path;
1238 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1239 build_id->size,
1240 filename,
1241 &symfile_path));
1243 if (fd.get () >= 0)
1245 /* File successfully retrieved from server. */
1246 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1248 if (debug_bfd == nullptr)
1249 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1250 filename);
1251 else if (build_id_verify (debug_bfd.get (), build_id->size,
1252 build_id->data))
1254 symbol_file_add_separate (debug_bfd, symfile_path.get (),
1255 symfile_flags, objfile);
1256 has_dwarf2 = true;
1263 return has_dwarf2;
1266 /* Scan and build partial symbols for a symbol file.
1267 We have been initialized by a call to elf_symfile_init, which
1268 currently does nothing.
1270 This function only does the minimum work necessary for letting the
1271 user "name" things symbolically; it does not read the entire symtab.
1272 Instead, it reads the external and static symbols and puts them in partial
1273 symbol tables. When more extensive information is requested of a
1274 file, the corresponding partial symbol table is mutated into a full
1275 fledged symbol table by going back and reading the symbols
1276 for real.
1278 We look for sections with specific names, to tell us what debug
1279 format to look for: FIXME!!!
1281 elfstab_build_psymtabs() handles STABS symbols;
1282 mdebug_build_psymtabs() handles ECOFF debugging information.
1284 Note that ELF files have a "minimal" symbol table, which looks a lot
1285 like a COFF symbol table, but has only the minimal information necessary
1286 for linking. We process this also, and use the information to
1287 build gdb's minimal symbol table. This gives us some minimal debugging
1288 capability even for files compiled without -g. */
1290 static void
1291 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1293 bfd *abfd = objfile->obfd.get ();
1294 struct elfinfo ei;
1296 memset ((char *) &ei, 0, sizeof (ei));
1297 if (!(objfile->flags & OBJF_READNEVER))
1299 for (asection *sect : gdb_bfd_sections (abfd))
1300 elf_locate_sections (sect, &ei);
1303 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1305 /* ELF debugging information is inserted into the psymtab in the
1306 order of least informative first - most informative last. Since
1307 the psymtab table is searched `most recent insertion first' this
1308 increases the probability that more detailed debug information
1309 for a section is found.
1311 For instance, an object file might contain both .mdebug (XCOFF)
1312 and .debug_info (DWARF2) sections then .mdebug is inserted first
1313 (searched last) and DWARF2 is inserted last (searched first). If
1314 we don't do this then the XCOFF info is found first - for code in
1315 an included file XCOFF info is useless. */
1317 if (ei.mdebugsect)
1319 const struct ecoff_debug_swap *swap;
1321 /* .mdebug section, presumably holding ECOFF debugging
1322 information. */
1323 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1324 if (swap)
1325 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1327 if (ei.stabsect)
1329 asection *str_sect;
1331 /* Stab sections have an associated string table that looks like
1332 a separate section. */
1333 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1335 /* FIXME should probably warn about a stab section without a stabstr. */
1336 if (str_sect)
1337 elfstab_build_psymtabs (objfile,
1338 ei.stabsect,
1339 str_sect->filepos,
1340 bfd_section_size (str_sect));
1343 bool has_dwarf2 = elf_symfile_read_dwarf2 (objfile, symfile_flags);
1345 /* Read the CTF section only if there is no DWARF info. */
1346 if (!has_dwarf2 && ei.ctfsect)
1348 elfctf_build_psymtabs (objfile);
1352 /* Initialize anything that needs initializing when a completely new symbol
1353 file is specified (not just adding some symbols from another file, e.g. a
1354 shared library). */
1356 static void
1357 elf_new_init (struct objfile *ignore)
1361 /* Perform any local cleanups required when we are done with a particular
1362 objfile. I.E, we are in the process of discarding all symbol information
1363 for an objfile, freeing up all memory held for it, and unlinking the
1364 objfile struct from the global list of known objfiles. */
1366 static void
1367 elf_symfile_finish (struct objfile *objfile)
1371 /* ELF specific initialization routine for reading symbols. */
1373 static void
1374 elf_symfile_init (struct objfile *objfile)
1376 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1377 find this causes a significant slowdown in gdb then we could
1378 set it in the debug symbol readers only when necessary. */
1379 objfile->flags |= OBJF_REORDERED;
1382 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1384 static const elfread_data &
1385 elf_get_probes (struct objfile *objfile)
1387 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd.get ());
1389 if (probes_per_bfd == NULL)
1391 probes_per_bfd = probe_key.emplace (objfile->obfd.get ());
1393 /* Here we try to gather information about all types of probes from the
1394 objfile. */
1395 for (const static_probe_ops *ops : all_static_probe_ops)
1396 ops->get_probes (probes_per_bfd, objfile);
1399 return *probes_per_bfd;
1404 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1406 static const struct sym_probe_fns elf_probe_fns =
1408 elf_get_probes, /* sym_get_probes */
1411 /* Register that we are able to handle ELF object file formats. */
1413 static const struct sym_fns elf_sym_fns =
1415 elf_new_init, /* init anything gbl to entire symtab */
1416 elf_symfile_init, /* read initial info, setup for sym_read() */
1417 elf_symfile_read, /* read a symbol file into symtab */
1418 elf_symfile_finish, /* finished with file, cleanup */
1419 default_symfile_offsets, /* Translate ext. to int. relocation */
1420 elf_symfile_segments, /* Get segment information from a file. */
1421 NULL,
1422 default_symfile_relocate, /* Relocate a debug section. */
1423 &elf_probe_fns, /* sym_probe_fns */
1426 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1428 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1430 elf_gnu_ifunc_resolve_addr,
1431 elf_gnu_ifunc_resolve_name,
1432 elf_gnu_ifunc_resolver_stop,
1433 elf_gnu_ifunc_resolver_return_stop
1436 void _initialize_elfread ();
1437 void
1438 _initialize_elfread ()
1440 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1442 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;