Fix test for sections with different VMA<->LMA relationships so that it only applies...
[binutils-gdb.git] / gdb / mips-linux-tdep.c
blob79508f0fce75bf7595caf975a614f91fdcac04c3
1 /* Target-dependent code for GNU/Linux on MIPS processors.
3 Copyright (C) 2001-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "gdbcore.h"
21 #include "target.h"
22 #include "solib-svr4.h"
23 #include "osabi.h"
24 #include "mips-tdep.h"
25 #include "frame.h"
26 #include "regcache.h"
27 #include "trad-frame.h"
28 #include "tramp-frame.h"
29 #include "gdbtypes.h"
30 #include "objfiles.h"
31 #include "solib.h"
32 #include "solist.h"
33 #include "symtab.h"
34 #include "target-descriptions.h"
35 #include "regset.h"
36 #include "mips-linux-tdep.h"
37 #include "glibc-tdep.h"
38 #include "linux-tdep.h"
39 #include "xml-syscall.h"
40 #include "gdbsupport/gdb_signals.h"
41 #include "inferior.h"
43 #include "features/mips-linux.c"
44 #include "features/mips-dsp-linux.c"
45 #include "features/mips64-linux.c"
46 #include "features/mips64-dsp-linux.c"
48 static solib_ops mips_svr4_so_ops;
50 /* This enum represents the signals' numbers on the MIPS
51 architecture. It just contains the signal definitions which are
52 different from the generic implementation.
54 It is derived from the file <arch/mips/include/uapi/asm/signal.h>,
55 from the Linux kernel tree. */
57 enum
59 MIPS_LINUX_SIGEMT = 7,
60 MIPS_LINUX_SIGBUS = 10,
61 MIPS_LINUX_SIGSYS = 12,
62 MIPS_LINUX_SIGUSR1 = 16,
63 MIPS_LINUX_SIGUSR2 = 17,
64 MIPS_LINUX_SIGCHLD = 18,
65 MIPS_LINUX_SIGCLD = MIPS_LINUX_SIGCHLD,
66 MIPS_LINUX_SIGPWR = 19,
67 MIPS_LINUX_SIGWINCH = 20,
68 MIPS_LINUX_SIGURG = 21,
69 MIPS_LINUX_SIGIO = 22,
70 MIPS_LINUX_SIGPOLL = MIPS_LINUX_SIGIO,
71 MIPS_LINUX_SIGSTOP = 23,
72 MIPS_LINUX_SIGTSTP = 24,
73 MIPS_LINUX_SIGCONT = 25,
74 MIPS_LINUX_SIGTTIN = 26,
75 MIPS_LINUX_SIGTTOU = 27,
76 MIPS_LINUX_SIGVTALRM = 28,
77 MIPS_LINUX_SIGPROF = 29,
78 MIPS_LINUX_SIGXCPU = 30,
79 MIPS_LINUX_SIGXFSZ = 31,
81 MIPS_LINUX_SIGRTMIN = 32,
82 MIPS_LINUX_SIGRT64 = 64,
83 MIPS_LINUX_SIGRTMAX = 127,
86 /* Figure out where the longjmp will land.
87 We expect the first arg to be a pointer to the jmp_buf structure
88 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
89 at. The pc is copied into PC. This routine returns 1 on
90 success. */
92 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
93 #define MIPS_LINUX_JB_PC 0
95 static int
96 mips_linux_get_longjmp_target (const frame_info_ptr &frame, CORE_ADDR *pc)
98 CORE_ADDR jb_addr;
99 struct gdbarch *gdbarch = get_frame_arch (frame);
100 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
101 gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
103 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
105 if (target_read_memory ((jb_addr
106 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
107 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
108 return 0;
110 *pc = extract_unsigned_integer (buf,
111 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
112 byte_order);
114 return 1;
117 /* Transform the bits comprising a 32-bit register to the right size
118 for regcache_raw_supply(). This is needed when mips_isa_regsize()
119 is 8. */
121 static void
122 supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
124 regcache->raw_supply_integer (regnum, (const gdb_byte *) addr, 4, true);
127 /* Unpack an elf_gregset_t into GDB's register cache. */
129 void
130 mips_supply_gregset (struct regcache *regcache,
131 const mips_elf_gregset_t *gregsetp)
133 int regi;
134 const mips_elf_greg_t *regp = *gregsetp;
135 struct gdbarch *gdbarch = regcache->arch ();
137 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
138 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
140 if (mips_linux_restart_reg_p (gdbarch))
141 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
143 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
144 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
146 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
147 regp + EF_CP0_EPC);
148 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
149 regp + EF_CP0_BADVADDR);
150 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
151 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
152 regp + EF_CP0_CAUSE);
154 /* Fill the inaccessible zero register with zero. */
155 regcache->raw_supply_zeroed (MIPS_ZERO_REGNUM);
158 static void
159 mips_supply_gregset_wrapper (const struct regset *regset,
160 struct regcache *regcache,
161 int regnum, const void *gregs, size_t len)
163 gdb_assert (len >= sizeof (mips_elf_gregset_t));
165 mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
168 /* Pack our registers (or one register) into an elf_gregset_t. */
170 void
171 mips_fill_gregset (const struct regcache *regcache,
172 mips_elf_gregset_t *gregsetp, int regno)
174 struct gdbarch *gdbarch = regcache->arch ();
175 int regaddr, regi;
176 mips_elf_greg_t *regp = *gregsetp;
177 void *dst;
179 if (regno == -1)
181 memset (regp, 0, sizeof (mips_elf_gregset_t));
182 for (regi = 1; regi < 32; regi++)
183 mips_fill_gregset (regcache, gregsetp, regi);
184 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
185 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
186 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
187 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
188 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
189 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
190 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
191 return;
194 if (regno > 0 && regno < 32)
196 dst = regp + regno + EF_REG0;
197 regcache->raw_collect (regno, dst);
198 return;
201 if (regno == mips_regnum (gdbarch)->lo)
202 regaddr = EF_LO;
203 else if (regno == mips_regnum (gdbarch)->hi)
204 regaddr = EF_HI;
205 else if (regno == mips_regnum (gdbarch)->pc)
206 regaddr = EF_CP0_EPC;
207 else if (regno == mips_regnum (gdbarch)->badvaddr)
208 regaddr = EF_CP0_BADVADDR;
209 else if (regno == MIPS_PS_REGNUM)
210 regaddr = EF_CP0_STATUS;
211 else if (regno == mips_regnum (gdbarch)->cause)
212 regaddr = EF_CP0_CAUSE;
213 else if (mips_linux_restart_reg_p (gdbarch)
214 && regno == MIPS_RESTART_REGNUM)
215 regaddr = EF_REG0;
216 else
217 regaddr = -1;
219 if (regaddr != -1)
221 dst = regp + regaddr;
222 regcache->raw_collect (regno, dst);
226 static void
227 mips_fill_gregset_wrapper (const struct regset *regset,
228 const struct regcache *regcache,
229 int regnum, void *gregs, size_t len)
231 gdb_assert (len >= sizeof (mips_elf_gregset_t));
233 mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
236 /* Support for 64-bit ABIs. */
238 /* Figure out where the longjmp will land.
239 We expect the first arg to be a pointer to the jmp_buf structure
240 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
241 at. The pc is copied into PC. This routine returns 1 on
242 success. */
244 /* Details about jmp_buf. */
246 #define MIPS64_LINUX_JB_PC 0
248 static int
249 mips64_linux_get_longjmp_target (const frame_info_ptr &frame, CORE_ADDR *pc)
251 CORE_ADDR jb_addr;
252 struct gdbarch *gdbarch = get_frame_arch (frame);
253 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
254 gdb_byte *buf
255 = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
256 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
258 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
260 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
261 buf,
262 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
263 return 0;
265 *pc = extract_unsigned_integer (buf,
266 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
267 byte_order);
269 return 1;
272 /* Register set support functions. These operate on standard 64-bit
273 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
274 target will still use the 64-bit format for PTRACE_GETREGS. */
276 /* Supply a 64-bit register. */
278 static void
279 supply_64bit_reg (struct regcache *regcache, int regnum,
280 const gdb_byte *buf)
282 struct gdbarch *gdbarch = regcache->arch ();
283 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
284 && register_size (gdbarch, regnum) == 4)
285 regcache->raw_supply (regnum, buf + 4);
286 else
287 regcache->raw_supply (regnum, buf);
290 /* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
292 void
293 mips64_supply_gregset (struct regcache *regcache,
294 const mips64_elf_gregset_t *gregsetp)
296 int regi;
297 const mips64_elf_greg_t *regp = *gregsetp;
298 struct gdbarch *gdbarch = regcache->arch ();
300 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
301 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
302 (const gdb_byte *) (regp + regi));
304 if (mips_linux_restart_reg_p (gdbarch))
305 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
306 (const gdb_byte *) (regp + MIPS64_EF_REG0));
308 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
309 (const gdb_byte *) (regp + MIPS64_EF_LO));
310 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
311 (const gdb_byte *) (regp + MIPS64_EF_HI));
313 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
314 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
315 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
316 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
317 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
318 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
319 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
320 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
322 /* Fill the inaccessible zero register with zero. */
323 regcache->raw_supply_zeroed (MIPS_ZERO_REGNUM);
326 static void
327 mips64_supply_gregset_wrapper (const struct regset *regset,
328 struct regcache *regcache,
329 int regnum, const void *gregs, size_t len)
331 gdb_assert (len >= sizeof (mips64_elf_gregset_t));
333 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
336 /* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
338 void
339 mips64_fill_gregset (const struct regcache *regcache,
340 mips64_elf_gregset_t *gregsetp, int regno)
342 struct gdbarch *gdbarch = regcache->arch ();
343 int regaddr, regi;
344 mips64_elf_greg_t *regp = *gregsetp;
345 void *dst;
347 if (regno == -1)
349 memset (regp, 0, sizeof (mips64_elf_gregset_t));
350 for (regi = 1; regi < 32; regi++)
351 mips64_fill_gregset (regcache, gregsetp, regi);
352 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
353 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
354 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
355 mips64_fill_gregset (regcache, gregsetp,
356 mips_regnum (gdbarch)->badvaddr);
357 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
358 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
359 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
360 return;
363 if (regno > 0 && regno < 32)
364 regaddr = regno + MIPS64_EF_REG0;
365 else if (regno == mips_regnum (gdbarch)->lo)
366 regaddr = MIPS64_EF_LO;
367 else if (regno == mips_regnum (gdbarch)->hi)
368 regaddr = MIPS64_EF_HI;
369 else if (regno == mips_regnum (gdbarch)->pc)
370 regaddr = MIPS64_EF_CP0_EPC;
371 else if (regno == mips_regnum (gdbarch)->badvaddr)
372 regaddr = MIPS64_EF_CP0_BADVADDR;
373 else if (regno == MIPS_PS_REGNUM)
374 regaddr = MIPS64_EF_CP0_STATUS;
375 else if (regno == mips_regnum (gdbarch)->cause)
376 regaddr = MIPS64_EF_CP0_CAUSE;
377 else if (mips_linux_restart_reg_p (gdbarch)
378 && regno == MIPS_RESTART_REGNUM)
379 regaddr = MIPS64_EF_REG0;
380 else
381 regaddr = -1;
383 if (regaddr != -1)
385 dst = regp + regaddr;
386 regcache->raw_collect_integer (regno, (gdb_byte *) dst, 8, true);
390 static void
391 mips64_fill_gregset_wrapper (const struct regset *regset,
392 const struct regcache *regcache,
393 int regnum, void *gregs, size_t len)
395 gdb_assert (len >= sizeof (mips64_elf_gregset_t));
397 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
400 /* Likewise, unpack an elf_fpregset_t. Linux only uses even-numbered
401 FPR slots in the Status.FR=0 mode, storing even-odd FPR pairs as the
402 SDC1 instruction would. When run on MIPS I architecture processors
403 all FPR slots used to be used, unusually, holding the respective FPRs
404 in the first 4 bytes, but that was corrected for consistency, with
405 `linux-mips.org' (LMO) commit 42533948caac ("Major pile of FP emulator
406 changes."), the fix corrected with LMO commit 849fa7a50dff ("R3k FPU
407 ptrace() handling fixes."), and then broken and fixed over and over
408 again, until last time fixed with commit 80cbfad79096 ("MIPS: Correct
409 MIPS I FP context layout"). */
411 void
412 mips64_supply_fpregset (struct regcache *regcache,
413 const mips64_elf_fpregset_t *fpregsetp)
415 struct gdbarch *gdbarch = regcache->arch ();
416 int regi;
418 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
419 for (regi = 0; regi < 32; regi++)
421 const gdb_byte *reg_ptr
422 = (const gdb_byte *) (*fpregsetp + (regi & ~1));
423 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
424 reg_ptr += 4;
425 regcache->raw_supply (gdbarch_fp0_regnum (gdbarch) + regi, reg_ptr);
427 else
428 for (regi = 0; regi < 32; regi++)
429 regcache->raw_supply (gdbarch_fp0_regnum (gdbarch) + regi,
430 (const char *) (*fpregsetp + regi));
432 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
433 (const gdb_byte *) (*fpregsetp + 32));
435 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
436 include it - but the result of PTRACE_GETFPREGS does. The best we
437 can do is to assume that its value is present. */
438 supply_32bit_reg (regcache,
439 mips_regnum (gdbarch)->fp_implementation_revision,
440 (const gdb_byte *) (*fpregsetp + 32) + 4);
443 static void
444 mips64_supply_fpregset_wrapper (const struct regset *regset,
445 struct regcache *regcache,
446 int regnum, const void *gregs, size_t len)
448 gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
450 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
453 /* Likewise, pack one or all floating point registers into an
454 elf_fpregset_t. See `mips_supply_fpregset' for an explanation
455 of the layout. */
457 void
458 mips64_fill_fpregset (const struct regcache *regcache,
459 mips64_elf_fpregset_t *fpregsetp, int regno)
461 struct gdbarch *gdbarch = regcache->arch ();
462 gdb_byte *to;
464 if ((regno >= gdbarch_fp0_regnum (gdbarch))
465 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
467 if (register_size (gdbarch, regno) == 4)
469 int regi = regno - gdbarch_fp0_regnum (gdbarch);
471 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
472 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
473 to += 4;
474 regcache->raw_collect (regno, to);
476 else
478 to = (gdb_byte *) (*fpregsetp + regno
479 - gdbarch_fp0_regnum (gdbarch));
480 regcache->raw_collect (regno, to);
483 else if (regno == mips_regnum (gdbarch)->fp_control_status)
485 to = (gdb_byte *) (*fpregsetp + 32);
486 regcache->raw_collect_integer (regno, to, 4, true);
488 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
490 to = (gdb_byte *) (*fpregsetp + 32) + 4;
491 regcache->raw_collect_integer (regno, to, 4, true);
493 else if (regno == -1)
495 int regi;
497 for (regi = 0; regi < 32; regi++)
498 mips64_fill_fpregset (regcache, fpregsetp,
499 gdbarch_fp0_regnum (gdbarch) + regi);
500 mips64_fill_fpregset (regcache, fpregsetp,
501 mips_regnum (gdbarch)->fp_control_status);
502 mips64_fill_fpregset (regcache, fpregsetp,
503 mips_regnum (gdbarch)->fp_implementation_revision);
507 static void
508 mips64_fill_fpregset_wrapper (const struct regset *regset,
509 const struct regcache *regcache,
510 int regnum, void *gregs, size_t len)
512 gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
514 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
517 static const struct regset mips_linux_gregset =
519 NULL, mips_supply_gregset_wrapper, mips_fill_gregset_wrapper
522 static const struct regset mips64_linux_gregset =
524 NULL, mips64_supply_gregset_wrapper, mips64_fill_gregset_wrapper
527 static const struct regset mips64_linux_fpregset =
529 NULL, mips64_supply_fpregset_wrapper, mips64_fill_fpregset_wrapper
532 static void
533 mips_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
534 iterate_over_regset_sections_cb *cb,
535 void *cb_data,
536 const struct regcache *regcache)
538 if (register_size (gdbarch, MIPS_ZERO_REGNUM) == 4)
540 cb (".reg", sizeof (mips_elf_gregset_t), sizeof (mips_elf_gregset_t),
541 &mips_linux_gregset, NULL, cb_data);
542 cb (".reg2", sizeof (mips64_elf_fpregset_t),
543 sizeof (mips64_elf_fpregset_t), &mips64_linux_fpregset,
544 NULL, cb_data);
546 else
548 cb (".reg", sizeof (mips64_elf_gregset_t), sizeof (mips64_elf_gregset_t),
549 &mips64_linux_gregset, NULL, cb_data);
550 cb (".reg2", sizeof (mips64_elf_fpregset_t),
551 sizeof (mips64_elf_fpregset_t), &mips64_linux_fpregset,
552 NULL, cb_data);
556 static const struct target_desc *
557 mips_linux_core_read_description (struct gdbarch *gdbarch,
558 struct target_ops *target,
559 bfd *abfd)
561 asection *section = bfd_get_section_by_name (abfd, ".reg");
562 if (! section)
563 return NULL;
565 switch (bfd_section_size (section))
567 case sizeof (mips_elf_gregset_t):
568 return mips_tdesc_gp32;
570 case sizeof (mips64_elf_gregset_t):
571 return mips_tdesc_gp64;
573 default:
574 return NULL;
579 /* Check the code at PC for a dynamic linker lazy resolution stub.
580 GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
581 section uniformly since version 2.15. If the pc is in that section,
582 then we are in such a stub. Before that ".stub" was used in 32-bit
583 ELF binaries, however we do not bother checking for that since we
584 have never had and that case should be extremely rare these days.
585 Instead we pattern-match on the code generated by GNU ld. They look
586 like this:
588 lw t9,0x8010(gp)
589 addu t7,ra
590 jalr t9,ra
591 addiu t8,zero,INDEX
593 (with the appropriate doubleword instructions for N64). As any lazy
594 resolution stubs in microMIPS binaries will always be in a
595 ".MIPS.stubs" section we only ever verify standard MIPS patterns. */
597 static int
598 mips_linux_in_dynsym_stub (CORE_ADDR pc)
600 gdb_byte buf[28], *p;
601 ULONGEST insn, insn1;
602 int n64 = (mips_abi (current_inferior ()->arch ()) == MIPS_ABI_N64);
603 bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
605 if (in_mips_stubs_section (pc))
606 return 1;
608 read_memory (pc - 12, buf, 28);
610 if (n64)
612 /* ld t9,0x8010(gp) */
613 insn1 = 0xdf998010;
615 else
617 /* lw t9,0x8010(gp) */
618 insn1 = 0x8f998010;
621 p = buf + 12;
622 while (p >= buf)
624 insn = extract_unsigned_integer (p, 4, byte_order);
625 if (insn == insn1)
626 break;
627 p -= 4;
629 if (p < buf)
630 return 0;
632 insn = extract_unsigned_integer (p + 4, 4, byte_order);
633 if (n64)
635 /* 'daddu t7,ra' or 'or t7, ra, zero'*/
636 if (insn != 0x03e0782d && insn != 0x03e07825)
637 return 0;
639 else
641 /* 'addu t7,ra' or 'or t7, ra, zero'*/
642 if (insn != 0x03e07821 && insn != 0x03e07825)
643 return 0;
646 insn = extract_unsigned_integer (p + 8, 4, byte_order);
647 /* jalr t9,ra */
648 if (insn != 0x0320f809)
649 return 0;
651 insn = extract_unsigned_integer (p + 12, 4, byte_order);
652 if (n64)
654 /* daddiu t8,zero,0 */
655 if ((insn & 0xffff0000) != 0x64180000)
656 return 0;
658 else
660 /* addiu t8,zero,0 */
661 if ((insn & 0xffff0000) != 0x24180000)
662 return 0;
665 return 1;
668 /* Return non-zero iff PC belongs to the dynamic linker resolution
669 code, a PLT entry, or a lazy binding stub. */
671 static int
672 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
674 /* Check whether PC is in the dynamic linker. This also checks
675 whether it is in the .plt section, used by non-PIC executables. */
676 if (svr4_in_dynsym_resolve_code (pc))
677 return 1;
679 /* Likewise for the stubs. They live in the .MIPS.stubs section these
680 days, so we check if the PC is within, than fall back to a pattern
681 match. */
682 if (mips_linux_in_dynsym_stub (pc))
683 return 1;
685 return 0;
688 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
689 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
690 implementation of this triggers at "fixup" from the same objfile as
691 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
692 "__dl_runtime_resolve" directly. An unresolved lazy binding
693 stub will point to _dl_runtime_resolve, which will first call
694 __dl_runtime_resolve, and then pass control to the resolved
695 function. */
697 static CORE_ADDR
698 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
700 struct bound_minimal_symbol resolver;
702 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
704 if (resolver.minsym && resolver.value_address () == pc)
705 return frame_unwind_caller_pc (get_current_frame ());
707 return glibc_skip_solib_resolver (gdbarch, pc);
710 /* Signal trampoline support. There are four supported layouts for a
711 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
712 n64 rt_sigframe. We handle them all independently; not the most
713 efficient way, but simplest. First, declare all the unwinders. */
715 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
716 const frame_info_ptr &this_frame,
717 struct trad_frame_cache *this_cache,
718 CORE_ADDR func);
720 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
721 const frame_info_ptr &this_frame,
722 struct trad_frame_cache *this_cache,
723 CORE_ADDR func);
725 static int mips_linux_sigframe_validate (const struct tramp_frame *self,
726 const frame_info_ptr &this_frame,
727 CORE_ADDR *pc);
729 static int micromips_linux_sigframe_validate (const struct tramp_frame *self,
730 const frame_info_ptr &this_frame,
731 CORE_ADDR *pc);
733 #define MIPS_NR_LINUX 4000
734 #define MIPS_NR_N64_LINUX 5000
735 #define MIPS_NR_N32_LINUX 6000
737 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
738 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
739 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
740 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
742 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
743 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
744 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
745 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
746 #define MIPS_INST_SYSCALL 0x0000000c
748 #define MICROMIPS_INST_LI_V0 0x3040
749 #define MICROMIPS_INST_POOL32A 0x0000
750 #define MICROMIPS_INST_SYSCALL 0x8b7c
752 static const struct tramp_frame mips_linux_o32_sigframe = {
753 SIGTRAMP_FRAME,
756 { MIPS_INST_LI_V0_SIGRETURN, ULONGEST_MAX },
757 { MIPS_INST_SYSCALL, ULONGEST_MAX },
758 { TRAMP_SENTINEL_INSN, ULONGEST_MAX }
760 mips_linux_o32_sigframe_init,
761 mips_linux_sigframe_validate
764 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
765 SIGTRAMP_FRAME,
768 { MIPS_INST_LI_V0_RT_SIGRETURN, ULONGEST_MAX },
769 { MIPS_INST_SYSCALL, ULONGEST_MAX },
770 { TRAMP_SENTINEL_INSN, ULONGEST_MAX } },
771 mips_linux_o32_sigframe_init,
772 mips_linux_sigframe_validate
775 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
776 SIGTRAMP_FRAME,
779 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, ULONGEST_MAX },
780 { MIPS_INST_SYSCALL, ULONGEST_MAX },
781 { TRAMP_SENTINEL_INSN, ULONGEST_MAX }
783 mips_linux_n32n64_sigframe_init,
784 mips_linux_sigframe_validate
787 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
788 SIGTRAMP_FRAME,
791 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, ULONGEST_MAX },
792 { MIPS_INST_SYSCALL, ULONGEST_MAX },
793 { TRAMP_SENTINEL_INSN, ULONGEST_MAX }
795 mips_linux_n32n64_sigframe_init,
796 mips_linux_sigframe_validate
799 static const struct tramp_frame micromips_linux_o32_sigframe = {
800 SIGTRAMP_FRAME,
803 { MICROMIPS_INST_LI_V0, ULONGEST_MAX },
804 { MIPS_NR_sigreturn, ULONGEST_MAX },
805 { MICROMIPS_INST_POOL32A, ULONGEST_MAX },
806 { MICROMIPS_INST_SYSCALL, ULONGEST_MAX },
807 { TRAMP_SENTINEL_INSN, ULONGEST_MAX }
809 mips_linux_o32_sigframe_init,
810 micromips_linux_sigframe_validate
813 static const struct tramp_frame micromips_linux_o32_rt_sigframe = {
814 SIGTRAMP_FRAME,
817 { MICROMIPS_INST_LI_V0, ULONGEST_MAX },
818 { MIPS_NR_rt_sigreturn, ULONGEST_MAX },
819 { MICROMIPS_INST_POOL32A, ULONGEST_MAX },
820 { MICROMIPS_INST_SYSCALL, ULONGEST_MAX },
821 { TRAMP_SENTINEL_INSN, ULONGEST_MAX }
823 mips_linux_o32_sigframe_init,
824 micromips_linux_sigframe_validate
827 static const struct tramp_frame micromips_linux_n32_rt_sigframe = {
828 SIGTRAMP_FRAME,
831 { MICROMIPS_INST_LI_V0, ULONGEST_MAX },
832 { MIPS_NR_N32_rt_sigreturn, ULONGEST_MAX },
833 { MICROMIPS_INST_POOL32A, ULONGEST_MAX },
834 { MICROMIPS_INST_SYSCALL, ULONGEST_MAX },
835 { TRAMP_SENTINEL_INSN, ULONGEST_MAX }
837 mips_linux_n32n64_sigframe_init,
838 micromips_linux_sigframe_validate
841 static const struct tramp_frame micromips_linux_n64_rt_sigframe = {
842 SIGTRAMP_FRAME,
845 { MICROMIPS_INST_LI_V0, ULONGEST_MAX },
846 { MIPS_NR_N64_rt_sigreturn, ULONGEST_MAX },
847 { MICROMIPS_INST_POOL32A, ULONGEST_MAX },
848 { MICROMIPS_INST_SYSCALL, ULONGEST_MAX },
849 { TRAMP_SENTINEL_INSN, ULONGEST_MAX }
851 mips_linux_n32n64_sigframe_init,
852 micromips_linux_sigframe_validate
855 /* The unwinder for o32 signal frames. The legacy structures look
856 like this:
858 struct sigframe {
859 u32 sf_ass[4]; [argument save space for o32]
860 u32 sf_code[2]; [signal trampoline or fill]
861 struct sigcontext sf_sc;
862 sigset_t sf_mask;
865 Pre-2.6.12 sigcontext:
867 struct sigcontext {
868 unsigned int sc_regmask; [Unused]
869 unsigned int sc_status;
870 unsigned long long sc_pc;
871 unsigned long long sc_regs[32];
872 unsigned long long sc_fpregs[32];
873 unsigned int sc_ownedfp;
874 unsigned int sc_fpc_csr;
875 unsigned int sc_fpc_eir; [Unused]
876 unsigned int sc_used_math;
877 unsigned int sc_ssflags; [Unused]
878 [Alignment hole of four bytes]
879 unsigned long long sc_mdhi;
880 unsigned long long sc_mdlo;
882 unsigned int sc_cause; [Unused]
883 unsigned int sc_badvaddr; [Unused]
885 unsigned long sc_sigset[4]; [kernel's sigset_t]
888 Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
890 struct sigcontext {
891 unsigned int sc_regmask; [Unused]
892 unsigned int sc_status; [Unused]
893 unsigned long long sc_pc;
894 unsigned long long sc_regs[32];
895 unsigned long long sc_fpregs[32];
896 unsigned int sc_acx;
897 unsigned int sc_fpc_csr;
898 unsigned int sc_fpc_eir; [Unused]
899 unsigned int sc_used_math;
900 unsigned int sc_dsp;
901 [Alignment hole of four bytes]
902 unsigned long long sc_mdhi;
903 unsigned long long sc_mdlo;
904 unsigned long sc_hi1;
905 unsigned long sc_lo1;
906 unsigned long sc_hi2;
907 unsigned long sc_lo2;
908 unsigned long sc_hi3;
909 unsigned long sc_lo3;
912 The RT signal frames look like this:
914 struct rt_sigframe {
915 u32 rs_ass[4]; [argument save space for o32]
916 u32 rs_code[2] [signal trampoline or fill]
917 struct siginfo rs_info;
918 struct ucontext rs_uc;
921 struct ucontext {
922 unsigned long uc_flags;
923 struct ucontext *uc_link;
924 stack_t uc_stack;
925 [Alignment hole of four bytes]
926 struct sigcontext uc_mcontext;
927 sigset_t uc_sigmask;
928 }; */
930 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
932 #define RTSIGFRAME_SIGINFO_SIZE 128
933 #define STACK_T_SIZE (3 * 4)
934 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
935 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
936 + RTSIGFRAME_SIGINFO_SIZE \
937 + UCONTEXT_SIGCONTEXT_OFFSET)
939 #define SIGCONTEXT_PC (1 * 8)
940 #define SIGCONTEXT_REGS (2 * 8)
941 #define SIGCONTEXT_FPREGS (34 * 8)
942 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
943 #define SIGCONTEXT_DSPCTL (68 * 8 + 0)
944 #define SIGCONTEXT_HI (69 * 8)
945 #define SIGCONTEXT_LO (70 * 8)
946 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
947 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
948 #define SIGCONTEXT_HI1 (71 * 8 + 0)
949 #define SIGCONTEXT_LO1 (71 * 8 + 4)
950 #define SIGCONTEXT_HI2 (72 * 8 + 0)
951 #define SIGCONTEXT_LO2 (72 * 8 + 4)
952 #define SIGCONTEXT_HI3 (73 * 8 + 0)
953 #define SIGCONTEXT_LO3 (73 * 8 + 4)
955 #define SIGCONTEXT_REG_SIZE 8
957 static void
958 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
959 const frame_info_ptr &this_frame,
960 struct trad_frame_cache *this_cache,
961 CORE_ADDR func)
963 struct gdbarch *gdbarch = get_frame_arch (this_frame);
964 int ireg;
965 CORE_ADDR frame_sp = get_frame_sp (this_frame);
966 CORE_ADDR sigcontext_base;
967 const struct mips_regnum *regs = mips_regnum (gdbarch);
968 CORE_ADDR regs_base;
970 if (self == &mips_linux_o32_sigframe
971 || self == &micromips_linux_o32_sigframe)
972 sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
973 else
974 sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
976 /* I'm not proud of this hack. Eventually we will have the
977 infrastructure to indicate the size of saved registers on a
978 per-frame basis, but right now we don't; the kernel saves eight
979 bytes but we only want four. Use regs_base to access any
980 64-bit fields. */
981 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
982 regs_base = sigcontext_base + 4;
983 else
984 regs_base = sigcontext_base;
986 if (mips_linux_restart_reg_p (gdbarch))
987 trad_frame_set_reg_addr (this_cache,
988 (MIPS_RESTART_REGNUM
989 + gdbarch_num_regs (gdbarch)),
990 regs_base + SIGCONTEXT_REGS);
992 for (ireg = 1; ireg < 32; ireg++)
993 trad_frame_set_reg_addr (this_cache,
994 (ireg + MIPS_ZERO_REGNUM
995 + gdbarch_num_regs (gdbarch)),
996 (regs_base + SIGCONTEXT_REGS
997 + ireg * SIGCONTEXT_REG_SIZE));
999 for (ireg = 0; ireg < 32; ireg++)
1000 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
1001 trad_frame_set_reg_addr (this_cache,
1002 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1003 (sigcontext_base + SIGCONTEXT_FPREGS + 4
1004 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1005 else
1006 trad_frame_set_reg_addr (this_cache,
1007 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1008 (sigcontext_base + SIGCONTEXT_FPREGS
1009 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1011 trad_frame_set_reg_addr (this_cache,
1012 regs->pc + gdbarch_num_regs (gdbarch),
1013 regs_base + SIGCONTEXT_PC);
1015 trad_frame_set_reg_addr (this_cache,
1016 (regs->fp_control_status
1017 + gdbarch_num_regs (gdbarch)),
1018 sigcontext_base + SIGCONTEXT_FPCSR);
1020 if (regs->dspctl != -1)
1021 trad_frame_set_reg_addr (this_cache,
1022 regs->dspctl + gdbarch_num_regs (gdbarch),
1023 sigcontext_base + SIGCONTEXT_DSPCTL);
1025 trad_frame_set_reg_addr (this_cache,
1026 regs->hi + gdbarch_num_regs (gdbarch),
1027 regs_base + SIGCONTEXT_HI);
1028 trad_frame_set_reg_addr (this_cache,
1029 regs->lo + gdbarch_num_regs (gdbarch),
1030 regs_base + SIGCONTEXT_LO);
1032 if (regs->dspacc != -1)
1034 trad_frame_set_reg_addr (this_cache,
1035 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1036 sigcontext_base + SIGCONTEXT_HI1);
1037 trad_frame_set_reg_addr (this_cache,
1038 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1039 sigcontext_base + SIGCONTEXT_LO1);
1040 trad_frame_set_reg_addr (this_cache,
1041 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1042 sigcontext_base + SIGCONTEXT_HI2);
1043 trad_frame_set_reg_addr (this_cache,
1044 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1045 sigcontext_base + SIGCONTEXT_LO2);
1046 trad_frame_set_reg_addr (this_cache,
1047 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1048 sigcontext_base + SIGCONTEXT_HI3);
1049 trad_frame_set_reg_addr (this_cache,
1050 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1051 sigcontext_base + SIGCONTEXT_LO3);
1053 else
1055 trad_frame_set_reg_addr (this_cache,
1056 regs->cause + gdbarch_num_regs (gdbarch),
1057 sigcontext_base + SIGCONTEXT_CAUSE);
1058 trad_frame_set_reg_addr (this_cache,
1059 regs->badvaddr + gdbarch_num_regs (gdbarch),
1060 sigcontext_base + SIGCONTEXT_BADVADDR);
1063 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1064 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1067 /* For N32/N64 things look different. There is no non-rt signal frame.
1069 struct rt_sigframe_n32 {
1070 u32 rs_ass[4]; [ argument save space for o32 ]
1071 u32 rs_code[2]; [ signal trampoline or fill ]
1072 struct siginfo rs_info;
1073 struct ucontextn32 rs_uc;
1076 struct ucontextn32 {
1077 u32 uc_flags;
1078 s32 uc_link;
1079 stack32_t uc_stack;
1080 struct sigcontext uc_mcontext;
1081 sigset_t uc_sigmask; [ mask last for extensibility ]
1084 struct rt_sigframe {
1085 u32 rs_ass[4]; [ argument save space for o32 ]
1086 u32 rs_code[2]; [ signal trampoline ]
1087 struct siginfo rs_info;
1088 struct ucontext rs_uc;
1091 struct ucontext {
1092 unsigned long uc_flags;
1093 struct ucontext *uc_link;
1094 stack_t uc_stack;
1095 struct sigcontext uc_mcontext;
1096 sigset_t uc_sigmask; [ mask last for extensibility ]
1099 And the sigcontext is different (this is for both n32 and n64):
1101 struct sigcontext {
1102 unsigned long long sc_regs[32];
1103 unsigned long long sc_fpregs[32];
1104 unsigned long long sc_mdhi;
1105 unsigned long long sc_hi1;
1106 unsigned long long sc_hi2;
1107 unsigned long long sc_hi3;
1108 unsigned long long sc_mdlo;
1109 unsigned long long sc_lo1;
1110 unsigned long long sc_lo2;
1111 unsigned long long sc_lo3;
1112 unsigned long long sc_pc;
1113 unsigned int sc_fpc_csr;
1114 unsigned int sc_used_math;
1115 unsigned int sc_dsp;
1116 unsigned int sc_reserved;
1119 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1120 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1121 included too. */
1123 #define N32_STACK_T_SIZE STACK_T_SIZE
1124 #define N64_STACK_T_SIZE (2 * 8 + 4)
1125 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1126 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1127 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1128 + RTSIGFRAME_SIGINFO_SIZE \
1129 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1130 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1131 + RTSIGFRAME_SIGINFO_SIZE \
1132 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1134 #define N64_SIGCONTEXT_REGS (0 * 8)
1135 #define N64_SIGCONTEXT_FPREGS (32 * 8)
1136 #define N64_SIGCONTEXT_HI (64 * 8)
1137 #define N64_SIGCONTEXT_HI1 (65 * 8)
1138 #define N64_SIGCONTEXT_HI2 (66 * 8)
1139 #define N64_SIGCONTEXT_HI3 (67 * 8)
1140 #define N64_SIGCONTEXT_LO (68 * 8)
1141 #define N64_SIGCONTEXT_LO1 (69 * 8)
1142 #define N64_SIGCONTEXT_LO2 (70 * 8)
1143 #define N64_SIGCONTEXT_LO3 (71 * 8)
1144 #define N64_SIGCONTEXT_PC (72 * 8)
1145 #define N64_SIGCONTEXT_FPCSR (73 * 8 + 0)
1146 #define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0)
1148 #define N64_SIGCONTEXT_REG_SIZE 8
1150 static void
1151 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1152 const frame_info_ptr &this_frame,
1153 struct trad_frame_cache *this_cache,
1154 CORE_ADDR func)
1156 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1157 int ireg;
1158 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1159 CORE_ADDR sigcontext_base;
1160 const struct mips_regnum *regs = mips_regnum (gdbarch);
1162 if (self == &mips_linux_n32_rt_sigframe
1163 || self == &micromips_linux_n32_rt_sigframe)
1164 sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
1165 else
1166 sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
1168 if (mips_linux_restart_reg_p (gdbarch))
1169 trad_frame_set_reg_addr (this_cache,
1170 (MIPS_RESTART_REGNUM
1171 + gdbarch_num_regs (gdbarch)),
1172 sigcontext_base + N64_SIGCONTEXT_REGS);
1174 for (ireg = 1; ireg < 32; ireg++)
1175 trad_frame_set_reg_addr (this_cache,
1176 (ireg + MIPS_ZERO_REGNUM
1177 + gdbarch_num_regs (gdbarch)),
1178 (sigcontext_base + N64_SIGCONTEXT_REGS
1179 + ireg * N64_SIGCONTEXT_REG_SIZE));
1181 for (ireg = 0; ireg < 32; ireg++)
1182 trad_frame_set_reg_addr (this_cache,
1183 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1184 (sigcontext_base + N64_SIGCONTEXT_FPREGS
1185 + ireg * N64_SIGCONTEXT_REG_SIZE));
1187 trad_frame_set_reg_addr (this_cache,
1188 regs->pc + gdbarch_num_regs (gdbarch),
1189 sigcontext_base + N64_SIGCONTEXT_PC);
1191 trad_frame_set_reg_addr (this_cache,
1192 (regs->fp_control_status
1193 + gdbarch_num_regs (gdbarch)),
1194 sigcontext_base + N64_SIGCONTEXT_FPCSR);
1196 trad_frame_set_reg_addr (this_cache,
1197 regs->hi + gdbarch_num_regs (gdbarch),
1198 sigcontext_base + N64_SIGCONTEXT_HI);
1199 trad_frame_set_reg_addr (this_cache,
1200 regs->lo + gdbarch_num_regs (gdbarch),
1201 sigcontext_base + N64_SIGCONTEXT_LO);
1203 if (regs->dspacc != -1)
1205 trad_frame_set_reg_addr (this_cache,
1206 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1207 sigcontext_base + N64_SIGCONTEXT_HI1);
1208 trad_frame_set_reg_addr (this_cache,
1209 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1210 sigcontext_base + N64_SIGCONTEXT_LO1);
1211 trad_frame_set_reg_addr (this_cache,
1212 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1213 sigcontext_base + N64_SIGCONTEXT_HI2);
1214 trad_frame_set_reg_addr (this_cache,
1215 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1216 sigcontext_base + N64_SIGCONTEXT_LO2);
1217 trad_frame_set_reg_addr (this_cache,
1218 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1219 sigcontext_base + N64_SIGCONTEXT_HI3);
1220 trad_frame_set_reg_addr (this_cache,
1221 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1222 sigcontext_base + N64_SIGCONTEXT_LO3);
1224 if (regs->dspctl != -1)
1225 trad_frame_set_reg_addr (this_cache,
1226 regs->dspctl + gdbarch_num_regs (gdbarch),
1227 sigcontext_base + N64_SIGCONTEXT_DSPCTL);
1229 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1230 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1233 /* Implement struct tramp_frame's "validate" method for standard MIPS code. */
1235 static int
1236 mips_linux_sigframe_validate (const struct tramp_frame *self,
1237 const frame_info_ptr &this_frame,
1238 CORE_ADDR *pc)
1240 return mips_pc_is_mips (*pc);
1243 /* Implement struct tramp_frame's "validate" method for microMIPS code. */
1245 static int
1246 micromips_linux_sigframe_validate (const struct tramp_frame *self,
1247 const frame_info_ptr &this_frame,
1248 CORE_ADDR *pc)
1250 if (mips_pc_is_micromips (get_frame_arch (this_frame), *pc))
1252 *pc = mips_unmake_compact_addr (*pc);
1253 return 1;
1255 else
1256 return 0;
1259 /* Implement the "write_pc" gdbarch method. */
1261 static void
1262 mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1264 struct gdbarch *gdbarch = regcache->arch ();
1266 mips_write_pc (regcache, pc);
1268 /* Clear the syscall restart flag. */
1269 if (mips_linux_restart_reg_p (gdbarch))
1270 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
1273 /* Return 1 if MIPS_RESTART_REGNUM is usable. */
1276 mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1278 /* If we do not have a target description with registers, then
1279 MIPS_RESTART_REGNUM will not be included in the register set. */
1280 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1281 return 0;
1283 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1284 either be GPR-sized or missing. */
1285 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1288 /* When FRAME is at a syscall instruction, return the PC of the next
1289 instruction to be executed. */
1291 static CORE_ADDR
1292 mips_linux_syscall_next_pc (const frame_info_ptr &frame)
1294 CORE_ADDR pc = get_frame_pc (frame);
1295 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1297 /* If we are about to make a sigreturn syscall, use the unwinder to
1298 decode the signal frame. */
1299 if (v0 == MIPS_NR_sigreturn
1300 || v0 == MIPS_NR_rt_sigreturn
1301 || v0 == MIPS_NR_N64_rt_sigreturn
1302 || v0 == MIPS_NR_N32_rt_sigreturn)
1303 return frame_unwind_caller_pc (get_current_frame ());
1305 return pc + 4;
1308 /* Return the current system call's number present in the
1309 v0 register. When the function fails, it returns -1. */
1311 static LONGEST
1312 mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1313 thread_info *thread)
1315 struct regcache *regcache = get_thread_regcache (thread);
1316 mips_gdbarch_tdep *tdep = gdbarch_tdep<mips_gdbarch_tdep> (gdbarch);
1317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1318 int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1319 /* The content of a register */
1320 gdb_byte buf[8];
1321 /* The result */
1322 LONGEST ret;
1324 /* Make sure we're in a known ABI */
1325 gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1326 || tdep->mips_abi == MIPS_ABI_N32
1327 || tdep->mips_abi == MIPS_ABI_N64);
1329 gdb_assert (regsize <= sizeof (buf));
1331 /* Getting the system call number from the register.
1332 syscall number is in v0 or $2. */
1333 regcache->cooked_read (MIPS_V0_REGNUM, buf);
1335 ret = extract_signed_integer (buf, regsize, byte_order);
1337 return ret;
1340 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
1341 gdbarch.h. */
1343 static int
1344 mips_gdb_signal_to_target (struct gdbarch *gdbarch,
1345 enum gdb_signal signal)
1347 switch (signal)
1349 case GDB_SIGNAL_EMT:
1350 return MIPS_LINUX_SIGEMT;
1352 case GDB_SIGNAL_BUS:
1353 return MIPS_LINUX_SIGBUS;
1355 case GDB_SIGNAL_SYS:
1356 return MIPS_LINUX_SIGSYS;
1358 case GDB_SIGNAL_USR1:
1359 return MIPS_LINUX_SIGUSR1;
1361 case GDB_SIGNAL_USR2:
1362 return MIPS_LINUX_SIGUSR2;
1364 case GDB_SIGNAL_CHLD:
1365 return MIPS_LINUX_SIGCHLD;
1367 case GDB_SIGNAL_PWR:
1368 return MIPS_LINUX_SIGPWR;
1370 case GDB_SIGNAL_WINCH:
1371 return MIPS_LINUX_SIGWINCH;
1373 case GDB_SIGNAL_URG:
1374 return MIPS_LINUX_SIGURG;
1376 case GDB_SIGNAL_IO:
1377 return MIPS_LINUX_SIGIO;
1379 case GDB_SIGNAL_POLL:
1380 return MIPS_LINUX_SIGPOLL;
1382 case GDB_SIGNAL_STOP:
1383 return MIPS_LINUX_SIGSTOP;
1385 case GDB_SIGNAL_TSTP:
1386 return MIPS_LINUX_SIGTSTP;
1388 case GDB_SIGNAL_CONT:
1389 return MIPS_LINUX_SIGCONT;
1391 case GDB_SIGNAL_TTIN:
1392 return MIPS_LINUX_SIGTTIN;
1394 case GDB_SIGNAL_TTOU:
1395 return MIPS_LINUX_SIGTTOU;
1397 case GDB_SIGNAL_VTALRM:
1398 return MIPS_LINUX_SIGVTALRM;
1400 case GDB_SIGNAL_PROF:
1401 return MIPS_LINUX_SIGPROF;
1403 case GDB_SIGNAL_XCPU:
1404 return MIPS_LINUX_SIGXCPU;
1406 case GDB_SIGNAL_XFSZ:
1407 return MIPS_LINUX_SIGXFSZ;
1409 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
1410 therefore we have to handle it here. */
1411 case GDB_SIGNAL_REALTIME_32:
1412 return MIPS_LINUX_SIGRTMIN;
1415 if (signal >= GDB_SIGNAL_REALTIME_33
1416 && signal <= GDB_SIGNAL_REALTIME_63)
1418 int offset = signal - GDB_SIGNAL_REALTIME_33;
1420 return MIPS_LINUX_SIGRTMIN + 1 + offset;
1422 else if (signal >= GDB_SIGNAL_REALTIME_64
1423 && signal <= GDB_SIGNAL_REALTIME_127)
1425 int offset = signal - GDB_SIGNAL_REALTIME_64;
1427 return MIPS_LINUX_SIGRT64 + offset;
1430 return linux_gdb_signal_to_target (gdbarch, signal);
1433 /* Translate signals based on MIPS signal values.
1434 Adapted from gdb/gdbsupport/signals.c. */
1436 static enum gdb_signal
1437 mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1439 switch (signal)
1441 case MIPS_LINUX_SIGEMT:
1442 return GDB_SIGNAL_EMT;
1444 case MIPS_LINUX_SIGBUS:
1445 return GDB_SIGNAL_BUS;
1447 case MIPS_LINUX_SIGSYS:
1448 return GDB_SIGNAL_SYS;
1450 case MIPS_LINUX_SIGUSR1:
1451 return GDB_SIGNAL_USR1;
1453 case MIPS_LINUX_SIGUSR2:
1454 return GDB_SIGNAL_USR2;
1456 case MIPS_LINUX_SIGCHLD:
1457 return GDB_SIGNAL_CHLD;
1459 case MIPS_LINUX_SIGPWR:
1460 return GDB_SIGNAL_PWR;
1462 case MIPS_LINUX_SIGWINCH:
1463 return GDB_SIGNAL_WINCH;
1465 case MIPS_LINUX_SIGURG:
1466 return GDB_SIGNAL_URG;
1468 /* No way to differentiate between SIGIO and SIGPOLL.
1469 Therefore, we just handle the first one. */
1470 case MIPS_LINUX_SIGIO:
1471 return GDB_SIGNAL_IO;
1473 case MIPS_LINUX_SIGSTOP:
1474 return GDB_SIGNAL_STOP;
1476 case MIPS_LINUX_SIGTSTP:
1477 return GDB_SIGNAL_TSTP;
1479 case MIPS_LINUX_SIGCONT:
1480 return GDB_SIGNAL_CONT;
1482 case MIPS_LINUX_SIGTTIN:
1483 return GDB_SIGNAL_TTIN;
1485 case MIPS_LINUX_SIGTTOU:
1486 return GDB_SIGNAL_TTOU;
1488 case MIPS_LINUX_SIGVTALRM:
1489 return GDB_SIGNAL_VTALRM;
1491 case MIPS_LINUX_SIGPROF:
1492 return GDB_SIGNAL_PROF;
1494 case MIPS_LINUX_SIGXCPU:
1495 return GDB_SIGNAL_XCPU;
1497 case MIPS_LINUX_SIGXFSZ:
1498 return GDB_SIGNAL_XFSZ;
1501 if (signal >= MIPS_LINUX_SIGRTMIN && signal <= MIPS_LINUX_SIGRTMAX)
1503 /* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
1504 the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */
1505 int offset = signal - MIPS_LINUX_SIGRTMIN;
1507 if (offset == 0)
1508 return GDB_SIGNAL_REALTIME_32;
1509 else if (offset < 32)
1510 return (enum gdb_signal) (offset - 1
1511 + (int) GDB_SIGNAL_REALTIME_33);
1512 else
1513 return (enum gdb_signal) (offset - 32
1514 + (int) GDB_SIGNAL_REALTIME_64);
1517 return linux_gdb_signal_from_target (gdbarch, signal);
1520 /* Initialize one of the GNU/Linux OS ABIs. */
1522 static void
1523 mips_linux_init_abi (struct gdbarch_info info,
1524 struct gdbarch *gdbarch)
1526 mips_gdbarch_tdep *tdep = gdbarch_tdep<mips_gdbarch_tdep> (gdbarch);
1527 enum mips_abi abi = mips_abi (gdbarch);
1528 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
1530 linux_init_abi (info, gdbarch, 0);
1532 /* Get the syscall number from the arch's register. */
1533 set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1535 switch (abi)
1537 case MIPS_ABI_O32:
1538 set_gdbarch_get_longjmp_target (gdbarch,
1539 mips_linux_get_longjmp_target);
1540 set_solib_svr4_fetch_link_map_offsets
1541 (gdbarch, linux_ilp32_fetch_link_map_offsets);
1542 tramp_frame_prepend_unwinder (gdbarch, &micromips_linux_o32_sigframe);
1543 tramp_frame_prepend_unwinder (gdbarch,
1544 &micromips_linux_o32_rt_sigframe);
1545 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1546 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1547 set_xml_syscall_file_name (gdbarch, "syscalls/mips-o32-linux.xml");
1548 break;
1549 case MIPS_ABI_N32:
1550 set_gdbarch_get_longjmp_target (gdbarch,
1551 mips_linux_get_longjmp_target);
1552 set_solib_svr4_fetch_link_map_offsets
1553 (gdbarch, linux_ilp32_fetch_link_map_offsets);
1554 set_gdbarch_long_double_bit (gdbarch, 128);
1555 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_quad);
1556 tramp_frame_prepend_unwinder (gdbarch,
1557 &micromips_linux_n32_rt_sigframe);
1558 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1559 set_xml_syscall_file_name (gdbarch, "syscalls/mips-n32-linux.xml");
1560 break;
1561 case MIPS_ABI_N64:
1562 set_gdbarch_get_longjmp_target (gdbarch,
1563 mips64_linux_get_longjmp_target);
1564 set_solib_svr4_fetch_link_map_offsets
1565 (gdbarch, linux_lp64_fetch_link_map_offsets);
1566 set_gdbarch_long_double_bit (gdbarch, 128);
1567 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_quad);
1568 tramp_frame_prepend_unwinder (gdbarch,
1569 &micromips_linux_n64_rt_sigframe);
1570 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1571 set_xml_syscall_file_name (gdbarch, "syscalls/mips-n64-linux.xml");
1572 break;
1573 default:
1574 break;
1577 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1579 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1581 /* Enable TLS support. */
1582 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1583 svr4_fetch_objfile_link_map);
1585 /* Initialize this lazily, to avoid an initialization order
1586 dependency on solib-svr4.c's _initialize routine. */
1587 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1589 mips_svr4_so_ops = svr4_so_ops;
1590 mips_svr4_so_ops.in_dynsym_resolve_code
1591 = mips_linux_in_dynsym_resolve_code;
1593 set_gdbarch_so_ops (gdbarch, &mips_svr4_so_ops);
1595 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1597 set_gdbarch_core_read_description (gdbarch,
1598 mips_linux_core_read_description);
1600 set_gdbarch_iterate_over_regset_sections
1601 (gdbarch, mips_linux_iterate_over_regset_sections);
1603 set_gdbarch_gdb_signal_from_target (gdbarch,
1604 mips_gdb_signal_from_target);
1606 set_gdbarch_gdb_signal_to_target (gdbarch,
1607 mips_gdb_signal_to_target);
1609 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1611 if (tdesc_data)
1613 const struct tdesc_feature *feature;
1615 /* If we have target-described registers, then we can safely
1616 reserve a number for MIPS_RESTART_REGNUM (whether it is
1617 described or not). */
1618 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1619 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1620 set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1622 /* If it's present, then assign it to the reserved number. */
1623 feature = tdesc_find_feature (info.target_desc,
1624 "org.gnu.gdb.mips.linux");
1625 if (feature != NULL)
1626 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1627 "restart");
1631 void _initialize_mips_linux_tdep ();
1632 void
1633 _initialize_mips_linux_tdep ()
1635 const struct bfd_arch_info *arch_info;
1637 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1638 arch_info != NULL;
1639 arch_info = arch_info->next)
1641 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1642 GDB_OSABI_LINUX,
1643 mips_linux_init_abi);
1646 /* Initialize the standard target descriptions. */
1647 initialize_tdesc_mips_linux ();
1648 initialize_tdesc_mips_dsp_linux ();
1649 initialize_tdesc_mips64_linux ();
1650 initialize_tdesc_mips64_dsp_linux ();