Fix test for sections with different VMA<->LMA relationships so that it only applies...
[binutils-gdb.git] / gdb / macrotab.c
blobf2012dae1ad69f6837ccd2fcb663c89363e66751
1 /* C preprocessor macro tables for GDB.
2 Copyright (C) 2002-2024 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "gdbsupport/gdb_obstack.h"
21 #include "gdbsupport/pathstuff.h"
22 #include "splay-tree.h"
23 #include "filenames.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "macrotab.h"
28 #include "bcache.h"
29 #include "complaints.h"
30 #include "macroexp.h"
33 /* The macro table structure. */
35 struct macro_table
37 /* The obstack this table's data should be allocated in, or zero if
38 we should use xmalloc. */
39 struct obstack *obstack;
41 /* The bcache we should use to hold macro names, argument names, and
42 definitions, or zero if we should use xmalloc. */
43 gdb::bcache *bcache;
45 /* The main source file for this compilation unit --- the one whose
46 name was given to the compiler. This is the root of the
47 #inclusion tree; everything else is #included from here. */
48 struct macro_source_file *main_source;
50 /* Backlink to containing compilation unit, or NULL if there isn't one. */
51 struct compunit_symtab *compunit_symtab;
53 /* True if macros in this table can be redefined without issuing an
54 error. */
55 int redef_ok;
57 /* The table of macro definitions. This is a splay tree (an ordered
58 binary tree that stays balanced, effectively), sorted by macro
59 name. Where a macro gets defined more than once (presumably with
60 an #undefinition in between), we sort the definitions by the
61 order they would appear in the preprocessor's output. That is,
62 if `a.c' #includes `m.h' and then #includes `n.h', and both
63 header files #define X (with an #undef somewhere in between),
64 then the definition from `m.h' appears in our splay tree before
65 the one from `n.h'.
67 The splay tree's keys are `struct macro_key' pointers;
68 the values are `struct macro_definition' pointers.
70 The splay tree, its nodes, and the keys and values are allocated
71 in obstack, if it's non-zero, or with xmalloc otherwise. The
72 macro names, argument names, argument name arrays, and definition
73 strings are all allocated in bcache, if non-zero, or with xmalloc
74 otherwise. */
75 splay_tree definitions;
80 /* Allocation and freeing functions. */
82 /* Allocate SIZE bytes of memory appropriately for the macro table T.
83 This just checks whether T has an obstack, or whether its pieces
84 should be allocated with xmalloc. */
85 static void *
86 macro_alloc (int size, struct macro_table *t)
88 if (t->obstack)
89 return obstack_alloc (t->obstack, size);
90 else
91 return xmalloc (size);
95 static void
96 macro_free (void *object, struct macro_table *t)
98 if (t->obstack)
99 /* There are cases where we need to remove entries from a macro
100 table, even when reading debugging information. This should be
101 rare, and there's no easy way to free arbitrary data from an
102 obstack, so we just leak it. */
104 else
105 xfree (object);
109 /* If the macro table T has a bcache, then cache the LEN bytes at ADDR
110 there, and return the cached copy. Otherwise, just xmalloc a copy
111 of the bytes, and return a pointer to that. */
112 static const void *
113 macro_bcache (struct macro_table *t, const void *addr, int len)
115 if (t->bcache)
116 return t->bcache->insert (addr, len);
117 else
119 void *copy = xmalloc (len);
121 memcpy (copy, addr, len);
122 return copy;
127 /* If the macro table T has a bcache, cache the null-terminated string
128 S there, and return a pointer to the cached copy. Otherwise,
129 xmalloc a copy and return that. */
130 static const char *
131 macro_bcache_str (struct macro_table *t, const char *s)
133 return (const char *) macro_bcache (t, s, strlen (s) + 1);
137 /* Free a possibly bcached object OBJ. That is, if the macro table T
138 has a bcache, do nothing; otherwise, xfree OBJ. */
139 static void
140 macro_bcache_free (struct macro_table *t, void *obj)
142 if (t->bcache)
143 /* There are cases where we need to remove entries from a macro
144 table, even when reading debugging information. This should be
145 rare, and there's no easy way to free data from a bcache, so we
146 just leak it. */
148 else
149 xfree (obj);
154 /* Macro tree keys, w/their comparison, allocation, and freeing functions. */
156 /* A key in the splay tree. */
157 struct macro_key
159 /* The table we're in. We only need this in order to free it, since
160 the splay tree library's key and value freeing functions require
161 that the key or value contain all the information needed to free
162 themselves. */
163 struct macro_table *table;
165 /* The name of the macro. This is in the table's bcache, if it has
166 one. */
167 const char *name;
169 /* The source file and line number where the definition's scope
170 begins. This is also the line of the definition itself. */
171 struct macro_source_file *start_file;
172 int start_line;
174 /* The first source file and line after the definition's scope.
175 (That is, the scope does not include this endpoint.) If end_file
176 is zero, then the definition extends to the end of the
177 compilation unit. */
178 struct macro_source_file *end_file;
179 int end_line;
183 /* Return the #inclusion depth of the source file FILE. This is the
184 number of #inclusions it took to reach this file. For the main
185 source file, the #inclusion depth is zero; for a file it #includes
186 directly, the depth would be one; and so on. */
187 static int
188 inclusion_depth (struct macro_source_file *file)
190 int depth;
192 for (depth = 0; file->included_by; depth++)
193 file = file->included_by;
195 return depth;
199 /* Compare two source locations (from the same compilation unit).
200 This is part of the comparison function for the tree of
201 definitions.
203 LINE1 and LINE2 are line numbers in the source files FILE1 and
204 FILE2. Return a value:
205 - less than zero if {LINE,FILE}1 comes before {LINE,FILE}2,
206 - greater than zero if {LINE,FILE}1 comes after {LINE,FILE}2, or
207 - zero if they are equal.
209 When the two locations are in different source files --- perhaps
210 one is in a header, while another is in the main source file --- we
211 order them by where they would appear in the fully pre-processed
212 sources, where all the #included files have been substituted into
213 their places. */
214 static int
215 compare_locations (struct macro_source_file *file1, int line1,
216 struct macro_source_file *file2, int line2)
218 /* We want to treat positions in an #included file as coming *after*
219 the line containing the #include, but *before* the line after the
220 include. As we walk up the #inclusion tree toward the main
221 source file, we update fileX and lineX as we go; includedX
222 indicates whether the original position was from the #included
223 file. */
224 int included1 = 0;
225 int included2 = 0;
227 /* If a file is zero, that means "end of compilation unit." Handle
228 that specially. */
229 if (! file1)
231 if (! file2)
232 return 0;
233 else
234 return 1;
236 else if (! file2)
237 return -1;
239 /* If the two files are not the same, find their common ancestor in
240 the #inclusion tree. */
241 if (file1 != file2)
243 /* If one file is deeper than the other, walk up the #inclusion
244 chain until the two files are at least at the same *depth*.
245 Then, walk up both files in synchrony until they're the same
246 file. That file is the common ancestor. */
247 int depth1 = inclusion_depth (file1);
248 int depth2 = inclusion_depth (file2);
250 /* Only one of these while loops will ever execute in any given
251 case. */
252 while (depth1 > depth2)
254 line1 = file1->included_at_line;
255 file1 = file1->included_by;
256 included1 = 1;
257 depth1--;
259 while (depth2 > depth1)
261 line2 = file2->included_at_line;
262 file2 = file2->included_by;
263 included2 = 1;
264 depth2--;
267 /* Now both file1 and file2 are at the same depth. Walk toward
268 the root of the tree until we find where the branches meet. */
269 while (file1 != file2)
271 line1 = file1->included_at_line;
272 file1 = file1->included_by;
273 /* At this point, we know that the case the includedX flags
274 are trying to deal with won't come up, but we'll just
275 maintain them anyway. */
276 included1 = 1;
278 line2 = file2->included_at_line;
279 file2 = file2->included_by;
280 included2 = 1;
282 /* Sanity check. If file1 and file2 are really from the
283 same compilation unit, then they should both be part of
284 the same tree, and this shouldn't happen. */
285 gdb_assert (file1 && file2);
289 /* Now we've got two line numbers in the same file. */
290 if (line1 == line2)
292 /* They can't both be from #included files. Then we shouldn't
293 have walked up this far. */
294 gdb_assert (! included1 || ! included2);
296 /* Any #included position comes after a non-#included position
297 with the same line number in the #including file. */
298 if (included1)
299 return 1;
300 else if (included2)
301 return -1;
302 else
303 return 0;
305 else
306 return line1 - line2;
310 /* Compare a macro key KEY against NAME, the source file FILE, and
311 line number LINE.
313 Sort definitions by name; for two definitions with the same name,
314 place the one whose definition comes earlier before the one whose
315 definition comes later.
317 Return -1, 0, or 1 if key comes before, is identical to, or comes
318 after NAME, FILE, and LINE. */
319 static int
320 key_compare (struct macro_key *key,
321 const char *name, struct macro_source_file *file, int line)
323 int names = strcmp (key->name, name);
325 if (names)
326 return names;
328 return compare_locations (key->start_file, key->start_line,
329 file, line);
333 /* The macro tree comparison function, typed for the splay tree
334 library's happiness. */
335 static int
336 macro_tree_compare (splay_tree_key untyped_key1,
337 splay_tree_key untyped_key2)
339 struct macro_key *key1 = (struct macro_key *) untyped_key1;
340 struct macro_key *key2 = (struct macro_key *) untyped_key2;
342 return key_compare (key1, key2->name, key2->start_file, key2->start_line);
346 /* Construct a new macro key node for a macro in table T whose name is
347 NAME, and whose scope starts at LINE in FILE; register the name in
348 the bcache. */
349 static struct macro_key *
350 new_macro_key (struct macro_table *t,
351 const char *name,
352 struct macro_source_file *file,
353 int line)
355 struct macro_key *k = (struct macro_key *) macro_alloc (sizeof (*k), t);
357 memset (k, 0, sizeof (*k));
358 k->table = t;
359 k->name = macro_bcache_str (t, name);
360 k->start_file = file;
361 k->start_line = line;
362 k->end_file = 0;
364 return k;
368 static void
369 macro_tree_delete_key (void *untyped_key)
371 struct macro_key *key = (struct macro_key *) untyped_key;
373 macro_bcache_free (key->table, (char *) key->name);
374 macro_free (key, key->table);
379 /* Building and querying the tree of #included files. */
382 /* Allocate and initialize a new source file structure. */
383 static struct macro_source_file *
384 new_source_file (struct macro_table *t,
385 const char *filename)
387 /* Get space for the source file structure itself. */
388 struct macro_source_file *f
389 = (struct macro_source_file *) macro_alloc (sizeof (*f), t);
391 memset (f, 0, sizeof (*f));
392 f->table = t;
393 f->filename = macro_bcache_str (t, filename);
394 f->includes = 0;
396 return f;
400 /* Free a source file, and all the source files it #included. */
401 static void
402 free_macro_source_file (struct macro_source_file *src)
404 struct macro_source_file *child, *next_child;
406 /* Free this file's children. */
407 for (child = src->includes; child; child = next_child)
409 next_child = child->next_included;
410 free_macro_source_file (child);
413 macro_bcache_free (src->table, (char *) src->filename);
414 macro_free (src, src->table);
418 struct macro_source_file *
419 macro_set_main (struct macro_table *t,
420 const char *filename)
422 /* You can't change a table's main source file. What would that do
423 to the tree? */
424 gdb_assert (! t->main_source);
426 t->main_source = new_source_file (t, filename);
428 return t->main_source;
432 struct macro_source_file *
433 macro_main (struct macro_table *t)
435 gdb_assert (t->main_source);
437 return t->main_source;
441 void
442 macro_allow_redefinitions (struct macro_table *t)
444 gdb_assert (! t->obstack);
445 t->redef_ok = 1;
449 struct macro_source_file *
450 macro_include (struct macro_source_file *source,
451 int line,
452 const char *included)
454 struct macro_source_file *newobj;
455 struct macro_source_file **link;
457 /* Find the right position in SOURCE's `includes' list for the new
458 file. Skip inclusions at earlier lines, until we find one at the
459 same line or later --- or until the end of the list. */
460 for (link = &source->includes;
461 *link && (*link)->included_at_line < line;
462 link = &(*link)->next_included)
465 /* Did we find another file already #included at the same line as
466 the new one? */
467 if (*link && line == (*link)->included_at_line)
469 /* This means the compiler is emitting bogus debug info. (GCC
470 circa March 2002 did this.) It also means that the splay
471 tree ordering function, macro_tree_compare, will abort,
472 because it can't tell which #inclusion came first. But GDB
473 should tolerate bad debug info. So:
475 First, squawk. */
477 std::string link_fullname = macro_source_fullname (*link);
478 std::string source_fullname = macro_source_fullname (source);
479 complaint (_("both `%s' and `%s' allegedly #included at %s:%d"),
480 included, link_fullname.c_str (), source_fullname.c_str (),
481 line);
483 /* Now, choose a new, unoccupied line number for this
484 #inclusion, after the alleged #inclusion line. */
485 while (*link && line == (*link)->included_at_line)
487 /* This line number is taken, so try the next line. */
488 line++;
489 link = &(*link)->next_included;
493 /* At this point, we know that LINE is an unused line number, and
494 *LINK points to the entry an #inclusion at that line should
495 precede. */
496 newobj = new_source_file (source->table, included);
497 newobj->included_by = source;
498 newobj->included_at_line = line;
499 newobj->next_included = *link;
500 *link = newobj;
502 return newobj;
506 struct macro_source_file *
507 macro_lookup_inclusion (struct macro_source_file *source, const char *name)
509 /* Is SOURCE itself named NAME? */
510 if (filename_cmp (name, source->filename) == 0)
511 return source;
513 /* It's not us. Try all our children, and return the lowest. */
515 struct macro_source_file *child;
516 struct macro_source_file *best = NULL;
517 int best_depth = 0;
519 for (child = source->includes; child; child = child->next_included)
521 struct macro_source_file *result
522 = macro_lookup_inclusion (child, name);
524 if (result)
526 int result_depth = inclusion_depth (result);
528 if (! best || result_depth < best_depth)
530 best = result;
531 best_depth = result_depth;
536 return best;
542 /* Registering and looking up macro definitions. */
545 /* Construct a definition for a macro in table T. Cache all strings,
546 and the macro_definition structure itself, in T's bcache. */
547 static struct macro_definition *
548 new_macro_definition (struct macro_table *t,
549 enum macro_kind kind,
550 int argc, const char **argv,
551 const char *replacement)
553 struct macro_definition *d
554 = (struct macro_definition *) macro_alloc (sizeof (*d), t);
556 memset (d, 0, sizeof (*d));
557 d->table = t;
558 d->kind = kind;
559 d->replacement = macro_bcache_str (t, replacement);
560 d->argc = argc;
562 if (kind == macro_function_like)
564 int i;
565 const char **cached_argv;
566 int cached_argv_size = argc * sizeof (*cached_argv);
568 /* Bcache all the arguments. */
569 cached_argv = (const char **) alloca (cached_argv_size);
570 for (i = 0; i < argc; i++)
571 cached_argv[i] = macro_bcache_str (t, argv[i]);
573 /* Now bcache the array of argument pointers itself. */
574 d->argv = ((const char * const *)
575 macro_bcache (t, cached_argv, cached_argv_size));
578 /* We don't bcache the entire definition structure because it's got
579 a pointer to the macro table in it; since each compilation unit
580 has its own macro table, you'd only get bcache hits for identical
581 definitions within a compilation unit, which seems unlikely.
583 "So, why do macro definitions have pointers to their macro tables
584 at all?" Well, when the splay tree library wants to free a
585 node's value, it calls the value freeing function with nothing
586 but the value itself. It makes the (apparently reasonable)
587 assumption that the value carries enough information to free
588 itself. But not all macro tables have bcaches, so not all macro
589 definitions would be bcached. There's no way to tell whether a
590 given definition is bcached without knowing which table the
591 definition belongs to. ... blah. The thing's only sixteen
592 bytes anyway, and we can still bcache the name, args, and
593 definition, so we just don't bother bcaching the definition
594 structure itself. */
595 return d;
599 /* Free a macro definition. */
600 static void
601 macro_tree_delete_value (void *untyped_definition)
603 struct macro_definition *d = (struct macro_definition *) untyped_definition;
604 struct macro_table *t = d->table;
606 if (d->kind == macro_function_like)
608 int i;
610 for (i = 0; i < d->argc; i++)
611 macro_bcache_free (t, (char *) d->argv[i]);
612 macro_bcache_free (t, (char **) d->argv);
615 macro_bcache_free (t, (char *) d->replacement);
616 macro_free (d, t);
620 /* Find the splay tree node for the definition of NAME at LINE in
621 SOURCE, or zero if there is none. */
622 static splay_tree_node
623 find_definition (const char *name,
624 struct macro_source_file *file,
625 int line)
627 struct macro_table *t = file->table;
628 splay_tree_node n;
630 /* Construct a macro_key object, just for the query. */
631 struct macro_key query;
633 query.name = name;
634 query.start_file = file;
635 query.start_line = line;
636 query.end_file = NULL;
638 n = splay_tree_lookup (t->definitions, (splay_tree_key) &query);
639 if (! n)
641 /* It's okay for us to do two queries like this: the real work
642 of the searching is done when we splay, and splaying the tree
643 a second time at the same key is a constant time operation.
644 If this still bugs you, you could always just extend the
645 splay tree library with a predecessor-or-equal operation, and
646 use that. */
647 splay_tree_node pred = splay_tree_predecessor (t->definitions,
648 (splay_tree_key) &query);
650 if (pred)
652 /* Make sure this predecessor actually has the right name.
653 We just want to search within a given name's definitions. */
654 struct macro_key *found = (struct macro_key *) pred->key;
656 if (strcmp (found->name, name) == 0)
657 n = pred;
661 if (n)
663 struct macro_key *found = (struct macro_key *) n->key;
665 /* Okay, so this definition has the right name, and its scope
666 begins before the given source location. But does its scope
667 end after the given source location? */
668 if (compare_locations (file, line, found->end_file, found->end_line) < 0)
669 return n;
670 else
671 return 0;
673 else
674 return 0;
678 /* If NAME already has a definition in scope at LINE in SOURCE, return
679 the key. If the old definition is different from the definition
680 given by KIND, ARGC, ARGV, and REPLACEMENT, complain, too.
681 Otherwise, return zero. (ARGC and ARGV are meaningless unless KIND
682 is `macro_function_like'.) */
683 static struct macro_key *
684 check_for_redefinition (struct macro_source_file *source, int line,
685 const char *name, enum macro_kind kind,
686 int argc, const char **argv,
687 const char *replacement)
689 splay_tree_node n = find_definition (name, source, line);
691 if (n)
693 struct macro_key *found_key = (struct macro_key *) n->key;
694 struct macro_definition *found_def
695 = (struct macro_definition *) n->value;
696 int same = 1;
698 /* Is this definition the same as the existing one?
699 According to the standard, this comparison needs to be done
700 on lists of tokens, not byte-by-byte, as we do here. But
701 that's too hard for us at the moment, and comparing
702 byte-by-byte will only yield false negatives (i.e., extra
703 warning messages), not false positives (i.e., unnoticed
704 definition changes). */
705 if (kind != found_def->kind)
706 same = 0;
707 else if (strcmp (replacement, found_def->replacement))
708 same = 0;
709 else if (kind == macro_function_like)
711 if (argc != found_def->argc)
712 same = 0;
713 else
715 int i;
717 for (i = 0; i < argc; i++)
718 if (strcmp (argv[i], found_def->argv[i]))
719 same = 0;
723 if (! same)
725 std::string source_fullname = macro_source_fullname (source);
726 std::string found_key_fullname
727 = macro_source_fullname (found_key->start_file);
728 complaint (_("macro `%s' redefined at %s:%d; "
729 "original definition at %s:%d"),
730 name, source_fullname.c_str (), line,
731 found_key_fullname.c_str (),
732 found_key->start_line);
735 return found_key;
737 else
738 return 0;
741 /* A helper function to define a new object-like or function-like macro
742 according to KIND. When KIND is macro_object_like,
743 the macro_special_kind must be provided as ARGC, and ARGV must be NULL.
744 When KIND is macro_function_like, ARGC and ARGV are giving the function
745 arguments. */
747 static void
748 macro_define_internal (struct macro_source_file *source, int line,
749 const char *name, enum macro_kind kind,
750 int argc, const char **argv,
751 const char *replacement)
753 struct macro_table *t = source->table;
754 struct macro_key *k = NULL;
755 struct macro_definition *d;
757 if (! t->redef_ok)
758 k = check_for_redefinition (source, line,
759 name, kind,
760 argc, argv,
761 replacement);
763 /* If we're redefining a symbol, and the existing key would be
764 identical to our new key, then the splay_tree_insert function
765 will try to delete the old definition. When the definition is
766 living on an obstack, this isn't a happy thing.
768 Since this only happens in the presence of questionable debug
769 info, we just ignore all definitions after the first. The only
770 case I know of where this arises is in GCC's output for
771 predefined macros, and all the definitions are the same in that
772 case. */
773 if (k && ! key_compare (k, name, source, line))
774 return;
776 k = new_macro_key (t, name, source, line);
777 d = new_macro_definition (t, kind, argc, argv, replacement);
778 splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
781 /* A helper function to define a new object-like macro. */
783 static void
784 macro_define_object_internal (struct macro_source_file *source, int line,
785 const char *name, const char *replacement,
786 enum macro_special_kind special_kind)
788 macro_define_internal (source, line,
789 name, macro_object_like,
790 special_kind, NULL,
791 replacement);
794 void
795 macro_define_object (struct macro_source_file *source, int line,
796 const char *name, const char *replacement)
798 macro_define_object_internal (source, line, name, replacement,
799 macro_ordinary);
802 /* See macrotab.h. */
804 void
805 macro_define_special (struct macro_table *table)
807 macro_define_object_internal (table->main_source, -1, "__FILE__", "",
808 macro_FILE);
809 macro_define_object_internal (table->main_source, -1, "__LINE__", "",
810 macro_LINE);
813 void
814 macro_define_function (struct macro_source_file *source, int line,
815 const char *name, int argc, const char **argv,
816 const char *replacement)
818 macro_define_internal (source, line,
819 name, macro_function_like,
820 argc, argv,
821 replacement);
824 void
825 macro_undef (struct macro_source_file *source, int line,
826 const char *name)
828 splay_tree_node n = find_definition (name, source, line);
830 if (n)
832 struct macro_key *key = (struct macro_key *) n->key;
834 /* If we're removing a definition at exactly the same point that
835 we defined it, then just delete the entry altogether. GCC
836 4.1.2 will generate DWARF that says to do this if you pass it
837 arguments like '-DFOO -UFOO -DFOO=2'. */
838 if (source == key->start_file
839 && line == key->start_line)
840 splay_tree_remove (source->table->definitions, n->key);
842 else
844 /* This function is the only place a macro's end-of-scope
845 location gets set to anything other than "end of the
846 compilation unit" (i.e., end_file is zero). So if this
847 macro already has its end-of-scope set, then we're
848 probably seeing a second #undefinition for the same
849 #definition. */
850 if (key->end_file)
852 std::string source_fullname = macro_source_fullname (source);
853 std::string key_fullname = macro_source_fullname (key->end_file);
854 complaint (_("macro '%s' is #undefined twice,"
855 " at %s:%d and %s:%d"),
856 name, source_fullname.c_str (), line,
857 key_fullname.c_str (),
858 key->end_line);
861 /* Whether or not we've seen a prior #undefinition, wipe out
862 the old ending point, and make this the ending point. */
863 key->end_file = source;
864 key->end_line = line;
867 else
869 /* According to the ISO C standard, an #undef for a symbol that
870 has no macro definition in scope is ignored. So we should
871 ignore it too. */
872 #if 0
873 complaint (_("no definition for macro `%s' in scope to #undef at %s:%d"),
874 name, source->filename, line);
875 #endif
879 /* A helper function that rewrites the definition of a special macro,
880 when needed. */
882 static struct macro_definition *
883 fixup_definition (const char *filename, int line, struct macro_definition *def)
885 static gdb::unique_xmalloc_ptr<char> saved_expansion;
887 if (def->kind == macro_object_like)
889 if (def->argc == macro_FILE)
891 saved_expansion = macro_stringify (filename);
892 def->replacement = saved_expansion.get ();
894 else if (def->argc == macro_LINE)
896 saved_expansion = xstrprintf ("%d", line);
897 def->replacement = saved_expansion.get ();
901 return def;
904 struct macro_definition *
905 macro_lookup_definition (struct macro_source_file *source,
906 int line, const char *name)
908 splay_tree_node n = find_definition (name, source, line);
910 if (n)
912 std::string source_fullname = macro_source_fullname (source);
913 return fixup_definition (source_fullname.c_str (), line,
914 (struct macro_definition *) n->value);
916 else
917 return 0;
921 struct macro_source_file *
922 macro_definition_location (struct macro_source_file *source,
923 int line,
924 const char *name,
925 int *definition_line)
927 splay_tree_node n = find_definition (name, source, line);
929 if (n)
931 struct macro_key *key = (struct macro_key *) n->key;
933 *definition_line = key->start_line;
934 return key->start_file;
936 else
937 return 0;
941 /* The type for callback data for iterating the splay tree in
942 macro_for_each and macro_for_each_in_scope. Only the latter uses
943 the FILE and LINE fields. */
944 struct macro_for_each_data
946 gdb::function_view<macro_callback_fn> fn;
947 struct macro_source_file *file;
948 int line;
951 /* Helper function for macro_for_each. */
952 static int
953 foreach_macro (splay_tree_node node, void *arg)
955 struct macro_for_each_data *datum = (struct macro_for_each_data *) arg;
956 struct macro_key *key = (struct macro_key *) node->key;
957 struct macro_definition *def;
959 std::string key_fullname = macro_source_fullname (key->start_file);
960 def = fixup_definition (key_fullname.c_str (), key->start_line,
961 (struct macro_definition *) node->value);
963 datum->fn (key->name, def, key->start_file, key->start_line);
964 return 0;
967 /* Call FN for every macro in TABLE. */
968 void
969 macro_for_each (struct macro_table *table,
970 gdb::function_view<macro_callback_fn> fn)
972 struct macro_for_each_data datum;
974 datum.fn = fn;
975 datum.file = NULL;
976 datum.line = 0;
977 splay_tree_foreach (table->definitions, foreach_macro, &datum);
980 static int
981 foreach_macro_in_scope (splay_tree_node node, void *info)
983 struct macro_for_each_data *datum = (struct macro_for_each_data *) info;
984 struct macro_key *key = (struct macro_key *) node->key;
985 struct macro_definition *def;
987 std::string datum_fullname = macro_source_fullname (datum->file);
988 def = fixup_definition (datum_fullname.c_str (), datum->line,
989 (struct macro_definition *) node->value);
991 /* See if this macro is defined before the passed-in line, and
992 extends past that line. */
993 if (compare_locations (key->start_file, key->start_line,
994 datum->file, datum->line) < 0
995 && (!key->end_file
996 || compare_locations (key->end_file, key->end_line,
997 datum->file, datum->line) >= 0))
998 datum->fn (key->name, def, key->start_file, key->start_line);
999 return 0;
1002 /* Call FN for every macro is visible in SCOPE. */
1003 void
1004 macro_for_each_in_scope (struct macro_source_file *file, int line,
1005 gdb::function_view<macro_callback_fn> fn)
1007 struct macro_for_each_data datum;
1009 datum.fn = fn;
1010 datum.file = file;
1011 datum.line = line;
1012 splay_tree_foreach (file->table->definitions,
1013 foreach_macro_in_scope, &datum);
1018 /* Creating and freeing macro tables. */
1021 struct macro_table *
1022 new_macro_table (struct obstack *obstack, gdb::bcache *b,
1023 struct compunit_symtab *cust)
1025 struct macro_table *t;
1027 /* First, get storage for the `struct macro_table' itself. */
1028 if (obstack)
1029 t = XOBNEW (obstack, struct macro_table);
1030 else
1031 t = XNEW (struct macro_table);
1033 memset (t, 0, sizeof (*t));
1034 t->obstack = obstack;
1035 t->bcache = b;
1036 t->main_source = NULL;
1037 t->compunit_symtab = cust;
1038 t->redef_ok = 0;
1039 t->definitions = (splay_tree_new_with_allocator
1040 (macro_tree_compare,
1041 ((splay_tree_delete_key_fn) macro_tree_delete_key),
1042 ((splay_tree_delete_value_fn) macro_tree_delete_value),
1043 ((splay_tree_allocate_fn) macro_alloc),
1044 ((splay_tree_deallocate_fn) macro_free),
1045 t));
1047 return t;
1051 void
1052 free_macro_table (struct macro_table *table)
1054 /* Free the source file tree. */
1055 free_macro_source_file (table->main_source);
1057 /* Free the table of macro definitions. */
1058 splay_tree_delete (table->definitions);
1061 /* See macrotab.h for the comment. */
1063 std::string
1064 macro_source_fullname (struct macro_source_file *file)
1066 const char *comp_dir = NULL;
1068 if (file->table->compunit_symtab != NULL)
1069 comp_dir = file->table->compunit_symtab->dirname ();
1071 if (comp_dir == NULL || IS_ABSOLUTE_PATH (file->filename))
1072 return file->filename;
1074 return path_join (comp_dir, file->filename);