1 /* crc32.c -- compute the CRC-32 of a data stream
2 * Copyright (C) 1995-2022 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
5 * This interleaved implementation of a CRC makes use of pipelined multiple
6 * arithmetic-logic units, commonly found in modern CPU cores. It is due to
7 * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution.
13 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
14 protection on the static variables used to control the first-use generation
15 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
16 first call get_crc_table() to initialize the tables before allowing more than
17 one thread to use crc32().
19 MAKECRCH can be #defined to write out crc32.h. A main() routine is also
20 produced, so that this one source file can be compiled to an executable.
25 # ifndef DYNAMIC_CRC_TABLE
26 # define DYNAMIC_CRC_TABLE
27 # endif /* !DYNAMIC_CRC_TABLE */
30 #include "zutil.h" /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */
33 A CRC of a message is computed on N braids of words in the message, where
34 each word consists of W bytes (4 or 8). If N is 3, for example, then three
35 running sparse CRCs are calculated respectively on each braid, at these
36 indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ...
37 This is done starting at a word boundary, and continues until as many blocks
38 of N * W bytes as are available have been processed. The results are combined
39 into a single CRC at the end. For this code, N must be in the range 1..6 and
40 W must be 4 or 8. The upper limit on N can be increased if desired by adding
41 more #if blocks, extending the patterns apparent in the code. In addition,
42 crc32.h would need to be regenerated, if the maximum N value is increased.
44 N and W are chosen empirically by benchmarking the execution time on a given
45 processor. The choices for N and W below were based on testing on Intel Kaby
46 Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64
47 Octeon II processors. The Intel, AMD, and ARM processors were all fastest
48 with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4.
49 They were all tested with either gcc or clang, all using the -O3 optimization
50 level. Your mileage may vary.
60 # error N must be in 1..6
64 z_crc_t must be at least 32 bits. z_word_t must be at least as long as
65 z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and
66 that bytes are eight bits.
70 Define W and the associated z_word_t type. If W is not defined, then a
71 braided calculation is not used, and the associated tables and code are not
80 # define W 8 /* required for MAKECRCH */
82 # if defined(__x86_64__) || defined(__aarch64__)
90 # if W == 8 && defined(Z_U8)
91 typedef Z_U8 z_word_t
;
95 typedef Z_U4 z_word_t
;
101 /* Local functions. */
102 local z_crc_t multmodp
OF((z_crc_t a
, z_crc_t b
));
103 local z_crc_t x2nmodp
OF((z_off64_t n
, unsigned k
));
105 /* If available, use the ARM processor CRC32 instruction. */
106 #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8
110 #if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
112 Swap the bytes in a z_word_t to convert between little and big endian. Any
113 self-respecting compiler will optimize this to a single machine byte-swap
114 instruction, if one is available. This assumes that word_t is either 32 bits
117 local z_word_t
byte_swap(word
)
122 (word
& 0xff00000000000000) >> 56 |
123 (word
& 0xff000000000000) >> 40 |
124 (word
& 0xff0000000000) >> 24 |
125 (word
& 0xff00000000) >> 8 |
126 (word
& 0xff000000) << 8 |
127 (word
& 0xff0000) << 24 |
128 (word
& 0xff00) << 40 |
132 (word
& 0xff000000) >> 24 |
133 (word
& 0xff0000) >> 8 |
134 (word
& 0xff00) << 8 |
140 /* CRC polynomial. */
141 #define POLY 0xedb88320 /* p(x) reflected, with x^32 implied */
143 #ifdef DYNAMIC_CRC_TABLE
145 local z_crc_t FAR crc_table
[256];
146 local z_crc_t FAR x2n_table
[32];
147 local
void make_crc_table
OF((void));
149 local z_word_t FAR crc_big_table
[256];
150 local z_crc_t FAR crc_braid_table
[W
][256];
151 local z_word_t FAR crc_braid_big_table
[W
][256];
152 local
void braid
OF((z_crc_t
[][256], z_word_t
[][256], int, int));
155 local
void write_table
OF((FILE *, const z_crc_t FAR
*, int));
156 local
void write_table32hi
OF((FILE *, const z_word_t FAR
*, int));
157 local
void write_table64
OF((FILE *, const z_word_t FAR
*, int));
158 #endif /* MAKECRCH */
161 Define a once() function depending on the availability of atomics. If this is
162 compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in
163 multiple threads, and if atomics are not available, then get_crc_table() must
164 be called to initialize the tables and must return before any threads are
165 allowed to compute or combine CRCs.
168 /* Definition of once functionality. */
169 typedef struct once_s once_t
;
170 local
void once
OF((once_t
*, void (*)(void)));
172 /* Check for the availability of atomics. */
173 #if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \
174 !defined(__STDC_NO_ATOMICS__)
176 #include <stdatomic.h>
178 /* Structure for once(), which must be initialized with ONCE_INIT. */
183 #define ONCE_INIT {ATOMIC_FLAG_INIT, 0}
186 Run the provided init() function exactly once, even if multiple threads
187 invoke once() at the same time. The state must be a once_t initialized with
190 local
void once(state
, init
)
194 if (!atomic_load(&state
->done
)) {
195 if (atomic_flag_test_and_set(&state
->begun
))
196 while (!atomic_load(&state
->done
))
200 atomic_store(&state
->done
, 1);
205 #else /* no atomics */
207 /* Structure for once(), which must be initialized with ONCE_INIT. */
212 #define ONCE_INIT {0, 0}
214 /* Test and set. Alas, not atomic, but tries to minimize the period of
216 local
int test_and_set
OF((int volatile *));
217 local
int test_and_set(flag
)
227 /* Run the provided init() function once. This is not thread-safe. */
228 local
void once(state
, init
)
233 if (test_and_set(&state
->begun
))
245 /* State for once(). */
246 local once_t made
= ONCE_INIT
;
249 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
250 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
252 Polynomials over GF(2) are represented in binary, one bit per coefficient,
253 with the lowest powers in the most significant bit. Then adding polynomials
254 is just exclusive-or, and multiplying a polynomial by x is a right shift by
255 one. If we call the above polynomial p, and represent a byte as the
256 polynomial q, also with the lowest power in the most significant bit (so the
257 byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p,
258 where a mod b means the remainder after dividing a by b.
260 This calculation is done using the shift-register method of multiplying and
261 taking the remainder. The register is initialized to zero, and for each
262 incoming bit, x^32 is added mod p to the register if the bit is a one (where
263 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x
264 (which is shifting right by one and adding x^32 mod p if the bit shifted out
265 is a one). We start with the highest power (least significant bit) of q and
266 repeat for all eight bits of q.
268 The table is simply the CRC of all possible eight bit values. This is all the
269 information needed to generate CRCs on data a byte at a time for all
270 combinations of CRC register values and incoming bytes.
273 local
void make_crc_table()
278 /* initialize the CRC of bytes tables */
279 for (i
= 0; i
< 256; i
++) {
281 for (j
= 0; j
< 8; j
++)
282 p
= p
& 1 ? (p
>> 1) ^ POLY
: p
>> 1;
285 crc_big_table
[i
] = byte_swap(p
);
289 /* initialize the x^2^n mod p(x) table */
290 p
= (z_crc_t
)1 << 30; /* x^1 */
292 for (n
= 1; n
< 32; n
++)
293 x2n_table
[n
] = p
= multmodp(p
, p
);
296 /* initialize the braiding tables -- needs x2n_table[] */
297 braid(crc_braid_table
, crc_braid_big_table
, N
, W
);
303 The crc32.h header file contains tables for both 32-bit and 64-bit
304 z_word_t's, and so requires a 64-bit type be available. In that case,
305 z_word_t must be defined to be 64-bits. This code then also generates
306 and writes out the tables for the case that z_word_t is 32 bits.
308 #if !defined(W) || W != 8
309 # error Need a 64-bit integer type in order to generate crc32.h.
314 z_word_t big
[8][256];
316 out
= fopen("crc32.h", "w");
317 if (out
== NULL
) return;
319 /* write out little-endian CRC table to crc32.h */
321 "/* crc32.h -- tables for rapid CRC calculation\n"
322 " * Generated automatically by crc32.c\n */\n"
324 "local const z_crc_t FAR crc_table[] = {\n"
326 write_table(out
, crc_table
, 256);
330 /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */
337 "local const z_word_t FAR crc_big_table[] = {\n"
339 write_table64(out
, crc_big_table
, 256);
343 /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */
346 "#else /* W == 4 */\n"
348 "local const z_word_t FAR crc_big_table[] = {\n"
350 write_table32hi(out
, crc_big_table
, 256);
356 /* write out braid tables for each value of N */
357 for (n
= 1; n
<= 6; n
++) {
362 /* compute braid tables for this N and 64-bit word_t */
363 braid(ltl
, big
, n
, 8);
365 /* write out braid tables for 64-bit z_word_t to crc32.h */
370 "local const z_crc_t FAR crc_braid_table[][256] = {\n");
371 for (k
= 0; k
< 8; k
++) {
373 write_table(out
, ltl
[k
], 256);
374 fprintf(out
, "}%s", k
< 7 ? ",\n" : "");
379 "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
380 for (k
= 0; k
< 8; k
++) {
382 write_table64(out
, big
[k
], 256);
383 fprintf(out
, "}%s", k
< 7 ? ",\n" : "");
388 /* compute braid tables for this N and 32-bit word_t */
389 braid(ltl
, big
, n
, 4);
391 /* write out braid tables for 32-bit z_word_t to crc32.h */
394 "#else /* W == 4 */\n"
396 "local const z_crc_t FAR crc_braid_table[][256] = {\n");
397 for (k
= 0; k
< 4; k
++) {
399 write_table(out
, ltl
[k
], 256);
400 fprintf(out
, "}%s", k
< 3 ? ",\n" : "");
405 "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
406 for (k
= 0; k
< 4; k
++) {
408 write_table32hi(out
, big
[k
], 256);
409 fprintf(out
, "}%s", k
< 3 ? ",\n" : "");
422 /* write out zeros operator table to crc32.h */
425 "local const z_crc_t FAR x2n_table[] = {\n"
427 write_table(out
, x2n_table
, 32);
432 #endif /* MAKECRCH */
438 Write the 32-bit values in table[0..k-1] to out, five per line in
439 hexadecimal separated by commas.
441 local
void write_table(out
, table
, k
)
443 const z_crc_t FAR
*table
;
448 for (n
= 0; n
< k
; n
++)
449 fprintf(out
, "%s0x%08lx%s", n
== 0 || n
% 5 ? "" : " ",
450 (unsigned long)(table
[n
]),
451 n
== k
- 1 ? "" : (n
% 5 == 4 ? ",\n" : ", "));
455 Write the high 32-bits of each value in table[0..k-1] to out, five per line
456 in hexadecimal separated by commas.
458 local
void write_table32hi(out
, table
, k
)
460 const z_word_t FAR
*table
;
465 for (n
= 0; n
< k
; n
++)
466 fprintf(out
, "%s0x%08lx%s", n
== 0 || n
% 5 ? "" : " ",
467 (unsigned long)(table
[n
] >> 32),
468 n
== k
- 1 ? "" : (n
% 5 == 4 ? ",\n" : ", "));
472 Write the 64-bit values in table[0..k-1] to out, three per line in
473 hexadecimal separated by commas. This assumes that if there is a 64-bit
474 type, then there is also a long long integer type, and it is at least 64
475 bits. If not, then the type cast and format string can be adjusted
478 local
void write_table64(out
, table
, k
)
480 const z_word_t FAR
*table
;
485 for (n
= 0; n
< k
; n
++)
486 fprintf(out
, "%s0x%016llx%s", n
== 0 || n
% 3 ? "" : " ",
487 (unsigned long long)(table
[n
]),
488 n
== k
- 1 ? "" : (n
% 3 == 2 ? ",\n" : ", "));
491 /* Actually do the deed. */
498 #endif /* MAKECRCH */
502 Generate the little and big-endian braid tables for the given n and z_word_t
503 size w. Each array must have room for w blocks of 256 elements.
505 local
void braid(ltl
, big
, n
, w
)
513 for (k
= 0; k
< w
; k
++) {
514 p
= x2nmodp((n
* w
+ 3 - k
) << 3, 0);
516 big
[w
- 1 - k
][0] = 0;
517 for (i
= 1; i
< 256; i
++) {
518 ltl
[k
][i
] = q
= multmodp(i
<< 24, p
);
519 big
[w
- 1 - k
][i
] = byte_swap(q
);
525 #else /* !DYNAMIC_CRC_TABLE */
526 /* ========================================================================
527 * Tables for byte-wise and braided CRC-32 calculations, and a table of powers
528 * of x for combining CRC-32s, all made by make_crc_table().
531 #endif /* DYNAMIC_CRC_TABLE */
533 /* ========================================================================
534 * Routines used for CRC calculation. Some are also required for the table
539 Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
540 reflected. For speed, this requires that a not be zero.
542 local z_crc_t
multmodp(a
, b
)
548 m
= (z_crc_t
)1 << 31;
553 if ((a
& (m
- 1)) == 0)
557 b
= b
& 1 ? (b
>> 1) ^ POLY
: b
>> 1;
563 Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
566 local z_crc_t
x2nmodp(n
, k
)
572 p
= (z_crc_t
)1 << 31; /* x^0 == 1 */
575 p
= multmodp(x2n_table
[k
& 31], p
);
582 /* =========================================================================
583 * This function can be used by asm versions of crc32(), and to force the
584 * generation of the CRC tables in a threaded application.
586 const z_crc_t FAR
* ZEXPORT
get_crc_table()
588 #ifdef DYNAMIC_CRC_TABLE
589 once(&made
, make_crc_table
);
590 #endif /* DYNAMIC_CRC_TABLE */
591 return (const z_crc_t FAR
*)crc_table
;
594 /* =========================================================================
595 * Use ARM machine instructions if available. This will compute the CRC about
596 * ten times faster than the braided calculation. This code does not check for
597 * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will
598 * only be defined if the compilation specifies an ARM processor architecture
599 * that has the instructions. For example, compiling with -march=armv8.1-a or
600 * -march=armv8-a+crc, or -march=native if the compile machine has the crc32
606 Constants empirically determined to maximize speed. These values are from
607 measurements on a Cortex-A57. Your mileage may vary.
609 #define Z_BATCH 3990 /* number of words in a batch */
610 #define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */
611 #define Z_BATCH_MIN 800 /* fewest words in a final batch */
613 unsigned long ZEXPORT
crc32_z(crc
, buf
, len
)
615 const unsigned char FAR
*buf
;
620 const z_word_t
*word
;
621 z_word_t val0
, val1
, val2
;
622 z_size_t last
, last2
, i
;
625 /* Return initial CRC, if requested. */
626 if (buf
== Z_NULL
) return 0;
628 #ifdef DYNAMIC_CRC_TABLE
629 once(&made
, make_crc_table
);
630 #endif /* DYNAMIC_CRC_TABLE */
632 /* Pre-condition the CRC */
635 /* Compute the CRC up to a word boundary. */
636 while (len
&& ((z_size_t
)buf
& 7) != 0) {
639 __asm__
volatile("crc32b %w0, %w0, %w1" : "+r"(crc
) : "r"(val
));
642 /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */
643 word
= (z_word_t
const *)buf
;
647 /* Do three interleaved CRCs to realize the throughput of one crc32x
648 instruction per cycle. Each CRC is calcuated on Z_BATCH words. The three
649 CRCs are combined into a single CRC after each set of batches. */
650 while (num
>= 3 * Z_BATCH
) {
653 for (i
= 0; i
< Z_BATCH
; i
++) {
655 val1
= word
[i
+ Z_BATCH
];
656 val2
= word
[i
+ 2 * Z_BATCH
];
657 __asm__
volatile("crc32x %w0, %w0, %x1" : "+r"(crc
) : "r"(val0
));
658 __asm__
volatile("crc32x %w0, %w0, %x1" : "+r"(crc1
) : "r"(val1
));
659 __asm__
volatile("crc32x %w0, %w0, %x1" : "+r"(crc2
) : "r"(val2
));
663 crc
= multmodp(Z_BATCH_ZEROS
, crc
) ^ crc1
;
664 crc
= multmodp(Z_BATCH_ZEROS
, crc
) ^ crc2
;
667 /* Do one last smaller batch with the remaining words, if there are enough
668 to pay for the combination of CRCs. */
670 if (last
>= Z_BATCH_MIN
) {
674 for (i
= 0; i
< last
; i
++) {
676 val1
= word
[i
+ last
];
677 val2
= word
[i
+ last2
];
678 __asm__
volatile("crc32x %w0, %w0, %x1" : "+r"(crc
) : "r"(val0
));
679 __asm__
volatile("crc32x %w0, %w0, %x1" : "+r"(crc1
) : "r"(val1
));
680 __asm__
volatile("crc32x %w0, %w0, %x1" : "+r"(crc2
) : "r"(val2
));
684 val
= x2nmodp(last
, 6);
685 crc
= multmodp(val
, crc
) ^ crc1
;
686 crc
= multmodp(val
, crc
) ^ crc2
;
689 /* Compute the CRC on any remaining words. */
690 for (i
= 0; i
< num
; i
++) {
692 __asm__
volatile("crc32x %w0, %w0, %x1" : "+r"(crc
) : "r"(val0
));
696 /* Complete the CRC on any remaining bytes. */
697 buf
= (const unsigned char FAR
*)word
;
701 __asm__
volatile("crc32b %w0, %w0, %w1" : "+r"(crc
) : "r"(val
));
704 /* Return the CRC, post-conditioned. */
705 return crc
^ 0xffffffff;
713 Return the CRC of the W bytes in the word_t data, taking the
714 least-significant byte of the word as the first byte of data, without any pre
715 or post conditioning. This is used to combine the CRCs of each braid.
717 local z_crc_t
crc_word(data
)
721 for (k
= 0; k
< W
; k
++)
722 data
= (data
>> 8) ^ crc_table
[data
& 0xff];
723 return (z_crc_t
)data
;
726 local z_word_t
crc_word_big(data
)
730 for (k
= 0; k
< W
; k
++)
732 crc_big_table
[(data
>> ((W
- 1) << 3)) & 0xff];
738 /* ========================================================================= */
739 unsigned long ZEXPORT
crc32_z(crc
, buf
, len
)
741 const unsigned char FAR
*buf
;
744 /* Return initial CRC, if requested. */
745 if (buf
== Z_NULL
) return 0;
747 #ifdef DYNAMIC_CRC_TABLE
748 once(&made
, make_crc_table
);
749 #endif /* DYNAMIC_CRC_TABLE */
751 /* Pre-condition the CRC */
756 /* If provided enough bytes, do a braided CRC calculation. */
757 if (len
>= N
* W
+ W
- 1) {
759 z_word_t
const *words
;
763 /* Compute the CRC up to a z_word_t boundary. */
764 while (len
&& ((z_size_t
)buf
& (W
- 1)) != 0) {
766 crc
= (crc
>> 8) ^ crc_table
[(crc
^ *buf
++) & 0xff];
769 /* Compute the CRC on as many N z_word_t blocks as are available. */
770 blks
= len
/ (N
* W
);
772 words
= (z_word_t
const *)buf
;
774 /* Do endian check at execution time instead of compile time, since ARM
775 processors can change the endianess at execution time. If the
776 compiler knows what the endianess will be, it can optimize out the
777 check and the unused branch. */
779 if (*(unsigned char *)&endian
) {
805 /* Initialize the CRC for each braid. */
824 Process the first blks-1 blocks, computing the CRCs on each braid
828 /* Load the word for each braid into registers. */
829 word0
= crc0
^ words
[0];
831 word1
= crc1
^ words
[1];
833 word2
= crc2
^ words
[2];
835 word3
= crc3
^ words
[3];
837 word4
= crc4
^ words
[4];
839 word5
= crc5
^ words
[5];
847 /* Compute and update the CRC for each word. The loop should
849 crc0
= crc_braid_table
[0][word0
& 0xff];
851 crc1
= crc_braid_table
[0][word1
& 0xff];
853 crc2
= crc_braid_table
[0][word2
& 0xff];
855 crc3
= crc_braid_table
[0][word3
& 0xff];
857 crc4
= crc_braid_table
[0][word4
& 0xff];
859 crc5
= crc_braid_table
[0][word5
& 0xff];
865 for (k
= 1; k
< W
; k
++) {
866 crc0
^= crc_braid_table
[k
][(word0
>> (k
<< 3)) & 0xff];
868 crc1
^= crc_braid_table
[k
][(word1
>> (k
<< 3)) & 0xff];
870 crc2
^= crc_braid_table
[k
][(word2
>> (k
<< 3)) & 0xff];
872 crc3
^= crc_braid_table
[k
][(word3
>> (k
<< 3)) & 0xff];
874 crc4
^= crc_braid_table
[k
][(word4
>> (k
<< 3)) & 0xff];
876 crc5
^= crc_braid_table
[k
][(word5
>> (k
<< 3)) & 0xff];
886 Process the last block, combining the CRCs of the N braids at the
889 crc
= crc_word(crc0
^ words
[0]);
891 crc
= crc_word(crc1
^ words
[1] ^ crc
);
893 crc
= crc_word(crc2
^ words
[2] ^ crc
);
895 crc
= crc_word(crc3
^ words
[3] ^ crc
);
897 crc
= crc_word(crc4
^ words
[4] ^ crc
);
899 crc
= crc_word(crc5
^ words
[5] ^ crc
);
910 z_word_t crc0
, word0
, comb
;
912 z_word_t crc1
, word1
;
914 z_word_t crc2
, word2
;
916 z_word_t crc3
, word3
;
918 z_word_t crc4
, word4
;
920 z_word_t crc5
, word5
;
927 /* Initialize the CRC for each braid. */
928 crc0
= byte_swap(crc
);
946 Process the first blks-1 blocks, computing the CRCs on each braid
950 /* Load the word for each braid into registers. */
951 word0
= crc0
^ words
[0];
953 word1
= crc1
^ words
[1];
955 word2
= crc2
^ words
[2];
957 word3
= crc3
^ words
[3];
959 word4
= crc4
^ words
[4];
961 word5
= crc5
^ words
[5];
969 /* Compute and update the CRC for each word. The loop should
971 crc0
= crc_braid_big_table
[0][word0
& 0xff];
973 crc1
= crc_braid_big_table
[0][word1
& 0xff];
975 crc2
= crc_braid_big_table
[0][word2
& 0xff];
977 crc3
= crc_braid_big_table
[0][word3
& 0xff];
979 crc4
= crc_braid_big_table
[0][word4
& 0xff];
981 crc5
= crc_braid_big_table
[0][word5
& 0xff];
987 for (k
= 1; k
< W
; k
++) {
988 crc0
^= crc_braid_big_table
[k
][(word0
>> (k
<< 3)) & 0xff];
990 crc1
^= crc_braid_big_table
[k
][(word1
>> (k
<< 3)) & 0xff];
992 crc2
^= crc_braid_big_table
[k
][(word2
>> (k
<< 3)) & 0xff];
994 crc3
^= crc_braid_big_table
[k
][(word3
>> (k
<< 3)) & 0xff];
996 crc4
^= crc_braid_big_table
[k
][(word4
>> (k
<< 3)) & 0xff];
998 crc5
^= crc_braid_big_table
[k
][(word5
>> (k
<< 3)) & 0xff];
1008 Process the last block, combining the CRCs of the N braids at the
1011 comb
= crc_word_big(crc0
^ words
[0]);
1013 comb
= crc_word_big(crc1
^ words
[1] ^ comb
);
1015 comb
= crc_word_big(crc2
^ words
[2] ^ comb
);
1017 comb
= crc_word_big(crc3
^ words
[3] ^ comb
);
1019 comb
= crc_word_big(crc4
^ words
[4] ^ comb
);
1021 comb
= crc_word_big(crc5
^ words
[5] ^ comb
);
1028 crc
= byte_swap(comb
);
1032 Update the pointer to the remaining bytes to process.
1034 buf
= (unsigned char const *)words
;
1039 /* Complete the computation of the CRC on any remaining bytes. */
1042 crc
= (crc
>> 8) ^ crc_table
[(crc
^ *buf
++) & 0xff];
1043 crc
= (crc
>> 8) ^ crc_table
[(crc
^ *buf
++) & 0xff];
1044 crc
= (crc
>> 8) ^ crc_table
[(crc
^ *buf
++) & 0xff];
1045 crc
= (crc
>> 8) ^ crc_table
[(crc
^ *buf
++) & 0xff];
1046 crc
= (crc
>> 8) ^ crc_table
[(crc
^ *buf
++) & 0xff];
1047 crc
= (crc
>> 8) ^ crc_table
[(crc
^ *buf
++) & 0xff];
1048 crc
= (crc
>> 8) ^ crc_table
[(crc
^ *buf
++) & 0xff];
1049 crc
= (crc
>> 8) ^ crc_table
[(crc
^ *buf
++) & 0xff];
1053 crc
= (crc
>> 8) ^ crc_table
[(crc
^ *buf
++) & 0xff];
1056 /* Return the CRC, post-conditioned. */
1057 return crc
^ 0xffffffff;
1062 /* ========================================================================= */
1063 unsigned long ZEXPORT
crc32(crc
, buf
, len
)
1065 const unsigned char FAR
*buf
;
1068 return crc32_z(crc
, buf
, len
);
1071 /* ========================================================================= */
1072 uLong ZEXPORT
crc32_combine64(crc1
, crc2
, len2
)
1077 #ifdef DYNAMIC_CRC_TABLE
1078 once(&made
, make_crc_table
);
1079 #endif /* DYNAMIC_CRC_TABLE */
1080 return multmodp(x2nmodp(len2
, 3), crc1
) ^ crc2
;
1083 /* ========================================================================= */
1084 uLong ZEXPORT
crc32_combine(crc1
, crc2
, len2
)
1089 return crc32_combine64(crc1
, crc2
, len2
);
1092 /* ========================================================================= */
1093 uLong ZEXPORT
crc32_combine_gen64(len2
)
1096 #ifdef DYNAMIC_CRC_TABLE
1097 once(&made
, make_crc_table
);
1098 #endif /* DYNAMIC_CRC_TABLE */
1099 return x2nmodp(len2
, 3);
1102 /* ========================================================================= */
1103 uLong ZEXPORT
crc32_combine_gen(len2
)
1106 return crc32_combine_gen64(len2
);
1109 /* ========================================================================= */
1110 uLong
crc32_combine_op(crc1
, crc2
, op
)
1115 return multmodp(op
, crc1
) ^ crc2
;