s390-vregs.exp: Avoid compile errors with older GCCs and on 31-bit targets
[binutils-gdb.git] / gdb / target.c
blob306c21d8060355fd0fda273890284892390389e5
1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
47 static void target_info (char *, int);
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
51 static void default_terminal_info (struct target_ops *, const char *, int);
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
67 static void default_mourn_inferior (struct target_ops *self);
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
85 static int return_zero (struct target_ops *);
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
89 static void target_command (char *, int);
91 static struct target_ops *find_default_run_target (char *);
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
108 static struct target_ops debug_target;
110 #include "target-delegates.c"
112 static void init_dummy_target (void);
114 static void update_current_target (void);
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
124 static struct target_ops dummy_target;
126 /* Top of target stack. */
128 static struct target_ops *target_stack;
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
133 struct target_ops current_target;
135 /* Command list for target. */
137 static struct cmd_list_element *targetlist = NULL;
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
142 static int trust_readonly = 0;
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
147 static int show_memory_breakpoints = 0;
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
153 int may_write_registers = 1;
155 int may_write_memory = 1;
157 int may_insert_breakpoints = 1;
159 int may_insert_tracepoints = 1;
161 int may_insert_fast_tracepoints = 1;
163 int may_stop = 1;
165 /* Non-zero if we want to see trace of target level stuff. */
167 static unsigned int targetdebug = 0;
169 static void
170 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
172 update_current_target ();
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 static void setup_target_debug (void);
184 /* The user just typed 'target' without the name of a target. */
186 static void
187 target_command (char *arg, int from_tty)
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
193 /* Default target_has_* methods for process_stratum targets. */
196 default_child_has_all_memory (struct target_ops *ops)
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
202 return 1;
206 default_child_has_memory (struct target_ops *ops)
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
212 return 1;
216 default_child_has_stack (struct target_ops *ops)
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
222 return 1;
226 default_child_has_registers (struct target_ops *ops)
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
232 return 1;
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
243 return 1;
248 target_has_all_memory_1 (void)
250 struct target_ops *t;
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
256 return 0;
260 target_has_memory_1 (void)
262 struct target_ops *t;
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
268 return 0;
272 target_has_stack_1 (void)
274 struct target_ops *t;
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
280 return 0;
284 target_has_registers_1 (void)
286 struct target_ops *t;
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
292 return 0;
296 target_has_execution_1 (ptid_t the_ptid)
298 struct target_ops *t;
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
304 return 0;
308 target_has_execution_current (void)
310 return target_has_execution_1 (inferior_ptid);
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
316 void
317 complete_target_initialization (struct target_ops *t)
319 /* Provide default values for all "must have" methods. */
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
342 install_delegators (t);
345 /* This is used to implement the various target commands. */
347 static void
348 open_target (char *args, int from_tty, struct cmd_list_element *command)
350 struct target_ops *ops = get_cmd_context (command);
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
356 ops->to_open (args, from_tty);
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
371 struct cmd_list_element *c;
373 complete_target_initialization (t);
375 VEC_safe_push (target_ops_p, target_structs, t);
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
392 /* Add a possible target architecture to the list. */
394 void
395 add_target (struct target_ops *t)
397 add_target_with_completer (t, NULL);
400 /* See target.h. */
402 void
403 add_deprecated_target_alias (struct target_ops *t, char *alias)
405 struct cmd_list_element *c;
406 char *alt;
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
417 /* Stub functions */
419 void
420 target_kill (void)
422 current_target.to_kill (&current_target);
425 void
426 target_load (const char *arg, int from_tty)
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
432 /* Possible terminal states. */
434 enum terminal_state
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
447 static enum terminal_state terminal_state;
449 /* See target.h. */
451 void
452 target_terminal_init (void)
454 (*current_target.to_terminal_init) (&current_target);
456 terminal_state = terminal_is_ours;
459 /* See target.h. */
462 target_terminal_is_inferior (void)
464 return (terminal_state == terminal_is_inferior);
467 /* See target.h. */
469 void
470 target_terminal_inferior (void)
472 /* A background resume (``run&'') should leave GDB in control of the
473 terminal. Use target_can_async_p, not target_is_async_p, since at
474 this point the target is not async yet. However, if sync_execution
475 is not set, we know it will become async prior to resume. */
476 if (target_can_async_p () && !sync_execution)
477 return;
479 if (terminal_state == terminal_is_inferior)
480 return;
482 /* If GDB is resuming the inferior in the foreground, install
483 inferior's terminal modes. */
484 (*current_target.to_terminal_inferior) (&current_target);
485 terminal_state = terminal_is_inferior;
488 /* See target.h. */
490 void
491 target_terminal_ours (void)
493 if (terminal_state == terminal_is_ours)
494 return;
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
500 /* See target.h. */
502 void
503 target_terminal_ours_for_output (void)
505 if (terminal_state != terminal_is_inferior)
506 return;
507 (*current_target.to_terminal_ours_for_output) (&current_target);
508 terminal_state = terminal_is_ours_for_output;
511 /* See target.h. */
514 target_supports_terminal_ours (void)
516 struct target_ops *t;
518 for (t = current_target.beneath; t != NULL; t = t->beneath)
520 if (t->to_terminal_ours != delegate_terminal_ours
521 && t->to_terminal_ours != tdefault_terminal_ours)
522 return 1;
525 return 0;
528 /* Restore the terminal to its previous state (helper for
529 make_cleanup_restore_target_terminal). */
531 static void
532 cleanup_restore_target_terminal (void *arg)
534 enum terminal_state *previous_state = arg;
536 switch (*previous_state)
538 case terminal_is_ours:
539 target_terminal_ours ();
540 break;
541 case terminal_is_ours_for_output:
542 target_terminal_ours_for_output ();
543 break;
544 case terminal_is_inferior:
545 target_terminal_inferior ();
546 break;
550 /* See target.h. */
552 struct cleanup *
553 make_cleanup_restore_target_terminal (void)
555 enum terminal_state *ts = xmalloc (sizeof (*ts));
557 *ts = terminal_state;
559 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
562 static void
563 tcomplain (void)
565 error (_("You can't do that when your target is `%s'"),
566 current_target.to_shortname);
569 void
570 noprocess (void)
572 error (_("You can't do that without a process to debug."));
575 static void
576 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
578 printf_unfiltered (_("No saved terminal information.\n"));
581 /* A default implementation for the to_get_ada_task_ptid target method.
583 This function builds the PTID by using both LWP and TID as part of
584 the PTID lwp and tid elements. The pid used is the pid of the
585 inferior_ptid. */
587 static ptid_t
588 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
590 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
593 static enum exec_direction_kind
594 default_execution_direction (struct target_ops *self)
596 if (!target_can_execute_reverse)
597 return EXEC_FORWARD;
598 else if (!target_can_async_p ())
599 return EXEC_FORWARD;
600 else
601 gdb_assert_not_reached ("\
602 to_execution_direction must be implemented for reverse async");
605 /* Go through the target stack from top to bottom, copying over zero
606 entries in current_target, then filling in still empty entries. In
607 effect, we are doing class inheritance through the pushed target
608 vectors.
610 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
611 is currently implemented, is that it discards any knowledge of
612 which target an inherited method originally belonged to.
613 Consequently, new new target methods should instead explicitly and
614 locally search the target stack for the target that can handle the
615 request. */
617 static void
618 update_current_target (void)
620 struct target_ops *t;
622 /* First, reset current's contents. */
623 memset (&current_target, 0, sizeof (current_target));
625 /* Install the delegators. */
626 install_delegators (&current_target);
628 current_target.to_stratum = target_stack->to_stratum;
630 #define INHERIT(FIELD, TARGET) \
631 if (!current_target.FIELD) \
632 current_target.FIELD = (TARGET)->FIELD
634 /* Do not add any new INHERITs here. Instead, use the delegation
635 mechanism provided by make-target-delegates. */
636 for (t = target_stack; t; t = t->beneath)
638 INHERIT (to_shortname, t);
639 INHERIT (to_longname, t);
640 INHERIT (to_attach_no_wait, t);
641 INHERIT (to_have_steppable_watchpoint, t);
642 INHERIT (to_have_continuable_watchpoint, t);
643 INHERIT (to_has_thread_control, t);
645 #undef INHERIT
647 /* Finally, position the target-stack beneath the squashed
648 "current_target". That way code looking for a non-inherited
649 target method can quickly and simply find it. */
650 current_target.beneath = target_stack;
652 if (targetdebug)
653 setup_target_debug ();
656 /* Push a new target type into the stack of the existing target accessors,
657 possibly superseding some of the existing accessors.
659 Rather than allow an empty stack, we always have the dummy target at
660 the bottom stratum, so we can call the function vectors without
661 checking them. */
663 void
664 push_target (struct target_ops *t)
666 struct target_ops **cur;
668 /* Check magic number. If wrong, it probably means someone changed
669 the struct definition, but not all the places that initialize one. */
670 if (t->to_magic != OPS_MAGIC)
672 fprintf_unfiltered (gdb_stderr,
673 "Magic number of %s target struct wrong\n",
674 t->to_shortname);
675 internal_error (__FILE__, __LINE__,
676 _("failed internal consistency check"));
679 /* Find the proper stratum to install this target in. */
680 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
682 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
683 break;
686 /* If there's already targets at this stratum, remove them. */
687 /* FIXME: cagney/2003-10-15: I think this should be popping all
688 targets to CUR, and not just those at this stratum level. */
689 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
691 /* There's already something at this stratum level. Close it,
692 and un-hook it from the stack. */
693 struct target_ops *tmp = (*cur);
695 (*cur) = (*cur)->beneath;
696 tmp->beneath = NULL;
697 target_close (tmp);
700 /* We have removed all targets in our stratum, now add the new one. */
701 t->beneath = (*cur);
702 (*cur) = t;
704 update_current_target ();
707 /* Remove a target_ops vector from the stack, wherever it may be.
708 Return how many times it was removed (0 or 1). */
711 unpush_target (struct target_ops *t)
713 struct target_ops **cur;
714 struct target_ops *tmp;
716 if (t->to_stratum == dummy_stratum)
717 internal_error (__FILE__, __LINE__,
718 _("Attempt to unpush the dummy target"));
720 /* Look for the specified target. Note that we assume that a target
721 can only occur once in the target stack. */
723 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
725 if ((*cur) == t)
726 break;
729 /* If we don't find target_ops, quit. Only open targets should be
730 closed. */
731 if ((*cur) == NULL)
732 return 0;
734 /* Unchain the target. */
735 tmp = (*cur);
736 (*cur) = (*cur)->beneath;
737 tmp->beneath = NULL;
739 update_current_target ();
741 /* Finally close the target. Note we do this after unchaining, so
742 any target method calls from within the target_close
743 implementation don't end up in T anymore. */
744 target_close (t);
746 return 1;
749 void
750 pop_all_targets_above (enum strata above_stratum)
752 while ((int) (current_target.to_stratum) > (int) above_stratum)
754 if (!unpush_target (target_stack))
756 fprintf_unfiltered (gdb_stderr,
757 "pop_all_targets couldn't find target %s\n",
758 target_stack->to_shortname);
759 internal_error (__FILE__, __LINE__,
760 _("failed internal consistency check"));
761 break;
766 void
767 pop_all_targets (void)
769 pop_all_targets_above (dummy_stratum);
772 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
775 target_is_pushed (struct target_ops *t)
777 struct target_ops *cur;
779 /* Check magic number. If wrong, it probably means someone changed
780 the struct definition, but not all the places that initialize one. */
781 if (t->to_magic != OPS_MAGIC)
783 fprintf_unfiltered (gdb_stderr,
784 "Magic number of %s target struct wrong\n",
785 t->to_shortname);
786 internal_error (__FILE__, __LINE__,
787 _("failed internal consistency check"));
790 for (cur = target_stack; cur != NULL; cur = cur->beneath)
791 if (cur == t)
792 return 1;
794 return 0;
797 /* Default implementation of to_get_thread_local_address. */
799 static void
800 generic_tls_error (void)
802 throw_error (TLS_GENERIC_ERROR,
803 _("Cannot find thread-local variables on this target"));
806 /* Using the objfile specified in OBJFILE, find the address for the
807 current thread's thread-local storage with offset OFFSET. */
808 CORE_ADDR
809 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
811 volatile CORE_ADDR addr = 0;
812 struct target_ops *target = &current_target;
814 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
816 ptid_t ptid = inferior_ptid;
820 CORE_ADDR lm_addr;
822 /* Fetch the load module address for this objfile. */
823 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
824 objfile);
826 addr = target->to_get_thread_local_address (target, ptid,
827 lm_addr, offset);
829 /* If an error occurred, print TLS related messages here. Otherwise,
830 throw the error to some higher catcher. */
831 CATCH (ex, RETURN_MASK_ALL)
833 int objfile_is_library = (objfile->flags & OBJF_SHARED);
835 switch (ex.error)
837 case TLS_NO_LIBRARY_SUPPORT_ERROR:
838 error (_("Cannot find thread-local variables "
839 "in this thread library."));
840 break;
841 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
842 if (objfile_is_library)
843 error (_("Cannot find shared library `%s' in dynamic"
844 " linker's load module list"), objfile_name (objfile));
845 else
846 error (_("Cannot find executable file `%s' in dynamic"
847 " linker's load module list"), objfile_name (objfile));
848 break;
849 case TLS_NOT_ALLOCATED_YET_ERROR:
850 if (objfile_is_library)
851 error (_("The inferior has not yet allocated storage for"
852 " thread-local variables in\n"
853 "the shared library `%s'\n"
854 "for %s"),
855 objfile_name (objfile), target_pid_to_str (ptid));
856 else
857 error (_("The inferior has not yet allocated storage for"
858 " thread-local variables in\n"
859 "the executable `%s'\n"
860 "for %s"),
861 objfile_name (objfile), target_pid_to_str (ptid));
862 break;
863 case TLS_GENERIC_ERROR:
864 if (objfile_is_library)
865 error (_("Cannot find thread-local storage for %s, "
866 "shared library %s:\n%s"),
867 target_pid_to_str (ptid),
868 objfile_name (objfile), ex.message);
869 else
870 error (_("Cannot find thread-local storage for %s, "
871 "executable file %s:\n%s"),
872 target_pid_to_str (ptid),
873 objfile_name (objfile), ex.message);
874 break;
875 default:
876 throw_exception (ex);
877 break;
880 END_CATCH
882 /* It wouldn't be wrong here to try a gdbarch method, too; finding
883 TLS is an ABI-specific thing. But we don't do that yet. */
884 else
885 error (_("Cannot find thread-local variables on this target"));
887 return addr;
890 const char *
891 target_xfer_status_to_string (enum target_xfer_status status)
893 #define CASE(X) case X: return #X
894 switch (status)
896 CASE(TARGET_XFER_E_IO);
897 CASE(TARGET_XFER_UNAVAILABLE);
898 default:
899 return "<unknown>";
901 #undef CASE
905 #undef MIN
906 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
908 /* target_read_string -- read a null terminated string, up to LEN bytes,
909 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
910 Set *STRING to a pointer to malloc'd memory containing the data; the caller
911 is responsible for freeing it. Return the number of bytes successfully
912 read. */
915 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
917 int tlen, offset, i;
918 gdb_byte buf[4];
919 int errcode = 0;
920 char *buffer;
921 int buffer_allocated;
922 char *bufptr;
923 unsigned int nbytes_read = 0;
925 gdb_assert (string);
927 /* Small for testing. */
928 buffer_allocated = 4;
929 buffer = xmalloc (buffer_allocated);
930 bufptr = buffer;
932 while (len > 0)
934 tlen = MIN (len, 4 - (memaddr & 3));
935 offset = memaddr & 3;
937 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
938 if (errcode != 0)
940 /* The transfer request might have crossed the boundary to an
941 unallocated region of memory. Retry the transfer, requesting
942 a single byte. */
943 tlen = 1;
944 offset = 0;
945 errcode = target_read_memory (memaddr, buf, 1);
946 if (errcode != 0)
947 goto done;
950 if (bufptr - buffer + tlen > buffer_allocated)
952 unsigned int bytes;
954 bytes = bufptr - buffer;
955 buffer_allocated *= 2;
956 buffer = xrealloc (buffer, buffer_allocated);
957 bufptr = buffer + bytes;
960 for (i = 0; i < tlen; i++)
962 *bufptr++ = buf[i + offset];
963 if (buf[i + offset] == '\000')
965 nbytes_read += i + 1;
966 goto done;
970 memaddr += tlen;
971 len -= tlen;
972 nbytes_read += tlen;
974 done:
975 *string = buffer;
976 if (errnop != NULL)
977 *errnop = errcode;
978 return nbytes_read;
981 struct target_section_table *
982 target_get_section_table (struct target_ops *target)
984 return (*target->to_get_section_table) (target);
987 /* Find a section containing ADDR. */
989 struct target_section *
990 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
992 struct target_section_table *table = target_get_section_table (target);
993 struct target_section *secp;
995 if (table == NULL)
996 return NULL;
998 for (secp = table->sections; secp < table->sections_end; secp++)
1000 if (addr >= secp->addr && addr < secp->endaddr)
1001 return secp;
1003 return NULL;
1007 /* Helper for the memory xfer routines. Checks the attributes of the
1008 memory region of MEMADDR against the read or write being attempted.
1009 If the access is permitted returns true, otherwise returns false.
1010 REGION_P is an optional output parameter. If not-NULL, it is
1011 filled with a pointer to the memory region of MEMADDR. REG_LEN
1012 returns LEN trimmed to the end of the region. This is how much the
1013 caller can continue requesting, if the access is permitted. A
1014 single xfer request must not straddle memory region boundaries. */
1016 static int
1017 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1018 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1019 struct mem_region **region_p)
1021 struct mem_region *region;
1023 region = lookup_mem_region (memaddr);
1025 if (region_p != NULL)
1026 *region_p = region;
1028 switch (region->attrib.mode)
1030 case MEM_RO:
1031 if (writebuf != NULL)
1032 return 0;
1033 break;
1035 case MEM_WO:
1036 if (readbuf != NULL)
1037 return 0;
1038 break;
1040 case MEM_FLASH:
1041 /* We only support writing to flash during "load" for now. */
1042 if (writebuf != NULL)
1043 error (_("Writing to flash memory forbidden in this context"));
1044 break;
1046 case MEM_NONE:
1047 return 0;
1050 /* region->hi == 0 means there's no upper bound. */
1051 if (memaddr + len < region->hi || region->hi == 0)
1052 *reg_len = len;
1053 else
1054 *reg_len = region->hi - memaddr;
1056 return 1;
1059 /* Read memory from more than one valid target. A core file, for
1060 instance, could have some of memory but delegate other bits to
1061 the target below it. So, we must manually try all targets. */
1063 static enum target_xfer_status
1064 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1065 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1066 ULONGEST *xfered_len)
1068 enum target_xfer_status res;
1072 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1073 readbuf, writebuf, memaddr, len,
1074 xfered_len);
1075 if (res == TARGET_XFER_OK)
1076 break;
1078 /* Stop if the target reports that the memory is not available. */
1079 if (res == TARGET_XFER_UNAVAILABLE)
1080 break;
1082 /* We want to continue past core files to executables, but not
1083 past a running target's memory. */
1084 if (ops->to_has_all_memory (ops))
1085 break;
1087 ops = ops->beneath;
1089 while (ops != NULL);
1091 /* The cache works at the raw memory level. Make sure the cache
1092 gets updated with raw contents no matter what kind of memory
1093 object was originally being written. Note we do write-through
1094 first, so that if it fails, we don't write to the cache contents
1095 that never made it to the target. */
1096 if (writebuf != NULL
1097 && !ptid_equal (inferior_ptid, null_ptid)
1098 && target_dcache_init_p ()
1099 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1101 DCACHE *dcache = target_dcache_get ();
1103 /* Note that writing to an area of memory which wasn't present
1104 in the cache doesn't cause it to be loaded in. */
1105 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1108 return res;
1111 /* Perform a partial memory transfer.
1112 For docs see target.h, to_xfer_partial. */
1114 static enum target_xfer_status
1115 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1116 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1117 ULONGEST len, ULONGEST *xfered_len)
1119 enum target_xfer_status res;
1120 ULONGEST reg_len;
1121 struct mem_region *region;
1122 struct inferior *inf;
1124 /* For accesses to unmapped overlay sections, read directly from
1125 files. Must do this first, as MEMADDR may need adjustment. */
1126 if (readbuf != NULL && overlay_debugging)
1128 struct obj_section *section = find_pc_overlay (memaddr);
1130 if (pc_in_unmapped_range (memaddr, section))
1132 struct target_section_table *table
1133 = target_get_section_table (ops);
1134 const char *section_name = section->the_bfd_section->name;
1136 memaddr = overlay_mapped_address (memaddr, section);
1137 return section_table_xfer_memory_partial (readbuf, writebuf,
1138 memaddr, len, xfered_len,
1139 table->sections,
1140 table->sections_end,
1141 section_name);
1145 /* Try the executable files, if "trust-readonly-sections" is set. */
1146 if (readbuf != NULL && trust_readonly)
1148 struct target_section *secp;
1149 struct target_section_table *table;
1151 secp = target_section_by_addr (ops, memaddr);
1152 if (secp != NULL
1153 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1154 secp->the_bfd_section)
1155 & SEC_READONLY))
1157 table = target_get_section_table (ops);
1158 return section_table_xfer_memory_partial (readbuf, writebuf,
1159 memaddr, len, xfered_len,
1160 table->sections,
1161 table->sections_end,
1162 NULL);
1166 /* Try GDB's internal data cache. */
1168 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1169 &region))
1170 return TARGET_XFER_E_IO;
1172 if (!ptid_equal (inferior_ptid, null_ptid))
1173 inf = find_inferior_ptid (inferior_ptid);
1174 else
1175 inf = NULL;
1177 if (inf != NULL
1178 && readbuf != NULL
1179 /* The dcache reads whole cache lines; that doesn't play well
1180 with reading from a trace buffer, because reading outside of
1181 the collected memory range fails. */
1182 && get_traceframe_number () == -1
1183 && (region->attrib.cache
1184 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1185 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1187 DCACHE *dcache = target_dcache_get_or_init ();
1189 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1190 reg_len, xfered_len);
1193 /* If none of those methods found the memory we wanted, fall back
1194 to a target partial transfer. Normally a single call to
1195 to_xfer_partial is enough; if it doesn't recognize an object
1196 it will call the to_xfer_partial of the next target down.
1197 But for memory this won't do. Memory is the only target
1198 object which can be read from more than one valid target.
1199 A core file, for instance, could have some of memory but
1200 delegate other bits to the target below it. So, we must
1201 manually try all targets. */
1203 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1204 xfered_len);
1206 /* If we still haven't got anything, return the last error. We
1207 give up. */
1208 return res;
1211 /* Perform a partial memory transfer. For docs see target.h,
1212 to_xfer_partial. */
1214 static enum target_xfer_status
1215 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1216 gdb_byte *readbuf, const gdb_byte *writebuf,
1217 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1219 enum target_xfer_status res;
1221 /* Zero length requests are ok and require no work. */
1222 if (len == 0)
1223 return TARGET_XFER_EOF;
1225 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1226 breakpoint insns, thus hiding out from higher layers whether
1227 there are software breakpoints inserted in the code stream. */
1228 if (readbuf != NULL)
1230 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1231 xfered_len);
1233 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1234 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1236 else
1238 void *buf;
1239 struct cleanup *old_chain;
1241 /* A large write request is likely to be partially satisfied
1242 by memory_xfer_partial_1. We will continually malloc
1243 and free a copy of the entire write request for breakpoint
1244 shadow handling even though we only end up writing a small
1245 subset of it. Cap writes to 4KB to mitigate this. */
1246 len = min (4096, len);
1248 buf = xmalloc (len);
1249 old_chain = make_cleanup (xfree, buf);
1250 memcpy (buf, writebuf, len);
1252 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1253 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1254 xfered_len);
1256 do_cleanups (old_chain);
1259 return res;
1262 static void
1263 restore_show_memory_breakpoints (void *arg)
1265 show_memory_breakpoints = (uintptr_t) arg;
1268 struct cleanup *
1269 make_show_memory_breakpoints_cleanup (int show)
1271 int current = show_memory_breakpoints;
1273 show_memory_breakpoints = show;
1274 return make_cleanup (restore_show_memory_breakpoints,
1275 (void *) (uintptr_t) current);
1278 /* For docs see target.h, to_xfer_partial. */
1280 enum target_xfer_status
1281 target_xfer_partial (struct target_ops *ops,
1282 enum target_object object, const char *annex,
1283 gdb_byte *readbuf, const gdb_byte *writebuf,
1284 ULONGEST offset, ULONGEST len,
1285 ULONGEST *xfered_len)
1287 enum target_xfer_status retval;
1289 gdb_assert (ops->to_xfer_partial != NULL);
1291 /* Transfer is done when LEN is zero. */
1292 if (len == 0)
1293 return TARGET_XFER_EOF;
1295 if (writebuf && !may_write_memory)
1296 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1297 core_addr_to_string_nz (offset), plongest (len));
1299 *xfered_len = 0;
1301 /* If this is a memory transfer, let the memory-specific code
1302 have a look at it instead. Memory transfers are more
1303 complicated. */
1304 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1305 || object == TARGET_OBJECT_CODE_MEMORY)
1306 retval = memory_xfer_partial (ops, object, readbuf,
1307 writebuf, offset, len, xfered_len);
1308 else if (object == TARGET_OBJECT_RAW_MEMORY)
1310 /* Skip/avoid accessing the target if the memory region
1311 attributes block the access. Check this here instead of in
1312 raw_memory_xfer_partial as otherwise we'd end up checking
1313 this twice in the case of the memory_xfer_partial path is
1314 taken; once before checking the dcache, and another in the
1315 tail call to raw_memory_xfer_partial. */
1316 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1317 NULL))
1318 return TARGET_XFER_E_IO;
1320 /* Request the normal memory object from other layers. */
1321 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1322 xfered_len);
1324 else
1325 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1326 writebuf, offset, len, xfered_len);
1328 if (targetdebug)
1330 const unsigned char *myaddr = NULL;
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s:target_xfer_partial "
1334 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1335 ops->to_shortname,
1336 (int) object,
1337 (annex ? annex : "(null)"),
1338 host_address_to_string (readbuf),
1339 host_address_to_string (writebuf),
1340 core_addr_to_string_nz (offset),
1341 pulongest (len), retval,
1342 pulongest (*xfered_len));
1344 if (readbuf)
1345 myaddr = readbuf;
1346 if (writebuf)
1347 myaddr = writebuf;
1348 if (retval == TARGET_XFER_OK && myaddr != NULL)
1350 int i;
1352 fputs_unfiltered (", bytes =", gdb_stdlog);
1353 for (i = 0; i < *xfered_len; i++)
1355 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1357 if (targetdebug < 2 && i > 0)
1359 fprintf_unfiltered (gdb_stdlog, " ...");
1360 break;
1362 fprintf_unfiltered (gdb_stdlog, "\n");
1365 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1369 fputc_unfiltered ('\n', gdb_stdlog);
1372 /* Check implementations of to_xfer_partial update *XFERED_LEN
1373 properly. Do assertion after printing debug messages, so that we
1374 can find more clues on assertion failure from debugging messages. */
1375 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1376 gdb_assert (*xfered_len > 0);
1378 return retval;
1381 /* Read LEN bytes of target memory at address MEMADDR, placing the
1382 results in GDB's memory at MYADDR. Returns either 0 for success or
1383 TARGET_XFER_E_IO if any error occurs.
1385 If an error occurs, no guarantee is made about the contents of the data at
1386 MYADDR. In particular, the caller should not depend upon partial reads
1387 filling the buffer with good data. There is no way for the caller to know
1388 how much good data might have been transfered anyway. Callers that can
1389 deal with partial reads should call target_read (which will retry until
1390 it makes no progress, and then return how much was transferred). */
1393 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1395 /* Dispatch to the topmost target, not the flattened current_target.
1396 Memory accesses check target->to_has_(all_)memory, and the
1397 flattened target doesn't inherit those. */
1398 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1399 myaddr, memaddr, len) == len)
1400 return 0;
1401 else
1402 return TARGET_XFER_E_IO;
1405 /* See target/target.h. */
1408 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1410 gdb_byte buf[4];
1411 int r;
1413 r = target_read_memory (memaddr, buf, sizeof buf);
1414 if (r != 0)
1415 return r;
1416 *result = extract_unsigned_integer (buf, sizeof buf,
1417 gdbarch_byte_order (target_gdbarch ()));
1418 return 0;
1421 /* Like target_read_memory, but specify explicitly that this is a read
1422 from the target's raw memory. That is, this read bypasses the
1423 dcache, breakpoint shadowing, etc. */
1426 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1428 /* See comment in target_read_memory about why the request starts at
1429 current_target.beneath. */
1430 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1431 myaddr, memaddr, len) == len)
1432 return 0;
1433 else
1434 return TARGET_XFER_E_IO;
1437 /* Like target_read_memory, but specify explicitly that this is a read from
1438 the target's stack. This may trigger different cache behavior. */
1441 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1443 /* See comment in target_read_memory about why the request starts at
1444 current_target.beneath. */
1445 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1446 myaddr, memaddr, len) == len)
1447 return 0;
1448 else
1449 return TARGET_XFER_E_IO;
1452 /* Like target_read_memory, but specify explicitly that this is a read from
1453 the target's code. This may trigger different cache behavior. */
1456 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1458 /* See comment in target_read_memory about why the request starts at
1459 current_target.beneath. */
1460 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1461 myaddr, memaddr, len) == len)
1462 return 0;
1463 else
1464 return TARGET_XFER_E_IO;
1467 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1468 Returns either 0 for success or TARGET_XFER_E_IO if any
1469 error occurs. If an error occurs, no guarantee is made about how
1470 much data got written. Callers that can deal with partial writes
1471 should call target_write. */
1474 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1476 /* See comment in target_read_memory about why the request starts at
1477 current_target.beneath. */
1478 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1479 myaddr, memaddr, len) == len)
1480 return 0;
1481 else
1482 return TARGET_XFER_E_IO;
1485 /* Write LEN bytes from MYADDR to target raw memory at address
1486 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1487 if any error occurs. If an error occurs, no guarantee is made
1488 about how much data got written. Callers that can deal with
1489 partial writes should call target_write. */
1492 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1494 /* See comment in target_read_memory about why the request starts at
1495 current_target.beneath. */
1496 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1497 myaddr, memaddr, len) == len)
1498 return 0;
1499 else
1500 return TARGET_XFER_E_IO;
1503 /* Fetch the target's memory map. */
1505 VEC(mem_region_s) *
1506 target_memory_map (void)
1508 VEC(mem_region_s) *result;
1509 struct mem_region *last_one, *this_one;
1510 int ix;
1511 struct target_ops *t;
1513 result = current_target.to_memory_map (&current_target);
1514 if (result == NULL)
1515 return NULL;
1517 qsort (VEC_address (mem_region_s, result),
1518 VEC_length (mem_region_s, result),
1519 sizeof (struct mem_region), mem_region_cmp);
1521 /* Check that regions do not overlap. Simultaneously assign
1522 a numbering for the "mem" commands to use to refer to
1523 each region. */
1524 last_one = NULL;
1525 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1527 this_one->number = ix;
1529 if (last_one && last_one->hi > this_one->lo)
1531 warning (_("Overlapping regions in memory map: ignoring"));
1532 VEC_free (mem_region_s, result);
1533 return NULL;
1535 last_one = this_one;
1538 return result;
1541 void
1542 target_flash_erase (ULONGEST address, LONGEST length)
1544 current_target.to_flash_erase (&current_target, address, length);
1547 void
1548 target_flash_done (void)
1550 current_target.to_flash_done (&current_target);
1553 static void
1554 show_trust_readonly (struct ui_file *file, int from_tty,
1555 struct cmd_list_element *c, const char *value)
1557 fprintf_filtered (file,
1558 _("Mode for reading from readonly sections is %s.\n"),
1559 value);
1562 /* Target vector read/write partial wrapper functions. */
1564 static enum target_xfer_status
1565 target_read_partial (struct target_ops *ops,
1566 enum target_object object,
1567 const char *annex, gdb_byte *buf,
1568 ULONGEST offset, ULONGEST len,
1569 ULONGEST *xfered_len)
1571 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1572 xfered_len);
1575 static enum target_xfer_status
1576 target_write_partial (struct target_ops *ops,
1577 enum target_object object,
1578 const char *annex, const gdb_byte *buf,
1579 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1581 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1582 xfered_len);
1585 /* Wrappers to perform the full transfer. */
1587 /* For docs on target_read see target.h. */
1589 LONGEST
1590 target_read (struct target_ops *ops,
1591 enum target_object object,
1592 const char *annex, gdb_byte *buf,
1593 ULONGEST offset, LONGEST len)
1595 LONGEST xfered = 0;
1597 while (xfered < len)
1599 ULONGEST xfered_len;
1600 enum target_xfer_status status;
1602 status = target_read_partial (ops, object, annex,
1603 (gdb_byte *) buf + xfered,
1604 offset + xfered, len - xfered,
1605 &xfered_len);
1607 /* Call an observer, notifying them of the xfer progress? */
1608 if (status == TARGET_XFER_EOF)
1609 return xfered;
1610 else if (status == TARGET_XFER_OK)
1612 xfered += xfered_len;
1613 QUIT;
1615 else
1616 return -1;
1619 return len;
1622 /* Assuming that the entire [begin, end) range of memory cannot be
1623 read, try to read whatever subrange is possible to read.
1625 The function returns, in RESULT, either zero or one memory block.
1626 If there's a readable subrange at the beginning, it is completely
1627 read and returned. Any further readable subrange will not be read.
1628 Otherwise, if there's a readable subrange at the end, it will be
1629 completely read and returned. Any readable subranges before it
1630 (obviously, not starting at the beginning), will be ignored. In
1631 other cases -- either no readable subrange, or readable subrange(s)
1632 that is neither at the beginning, or end, nothing is returned.
1634 The purpose of this function is to handle a read across a boundary
1635 of accessible memory in a case when memory map is not available.
1636 The above restrictions are fine for this case, but will give
1637 incorrect results if the memory is 'patchy'. However, supporting
1638 'patchy' memory would require trying to read every single byte,
1639 and it seems unacceptable solution. Explicit memory map is
1640 recommended for this case -- and target_read_memory_robust will
1641 take care of reading multiple ranges then. */
1643 static void
1644 read_whatever_is_readable (struct target_ops *ops,
1645 ULONGEST begin, ULONGEST end,
1646 VEC(memory_read_result_s) **result)
1648 gdb_byte *buf = xmalloc (end - begin);
1649 ULONGEST current_begin = begin;
1650 ULONGEST current_end = end;
1651 int forward;
1652 memory_read_result_s r;
1653 ULONGEST xfered_len;
1655 /* If we previously failed to read 1 byte, nothing can be done here. */
1656 if (end - begin <= 1)
1658 xfree (buf);
1659 return;
1662 /* Check that either first or the last byte is readable, and give up
1663 if not. This heuristic is meant to permit reading accessible memory
1664 at the boundary of accessible region. */
1665 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1666 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1668 forward = 1;
1669 ++current_begin;
1671 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1672 buf + (end-begin) - 1, end - 1, 1,
1673 &xfered_len) == TARGET_XFER_OK)
1675 forward = 0;
1676 --current_end;
1678 else
1680 xfree (buf);
1681 return;
1684 /* Loop invariant is that the [current_begin, current_end) was previously
1685 found to be not readable as a whole.
1687 Note loop condition -- if the range has 1 byte, we can't divide the range
1688 so there's no point trying further. */
1689 while (current_end - current_begin > 1)
1691 ULONGEST first_half_begin, first_half_end;
1692 ULONGEST second_half_begin, second_half_end;
1693 LONGEST xfer;
1694 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1696 if (forward)
1698 first_half_begin = current_begin;
1699 first_half_end = middle;
1700 second_half_begin = middle;
1701 second_half_end = current_end;
1703 else
1705 first_half_begin = middle;
1706 first_half_end = current_end;
1707 second_half_begin = current_begin;
1708 second_half_end = middle;
1711 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1712 buf + (first_half_begin - begin),
1713 first_half_begin,
1714 first_half_end - first_half_begin);
1716 if (xfer == first_half_end - first_half_begin)
1718 /* This half reads up fine. So, the error must be in the
1719 other half. */
1720 current_begin = second_half_begin;
1721 current_end = second_half_end;
1723 else
1725 /* This half is not readable. Because we've tried one byte, we
1726 know some part of this half if actually redable. Go to the next
1727 iteration to divide again and try to read.
1729 We don't handle the other half, because this function only tries
1730 to read a single readable subrange. */
1731 current_begin = first_half_begin;
1732 current_end = first_half_end;
1736 if (forward)
1738 /* The [begin, current_begin) range has been read. */
1739 r.begin = begin;
1740 r.end = current_begin;
1741 r.data = buf;
1743 else
1745 /* The [current_end, end) range has been read. */
1746 LONGEST rlen = end - current_end;
1748 r.data = xmalloc (rlen);
1749 memcpy (r.data, buf + current_end - begin, rlen);
1750 r.begin = current_end;
1751 r.end = end;
1752 xfree (buf);
1754 VEC_safe_push(memory_read_result_s, (*result), &r);
1757 void
1758 free_memory_read_result_vector (void *x)
1760 VEC(memory_read_result_s) *v = x;
1761 memory_read_result_s *current;
1762 int ix;
1764 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1766 xfree (current->data);
1768 VEC_free (memory_read_result_s, v);
1771 VEC(memory_read_result_s) *
1772 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1774 VEC(memory_read_result_s) *result = 0;
1776 LONGEST xfered = 0;
1777 while (xfered < len)
1779 struct mem_region *region = lookup_mem_region (offset + xfered);
1780 LONGEST rlen;
1782 /* If there is no explicit region, a fake one should be created. */
1783 gdb_assert (region);
1785 if (region->hi == 0)
1786 rlen = len - xfered;
1787 else
1788 rlen = region->hi - offset;
1790 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1792 /* Cannot read this region. Note that we can end up here only
1793 if the region is explicitly marked inaccessible, or
1794 'inaccessible-by-default' is in effect. */
1795 xfered += rlen;
1797 else
1799 LONGEST to_read = min (len - xfered, rlen);
1800 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1802 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1803 (gdb_byte *) buffer,
1804 offset + xfered, to_read);
1805 /* Call an observer, notifying them of the xfer progress? */
1806 if (xfer <= 0)
1808 /* Got an error reading full chunk. See if maybe we can read
1809 some subrange. */
1810 xfree (buffer);
1811 read_whatever_is_readable (ops, offset + xfered,
1812 offset + xfered + to_read, &result);
1813 xfered += to_read;
1815 else
1817 struct memory_read_result r;
1818 r.data = buffer;
1819 r.begin = offset + xfered;
1820 r.end = r.begin + xfer;
1821 VEC_safe_push (memory_read_result_s, result, &r);
1822 xfered += xfer;
1824 QUIT;
1827 return result;
1831 /* An alternative to target_write with progress callbacks. */
1833 LONGEST
1834 target_write_with_progress (struct target_ops *ops,
1835 enum target_object object,
1836 const char *annex, const gdb_byte *buf,
1837 ULONGEST offset, LONGEST len,
1838 void (*progress) (ULONGEST, void *), void *baton)
1840 LONGEST xfered = 0;
1842 /* Give the progress callback a chance to set up. */
1843 if (progress)
1844 (*progress) (0, baton);
1846 while (xfered < len)
1848 ULONGEST xfered_len;
1849 enum target_xfer_status status;
1851 status = target_write_partial (ops, object, annex,
1852 (gdb_byte *) buf + xfered,
1853 offset + xfered, len - xfered,
1854 &xfered_len);
1856 if (status != TARGET_XFER_OK)
1857 return status == TARGET_XFER_EOF ? xfered : -1;
1859 if (progress)
1860 (*progress) (xfered_len, baton);
1862 xfered += xfered_len;
1863 QUIT;
1865 return len;
1868 /* For docs on target_write see target.h. */
1870 LONGEST
1871 target_write (struct target_ops *ops,
1872 enum target_object object,
1873 const char *annex, const gdb_byte *buf,
1874 ULONGEST offset, LONGEST len)
1876 return target_write_with_progress (ops, object, annex, buf, offset, len,
1877 NULL, NULL);
1880 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1881 the size of the transferred data. PADDING additional bytes are
1882 available in *BUF_P. This is a helper function for
1883 target_read_alloc; see the declaration of that function for more
1884 information. */
1886 static LONGEST
1887 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1888 const char *annex, gdb_byte **buf_p, int padding)
1890 size_t buf_alloc, buf_pos;
1891 gdb_byte *buf;
1893 /* This function does not have a length parameter; it reads the
1894 entire OBJECT). Also, it doesn't support objects fetched partly
1895 from one target and partly from another (in a different stratum,
1896 e.g. a core file and an executable). Both reasons make it
1897 unsuitable for reading memory. */
1898 gdb_assert (object != TARGET_OBJECT_MEMORY);
1900 /* Start by reading up to 4K at a time. The target will throttle
1901 this number down if necessary. */
1902 buf_alloc = 4096;
1903 buf = xmalloc (buf_alloc);
1904 buf_pos = 0;
1905 while (1)
1907 ULONGEST xfered_len;
1908 enum target_xfer_status status;
1910 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1911 buf_pos, buf_alloc - buf_pos - padding,
1912 &xfered_len);
1914 if (status == TARGET_XFER_EOF)
1916 /* Read all there was. */
1917 if (buf_pos == 0)
1918 xfree (buf);
1919 else
1920 *buf_p = buf;
1921 return buf_pos;
1923 else if (status != TARGET_XFER_OK)
1925 /* An error occurred. */
1926 xfree (buf);
1927 return TARGET_XFER_E_IO;
1930 buf_pos += xfered_len;
1932 /* If the buffer is filling up, expand it. */
1933 if (buf_alloc < buf_pos * 2)
1935 buf_alloc *= 2;
1936 buf = xrealloc (buf, buf_alloc);
1939 QUIT;
1943 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1944 the size of the transferred data. See the declaration in "target.h"
1945 function for more information about the return value. */
1947 LONGEST
1948 target_read_alloc (struct target_ops *ops, enum target_object object,
1949 const char *annex, gdb_byte **buf_p)
1951 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1954 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1955 returned as a string, allocated using xmalloc. If an error occurs
1956 or the transfer is unsupported, NULL is returned. Empty objects
1957 are returned as allocated but empty strings. A warning is issued
1958 if the result contains any embedded NUL bytes. */
1960 char *
1961 target_read_stralloc (struct target_ops *ops, enum target_object object,
1962 const char *annex)
1964 gdb_byte *buffer;
1965 char *bufstr;
1966 LONGEST i, transferred;
1968 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1969 bufstr = (char *) buffer;
1971 if (transferred < 0)
1972 return NULL;
1974 if (transferred == 0)
1975 return xstrdup ("");
1977 bufstr[transferred] = 0;
1979 /* Check for embedded NUL bytes; but allow trailing NULs. */
1980 for (i = strlen (bufstr); i < transferred; i++)
1981 if (bufstr[i] != 0)
1983 warning (_("target object %d, annex %s, "
1984 "contained unexpected null characters"),
1985 (int) object, annex ? annex : "(none)");
1986 break;
1989 return bufstr;
1992 /* Memory transfer methods. */
1994 void
1995 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1996 LONGEST len)
1998 /* This method is used to read from an alternate, non-current
1999 target. This read must bypass the overlay support (as symbols
2000 don't match this target), and GDB's internal cache (wrong cache
2001 for this target). */
2002 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2003 != len)
2004 memory_error (TARGET_XFER_E_IO, addr);
2007 ULONGEST
2008 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2009 int len, enum bfd_endian byte_order)
2011 gdb_byte buf[sizeof (ULONGEST)];
2013 gdb_assert (len <= sizeof (buf));
2014 get_target_memory (ops, addr, buf, len);
2015 return extract_unsigned_integer (buf, len, byte_order);
2018 /* See target.h. */
2021 target_insert_breakpoint (struct gdbarch *gdbarch,
2022 struct bp_target_info *bp_tgt)
2024 if (!may_insert_breakpoints)
2026 warning (_("May not insert breakpoints"));
2027 return 1;
2030 return current_target.to_insert_breakpoint (&current_target,
2031 gdbarch, bp_tgt);
2034 /* See target.h. */
2037 target_remove_breakpoint (struct gdbarch *gdbarch,
2038 struct bp_target_info *bp_tgt)
2040 /* This is kind of a weird case to handle, but the permission might
2041 have been changed after breakpoints were inserted - in which case
2042 we should just take the user literally and assume that any
2043 breakpoints should be left in place. */
2044 if (!may_insert_breakpoints)
2046 warning (_("May not remove breakpoints"));
2047 return 1;
2050 return current_target.to_remove_breakpoint (&current_target,
2051 gdbarch, bp_tgt);
2054 static void
2055 target_info (char *args, int from_tty)
2057 struct target_ops *t;
2058 int has_all_mem = 0;
2060 if (symfile_objfile != NULL)
2061 printf_unfiltered (_("Symbols from \"%s\".\n"),
2062 objfile_name (symfile_objfile));
2064 for (t = target_stack; t != NULL; t = t->beneath)
2066 if (!(*t->to_has_memory) (t))
2067 continue;
2069 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2070 continue;
2071 if (has_all_mem)
2072 printf_unfiltered (_("\tWhile running this, "
2073 "GDB does not access memory from...\n"));
2074 printf_unfiltered ("%s:\n", t->to_longname);
2075 (t->to_files_info) (t);
2076 has_all_mem = (*t->to_has_all_memory) (t);
2080 /* This function is called before any new inferior is created, e.g.
2081 by running a program, attaching, or connecting to a target.
2082 It cleans up any state from previous invocations which might
2083 change between runs. This is a subset of what target_preopen
2084 resets (things which might change between targets). */
2086 void
2087 target_pre_inferior (int from_tty)
2089 /* Clear out solib state. Otherwise the solib state of the previous
2090 inferior might have survived and is entirely wrong for the new
2091 target. This has been observed on GNU/Linux using glibc 2.3. How
2092 to reproduce:
2094 bash$ ./foo&
2095 [1] 4711
2096 bash$ ./foo&
2097 [1] 4712
2098 bash$ gdb ./foo
2099 [...]
2100 (gdb) attach 4711
2101 (gdb) detach
2102 (gdb) attach 4712
2103 Cannot access memory at address 0xdeadbeef
2106 /* In some OSs, the shared library list is the same/global/shared
2107 across inferiors. If code is shared between processes, so are
2108 memory regions and features. */
2109 if (!gdbarch_has_global_solist (target_gdbarch ()))
2111 no_shared_libraries (NULL, from_tty);
2113 invalidate_target_mem_regions ();
2115 target_clear_description ();
2118 agent_capability_invalidate ();
2121 /* Callback for iterate_over_inferiors. Gets rid of the given
2122 inferior. */
2124 static int
2125 dispose_inferior (struct inferior *inf, void *args)
2127 struct thread_info *thread;
2129 thread = any_thread_of_process (inf->pid);
2130 if (thread)
2132 switch_to_thread (thread->ptid);
2134 /* Core inferiors actually should be detached, not killed. */
2135 if (target_has_execution)
2136 target_kill ();
2137 else
2138 target_detach (NULL, 0);
2141 return 0;
2144 /* This is to be called by the open routine before it does
2145 anything. */
2147 void
2148 target_preopen (int from_tty)
2150 dont_repeat ();
2152 if (have_inferiors ())
2154 if (!from_tty
2155 || !have_live_inferiors ()
2156 || query (_("A program is being debugged already. Kill it? ")))
2157 iterate_over_inferiors (dispose_inferior, NULL);
2158 else
2159 error (_("Program not killed."));
2162 /* Calling target_kill may remove the target from the stack. But if
2163 it doesn't (which seems like a win for UDI), remove it now. */
2164 /* Leave the exec target, though. The user may be switching from a
2165 live process to a core of the same program. */
2166 pop_all_targets_above (file_stratum);
2168 target_pre_inferior (from_tty);
2171 /* Detach a target after doing deferred register stores. */
2173 void
2174 target_detach (const char *args, int from_tty)
2176 struct target_ops* t;
2178 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2179 /* Don't remove global breakpoints here. They're removed on
2180 disconnection from the target. */
2182 else
2183 /* If we're in breakpoints-always-inserted mode, have to remove
2184 them before detaching. */
2185 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2187 prepare_for_detach ();
2189 current_target.to_detach (&current_target, args, from_tty);
2192 void
2193 target_disconnect (const char *args, int from_tty)
2195 /* If we're in breakpoints-always-inserted mode or if breakpoints
2196 are global across processes, we have to remove them before
2197 disconnecting. */
2198 remove_breakpoints ();
2200 current_target.to_disconnect (&current_target, args, from_tty);
2203 ptid_t
2204 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2206 return (current_target.to_wait) (&current_target, ptid, status, options);
2209 char *
2210 target_pid_to_str (ptid_t ptid)
2212 return (*current_target.to_pid_to_str) (&current_target, ptid);
2215 char *
2216 target_thread_name (struct thread_info *info)
2218 return current_target.to_thread_name (&current_target, info);
2221 void
2222 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2224 struct target_ops *t;
2226 target_dcache_invalidate ();
2228 current_target.to_resume (&current_target, ptid, step, signal);
2230 registers_changed_ptid (ptid);
2231 /* We only set the internal executing state here. The user/frontend
2232 running state is set at a higher level. */
2233 set_executing (ptid, 1);
2234 clear_inline_frame_state (ptid);
2237 void
2238 target_pass_signals (int numsigs, unsigned char *pass_signals)
2240 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2243 void
2244 target_program_signals (int numsigs, unsigned char *program_signals)
2246 (*current_target.to_program_signals) (&current_target,
2247 numsigs, program_signals);
2250 static int
2251 default_follow_fork (struct target_ops *self, int follow_child,
2252 int detach_fork)
2254 /* Some target returned a fork event, but did not know how to follow it. */
2255 internal_error (__FILE__, __LINE__,
2256 _("could not find a target to follow fork"));
2259 /* Look through the list of possible targets for a target that can
2260 follow forks. */
2263 target_follow_fork (int follow_child, int detach_fork)
2265 return current_target.to_follow_fork (&current_target,
2266 follow_child, detach_fork);
2269 static void
2270 default_mourn_inferior (struct target_ops *self)
2272 internal_error (__FILE__, __LINE__,
2273 _("could not find a target to follow mourn inferior"));
2276 void
2277 target_mourn_inferior (void)
2279 current_target.to_mourn_inferior (&current_target);
2281 /* We no longer need to keep handles on any of the object files.
2282 Make sure to release them to avoid unnecessarily locking any
2283 of them while we're not actually debugging. */
2284 bfd_cache_close_all ();
2287 /* Look for a target which can describe architectural features, starting
2288 from TARGET. If we find one, return its description. */
2290 const struct target_desc *
2291 target_read_description (struct target_ops *target)
2293 return target->to_read_description (target);
2296 /* This implements a basic search of memory, reading target memory and
2297 performing the search here (as opposed to performing the search in on the
2298 target side with, for example, gdbserver). */
2301 simple_search_memory (struct target_ops *ops,
2302 CORE_ADDR start_addr, ULONGEST search_space_len,
2303 const gdb_byte *pattern, ULONGEST pattern_len,
2304 CORE_ADDR *found_addrp)
2306 /* NOTE: also defined in find.c testcase. */
2307 #define SEARCH_CHUNK_SIZE 16000
2308 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2309 /* Buffer to hold memory contents for searching. */
2310 gdb_byte *search_buf;
2311 unsigned search_buf_size;
2312 struct cleanup *old_cleanups;
2314 search_buf_size = chunk_size + pattern_len - 1;
2316 /* No point in trying to allocate a buffer larger than the search space. */
2317 if (search_space_len < search_buf_size)
2318 search_buf_size = search_space_len;
2320 search_buf = malloc (search_buf_size);
2321 if (search_buf == NULL)
2322 error (_("Unable to allocate memory to perform the search."));
2323 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2325 /* Prime the search buffer. */
2327 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2328 search_buf, start_addr, search_buf_size) != search_buf_size)
2330 warning (_("Unable to access %s bytes of target "
2331 "memory at %s, halting search."),
2332 pulongest (search_buf_size), hex_string (start_addr));
2333 do_cleanups (old_cleanups);
2334 return -1;
2337 /* Perform the search.
2339 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2340 When we've scanned N bytes we copy the trailing bytes to the start and
2341 read in another N bytes. */
2343 while (search_space_len >= pattern_len)
2345 gdb_byte *found_ptr;
2346 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2348 found_ptr = memmem (search_buf, nr_search_bytes,
2349 pattern, pattern_len);
2351 if (found_ptr != NULL)
2353 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2355 *found_addrp = found_addr;
2356 do_cleanups (old_cleanups);
2357 return 1;
2360 /* Not found in this chunk, skip to next chunk. */
2362 /* Don't let search_space_len wrap here, it's unsigned. */
2363 if (search_space_len >= chunk_size)
2364 search_space_len -= chunk_size;
2365 else
2366 search_space_len = 0;
2368 if (search_space_len >= pattern_len)
2370 unsigned keep_len = search_buf_size - chunk_size;
2371 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2372 int nr_to_read;
2374 /* Copy the trailing part of the previous iteration to the front
2375 of the buffer for the next iteration. */
2376 gdb_assert (keep_len == pattern_len - 1);
2377 memcpy (search_buf, search_buf + chunk_size, keep_len);
2379 nr_to_read = min (search_space_len - keep_len, chunk_size);
2381 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2382 search_buf + keep_len, read_addr,
2383 nr_to_read) != nr_to_read)
2385 warning (_("Unable to access %s bytes of target "
2386 "memory at %s, halting search."),
2387 plongest (nr_to_read),
2388 hex_string (read_addr));
2389 do_cleanups (old_cleanups);
2390 return -1;
2393 start_addr += chunk_size;
2397 /* Not found. */
2399 do_cleanups (old_cleanups);
2400 return 0;
2403 /* Default implementation of memory-searching. */
2405 static int
2406 default_search_memory (struct target_ops *self,
2407 CORE_ADDR start_addr, ULONGEST search_space_len,
2408 const gdb_byte *pattern, ULONGEST pattern_len,
2409 CORE_ADDR *found_addrp)
2411 /* Start over from the top of the target stack. */
2412 return simple_search_memory (current_target.beneath,
2413 start_addr, search_space_len,
2414 pattern, pattern_len, found_addrp);
2417 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2418 sequence of bytes in PATTERN with length PATTERN_LEN.
2420 The result is 1 if found, 0 if not found, and -1 if there was an error
2421 requiring halting of the search (e.g. memory read error).
2422 If the pattern is found the address is recorded in FOUND_ADDRP. */
2425 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2426 const gdb_byte *pattern, ULONGEST pattern_len,
2427 CORE_ADDR *found_addrp)
2429 return current_target.to_search_memory (&current_target, start_addr,
2430 search_space_len,
2431 pattern, pattern_len, found_addrp);
2434 /* Look through the currently pushed targets. If none of them will
2435 be able to restart the currently running process, issue an error
2436 message. */
2438 void
2439 target_require_runnable (void)
2441 struct target_ops *t;
2443 for (t = target_stack; t != NULL; t = t->beneath)
2445 /* If this target knows how to create a new program, then
2446 assume we will still be able to after killing the current
2447 one. Either killing and mourning will not pop T, or else
2448 find_default_run_target will find it again. */
2449 if (t->to_create_inferior != NULL)
2450 return;
2452 /* Do not worry about targets at certain strata that can not
2453 create inferiors. Assume they will be pushed again if
2454 necessary, and continue to the process_stratum. */
2455 if (t->to_stratum == thread_stratum
2456 || t->to_stratum == record_stratum
2457 || t->to_stratum == arch_stratum)
2458 continue;
2460 error (_("The \"%s\" target does not support \"run\". "
2461 "Try \"help target\" or \"continue\"."),
2462 t->to_shortname);
2465 /* This function is only called if the target is running. In that
2466 case there should have been a process_stratum target and it
2467 should either know how to create inferiors, or not... */
2468 internal_error (__FILE__, __LINE__, _("No targets found"));
2471 /* Whether GDB is allowed to fall back to the default run target for
2472 "run", "attach", etc. when no target is connected yet. */
2473 static int auto_connect_native_target = 1;
2475 static void
2476 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2477 struct cmd_list_element *c, const char *value)
2479 fprintf_filtered (file,
2480 _("Whether GDB may automatically connect to the "
2481 "native target is %s.\n"),
2482 value);
2485 /* Look through the list of possible targets for a target that can
2486 execute a run or attach command without any other data. This is
2487 used to locate the default process stratum.
2489 If DO_MESG is not NULL, the result is always valid (error() is
2490 called for errors); else, return NULL on error. */
2492 static struct target_ops *
2493 find_default_run_target (char *do_mesg)
2495 struct target_ops *runable = NULL;
2497 if (auto_connect_native_target)
2499 struct target_ops *t;
2500 int count = 0;
2501 int i;
2503 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2505 if (t->to_can_run != delegate_can_run && target_can_run (t))
2507 runable = t;
2508 ++count;
2512 if (count != 1)
2513 runable = NULL;
2516 if (runable == NULL)
2518 if (do_mesg)
2519 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2520 else
2521 return NULL;
2524 return runable;
2527 /* See target.h. */
2529 struct target_ops *
2530 find_attach_target (void)
2532 struct target_ops *t;
2534 /* If a target on the current stack can attach, use it. */
2535 for (t = current_target.beneath; t != NULL; t = t->beneath)
2537 if (t->to_attach != NULL)
2538 break;
2541 /* Otherwise, use the default run target for attaching. */
2542 if (t == NULL)
2543 t = find_default_run_target ("attach");
2545 return t;
2548 /* See target.h. */
2550 struct target_ops *
2551 find_run_target (void)
2553 struct target_ops *t;
2555 /* If a target on the current stack can attach, use it. */
2556 for (t = current_target.beneath; t != NULL; t = t->beneath)
2558 if (t->to_create_inferior != NULL)
2559 break;
2562 /* Otherwise, use the default run target. */
2563 if (t == NULL)
2564 t = find_default_run_target ("run");
2566 return t;
2569 /* Implement the "info proc" command. */
2572 target_info_proc (const char *args, enum info_proc_what what)
2574 struct target_ops *t;
2576 /* If we're already connected to something that can get us OS
2577 related data, use it. Otherwise, try using the native
2578 target. */
2579 if (current_target.to_stratum >= process_stratum)
2580 t = current_target.beneath;
2581 else
2582 t = find_default_run_target (NULL);
2584 for (; t != NULL; t = t->beneath)
2586 if (t->to_info_proc != NULL)
2588 t->to_info_proc (t, args, what);
2590 if (targetdebug)
2591 fprintf_unfiltered (gdb_stdlog,
2592 "target_info_proc (\"%s\", %d)\n", args, what);
2594 return 1;
2598 return 0;
2601 static int
2602 find_default_supports_disable_randomization (struct target_ops *self)
2604 struct target_ops *t;
2606 t = find_default_run_target (NULL);
2607 if (t && t->to_supports_disable_randomization)
2608 return (t->to_supports_disable_randomization) (t);
2609 return 0;
2613 target_supports_disable_randomization (void)
2615 struct target_ops *t;
2617 for (t = &current_target; t != NULL; t = t->beneath)
2618 if (t->to_supports_disable_randomization)
2619 return t->to_supports_disable_randomization (t);
2621 return 0;
2624 char *
2625 target_get_osdata (const char *type)
2627 struct target_ops *t;
2629 /* If we're already connected to something that can get us OS
2630 related data, use it. Otherwise, try using the native
2631 target. */
2632 if (current_target.to_stratum >= process_stratum)
2633 t = current_target.beneath;
2634 else
2635 t = find_default_run_target ("get OS data");
2637 if (!t)
2638 return NULL;
2640 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2643 static struct address_space *
2644 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2646 struct inferior *inf;
2648 /* Fall-back to the "main" address space of the inferior. */
2649 inf = find_inferior_ptid (ptid);
2651 if (inf == NULL || inf->aspace == NULL)
2652 internal_error (__FILE__, __LINE__,
2653 _("Can't determine the current "
2654 "address space of thread %s\n"),
2655 target_pid_to_str (ptid));
2657 return inf->aspace;
2660 /* Determine the current address space of thread PTID. */
2662 struct address_space *
2663 target_thread_address_space (ptid_t ptid)
2665 struct address_space *aspace;
2667 aspace = current_target.to_thread_address_space (&current_target, ptid);
2668 gdb_assert (aspace != NULL);
2670 return aspace;
2674 /* Target file operations. */
2676 static struct target_ops *
2677 default_fileio_target (void)
2679 /* If we're already connected to something that can perform
2680 file I/O, use it. Otherwise, try using the native target. */
2681 if (current_target.to_stratum >= process_stratum)
2682 return current_target.beneath;
2683 else
2684 return find_default_run_target ("file I/O");
2687 /* File handle for target file operations. */
2689 typedef struct
2691 /* The target on which this file is open. */
2692 struct target_ops *t;
2694 /* The file descriptor on the target. */
2695 int fd;
2696 } fileio_fh_t;
2698 DEF_VEC_O (fileio_fh_t);
2700 /* Vector of currently open file handles. The value returned by
2701 target_fileio_open and passed as the FD argument to other
2702 target_fileio_* functions is an index into this vector. This
2703 vector's entries are never freed; instead, files are marked as
2704 closed, and the handle becomes available for reuse. */
2705 static VEC (fileio_fh_t) *fileio_fhandles;
2707 /* Macro to check whether a fileio_fh_t represents a closed file. */
2708 #define is_closed_fileio_fh(fd) ((fd) < 0)
2710 /* Index into fileio_fhandles of the lowest handle that might be
2711 closed. This permits handle reuse without searching the whole
2712 list each time a new file is opened. */
2713 static int lowest_closed_fd;
2715 /* Acquire a target fileio file descriptor. */
2717 static int
2718 acquire_fileio_fd (struct target_ops *t, int fd)
2720 fileio_fh_t *fh, buf;
2722 gdb_assert (!is_closed_fileio_fh (fd));
2724 /* Search for closed handles to reuse. */
2725 for (;
2726 VEC_iterate (fileio_fh_t, fileio_fhandles,
2727 lowest_closed_fd, fh);
2728 lowest_closed_fd++)
2729 if (is_closed_fileio_fh (fh->fd))
2730 break;
2732 /* Push a new handle if no closed handles were found. */
2733 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2734 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2736 /* Fill in the handle. */
2737 fh->t = t;
2738 fh->fd = fd;
2740 /* Return its index, and start the next lookup at
2741 the next index. */
2742 return lowest_closed_fd++;
2745 /* Release a target fileio file descriptor. */
2747 static void
2748 release_fileio_fd (int fd, fileio_fh_t *fh)
2750 fh->fd = -1;
2751 lowest_closed_fd = min (lowest_closed_fd, fd);
2754 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2756 #define fileio_fd_to_fh(fd) \
2757 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2759 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2760 target file descriptor, or -1 if an error occurs (and set
2761 *TARGET_ERRNO). */
2763 target_fileio_open (const char *filename, int flags, int mode,
2764 int *target_errno)
2766 struct target_ops *t;
2768 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2770 if (t->to_fileio_open != NULL)
2772 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2774 if (fd < 0)
2775 fd = -1;
2776 else
2777 fd = acquire_fileio_fd (t, fd);
2779 if (targetdebug)
2780 fprintf_unfiltered (gdb_stdlog,
2781 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2782 filename, flags, mode,
2783 fd, fd != -1 ? 0 : *target_errno);
2784 return fd;
2788 *target_errno = FILEIO_ENOSYS;
2789 return -1;
2792 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2793 Return the number of bytes written, or -1 if an error occurs
2794 (and set *TARGET_ERRNO). */
2796 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2797 ULONGEST offset, int *target_errno)
2799 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2800 int ret = -1;
2802 if (is_closed_fileio_fh (fh->fd))
2803 *target_errno = EBADF;
2804 else
2805 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2806 len, offset, target_errno);
2808 if (targetdebug)
2809 fprintf_unfiltered (gdb_stdlog,
2810 "target_fileio_pwrite (%d,...,%d,%s) "
2811 "= %d (%d)\n",
2812 fd, len, pulongest (offset),
2813 ret, ret != -1 ? 0 : *target_errno);
2814 return ret;
2817 /* Read up to LEN bytes FD on the target into READ_BUF.
2818 Return the number of bytes read, or -1 if an error occurs
2819 (and set *TARGET_ERRNO). */
2821 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2822 ULONGEST offset, int *target_errno)
2824 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2825 int ret = -1;
2827 if (is_closed_fileio_fh (fh->fd))
2828 *target_errno = EBADF;
2829 else
2830 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2831 len, offset, target_errno);
2833 if (targetdebug)
2834 fprintf_unfiltered (gdb_stdlog,
2835 "target_fileio_pread (%d,...,%d,%s) "
2836 "= %d (%d)\n",
2837 fd, len, pulongest (offset),
2838 ret, ret != -1 ? 0 : *target_errno);
2839 return ret;
2842 /* See target.h. */
2844 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2846 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2847 int ret = -1;
2849 if (is_closed_fileio_fh (fh->fd))
2850 *target_errno = EBADF;
2851 else
2852 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2854 if (targetdebug)
2855 fprintf_unfiltered (gdb_stdlog,
2856 "target_fileio_fstat (%d) = %d (%d)\n",
2857 fd, ret, ret != -1 ? 0 : *target_errno);
2858 return ret;
2861 /* Close FD on the target. Return 0, or -1 if an error occurs
2862 (and set *TARGET_ERRNO). */
2864 target_fileio_close (int fd, int *target_errno)
2866 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2867 int ret = -1;
2869 if (is_closed_fileio_fh (fh->fd))
2870 *target_errno = EBADF;
2871 else
2873 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2874 release_fileio_fd (fd, fh);
2877 if (targetdebug)
2878 fprintf_unfiltered (gdb_stdlog,
2879 "target_fileio_close (%d) = %d (%d)\n",
2880 fd, ret, ret != -1 ? 0 : *target_errno);
2881 return ret;
2884 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2885 occurs (and set *TARGET_ERRNO). */
2887 target_fileio_unlink (const char *filename, int *target_errno)
2889 struct target_ops *t;
2891 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2893 if (t->to_fileio_unlink != NULL)
2895 int ret = t->to_fileio_unlink (t, filename, target_errno);
2897 if (targetdebug)
2898 fprintf_unfiltered (gdb_stdlog,
2899 "target_fileio_unlink (%s) = %d (%d)\n",
2900 filename, ret, ret != -1 ? 0 : *target_errno);
2901 return ret;
2905 *target_errno = FILEIO_ENOSYS;
2906 return -1;
2909 /* Read value of symbolic link FILENAME on the target. Return a
2910 null-terminated string allocated via xmalloc, or NULL if an error
2911 occurs (and set *TARGET_ERRNO). */
2912 char *
2913 target_fileio_readlink (const char *filename, int *target_errno)
2915 struct target_ops *t;
2917 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2919 if (t->to_fileio_readlink != NULL)
2921 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2923 if (targetdebug)
2924 fprintf_unfiltered (gdb_stdlog,
2925 "target_fileio_readlink (%s) = %s (%d)\n",
2926 filename, ret? ret : "(nil)",
2927 ret? 0 : *target_errno);
2928 return ret;
2932 *target_errno = FILEIO_ENOSYS;
2933 return NULL;
2936 static void
2937 target_fileio_close_cleanup (void *opaque)
2939 int fd = *(int *) opaque;
2940 int target_errno;
2942 target_fileio_close (fd, &target_errno);
2945 /* Read target file FILENAME. Store the result in *BUF_P and
2946 return the size of the transferred data. PADDING additional bytes are
2947 available in *BUF_P. This is a helper function for
2948 target_fileio_read_alloc; see the declaration of that function for more
2949 information. */
2951 static LONGEST
2952 target_fileio_read_alloc_1 (const char *filename,
2953 gdb_byte **buf_p, int padding)
2955 struct cleanup *close_cleanup;
2956 size_t buf_alloc, buf_pos;
2957 gdb_byte *buf;
2958 LONGEST n;
2959 int fd;
2960 int target_errno;
2962 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2963 if (fd == -1)
2964 return -1;
2966 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2968 /* Start by reading up to 4K at a time. The target will throttle
2969 this number down if necessary. */
2970 buf_alloc = 4096;
2971 buf = xmalloc (buf_alloc);
2972 buf_pos = 0;
2973 while (1)
2975 n = target_fileio_pread (fd, &buf[buf_pos],
2976 buf_alloc - buf_pos - padding, buf_pos,
2977 &target_errno);
2978 if (n < 0)
2980 /* An error occurred. */
2981 do_cleanups (close_cleanup);
2982 xfree (buf);
2983 return -1;
2985 else if (n == 0)
2987 /* Read all there was. */
2988 do_cleanups (close_cleanup);
2989 if (buf_pos == 0)
2990 xfree (buf);
2991 else
2992 *buf_p = buf;
2993 return buf_pos;
2996 buf_pos += n;
2998 /* If the buffer is filling up, expand it. */
2999 if (buf_alloc < buf_pos * 2)
3001 buf_alloc *= 2;
3002 buf = xrealloc (buf, buf_alloc);
3005 QUIT;
3009 /* Read target file FILENAME. Store the result in *BUF_P and return
3010 the size of the transferred data. See the declaration in "target.h"
3011 function for more information about the return value. */
3013 LONGEST
3014 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3016 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3019 /* Read target file FILENAME. The result is NUL-terminated and
3020 returned as a string, allocated using xmalloc. If an error occurs
3021 or the transfer is unsupported, NULL is returned. Empty objects
3022 are returned as allocated but empty strings. A warning is issued
3023 if the result contains any embedded NUL bytes. */
3025 char *
3026 target_fileio_read_stralloc (const char *filename)
3028 gdb_byte *buffer;
3029 char *bufstr;
3030 LONGEST i, transferred;
3032 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3033 bufstr = (char *) buffer;
3035 if (transferred < 0)
3036 return NULL;
3038 if (transferred == 0)
3039 return xstrdup ("");
3041 bufstr[transferred] = 0;
3043 /* Check for embedded NUL bytes; but allow trailing NULs. */
3044 for (i = strlen (bufstr); i < transferred; i++)
3045 if (bufstr[i] != 0)
3047 warning (_("target file %s "
3048 "contained unexpected null characters"),
3049 filename);
3050 break;
3053 return bufstr;
3057 static int
3058 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3059 CORE_ADDR addr, int len)
3061 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3064 static int
3065 default_watchpoint_addr_within_range (struct target_ops *target,
3066 CORE_ADDR addr,
3067 CORE_ADDR start, int length)
3069 return addr >= start && addr < start + length;
3072 static struct gdbarch *
3073 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3075 return target_gdbarch ();
3078 static int
3079 return_zero (struct target_ops *ignore)
3081 return 0;
3084 static int
3085 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3087 return 0;
3091 * Find the next target down the stack from the specified target.
3094 struct target_ops *
3095 find_target_beneath (struct target_ops *t)
3097 return t->beneath;
3100 /* See target.h. */
3102 struct target_ops *
3103 find_target_at (enum strata stratum)
3105 struct target_ops *t;
3107 for (t = current_target.beneath; t != NULL; t = t->beneath)
3108 if (t->to_stratum == stratum)
3109 return t;
3111 return NULL;
3115 /* The inferior process has died. Long live the inferior! */
3117 void
3118 generic_mourn_inferior (void)
3120 ptid_t ptid;
3122 ptid = inferior_ptid;
3123 inferior_ptid = null_ptid;
3125 /* Mark breakpoints uninserted in case something tries to delete a
3126 breakpoint while we delete the inferior's threads (which would
3127 fail, since the inferior is long gone). */
3128 mark_breakpoints_out ();
3130 if (!ptid_equal (ptid, null_ptid))
3132 int pid = ptid_get_pid (ptid);
3133 exit_inferior (pid);
3136 /* Note this wipes step-resume breakpoints, so needs to be done
3137 after exit_inferior, which ends up referencing the step-resume
3138 breakpoints through clear_thread_inferior_resources. */
3139 breakpoint_init_inferior (inf_exited);
3141 registers_changed ();
3143 reopen_exec_file ();
3144 reinit_frame_cache ();
3146 if (deprecated_detach_hook)
3147 deprecated_detach_hook ();
3150 /* Convert a normal process ID to a string. Returns the string in a
3151 static buffer. */
3153 char *
3154 normal_pid_to_str (ptid_t ptid)
3156 static char buf[32];
3158 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3159 return buf;
3162 static char *
3163 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3165 return normal_pid_to_str (ptid);
3168 /* Error-catcher for target_find_memory_regions. */
3169 static int
3170 dummy_find_memory_regions (struct target_ops *self,
3171 find_memory_region_ftype ignore1, void *ignore2)
3173 error (_("Command not implemented for this target."));
3174 return 0;
3177 /* Error-catcher for target_make_corefile_notes. */
3178 static char *
3179 dummy_make_corefile_notes (struct target_ops *self,
3180 bfd *ignore1, int *ignore2)
3182 error (_("Command not implemented for this target."));
3183 return NULL;
3186 /* Set up the handful of non-empty slots needed by the dummy target
3187 vector. */
3189 static void
3190 init_dummy_target (void)
3192 dummy_target.to_shortname = "None";
3193 dummy_target.to_longname = "None";
3194 dummy_target.to_doc = "";
3195 dummy_target.to_supports_disable_randomization
3196 = find_default_supports_disable_randomization;
3197 dummy_target.to_stratum = dummy_stratum;
3198 dummy_target.to_has_all_memory = return_zero;
3199 dummy_target.to_has_memory = return_zero;
3200 dummy_target.to_has_stack = return_zero;
3201 dummy_target.to_has_registers = return_zero;
3202 dummy_target.to_has_execution = return_zero_has_execution;
3203 dummy_target.to_magic = OPS_MAGIC;
3205 install_dummy_methods (&dummy_target);
3209 void
3210 target_close (struct target_ops *targ)
3212 gdb_assert (!target_is_pushed (targ));
3214 if (targ->to_xclose != NULL)
3215 targ->to_xclose (targ);
3216 else if (targ->to_close != NULL)
3217 targ->to_close (targ);
3219 if (targetdebug)
3220 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3224 target_thread_alive (ptid_t ptid)
3226 return current_target.to_thread_alive (&current_target, ptid);
3229 void
3230 target_update_thread_list (void)
3232 current_target.to_update_thread_list (&current_target);
3235 void
3236 target_stop (ptid_t ptid)
3238 if (!may_stop)
3240 warning (_("May not interrupt or stop the target, ignoring attempt"));
3241 return;
3244 (*current_target.to_stop) (&current_target, ptid);
3247 /* See target/target.h. */
3249 void
3250 target_stop_and_wait (ptid_t ptid)
3252 struct target_waitstatus status;
3253 int was_non_stop = non_stop;
3255 non_stop = 1;
3256 target_stop (ptid);
3258 memset (&status, 0, sizeof (status));
3259 target_wait (ptid, &status, 0);
3261 non_stop = was_non_stop;
3264 /* See target/target.h. */
3266 void
3267 target_continue_no_signal (ptid_t ptid)
3269 target_resume (ptid, 0, GDB_SIGNAL_0);
3272 /* Concatenate ELEM to LIST, a comma separate list, and return the
3273 result. The LIST incoming argument is released. */
3275 static char *
3276 str_comma_list_concat_elem (char *list, const char *elem)
3278 if (list == NULL)
3279 return xstrdup (elem);
3280 else
3281 return reconcat (list, list, ", ", elem, (char *) NULL);
3284 /* Helper for target_options_to_string. If OPT is present in
3285 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3286 Returns the new resulting string. OPT is removed from
3287 TARGET_OPTIONS. */
3289 static char *
3290 do_option (int *target_options, char *ret,
3291 int opt, char *opt_str)
3293 if ((*target_options & opt) != 0)
3295 ret = str_comma_list_concat_elem (ret, opt_str);
3296 *target_options &= ~opt;
3299 return ret;
3302 char *
3303 target_options_to_string (int target_options)
3305 char *ret = NULL;
3307 #define DO_TARG_OPTION(OPT) \
3308 ret = do_option (&target_options, ret, OPT, #OPT)
3310 DO_TARG_OPTION (TARGET_WNOHANG);
3312 if (target_options != 0)
3313 ret = str_comma_list_concat_elem (ret, "unknown???");
3315 if (ret == NULL)
3316 ret = xstrdup ("");
3317 return ret;
3320 static void
3321 debug_print_register (const char * func,
3322 struct regcache *regcache, int regno)
3324 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3326 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3327 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3328 && gdbarch_register_name (gdbarch, regno) != NULL
3329 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3330 fprintf_unfiltered (gdb_stdlog, "(%s)",
3331 gdbarch_register_name (gdbarch, regno));
3332 else
3333 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3334 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3337 int i, size = register_size (gdbarch, regno);
3338 gdb_byte buf[MAX_REGISTER_SIZE];
3340 regcache_raw_collect (regcache, regno, buf);
3341 fprintf_unfiltered (gdb_stdlog, " = ");
3342 for (i = 0; i < size; i++)
3344 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3346 if (size <= sizeof (LONGEST))
3348 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3350 fprintf_unfiltered (gdb_stdlog, " %s %s",
3351 core_addr_to_string_nz (val), plongest (val));
3354 fprintf_unfiltered (gdb_stdlog, "\n");
3357 void
3358 target_fetch_registers (struct regcache *regcache, int regno)
3360 current_target.to_fetch_registers (&current_target, regcache, regno);
3361 if (targetdebug)
3362 debug_print_register ("target_fetch_registers", regcache, regno);
3365 void
3366 target_store_registers (struct regcache *regcache, int regno)
3368 struct target_ops *t;
3370 if (!may_write_registers)
3371 error (_("Writing to registers is not allowed (regno %d)"), regno);
3373 current_target.to_store_registers (&current_target, regcache, regno);
3374 if (targetdebug)
3376 debug_print_register ("target_store_registers", regcache, regno);
3381 target_core_of_thread (ptid_t ptid)
3383 return current_target.to_core_of_thread (&current_target, ptid);
3387 simple_verify_memory (struct target_ops *ops,
3388 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3390 LONGEST total_xfered = 0;
3392 while (total_xfered < size)
3394 ULONGEST xfered_len;
3395 enum target_xfer_status status;
3396 gdb_byte buf[1024];
3397 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3399 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3400 buf, NULL, lma + total_xfered, howmuch,
3401 &xfered_len);
3402 if (status == TARGET_XFER_OK
3403 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3405 total_xfered += xfered_len;
3406 QUIT;
3408 else
3409 return 0;
3411 return 1;
3414 /* Default implementation of memory verification. */
3416 static int
3417 default_verify_memory (struct target_ops *self,
3418 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3420 /* Start over from the top of the target stack. */
3421 return simple_verify_memory (current_target.beneath,
3422 data, memaddr, size);
3426 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3428 return current_target.to_verify_memory (&current_target,
3429 data, memaddr, size);
3432 /* The documentation for this function is in its prototype declaration in
3433 target.h. */
3436 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3438 return current_target.to_insert_mask_watchpoint (&current_target,
3439 addr, mask, rw);
3442 /* The documentation for this function is in its prototype declaration in
3443 target.h. */
3446 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3448 return current_target.to_remove_mask_watchpoint (&current_target,
3449 addr, mask, rw);
3452 /* The documentation for this function is in its prototype declaration
3453 in target.h. */
3456 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3458 return current_target.to_masked_watch_num_registers (&current_target,
3459 addr, mask);
3462 /* The documentation for this function is in its prototype declaration
3463 in target.h. */
3466 target_ranged_break_num_registers (void)
3468 return current_target.to_ranged_break_num_registers (&current_target);
3471 /* See target.h. */
3474 target_supports_btrace (enum btrace_format format)
3476 return current_target.to_supports_btrace (&current_target, format);
3479 /* See target.h. */
3481 struct btrace_target_info *
3482 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3484 return current_target.to_enable_btrace (&current_target, ptid, conf);
3487 /* See target.h. */
3489 void
3490 target_disable_btrace (struct btrace_target_info *btinfo)
3492 current_target.to_disable_btrace (&current_target, btinfo);
3495 /* See target.h. */
3497 void
3498 target_teardown_btrace (struct btrace_target_info *btinfo)
3500 current_target.to_teardown_btrace (&current_target, btinfo);
3503 /* See target.h. */
3505 enum btrace_error
3506 target_read_btrace (struct btrace_data *btrace,
3507 struct btrace_target_info *btinfo,
3508 enum btrace_read_type type)
3510 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3513 /* See target.h. */
3515 const struct btrace_config *
3516 target_btrace_conf (const struct btrace_target_info *btinfo)
3518 return current_target.to_btrace_conf (&current_target, btinfo);
3521 /* See target.h. */
3523 void
3524 target_stop_recording (void)
3526 current_target.to_stop_recording (&current_target);
3529 /* See target.h. */
3531 void
3532 target_save_record (const char *filename)
3534 current_target.to_save_record (&current_target, filename);
3537 /* See target.h. */
3540 target_supports_delete_record (void)
3542 struct target_ops *t;
3544 for (t = current_target.beneath; t != NULL; t = t->beneath)
3545 if (t->to_delete_record != delegate_delete_record
3546 && t->to_delete_record != tdefault_delete_record)
3547 return 1;
3549 return 0;
3552 /* See target.h. */
3554 void
3555 target_delete_record (void)
3557 current_target.to_delete_record (&current_target);
3560 /* See target.h. */
3563 target_record_is_replaying (void)
3565 return current_target.to_record_is_replaying (&current_target);
3568 /* See target.h. */
3570 void
3571 target_goto_record_begin (void)
3573 current_target.to_goto_record_begin (&current_target);
3576 /* See target.h. */
3578 void
3579 target_goto_record_end (void)
3581 current_target.to_goto_record_end (&current_target);
3584 /* See target.h. */
3586 void
3587 target_goto_record (ULONGEST insn)
3589 current_target.to_goto_record (&current_target, insn);
3592 /* See target.h. */
3594 void
3595 target_insn_history (int size, int flags)
3597 current_target.to_insn_history (&current_target, size, flags);
3600 /* See target.h. */
3602 void
3603 target_insn_history_from (ULONGEST from, int size, int flags)
3605 current_target.to_insn_history_from (&current_target, from, size, flags);
3608 /* See target.h. */
3610 void
3611 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3613 current_target.to_insn_history_range (&current_target, begin, end, flags);
3616 /* See target.h. */
3618 void
3619 target_call_history (int size, int flags)
3621 current_target.to_call_history (&current_target, size, flags);
3624 /* See target.h. */
3626 void
3627 target_call_history_from (ULONGEST begin, int size, int flags)
3629 current_target.to_call_history_from (&current_target, begin, size, flags);
3632 /* See target.h. */
3634 void
3635 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3637 current_target.to_call_history_range (&current_target, begin, end, flags);
3640 /* See target.h. */
3642 const struct frame_unwind *
3643 target_get_unwinder (void)
3645 return current_target.to_get_unwinder (&current_target);
3648 /* See target.h. */
3650 const struct frame_unwind *
3651 target_get_tailcall_unwinder (void)
3653 return current_target.to_get_tailcall_unwinder (&current_target);
3656 /* See target.h. */
3658 void
3659 target_prepare_to_generate_core (void)
3661 current_target.to_prepare_to_generate_core (&current_target);
3664 /* See target.h. */
3666 void
3667 target_done_generating_core (void)
3669 current_target.to_done_generating_core (&current_target);
3672 static void
3673 setup_target_debug (void)
3675 memcpy (&debug_target, &current_target, sizeof debug_target);
3677 init_debug_target (&current_target);
3681 static char targ_desc[] =
3682 "Names of targets and files being debugged.\nShows the entire \
3683 stack of targets currently in use (including the exec-file,\n\
3684 core-file, and process, if any), as well as the symbol file name.";
3686 static void
3687 default_rcmd (struct target_ops *self, const char *command,
3688 struct ui_file *output)
3690 error (_("\"monitor\" command not supported by this target."));
3693 static void
3694 do_monitor_command (char *cmd,
3695 int from_tty)
3697 target_rcmd (cmd, gdb_stdtarg);
3700 /* Print the name of each layers of our target stack. */
3702 static void
3703 maintenance_print_target_stack (char *cmd, int from_tty)
3705 struct target_ops *t;
3707 printf_filtered (_("The current target stack is:\n"));
3709 for (t = target_stack; t != NULL; t = t->beneath)
3711 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3715 /* Controls if targets can report that they can/are async. This is
3716 just for maintainers to use when debugging gdb. */
3717 int target_async_permitted = 1;
3719 /* The set command writes to this variable. If the inferior is
3720 executing, target_async_permitted is *not* updated. */
3721 static int target_async_permitted_1 = 1;
3723 static void
3724 maint_set_target_async_command (char *args, int from_tty,
3725 struct cmd_list_element *c)
3727 if (have_live_inferiors ())
3729 target_async_permitted_1 = target_async_permitted;
3730 error (_("Cannot change this setting while the inferior is running."));
3733 target_async_permitted = target_async_permitted_1;
3736 static void
3737 maint_show_target_async_command (struct ui_file *file, int from_tty,
3738 struct cmd_list_element *c,
3739 const char *value)
3741 fprintf_filtered (file,
3742 _("Controlling the inferior in "
3743 "asynchronous mode is %s.\n"), value);
3746 /* Temporary copies of permission settings. */
3748 static int may_write_registers_1 = 1;
3749 static int may_write_memory_1 = 1;
3750 static int may_insert_breakpoints_1 = 1;
3751 static int may_insert_tracepoints_1 = 1;
3752 static int may_insert_fast_tracepoints_1 = 1;
3753 static int may_stop_1 = 1;
3755 /* Make the user-set values match the real values again. */
3757 void
3758 update_target_permissions (void)
3760 may_write_registers_1 = may_write_registers;
3761 may_write_memory_1 = may_write_memory;
3762 may_insert_breakpoints_1 = may_insert_breakpoints;
3763 may_insert_tracepoints_1 = may_insert_tracepoints;
3764 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3765 may_stop_1 = may_stop;
3768 /* The one function handles (most of) the permission flags in the same
3769 way. */
3771 static void
3772 set_target_permissions (char *args, int from_tty,
3773 struct cmd_list_element *c)
3775 if (target_has_execution)
3777 update_target_permissions ();
3778 error (_("Cannot change this setting while the inferior is running."));
3781 /* Make the real values match the user-changed values. */
3782 may_write_registers = may_write_registers_1;
3783 may_insert_breakpoints = may_insert_breakpoints_1;
3784 may_insert_tracepoints = may_insert_tracepoints_1;
3785 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3786 may_stop = may_stop_1;
3787 update_observer_mode ();
3790 /* Set memory write permission independently of observer mode. */
3792 static void
3793 set_write_memory_permission (char *args, int from_tty,
3794 struct cmd_list_element *c)
3796 /* Make the real values match the user-changed values. */
3797 may_write_memory = may_write_memory_1;
3798 update_observer_mode ();
3802 void
3803 initialize_targets (void)
3805 init_dummy_target ();
3806 push_target (&dummy_target);
3808 add_info ("target", target_info, targ_desc);
3809 add_info ("files", target_info, targ_desc);
3811 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3812 Set target debugging."), _("\
3813 Show target debugging."), _("\
3814 When non-zero, target debugging is enabled. Higher numbers are more\n\
3815 verbose."),
3816 set_targetdebug,
3817 show_targetdebug,
3818 &setdebuglist, &showdebuglist);
3820 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3821 &trust_readonly, _("\
3822 Set mode for reading from readonly sections."), _("\
3823 Show mode for reading from readonly sections."), _("\
3824 When this mode is on, memory reads from readonly sections (such as .text)\n\
3825 will be read from the object file instead of from the target. This will\n\
3826 result in significant performance improvement for remote targets."),
3827 NULL,
3828 show_trust_readonly,
3829 &setlist, &showlist);
3831 add_com ("monitor", class_obscure, do_monitor_command,
3832 _("Send a command to the remote monitor (remote targets only)."));
3834 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3835 _("Print the name of each layer of the internal target stack."),
3836 &maintenanceprintlist);
3838 add_setshow_boolean_cmd ("target-async", no_class,
3839 &target_async_permitted_1, _("\
3840 Set whether gdb controls the inferior in asynchronous mode."), _("\
3841 Show whether gdb controls the inferior in asynchronous mode."), _("\
3842 Tells gdb whether to control the inferior in asynchronous mode."),
3843 maint_set_target_async_command,
3844 maint_show_target_async_command,
3845 &maintenance_set_cmdlist,
3846 &maintenance_show_cmdlist);
3848 add_setshow_boolean_cmd ("may-write-registers", class_support,
3849 &may_write_registers_1, _("\
3850 Set permission to write into registers."), _("\
3851 Show permission to write into registers."), _("\
3852 When this permission is on, GDB may write into the target's registers.\n\
3853 Otherwise, any sort of write attempt will result in an error."),
3854 set_target_permissions, NULL,
3855 &setlist, &showlist);
3857 add_setshow_boolean_cmd ("may-write-memory", class_support,
3858 &may_write_memory_1, _("\
3859 Set permission to write into target memory."), _("\
3860 Show permission to write into target memory."), _("\
3861 When this permission is on, GDB may write into the target's memory.\n\
3862 Otherwise, any sort of write attempt will result in an error."),
3863 set_write_memory_permission, NULL,
3864 &setlist, &showlist);
3866 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3867 &may_insert_breakpoints_1, _("\
3868 Set permission to insert breakpoints in the target."), _("\
3869 Show permission to insert breakpoints in the target."), _("\
3870 When this permission is on, GDB may insert breakpoints in the program.\n\
3871 Otherwise, any sort of insertion attempt will result in an error."),
3872 set_target_permissions, NULL,
3873 &setlist, &showlist);
3875 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3876 &may_insert_tracepoints_1, _("\
3877 Set permission to insert tracepoints in the target."), _("\
3878 Show permission to insert tracepoints in the target."), _("\
3879 When this permission is on, GDB may insert tracepoints in the program.\n\
3880 Otherwise, any sort of insertion attempt will result in an error."),
3881 set_target_permissions, NULL,
3882 &setlist, &showlist);
3884 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3885 &may_insert_fast_tracepoints_1, _("\
3886 Set permission to insert fast tracepoints in the target."), _("\
3887 Show permission to insert fast tracepoints in the target."), _("\
3888 When this permission is on, GDB may insert fast tracepoints.\n\
3889 Otherwise, any sort of insertion attempt will result in an error."),
3890 set_target_permissions, NULL,
3891 &setlist, &showlist);
3893 add_setshow_boolean_cmd ("may-interrupt", class_support,
3894 &may_stop_1, _("\
3895 Set permission to interrupt or signal the target."), _("\
3896 Show permission to interrupt or signal the target."), _("\
3897 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3898 Otherwise, any attempt to interrupt or stop will be ignored."),
3899 set_target_permissions, NULL,
3900 &setlist, &showlist);
3902 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3903 &auto_connect_native_target, _("\
3904 Set whether GDB may automatically connect to the native target."), _("\
3905 Show whether GDB may automatically connect to the native target."), _("\
3906 When on, and GDB is not connected to a target yet, GDB\n\
3907 attempts \"run\" and other commands with the native target."),
3908 NULL, show_auto_connect_native_target,
3909 &setlist, &showlist);