1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
56 #include "cp-support.h"
60 #include "macroscope.h"
62 #include "parser-defs.h"
63 #include "completer.h"
65 /* Forward declarations for local functions. */
67 static void rbreak_command (char *, int);
69 static int find_line_common (struct linetable
*, int, int *, int);
71 static struct symbol
*lookup_symbol_aux (const char *name
,
72 const struct block
*block
,
73 const domain_enum domain
,
74 enum language language
,
75 struct field_of_this_result
*);
78 struct symbol
*lookup_local_symbol (const char *name
,
79 const struct block
*block
,
80 const domain_enum domain
,
81 enum language language
);
83 static struct symbol
*
84 lookup_symbol_in_objfile (struct objfile
*objfile
, int block_index
,
85 const char *name
, const domain_enum domain
);
87 extern initialize_file_ftype _initialize_symtab
;
89 /* Program space key for finding name and language of "main". */
91 static const struct program_space_data
*main_progspace_key
;
93 /* Type of the data stored on the program space. */
101 /* Language of "main". */
103 enum language language_of_main
;
106 /* Program space key for finding its symbol cache. */
108 static const struct program_space_data
*symbol_cache_key
;
110 /* The default symbol cache size.
111 There is no extra cpu cost for large N (except when flushing the cache,
112 which is rare). The value here is just a first attempt. A better default
113 value may be higher or lower. A prime number can make up for a bad hash
114 computation, so that's why the number is what it is. */
115 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
117 /* The maximum symbol cache size.
118 There's no method to the decision of what value to use here, other than
119 there's no point in allowing a user typo to make gdb consume all memory. */
120 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
122 /* symbol_cache_lookup returns this if a previous lookup failed to find the
123 symbol in any objfile. */
124 #define SYMBOL_LOOKUP_FAILED ((struct symbol *) 1)
126 /* Recording lookups that don't find the symbol is just as important, if not
127 more so, than recording found symbols. */
129 enum symbol_cache_slot_state
132 SYMBOL_SLOT_NOT_FOUND
,
136 struct symbol_cache_slot
138 enum symbol_cache_slot_state state
;
140 /* The objfile that was current when the symbol was looked up.
141 This is only needed for global blocks, but for simplicity's sake
142 we allocate the space for both. If data shows the extra space used
143 for static blocks is a problem, we can split things up then.
145 Global blocks need cache lookup to include the objfile context because
146 we need to account for gdbarch_iterate_over_objfiles_in_search_order
147 which can traverse objfiles in, effectively, any order, depending on
148 the current objfile, thus affecting which symbol is found. Normally,
149 only the current objfile is searched first, and then the rest are
150 searched in recorded order; but putting cache lookup inside
151 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
152 Instead we just make the current objfile part of the context of
153 cache lookup. This means we can record the same symbol multiple times,
154 each with a different "current objfile" that was in effect when the
155 lookup was saved in the cache, but cache space is pretty cheap. */
156 const struct objfile
*objfile_context
;
160 struct symbol
*found
;
169 /* Symbols don't specify global vs static block.
170 So keep them in separate caches. */
172 struct block_symbol_cache
176 unsigned int collisions
;
178 /* SYMBOLS is a variable length array of this size.
179 One can imagine that in general one cache (global/static) should be a
180 fraction of the size of the other, but there's no data at the moment
181 on which to decide. */
184 struct symbol_cache_slot symbols
[1];
189 Searching for symbols in the static and global blocks over multiple objfiles
190 again and again can be slow, as can searching very big objfiles. This is a
191 simple cache to improve symbol lookup performance, which is critical to
192 overall gdb performance.
194 Symbols are hashed on the name, its domain, and block.
195 They are also hashed on their objfile for objfile-specific lookups. */
199 struct block_symbol_cache
*global_symbols
;
200 struct block_symbol_cache
*static_symbols
;
203 /* When non-zero, print debugging messages related to symtab creation. */
204 unsigned int symtab_create_debug
= 0;
206 /* When non-zero, print debugging messages related to symbol lookup. */
207 unsigned int symbol_lookup_debug
= 0;
209 /* The size of the cache is staged here. */
210 static unsigned int new_symbol_cache_size
= DEFAULT_SYMBOL_CACHE_SIZE
;
212 /* The current value of the symbol cache size.
213 This is saved so that if the user enters a value too big we can restore
214 the original value from here. */
215 static unsigned int symbol_cache_size
= DEFAULT_SYMBOL_CACHE_SIZE
;
217 /* Non-zero if a file may be known by two different basenames.
218 This is the uncommon case, and significantly slows down gdb.
219 Default set to "off" to not slow down the common case. */
220 int basenames_may_differ
= 0;
222 /* Allow the user to configure the debugger behavior with respect
223 to multiple-choice menus when more than one symbol matches during
226 const char multiple_symbols_ask
[] = "ask";
227 const char multiple_symbols_all
[] = "all";
228 const char multiple_symbols_cancel
[] = "cancel";
229 static const char *const multiple_symbols_modes
[] =
231 multiple_symbols_ask
,
232 multiple_symbols_all
,
233 multiple_symbols_cancel
,
236 static const char *multiple_symbols_mode
= multiple_symbols_all
;
238 /* Read-only accessor to AUTO_SELECT_MODE. */
241 multiple_symbols_select_mode (void)
243 return multiple_symbols_mode
;
246 /* Block in which the most recently searched-for symbol was found.
247 Might be better to make this a parameter to lookup_symbol and
250 const struct block
*block_found
;
252 /* Return the name of a domain_enum. */
255 domain_name (domain_enum e
)
259 case UNDEF_DOMAIN
: return "UNDEF_DOMAIN";
260 case VAR_DOMAIN
: return "VAR_DOMAIN";
261 case STRUCT_DOMAIN
: return "STRUCT_DOMAIN";
262 case MODULE_DOMAIN
: return "MODULE_DOMAIN";
263 case LABEL_DOMAIN
: return "LABEL_DOMAIN";
264 case COMMON_BLOCK_DOMAIN
: return "COMMON_BLOCK_DOMAIN";
265 default: gdb_assert_not_reached ("bad domain_enum");
269 /* Return the name of a search_domain . */
272 search_domain_name (enum search_domain e
)
276 case VARIABLES_DOMAIN
: return "VARIABLES_DOMAIN";
277 case FUNCTIONS_DOMAIN
: return "FUNCTIONS_DOMAIN";
278 case TYPES_DOMAIN
: return "TYPES_DOMAIN";
279 case ALL_DOMAIN
: return "ALL_DOMAIN";
280 default: gdb_assert_not_reached ("bad search_domain");
287 compunit_primary_filetab (const struct compunit_symtab
*cust
)
289 gdb_assert (COMPUNIT_FILETABS (cust
) != NULL
);
291 /* The primary file symtab is the first one in the list. */
292 return COMPUNIT_FILETABS (cust
);
298 compunit_language (const struct compunit_symtab
*cust
)
300 struct symtab
*symtab
= compunit_primary_filetab (cust
);
302 /* The language of the compunit symtab is the language of its primary
304 return SYMTAB_LANGUAGE (symtab
);
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308 advertise to the user. (The manual's description of linespecs
309 describes what we advertise). Returns true if they match, false
313 compare_filenames_for_search (const char *filename
, const char *search_name
)
315 int len
= strlen (filename
);
316 size_t search_len
= strlen (search_name
);
318 if (len
< search_len
)
321 /* The tail of FILENAME must match. */
322 if (FILENAME_CMP (filename
+ len
- search_len
, search_name
) != 0)
325 /* Either the names must completely match, or the character
326 preceding the trailing SEARCH_NAME segment of FILENAME must be a
329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330 cannot match FILENAME "/path//dir/file.c" - as user has requested
331 absolute path. The sama applies for "c:\file.c" possibly
332 incorrectly hypothetically matching "d:\dir\c:\file.c".
334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335 compatible with SEARCH_NAME "file.c". In such case a compiler had
336 to put the "c:file.c" name into debug info. Such compatibility
337 works only on GDB built for DOS host. */
338 return (len
== search_len
339 || (!IS_ABSOLUTE_PATH (search_name
)
340 && IS_DIR_SEPARATOR (filename
[len
- search_len
- 1]))
341 || (HAS_DRIVE_SPEC (filename
)
342 && STRIP_DRIVE_SPEC (filename
) == &filename
[len
- search_len
]));
345 /* Check for a symtab of a specific name by searching some symtabs.
346 This is a helper function for callbacks of iterate_over_symtabs.
348 If NAME is not absolute, then REAL_PATH is NULL
349 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
351 The return value, NAME, REAL_PATH, CALLBACK, and DATA
352 are identical to the `map_symtabs_matching_filename' method of
353 quick_symbol_functions.
355 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
356 Each symtab within the specified compunit symtab is also searched.
357 AFTER_LAST is one past the last compunit symtab to search; NULL means to
358 search until the end of the list. */
361 iterate_over_some_symtabs (const char *name
,
362 const char *real_path
,
363 int (*callback
) (struct symtab
*symtab
,
366 struct compunit_symtab
*first
,
367 struct compunit_symtab
*after_last
)
369 struct compunit_symtab
*cust
;
371 const char* base_name
= lbasename (name
);
373 for (cust
= first
; cust
!= NULL
&& cust
!= after_last
; cust
= cust
->next
)
375 ALL_COMPUNIT_FILETABS (cust
, s
)
377 if (compare_filenames_for_search (s
->filename
, name
))
379 if (callback (s
, data
))
384 /* Before we invoke realpath, which can get expensive when many
385 files are involved, do a quick comparison of the basenames. */
386 if (! basenames_may_differ
387 && FILENAME_CMP (base_name
, lbasename (s
->filename
)) != 0)
390 if (compare_filenames_for_search (symtab_to_fullname (s
), name
))
392 if (callback (s
, data
))
397 /* If the user gave us an absolute path, try to find the file in
398 this symtab and use its absolute path. */
399 if (real_path
!= NULL
)
401 const char *fullname
= symtab_to_fullname (s
);
403 gdb_assert (IS_ABSOLUTE_PATH (real_path
));
404 gdb_assert (IS_ABSOLUTE_PATH (name
));
405 if (FILENAME_CMP (real_path
, fullname
) == 0)
407 if (callback (s
, data
))
418 /* Check for a symtab of a specific name; first in symtabs, then in
419 psymtabs. *If* there is no '/' in the name, a match after a '/'
420 in the symtab filename will also work.
422 Calls CALLBACK with each symtab that is found and with the supplied
423 DATA. If CALLBACK returns true, the search stops. */
426 iterate_over_symtabs (const char *name
,
427 int (*callback
) (struct symtab
*symtab
,
431 struct objfile
*objfile
;
432 char *real_path
= NULL
;
433 struct cleanup
*cleanups
= make_cleanup (null_cleanup
, NULL
);
435 /* Here we are interested in canonicalizing an absolute path, not
436 absolutizing a relative path. */
437 if (IS_ABSOLUTE_PATH (name
))
439 real_path
= gdb_realpath (name
);
440 make_cleanup (xfree
, real_path
);
441 gdb_assert (IS_ABSOLUTE_PATH (real_path
));
444 ALL_OBJFILES (objfile
)
446 if (iterate_over_some_symtabs (name
, real_path
, callback
, data
,
447 objfile
->compunit_symtabs
, NULL
))
449 do_cleanups (cleanups
);
454 /* Same search rules as above apply here, but now we look thru the
457 ALL_OBJFILES (objfile
)
460 && objfile
->sf
->qf
->map_symtabs_matching_filename (objfile
,
466 do_cleanups (cleanups
);
471 do_cleanups (cleanups
);
474 /* The callback function used by lookup_symtab. */
477 lookup_symtab_callback (struct symtab
*symtab
, void *data
)
479 struct symtab
**result_ptr
= data
;
481 *result_ptr
= symtab
;
485 /* A wrapper for iterate_over_symtabs that returns the first matching
489 lookup_symtab (const char *name
)
491 struct symtab
*result
= NULL
;
493 iterate_over_symtabs (name
, lookup_symtab_callback
, &result
);
498 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
499 full method name, which consist of the class name (from T), the unadorned
500 method name from METHOD_ID, and the signature for the specific overload,
501 specified by SIGNATURE_ID. Note that this function is g++ specific. */
504 gdb_mangle_name (struct type
*type
, int method_id
, int signature_id
)
506 int mangled_name_len
;
508 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (type
, method_id
);
509 struct fn_field
*method
= &f
[signature_id
];
510 const char *field_name
= TYPE_FN_FIELDLIST_NAME (type
, method_id
);
511 const char *physname
= TYPE_FN_FIELD_PHYSNAME (f
, signature_id
);
512 const char *newname
= type_name_no_tag (type
);
514 /* Does the form of physname indicate that it is the full mangled name
515 of a constructor (not just the args)? */
516 int is_full_physname_constructor
;
519 int is_destructor
= is_destructor_name (physname
);
520 /* Need a new type prefix. */
521 char *const_prefix
= method
->is_const
? "C" : "";
522 char *volatile_prefix
= method
->is_volatile
? "V" : "";
524 int len
= (newname
== NULL
? 0 : strlen (newname
));
526 /* Nothing to do if physname already contains a fully mangled v3 abi name
527 or an operator name. */
528 if ((physname
[0] == '_' && physname
[1] == 'Z')
529 || is_operator_name (field_name
))
530 return xstrdup (physname
);
532 is_full_physname_constructor
= is_constructor_name (physname
);
534 is_constructor
= is_full_physname_constructor
535 || (newname
&& strcmp (field_name
, newname
) == 0);
538 is_destructor
= (startswith (physname
, "__dt"));
540 if (is_destructor
|| is_full_physname_constructor
)
542 mangled_name
= (char *) xmalloc (strlen (physname
) + 1);
543 strcpy (mangled_name
, physname
);
549 xsnprintf (buf
, sizeof (buf
), "__%s%s", const_prefix
, volatile_prefix
);
551 else if (physname
[0] == 't' || physname
[0] == 'Q')
553 /* The physname for template and qualified methods already includes
555 xsnprintf (buf
, sizeof (buf
), "__%s%s", const_prefix
, volatile_prefix
);
561 xsnprintf (buf
, sizeof (buf
), "__%s%s%d", const_prefix
,
562 volatile_prefix
, len
);
564 mangled_name_len
= ((is_constructor
? 0 : strlen (field_name
))
565 + strlen (buf
) + len
+ strlen (physname
) + 1);
567 mangled_name
= (char *) xmalloc (mangled_name_len
);
569 mangled_name
[0] = '\0';
571 strcpy (mangled_name
, field_name
);
573 strcat (mangled_name
, buf
);
574 /* If the class doesn't have a name, i.e. newname NULL, then we just
575 mangle it using 0 for the length of the class. Thus it gets mangled
576 as something starting with `::' rather than `classname::'. */
578 strcat (mangled_name
, newname
);
580 strcat (mangled_name
, physname
);
581 return (mangled_name
);
584 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
585 correctly allocated. */
588 symbol_set_demangled_name (struct general_symbol_info
*gsymbol
,
590 struct obstack
*obstack
)
592 if (gsymbol
->language
== language_ada
)
596 gsymbol
->ada_mangled
= 0;
597 gsymbol
->language_specific
.obstack
= obstack
;
601 gsymbol
->ada_mangled
= 1;
602 gsymbol
->language_specific
.mangled_lang
.demangled_name
= name
;
606 gsymbol
->language_specific
.mangled_lang
.demangled_name
= name
;
609 /* Return the demangled name of GSYMBOL. */
612 symbol_get_demangled_name (const struct general_symbol_info
*gsymbol
)
614 if (gsymbol
->language
== language_ada
)
616 if (!gsymbol
->ada_mangled
)
621 return gsymbol
->language_specific
.mangled_lang
.demangled_name
;
625 /* Initialize the language dependent portion of a symbol
626 depending upon the language for the symbol. */
629 symbol_set_language (struct general_symbol_info
*gsymbol
,
630 enum language language
,
631 struct obstack
*obstack
)
633 gsymbol
->language
= language
;
634 if (gsymbol
->language
== language_cplus
635 || gsymbol
->language
== language_d
636 || gsymbol
->language
== language_go
637 || gsymbol
->language
== language_java
638 || gsymbol
->language
== language_objc
639 || gsymbol
->language
== language_fortran
)
641 symbol_set_demangled_name (gsymbol
, NULL
, obstack
);
643 else if (gsymbol
->language
== language_ada
)
645 gdb_assert (gsymbol
->ada_mangled
== 0);
646 gsymbol
->language_specific
.obstack
= obstack
;
650 memset (&gsymbol
->language_specific
, 0,
651 sizeof (gsymbol
->language_specific
));
655 /* Functions to initialize a symbol's mangled name. */
657 /* Objects of this type are stored in the demangled name hash table. */
658 struct demangled_name_entry
664 /* Hash function for the demangled name hash. */
667 hash_demangled_name_entry (const void *data
)
669 const struct demangled_name_entry
*e
= data
;
671 return htab_hash_string (e
->mangled
);
674 /* Equality function for the demangled name hash. */
677 eq_demangled_name_entry (const void *a
, const void *b
)
679 const struct demangled_name_entry
*da
= a
;
680 const struct demangled_name_entry
*db
= b
;
682 return strcmp (da
->mangled
, db
->mangled
) == 0;
685 /* Create the hash table used for demangled names. Each hash entry is
686 a pair of strings; one for the mangled name and one for the demangled
687 name. The entry is hashed via just the mangled name. */
690 create_demangled_names_hash (struct objfile
*objfile
)
692 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
693 The hash table code will round this up to the next prime number.
694 Choosing a much larger table size wastes memory, and saves only about
695 1% in symbol reading. */
697 objfile
->per_bfd
->demangled_names_hash
= htab_create_alloc
698 (256, hash_demangled_name_entry
, eq_demangled_name_entry
,
699 NULL
, xcalloc
, xfree
);
702 /* Try to determine the demangled name for a symbol, based on the
703 language of that symbol. If the language is set to language_auto,
704 it will attempt to find any demangling algorithm that works and
705 then set the language appropriately. The returned name is allocated
706 by the demangler and should be xfree'd. */
709 symbol_find_demangled_name (struct general_symbol_info
*gsymbol
,
712 char *demangled
= NULL
;
714 if (gsymbol
->language
== language_unknown
)
715 gsymbol
->language
= language_auto
;
717 if (gsymbol
->language
== language_objc
718 || gsymbol
->language
== language_auto
)
721 objc_demangle (mangled
, 0);
722 if (demangled
!= NULL
)
724 gsymbol
->language
= language_objc
;
728 if (gsymbol
->language
== language_cplus
729 || gsymbol
->language
== language_auto
)
732 gdb_demangle (mangled
, DMGL_PARAMS
| DMGL_ANSI
);
733 if (demangled
!= NULL
)
735 gsymbol
->language
= language_cplus
;
739 if (gsymbol
->language
== language_java
)
742 gdb_demangle (mangled
,
743 DMGL_PARAMS
| DMGL_ANSI
| DMGL_JAVA
);
744 if (demangled
!= NULL
)
746 gsymbol
->language
= language_java
;
750 if (gsymbol
->language
== language_d
751 || gsymbol
->language
== language_auto
)
753 demangled
= d_demangle(mangled
, 0);
754 if (demangled
!= NULL
)
756 gsymbol
->language
= language_d
;
760 /* FIXME(dje): Continually adding languages here is clumsy.
761 Better to just call la_demangle if !auto, and if auto then call
762 a utility routine that tries successive languages in turn and reports
763 which one it finds. I realize the la_demangle options may be different
764 for different languages but there's already a FIXME for that. */
765 if (gsymbol
->language
== language_go
766 || gsymbol
->language
== language_auto
)
768 demangled
= go_demangle (mangled
, 0);
769 if (demangled
!= NULL
)
771 gsymbol
->language
= language_go
;
776 /* We could support `gsymbol->language == language_fortran' here to provide
777 module namespaces also for inferiors with only minimal symbol table (ELF
778 symbols). Just the mangling standard is not standardized across compilers
779 and there is no DW_AT_producer available for inferiors with only the ELF
780 symbols to check the mangling kind. */
782 /* Check for Ada symbols last. See comment below explaining why. */
784 if (gsymbol
->language
== language_auto
)
786 const char *demangled
= ada_decode (mangled
);
788 if (demangled
!= mangled
&& demangled
!= NULL
&& demangled
[0] != '<')
790 /* Set the gsymbol language to Ada, but still return NULL.
791 Two reasons for that:
793 1. For Ada, we prefer computing the symbol's decoded name
794 on the fly rather than pre-compute it, in order to save
795 memory (Ada projects are typically very large).
797 2. There are some areas in the definition of the GNAT
798 encoding where, with a bit of bad luck, we might be able
799 to decode a non-Ada symbol, generating an incorrect
800 demangled name (Eg: names ending with "TB" for instance
801 are identified as task bodies and so stripped from
802 the decoded name returned).
804 Returning NULL, here, helps us get a little bit of
805 the best of both worlds. Because we're last, we should
806 not affect any of the other languages that were able to
807 demangle the symbol before us; we get to correctly tag
808 Ada symbols as such; and even if we incorrectly tagged
809 a non-Ada symbol, which should be rare, any routing
810 through the Ada language should be transparent (Ada
811 tries to behave much like C/C++ with non-Ada symbols). */
812 gsymbol
->language
= language_ada
;
820 /* Set both the mangled and demangled (if any) names for GSYMBOL based
821 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
822 objfile's obstack; but if COPY_NAME is 0 and if NAME is
823 NUL-terminated, then this function assumes that NAME is already
824 correctly saved (either permanently or with a lifetime tied to the
825 objfile), and it will not be copied.
827 The hash table corresponding to OBJFILE is used, and the memory
828 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
829 so the pointer can be discarded after calling this function. */
831 /* We have to be careful when dealing with Java names: when we run
832 into a Java minimal symbol, we don't know it's a Java symbol, so it
833 gets demangled as a C++ name. This is unfortunate, but there's not
834 much we can do about it: but when demangling partial symbols and
835 regular symbols, we'd better not reuse the wrong demangled name.
836 (See PR gdb/1039.) We solve this by putting a distinctive prefix
837 on Java names when storing them in the hash table. */
839 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
840 don't mind the Java prefix so much: different languages have
841 different demangling requirements, so it's only natural that we
842 need to keep language data around in our demangling cache. But
843 it's not good that the minimal symbol has the wrong demangled name.
844 Unfortunately, I can't think of any easy solution to that
847 #define JAVA_PREFIX "##JAVA$$"
848 #define JAVA_PREFIX_LEN 8
851 symbol_set_names (struct general_symbol_info
*gsymbol
,
852 const char *linkage_name
, int len
, int copy_name
,
853 struct objfile
*objfile
)
855 struct demangled_name_entry
**slot
;
856 /* A 0-terminated copy of the linkage name. */
857 const char *linkage_name_copy
;
858 /* A copy of the linkage name that might have a special Java prefix
859 added to it, for use when looking names up in the hash table. */
860 const char *lookup_name
;
861 /* The length of lookup_name. */
863 struct demangled_name_entry entry
;
864 struct objfile_per_bfd_storage
*per_bfd
= objfile
->per_bfd
;
866 if (gsymbol
->language
== language_ada
)
868 /* In Ada, we do the symbol lookups using the mangled name, so
869 we can save some space by not storing the demangled name.
871 As a side note, we have also observed some overlap between
872 the C++ mangling and Ada mangling, similarly to what has
873 been observed with Java. Because we don't store the demangled
874 name with the symbol, we don't need to use the same trick
877 gsymbol
->name
= linkage_name
;
880 char *name
= obstack_alloc (&per_bfd
->storage_obstack
, len
+ 1);
882 memcpy (name
, linkage_name
, len
);
884 gsymbol
->name
= name
;
886 symbol_set_demangled_name (gsymbol
, NULL
, &per_bfd
->storage_obstack
);
891 if (per_bfd
->demangled_names_hash
== NULL
)
892 create_demangled_names_hash (objfile
);
894 /* The stabs reader generally provides names that are not
895 NUL-terminated; most of the other readers don't do this, so we
896 can just use the given copy, unless we're in the Java case. */
897 if (gsymbol
->language
== language_java
)
901 lookup_len
= len
+ JAVA_PREFIX_LEN
;
902 alloc_name
= alloca (lookup_len
+ 1);
903 memcpy (alloc_name
, JAVA_PREFIX
, JAVA_PREFIX_LEN
);
904 memcpy (alloc_name
+ JAVA_PREFIX_LEN
, linkage_name
, len
);
905 alloc_name
[lookup_len
] = '\0';
907 lookup_name
= alloc_name
;
908 linkage_name_copy
= alloc_name
+ JAVA_PREFIX_LEN
;
910 else if (linkage_name
[len
] != '\0')
915 alloc_name
= alloca (lookup_len
+ 1);
916 memcpy (alloc_name
, linkage_name
, len
);
917 alloc_name
[lookup_len
] = '\0';
919 lookup_name
= alloc_name
;
920 linkage_name_copy
= alloc_name
;
925 lookup_name
= linkage_name
;
926 linkage_name_copy
= linkage_name
;
929 entry
.mangled
= lookup_name
;
930 slot
= ((struct demangled_name_entry
**)
931 htab_find_slot (per_bfd
->demangled_names_hash
,
934 /* If this name is not in the hash table, add it. */
936 /* A C version of the symbol may have already snuck into the table.
937 This happens to, e.g., main.init (__go_init_main). Cope. */
938 || (gsymbol
->language
== language_go
939 && (*slot
)->demangled
[0] == '\0'))
941 char *demangled_name
= symbol_find_demangled_name (gsymbol
,
943 int demangled_len
= demangled_name
? strlen (demangled_name
) : 0;
945 /* Suppose we have demangled_name==NULL, copy_name==0, and
946 lookup_name==linkage_name. In this case, we already have the
947 mangled name saved, and we don't have a demangled name. So,
948 you might think we could save a little space by not recording
949 this in the hash table at all.
951 It turns out that it is actually important to still save such
952 an entry in the hash table, because storing this name gives
953 us better bcache hit rates for partial symbols. */
954 if (!copy_name
&& lookup_name
== linkage_name
)
956 *slot
= obstack_alloc (&per_bfd
->storage_obstack
,
957 offsetof (struct demangled_name_entry
,
959 + demangled_len
+ 1);
960 (*slot
)->mangled
= lookup_name
;
966 /* If we must copy the mangled name, put it directly after
967 the demangled name so we can have a single
969 *slot
= obstack_alloc (&per_bfd
->storage_obstack
,
970 offsetof (struct demangled_name_entry
,
972 + lookup_len
+ demangled_len
+ 2);
973 mangled_ptr
= &((*slot
)->demangled
[demangled_len
+ 1]);
974 strcpy (mangled_ptr
, lookup_name
);
975 (*slot
)->mangled
= mangled_ptr
;
978 if (demangled_name
!= NULL
)
980 strcpy ((*slot
)->demangled
, demangled_name
);
981 xfree (demangled_name
);
984 (*slot
)->demangled
[0] = '\0';
987 gsymbol
->name
= (*slot
)->mangled
+ lookup_len
- len
;
988 if ((*slot
)->demangled
[0] != '\0')
989 symbol_set_demangled_name (gsymbol
, (*slot
)->demangled
,
990 &per_bfd
->storage_obstack
);
992 symbol_set_demangled_name (gsymbol
, NULL
, &per_bfd
->storage_obstack
);
995 /* Return the source code name of a symbol. In languages where
996 demangling is necessary, this is the demangled name. */
999 symbol_natural_name (const struct general_symbol_info
*gsymbol
)
1001 switch (gsymbol
->language
)
1003 case language_cplus
:
1008 case language_fortran
:
1009 if (symbol_get_demangled_name (gsymbol
) != NULL
)
1010 return symbol_get_demangled_name (gsymbol
);
1013 return ada_decode_symbol (gsymbol
);
1017 return gsymbol
->name
;
1020 /* Return the demangled name for a symbol based on the language for
1021 that symbol. If no demangled name exists, return NULL. */
1024 symbol_demangled_name (const struct general_symbol_info
*gsymbol
)
1026 const char *dem_name
= NULL
;
1028 switch (gsymbol
->language
)
1030 case language_cplus
:
1035 case language_fortran
:
1036 dem_name
= symbol_get_demangled_name (gsymbol
);
1039 dem_name
= ada_decode_symbol (gsymbol
);
1047 /* Return the search name of a symbol---generally the demangled or
1048 linkage name of the symbol, depending on how it will be searched for.
1049 If there is no distinct demangled name, then returns the same value
1050 (same pointer) as SYMBOL_LINKAGE_NAME. */
1053 symbol_search_name (const struct general_symbol_info
*gsymbol
)
1055 if (gsymbol
->language
== language_ada
)
1056 return gsymbol
->name
;
1058 return symbol_natural_name (gsymbol
);
1061 /* Initialize the structure fields to zero values. */
1064 init_sal (struct symtab_and_line
*sal
)
1066 memset (sal
, 0, sizeof (*sal
));
1070 /* Return 1 if the two sections are the same, or if they could
1071 plausibly be copies of each other, one in an original object
1072 file and another in a separated debug file. */
1075 matching_obj_sections (struct obj_section
*obj_first
,
1076 struct obj_section
*obj_second
)
1078 asection
*first
= obj_first
? obj_first
->the_bfd_section
: NULL
;
1079 asection
*second
= obj_second
? obj_second
->the_bfd_section
: NULL
;
1080 struct objfile
*obj
;
1082 /* If they're the same section, then they match. */
1083 if (first
== second
)
1086 /* If either is NULL, give up. */
1087 if (first
== NULL
|| second
== NULL
)
1090 /* This doesn't apply to absolute symbols. */
1091 if (first
->owner
== NULL
|| second
->owner
== NULL
)
1094 /* If they're in the same object file, they must be different sections. */
1095 if (first
->owner
== second
->owner
)
1098 /* Check whether the two sections are potentially corresponding. They must
1099 have the same size, address, and name. We can't compare section indexes,
1100 which would be more reliable, because some sections may have been
1102 if (bfd_get_section_size (first
) != bfd_get_section_size (second
))
1105 /* In-memory addresses may start at a different offset, relativize them. */
1106 if (bfd_get_section_vma (first
->owner
, first
)
1107 - bfd_get_start_address (first
->owner
)
1108 != bfd_get_section_vma (second
->owner
, second
)
1109 - bfd_get_start_address (second
->owner
))
1112 if (bfd_get_section_name (first
->owner
, first
) == NULL
1113 || bfd_get_section_name (second
->owner
, second
) == NULL
1114 || strcmp (bfd_get_section_name (first
->owner
, first
),
1115 bfd_get_section_name (second
->owner
, second
)) != 0)
1118 /* Otherwise check that they are in corresponding objfiles. */
1121 if (obj
->obfd
== first
->owner
)
1123 gdb_assert (obj
!= NULL
);
1125 if (obj
->separate_debug_objfile
!= NULL
1126 && obj
->separate_debug_objfile
->obfd
== second
->owner
)
1128 if (obj
->separate_debug_objfile_backlink
!= NULL
1129 && obj
->separate_debug_objfile_backlink
->obfd
== second
->owner
)
1138 expand_symtab_containing_pc (CORE_ADDR pc
, struct obj_section
*section
)
1140 struct objfile
*objfile
;
1141 struct bound_minimal_symbol msymbol
;
1143 /* If we know that this is not a text address, return failure. This is
1144 necessary because we loop based on texthigh and textlow, which do
1145 not include the data ranges. */
1146 msymbol
= lookup_minimal_symbol_by_pc_section (pc
, section
);
1148 && (MSYMBOL_TYPE (msymbol
.minsym
) == mst_data
1149 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_bss
1150 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_abs
1151 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_file_data
1152 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_file_bss
))
1155 ALL_OBJFILES (objfile
)
1157 struct compunit_symtab
*cust
= NULL
;
1160 cust
= objfile
->sf
->qf
->find_pc_sect_compunit_symtab (objfile
, msymbol
,
1167 /* Hash function for the symbol cache. */
1170 hash_symbol_entry (const struct objfile
*objfile_context
,
1171 const char *name
, domain_enum domain
)
1173 unsigned int hash
= (uintptr_t) objfile_context
;
1176 hash
+= htab_hash_string (name
);
1178 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1179 to map to the same slot. */
1180 if (domain
== STRUCT_DOMAIN
)
1181 hash
+= VAR_DOMAIN
* 7;
1188 /* Equality function for the symbol cache. */
1191 eq_symbol_entry (const struct symbol_cache_slot
*slot
,
1192 const struct objfile
*objfile_context
,
1193 const char *name
, domain_enum domain
)
1195 const char *slot_name
;
1196 domain_enum slot_domain
;
1198 if (slot
->state
== SYMBOL_SLOT_UNUSED
)
1201 if (slot
->objfile_context
!= objfile_context
)
1204 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1206 slot_name
= slot
->value
.not_found
.name
;
1207 slot_domain
= slot
->value
.not_found
.domain
;
1211 slot_name
= SYMBOL_SEARCH_NAME (slot
->value
.found
);
1212 slot_domain
= SYMBOL_DOMAIN (slot
->value
.found
);
1215 /* NULL names match. */
1216 if (slot_name
== NULL
&& name
== NULL
)
1218 /* But there's no point in calling symbol_matches_domain in the
1219 SYMBOL_SLOT_FOUND case. */
1220 if (slot_domain
!= domain
)
1223 else if (slot_name
!= NULL
&& name
!= NULL
)
1225 /* It's important that we use the same comparison that was done the
1226 first time through. If the slot records a found symbol, then this
1227 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1228 It also means using symbol_matches_domain for found symbols.
1231 If the slot records a not-found symbol, then require a precise match.
1232 We could still be lax with whitespace like strcmp_iw though. */
1234 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1236 if (strcmp (slot_name
, name
) != 0)
1238 if (slot_domain
!= domain
)
1243 struct symbol
*sym
= slot
->value
.found
;
1245 if (strcmp_iw (slot_name
, name
) != 0)
1247 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
1248 slot_domain
, domain
))
1254 /* Only one name is NULL. */
1261 /* Given a cache of size SIZE, return the size of the struct (with variable
1262 length array) in bytes. */
1265 symbol_cache_byte_size (unsigned int size
)
1267 return (sizeof (struct block_symbol_cache
)
1268 + ((size
- 1) * sizeof (struct symbol_cache_slot
)));
1274 resize_symbol_cache (struct symbol_cache
*cache
, unsigned int new_size
)
1276 /* If there's no change in size, don't do anything.
1277 All caches have the same size, so we can just compare with the size
1278 of the global symbols cache. */
1279 if ((cache
->global_symbols
!= NULL
1280 && cache
->global_symbols
->size
== new_size
)
1281 || (cache
->global_symbols
== NULL
1285 xfree (cache
->global_symbols
);
1286 xfree (cache
->static_symbols
);
1290 cache
->global_symbols
= NULL
;
1291 cache
->static_symbols
= NULL
;
1295 size_t total_size
= symbol_cache_byte_size (new_size
);
1297 cache
->global_symbols
= xcalloc (1, total_size
);
1298 cache
->static_symbols
= xcalloc (1, total_size
);
1299 cache
->global_symbols
->size
= new_size
;
1300 cache
->static_symbols
->size
= new_size
;
1304 /* Make a symbol cache of size SIZE. */
1306 static struct symbol_cache
*
1307 make_symbol_cache (unsigned int size
)
1309 struct symbol_cache
*cache
;
1311 cache
= XCNEW (struct symbol_cache
);
1312 resize_symbol_cache (cache
, symbol_cache_size
);
1316 /* Free the space used by CACHE. */
1319 free_symbol_cache (struct symbol_cache
*cache
)
1321 xfree (cache
->global_symbols
);
1322 xfree (cache
->static_symbols
);
1326 /* Return the symbol cache of PSPACE.
1327 Create one if it doesn't exist yet. */
1329 static struct symbol_cache
*
1330 get_symbol_cache (struct program_space
*pspace
)
1332 struct symbol_cache
*cache
= program_space_data (pspace
, symbol_cache_key
);
1336 cache
= make_symbol_cache (symbol_cache_size
);
1337 set_program_space_data (pspace
, symbol_cache_key
, cache
);
1343 /* Delete the symbol cache of PSPACE.
1344 Called when PSPACE is destroyed. */
1347 symbol_cache_cleanup (struct program_space
*pspace
, void *data
)
1349 struct symbol_cache
*cache
= data
;
1351 free_symbol_cache (cache
);
1354 /* Set the size of the symbol cache in all program spaces. */
1357 set_symbol_cache_size (unsigned int new_size
)
1359 struct program_space
*pspace
;
1361 ALL_PSPACES (pspace
)
1363 struct symbol_cache
*cache
1364 = program_space_data (pspace
, symbol_cache_key
);
1366 /* The pspace could have been created but not have a cache yet. */
1368 resize_symbol_cache (cache
, new_size
);
1372 /* Called when symbol-cache-size is set. */
1375 set_symbol_cache_size_handler (char *args
, int from_tty
,
1376 struct cmd_list_element
*c
)
1378 if (new_symbol_cache_size
> MAX_SYMBOL_CACHE_SIZE
)
1380 /* Restore the previous value.
1381 This is the value the "show" command prints. */
1382 new_symbol_cache_size
= symbol_cache_size
;
1384 error (_("Symbol cache size is too large, max is %u."),
1385 MAX_SYMBOL_CACHE_SIZE
);
1387 symbol_cache_size
= new_symbol_cache_size
;
1389 set_symbol_cache_size (symbol_cache_size
);
1392 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1393 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1394 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1395 failed (and thus this one will too), or NULL if the symbol is not present
1397 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1398 set to the cache and slot of the symbol to save the result of a full lookup
1401 static struct symbol
*
1402 symbol_cache_lookup (struct symbol_cache
*cache
,
1403 struct objfile
*objfile_context
, int block
,
1404 const char *name
, domain_enum domain
,
1405 struct block_symbol_cache
**bsc_ptr
,
1406 struct symbol_cache_slot
**slot_ptr
)
1408 struct block_symbol_cache
*bsc
;
1410 struct symbol_cache_slot
*slot
;
1412 if (block
== GLOBAL_BLOCK
)
1413 bsc
= cache
->global_symbols
;
1415 bsc
= cache
->static_symbols
;
1423 hash
= hash_symbol_entry (objfile_context
, name
, domain
);
1424 slot
= bsc
->symbols
+ hash
% bsc
->size
;
1426 if (eq_symbol_entry (slot
, objfile_context
, name
, domain
))
1428 if (symbol_lookup_debug
)
1429 fprintf_unfiltered (gdb_stdlog
,
1430 "%s block symbol cache hit%s for %s, %s\n",
1431 block
== GLOBAL_BLOCK
? "Global" : "Static",
1432 slot
->state
== SYMBOL_SLOT_NOT_FOUND
1433 ? " (not found)" : "",
1434 name
, domain_name (domain
));
1436 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1437 return SYMBOL_LOOKUP_FAILED
;
1438 return slot
->value
.found
;
1441 /* Symbol is not present in the cache. */
1446 if (symbol_lookup_debug
)
1448 fprintf_unfiltered (gdb_stdlog
,
1449 "%s block symbol cache miss for %s, %s\n",
1450 block
== GLOBAL_BLOCK
? "Global" : "Static",
1451 name
, domain_name (domain
));
1457 /* Clear out SLOT. */
1460 symbol_cache_clear_slot (struct symbol_cache_slot
*slot
)
1462 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1463 xfree (slot
->value
.not_found
.name
);
1464 slot
->state
= SYMBOL_SLOT_UNUSED
;
1467 /* Mark SYMBOL as found in SLOT.
1468 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1469 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1470 necessarily the objfile the symbol was found in. */
1473 symbol_cache_mark_found (struct block_symbol_cache
*bsc
,
1474 struct symbol_cache_slot
*slot
,
1475 struct objfile
*objfile_context
,
1476 struct symbol
*symbol
)
1480 if (slot
->state
!= SYMBOL_SLOT_UNUSED
)
1483 symbol_cache_clear_slot (slot
);
1485 slot
->state
= SYMBOL_SLOT_FOUND
;
1486 slot
->objfile_context
= objfile_context
;
1487 slot
->value
.found
= symbol
;
1490 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1491 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1492 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1495 symbol_cache_mark_not_found (struct block_symbol_cache
*bsc
,
1496 struct symbol_cache_slot
*slot
,
1497 struct objfile
*objfile_context
,
1498 const char *name
, domain_enum domain
)
1502 if (slot
->state
!= SYMBOL_SLOT_UNUSED
)
1505 symbol_cache_clear_slot (slot
);
1507 slot
->state
= SYMBOL_SLOT_NOT_FOUND
;
1508 slot
->objfile_context
= objfile_context
;
1509 slot
->value
.not_found
.name
= xstrdup (name
);
1510 slot
->value
.not_found
.domain
= domain
;
1513 /* Flush the symbol cache of PSPACE. */
1516 symbol_cache_flush (struct program_space
*pspace
)
1518 struct symbol_cache
*cache
= program_space_data (pspace
, symbol_cache_key
);
1524 if (cache
->global_symbols
== NULL
)
1526 gdb_assert (symbol_cache_size
== 0);
1527 gdb_assert (cache
->static_symbols
== NULL
);
1531 /* If the cache is untouched since the last flush, early exit.
1532 This is important for performance during the startup of a program linked
1533 with 100s (or 1000s) of shared libraries. */
1534 if (cache
->global_symbols
->misses
== 0
1535 && cache
->static_symbols
->misses
== 0)
1538 gdb_assert (cache
->global_symbols
->size
== symbol_cache_size
);
1539 gdb_assert (cache
->static_symbols
->size
== symbol_cache_size
);
1541 for (pass
= 0; pass
< 2; ++pass
)
1543 struct block_symbol_cache
*bsc
1544 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1547 for (i
= 0; i
< bsc
->size
; ++i
)
1548 symbol_cache_clear_slot (&bsc
->symbols
[i
]);
1551 cache
->global_symbols
->hits
= 0;
1552 cache
->global_symbols
->misses
= 0;
1553 cache
->global_symbols
->collisions
= 0;
1554 cache
->static_symbols
->hits
= 0;
1555 cache
->static_symbols
->misses
= 0;
1556 cache
->static_symbols
->collisions
= 0;
1562 symbol_cache_dump (const struct symbol_cache
*cache
)
1566 if (cache
->global_symbols
== NULL
)
1568 printf_filtered (" <disabled>\n");
1572 for (pass
= 0; pass
< 2; ++pass
)
1574 const struct block_symbol_cache
*bsc
1575 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1579 printf_filtered ("Global symbols:\n");
1581 printf_filtered ("Static symbols:\n");
1583 for (i
= 0; i
< bsc
->size
; ++i
)
1585 const struct symbol_cache_slot
*slot
= &bsc
->symbols
[i
];
1589 switch (slot
->state
)
1591 case SYMBOL_SLOT_UNUSED
:
1593 case SYMBOL_SLOT_NOT_FOUND
:
1594 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i
,
1595 host_address_to_string (slot
->objfile_context
),
1596 slot
->value
.not_found
.name
,
1597 domain_name (slot
->value
.not_found
.domain
));
1599 case SYMBOL_SLOT_FOUND
:
1600 printf_filtered (" [%4u] = %s, %s %s\n", i
,
1601 host_address_to_string (slot
->objfile_context
),
1602 SYMBOL_PRINT_NAME (slot
->value
.found
),
1603 domain_name (SYMBOL_DOMAIN (slot
->value
.found
)));
1610 /* The "mt print symbol-cache" command. */
1613 maintenance_print_symbol_cache (char *args
, int from_tty
)
1615 struct program_space
*pspace
;
1617 ALL_PSPACES (pspace
)
1619 struct symbol_cache
*cache
;
1621 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1623 pspace
->symfile_object_file
!= NULL
1624 ? objfile_name (pspace
->symfile_object_file
)
1625 : "(no object file)");
1627 /* If the cache hasn't been created yet, avoid creating one. */
1628 cache
= program_space_data (pspace
, symbol_cache_key
);
1630 printf_filtered (" <empty>\n");
1632 symbol_cache_dump (cache
);
1636 /* The "mt flush-symbol-cache" command. */
1639 maintenance_flush_symbol_cache (char *args
, int from_tty
)
1641 struct program_space
*pspace
;
1643 ALL_PSPACES (pspace
)
1645 symbol_cache_flush (pspace
);
1649 /* Print usage statistics of CACHE. */
1652 symbol_cache_stats (struct symbol_cache
*cache
)
1656 if (cache
->global_symbols
== NULL
)
1658 printf_filtered (" <disabled>\n");
1662 for (pass
= 0; pass
< 2; ++pass
)
1664 const struct block_symbol_cache
*bsc
1665 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1670 printf_filtered ("Global block cache stats:\n");
1672 printf_filtered ("Static block cache stats:\n");
1674 printf_filtered (" size: %u\n", bsc
->size
);
1675 printf_filtered (" hits: %u\n", bsc
->hits
);
1676 printf_filtered (" misses: %u\n", bsc
->misses
);
1677 printf_filtered (" collisions: %u\n", bsc
->collisions
);
1681 /* The "mt print symbol-cache-statistics" command. */
1684 maintenance_print_symbol_cache_statistics (char *args
, int from_tty
)
1686 struct program_space
*pspace
;
1688 ALL_PSPACES (pspace
)
1690 struct symbol_cache
*cache
;
1692 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1694 pspace
->symfile_object_file
!= NULL
1695 ? objfile_name (pspace
->symfile_object_file
)
1696 : "(no object file)");
1698 /* If the cache hasn't been created yet, avoid creating one. */
1699 cache
= program_space_data (pspace
, symbol_cache_key
);
1701 printf_filtered (" empty, no stats available\n");
1703 symbol_cache_stats (cache
);
1707 /* This module's 'new_objfile' observer. */
1710 symtab_new_objfile_observer (struct objfile
*objfile
)
1712 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1713 symbol_cache_flush (current_program_space
);
1716 /* This module's 'free_objfile' observer. */
1719 symtab_free_objfile_observer (struct objfile
*objfile
)
1721 symbol_cache_flush (objfile
->pspace
);
1724 /* Debug symbols usually don't have section information. We need to dig that
1725 out of the minimal symbols and stash that in the debug symbol. */
1728 fixup_section (struct general_symbol_info
*ginfo
,
1729 CORE_ADDR addr
, struct objfile
*objfile
)
1731 struct minimal_symbol
*msym
;
1733 /* First, check whether a minimal symbol with the same name exists
1734 and points to the same address. The address check is required
1735 e.g. on PowerPC64, where the minimal symbol for a function will
1736 point to the function descriptor, while the debug symbol will
1737 point to the actual function code. */
1738 msym
= lookup_minimal_symbol_by_pc_name (addr
, ginfo
->name
, objfile
);
1740 ginfo
->section
= MSYMBOL_SECTION (msym
);
1743 /* Static, function-local variables do appear in the linker
1744 (minimal) symbols, but are frequently given names that won't
1745 be found via lookup_minimal_symbol(). E.g., it has been
1746 observed in frv-uclinux (ELF) executables that a static,
1747 function-local variable named "foo" might appear in the
1748 linker symbols as "foo.6" or "foo.3". Thus, there is no
1749 point in attempting to extend the lookup-by-name mechanism to
1750 handle this case due to the fact that there can be multiple
1753 So, instead, search the section table when lookup by name has
1754 failed. The ``addr'' and ``endaddr'' fields may have already
1755 been relocated. If so, the relocation offset (i.e. the
1756 ANOFFSET value) needs to be subtracted from these values when
1757 performing the comparison. We unconditionally subtract it,
1758 because, when no relocation has been performed, the ANOFFSET
1759 value will simply be zero.
1761 The address of the symbol whose section we're fixing up HAS
1762 NOT BEEN adjusted (relocated) yet. It can't have been since
1763 the section isn't yet known and knowing the section is
1764 necessary in order to add the correct relocation value. In
1765 other words, we wouldn't even be in this function (attempting
1766 to compute the section) if it were already known.
1768 Note that it is possible to search the minimal symbols
1769 (subtracting the relocation value if necessary) to find the
1770 matching minimal symbol, but this is overkill and much less
1771 efficient. It is not necessary to find the matching minimal
1772 symbol, only its section.
1774 Note that this technique (of doing a section table search)
1775 can fail when unrelocated section addresses overlap. For
1776 this reason, we still attempt a lookup by name prior to doing
1777 a search of the section table. */
1779 struct obj_section
*s
;
1782 ALL_OBJFILE_OSECTIONS (objfile
, s
)
1784 int idx
= s
- objfile
->sections
;
1785 CORE_ADDR offset
= ANOFFSET (objfile
->section_offsets
, idx
);
1790 if (obj_section_addr (s
) - offset
<= addr
1791 && addr
< obj_section_endaddr (s
) - offset
)
1793 ginfo
->section
= idx
;
1798 /* If we didn't find the section, assume it is in the first
1799 section. If there is no allocated section, then it hardly
1800 matters what we pick, so just pick zero. */
1804 ginfo
->section
= fallback
;
1809 fixup_symbol_section (struct symbol
*sym
, struct objfile
*objfile
)
1816 if (!SYMBOL_OBJFILE_OWNED (sym
))
1819 /* We either have an OBJFILE, or we can get at it from the sym's
1820 symtab. Anything else is a bug. */
1821 gdb_assert (objfile
|| symbol_symtab (sym
));
1823 if (objfile
== NULL
)
1824 objfile
= symbol_objfile (sym
);
1826 if (SYMBOL_OBJ_SECTION (objfile
, sym
))
1829 /* We should have an objfile by now. */
1830 gdb_assert (objfile
);
1832 switch (SYMBOL_CLASS (sym
))
1836 addr
= SYMBOL_VALUE_ADDRESS (sym
);
1839 addr
= BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
1843 /* Nothing else will be listed in the minsyms -- no use looking
1848 fixup_section (&sym
->ginfo
, addr
, objfile
);
1853 /* Compute the demangled form of NAME as used by the various symbol
1854 lookup functions. The result is stored in *RESULT_NAME. Returns a
1855 cleanup which can be used to clean up the result.
1857 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1858 Normally, Ada symbol lookups are performed using the encoded name
1859 rather than the demangled name, and so it might seem to make sense
1860 for this function to return an encoded version of NAME.
1861 Unfortunately, we cannot do this, because this function is used in
1862 circumstances where it is not appropriate to try to encode NAME.
1863 For instance, when displaying the frame info, we demangle the name
1864 of each parameter, and then perform a symbol lookup inside our
1865 function using that demangled name. In Ada, certain functions
1866 have internally-generated parameters whose name contain uppercase
1867 characters. Encoding those name would result in those uppercase
1868 characters to become lowercase, and thus cause the symbol lookup
1872 demangle_for_lookup (const char *name
, enum language lang
,
1873 const char **result_name
)
1875 char *demangled_name
= NULL
;
1876 const char *modified_name
= NULL
;
1877 struct cleanup
*cleanup
= make_cleanup (null_cleanup
, 0);
1879 modified_name
= name
;
1881 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1882 lookup, so we can always binary search. */
1883 if (lang
== language_cplus
)
1885 demangled_name
= gdb_demangle (name
, DMGL_ANSI
| DMGL_PARAMS
);
1888 modified_name
= demangled_name
;
1889 make_cleanup (xfree
, demangled_name
);
1893 /* If we were given a non-mangled name, canonicalize it
1894 according to the language (so far only for C++). */
1895 demangled_name
= cp_canonicalize_string (name
);
1898 modified_name
= demangled_name
;
1899 make_cleanup (xfree
, demangled_name
);
1903 else if (lang
== language_java
)
1905 demangled_name
= gdb_demangle (name
,
1906 DMGL_ANSI
| DMGL_PARAMS
| DMGL_JAVA
);
1909 modified_name
= demangled_name
;
1910 make_cleanup (xfree
, demangled_name
);
1913 else if (lang
== language_d
)
1915 demangled_name
= d_demangle (name
, 0);
1918 modified_name
= demangled_name
;
1919 make_cleanup (xfree
, demangled_name
);
1922 else if (lang
== language_go
)
1924 demangled_name
= go_demangle (name
, 0);
1927 modified_name
= demangled_name
;
1928 make_cleanup (xfree
, demangled_name
);
1932 *result_name
= modified_name
;
1938 This function (or rather its subordinates) have a bunch of loops and
1939 it would seem to be attractive to put in some QUIT's (though I'm not really
1940 sure whether it can run long enough to be really important). But there
1941 are a few calls for which it would appear to be bad news to quit
1942 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1943 that there is C++ code below which can error(), but that probably
1944 doesn't affect these calls since they are looking for a known
1945 variable and thus can probably assume it will never hit the C++
1949 lookup_symbol_in_language (const char *name
, const struct block
*block
,
1950 const domain_enum domain
, enum language lang
,
1951 struct field_of_this_result
*is_a_field_of_this
)
1953 const char *modified_name
;
1954 struct symbol
*returnval
;
1955 struct cleanup
*cleanup
= demangle_for_lookup (name
, lang
, &modified_name
);
1957 returnval
= lookup_symbol_aux (modified_name
, block
, domain
, lang
,
1958 is_a_field_of_this
);
1959 do_cleanups (cleanup
);
1967 lookup_symbol (const char *name
, const struct block
*block
,
1969 struct field_of_this_result
*is_a_field_of_this
)
1971 return lookup_symbol_in_language (name
, block
, domain
,
1972 current_language
->la_language
,
1973 is_a_field_of_this
);
1979 lookup_language_this (const struct language_defn
*lang
,
1980 const struct block
*block
)
1982 if (lang
->la_name_of_this
== NULL
|| block
== NULL
)
1985 if (symbol_lookup_debug
> 1)
1987 struct objfile
*objfile
= lookup_objfile_from_block (block
);
1989 fprintf_unfiltered (gdb_stdlog
,
1990 "lookup_language_this (%s, %s (objfile %s))",
1991 lang
->la_name
, host_address_to_string (block
),
1992 objfile_debug_name (objfile
));
1999 sym
= block_lookup_symbol (block
, lang
->la_name_of_this
, VAR_DOMAIN
);
2002 if (symbol_lookup_debug
> 1)
2004 fprintf_unfiltered (gdb_stdlog
, " = %s (%s, block %s)\n",
2005 SYMBOL_PRINT_NAME (sym
),
2006 host_address_to_string (sym
),
2007 host_address_to_string (block
));
2009 block_found
= block
;
2012 if (BLOCK_FUNCTION (block
))
2014 block
= BLOCK_SUPERBLOCK (block
);
2017 if (symbol_lookup_debug
> 1)
2018 fprintf_unfiltered (gdb_stdlog
, " = NULL\n");
2022 /* Given TYPE, a structure/union,
2023 return 1 if the component named NAME from the ultimate target
2024 structure/union is defined, otherwise, return 0. */
2027 check_field (struct type
*type
, const char *name
,
2028 struct field_of_this_result
*is_a_field_of_this
)
2032 /* The type may be a stub. */
2033 CHECK_TYPEDEF (type
);
2035 for (i
= TYPE_NFIELDS (type
) - 1; i
>= TYPE_N_BASECLASSES (type
); i
--)
2037 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
2039 if (t_field_name
&& (strcmp_iw (t_field_name
, name
) == 0))
2041 is_a_field_of_this
->type
= type
;
2042 is_a_field_of_this
->field
= &TYPE_FIELD (type
, i
);
2047 /* C++: If it was not found as a data field, then try to return it
2048 as a pointer to a method. */
2050 for (i
= TYPE_NFN_FIELDS (type
) - 1; i
>= 0; --i
)
2052 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type
, i
), name
) == 0)
2054 is_a_field_of_this
->type
= type
;
2055 is_a_field_of_this
->fn_field
= &TYPE_FN_FIELDLIST (type
, i
);
2060 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
2061 if (check_field (TYPE_BASECLASS (type
, i
), name
, is_a_field_of_this
))
2067 /* Behave like lookup_symbol except that NAME is the natural name
2068 (e.g., demangled name) of the symbol that we're looking for. */
2070 static struct symbol
*
2071 lookup_symbol_aux (const char *name
, const struct block
*block
,
2072 const domain_enum domain
, enum language language
,
2073 struct field_of_this_result
*is_a_field_of_this
)
2076 const struct language_defn
*langdef
;
2078 if (symbol_lookup_debug
)
2080 struct objfile
*objfile
= lookup_objfile_from_block (block
);
2082 fprintf_unfiltered (gdb_stdlog
,
2083 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2084 name
, host_address_to_string (block
),
2086 ? objfile_debug_name (objfile
) : "NULL",
2087 domain_name (domain
), language_str (language
));
2090 /* Initialize block_found so that the language la_lookup_symbol_nonlocal
2091 routines don't have to set it (to NULL) if a primitive type is found.
2092 We do this early so that block_found is also NULL if no symbol is
2093 found (though this is not part of the API, and callers cannot assume
2097 /* Make sure we do something sensible with is_a_field_of_this, since
2098 the callers that set this parameter to some non-null value will
2099 certainly use it later. If we don't set it, the contents of
2100 is_a_field_of_this are undefined. */
2101 if (is_a_field_of_this
!= NULL
)
2102 memset (is_a_field_of_this
, 0, sizeof (*is_a_field_of_this
));
2104 /* Search specified block and its superiors. Don't search
2105 STATIC_BLOCK or GLOBAL_BLOCK. */
2107 sym
= lookup_local_symbol (name
, block
, domain
, language
);
2110 if (symbol_lookup_debug
)
2112 fprintf_unfiltered (gdb_stdlog
, "lookup_symbol_aux (...) = %s\n",
2113 host_address_to_string (sym
));
2118 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2119 check to see if NAME is a field of `this'. */
2121 langdef
= language_def (language
);
2123 /* Don't do this check if we are searching for a struct. It will
2124 not be found by check_field, but will be found by other
2126 if (is_a_field_of_this
!= NULL
&& domain
!= STRUCT_DOMAIN
)
2128 struct symbol
*sym
= lookup_language_this (langdef
, block
);
2132 struct type
*t
= sym
->type
;
2134 /* I'm not really sure that type of this can ever
2135 be typedefed; just be safe. */
2137 if (TYPE_CODE (t
) == TYPE_CODE_PTR
2138 || TYPE_CODE (t
) == TYPE_CODE_REF
)
2139 t
= TYPE_TARGET_TYPE (t
);
2141 if (TYPE_CODE (t
) != TYPE_CODE_STRUCT
2142 && TYPE_CODE (t
) != TYPE_CODE_UNION
)
2143 error (_("Internal error: `%s' is not an aggregate"),
2144 langdef
->la_name_of_this
);
2146 if (check_field (t
, name
, is_a_field_of_this
))
2148 if (symbol_lookup_debug
)
2150 fprintf_unfiltered (gdb_stdlog
,
2151 "lookup_symbol_aux (...) = NULL\n");
2158 /* Now do whatever is appropriate for LANGUAGE to look
2159 up static and global variables. */
2161 sym
= langdef
->la_lookup_symbol_nonlocal (langdef
, name
, block
, domain
);
2164 if (symbol_lookup_debug
)
2166 fprintf_unfiltered (gdb_stdlog
, "lookup_symbol_aux (...) = %s\n",
2167 host_address_to_string (sym
));
2172 /* Now search all static file-level symbols. Not strictly correct,
2173 but more useful than an error. */
2175 sym
= lookup_static_symbol (name
, domain
);
2176 if (symbol_lookup_debug
)
2178 fprintf_unfiltered (gdb_stdlog
, "lookup_symbol_aux (...) = %s\n",
2179 sym
!= NULL
? host_address_to_string (sym
) : "NULL");
2184 /* Check to see if the symbol is defined in BLOCK or its superiors.
2185 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2187 static struct symbol
*
2188 lookup_local_symbol (const char *name
, const struct block
*block
,
2189 const domain_enum domain
,
2190 enum language language
)
2193 const struct block
*static_block
= block_static_block (block
);
2194 const char *scope
= block_scope (block
);
2196 /* Check if either no block is specified or it's a global block. */
2198 if (static_block
== NULL
)
2201 while (block
!= static_block
)
2203 sym
= lookup_symbol_in_block (name
, block
, domain
);
2207 if (language
== language_cplus
|| language
== language_fortran
)
2209 sym
= cp_lookup_symbol_imports_or_template (scope
, name
, block
,
2215 if (BLOCK_FUNCTION (block
) != NULL
&& block_inlined_p (block
))
2217 block
= BLOCK_SUPERBLOCK (block
);
2220 /* We've reached the end of the function without finding a result. */
2228 lookup_objfile_from_block (const struct block
*block
)
2230 struct objfile
*obj
;
2231 struct compunit_symtab
*cust
;
2236 block
= block_global_block (block
);
2237 /* Look through all blockvectors. */
2238 ALL_COMPUNITS (obj
, cust
)
2239 if (block
== BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust
),
2242 if (obj
->separate_debug_objfile_backlink
)
2243 obj
= obj
->separate_debug_objfile_backlink
;
2254 lookup_symbol_in_block (const char *name
, const struct block
*block
,
2255 const domain_enum domain
)
2259 if (symbol_lookup_debug
> 1)
2261 struct objfile
*objfile
= lookup_objfile_from_block (block
);
2263 fprintf_unfiltered (gdb_stdlog
,
2264 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2265 name
, host_address_to_string (block
),
2266 objfile_debug_name (objfile
),
2267 domain_name (domain
));
2270 sym
= block_lookup_symbol (block
, name
, domain
);
2273 if (symbol_lookup_debug
> 1)
2275 fprintf_unfiltered (gdb_stdlog
, " = %s\n",
2276 host_address_to_string (sym
));
2278 block_found
= block
;
2279 return fixup_symbol_section (sym
, NULL
);
2282 if (symbol_lookup_debug
> 1)
2283 fprintf_unfiltered (gdb_stdlog
, " = NULL\n");
2290 lookup_global_symbol_from_objfile (struct objfile
*main_objfile
,
2292 const domain_enum domain
)
2294 struct objfile
*objfile
;
2296 for (objfile
= main_objfile
;
2298 objfile
= objfile_separate_debug_iterate (main_objfile
, objfile
))
2300 struct symbol
*sym
= lookup_symbol_in_objfile (objfile
, GLOBAL_BLOCK
,
2310 /* Check to see if the symbol is defined in one of the OBJFILE's
2311 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2312 depending on whether or not we want to search global symbols or
2315 static struct symbol
*
2316 lookup_symbol_in_objfile_symtabs (struct objfile
*objfile
, int block_index
,
2317 const char *name
, const domain_enum domain
)
2319 struct compunit_symtab
*cust
;
2321 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2323 if (symbol_lookup_debug
> 1)
2325 fprintf_unfiltered (gdb_stdlog
,
2326 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2327 objfile_debug_name (objfile
),
2328 block_index
== GLOBAL_BLOCK
2329 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2330 name
, domain_name (domain
));
2333 ALL_OBJFILE_COMPUNITS (objfile
, cust
)
2335 const struct blockvector
*bv
;
2336 const struct block
*block
;
2339 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2340 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2341 sym
= block_lookup_symbol_primary (block
, name
, domain
);
2344 if (symbol_lookup_debug
> 1)
2346 fprintf_unfiltered (gdb_stdlog
, " = %s (block %s)\n",
2347 host_address_to_string (sym
),
2348 host_address_to_string (block
));
2350 block_found
= block
;
2351 return fixup_symbol_section (sym
, objfile
);
2355 if (symbol_lookup_debug
> 1)
2356 fprintf_unfiltered (gdb_stdlog
, " = NULL\n");
2360 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2361 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2362 and all associated separate debug objfiles.
2364 Normally we only look in OBJFILE, and not any separate debug objfiles
2365 because the outer loop will cause them to be searched too. This case is
2366 different. Here we're called from search_symbols where it will only
2367 call us for the the objfile that contains a matching minsym. */
2369 static struct symbol
*
2370 lookup_symbol_in_objfile_from_linkage_name (struct objfile
*objfile
,
2371 const char *linkage_name
,
2374 enum language lang
= current_language
->la_language
;
2375 const char *modified_name
;
2376 struct cleanup
*cleanup
= demangle_for_lookup (linkage_name
, lang
,
2378 struct objfile
*main_objfile
, *cur_objfile
;
2380 if (objfile
->separate_debug_objfile_backlink
)
2381 main_objfile
= objfile
->separate_debug_objfile_backlink
;
2383 main_objfile
= objfile
;
2385 for (cur_objfile
= main_objfile
;
2387 cur_objfile
= objfile_separate_debug_iterate (main_objfile
, cur_objfile
))
2391 sym
= lookup_symbol_in_objfile_symtabs (cur_objfile
, GLOBAL_BLOCK
,
2392 modified_name
, domain
);
2394 sym
= lookup_symbol_in_objfile_symtabs (cur_objfile
, STATIC_BLOCK
,
2395 modified_name
, domain
);
2398 do_cleanups (cleanup
);
2403 do_cleanups (cleanup
);
2407 /* A helper function that throws an exception when a symbol was found
2408 in a psymtab but not in a symtab. */
2410 static void ATTRIBUTE_NORETURN
2411 error_in_psymtab_expansion (int block_index
, const char *name
,
2412 struct compunit_symtab
*cust
)
2415 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2416 %s may be an inlined function, or may be a template function\n \
2417 (if a template, try specifying an instantiation: %s<type>)."),
2418 block_index
== GLOBAL_BLOCK
? "global" : "static",
2420 symtab_to_filename_for_display (compunit_primary_filetab (cust
)),
2424 /* A helper function for various lookup routines that interfaces with
2425 the "quick" symbol table functions. */
2427 static struct symbol
*
2428 lookup_symbol_via_quick_fns (struct objfile
*objfile
, int block_index
,
2429 const char *name
, const domain_enum domain
)
2431 struct compunit_symtab
*cust
;
2432 const struct blockvector
*bv
;
2433 const struct block
*block
;
2439 if (symbol_lookup_debug
> 1)
2441 fprintf_unfiltered (gdb_stdlog
,
2442 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2443 objfile_debug_name (objfile
),
2444 block_index
== GLOBAL_BLOCK
2445 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2446 name
, domain_name (domain
));
2449 cust
= objfile
->sf
->qf
->lookup_symbol (objfile
, block_index
, name
, domain
);
2452 if (symbol_lookup_debug
> 1)
2454 fprintf_unfiltered (gdb_stdlog
,
2455 "lookup_symbol_via_quick_fns (...) = NULL\n");
2460 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2461 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2462 sym
= block_lookup_symbol (block
, name
, domain
);
2464 error_in_psymtab_expansion (block_index
, name
, cust
);
2466 if (symbol_lookup_debug
> 1)
2468 fprintf_unfiltered (gdb_stdlog
,
2469 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2470 host_address_to_string (sym
),
2471 host_address_to_string (block
));
2474 block_found
= block
;
2475 return fixup_symbol_section (sym
, objfile
);
2481 basic_lookup_symbol_nonlocal (const struct language_defn
*langdef
,
2483 const struct block
*block
,
2484 const domain_enum domain
)
2488 /* NOTE: carlton/2003-05-19: The comments below were written when
2489 this (or what turned into this) was part of lookup_symbol_aux;
2490 I'm much less worried about these questions now, since these
2491 decisions have turned out well, but I leave these comments here
2494 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2495 not it would be appropriate to search the current global block
2496 here as well. (That's what this code used to do before the
2497 is_a_field_of_this check was moved up.) On the one hand, it's
2498 redundant with the lookup in all objfiles search that happens
2499 next. On the other hand, if decode_line_1 is passed an argument
2500 like filename:var, then the user presumably wants 'var' to be
2501 searched for in filename. On the third hand, there shouldn't be
2502 multiple global variables all of which are named 'var', and it's
2503 not like decode_line_1 has ever restricted its search to only
2504 global variables in a single filename. All in all, only
2505 searching the static block here seems best: it's correct and it's
2508 /* NOTE: carlton/2002-12-05: There's also a possible performance
2509 issue here: if you usually search for global symbols in the
2510 current file, then it would be slightly better to search the
2511 current global block before searching all the symtabs. But there
2512 are other factors that have a much greater effect on performance
2513 than that one, so I don't think we should worry about that for
2516 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2517 the current objfile. Searching the current objfile first is useful
2518 for both matching user expectations as well as performance. */
2520 sym
= lookup_symbol_in_static_block (name
, block
, domain
);
2524 /* If we didn't find a definition for a builtin type in the static block,
2525 search for it now. This is actually the right thing to do and can be
2526 a massive performance win. E.g., when debugging a program with lots of
2527 shared libraries we could search all of them only to find out the
2528 builtin type isn't defined in any of them. This is common for types
2530 if (domain
== VAR_DOMAIN
)
2532 struct gdbarch
*gdbarch
;
2535 gdbarch
= target_gdbarch ();
2537 gdbarch
= block_gdbarch (block
);
2538 sym
= language_lookup_primitive_type_as_symbol (langdef
, gdbarch
, name
);
2543 return lookup_global_symbol (name
, block
, domain
);
2549 lookup_symbol_in_static_block (const char *name
,
2550 const struct block
*block
,
2551 const domain_enum domain
)
2553 const struct block
*static_block
= block_static_block (block
);
2556 if (static_block
== NULL
)
2559 if (symbol_lookup_debug
)
2561 struct objfile
*objfile
= lookup_objfile_from_block (static_block
);
2563 fprintf_unfiltered (gdb_stdlog
,
2564 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2567 host_address_to_string (block
),
2568 objfile_debug_name (objfile
),
2569 domain_name (domain
));
2572 sym
= lookup_symbol_in_block (name
, static_block
, domain
);
2573 if (symbol_lookup_debug
)
2575 fprintf_unfiltered (gdb_stdlog
,
2576 "lookup_symbol_in_static_block (...) = %s\n",
2577 sym
!= NULL
? host_address_to_string (sym
) : "NULL");
2582 /* Perform the standard symbol lookup of NAME in OBJFILE:
2583 1) First search expanded symtabs, and if not found
2584 2) Search the "quick" symtabs (partial or .gdb_index).
2585 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2587 static struct symbol
*
2588 lookup_symbol_in_objfile (struct objfile
*objfile
, int block_index
,
2589 const char *name
, const domain_enum domain
)
2591 struct symbol
*result
;
2593 if (symbol_lookup_debug
)
2595 fprintf_unfiltered (gdb_stdlog
,
2596 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2597 objfile_debug_name (objfile
),
2598 block_index
== GLOBAL_BLOCK
2599 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2600 name
, domain_name (domain
));
2603 result
= lookup_symbol_in_objfile_symtabs (objfile
, block_index
,
2607 if (symbol_lookup_debug
)
2609 fprintf_unfiltered (gdb_stdlog
,
2610 "lookup_symbol_in_objfile (...) = %s"
2612 host_address_to_string (result
));
2617 result
= lookup_symbol_via_quick_fns (objfile
, block_index
,
2619 if (symbol_lookup_debug
)
2621 fprintf_unfiltered (gdb_stdlog
,
2622 "lookup_symbol_in_objfile (...) = %s%s\n",
2624 ? host_address_to_string (result
)
2626 result
!= NULL
? " (via quick fns)" : "");
2634 lookup_static_symbol (const char *name
, const domain_enum domain
)
2636 struct symbol_cache
*cache
= get_symbol_cache (current_program_space
);
2637 struct objfile
*objfile
;
2638 struct symbol
*result
;
2639 struct block_symbol_cache
*bsc
;
2640 struct symbol_cache_slot
*slot
;
2642 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2643 NULL for OBJFILE_CONTEXT. */
2644 result
= symbol_cache_lookup (cache
, NULL
, STATIC_BLOCK
, name
, domain
,
2648 if (result
== SYMBOL_LOOKUP_FAILED
)
2653 ALL_OBJFILES (objfile
)
2655 result
= lookup_symbol_in_objfile (objfile
, STATIC_BLOCK
, name
, domain
);
2658 /* Still pass NULL for OBJFILE_CONTEXT here. */
2659 symbol_cache_mark_found (bsc
, slot
, NULL
, result
);
2664 /* Still pass NULL for OBJFILE_CONTEXT here. */
2665 symbol_cache_mark_not_found (bsc
, slot
, NULL
, name
, domain
);
2669 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2671 struct global_sym_lookup_data
2673 /* The name of the symbol we are searching for. */
2676 /* The domain to use for our search. */
2679 /* The field where the callback should store the symbol if found.
2680 It should be initialized to NULL before the search is started. */
2681 struct symbol
*result
;
2684 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2685 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2686 OBJFILE. The arguments for the search are passed via CB_DATA,
2687 which in reality is a pointer to struct global_sym_lookup_data. */
2690 lookup_symbol_global_iterator_cb (struct objfile
*objfile
,
2693 struct global_sym_lookup_data
*data
=
2694 (struct global_sym_lookup_data
*) cb_data
;
2696 gdb_assert (data
->result
== NULL
);
2698 data
->result
= lookup_symbol_in_objfile (objfile
, GLOBAL_BLOCK
,
2699 data
->name
, data
->domain
);
2701 /* If we found a match, tell the iterator to stop. Otherwise,
2703 return (data
->result
!= NULL
);
2709 lookup_global_symbol (const char *name
,
2710 const struct block
*block
,
2711 const domain_enum domain
)
2713 struct symbol_cache
*cache
= get_symbol_cache (current_program_space
);
2715 struct objfile
*objfile
;
2716 struct global_sym_lookup_data lookup_data
;
2717 struct block_symbol_cache
*bsc
;
2718 struct symbol_cache_slot
*slot
;
2720 objfile
= lookup_objfile_from_block (block
);
2722 /* First see if we can find the symbol in the cache.
2723 This works because we use the current objfile to qualify the lookup. */
2724 sym
= symbol_cache_lookup (cache
, objfile
, GLOBAL_BLOCK
, name
, domain
,
2728 if (sym
== SYMBOL_LOOKUP_FAILED
)
2733 /* Call library-specific lookup procedure. */
2734 if (objfile
!= NULL
)
2735 sym
= solib_global_lookup (objfile
, name
, domain
);
2737 /* If that didn't work go a global search (of global blocks, heh). */
2740 memset (&lookup_data
, 0, sizeof (lookup_data
));
2741 lookup_data
.name
= name
;
2742 lookup_data
.domain
= domain
;
2743 gdbarch_iterate_over_objfiles_in_search_order
2744 (objfile
!= NULL
? get_objfile_arch (objfile
) : target_gdbarch (),
2745 lookup_symbol_global_iterator_cb
, &lookup_data
, objfile
);
2746 sym
= lookup_data
.result
;
2750 symbol_cache_mark_found (bsc
, slot
, objfile
, sym
);
2752 symbol_cache_mark_not_found (bsc
, slot
, objfile
, name
, domain
);
2758 symbol_matches_domain (enum language symbol_language
,
2759 domain_enum symbol_domain
,
2762 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2763 A Java class declaration also defines a typedef for the class.
2764 Similarly, any Ada type declaration implicitly defines a typedef. */
2765 if (symbol_language
== language_cplus
2766 || symbol_language
== language_d
2767 || symbol_language
== language_java
2768 || symbol_language
== language_ada
)
2770 if ((domain
== VAR_DOMAIN
|| domain
== STRUCT_DOMAIN
)
2771 && symbol_domain
== STRUCT_DOMAIN
)
2774 /* For all other languages, strict match is required. */
2775 return (symbol_domain
== domain
);
2781 lookup_transparent_type (const char *name
)
2783 return current_language
->la_lookup_transparent_type (name
);
2786 /* A helper for basic_lookup_transparent_type that interfaces with the
2787 "quick" symbol table functions. */
2789 static struct type
*
2790 basic_lookup_transparent_type_quick (struct objfile
*objfile
, int block_index
,
2793 struct compunit_symtab
*cust
;
2794 const struct blockvector
*bv
;
2795 struct block
*block
;
2800 cust
= objfile
->sf
->qf
->lookup_symbol (objfile
, block_index
, name
,
2805 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2806 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2807 sym
= block_lookup_symbol (block
, name
, STRUCT_DOMAIN
);
2809 error_in_psymtab_expansion (block_index
, name
, cust
);
2811 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)))
2812 return SYMBOL_TYPE (sym
);
2817 /* The standard implementation of lookup_transparent_type. This code
2818 was modeled on lookup_symbol -- the parts not relevant to looking
2819 up types were just left out. In particular it's assumed here that
2820 types are available in STRUCT_DOMAIN and only in file-static or
2824 basic_lookup_transparent_type (const char *name
)
2827 struct compunit_symtab
*cust
;
2828 const struct blockvector
*bv
;
2829 struct objfile
*objfile
;
2830 struct block
*block
;
2833 /* Now search all the global symbols. Do the symtab's first, then
2834 check the psymtab's. If a psymtab indicates the existence
2835 of the desired name as a global, then do psymtab-to-symtab
2836 conversion on the fly and return the found symbol. */
2838 ALL_OBJFILES (objfile
)
2840 ALL_OBJFILE_COMPUNITS (objfile
, cust
)
2842 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2843 block
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
2844 sym
= block_lookup_symbol (block
, name
, STRUCT_DOMAIN
);
2845 if (sym
&& !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)))
2847 return SYMBOL_TYPE (sym
);
2852 ALL_OBJFILES (objfile
)
2854 t
= basic_lookup_transparent_type_quick (objfile
, GLOBAL_BLOCK
, name
);
2859 /* Now search the static file-level symbols.
2860 Not strictly correct, but more useful than an error.
2861 Do the symtab's first, then
2862 check the psymtab's. If a psymtab indicates the existence
2863 of the desired name as a file-level static, then do psymtab-to-symtab
2864 conversion on the fly and return the found symbol. */
2866 ALL_OBJFILES (objfile
)
2868 ALL_OBJFILE_COMPUNITS (objfile
, cust
)
2870 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2871 block
= BLOCKVECTOR_BLOCK (bv
, STATIC_BLOCK
);
2872 sym
= block_lookup_symbol (block
, name
, STRUCT_DOMAIN
);
2873 if (sym
&& !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)))
2875 return SYMBOL_TYPE (sym
);
2880 ALL_OBJFILES (objfile
)
2882 t
= basic_lookup_transparent_type_quick (objfile
, STATIC_BLOCK
, name
);
2887 return (struct type
*) 0;
2890 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2892 For each symbol that matches, CALLBACK is called. The symbol and
2893 DATA are passed to the callback.
2895 If CALLBACK returns zero, the iteration ends. Otherwise, the
2896 search continues. */
2899 iterate_over_symbols (const struct block
*block
, const char *name
,
2900 const domain_enum domain
,
2901 symbol_found_callback_ftype
*callback
,
2904 struct block_iterator iter
;
2907 ALL_BLOCK_SYMBOLS_WITH_NAME (block
, name
, iter
, sym
)
2909 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
2910 SYMBOL_DOMAIN (sym
), domain
))
2912 if (!callback (sym
, data
))
2918 /* Find the compunit symtab associated with PC and SECTION.
2919 This will read in debug info as necessary. */
2921 struct compunit_symtab
*
2922 find_pc_sect_compunit_symtab (CORE_ADDR pc
, struct obj_section
*section
)
2924 struct compunit_symtab
*cust
;
2925 struct compunit_symtab
*best_cust
= NULL
;
2926 struct objfile
*objfile
;
2927 CORE_ADDR distance
= 0;
2928 struct bound_minimal_symbol msymbol
;
2930 /* If we know that this is not a text address, return failure. This is
2931 necessary because we loop based on the block's high and low code
2932 addresses, which do not include the data ranges, and because
2933 we call find_pc_sect_psymtab which has a similar restriction based
2934 on the partial_symtab's texthigh and textlow. */
2935 msymbol
= lookup_minimal_symbol_by_pc_section (pc
, section
);
2937 && (MSYMBOL_TYPE (msymbol
.minsym
) == mst_data
2938 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_bss
2939 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_abs
2940 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_file_data
2941 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_file_bss
))
2944 /* Search all symtabs for the one whose file contains our address, and which
2945 is the smallest of all the ones containing the address. This is designed
2946 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2947 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2948 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2950 This happens for native ecoff format, where code from included files
2951 gets its own symtab. The symtab for the included file should have
2952 been read in already via the dependency mechanism.
2953 It might be swifter to create several symtabs with the same name
2954 like xcoff does (I'm not sure).
2956 It also happens for objfiles that have their functions reordered.
2957 For these, the symtab we are looking for is not necessarily read in. */
2959 ALL_COMPUNITS (objfile
, cust
)
2962 const struct blockvector
*bv
;
2964 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2965 b
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
2967 if (BLOCK_START (b
) <= pc
2968 && BLOCK_END (b
) > pc
2970 || BLOCK_END (b
) - BLOCK_START (b
) < distance
))
2972 /* For an objfile that has its functions reordered,
2973 find_pc_psymtab will find the proper partial symbol table
2974 and we simply return its corresponding symtab. */
2975 /* In order to better support objfiles that contain both
2976 stabs and coff debugging info, we continue on if a psymtab
2978 if ((objfile
->flags
& OBJF_REORDERED
) && objfile
->sf
)
2980 struct compunit_symtab
*result
;
2983 = objfile
->sf
->qf
->find_pc_sect_compunit_symtab (objfile
,
2992 struct block_iterator iter
;
2993 struct symbol
*sym
= NULL
;
2995 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
2997 fixup_symbol_section (sym
, objfile
);
2998 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile
, sym
),
3003 continue; /* No symbol in this symtab matches
3006 distance
= BLOCK_END (b
) - BLOCK_START (b
);
3011 if (best_cust
!= NULL
)
3014 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3016 ALL_OBJFILES (objfile
)
3018 struct compunit_symtab
*result
;
3022 result
= objfile
->sf
->qf
->find_pc_sect_compunit_symtab (objfile
,
3033 /* Find the compunit symtab associated with PC.
3034 This will read in debug info as necessary.
3035 Backward compatibility, no section. */
3037 struct compunit_symtab
*
3038 find_pc_compunit_symtab (CORE_ADDR pc
)
3040 return find_pc_sect_compunit_symtab (pc
, find_pc_mapped_section (pc
));
3044 /* Find the source file and line number for a given PC value and SECTION.
3045 Return a structure containing a symtab pointer, a line number,
3046 and a pc range for the entire source line.
3047 The value's .pc field is NOT the specified pc.
3048 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3049 use the line that ends there. Otherwise, in that case, the line
3050 that begins there is used. */
3052 /* The big complication here is that a line may start in one file, and end just
3053 before the start of another file. This usually occurs when you #include
3054 code in the middle of a subroutine. To properly find the end of a line's PC
3055 range, we must search all symtabs associated with this compilation unit, and
3056 find the one whose first PC is closer than that of the next line in this
3059 /* If it's worth the effort, we could be using a binary search. */
3061 struct symtab_and_line
3062 find_pc_sect_line (CORE_ADDR pc
, struct obj_section
*section
, int notcurrent
)
3064 struct compunit_symtab
*cust
;
3065 struct symtab
*iter_s
;
3066 struct linetable
*l
;
3069 struct linetable_entry
*item
;
3070 struct symtab_and_line val
;
3071 const struct blockvector
*bv
;
3072 struct bound_minimal_symbol msymbol
;
3074 /* Info on best line seen so far, and where it starts, and its file. */
3076 struct linetable_entry
*best
= NULL
;
3077 CORE_ADDR best_end
= 0;
3078 struct symtab
*best_symtab
= 0;
3080 /* Store here the first line number
3081 of a file which contains the line at the smallest pc after PC.
3082 If we don't find a line whose range contains PC,
3083 we will use a line one less than this,
3084 with a range from the start of that file to the first line's pc. */
3085 struct linetable_entry
*alt
= NULL
;
3087 /* Info on best line seen in this file. */
3089 struct linetable_entry
*prev
;
3091 /* If this pc is not from the current frame,
3092 it is the address of the end of a call instruction.
3093 Quite likely that is the start of the following statement.
3094 But what we want is the statement containing the instruction.
3095 Fudge the pc to make sure we get that. */
3097 init_sal (&val
); /* initialize to zeroes */
3099 val
.pspace
= current_program_space
;
3101 /* It's tempting to assume that, if we can't find debugging info for
3102 any function enclosing PC, that we shouldn't search for line
3103 number info, either. However, GAS can emit line number info for
3104 assembly files --- very helpful when debugging hand-written
3105 assembly code. In such a case, we'd have no debug info for the
3106 function, but we would have line info. */
3111 /* elz: added this because this function returned the wrong
3112 information if the pc belongs to a stub (import/export)
3113 to call a shlib function. This stub would be anywhere between
3114 two functions in the target, and the line info was erroneously
3115 taken to be the one of the line before the pc. */
3117 /* RT: Further explanation:
3119 * We have stubs (trampolines) inserted between procedures.
3121 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3122 * exists in the main image.
3124 * In the minimal symbol table, we have a bunch of symbols
3125 * sorted by start address. The stubs are marked as "trampoline",
3126 * the others appear as text. E.g.:
3128 * Minimal symbol table for main image
3129 * main: code for main (text symbol)
3130 * shr1: stub (trampoline symbol)
3131 * foo: code for foo (text symbol)
3133 * Minimal symbol table for "shr1" image:
3135 * shr1: code for shr1 (text symbol)
3138 * So the code below is trying to detect if we are in the stub
3139 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3140 * and if found, do the symbolization from the real-code address
3141 * rather than the stub address.
3143 * Assumptions being made about the minimal symbol table:
3144 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3145 * if we're really in the trampoline.s If we're beyond it (say
3146 * we're in "foo" in the above example), it'll have a closer
3147 * symbol (the "foo" text symbol for example) and will not
3148 * return the trampoline.
3149 * 2. lookup_minimal_symbol_text() will find a real text symbol
3150 * corresponding to the trampoline, and whose address will
3151 * be different than the trampoline address. I put in a sanity
3152 * check for the address being the same, to avoid an
3153 * infinite recursion.
3155 msymbol
= lookup_minimal_symbol_by_pc (pc
);
3156 if (msymbol
.minsym
!= NULL
)
3157 if (MSYMBOL_TYPE (msymbol
.minsym
) == mst_solib_trampoline
)
3159 struct bound_minimal_symbol mfunsym
3160 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol
.minsym
),
3163 if (mfunsym
.minsym
== NULL
)
3164 /* I eliminated this warning since it is coming out
3165 * in the following situation:
3166 * gdb shmain // test program with shared libraries
3167 * (gdb) break shr1 // function in shared lib
3168 * Warning: In stub for ...
3169 * In the above situation, the shared lib is not loaded yet,
3170 * so of course we can't find the real func/line info,
3171 * but the "break" still works, and the warning is annoying.
3172 * So I commented out the warning. RT */
3173 /* warning ("In stub for %s; unable to find real function/line info",
3174 SYMBOL_LINKAGE_NAME (msymbol)); */
3177 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym
)
3178 == BMSYMBOL_VALUE_ADDRESS (msymbol
))
3179 /* Avoid infinite recursion */
3180 /* See above comment about why warning is commented out. */
3181 /* warning ("In stub for %s; unable to find real function/line info",
3182 SYMBOL_LINKAGE_NAME (msymbol)); */
3186 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym
), 0);
3190 cust
= find_pc_sect_compunit_symtab (pc
, section
);
3193 /* If no symbol information, return previous pc. */
3200 bv
= COMPUNIT_BLOCKVECTOR (cust
);
3202 /* Look at all the symtabs that share this blockvector.
3203 They all have the same apriori range, that we found was right;
3204 but they have different line tables. */
3206 ALL_COMPUNIT_FILETABS (cust
, iter_s
)
3208 /* Find the best line in this symtab. */
3209 l
= SYMTAB_LINETABLE (iter_s
);
3215 /* I think len can be zero if the symtab lacks line numbers
3216 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3217 I'm not sure which, and maybe it depends on the symbol
3223 item
= l
->item
; /* Get first line info. */
3225 /* Is this file's first line closer than the first lines of other files?
3226 If so, record this file, and its first line, as best alternate. */
3227 if (item
->pc
> pc
&& (!alt
|| item
->pc
< alt
->pc
))
3230 for (i
= 0; i
< len
; i
++, item
++)
3232 /* Leave prev pointing to the linetable entry for the last line
3233 that started at or before PC. */
3240 /* At this point, prev points at the line whose start addr is <= pc, and
3241 item points at the next line. If we ran off the end of the linetable
3242 (pc >= start of the last line), then prev == item. If pc < start of
3243 the first line, prev will not be set. */
3245 /* Is this file's best line closer than the best in the other files?
3246 If so, record this file, and its best line, as best so far. Don't
3247 save prev if it represents the end of a function (i.e. line number
3248 0) instead of a real line. */
3250 if (prev
&& prev
->line
&& (!best
|| prev
->pc
> best
->pc
))
3253 best_symtab
= iter_s
;
3255 /* Discard BEST_END if it's before the PC of the current BEST. */
3256 if (best_end
<= best
->pc
)
3260 /* If another line (denoted by ITEM) is in the linetable and its
3261 PC is after BEST's PC, but before the current BEST_END, then
3262 use ITEM's PC as the new best_end. */
3263 if (best
&& i
< len
&& item
->pc
> best
->pc
3264 && (best_end
== 0 || best_end
> item
->pc
))
3265 best_end
= item
->pc
;
3270 /* If we didn't find any line number info, just return zeros.
3271 We used to return alt->line - 1 here, but that could be
3272 anywhere; if we don't have line number info for this PC,
3273 don't make some up. */
3276 else if (best
->line
== 0)
3278 /* If our best fit is in a range of PC's for which no line
3279 number info is available (line number is zero) then we didn't
3280 find any valid line information. */
3285 val
.symtab
= best_symtab
;
3286 val
.line
= best
->line
;
3288 if (best_end
&& (!alt
|| best_end
< alt
->pc
))
3293 val
.end
= BLOCK_END (BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
));
3295 val
.section
= section
;
3299 /* Backward compatibility (no section). */
3301 struct symtab_and_line
3302 find_pc_line (CORE_ADDR pc
, int notcurrent
)
3304 struct obj_section
*section
;
3306 section
= find_pc_overlay (pc
);
3307 if (pc_in_unmapped_range (pc
, section
))
3308 pc
= overlay_mapped_address (pc
, section
);
3309 return find_pc_sect_line (pc
, section
, notcurrent
);
3315 find_pc_line_symtab (CORE_ADDR pc
)
3317 struct symtab_and_line sal
;
3319 /* This always passes zero for NOTCURRENT to find_pc_line.
3320 There are currently no callers that ever pass non-zero. */
3321 sal
= find_pc_line (pc
, 0);
3325 /* Find line number LINE in any symtab whose name is the same as
3328 If found, return the symtab that contains the linetable in which it was
3329 found, set *INDEX to the index in the linetable of the best entry
3330 found, and set *EXACT_MATCH nonzero if the value returned is an
3333 If not found, return NULL. */
3336 find_line_symtab (struct symtab
*symtab
, int line
,
3337 int *index
, int *exact_match
)
3339 int exact
= 0; /* Initialized here to avoid a compiler warning. */
3341 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3345 struct linetable
*best_linetable
;
3346 struct symtab
*best_symtab
;
3348 /* First try looking it up in the given symtab. */
3349 best_linetable
= SYMTAB_LINETABLE (symtab
);
3350 best_symtab
= symtab
;
3351 best_index
= find_line_common (best_linetable
, line
, &exact
, 0);
3352 if (best_index
< 0 || !exact
)
3354 /* Didn't find an exact match. So we better keep looking for
3355 another symtab with the same name. In the case of xcoff,
3356 multiple csects for one source file (produced by IBM's FORTRAN
3357 compiler) produce multiple symtabs (this is unavoidable
3358 assuming csects can be at arbitrary places in memory and that
3359 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3361 /* BEST is the smallest linenumber > LINE so far seen,
3362 or 0 if none has been seen so far.
3363 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3366 struct objfile
*objfile
;
3367 struct compunit_symtab
*cu
;
3370 if (best_index
>= 0)
3371 best
= best_linetable
->item
[best_index
].line
;
3375 ALL_OBJFILES (objfile
)
3378 objfile
->sf
->qf
->expand_symtabs_with_fullname (objfile
,
3379 symtab_to_fullname (symtab
));
3382 ALL_FILETABS (objfile
, cu
, s
)
3384 struct linetable
*l
;
3387 if (FILENAME_CMP (symtab
->filename
, s
->filename
) != 0)
3389 if (FILENAME_CMP (symtab_to_fullname (symtab
),
3390 symtab_to_fullname (s
)) != 0)
3392 l
= SYMTAB_LINETABLE (s
);
3393 ind
= find_line_common (l
, line
, &exact
, 0);
3403 if (best
== 0 || l
->item
[ind
].line
< best
)
3405 best
= l
->item
[ind
].line
;
3418 *index
= best_index
;
3420 *exact_match
= exact
;
3425 /* Given SYMTAB, returns all the PCs function in the symtab that
3426 exactly match LINE. Returns NULL if there are no exact matches,
3427 but updates BEST_ITEM in this case. */
3430 find_pcs_for_symtab_line (struct symtab
*symtab
, int line
,
3431 struct linetable_entry
**best_item
)
3434 VEC (CORE_ADDR
) *result
= NULL
;
3436 /* First, collect all the PCs that are at this line. */
3442 idx
= find_line_common (SYMTAB_LINETABLE (symtab
), line
, &was_exact
,
3449 struct linetable_entry
*item
= &SYMTAB_LINETABLE (symtab
)->item
[idx
];
3451 if (*best_item
== NULL
|| item
->line
< (*best_item
)->line
)
3457 VEC_safe_push (CORE_ADDR
, result
,
3458 SYMTAB_LINETABLE (symtab
)->item
[idx
].pc
);
3466 /* Set the PC value for a given source file and line number and return true.
3467 Returns zero for invalid line number (and sets the PC to 0).
3468 The source file is specified with a struct symtab. */
3471 find_line_pc (struct symtab
*symtab
, int line
, CORE_ADDR
*pc
)
3473 struct linetable
*l
;
3480 symtab
= find_line_symtab (symtab
, line
, &ind
, NULL
);
3483 l
= SYMTAB_LINETABLE (symtab
);
3484 *pc
= l
->item
[ind
].pc
;
3491 /* Find the range of pc values in a line.
3492 Store the starting pc of the line into *STARTPTR
3493 and the ending pc (start of next line) into *ENDPTR.
3494 Returns 1 to indicate success.
3495 Returns 0 if could not find the specified line. */
3498 find_line_pc_range (struct symtab_and_line sal
, CORE_ADDR
*startptr
,
3501 CORE_ADDR startaddr
;
3502 struct symtab_and_line found_sal
;
3505 if (startaddr
== 0 && !find_line_pc (sal
.symtab
, sal
.line
, &startaddr
))
3508 /* This whole function is based on address. For example, if line 10 has
3509 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3510 "info line *0x123" should say the line goes from 0x100 to 0x200
3511 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3512 This also insures that we never give a range like "starts at 0x134
3513 and ends at 0x12c". */
3515 found_sal
= find_pc_sect_line (startaddr
, sal
.section
, 0);
3516 if (found_sal
.line
!= sal
.line
)
3518 /* The specified line (sal) has zero bytes. */
3519 *startptr
= found_sal
.pc
;
3520 *endptr
= found_sal
.pc
;
3524 *startptr
= found_sal
.pc
;
3525 *endptr
= found_sal
.end
;
3530 /* Given a line table and a line number, return the index into the line
3531 table for the pc of the nearest line whose number is >= the specified one.
3532 Return -1 if none is found. The value is >= 0 if it is an index.
3533 START is the index at which to start searching the line table.
3535 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3538 find_line_common (struct linetable
*l
, int lineno
,
3539 int *exact_match
, int start
)
3544 /* BEST is the smallest linenumber > LINENO so far seen,
3545 or 0 if none has been seen so far.
3546 BEST_INDEX identifies the item for it. */
3548 int best_index
= -1;
3559 for (i
= start
; i
< len
; i
++)
3561 struct linetable_entry
*item
= &(l
->item
[i
]);
3563 if (item
->line
== lineno
)
3565 /* Return the first (lowest address) entry which matches. */
3570 if (item
->line
> lineno
&& (best
== 0 || item
->line
< best
))
3577 /* If we got here, we didn't get an exact match. */
3582 find_pc_line_pc_range (CORE_ADDR pc
, CORE_ADDR
*startptr
, CORE_ADDR
*endptr
)
3584 struct symtab_and_line sal
;
3586 sal
= find_pc_line (pc
, 0);
3589 return sal
.symtab
!= 0;
3592 /* Given a function symbol SYM, find the symtab and line for the start
3594 If the argument FUNFIRSTLINE is nonzero, we want the first line
3595 of real code inside the function. */
3597 struct symtab_and_line
3598 find_function_start_sal (struct symbol
*sym
, int funfirstline
)
3600 struct symtab_and_line sal
;
3601 struct obj_section
*section
;
3603 fixup_symbol_section (sym
, NULL
);
3604 section
= SYMBOL_OBJ_SECTION (symbol_objfile (sym
), sym
);
3605 sal
= find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym
)), section
, 0);
3607 /* We always should have a line for the function start address.
3608 If we don't, something is odd. Create a plain SAL refering
3609 just the PC and hope that skip_prologue_sal (if requested)
3610 can find a line number for after the prologue. */
3611 if (sal
.pc
< BLOCK_START (SYMBOL_BLOCK_VALUE (sym
)))
3614 sal
.pspace
= current_program_space
;
3615 sal
.pc
= BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
3616 sal
.section
= section
;
3620 skip_prologue_sal (&sal
);
3625 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3626 address for that function that has an entry in SYMTAB's line info
3627 table. If such an entry cannot be found, return FUNC_ADDR
3631 skip_prologue_using_lineinfo (CORE_ADDR func_addr
, struct symtab
*symtab
)
3633 CORE_ADDR func_start
, func_end
;
3634 struct linetable
*l
;
3637 /* Give up if this symbol has no lineinfo table. */
3638 l
= SYMTAB_LINETABLE (symtab
);
3642 /* Get the range for the function's PC values, or give up if we
3643 cannot, for some reason. */
3644 if (!find_pc_partial_function (func_addr
, NULL
, &func_start
, &func_end
))
3647 /* Linetable entries are ordered by PC values, see the commentary in
3648 symtab.h where `struct linetable' is defined. Thus, the first
3649 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3650 address we are looking for. */
3651 for (i
= 0; i
< l
->nitems
; i
++)
3653 struct linetable_entry
*item
= &(l
->item
[i
]);
3655 /* Don't use line numbers of zero, they mark special entries in
3656 the table. See the commentary on symtab.h before the
3657 definition of struct linetable. */
3658 if (item
->line
> 0 && func_start
<= item
->pc
&& item
->pc
< func_end
)
3665 /* Adjust SAL to the first instruction past the function prologue.
3666 If the PC was explicitly specified, the SAL is not changed.
3667 If the line number was explicitly specified, at most the SAL's PC
3668 is updated. If SAL is already past the prologue, then do nothing. */
3671 skip_prologue_sal (struct symtab_and_line
*sal
)
3674 struct symtab_and_line start_sal
;
3675 struct cleanup
*old_chain
;
3676 CORE_ADDR pc
, saved_pc
;
3677 struct obj_section
*section
;
3679 struct objfile
*objfile
;
3680 struct gdbarch
*gdbarch
;
3681 const struct block
*b
, *function_block
;
3682 int force_skip
, skip
;
3684 /* Do not change the SAL if PC was specified explicitly. */
3685 if (sal
->explicit_pc
)
3688 old_chain
= save_current_space_and_thread ();
3689 switch_to_program_space_and_thread (sal
->pspace
);
3691 sym
= find_pc_sect_function (sal
->pc
, sal
->section
);
3694 fixup_symbol_section (sym
, NULL
);
3696 objfile
= symbol_objfile (sym
);
3697 pc
= BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
3698 section
= SYMBOL_OBJ_SECTION (objfile
, sym
);
3699 name
= SYMBOL_LINKAGE_NAME (sym
);
3703 struct bound_minimal_symbol msymbol
3704 = lookup_minimal_symbol_by_pc_section (sal
->pc
, sal
->section
);
3706 if (msymbol
.minsym
== NULL
)
3708 do_cleanups (old_chain
);
3712 objfile
= msymbol
.objfile
;
3713 pc
= BMSYMBOL_VALUE_ADDRESS (msymbol
);
3714 section
= MSYMBOL_OBJ_SECTION (objfile
, msymbol
.minsym
);
3715 name
= MSYMBOL_LINKAGE_NAME (msymbol
.minsym
);
3718 gdbarch
= get_objfile_arch (objfile
);
3720 /* Process the prologue in two passes. In the first pass try to skip the
3721 prologue (SKIP is true) and verify there is a real need for it (indicated
3722 by FORCE_SKIP). If no such reason was found run a second pass where the
3723 prologue is not skipped (SKIP is false). */
3728 /* Be conservative - allow direct PC (without skipping prologue) only if we
3729 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3730 have to be set by the caller so we use SYM instead. */
3732 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym
))))
3740 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3741 so that gdbarch_skip_prologue has something unique to work on. */
3742 if (section_is_overlay (section
) && !section_is_mapped (section
))
3743 pc
= overlay_unmapped_address (pc
, section
);
3745 /* Skip "first line" of function (which is actually its prologue). */
3746 pc
+= gdbarch_deprecated_function_start_offset (gdbarch
);
3747 if (gdbarch_skip_entrypoint_p (gdbarch
))
3748 pc
= gdbarch_skip_entrypoint (gdbarch
, pc
);
3750 pc
= gdbarch_skip_prologue (gdbarch
, pc
);
3752 /* For overlays, map pc back into its mapped VMA range. */
3753 pc
= overlay_mapped_address (pc
, section
);
3755 /* Calculate line number. */
3756 start_sal
= find_pc_sect_line (pc
, section
, 0);
3758 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3759 line is still part of the same function. */
3760 if (skip
&& start_sal
.pc
!= pc
3761 && (sym
? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym
)) <= start_sal
.end
3762 && start_sal
.end
< BLOCK_END (SYMBOL_BLOCK_VALUE (sym
)))
3763 : (lookup_minimal_symbol_by_pc_section (start_sal
.end
, section
).minsym
3764 == lookup_minimal_symbol_by_pc_section (pc
, section
).minsym
)))
3766 /* First pc of next line */
3768 /* Recalculate the line number (might not be N+1). */
3769 start_sal
= find_pc_sect_line (pc
, section
, 0);
3772 /* On targets with executable formats that don't have a concept of
3773 constructors (ELF with .init has, PE doesn't), gcc emits a call
3774 to `__main' in `main' between the prologue and before user
3776 if (gdbarch_skip_main_prologue_p (gdbarch
)
3777 && name
&& strcmp_iw (name
, "main") == 0)
3779 pc
= gdbarch_skip_main_prologue (gdbarch
, pc
);
3780 /* Recalculate the line number (might not be N+1). */
3781 start_sal
= find_pc_sect_line (pc
, section
, 0);
3785 while (!force_skip
&& skip
--);
3787 /* If we still don't have a valid source line, try to find the first
3788 PC in the lineinfo table that belongs to the same function. This
3789 happens with COFF debug info, which does not seem to have an
3790 entry in lineinfo table for the code after the prologue which has
3791 no direct relation to source. For example, this was found to be
3792 the case with the DJGPP target using "gcc -gcoff" when the
3793 compiler inserted code after the prologue to make sure the stack
3795 if (!force_skip
&& sym
&& start_sal
.symtab
== NULL
)
3797 pc
= skip_prologue_using_lineinfo (pc
, symbol_symtab (sym
));
3798 /* Recalculate the line number. */
3799 start_sal
= find_pc_sect_line (pc
, section
, 0);
3802 do_cleanups (old_chain
);
3804 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3805 forward SAL to the end of the prologue. */
3810 sal
->section
= section
;
3812 /* Unless the explicit_line flag was set, update the SAL line
3813 and symtab to correspond to the modified PC location. */
3814 if (sal
->explicit_line
)
3817 sal
->symtab
= start_sal
.symtab
;
3818 sal
->line
= start_sal
.line
;
3819 sal
->end
= start_sal
.end
;
3821 /* Check if we are now inside an inlined function. If we can,
3822 use the call site of the function instead. */
3823 b
= block_for_pc_sect (sal
->pc
, sal
->section
);
3824 function_block
= NULL
;
3827 if (BLOCK_FUNCTION (b
) != NULL
&& block_inlined_p (b
))
3829 else if (BLOCK_FUNCTION (b
) != NULL
)
3831 b
= BLOCK_SUPERBLOCK (b
);
3833 if (function_block
!= NULL
3834 && SYMBOL_LINE (BLOCK_FUNCTION (function_block
)) != 0)
3836 sal
->line
= SYMBOL_LINE (BLOCK_FUNCTION (function_block
));
3837 sal
->symtab
= symbol_symtab (BLOCK_FUNCTION (function_block
));
3841 /* Given PC at the function's start address, attempt to find the
3842 prologue end using SAL information. Return zero if the skip fails.
3844 A non-optimized prologue traditionally has one SAL for the function
3845 and a second for the function body. A single line function has
3846 them both pointing at the same line.
3848 An optimized prologue is similar but the prologue may contain
3849 instructions (SALs) from the instruction body. Need to skip those
3850 while not getting into the function body.
3852 The functions end point and an increasing SAL line are used as
3853 indicators of the prologue's endpoint.
3855 This code is based on the function refine_prologue_limit
3859 skip_prologue_using_sal (struct gdbarch
*gdbarch
, CORE_ADDR func_addr
)
3861 struct symtab_and_line prologue_sal
;
3864 const struct block
*bl
;
3866 /* Get an initial range for the function. */
3867 find_pc_partial_function (func_addr
, NULL
, &start_pc
, &end_pc
);
3868 start_pc
+= gdbarch_deprecated_function_start_offset (gdbarch
);
3870 prologue_sal
= find_pc_line (start_pc
, 0);
3871 if (prologue_sal
.line
!= 0)
3873 /* For languages other than assembly, treat two consecutive line
3874 entries at the same address as a zero-instruction prologue.
3875 The GNU assembler emits separate line notes for each instruction
3876 in a multi-instruction macro, but compilers generally will not
3878 if (prologue_sal
.symtab
->language
!= language_asm
)
3880 struct linetable
*linetable
= SYMTAB_LINETABLE (prologue_sal
.symtab
);
3883 /* Skip any earlier lines, and any end-of-sequence marker
3884 from a previous function. */
3885 while (linetable
->item
[idx
].pc
!= prologue_sal
.pc
3886 || linetable
->item
[idx
].line
== 0)
3889 if (idx
+1 < linetable
->nitems
3890 && linetable
->item
[idx
+1].line
!= 0
3891 && linetable
->item
[idx
+1].pc
== start_pc
)
3895 /* If there is only one sal that covers the entire function,
3896 then it is probably a single line function, like
3898 if (prologue_sal
.end
>= end_pc
)
3901 while (prologue_sal
.end
< end_pc
)
3903 struct symtab_and_line sal
;
3905 sal
= find_pc_line (prologue_sal
.end
, 0);
3908 /* Assume that a consecutive SAL for the same (or larger)
3909 line mark the prologue -> body transition. */
3910 if (sal
.line
>= prologue_sal
.line
)
3912 /* Likewise if we are in a different symtab altogether
3913 (e.g. within a file included via #include). */
3914 if (sal
.symtab
!= prologue_sal
.symtab
)
3917 /* The line number is smaller. Check that it's from the
3918 same function, not something inlined. If it's inlined,
3919 then there is no point comparing the line numbers. */
3920 bl
= block_for_pc (prologue_sal
.end
);
3923 if (block_inlined_p (bl
))
3925 if (BLOCK_FUNCTION (bl
))
3930 bl
= BLOCK_SUPERBLOCK (bl
);
3935 /* The case in which compiler's optimizer/scheduler has
3936 moved instructions into the prologue. We look ahead in
3937 the function looking for address ranges whose
3938 corresponding line number is less the first one that we
3939 found for the function. This is more conservative then
3940 refine_prologue_limit which scans a large number of SALs
3941 looking for any in the prologue. */
3946 if (prologue_sal
.end
< end_pc
)
3947 /* Return the end of this line, or zero if we could not find a
3949 return prologue_sal
.end
;
3951 /* Don't return END_PC, which is past the end of the function. */
3952 return prologue_sal
.pc
;
3955 /* If P is of the form "operator[ \t]+..." where `...' is
3956 some legitimate operator text, return a pointer to the
3957 beginning of the substring of the operator text.
3958 Otherwise, return "". */
3961 operator_chars (const char *p
, const char **end
)
3964 if (!startswith (p
, "operator"))
3968 /* Don't get faked out by `operator' being part of a longer
3970 if (isalpha (*p
) || *p
== '_' || *p
== '$' || *p
== '\0')
3973 /* Allow some whitespace between `operator' and the operator symbol. */
3974 while (*p
== ' ' || *p
== '\t')
3977 /* Recognize 'operator TYPENAME'. */
3979 if (isalpha (*p
) || *p
== '_' || *p
== '$')
3981 const char *q
= p
+ 1;
3983 while (isalnum (*q
) || *q
== '_' || *q
== '$')
3992 case '\\': /* regexp quoting */
3995 if (p
[2] == '=') /* 'operator\*=' */
3997 else /* 'operator\*' */
4001 else if (p
[1] == '[')
4004 error (_("mismatched quoting on brackets, "
4005 "try 'operator\\[\\]'"));
4006 else if (p
[2] == '\\' && p
[3] == ']')
4008 *end
= p
+ 4; /* 'operator\[\]' */
4012 error (_("nothing is allowed between '[' and ']'"));
4016 /* Gratuitous qoute: skip it and move on. */
4038 if (p
[0] == '-' && p
[1] == '>')
4040 /* Struct pointer member operator 'operator->'. */
4043 *end
= p
+ 3; /* 'operator->*' */
4046 else if (p
[2] == '\\')
4048 *end
= p
+ 4; /* Hopefully 'operator->\*' */
4053 *end
= p
+ 2; /* 'operator->' */
4057 if (p
[1] == '=' || p
[1] == p
[0])
4068 error (_("`operator ()' must be specified "
4069 "without whitespace in `()'"));
4074 error (_("`operator ?:' must be specified "
4075 "without whitespace in `?:'"));
4080 error (_("`operator []' must be specified "
4081 "without whitespace in `[]'"));
4085 error (_("`operator %s' not supported"), p
);
4094 /* Cache to watch for file names already seen by filename_seen. */
4096 struct filename_seen_cache
4098 /* Table of files seen so far. */
4100 /* Initial size of the table. It automagically grows from here. */
4101 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4104 /* filename_seen_cache constructor. */
4106 static struct filename_seen_cache
*
4107 create_filename_seen_cache (void)
4109 struct filename_seen_cache
*cache
;
4111 cache
= XNEW (struct filename_seen_cache
);
4112 cache
->tab
= htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE
,
4113 filename_hash
, filename_eq
,
4114 NULL
, xcalloc
, xfree
);
4119 /* Empty the cache, but do not delete it. */
4122 clear_filename_seen_cache (struct filename_seen_cache
*cache
)
4124 htab_empty (cache
->tab
);
4127 /* filename_seen_cache destructor.
4128 This takes a void * argument as it is generally used as a cleanup. */
4131 delete_filename_seen_cache (void *ptr
)
4133 struct filename_seen_cache
*cache
= ptr
;
4135 htab_delete (cache
->tab
);
4139 /* If FILE is not already in the table of files in CACHE, return zero;
4140 otherwise return non-zero. Optionally add FILE to the table if ADD
4143 NOTE: We don't manage space for FILE, we assume FILE lives as long
4144 as the caller needs. */
4147 filename_seen (struct filename_seen_cache
*cache
, const char *file
, int add
)
4151 /* Is FILE in tab? */
4152 slot
= htab_find_slot (cache
->tab
, file
, add
? INSERT
: NO_INSERT
);
4156 /* No; maybe add it to tab. */
4158 *slot
= (char *) file
;
4163 /* Data structure to maintain printing state for output_source_filename. */
4165 struct output_source_filename_data
4167 /* Cache of what we've seen so far. */
4168 struct filename_seen_cache
*filename_seen_cache
;
4170 /* Flag of whether we're printing the first one. */
4174 /* Slave routine for sources_info. Force line breaks at ,'s.
4175 NAME is the name to print.
4176 DATA contains the state for printing and watching for duplicates. */
4179 output_source_filename (const char *name
,
4180 struct output_source_filename_data
*data
)
4182 /* Since a single source file can result in several partial symbol
4183 tables, we need to avoid printing it more than once. Note: if
4184 some of the psymtabs are read in and some are not, it gets
4185 printed both under "Source files for which symbols have been
4186 read" and "Source files for which symbols will be read in on
4187 demand". I consider this a reasonable way to deal with the
4188 situation. I'm not sure whether this can also happen for
4189 symtabs; it doesn't hurt to check. */
4191 /* Was NAME already seen? */
4192 if (filename_seen (data
->filename_seen_cache
, name
, 1))
4194 /* Yes; don't print it again. */
4198 /* No; print it and reset *FIRST. */
4200 printf_filtered (", ");
4204 fputs_filtered (name
, gdb_stdout
);
4207 /* A callback for map_partial_symbol_filenames. */
4210 output_partial_symbol_filename (const char *filename
, const char *fullname
,
4213 output_source_filename (fullname
? fullname
: filename
, data
);
4217 sources_info (char *ignore
, int from_tty
)
4219 struct compunit_symtab
*cu
;
4221 struct objfile
*objfile
;
4222 struct output_source_filename_data data
;
4223 struct cleanup
*cleanups
;
4225 if (!have_full_symbols () && !have_partial_symbols ())
4227 error (_("No symbol table is loaded. Use the \"file\" command."));
4230 data
.filename_seen_cache
= create_filename_seen_cache ();
4231 cleanups
= make_cleanup (delete_filename_seen_cache
,
4232 data
.filename_seen_cache
);
4234 printf_filtered ("Source files for which symbols have been read in:\n\n");
4237 ALL_FILETABS (objfile
, cu
, s
)
4239 const char *fullname
= symtab_to_fullname (s
);
4241 output_source_filename (fullname
, &data
);
4243 printf_filtered ("\n\n");
4245 printf_filtered ("Source files for which symbols "
4246 "will be read in on demand:\n\n");
4248 clear_filename_seen_cache (data
.filename_seen_cache
);
4250 map_symbol_filenames (output_partial_symbol_filename
, &data
,
4251 1 /*need_fullname*/);
4252 printf_filtered ("\n");
4254 do_cleanups (cleanups
);
4257 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4258 non-zero compare only lbasename of FILES. */
4261 file_matches (const char *file
, const char *files
[], int nfiles
, int basenames
)
4265 if (file
!= NULL
&& nfiles
!= 0)
4267 for (i
= 0; i
< nfiles
; i
++)
4269 if (compare_filenames_for_search (file
, (basenames
4270 ? lbasename (files
[i
])
4275 else if (nfiles
== 0)
4280 /* Free any memory associated with a search. */
4283 free_search_symbols (struct symbol_search
*symbols
)
4285 struct symbol_search
*p
;
4286 struct symbol_search
*next
;
4288 for (p
= symbols
; p
!= NULL
; p
= next
)
4296 do_free_search_symbols_cleanup (void *symbolsp
)
4298 struct symbol_search
*symbols
= *(struct symbol_search
**) symbolsp
;
4300 free_search_symbols (symbols
);
4304 make_cleanup_free_search_symbols (struct symbol_search
**symbolsp
)
4306 return make_cleanup (do_free_search_symbols_cleanup
, symbolsp
);
4309 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4310 sort symbols, not minimal symbols. */
4313 compare_search_syms (const void *sa
, const void *sb
)
4315 struct symbol_search
*sym_a
= *(struct symbol_search
**) sa
;
4316 struct symbol_search
*sym_b
= *(struct symbol_search
**) sb
;
4319 c
= FILENAME_CMP (symbol_symtab (sym_a
->symbol
)->filename
,
4320 symbol_symtab (sym_b
->symbol
)->filename
);
4324 if (sym_a
->block
!= sym_b
->block
)
4325 return sym_a
->block
- sym_b
->block
;
4327 return strcmp (SYMBOL_PRINT_NAME (sym_a
->symbol
),
4328 SYMBOL_PRINT_NAME (sym_b
->symbol
));
4331 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4332 The duplicates are freed, and the new list is returned in
4333 *NEW_HEAD, *NEW_TAIL. */
4336 sort_search_symbols_remove_dups (struct symbol_search
*found
, int nfound
,
4337 struct symbol_search
**new_head
,
4338 struct symbol_search
**new_tail
)
4340 struct symbol_search
**symbols
, *symp
, *old_next
;
4343 gdb_assert (found
!= NULL
&& nfound
> 0);
4345 /* Build an array out of the list so we can easily sort them. */
4346 symbols
= (struct symbol_search
**) xmalloc (sizeof (struct symbol_search
*)
4349 for (i
= 0; i
< nfound
; i
++)
4351 gdb_assert (symp
!= NULL
);
4352 gdb_assert (symp
->block
>= 0 && symp
->block
<= 1);
4356 gdb_assert (symp
== NULL
);
4358 qsort (symbols
, nfound
, sizeof (struct symbol_search
*),
4359 compare_search_syms
);
4361 /* Collapse out the dups. */
4362 for (i
= 1, j
= 1; i
< nfound
; ++i
)
4364 if (compare_search_syms (&symbols
[j
- 1], &symbols
[i
]) != 0)
4365 symbols
[j
++] = symbols
[i
];
4370 symbols
[j
- 1]->next
= NULL
;
4372 /* Rebuild the linked list. */
4373 for (i
= 0; i
< nunique
- 1; i
++)
4374 symbols
[i
]->next
= symbols
[i
+ 1];
4375 symbols
[nunique
- 1]->next
= NULL
;
4377 *new_head
= symbols
[0];
4378 *new_tail
= symbols
[nunique
- 1];
4382 /* An object of this type is passed as the user_data to the
4383 expand_symtabs_matching method. */
4384 struct search_symbols_data
4389 /* It is true if PREG contains valid data, false otherwise. */
4390 unsigned preg_p
: 1;
4394 /* A callback for expand_symtabs_matching. */
4397 search_symbols_file_matches (const char *filename
, void *user_data
,
4400 struct search_symbols_data
*data
= user_data
;
4402 return file_matches (filename
, data
->files
, data
->nfiles
, basenames
);
4405 /* A callback for expand_symtabs_matching. */
4408 search_symbols_name_matches (const char *symname
, void *user_data
)
4410 struct search_symbols_data
*data
= user_data
;
4412 return !data
->preg_p
|| regexec (&data
->preg
, symname
, 0, NULL
, 0) == 0;
4415 /* Search the symbol table for matches to the regular expression REGEXP,
4416 returning the results in *MATCHES.
4418 Only symbols of KIND are searched:
4419 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4420 and constants (enums)
4421 FUNCTIONS_DOMAIN - search all functions
4422 TYPES_DOMAIN - search all type names
4423 ALL_DOMAIN - an internal error for this function
4425 free_search_symbols should be called when *MATCHES is no longer needed.
4427 Within each file the results are sorted locally; each symtab's global and
4428 static blocks are separately alphabetized.
4429 Duplicate entries are removed. */
4432 search_symbols (const char *regexp
, enum search_domain kind
,
4433 int nfiles
, const char *files
[],
4434 struct symbol_search
**matches
)
4436 struct compunit_symtab
*cust
;
4437 const struct blockvector
*bv
;
4440 struct block_iterator iter
;
4442 struct objfile
*objfile
;
4443 struct minimal_symbol
*msymbol
;
4445 static const enum minimal_symbol_type types
[]
4446 = {mst_data
, mst_text
, mst_abs
};
4447 static const enum minimal_symbol_type types2
[]
4448 = {mst_bss
, mst_file_text
, mst_abs
};
4449 static const enum minimal_symbol_type types3
[]
4450 = {mst_file_data
, mst_solib_trampoline
, mst_abs
};
4451 static const enum minimal_symbol_type types4
[]
4452 = {mst_file_bss
, mst_text_gnu_ifunc
, mst_abs
};
4453 enum minimal_symbol_type ourtype
;
4454 enum minimal_symbol_type ourtype2
;
4455 enum minimal_symbol_type ourtype3
;
4456 enum minimal_symbol_type ourtype4
;
4457 struct symbol_search
*found
;
4458 struct symbol_search
*tail
;
4459 struct search_symbols_data datum
;
4462 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4463 CLEANUP_CHAIN is freed only in the case of an error. */
4464 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
4465 struct cleanup
*retval_chain
;
4467 gdb_assert (kind
<= TYPES_DOMAIN
);
4469 ourtype
= types
[kind
];
4470 ourtype2
= types2
[kind
];
4471 ourtype3
= types3
[kind
];
4472 ourtype4
= types4
[kind
];
4479 /* Make sure spacing is right for C++ operators.
4480 This is just a courtesy to make the matching less sensitive
4481 to how many spaces the user leaves between 'operator'
4482 and <TYPENAME> or <OPERATOR>. */
4484 const char *opname
= operator_chars (regexp
, &opend
);
4489 int fix
= -1; /* -1 means ok; otherwise number of
4492 if (isalpha (*opname
) || *opname
== '_' || *opname
== '$')
4494 /* There should 1 space between 'operator' and 'TYPENAME'. */
4495 if (opname
[-1] != ' ' || opname
[-2] == ' ')
4500 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4501 if (opname
[-1] == ' ')
4504 /* If wrong number of spaces, fix it. */
4507 char *tmp
= (char *) alloca (8 + fix
+ strlen (opname
) + 1);
4509 sprintf (tmp
, "operator%.*s%s", fix
, " ", opname
);
4514 errcode
= regcomp (&datum
.preg
, regexp
,
4515 REG_NOSUB
| (case_sensitivity
== case_sensitive_off
4519 char *err
= get_regcomp_error (errcode
, &datum
.preg
);
4521 make_cleanup (xfree
, err
);
4522 error (_("Invalid regexp (%s): %s"), err
, regexp
);
4525 make_regfree_cleanup (&datum
.preg
);
4528 /* Search through the partial symtabs *first* for all symbols
4529 matching the regexp. That way we don't have to reproduce all of
4530 the machinery below. */
4532 datum
.nfiles
= nfiles
;
4533 datum
.files
= files
;
4534 expand_symtabs_matching ((nfiles
== 0
4536 : search_symbols_file_matches
),
4537 search_symbols_name_matches
,
4538 NULL
, kind
, &datum
);
4540 /* Here, we search through the minimal symbol tables for functions
4541 and variables that match, and force their symbols to be read.
4542 This is in particular necessary for demangled variable names,
4543 which are no longer put into the partial symbol tables.
4544 The symbol will then be found during the scan of symtabs below.
4546 For functions, find_pc_symtab should succeed if we have debug info
4547 for the function, for variables we have to call
4548 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4550 If the lookup fails, set found_misc so that we will rescan to print
4551 any matching symbols without debug info.
4552 We only search the objfile the msymbol came from, we no longer search
4553 all objfiles. In large programs (1000s of shared libs) searching all
4554 objfiles is not worth the pain. */
4556 if (nfiles
== 0 && (kind
== VARIABLES_DOMAIN
|| kind
== FUNCTIONS_DOMAIN
))
4558 ALL_MSYMBOLS (objfile
, msymbol
)
4562 if (msymbol
->created_by_gdb
)
4565 if (MSYMBOL_TYPE (msymbol
) == ourtype
4566 || MSYMBOL_TYPE (msymbol
) == ourtype2
4567 || MSYMBOL_TYPE (msymbol
) == ourtype3
4568 || MSYMBOL_TYPE (msymbol
) == ourtype4
)
4571 || regexec (&datum
.preg
, MSYMBOL_NATURAL_NAME (msymbol
), 0,
4574 /* Note: An important side-effect of these lookup functions
4575 is to expand the symbol table if msymbol is found, for the
4576 benefit of the next loop on ALL_COMPUNITS. */
4577 if (kind
== FUNCTIONS_DOMAIN
4578 ? (find_pc_compunit_symtab
4579 (MSYMBOL_VALUE_ADDRESS (objfile
, msymbol
)) == NULL
)
4580 : (lookup_symbol_in_objfile_from_linkage_name
4581 (objfile
, MSYMBOL_LINKAGE_NAME (msymbol
), VAR_DOMAIN
)
4592 retval_chain
= make_cleanup_free_search_symbols (&found
);
4594 ALL_COMPUNITS (objfile
, cust
)
4596 bv
= COMPUNIT_BLOCKVECTOR (cust
);
4597 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
4599 b
= BLOCKVECTOR_BLOCK (bv
, i
);
4600 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
4602 struct symtab
*real_symtab
= symbol_symtab (sym
);
4606 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4607 a substring of symtab_to_fullname as it may contain "./" etc. */
4608 if ((file_matches (real_symtab
->filename
, files
, nfiles
, 0)
4609 || ((basenames_may_differ
4610 || file_matches (lbasename (real_symtab
->filename
),
4612 && file_matches (symtab_to_fullname (real_symtab
),
4615 || regexec (&datum
.preg
, SYMBOL_NATURAL_NAME (sym
), 0,
4617 && ((kind
== VARIABLES_DOMAIN
4618 && SYMBOL_CLASS (sym
) != LOC_TYPEDEF
4619 && SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
4620 && SYMBOL_CLASS (sym
) != LOC_BLOCK
4621 /* LOC_CONST can be used for more than just enums,
4622 e.g., c++ static const members.
4623 We only want to skip enums here. */
4624 && !(SYMBOL_CLASS (sym
) == LOC_CONST
4625 && (TYPE_CODE (SYMBOL_TYPE (sym
))
4626 == TYPE_CODE_ENUM
)))
4627 || (kind
== FUNCTIONS_DOMAIN
4628 && SYMBOL_CLASS (sym
) == LOC_BLOCK
)
4629 || (kind
== TYPES_DOMAIN
4630 && SYMBOL_CLASS (sym
) == LOC_TYPEDEF
))))
4633 struct symbol_search
*psr
= (struct symbol_search
*)
4634 xmalloc (sizeof (struct symbol_search
));
4637 memset (&psr
->msymbol
, 0, sizeof (psr
->msymbol
));
4652 sort_search_symbols_remove_dups (found
, nfound
, &found
, &tail
);
4653 /* Note: nfound is no longer useful beyond this point. */
4656 /* If there are no eyes, avoid all contact. I mean, if there are
4657 no debug symbols, then add matching minsyms. */
4659 if (found_misc
|| (nfiles
== 0 && kind
!= FUNCTIONS_DOMAIN
))
4661 ALL_MSYMBOLS (objfile
, msymbol
)
4665 if (msymbol
->created_by_gdb
)
4668 if (MSYMBOL_TYPE (msymbol
) == ourtype
4669 || MSYMBOL_TYPE (msymbol
) == ourtype2
4670 || MSYMBOL_TYPE (msymbol
) == ourtype3
4671 || MSYMBOL_TYPE (msymbol
) == ourtype4
)
4674 || regexec (&datum
.preg
, MSYMBOL_NATURAL_NAME (msymbol
), 0,
4677 /* For functions we can do a quick check of whether the
4678 symbol might be found via find_pc_symtab. */
4679 if (kind
!= FUNCTIONS_DOMAIN
4680 || (find_pc_compunit_symtab
4681 (MSYMBOL_VALUE_ADDRESS (objfile
, msymbol
)) == NULL
))
4683 if (lookup_symbol_in_objfile_from_linkage_name
4684 (objfile
, MSYMBOL_LINKAGE_NAME (msymbol
), VAR_DOMAIN
)
4688 struct symbol_search
*psr
= (struct symbol_search
*)
4689 xmalloc (sizeof (struct symbol_search
));
4691 psr
->msymbol
.minsym
= msymbol
;
4692 psr
->msymbol
.objfile
= objfile
;
4707 discard_cleanups (retval_chain
);
4708 do_cleanups (old_chain
);
4712 /* Helper function for symtab_symbol_info, this function uses
4713 the data returned from search_symbols() to print information
4714 regarding the match to gdb_stdout. */
4717 print_symbol_info (enum search_domain kind
,
4719 int block
, const char *last
)
4721 struct symtab
*s
= symbol_symtab (sym
);
4722 const char *s_filename
= symtab_to_filename_for_display (s
);
4724 if (last
== NULL
|| filename_cmp (last
, s_filename
) != 0)
4726 fputs_filtered ("\nFile ", gdb_stdout
);
4727 fputs_filtered (s_filename
, gdb_stdout
);
4728 fputs_filtered (":\n", gdb_stdout
);
4731 if (kind
!= TYPES_DOMAIN
&& block
== STATIC_BLOCK
)
4732 printf_filtered ("static ");
4734 /* Typedef that is not a C++ class. */
4735 if (kind
== TYPES_DOMAIN
4736 && SYMBOL_DOMAIN (sym
) != STRUCT_DOMAIN
)
4737 typedef_print (SYMBOL_TYPE (sym
), sym
, gdb_stdout
);
4738 /* variable, func, or typedef-that-is-c++-class. */
4739 else if (kind
< TYPES_DOMAIN
4740 || (kind
== TYPES_DOMAIN
4741 && SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
))
4743 type_print (SYMBOL_TYPE (sym
),
4744 (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
4745 ? "" : SYMBOL_PRINT_NAME (sym
)),
4748 printf_filtered (";\n");
4752 /* This help function for symtab_symbol_info() prints information
4753 for non-debugging symbols to gdb_stdout. */
4756 print_msymbol_info (struct bound_minimal_symbol msymbol
)
4758 struct gdbarch
*gdbarch
= get_objfile_arch (msymbol
.objfile
);
4761 if (gdbarch_addr_bit (gdbarch
) <= 32)
4762 tmp
= hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol
)
4763 & (CORE_ADDR
) 0xffffffff,
4766 tmp
= hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol
),
4768 printf_filtered ("%s %s\n",
4769 tmp
, MSYMBOL_PRINT_NAME (msymbol
.minsym
));
4772 /* This is the guts of the commands "info functions", "info types", and
4773 "info variables". It calls search_symbols to find all matches and then
4774 print_[m]symbol_info to print out some useful information about the
4778 symtab_symbol_info (char *regexp
, enum search_domain kind
, int from_tty
)
4780 static const char * const classnames
[] =
4781 {"variable", "function", "type"};
4782 struct symbol_search
*symbols
;
4783 struct symbol_search
*p
;
4784 struct cleanup
*old_chain
;
4785 const char *last_filename
= NULL
;
4788 gdb_assert (kind
<= TYPES_DOMAIN
);
4790 /* Must make sure that if we're interrupted, symbols gets freed. */
4791 search_symbols (regexp
, kind
, 0, NULL
, &symbols
);
4792 old_chain
= make_cleanup_free_search_symbols (&symbols
);
4795 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4796 classnames
[kind
], regexp
);
4798 printf_filtered (_("All defined %ss:\n"), classnames
[kind
]);
4800 for (p
= symbols
; p
!= NULL
; p
= p
->next
)
4804 if (p
->msymbol
.minsym
!= NULL
)
4808 printf_filtered (_("\nNon-debugging symbols:\n"));
4811 print_msymbol_info (p
->msymbol
);
4815 print_symbol_info (kind
,
4820 = symtab_to_filename_for_display (symbol_symtab (p
->symbol
));
4824 do_cleanups (old_chain
);
4828 variables_info (char *regexp
, int from_tty
)
4830 symtab_symbol_info (regexp
, VARIABLES_DOMAIN
, from_tty
);
4834 functions_info (char *regexp
, int from_tty
)
4836 symtab_symbol_info (regexp
, FUNCTIONS_DOMAIN
, from_tty
);
4841 types_info (char *regexp
, int from_tty
)
4843 symtab_symbol_info (regexp
, TYPES_DOMAIN
, from_tty
);
4846 /* Breakpoint all functions matching regular expression. */
4849 rbreak_command_wrapper (char *regexp
, int from_tty
)
4851 rbreak_command (regexp
, from_tty
);
4854 /* A cleanup function that calls end_rbreak_breakpoints. */
4857 do_end_rbreak_breakpoints (void *ignore
)
4859 end_rbreak_breakpoints ();
4863 rbreak_command (char *regexp
, int from_tty
)
4865 struct symbol_search
*ss
;
4866 struct symbol_search
*p
;
4867 struct cleanup
*old_chain
;
4868 char *string
= NULL
;
4870 const char **files
= NULL
;
4871 const char *file_name
;
4876 char *colon
= strchr (regexp
, ':');
4878 if (colon
&& *(colon
+ 1) != ':')
4883 colon_index
= colon
- regexp
;
4884 local_name
= alloca (colon_index
+ 1);
4885 memcpy (local_name
, regexp
, colon_index
);
4886 local_name
[colon_index
--] = 0;
4887 while (isspace (local_name
[colon_index
]))
4888 local_name
[colon_index
--] = 0;
4889 file_name
= local_name
;
4892 regexp
= skip_spaces (colon
+ 1);
4896 search_symbols (regexp
, FUNCTIONS_DOMAIN
, nfiles
, files
, &ss
);
4897 old_chain
= make_cleanup_free_search_symbols (&ss
);
4898 make_cleanup (free_current_contents
, &string
);
4900 start_rbreak_breakpoints ();
4901 make_cleanup (do_end_rbreak_breakpoints
, NULL
);
4902 for (p
= ss
; p
!= NULL
; p
= p
->next
)
4904 if (p
->msymbol
.minsym
== NULL
)
4906 struct symtab
*symtab
= symbol_symtab (p
->symbol
);
4907 const char *fullname
= symtab_to_fullname (symtab
);
4909 int newlen
= (strlen (fullname
)
4910 + strlen (SYMBOL_LINKAGE_NAME (p
->symbol
))
4915 string
= xrealloc (string
, newlen
);
4918 strcpy (string
, fullname
);
4919 strcat (string
, ":'");
4920 strcat (string
, SYMBOL_LINKAGE_NAME (p
->symbol
));
4921 strcat (string
, "'");
4922 break_command (string
, from_tty
);
4923 print_symbol_info (FUNCTIONS_DOMAIN
,
4926 symtab_to_filename_for_display (symtab
));
4930 int newlen
= (strlen (MSYMBOL_LINKAGE_NAME (p
->msymbol
.minsym
)) + 3);
4934 string
= xrealloc (string
, newlen
);
4937 strcpy (string
, "'");
4938 strcat (string
, MSYMBOL_LINKAGE_NAME (p
->msymbol
.minsym
));
4939 strcat (string
, "'");
4941 break_command (string
, from_tty
);
4942 printf_filtered ("<function, no debug info> %s;\n",
4943 MSYMBOL_PRINT_NAME (p
->msymbol
.minsym
));
4947 do_cleanups (old_chain
);
4951 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4953 Either sym_text[sym_text_len] != '(' and then we search for any
4954 symbol starting with SYM_TEXT text.
4956 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4957 be terminated at that point. Partial symbol tables do not have parameters
4961 compare_symbol_name (const char *name
, const char *sym_text
, int sym_text_len
)
4963 int (*ncmp
) (const char *, const char *, size_t);
4965 ncmp
= (case_sensitivity
== case_sensitive_on
? strncmp
: strncasecmp
);
4967 if (ncmp (name
, sym_text
, sym_text_len
) != 0)
4970 if (sym_text
[sym_text_len
] == '(')
4972 /* User searches for `name(someth...'. Require NAME to be terminated.
4973 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4974 present but accept even parameters presence. In this case this
4975 function is in fact strcmp_iw but whitespace skipping is not supported
4976 for tab completion. */
4978 if (name
[sym_text_len
] != '\0' && name
[sym_text_len
] != '(')
4985 /* Free any memory associated with a completion list. */
4988 free_completion_list (VEC (char_ptr
) **list_ptr
)
4993 for (i
= 0; VEC_iterate (char_ptr
, *list_ptr
, i
, p
); ++i
)
4995 VEC_free (char_ptr
, *list_ptr
);
4998 /* Callback for make_cleanup. */
5001 do_free_completion_list (void *list
)
5003 free_completion_list (list
);
5006 /* Helper routine for make_symbol_completion_list. */
5008 static VEC (char_ptr
) *return_val
;
5010 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5011 completion_list_add_name \
5012 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5014 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5015 completion_list_add_name \
5016 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5018 /* Tracker for how many unique completions have been generated. Used
5019 to terminate completion list generation early if the list has grown
5020 to a size so large as to be useless. This helps avoid GDB seeming
5021 to lock up in the event the user requests to complete on something
5022 vague that necessitates the time consuming expansion of many symbol
5025 static completion_tracker_t completion_tracker
;
5027 /* Test to see if the symbol specified by SYMNAME (which is already
5028 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5029 characters. If so, add it to the current completion list. */
5032 completion_list_add_name (const char *symname
,
5033 const char *sym_text
, int sym_text_len
,
5034 const char *text
, const char *word
)
5036 /* Clip symbols that cannot match. */
5037 if (!compare_symbol_name (symname
, sym_text
, sym_text_len
))
5040 /* We have a match for a completion, so add SYMNAME to the current list
5041 of matches. Note that the name is moved to freshly malloc'd space. */
5045 enum maybe_add_completion_enum add_status
;
5047 if (word
== sym_text
)
5049 newobj
= xmalloc (strlen (symname
) + 5);
5050 strcpy (newobj
, symname
);
5052 else if (word
> sym_text
)
5054 /* Return some portion of symname. */
5055 newobj
= xmalloc (strlen (symname
) + 5);
5056 strcpy (newobj
, symname
+ (word
- sym_text
));
5060 /* Return some of SYM_TEXT plus symname. */
5061 newobj
= xmalloc (strlen (symname
) + (sym_text
- word
) + 5);
5062 strncpy (newobj
, word
, sym_text
- word
);
5063 newobj
[sym_text
- word
] = '\0';
5064 strcat (newobj
, symname
);
5067 add_status
= maybe_add_completion (completion_tracker
, newobj
);
5071 case MAYBE_ADD_COMPLETION_OK
:
5072 VEC_safe_push (char_ptr
, return_val
, newobj
);
5074 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED
:
5075 VEC_safe_push (char_ptr
, return_val
, newobj
);
5076 throw_max_completions_reached_error ();
5077 case MAYBE_ADD_COMPLETION_MAX_REACHED
:
5079 throw_max_completions_reached_error ();
5080 case MAYBE_ADD_COMPLETION_DUPLICATE
:
5087 /* ObjC: In case we are completing on a selector, look as the msymbol
5088 again and feed all the selectors into the mill. */
5091 completion_list_objc_symbol (struct minimal_symbol
*msymbol
,
5092 const char *sym_text
, int sym_text_len
,
5093 const char *text
, const char *word
)
5095 static char *tmp
= NULL
;
5096 static unsigned int tmplen
= 0;
5098 const char *method
, *category
, *selector
;
5101 method
= MSYMBOL_NATURAL_NAME (msymbol
);
5103 /* Is it a method? */
5104 if ((method
[0] != '-') && (method
[0] != '+'))
5107 if (sym_text
[0] == '[')
5108 /* Complete on shortened method method. */
5109 completion_list_add_name (method
+ 1, sym_text
, sym_text_len
, text
, word
);
5111 while ((strlen (method
) + 1) >= tmplen
)
5117 tmp
= xrealloc (tmp
, tmplen
);
5119 selector
= strchr (method
, ' ');
5120 if (selector
!= NULL
)
5123 category
= strchr (method
, '(');
5125 if ((category
!= NULL
) && (selector
!= NULL
))
5127 memcpy (tmp
, method
, (category
- method
));
5128 tmp
[category
- method
] = ' ';
5129 memcpy (tmp
+ (category
- method
) + 1, selector
, strlen (selector
) + 1);
5130 completion_list_add_name (tmp
, sym_text
, sym_text_len
, text
, word
);
5131 if (sym_text
[0] == '[')
5132 completion_list_add_name (tmp
+ 1, sym_text
, sym_text_len
, text
, word
);
5135 if (selector
!= NULL
)
5137 /* Complete on selector only. */
5138 strcpy (tmp
, selector
);
5139 tmp2
= strchr (tmp
, ']');
5143 completion_list_add_name (tmp
, sym_text
, sym_text_len
, text
, word
);
5147 /* Break the non-quoted text based on the characters which are in
5148 symbols. FIXME: This should probably be language-specific. */
5151 language_search_unquoted_string (const char *text
, const char *p
)
5153 for (; p
> text
; --p
)
5155 if (isalnum (p
[-1]) || p
[-1] == '_' || p
[-1] == '\0')
5159 if ((current_language
->la_language
== language_objc
))
5161 if (p
[-1] == ':') /* Might be part of a method name. */
5163 else if (p
[-1] == '[' && (p
[-2] == '-' || p
[-2] == '+'))
5164 p
-= 2; /* Beginning of a method name. */
5165 else if (p
[-1] == ' ' || p
[-1] == '(' || p
[-1] == ')')
5166 { /* Might be part of a method name. */
5169 /* Seeing a ' ' or a '(' is not conclusive evidence
5170 that we are in the middle of a method name. However,
5171 finding "-[" or "+[" should be pretty un-ambiguous.
5172 Unfortunately we have to find it now to decide. */
5175 if (isalnum (t
[-1]) || t
[-1] == '_' ||
5176 t
[-1] == ' ' || t
[-1] == ':' ||
5177 t
[-1] == '(' || t
[-1] == ')')
5182 if (t
[-1] == '[' && (t
[-2] == '-' || t
[-2] == '+'))
5183 p
= t
- 2; /* Method name detected. */
5184 /* Else we leave with p unchanged. */
5194 completion_list_add_fields (struct symbol
*sym
, const char *sym_text
,
5195 int sym_text_len
, const char *text
,
5198 if (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
5200 struct type
*t
= SYMBOL_TYPE (sym
);
5201 enum type_code c
= TYPE_CODE (t
);
5204 if (c
== TYPE_CODE_UNION
|| c
== TYPE_CODE_STRUCT
)
5205 for (j
= TYPE_N_BASECLASSES (t
); j
< TYPE_NFIELDS (t
); j
++)
5206 if (TYPE_FIELD_NAME (t
, j
))
5207 completion_list_add_name (TYPE_FIELD_NAME (t
, j
),
5208 sym_text
, sym_text_len
, text
, word
);
5212 /* Type of the user_data argument passed to add_macro_name,
5213 symbol_completion_matcher and symtab_expansion_callback. */
5215 struct add_name_data
5217 /* Arguments required by completion_list_add_name. */
5218 const char *sym_text
;
5223 /* Extra argument required for add_symtab_completions. */
5224 enum type_code code
;
5227 /* A callback used with macro_for_each and macro_for_each_in_scope.
5228 This adds a macro's name to the current completion list. */
5231 add_macro_name (const char *name
, const struct macro_definition
*ignore
,
5232 struct macro_source_file
*ignore2
, int ignore3
,
5235 struct add_name_data
*datum
= (struct add_name_data
*) user_data
;
5237 completion_list_add_name (name
,
5238 datum
->sym_text
, datum
->sym_text_len
,
5239 datum
->text
, datum
->word
);
5242 /* A callback for expand_symtabs_matching. */
5245 symbol_completion_matcher (const char *name
, void *user_data
)
5247 struct add_name_data
*datum
= (struct add_name_data
*) user_data
;
5249 return compare_symbol_name (name
, datum
->sym_text
, datum
->sym_text_len
);
5252 /* Add matching symbols from SYMTAB to the current completion list. */
5255 add_symtab_completions (struct compunit_symtab
*cust
,
5256 const char *sym_text
, int sym_text_len
,
5257 const char *text
, const char *word
,
5258 enum type_code code
)
5261 const struct block
*b
;
5262 struct block_iterator iter
;
5265 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
5268 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust
), i
);
5269 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5271 if (code
== TYPE_CODE_UNDEF
5272 || (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
5273 && TYPE_CODE (SYMBOL_TYPE (sym
)) == code
))
5274 COMPLETION_LIST_ADD_SYMBOL (sym
,
5275 sym_text
, sym_text_len
,
5281 /* Callback to add completions to the current list when symbol tables
5282 are expanded during completion list generation. */
5285 symtab_expansion_callback (struct compunit_symtab
*symtab
,
5288 struct add_name_data
*datum
= (struct add_name_data
*) user_data
;
5290 add_symtab_completions (symtab
,
5291 datum
->sym_text
, datum
->sym_text_len
,
5292 datum
->text
, datum
->word
,
5297 default_make_symbol_completion_list_break_on_1 (const char *text
,
5299 const char *break_on
,
5300 enum type_code code
)
5302 /* Problem: All of the symbols have to be copied because readline
5303 frees them. I'm not going to worry about this; hopefully there
5304 won't be that many. */
5307 struct compunit_symtab
*cust
;
5308 struct minimal_symbol
*msymbol
;
5309 struct objfile
*objfile
;
5310 const struct block
*b
;
5311 const struct block
*surrounding_static_block
, *surrounding_global_block
;
5312 struct block_iterator iter
;
5313 /* The symbol we are completing on. Points in same buffer as text. */
5314 const char *sym_text
;
5315 /* Length of sym_text. */
5317 struct add_name_data datum
;
5318 struct cleanup
*cleanups
;
5320 /* Now look for the symbol we are supposed to complete on. */
5324 const char *quote_pos
= NULL
;
5326 /* First see if this is a quoted string. */
5328 for (p
= text
; *p
!= '\0'; ++p
)
5330 if (quote_found
!= '\0')
5332 if (*p
== quote_found
)
5333 /* Found close quote. */
5335 else if (*p
== '\\' && p
[1] == quote_found
)
5336 /* A backslash followed by the quote character
5337 doesn't end the string. */
5340 else if (*p
== '\'' || *p
== '"')
5346 if (quote_found
== '\'')
5347 /* A string within single quotes can be a symbol, so complete on it. */
5348 sym_text
= quote_pos
+ 1;
5349 else if (quote_found
== '"')
5350 /* A double-quoted string is never a symbol, nor does it make sense
5351 to complete it any other way. */
5357 /* It is not a quoted string. Break it based on the characters
5358 which are in symbols. */
5361 if (isalnum (p
[-1]) || p
[-1] == '_' || p
[-1] == '\0'
5362 || p
[-1] == ':' || strchr (break_on
, p
[-1]) != NULL
)
5371 sym_text_len
= strlen (sym_text
);
5373 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5375 if (current_language
->la_language
== language_cplus
5376 || current_language
->la_language
== language_java
5377 || current_language
->la_language
== language_fortran
)
5379 /* These languages may have parameters entered by user but they are never
5380 present in the partial symbol tables. */
5382 const char *cs
= memchr (sym_text
, '(', sym_text_len
);
5385 sym_text_len
= cs
- sym_text
;
5387 gdb_assert (sym_text
[sym_text_len
] == '\0' || sym_text
[sym_text_len
] == '(');
5389 completion_tracker
= new_completion_tracker ();
5390 cleanups
= make_cleanup_free_completion_tracker (&completion_tracker
);
5392 datum
.sym_text
= sym_text
;
5393 datum
.sym_text_len
= sym_text_len
;
5398 /* At this point scan through the misc symbol vectors and add each
5399 symbol you find to the list. Eventually we want to ignore
5400 anything that isn't a text symbol (everything else will be
5401 handled by the psymtab code below). */
5403 if (code
== TYPE_CODE_UNDEF
)
5405 ALL_MSYMBOLS (objfile
, msymbol
)
5408 MCOMPLETION_LIST_ADD_SYMBOL (msymbol
, sym_text
, sym_text_len
, text
,
5411 completion_list_objc_symbol (msymbol
, sym_text
, sym_text_len
, text
,
5416 /* Add completions for all currently loaded symbol tables. */
5417 ALL_COMPUNITS (objfile
, cust
)
5418 add_symtab_completions (cust
, sym_text
, sym_text_len
, text
, word
,
5421 /* Look through the partial symtabs for all symbols which begin
5422 by matching SYM_TEXT. Expand all CUs that you find to the list.
5423 symtab_expansion_callback is called for each expanded symtab,
5424 causing those symtab's completions to be added to the list too. */
5425 expand_symtabs_matching (NULL
, symbol_completion_matcher
,
5426 symtab_expansion_callback
, ALL_DOMAIN
,
5429 /* Search upwards from currently selected frame (so that we can
5430 complete on local vars). Also catch fields of types defined in
5431 this places which match our text string. Only complete on types
5432 visible from current context. */
5434 b
= get_selected_block (0);
5435 surrounding_static_block
= block_static_block (b
);
5436 surrounding_global_block
= block_global_block (b
);
5437 if (surrounding_static_block
!= NULL
)
5438 while (b
!= surrounding_static_block
)
5442 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5444 if (code
== TYPE_CODE_UNDEF
)
5446 COMPLETION_LIST_ADD_SYMBOL (sym
, sym_text
, sym_text_len
, text
,
5448 completion_list_add_fields (sym
, sym_text
, sym_text_len
, text
,
5451 else if (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
5452 && TYPE_CODE (SYMBOL_TYPE (sym
)) == code
)
5453 COMPLETION_LIST_ADD_SYMBOL (sym
, sym_text
, sym_text_len
, text
,
5457 /* Stop when we encounter an enclosing function. Do not stop for
5458 non-inlined functions - the locals of the enclosing function
5459 are in scope for a nested function. */
5460 if (BLOCK_FUNCTION (b
) != NULL
&& block_inlined_p (b
))
5462 b
= BLOCK_SUPERBLOCK (b
);
5465 /* Add fields from the file's types; symbols will be added below. */
5467 if (code
== TYPE_CODE_UNDEF
)
5469 if (surrounding_static_block
!= NULL
)
5470 ALL_BLOCK_SYMBOLS (surrounding_static_block
, iter
, sym
)
5471 completion_list_add_fields (sym
, sym_text
, sym_text_len
, text
, word
);
5473 if (surrounding_global_block
!= NULL
)
5474 ALL_BLOCK_SYMBOLS (surrounding_global_block
, iter
, sym
)
5475 completion_list_add_fields (sym
, sym_text
, sym_text_len
, text
, word
);
5478 /* Skip macros if we are completing a struct tag -- arguable but
5479 usually what is expected. */
5480 if (current_language
->la_macro_expansion
== macro_expansion_c
5481 && code
== TYPE_CODE_UNDEF
)
5483 struct macro_scope
*scope
;
5485 /* Add any macros visible in the default scope. Note that this
5486 may yield the occasional wrong result, because an expression
5487 might be evaluated in a scope other than the default. For
5488 example, if the user types "break file:line if <TAB>", the
5489 resulting expression will be evaluated at "file:line" -- but
5490 at there does not seem to be a way to detect this at
5492 scope
= default_macro_scope ();
5495 macro_for_each_in_scope (scope
->file
, scope
->line
,
5496 add_macro_name
, &datum
);
5500 /* User-defined macros are always visible. */
5501 macro_for_each (macro_user_macros
, add_macro_name
, &datum
);
5504 do_cleanups (cleanups
);
5508 default_make_symbol_completion_list_break_on (const char *text
,
5510 const char *break_on
,
5511 enum type_code code
)
5513 struct cleanup
*back_to
;
5516 back_to
= make_cleanup (do_free_completion_list
, &return_val
);
5520 default_make_symbol_completion_list_break_on_1 (text
, word
,
5523 CATCH (except
, RETURN_MASK_ERROR
)
5525 if (except
.error
!= MAX_COMPLETIONS_REACHED_ERROR
)
5526 throw_exception (except
);
5530 discard_cleanups (back_to
);
5535 default_make_symbol_completion_list (const char *text
, const char *word
,
5536 enum type_code code
)
5538 return default_make_symbol_completion_list_break_on (text
, word
, "", code
);
5541 /* Return a vector of all symbols (regardless of class) which begin by
5542 matching TEXT. If the answer is no symbols, then the return value
5546 make_symbol_completion_list (const char *text
, const char *word
)
5548 return current_language
->la_make_symbol_completion_list (text
, word
,
5552 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5553 symbols whose type code is CODE. */
5556 make_symbol_completion_type (const char *text
, const char *word
,
5557 enum type_code code
)
5559 gdb_assert (code
== TYPE_CODE_UNION
5560 || code
== TYPE_CODE_STRUCT
5561 || code
== TYPE_CODE_ENUM
);
5562 return current_language
->la_make_symbol_completion_list (text
, word
, code
);
5565 /* Like make_symbol_completion_list, but suitable for use as a
5566 completion function. */
5569 make_symbol_completion_list_fn (struct cmd_list_element
*ignore
,
5570 const char *text
, const char *word
)
5572 return make_symbol_completion_list (text
, word
);
5575 /* Like make_symbol_completion_list, but returns a list of symbols
5576 defined in a source file FILE. */
5579 make_file_symbol_completion_list (const char *text
, const char *word
,
5580 const char *srcfile
)
5585 struct block_iterator iter
;
5586 /* The symbol we are completing on. Points in same buffer as text. */
5587 const char *sym_text
;
5588 /* Length of sym_text. */
5591 /* Now look for the symbol we are supposed to complete on.
5592 FIXME: This should be language-specific. */
5596 const char *quote_pos
= NULL
;
5598 /* First see if this is a quoted string. */
5600 for (p
= text
; *p
!= '\0'; ++p
)
5602 if (quote_found
!= '\0')
5604 if (*p
== quote_found
)
5605 /* Found close quote. */
5607 else if (*p
== '\\' && p
[1] == quote_found
)
5608 /* A backslash followed by the quote character
5609 doesn't end the string. */
5612 else if (*p
== '\'' || *p
== '"')
5618 if (quote_found
== '\'')
5619 /* A string within single quotes can be a symbol, so complete on it. */
5620 sym_text
= quote_pos
+ 1;
5621 else if (quote_found
== '"')
5622 /* A double-quoted string is never a symbol, nor does it make sense
5623 to complete it any other way. */
5629 /* Not a quoted string. */
5630 sym_text
= language_search_unquoted_string (text
, p
);
5634 sym_text_len
= strlen (sym_text
);
5638 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5640 s
= lookup_symtab (srcfile
);
5643 /* Maybe they typed the file with leading directories, while the
5644 symbol tables record only its basename. */
5645 const char *tail
= lbasename (srcfile
);
5648 s
= lookup_symtab (tail
);
5651 /* If we have no symtab for that file, return an empty list. */
5653 return (return_val
);
5655 /* Go through this symtab and check the externs and statics for
5656 symbols which match. */
5658 b
= BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s
), GLOBAL_BLOCK
);
5659 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5661 COMPLETION_LIST_ADD_SYMBOL (sym
, sym_text
, sym_text_len
, text
, word
);
5664 b
= BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s
), STATIC_BLOCK
);
5665 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5667 COMPLETION_LIST_ADD_SYMBOL (sym
, sym_text
, sym_text_len
, text
, word
);
5670 return (return_val
);
5673 /* A helper function for make_source_files_completion_list. It adds
5674 another file name to a list of possible completions, growing the
5675 list as necessary. */
5678 add_filename_to_list (const char *fname
, const char *text
, const char *word
,
5679 VEC (char_ptr
) **list
)
5682 size_t fnlen
= strlen (fname
);
5686 /* Return exactly fname. */
5687 newobj
= xmalloc (fnlen
+ 5);
5688 strcpy (newobj
, fname
);
5690 else if (word
> text
)
5692 /* Return some portion of fname. */
5693 newobj
= xmalloc (fnlen
+ 5);
5694 strcpy (newobj
, fname
+ (word
- text
));
5698 /* Return some of TEXT plus fname. */
5699 newobj
= xmalloc (fnlen
+ (text
- word
) + 5);
5700 strncpy (newobj
, word
, text
- word
);
5701 newobj
[text
- word
] = '\0';
5702 strcat (newobj
, fname
);
5704 VEC_safe_push (char_ptr
, *list
, newobj
);
5708 not_interesting_fname (const char *fname
)
5710 static const char *illegal_aliens
[] = {
5711 "_globals_", /* inserted by coff_symtab_read */
5716 for (i
= 0; illegal_aliens
[i
]; i
++)
5718 if (filename_cmp (fname
, illegal_aliens
[i
]) == 0)
5724 /* An object of this type is passed as the user_data argument to
5725 map_partial_symbol_filenames. */
5726 struct add_partial_filename_data
5728 struct filename_seen_cache
*filename_seen_cache
;
5732 VEC (char_ptr
) **list
;
5735 /* A callback for map_partial_symbol_filenames. */
5738 maybe_add_partial_symtab_filename (const char *filename
, const char *fullname
,
5741 struct add_partial_filename_data
*data
= user_data
;
5743 if (not_interesting_fname (filename
))
5745 if (!filename_seen (data
->filename_seen_cache
, filename
, 1)
5746 && filename_ncmp (filename
, data
->text
, data
->text_len
) == 0)
5748 /* This file matches for a completion; add it to the
5749 current list of matches. */
5750 add_filename_to_list (filename
, data
->text
, data
->word
, data
->list
);
5754 const char *base_name
= lbasename (filename
);
5756 if (base_name
!= filename
5757 && !filename_seen (data
->filename_seen_cache
, base_name
, 1)
5758 && filename_ncmp (base_name
, data
->text
, data
->text_len
) == 0)
5759 add_filename_to_list (base_name
, data
->text
, data
->word
, data
->list
);
5763 /* Return a vector of all source files whose names begin with matching
5764 TEXT. The file names are looked up in the symbol tables of this
5765 program. If the answer is no matchess, then the return value is
5769 make_source_files_completion_list (const char *text
, const char *word
)
5771 struct compunit_symtab
*cu
;
5773 struct objfile
*objfile
;
5774 size_t text_len
= strlen (text
);
5775 VEC (char_ptr
) *list
= NULL
;
5776 const char *base_name
;
5777 struct add_partial_filename_data datum
;
5778 struct filename_seen_cache
*filename_seen_cache
;
5779 struct cleanup
*back_to
, *cache_cleanup
;
5781 if (!have_full_symbols () && !have_partial_symbols ())
5784 back_to
= make_cleanup (do_free_completion_list
, &list
);
5786 filename_seen_cache
= create_filename_seen_cache ();
5787 cache_cleanup
= make_cleanup (delete_filename_seen_cache
,
5788 filename_seen_cache
);
5790 ALL_FILETABS (objfile
, cu
, s
)
5792 if (not_interesting_fname (s
->filename
))
5794 if (!filename_seen (filename_seen_cache
, s
->filename
, 1)
5795 && filename_ncmp (s
->filename
, text
, text_len
) == 0)
5797 /* This file matches for a completion; add it to the current
5799 add_filename_to_list (s
->filename
, text
, word
, &list
);
5803 /* NOTE: We allow the user to type a base name when the
5804 debug info records leading directories, but not the other
5805 way around. This is what subroutines of breakpoint
5806 command do when they parse file names. */
5807 base_name
= lbasename (s
->filename
);
5808 if (base_name
!= s
->filename
5809 && !filename_seen (filename_seen_cache
, base_name
, 1)
5810 && filename_ncmp (base_name
, text
, text_len
) == 0)
5811 add_filename_to_list (base_name
, text
, word
, &list
);
5815 datum
.filename_seen_cache
= filename_seen_cache
;
5818 datum
.text_len
= text_len
;
5820 map_symbol_filenames (maybe_add_partial_symtab_filename
, &datum
,
5821 0 /*need_fullname*/);
5823 do_cleanups (cache_cleanup
);
5824 discard_cleanups (back_to
);
5831 /* Return the "main_info" object for the current program space. If
5832 the object has not yet been created, create it and fill in some
5835 static struct main_info
*
5836 get_main_info (void)
5838 struct main_info
*info
= program_space_data (current_program_space
,
5839 main_progspace_key
);
5843 /* It may seem strange to store the main name in the progspace
5844 and also in whatever objfile happens to see a main name in
5845 its debug info. The reason for this is mainly historical:
5846 gdb returned "main" as the name even if no function named
5847 "main" was defined the program; and this approach lets us
5848 keep compatibility. */
5849 info
= XCNEW (struct main_info
);
5850 info
->language_of_main
= language_unknown
;
5851 set_program_space_data (current_program_space
, main_progspace_key
,
5858 /* A cleanup to destroy a struct main_info when a progspace is
5862 main_info_cleanup (struct program_space
*pspace
, void *data
)
5864 struct main_info
*info
= data
;
5867 xfree (info
->name_of_main
);
5872 set_main_name (const char *name
, enum language lang
)
5874 struct main_info
*info
= get_main_info ();
5876 if (info
->name_of_main
!= NULL
)
5878 xfree (info
->name_of_main
);
5879 info
->name_of_main
= NULL
;
5880 info
->language_of_main
= language_unknown
;
5884 info
->name_of_main
= xstrdup (name
);
5885 info
->language_of_main
= lang
;
5889 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5893 find_main_name (void)
5895 const char *new_main_name
;
5896 struct objfile
*objfile
;
5898 /* First check the objfiles to see whether a debuginfo reader has
5899 picked up the appropriate main name. Historically the main name
5900 was found in a more or less random way; this approach instead
5901 relies on the order of objfile creation -- which still isn't
5902 guaranteed to get the correct answer, but is just probably more
5904 ALL_OBJFILES (objfile
)
5906 if (objfile
->per_bfd
->name_of_main
!= NULL
)
5908 set_main_name (objfile
->per_bfd
->name_of_main
,
5909 objfile
->per_bfd
->language_of_main
);
5914 /* Try to see if the main procedure is in Ada. */
5915 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5916 be to add a new method in the language vector, and call this
5917 method for each language until one of them returns a non-empty
5918 name. This would allow us to remove this hard-coded call to
5919 an Ada function. It is not clear that this is a better approach
5920 at this point, because all methods need to be written in a way
5921 such that false positives never be returned. For instance, it is
5922 important that a method does not return a wrong name for the main
5923 procedure if the main procedure is actually written in a different
5924 language. It is easy to guaranty this with Ada, since we use a
5925 special symbol generated only when the main in Ada to find the name
5926 of the main procedure. It is difficult however to see how this can
5927 be guarantied for languages such as C, for instance. This suggests
5928 that order of call for these methods becomes important, which means
5929 a more complicated approach. */
5930 new_main_name
= ada_main_name ();
5931 if (new_main_name
!= NULL
)
5933 set_main_name (new_main_name
, language_ada
);
5937 new_main_name
= d_main_name ();
5938 if (new_main_name
!= NULL
)
5940 set_main_name (new_main_name
, language_d
);
5944 new_main_name
= go_main_name ();
5945 if (new_main_name
!= NULL
)
5947 set_main_name (new_main_name
, language_go
);
5951 new_main_name
= pascal_main_name ();
5952 if (new_main_name
!= NULL
)
5954 set_main_name (new_main_name
, language_pascal
);
5958 /* The languages above didn't identify the name of the main procedure.
5959 Fallback to "main". */
5960 set_main_name ("main", language_unknown
);
5966 struct main_info
*info
= get_main_info ();
5968 if (info
->name_of_main
== NULL
)
5971 return info
->name_of_main
;
5974 /* Return the language of the main function. If it is not known,
5975 return language_unknown. */
5978 main_language (void)
5980 struct main_info
*info
= get_main_info ();
5982 if (info
->name_of_main
== NULL
)
5985 return info
->language_of_main
;
5988 /* Handle ``executable_changed'' events for the symtab module. */
5991 symtab_observer_executable_changed (void)
5993 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5994 set_main_name (NULL
, language_unknown
);
5997 /* Return 1 if the supplied producer string matches the ARM RealView
5998 compiler (armcc). */
6001 producer_is_realview (const char *producer
)
6003 static const char *const arm_idents
[] = {
6004 "ARM C Compiler, ADS",
6005 "Thumb C Compiler, ADS",
6006 "ARM C++ Compiler, ADS",
6007 "Thumb C++ Compiler, ADS",
6008 "ARM/Thumb C/C++ Compiler, RVCT",
6009 "ARM C/C++ Compiler, RVCT"
6013 if (producer
== NULL
)
6016 for (i
= 0; i
< ARRAY_SIZE (arm_idents
); i
++)
6017 if (startswith (producer
, arm_idents
[i
]))
6025 /* The next index to hand out in response to a registration request. */
6027 static int next_aclass_value
= LOC_FINAL_VALUE
;
6029 /* The maximum number of "aclass" registrations we support. This is
6030 constant for convenience. */
6031 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6033 /* The objects representing the various "aclass" values. The elements
6034 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6035 elements are those registered at gdb initialization time. */
6037 static struct symbol_impl symbol_impl
[MAX_SYMBOL_IMPLS
];
6039 /* The globally visible pointer. This is separate from 'symbol_impl'
6040 so that it can be const. */
6042 const struct symbol_impl
*symbol_impls
= &symbol_impl
[0];
6044 /* Make sure we saved enough room in struct symbol. */
6046 gdb_static_assert (MAX_SYMBOL_IMPLS
<= (1 << SYMBOL_ACLASS_BITS
));
6048 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6049 is the ops vector associated with this index. This returns the new
6050 index, which should be used as the aclass_index field for symbols
6054 register_symbol_computed_impl (enum address_class aclass
,
6055 const struct symbol_computed_ops
*ops
)
6057 int result
= next_aclass_value
++;
6059 gdb_assert (aclass
== LOC_COMPUTED
);
6060 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
6061 symbol_impl
[result
].aclass
= aclass
;
6062 symbol_impl
[result
].ops_computed
= ops
;
6064 /* Sanity check OPS. */
6065 gdb_assert (ops
!= NULL
);
6066 gdb_assert (ops
->tracepoint_var_ref
!= NULL
);
6067 gdb_assert (ops
->describe_location
!= NULL
);
6068 gdb_assert (ops
->read_needs_frame
!= NULL
);
6069 gdb_assert (ops
->read_variable
!= NULL
);
6074 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6075 OPS is the ops vector associated with this index. This returns the
6076 new index, which should be used as the aclass_index field for symbols
6080 register_symbol_block_impl (enum address_class aclass
,
6081 const struct symbol_block_ops
*ops
)
6083 int result
= next_aclass_value
++;
6085 gdb_assert (aclass
== LOC_BLOCK
);
6086 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
6087 symbol_impl
[result
].aclass
= aclass
;
6088 symbol_impl
[result
].ops_block
= ops
;
6090 /* Sanity check OPS. */
6091 gdb_assert (ops
!= NULL
);
6092 gdb_assert (ops
->find_frame_base_location
!= NULL
);
6097 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6098 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6099 this index. This returns the new index, which should be used as
6100 the aclass_index field for symbols of this type. */
6103 register_symbol_register_impl (enum address_class aclass
,
6104 const struct symbol_register_ops
*ops
)
6106 int result
= next_aclass_value
++;
6108 gdb_assert (aclass
== LOC_REGISTER
|| aclass
== LOC_REGPARM_ADDR
);
6109 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
6110 symbol_impl
[result
].aclass
= aclass
;
6111 symbol_impl
[result
].ops_register
= ops
;
6116 /* Initialize elements of 'symbol_impl' for the constants in enum
6120 initialize_ordinary_address_classes (void)
6124 for (i
= 0; i
< LOC_FINAL_VALUE
; ++i
)
6125 symbol_impl
[i
].aclass
= i
;
6130 /* Helper function to initialize the fields of an objfile-owned symbol.
6131 It assumed that *SYM is already all zeroes. */
6134 initialize_objfile_symbol_1 (struct symbol
*sym
)
6136 SYMBOL_OBJFILE_OWNED (sym
) = 1;
6137 SYMBOL_SECTION (sym
) = -1;
6140 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6143 initialize_objfile_symbol (struct symbol
*sym
)
6145 memset (sym
, 0, sizeof (*sym
));
6146 initialize_objfile_symbol_1 (sym
);
6149 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6153 allocate_symbol (struct objfile
*objfile
)
6155 struct symbol
*result
;
6157 result
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct symbol
);
6158 initialize_objfile_symbol_1 (result
);
6163 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6166 struct template_symbol
*
6167 allocate_template_symbol (struct objfile
*objfile
)
6169 struct template_symbol
*result
;
6171 result
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct template_symbol
);
6172 initialize_objfile_symbol_1 (&result
->base
);
6180 symbol_objfile (const struct symbol
*symbol
)
6182 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol
));
6183 return SYMTAB_OBJFILE (symbol
->owner
.symtab
);
6189 symbol_arch (const struct symbol
*symbol
)
6191 if (!SYMBOL_OBJFILE_OWNED (symbol
))
6192 return symbol
->owner
.arch
;
6193 return get_objfile_arch (SYMTAB_OBJFILE (symbol
->owner
.symtab
));
6199 symbol_symtab (const struct symbol
*symbol
)
6201 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol
));
6202 return symbol
->owner
.symtab
;
6208 symbol_set_symtab (struct symbol
*symbol
, struct symtab
*symtab
)
6210 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol
));
6211 symbol
->owner
.symtab
= symtab
;
6217 _initialize_symtab (void)
6219 initialize_ordinary_address_classes ();
6222 = register_program_space_data_with_cleanup (NULL
, main_info_cleanup
);
6225 = register_program_space_data_with_cleanup (NULL
, symbol_cache_cleanup
);
6227 add_info ("variables", variables_info
, _("\
6228 All global and static variable names, or those matching REGEXP."));
6230 add_com ("whereis", class_info
, variables_info
, _("\
6231 All global and static variable names, or those matching REGEXP."));
6233 add_info ("functions", functions_info
,
6234 _("All function names, or those matching REGEXP."));
6236 /* FIXME: This command has at least the following problems:
6237 1. It prints builtin types (in a very strange and confusing fashion).
6238 2. It doesn't print right, e.g. with
6239 typedef struct foo *FOO
6240 type_print prints "FOO" when we want to make it (in this situation)
6241 print "struct foo *".
6242 I also think "ptype" or "whatis" is more likely to be useful (but if
6243 there is much disagreement "info types" can be fixed). */
6244 add_info ("types", types_info
,
6245 _("All type names, or those matching REGEXP."));
6247 add_info ("sources", sources_info
,
6248 _("Source files in the program."));
6250 add_com ("rbreak", class_breakpoint
, rbreak_command
,
6251 _("Set a breakpoint for all functions matching REGEXP."));
6253 add_setshow_enum_cmd ("multiple-symbols", no_class
,
6254 multiple_symbols_modes
, &multiple_symbols_mode
,
6256 Set the debugger behavior when more than one symbol are possible matches\n\
6257 in an expression."), _("\
6258 Show how the debugger handles ambiguities in expressions."), _("\
6259 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6260 NULL
, NULL
, &setlist
, &showlist
);
6262 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure
,
6263 &basenames_may_differ
, _("\
6264 Set whether a source file may have multiple base names."), _("\
6265 Show whether a source file may have multiple base names."), _("\
6266 (A \"base name\" is the name of a file with the directory part removed.\n\
6267 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6268 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6269 before comparing them. Canonicalization is an expensive operation,\n\
6270 but it allows the same file be known by more than one base name.\n\
6271 If not set (the default), all source files are assumed to have just\n\
6272 one base name, and gdb will do file name comparisons more efficiently."),
6274 &setlist
, &showlist
);
6276 add_setshow_zuinteger_cmd ("symtab-create", no_class
, &symtab_create_debug
,
6277 _("Set debugging of symbol table creation."),
6278 _("Show debugging of symbol table creation."), _("\
6279 When enabled (non-zero), debugging messages are printed when building\n\
6280 symbol tables. A value of 1 (one) normally provides enough information.\n\
6281 A value greater than 1 provides more verbose information."),
6284 &setdebuglist
, &showdebuglist
);
6286 add_setshow_zuinteger_cmd ("symbol-lookup", no_class
, &symbol_lookup_debug
,
6288 Set debugging of symbol lookup."), _("\
6289 Show debugging of symbol lookup."), _("\
6290 When enabled (non-zero), symbol lookups are logged."),
6292 &setdebuglist
, &showdebuglist
);
6294 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class
,
6295 &new_symbol_cache_size
,
6296 _("Set the size of the symbol cache."),
6297 _("Show the size of the symbol cache."), _("\
6298 The size of the symbol cache.\n\
6299 If zero then the symbol cache is disabled."),
6300 set_symbol_cache_size_handler
, NULL
,
6301 &maintenance_set_cmdlist
,
6302 &maintenance_show_cmdlist
);
6304 add_cmd ("symbol-cache", class_maintenance
, maintenance_print_symbol_cache
,
6305 _("Dump the symbol cache for each program space."),
6306 &maintenanceprintlist
);
6308 add_cmd ("symbol-cache-statistics", class_maintenance
,
6309 maintenance_print_symbol_cache_statistics
,
6310 _("Print symbol cache statistics for each program space."),
6311 &maintenanceprintlist
);
6313 add_cmd ("flush-symbol-cache", class_maintenance
,
6314 maintenance_flush_symbol_cache
,
6315 _("Flush the symbol cache for each program space."),
6318 observer_attach_executable_changed (symtab_observer_executable_changed
);
6319 observer_attach_new_objfile (symtab_new_objfile_observer
);
6320 observer_attach_free_objfile (symtab_free_objfile_observer
);