s390-vregs.exp: Avoid compile errors with older GCCs and on 31-bit targets
[binutils-gdb.git] / gdb / frame.c
blobb3cbf234bd7465aa8020fcf220c18a3556ed9f3f
1 /* Cache and manage frames for GDB, the GNU debugger.
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observer.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
46 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
47 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
49 /* Status of some values cached in the frame_info object. */
51 enum cached_copy_status
53 /* Value is unknown. */
54 CC_UNKNOWN,
56 /* We have a value. */
57 CC_VALUE,
59 /* Value was not saved. */
60 CC_NOT_SAVED,
62 /* Value is unavailable. */
63 CC_UNAVAILABLE
66 /* We keep a cache of stack frames, each of which is a "struct
67 frame_info". The innermost one gets allocated (in
68 wait_for_inferior) each time the inferior stops; current_frame
69 points to it. Additional frames get allocated (in get_prev_frame)
70 as needed, and are chained through the next and prev fields. Any
71 time that the frame cache becomes invalid (most notably when we
72 execute something, but also if we change how we interpret the
73 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
74 which reads new symbols)), we should call reinit_frame_cache. */
76 struct frame_info
78 /* Level of this frame. The inner-most (youngest) frame is at level
79 0. As you move towards the outer-most (oldest) frame, the level
80 increases. This is a cached value. It could just as easily be
81 computed by counting back from the selected frame to the inner
82 most frame. */
83 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
84 reserved to indicate a bogus frame - one that has been created
85 just to keep GDB happy (GDB always needs a frame). For the
86 moment leave this as speculation. */
87 int level;
89 /* The frame's program space. */
90 struct program_space *pspace;
92 /* The frame's address space. */
93 struct address_space *aspace;
95 /* The frame's low-level unwinder and corresponding cache. The
96 low-level unwinder is responsible for unwinding register values
97 for the previous frame. The low-level unwind methods are
98 selected based on the presence, or otherwise, of register unwind
99 information such as CFI. */
100 void *prologue_cache;
101 const struct frame_unwind *unwind;
103 /* Cached copy of the previous frame's architecture. */
104 struct
106 int p;
107 struct gdbarch *arch;
108 } prev_arch;
110 /* Cached copy of the previous frame's resume address. */
111 struct {
112 enum cached_copy_status status;
113 CORE_ADDR value;
114 } prev_pc;
116 /* Cached copy of the previous frame's function address. */
117 struct
119 CORE_ADDR addr;
120 int p;
121 } prev_func;
123 /* This frame's ID. */
124 struct
126 int p;
127 struct frame_id value;
128 } this_id;
130 /* The frame's high-level base methods, and corresponding cache.
131 The high level base methods are selected based on the frame's
132 debug info. */
133 const struct frame_base *base;
134 void *base_cache;
136 /* Pointers to the next (down, inner, younger) and previous (up,
137 outer, older) frame_info's in the frame cache. */
138 struct frame_info *next; /* down, inner, younger */
139 int prev_p;
140 struct frame_info *prev; /* up, outer, older */
142 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
143 could. Only valid when PREV_P is set. */
144 enum unwind_stop_reason stop_reason;
146 /* A frame specific string describing the STOP_REASON in more detail.
147 Only valid when PREV_P is set, but even then may still be NULL. */
148 const char *stop_string;
151 /* A frame stash used to speed up frame lookups. Create a hash table
152 to stash frames previously accessed from the frame cache for
153 quicker subsequent retrieval. The hash table is emptied whenever
154 the frame cache is invalidated. */
156 static htab_t frame_stash;
158 /* Internal function to calculate a hash from the frame_id addresses,
159 using as many valid addresses as possible. Frames below level 0
160 are not stored in the hash table. */
162 static hashval_t
163 frame_addr_hash (const void *ap)
165 const struct frame_info *frame = ap;
166 const struct frame_id f_id = frame->this_id.value;
167 hashval_t hash = 0;
169 gdb_assert (f_id.stack_status != FID_STACK_INVALID
170 || f_id.code_addr_p
171 || f_id.special_addr_p);
173 if (f_id.stack_status == FID_STACK_VALID)
174 hash = iterative_hash (&f_id.stack_addr,
175 sizeof (f_id.stack_addr), hash);
176 if (f_id.code_addr_p)
177 hash = iterative_hash (&f_id.code_addr,
178 sizeof (f_id.code_addr), hash);
179 if (f_id.special_addr_p)
180 hash = iterative_hash (&f_id.special_addr,
181 sizeof (f_id.special_addr), hash);
183 return hash;
186 /* Internal equality function for the hash table. This function
187 defers equality operations to frame_id_eq. */
189 static int
190 frame_addr_hash_eq (const void *a, const void *b)
192 const struct frame_info *f_entry = a;
193 const struct frame_info *f_element = b;
195 return frame_id_eq (f_entry->this_id.value,
196 f_element->this_id.value);
199 /* Internal function to create the frame_stash hash table. 100 seems
200 to be a good compromise to start the hash table at. */
202 static void
203 frame_stash_create (void)
205 frame_stash = htab_create (100,
206 frame_addr_hash,
207 frame_addr_hash_eq,
208 NULL);
211 /* Internal function to add a frame to the frame_stash hash table.
212 Returns false if a frame with the same ID was already stashed, true
213 otherwise. */
215 static int
216 frame_stash_add (struct frame_info *frame)
218 struct frame_info **slot;
220 /* Do not try to stash the sentinel frame. */
221 gdb_assert (frame->level >= 0);
223 slot = (struct frame_info **) htab_find_slot (frame_stash,
224 frame,
225 INSERT);
227 /* If we already have a frame in the stack with the same id, we
228 either have a stack cycle (corrupted stack?), or some bug
229 elsewhere in GDB. In any case, ignore the duplicate and return
230 an indication to the caller. */
231 if (*slot != NULL)
232 return 0;
234 *slot = frame;
235 return 1;
238 /* Internal function to search the frame stash for an entry with the
239 given frame ID. If found, return that frame. Otherwise return
240 NULL. */
242 static struct frame_info *
243 frame_stash_find (struct frame_id id)
245 struct frame_info dummy;
246 struct frame_info *frame;
248 dummy.this_id.value = id;
249 frame = htab_find (frame_stash, &dummy);
250 return frame;
253 /* Internal function to invalidate the frame stash by removing all
254 entries in it. This only occurs when the frame cache is
255 invalidated. */
257 static void
258 frame_stash_invalidate (void)
260 htab_empty (frame_stash);
263 /* Flag to control debugging. */
265 unsigned int frame_debug;
266 static void
267 show_frame_debug (struct ui_file *file, int from_tty,
268 struct cmd_list_element *c, const char *value)
270 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
273 /* Flag to indicate whether backtraces should stop at main et.al. */
275 static int backtrace_past_main;
276 static void
277 show_backtrace_past_main (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
280 fprintf_filtered (file,
281 _("Whether backtraces should "
282 "continue past \"main\" is %s.\n"),
283 value);
286 static int backtrace_past_entry;
287 static void
288 show_backtrace_past_entry (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
291 fprintf_filtered (file, _("Whether backtraces should continue past the "
292 "entry point of a program is %s.\n"),
293 value);
296 static unsigned int backtrace_limit = UINT_MAX;
297 static void
298 show_backtrace_limit (struct ui_file *file, int from_tty,
299 struct cmd_list_element *c, const char *value)
301 fprintf_filtered (file,
302 _("An upper bound on the number "
303 "of backtrace levels is %s.\n"),
304 value);
308 static void
309 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
311 if (p)
312 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
313 else
314 fprintf_unfiltered (file, "!%s", name);
317 void
318 fprint_frame_id (struct ui_file *file, struct frame_id id)
320 fprintf_unfiltered (file, "{");
322 if (id.stack_status == FID_STACK_INVALID)
323 fprintf_unfiltered (file, "!stack");
324 else if (id.stack_status == FID_STACK_UNAVAILABLE)
325 fprintf_unfiltered (file, "stack=<unavailable>");
326 else
327 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
328 fprintf_unfiltered (file, ",");
330 fprint_field (file, "code", id.code_addr_p, id.code_addr);
331 fprintf_unfiltered (file, ",");
333 fprint_field (file, "special", id.special_addr_p, id.special_addr);
335 if (id.artificial_depth)
336 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
338 fprintf_unfiltered (file, "}");
341 static void
342 fprint_frame_type (struct ui_file *file, enum frame_type type)
344 switch (type)
346 case NORMAL_FRAME:
347 fprintf_unfiltered (file, "NORMAL_FRAME");
348 return;
349 case DUMMY_FRAME:
350 fprintf_unfiltered (file, "DUMMY_FRAME");
351 return;
352 case INLINE_FRAME:
353 fprintf_unfiltered (file, "INLINE_FRAME");
354 return;
355 case TAILCALL_FRAME:
356 fprintf_unfiltered (file, "TAILCALL_FRAME");
357 return;
358 case SIGTRAMP_FRAME:
359 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
360 return;
361 case ARCH_FRAME:
362 fprintf_unfiltered (file, "ARCH_FRAME");
363 return;
364 case SENTINEL_FRAME:
365 fprintf_unfiltered (file, "SENTINEL_FRAME");
366 return;
367 default:
368 fprintf_unfiltered (file, "<unknown type>");
369 return;
373 static void
374 fprint_frame (struct ui_file *file, struct frame_info *fi)
376 if (fi == NULL)
378 fprintf_unfiltered (file, "<NULL frame>");
379 return;
381 fprintf_unfiltered (file, "{");
382 fprintf_unfiltered (file, "level=%d", fi->level);
383 fprintf_unfiltered (file, ",");
384 fprintf_unfiltered (file, "type=");
385 if (fi->unwind != NULL)
386 fprint_frame_type (file, fi->unwind->type);
387 else
388 fprintf_unfiltered (file, "<unknown>");
389 fprintf_unfiltered (file, ",");
390 fprintf_unfiltered (file, "unwind=");
391 if (fi->unwind != NULL)
392 gdb_print_host_address (fi->unwind, file);
393 else
394 fprintf_unfiltered (file, "<unknown>");
395 fprintf_unfiltered (file, ",");
396 fprintf_unfiltered (file, "pc=");
397 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
398 fprintf_unfiltered (file, "<unknown>");
399 else if (fi->next->prev_pc.status == CC_VALUE)
400 fprintf_unfiltered (file, "%s",
401 hex_string (fi->next->prev_pc.value));
402 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
403 val_print_not_saved (file);
404 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
405 val_print_unavailable (file);
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "id=");
408 if (fi->this_id.p)
409 fprint_frame_id (file, fi->this_id.value);
410 else
411 fprintf_unfiltered (file, "<unknown>");
412 fprintf_unfiltered (file, ",");
413 fprintf_unfiltered (file, "func=");
414 if (fi->next != NULL && fi->next->prev_func.p)
415 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
416 else
417 fprintf_unfiltered (file, "<unknown>");
418 fprintf_unfiltered (file, "}");
421 /* Given FRAME, return the enclosing frame as found in real frames read-in from
422 inferior memory. Skip any previous frames which were made up by GDB.
423 Return the original frame if no immediate previous frames exist. */
425 static struct frame_info *
426 skip_artificial_frames (struct frame_info *frame)
428 /* Note we use get_prev_frame_always, and not get_prev_frame. The
429 latter will truncate the frame chain, leading to this function
430 unintentionally returning a null_frame_id (e.g., when the user
431 sets a backtrace limit). This is safe, because as these frames
432 are made up by GDB, there must be a real frame in the chain
433 below. */
434 while (get_frame_type (frame) == INLINE_FRAME
435 || get_frame_type (frame) == TAILCALL_FRAME)
436 frame = get_prev_frame_always (frame);
438 return frame;
441 /* Compute the frame's uniq ID that can be used to, later, re-find the
442 frame. */
444 static void
445 compute_frame_id (struct frame_info *fi)
447 gdb_assert (!fi->this_id.p);
449 if (frame_debug)
450 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
451 fi->level);
452 /* Find the unwinder. */
453 if (fi->unwind == NULL)
454 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
455 /* Find THIS frame's ID. */
456 /* Default to outermost if no ID is found. */
457 fi->this_id.value = outer_frame_id;
458 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
459 gdb_assert (frame_id_p (fi->this_id.value));
460 fi->this_id.p = 1;
461 if (frame_debug)
463 fprintf_unfiltered (gdb_stdlog, "-> ");
464 fprint_frame_id (gdb_stdlog, fi->this_id.value);
465 fprintf_unfiltered (gdb_stdlog, " }\n");
469 /* Return a frame uniq ID that can be used to, later, re-find the
470 frame. */
472 struct frame_id
473 get_frame_id (struct frame_info *fi)
475 if (fi == NULL)
476 return null_frame_id;
478 gdb_assert (fi->this_id.p);
479 return fi->this_id.value;
482 struct frame_id
483 get_stack_frame_id (struct frame_info *next_frame)
485 return get_frame_id (skip_artificial_frames (next_frame));
488 struct frame_id
489 frame_unwind_caller_id (struct frame_info *next_frame)
491 struct frame_info *this_frame;
493 /* Use get_prev_frame_always, and not get_prev_frame. The latter
494 will truncate the frame chain, leading to this function
495 unintentionally returning a null_frame_id (e.g., when a caller
496 requests the frame ID of "main()"s caller. */
498 next_frame = skip_artificial_frames (next_frame);
499 this_frame = get_prev_frame_always (next_frame);
500 if (this_frame)
501 return get_frame_id (skip_artificial_frames (this_frame));
502 else
503 return null_frame_id;
506 const struct frame_id null_frame_id; /* All zeros. */
507 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
509 struct frame_id
510 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
511 CORE_ADDR special_addr)
513 struct frame_id id = null_frame_id;
515 id.stack_addr = stack_addr;
516 id.stack_status = FID_STACK_VALID;
517 id.code_addr = code_addr;
518 id.code_addr_p = 1;
519 id.special_addr = special_addr;
520 id.special_addr_p = 1;
521 return id;
524 /* See frame.h. */
526 struct frame_id
527 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
529 struct frame_id id = null_frame_id;
531 id.stack_status = FID_STACK_UNAVAILABLE;
532 id.code_addr = code_addr;
533 id.code_addr_p = 1;
534 return id;
537 /* See frame.h. */
539 struct frame_id
540 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
541 CORE_ADDR special_addr)
543 struct frame_id id = null_frame_id;
545 id.stack_status = FID_STACK_UNAVAILABLE;
546 id.code_addr = code_addr;
547 id.code_addr_p = 1;
548 id.special_addr = special_addr;
549 id.special_addr_p = 1;
550 return id;
553 struct frame_id
554 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
556 struct frame_id id = null_frame_id;
558 id.stack_addr = stack_addr;
559 id.stack_status = FID_STACK_VALID;
560 id.code_addr = code_addr;
561 id.code_addr_p = 1;
562 return id;
565 struct frame_id
566 frame_id_build_wild (CORE_ADDR stack_addr)
568 struct frame_id id = null_frame_id;
570 id.stack_addr = stack_addr;
571 id.stack_status = FID_STACK_VALID;
572 return id;
576 frame_id_p (struct frame_id l)
578 int p;
580 /* The frame is valid iff it has a valid stack address. */
581 p = l.stack_status != FID_STACK_INVALID;
582 /* outer_frame_id is also valid. */
583 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
584 p = 1;
585 if (frame_debug)
587 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
588 fprint_frame_id (gdb_stdlog, l);
589 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
591 return p;
595 frame_id_artificial_p (struct frame_id l)
597 if (!frame_id_p (l))
598 return 0;
600 return (l.artificial_depth != 0);
604 frame_id_eq (struct frame_id l, struct frame_id r)
606 int eq;
608 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
609 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
610 /* The outermost frame marker is equal to itself. This is the
611 dodgy thing about outer_frame_id, since between execution steps
612 we might step into another function - from which we can't
613 unwind either. More thought required to get rid of
614 outer_frame_id. */
615 eq = 1;
616 else if (l.stack_status == FID_STACK_INVALID
617 || r.stack_status == FID_STACK_INVALID)
618 /* Like a NaN, if either ID is invalid, the result is false.
619 Note that a frame ID is invalid iff it is the null frame ID. */
620 eq = 0;
621 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
622 /* If .stack addresses are different, the frames are different. */
623 eq = 0;
624 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
625 /* An invalid code addr is a wild card. If .code addresses are
626 different, the frames are different. */
627 eq = 0;
628 else if (l.special_addr_p && r.special_addr_p
629 && l.special_addr != r.special_addr)
630 /* An invalid special addr is a wild card (or unused). Otherwise
631 if special addresses are different, the frames are different. */
632 eq = 0;
633 else if (l.artificial_depth != r.artificial_depth)
634 /* If artifical depths are different, the frames must be different. */
635 eq = 0;
636 else
637 /* Frames are equal. */
638 eq = 1;
640 if (frame_debug)
642 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
643 fprint_frame_id (gdb_stdlog, l);
644 fprintf_unfiltered (gdb_stdlog, ",r=");
645 fprint_frame_id (gdb_stdlog, r);
646 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
648 return eq;
651 /* Safety net to check whether frame ID L should be inner to
652 frame ID R, according to their stack addresses.
654 This method cannot be used to compare arbitrary frames, as the
655 ranges of valid stack addresses may be discontiguous (e.g. due
656 to sigaltstack).
658 However, it can be used as safety net to discover invalid frame
659 IDs in certain circumstances. Assuming that NEXT is the immediate
660 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
662 * The stack address of NEXT must be inner-than-or-equal to the stack
663 address of THIS.
665 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
666 error has occurred.
668 * If NEXT and THIS have different stack addresses, no other frame
669 in the frame chain may have a stack address in between.
671 Therefore, if frame_id_inner (TEST, THIS) holds, but
672 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
673 to a valid frame in the frame chain.
675 The sanity checks above cannot be performed when a SIGTRAMP frame
676 is involved, because signal handlers might be executed on a different
677 stack than the stack used by the routine that caused the signal
678 to be raised. This can happen for instance when a thread exceeds
679 its maximum stack size. In this case, certain compilers implement
680 a stack overflow strategy that cause the handler to be run on a
681 different stack. */
683 static int
684 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
686 int inner;
688 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
689 /* Like NaN, any operation involving an invalid ID always fails.
690 Likewise if either ID has an unavailable stack address. */
691 inner = 0;
692 else if (l.artificial_depth > r.artificial_depth
693 && l.stack_addr == r.stack_addr
694 && l.code_addr_p == r.code_addr_p
695 && l.special_addr_p == r.special_addr_p
696 && l.special_addr == r.special_addr)
698 /* Same function, different inlined functions. */
699 const struct block *lb, *rb;
701 gdb_assert (l.code_addr_p && r.code_addr_p);
703 lb = block_for_pc (l.code_addr);
704 rb = block_for_pc (r.code_addr);
706 if (lb == NULL || rb == NULL)
707 /* Something's gone wrong. */
708 inner = 0;
709 else
710 /* This will return true if LB and RB are the same block, or
711 if the block with the smaller depth lexically encloses the
712 block with the greater depth. */
713 inner = contained_in (lb, rb);
715 else
716 /* Only return non-zero when strictly inner than. Note that, per
717 comment in "frame.h", there is some fuzz here. Frameless
718 functions are not strictly inner than (same .stack but
719 different .code and/or .special address). */
720 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
721 if (frame_debug)
723 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
724 fprint_frame_id (gdb_stdlog, l);
725 fprintf_unfiltered (gdb_stdlog, ",r=");
726 fprint_frame_id (gdb_stdlog, r);
727 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
729 return inner;
732 struct frame_info *
733 frame_find_by_id (struct frame_id id)
735 struct frame_info *frame, *prev_frame;
737 /* ZERO denotes the null frame, let the caller decide what to do
738 about it. Should it instead return get_current_frame()? */
739 if (!frame_id_p (id))
740 return NULL;
742 /* Try using the frame stash first. Finding it there removes the need
743 to perform the search by looping over all frames, which can be very
744 CPU-intensive if the number of frames is very high (the loop is O(n)
745 and get_prev_frame performs a series of checks that are relatively
746 expensive). This optimization is particularly useful when this function
747 is called from another function (such as value_fetch_lazy, case
748 VALUE_LVAL (val) == lval_register) which already loops over all frames,
749 making the overall behavior O(n^2). */
750 frame = frame_stash_find (id);
751 if (frame)
752 return frame;
754 for (frame = get_current_frame (); ; frame = prev_frame)
756 struct frame_id self = get_frame_id (frame);
758 if (frame_id_eq (id, self))
759 /* An exact match. */
760 return frame;
762 prev_frame = get_prev_frame (frame);
763 if (!prev_frame)
764 return NULL;
766 /* As a safety net to avoid unnecessary backtracing while trying
767 to find an invalid ID, we check for a common situation where
768 we can detect from comparing stack addresses that no other
769 frame in the current frame chain can have this ID. See the
770 comment at frame_id_inner for details. */
771 if (get_frame_type (frame) == NORMAL_FRAME
772 && !frame_id_inner (get_frame_arch (frame), id, self)
773 && frame_id_inner (get_frame_arch (prev_frame), id,
774 get_frame_id (prev_frame)))
775 return NULL;
777 return NULL;
780 static CORE_ADDR
781 frame_unwind_pc (struct frame_info *this_frame)
783 if (this_frame->prev_pc.status == CC_UNKNOWN)
785 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
787 struct gdbarch *prev_gdbarch;
788 CORE_ADDR pc = 0;
789 int pc_p = 0;
791 /* The right way. The `pure' way. The one true way. This
792 method depends solely on the register-unwind code to
793 determine the value of registers in THIS frame, and hence
794 the value of this frame's PC (resume address). A typical
795 implementation is no more than:
797 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
798 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
800 Note: this method is very heavily dependent on a correct
801 register-unwind implementation, it pays to fix that
802 method first; this method is frame type agnostic, since
803 it only deals with register values, it works with any
804 frame. This is all in stark contrast to the old
805 FRAME_SAVED_PC which would try to directly handle all the
806 different ways that a PC could be unwound. */
807 prev_gdbarch = frame_unwind_arch (this_frame);
811 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
812 pc_p = 1;
814 CATCH (ex, RETURN_MASK_ERROR)
816 if (ex.error == NOT_AVAILABLE_ERROR)
818 this_frame->prev_pc.status = CC_UNAVAILABLE;
820 if (frame_debug)
821 fprintf_unfiltered (gdb_stdlog,
822 "{ frame_unwind_pc (this_frame=%d)"
823 " -> <unavailable> }\n",
824 this_frame->level);
826 else if (ex.error == OPTIMIZED_OUT_ERROR)
828 this_frame->prev_pc.status = CC_NOT_SAVED;
830 if (frame_debug)
831 fprintf_unfiltered (gdb_stdlog,
832 "{ frame_unwind_pc (this_frame=%d)"
833 " -> <not saved> }\n",
834 this_frame->level);
836 else
837 throw_exception (ex);
839 END_CATCH
841 if (pc_p)
843 this_frame->prev_pc.value = pc;
844 this_frame->prev_pc.status = CC_VALUE;
845 if (frame_debug)
846 fprintf_unfiltered (gdb_stdlog,
847 "{ frame_unwind_pc (this_frame=%d) "
848 "-> %s }\n",
849 this_frame->level,
850 hex_string (this_frame->prev_pc.value));
853 else
854 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
857 if (this_frame->prev_pc.status == CC_VALUE)
858 return this_frame->prev_pc.value;
859 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
860 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
861 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
862 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
863 else
864 internal_error (__FILE__, __LINE__,
865 "unexpected prev_pc status: %d",
866 (int) this_frame->prev_pc.status);
869 CORE_ADDR
870 frame_unwind_caller_pc (struct frame_info *this_frame)
872 return frame_unwind_pc (skip_artificial_frames (this_frame));
876 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
878 struct frame_info *next_frame = this_frame->next;
880 if (!next_frame->prev_func.p)
882 CORE_ADDR addr_in_block;
884 /* Make certain that this, and not the adjacent, function is
885 found. */
886 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
888 next_frame->prev_func.p = -1;
889 if (frame_debug)
890 fprintf_unfiltered (gdb_stdlog,
891 "{ get_frame_func (this_frame=%d)"
892 " -> unavailable }\n",
893 this_frame->level);
895 else
897 next_frame->prev_func.p = 1;
898 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
899 if (frame_debug)
900 fprintf_unfiltered (gdb_stdlog,
901 "{ get_frame_func (this_frame=%d) -> %s }\n",
902 this_frame->level,
903 hex_string (next_frame->prev_func.addr));
907 if (next_frame->prev_func.p < 0)
909 *pc = -1;
910 return 0;
912 else
914 *pc = next_frame->prev_func.addr;
915 return 1;
919 CORE_ADDR
920 get_frame_func (struct frame_info *this_frame)
922 CORE_ADDR pc;
924 if (!get_frame_func_if_available (this_frame, &pc))
925 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
927 return pc;
930 static enum register_status
931 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
933 if (!deprecated_frame_register_read (src, regnum, buf))
934 return REG_UNAVAILABLE;
935 else
936 return REG_VALID;
939 struct regcache *
940 frame_save_as_regcache (struct frame_info *this_frame)
942 struct address_space *aspace = get_frame_address_space (this_frame);
943 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
944 aspace);
945 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
947 regcache_save (regcache, do_frame_register_read, this_frame);
948 discard_cleanups (cleanups);
949 return regcache;
952 void
953 frame_pop (struct frame_info *this_frame)
955 struct frame_info *prev_frame;
956 struct regcache *scratch;
957 struct cleanup *cleanups;
959 if (get_frame_type (this_frame) == DUMMY_FRAME)
961 /* Popping a dummy frame involves restoring more than just registers.
962 dummy_frame_pop does all the work. */
963 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
964 return;
967 /* Ensure that we have a frame to pop to. */
968 prev_frame = get_prev_frame_always (this_frame);
970 if (!prev_frame)
971 error (_("Cannot pop the initial frame."));
973 /* Ignore TAILCALL_FRAME type frames, they were executed already before
974 entering THISFRAME. */
975 while (get_frame_type (prev_frame) == TAILCALL_FRAME)
976 prev_frame = get_prev_frame (prev_frame);
978 /* Make a copy of all the register values unwound from this frame.
979 Save them in a scratch buffer so that there isn't a race between
980 trying to extract the old values from the current regcache while
981 at the same time writing new values into that same cache. */
982 scratch = frame_save_as_regcache (prev_frame);
983 cleanups = make_cleanup_regcache_xfree (scratch);
985 /* FIXME: cagney/2003-03-16: It should be possible to tell the
986 target's register cache that it is about to be hit with a burst
987 register transfer and that the sequence of register writes should
988 be batched. The pair target_prepare_to_store() and
989 target_store_registers() kind of suggest this functionality.
990 Unfortunately, they don't implement it. Their lack of a formal
991 definition can lead to targets writing back bogus values
992 (arguably a bug in the target code mind). */
993 /* Now copy those saved registers into the current regcache.
994 Here, regcache_cpy() calls regcache_restore(). */
995 regcache_cpy (get_current_regcache (), scratch);
996 do_cleanups (cleanups);
998 /* We've made right mess of GDB's local state, just discard
999 everything. */
1000 reinit_frame_cache ();
1003 void
1004 frame_register_unwind (struct frame_info *frame, int regnum,
1005 int *optimizedp, int *unavailablep,
1006 enum lval_type *lvalp, CORE_ADDR *addrp,
1007 int *realnump, gdb_byte *bufferp)
1009 struct value *value;
1011 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1012 that the value proper does not need to be fetched. */
1013 gdb_assert (optimizedp != NULL);
1014 gdb_assert (lvalp != NULL);
1015 gdb_assert (addrp != NULL);
1016 gdb_assert (realnump != NULL);
1017 /* gdb_assert (bufferp != NULL); */
1019 value = frame_unwind_register_value (frame, regnum);
1021 gdb_assert (value != NULL);
1023 *optimizedp = value_optimized_out (value);
1024 *unavailablep = !value_entirely_available (value);
1025 *lvalp = VALUE_LVAL (value);
1026 *addrp = value_address (value);
1027 *realnump = VALUE_REGNUM (value);
1029 if (bufferp)
1031 if (!*optimizedp && !*unavailablep)
1032 memcpy (bufferp, value_contents_all (value),
1033 TYPE_LENGTH (value_type (value)));
1034 else
1035 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1038 /* Dispose of the new value. This prevents watchpoints from
1039 trying to watch the saved frame pointer. */
1040 release_value (value);
1041 value_free (value);
1044 void
1045 frame_register (struct frame_info *frame, int regnum,
1046 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1047 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1049 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1050 that the value proper does not need to be fetched. */
1051 gdb_assert (optimizedp != NULL);
1052 gdb_assert (lvalp != NULL);
1053 gdb_assert (addrp != NULL);
1054 gdb_assert (realnump != NULL);
1055 /* gdb_assert (bufferp != NULL); */
1057 /* Obtain the register value by unwinding the register from the next
1058 (more inner frame). */
1059 gdb_assert (frame != NULL && frame->next != NULL);
1060 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1061 lvalp, addrp, realnump, bufferp);
1064 void
1065 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1067 int optimized;
1068 int unavailable;
1069 CORE_ADDR addr;
1070 int realnum;
1071 enum lval_type lval;
1073 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1074 &lval, &addr, &realnum, buf);
1076 if (optimized)
1077 throw_error (OPTIMIZED_OUT_ERROR,
1078 _("Register %d was not saved"), regnum);
1079 if (unavailable)
1080 throw_error (NOT_AVAILABLE_ERROR,
1081 _("Register %d is not available"), regnum);
1084 void
1085 get_frame_register (struct frame_info *frame,
1086 int regnum, gdb_byte *buf)
1088 frame_unwind_register (frame->next, regnum, buf);
1091 struct value *
1092 frame_unwind_register_value (struct frame_info *frame, int regnum)
1094 struct gdbarch *gdbarch;
1095 struct value *value;
1097 gdb_assert (frame != NULL);
1098 gdbarch = frame_unwind_arch (frame);
1100 if (frame_debug)
1102 fprintf_unfiltered (gdb_stdlog,
1103 "{ frame_unwind_register_value "
1104 "(frame=%d,regnum=%d(%s),...) ",
1105 frame->level, regnum,
1106 user_reg_map_regnum_to_name (gdbarch, regnum));
1109 /* Find the unwinder. */
1110 if (frame->unwind == NULL)
1111 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1113 /* Ask this frame to unwind its register. */
1114 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1116 if (frame_debug)
1118 fprintf_unfiltered (gdb_stdlog, "->");
1119 if (value_optimized_out (value))
1121 fprintf_unfiltered (gdb_stdlog, " ");
1122 val_print_optimized_out (value, gdb_stdlog);
1124 else
1126 if (VALUE_LVAL (value) == lval_register)
1127 fprintf_unfiltered (gdb_stdlog, " register=%d",
1128 VALUE_REGNUM (value));
1129 else if (VALUE_LVAL (value) == lval_memory)
1130 fprintf_unfiltered (gdb_stdlog, " address=%s",
1131 paddress (gdbarch,
1132 value_address (value)));
1133 else
1134 fprintf_unfiltered (gdb_stdlog, " computed");
1136 if (value_lazy (value))
1137 fprintf_unfiltered (gdb_stdlog, " lazy");
1138 else
1140 int i;
1141 const gdb_byte *buf = value_contents (value);
1143 fprintf_unfiltered (gdb_stdlog, " bytes=");
1144 fprintf_unfiltered (gdb_stdlog, "[");
1145 for (i = 0; i < register_size (gdbarch, regnum); i++)
1146 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1147 fprintf_unfiltered (gdb_stdlog, "]");
1151 fprintf_unfiltered (gdb_stdlog, " }\n");
1154 return value;
1157 struct value *
1158 get_frame_register_value (struct frame_info *frame, int regnum)
1160 return frame_unwind_register_value (frame->next, regnum);
1163 LONGEST
1164 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1166 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1167 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1168 int size = register_size (gdbarch, regnum);
1169 gdb_byte buf[MAX_REGISTER_SIZE];
1171 frame_unwind_register (frame, regnum, buf);
1172 return extract_signed_integer (buf, size, byte_order);
1175 LONGEST
1176 get_frame_register_signed (struct frame_info *frame, int regnum)
1178 return frame_unwind_register_signed (frame->next, regnum);
1181 ULONGEST
1182 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1184 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1185 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1186 int size = register_size (gdbarch, regnum);
1187 gdb_byte buf[MAX_REGISTER_SIZE];
1189 frame_unwind_register (frame, regnum, buf);
1190 return extract_unsigned_integer (buf, size, byte_order);
1193 ULONGEST
1194 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1196 return frame_unwind_register_unsigned (frame->next, regnum);
1200 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1201 ULONGEST *val)
1203 struct value *regval = get_frame_register_value (frame, regnum);
1205 if (!value_optimized_out (regval)
1206 && value_entirely_available (regval))
1208 struct gdbarch *gdbarch = get_frame_arch (frame);
1209 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1210 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1212 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1213 return 1;
1216 return 0;
1219 void
1220 put_frame_register (struct frame_info *frame, int regnum,
1221 const gdb_byte *buf)
1223 struct gdbarch *gdbarch = get_frame_arch (frame);
1224 int realnum;
1225 int optim;
1226 int unavail;
1227 enum lval_type lval;
1228 CORE_ADDR addr;
1230 frame_register (frame, regnum, &optim, &unavail,
1231 &lval, &addr, &realnum, NULL);
1232 if (optim)
1233 error (_("Attempt to assign to a register that was not saved."));
1234 switch (lval)
1236 case lval_memory:
1238 write_memory (addr, buf, register_size (gdbarch, regnum));
1239 break;
1241 case lval_register:
1242 regcache_cooked_write (get_current_regcache (), realnum, buf);
1243 break;
1244 default:
1245 error (_("Attempt to assign to an unmodifiable value."));
1249 /* This function is deprecated. Use get_frame_register_value instead,
1250 which provides more accurate information.
1252 Find and return the value of REGNUM for the specified stack frame.
1253 The number of bytes copied is REGISTER_SIZE (REGNUM).
1255 Returns 0 if the register value could not be found. */
1258 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1259 gdb_byte *myaddr)
1261 int optimized;
1262 int unavailable;
1263 enum lval_type lval;
1264 CORE_ADDR addr;
1265 int realnum;
1267 frame_register (frame, regnum, &optimized, &unavailable,
1268 &lval, &addr, &realnum, myaddr);
1270 return !optimized && !unavailable;
1274 get_frame_register_bytes (struct frame_info *frame, int regnum,
1275 CORE_ADDR offset, int len, gdb_byte *myaddr,
1276 int *optimizedp, int *unavailablep)
1278 struct gdbarch *gdbarch = get_frame_arch (frame);
1279 int i;
1280 int maxsize;
1281 int numregs;
1283 /* Skip registers wholly inside of OFFSET. */
1284 while (offset >= register_size (gdbarch, regnum))
1286 offset -= register_size (gdbarch, regnum);
1287 regnum++;
1290 /* Ensure that we will not read beyond the end of the register file.
1291 This can only ever happen if the debug information is bad. */
1292 maxsize = -offset;
1293 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1294 for (i = regnum; i < numregs; i++)
1296 int thissize = register_size (gdbarch, i);
1298 if (thissize == 0)
1299 break; /* This register is not available on this architecture. */
1300 maxsize += thissize;
1302 if (len > maxsize)
1303 error (_("Bad debug information detected: "
1304 "Attempt to read %d bytes from registers."), len);
1306 /* Copy the data. */
1307 while (len > 0)
1309 int curr_len = register_size (gdbarch, regnum) - offset;
1311 if (curr_len > len)
1312 curr_len = len;
1314 if (curr_len == register_size (gdbarch, regnum))
1316 enum lval_type lval;
1317 CORE_ADDR addr;
1318 int realnum;
1320 frame_register (frame, regnum, optimizedp, unavailablep,
1321 &lval, &addr, &realnum, myaddr);
1322 if (*optimizedp || *unavailablep)
1323 return 0;
1325 else
1327 gdb_byte buf[MAX_REGISTER_SIZE];
1328 enum lval_type lval;
1329 CORE_ADDR addr;
1330 int realnum;
1332 frame_register (frame, regnum, optimizedp, unavailablep,
1333 &lval, &addr, &realnum, buf);
1334 if (*optimizedp || *unavailablep)
1335 return 0;
1336 memcpy (myaddr, buf + offset, curr_len);
1339 myaddr += curr_len;
1340 len -= curr_len;
1341 offset = 0;
1342 regnum++;
1345 *optimizedp = 0;
1346 *unavailablep = 0;
1347 return 1;
1350 void
1351 put_frame_register_bytes (struct frame_info *frame, int regnum,
1352 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1354 struct gdbarch *gdbarch = get_frame_arch (frame);
1356 /* Skip registers wholly inside of OFFSET. */
1357 while (offset >= register_size (gdbarch, regnum))
1359 offset -= register_size (gdbarch, regnum);
1360 regnum++;
1363 /* Copy the data. */
1364 while (len > 0)
1366 int curr_len = register_size (gdbarch, regnum) - offset;
1368 if (curr_len > len)
1369 curr_len = len;
1371 if (curr_len == register_size (gdbarch, regnum))
1373 put_frame_register (frame, regnum, myaddr);
1375 else
1377 gdb_byte buf[MAX_REGISTER_SIZE];
1379 deprecated_frame_register_read (frame, regnum, buf);
1380 memcpy (buf + offset, myaddr, curr_len);
1381 put_frame_register (frame, regnum, buf);
1384 myaddr += curr_len;
1385 len -= curr_len;
1386 offset = 0;
1387 regnum++;
1391 /* Create a sentinel frame. */
1393 static struct frame_info *
1394 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1396 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1398 frame->level = -1;
1399 frame->pspace = pspace;
1400 frame->aspace = get_regcache_aspace (regcache);
1401 /* Explicitly initialize the sentinel frame's cache. Provide it
1402 with the underlying regcache. In the future additional
1403 information, such as the frame's thread will be added. */
1404 frame->prologue_cache = sentinel_frame_cache (regcache);
1405 /* For the moment there is only one sentinel frame implementation. */
1406 frame->unwind = &sentinel_frame_unwind;
1407 /* Link this frame back to itself. The frame is self referential
1408 (the unwound PC is the same as the pc), so make it so. */
1409 frame->next = frame;
1410 /* Make the sentinel frame's ID valid, but invalid. That way all
1411 comparisons with it should fail. */
1412 frame->this_id.p = 1;
1413 frame->this_id.value = null_frame_id;
1414 if (frame_debug)
1416 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1417 fprint_frame (gdb_stdlog, frame);
1418 fprintf_unfiltered (gdb_stdlog, " }\n");
1420 return frame;
1423 /* Info about the innermost stack frame (contents of FP register). */
1425 static struct frame_info *current_frame;
1427 /* Cache for frame addresses already read by gdb. Valid only while
1428 inferior is stopped. Control variables for the frame cache should
1429 be local to this module. */
1431 static struct obstack frame_cache_obstack;
1433 void *
1434 frame_obstack_zalloc (unsigned long size)
1436 void *data = obstack_alloc (&frame_cache_obstack, size);
1438 memset (data, 0, size);
1439 return data;
1442 /* Return the innermost (currently executing) stack frame. This is
1443 split into two functions. The function unwind_to_current_frame()
1444 is wrapped in catch exceptions so that, even when the unwind of the
1445 sentinel frame fails, the function still returns a stack frame. */
1447 static int
1448 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1450 struct frame_info *frame = get_prev_frame (args);
1452 /* A sentinel frame can fail to unwind, e.g., because its PC value
1453 lands in somewhere like start. */
1454 if (frame == NULL)
1455 return 1;
1456 current_frame = frame;
1457 return 0;
1460 struct frame_info *
1461 get_current_frame (void)
1463 /* First check, and report, the lack of registers. Having GDB
1464 report "No stack!" or "No memory" when the target doesn't even
1465 have registers is very confusing. Besides, "printcmd.exp"
1466 explicitly checks that ``print $pc'' with no registers prints "No
1467 registers". */
1468 if (!target_has_registers)
1469 error (_("No registers."));
1470 if (!target_has_stack)
1471 error (_("No stack."));
1472 if (!target_has_memory)
1473 error (_("No memory."));
1474 /* Traceframes are effectively a substitute for the live inferior. */
1475 if (get_traceframe_number () < 0)
1477 if (ptid_equal (inferior_ptid, null_ptid))
1478 error (_("No selected thread."));
1479 if (is_exited (inferior_ptid))
1480 error (_("Invalid selected thread."));
1481 if (is_executing (inferior_ptid))
1482 error (_("Target is executing."));
1485 if (current_frame == NULL)
1487 struct frame_info *sentinel_frame =
1488 create_sentinel_frame (current_program_space, get_current_regcache ());
1489 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1490 sentinel_frame, RETURN_MASK_ERROR) != 0)
1492 /* Oops! Fake a current frame? Is this useful? It has a PC
1493 of zero, for instance. */
1494 current_frame = sentinel_frame;
1497 return current_frame;
1500 /* The "selected" stack frame is used by default for local and arg
1501 access. May be zero, for no selected frame. */
1503 static struct frame_info *selected_frame;
1506 has_stack_frames (void)
1508 if (!target_has_registers || !target_has_stack || !target_has_memory)
1509 return 0;
1511 /* Traceframes are effectively a substitute for the live inferior. */
1512 if (get_traceframe_number () < 0)
1514 /* No current inferior, no frame. */
1515 if (ptid_equal (inferior_ptid, null_ptid))
1516 return 0;
1518 /* Don't try to read from a dead thread. */
1519 if (is_exited (inferior_ptid))
1520 return 0;
1522 /* ... or from a spinning thread. */
1523 if (is_executing (inferior_ptid))
1524 return 0;
1527 return 1;
1530 /* Return the selected frame. Always non-NULL (unless there isn't an
1531 inferior sufficient for creating a frame) in which case an error is
1532 thrown. */
1534 struct frame_info *
1535 get_selected_frame (const char *message)
1537 if (selected_frame == NULL)
1539 if (message != NULL && !has_stack_frames ())
1540 error (("%s"), message);
1541 /* Hey! Don't trust this. It should really be re-finding the
1542 last selected frame of the currently selected thread. This,
1543 though, is better than nothing. */
1544 select_frame (get_current_frame ());
1546 /* There is always a frame. */
1547 gdb_assert (selected_frame != NULL);
1548 return selected_frame;
1551 /* If there is a selected frame, return it. Otherwise, return NULL. */
1553 struct frame_info *
1554 get_selected_frame_if_set (void)
1556 return selected_frame;
1559 /* This is a variant of get_selected_frame() which can be called when
1560 the inferior does not have a frame; in that case it will return
1561 NULL instead of calling error(). */
1563 struct frame_info *
1564 deprecated_safe_get_selected_frame (void)
1566 if (!has_stack_frames ())
1567 return NULL;
1568 return get_selected_frame (NULL);
1571 /* Select frame FI (or NULL - to invalidate the current frame). */
1573 void
1574 select_frame (struct frame_info *fi)
1576 selected_frame = fi;
1577 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1578 frame is being invalidated. */
1579 if (deprecated_selected_frame_level_changed_hook)
1580 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1582 /* FIXME: kseitz/2002-08-28: It would be nice to call
1583 selected_frame_level_changed_event() right here, but due to limitations
1584 in the current interfaces, we would end up flooding UIs with events
1585 because select_frame() is used extensively internally.
1587 Once we have frame-parameterized frame (and frame-related) commands,
1588 the event notification can be moved here, since this function will only
1589 be called when the user's selected frame is being changed. */
1591 /* Ensure that symbols for this frame are read in. Also, determine the
1592 source language of this frame, and switch to it if desired. */
1593 if (fi)
1595 CORE_ADDR pc;
1597 /* We retrieve the frame's symtab by using the frame PC.
1598 However we cannot use the frame PC as-is, because it usually
1599 points to the instruction following the "call", which is
1600 sometimes the first instruction of another function. So we
1601 rely on get_frame_address_in_block() which provides us with a
1602 PC which is guaranteed to be inside the frame's code
1603 block. */
1604 if (get_frame_address_in_block_if_available (fi, &pc))
1606 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1608 if (cust != NULL
1609 && compunit_language (cust) != current_language->la_language
1610 && compunit_language (cust) != language_unknown
1611 && language_mode == language_mode_auto)
1612 set_language (compunit_language (cust));
1617 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1618 Always returns a non-NULL value. */
1620 struct frame_info *
1621 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1623 struct frame_info *fi;
1625 if (frame_debug)
1627 fprintf_unfiltered (gdb_stdlog,
1628 "{ create_new_frame (addr=%s, pc=%s) ",
1629 hex_string (addr), hex_string (pc));
1632 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1634 fi->next = create_sentinel_frame (current_program_space,
1635 get_current_regcache ());
1637 /* Set/update this frame's cached PC value, found in the next frame.
1638 Do this before looking for this frame's unwinder. A sniffer is
1639 very likely to read this, and the corresponding unwinder is
1640 entitled to rely that the PC doesn't magically change. */
1641 fi->next->prev_pc.value = pc;
1642 fi->next->prev_pc.status = CC_VALUE;
1644 /* We currently assume that frame chain's can't cross spaces. */
1645 fi->pspace = fi->next->pspace;
1646 fi->aspace = fi->next->aspace;
1648 /* Select/initialize both the unwind function and the frame's type
1649 based on the PC. */
1650 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1652 fi->this_id.p = 1;
1653 fi->this_id.value = frame_id_build (addr, pc);
1655 if (frame_debug)
1657 fprintf_unfiltered (gdb_stdlog, "-> ");
1658 fprint_frame (gdb_stdlog, fi);
1659 fprintf_unfiltered (gdb_stdlog, " }\n");
1662 return fi;
1665 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1666 innermost frame). Be careful to not fall off the bottom of the
1667 frame chain and onto the sentinel frame. */
1669 struct frame_info *
1670 get_next_frame (struct frame_info *this_frame)
1672 if (this_frame->level > 0)
1673 return this_frame->next;
1674 else
1675 return NULL;
1678 /* Observer for the target_changed event. */
1680 static void
1681 frame_observer_target_changed (struct target_ops *target)
1683 reinit_frame_cache ();
1686 /* Flush the entire frame cache. */
1688 void
1689 reinit_frame_cache (void)
1691 struct frame_info *fi;
1693 /* Tear down all frame caches. */
1694 for (fi = current_frame; fi != NULL; fi = fi->prev)
1696 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1697 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1698 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1699 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1702 /* Since we can't really be sure what the first object allocated was. */
1703 obstack_free (&frame_cache_obstack, 0);
1704 obstack_init (&frame_cache_obstack);
1706 if (current_frame != NULL)
1707 annotate_frames_invalid ();
1709 current_frame = NULL; /* Invalidate cache */
1710 select_frame (NULL);
1711 frame_stash_invalidate ();
1712 if (frame_debug)
1713 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1716 /* Find where a register is saved (in memory or another register).
1717 The result of frame_register_unwind is just where it is saved
1718 relative to this particular frame. */
1720 static void
1721 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1722 int *optimizedp, enum lval_type *lvalp,
1723 CORE_ADDR *addrp, int *realnump)
1725 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1727 while (this_frame != NULL)
1729 int unavailable;
1731 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1732 lvalp, addrp, realnump, NULL);
1734 if (*optimizedp)
1735 break;
1737 if (*lvalp != lval_register)
1738 break;
1740 regnum = *realnump;
1741 this_frame = get_next_frame (this_frame);
1745 /* Called during frame unwinding to remove a previous frame pointer from a
1746 frame passed in ARG. */
1748 static void
1749 remove_prev_frame (void *arg)
1751 struct frame_info *this_frame, *prev_frame;
1753 this_frame = (struct frame_info *) arg;
1754 prev_frame = this_frame->prev;
1755 gdb_assert (prev_frame != NULL);
1757 prev_frame->next = NULL;
1758 this_frame->prev = NULL;
1761 /* Get the previous raw frame, and check that it is not identical to
1762 same other frame frame already in the chain. If it is, there is
1763 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1764 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1765 validity tests, that compare THIS_FRAME and the next frame, we do
1766 this right after creating the previous frame, to avoid ever ending
1767 up with two frames with the same id in the frame chain. */
1769 static struct frame_info *
1770 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1772 struct frame_info *prev_frame;
1773 struct cleanup *prev_frame_cleanup;
1775 prev_frame = get_prev_frame_raw (this_frame);
1776 if (prev_frame == NULL)
1777 return NULL;
1779 /* The cleanup will remove the previous frame that get_prev_frame_raw
1780 linked onto THIS_FRAME. */
1781 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1783 compute_frame_id (prev_frame);
1784 if (!frame_stash_add (prev_frame))
1786 /* Another frame with the same id was already in the stash. We just
1787 detected a cycle. */
1788 if (frame_debug)
1790 fprintf_unfiltered (gdb_stdlog, "-> ");
1791 fprint_frame (gdb_stdlog, NULL);
1792 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1794 this_frame->stop_reason = UNWIND_SAME_ID;
1795 /* Unlink. */
1796 prev_frame->next = NULL;
1797 this_frame->prev = NULL;
1798 prev_frame = NULL;
1801 discard_cleanups (prev_frame_cleanup);
1802 return prev_frame;
1805 /* Helper function for get_prev_frame_always, this is called inside a
1806 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1807 there is no such frame. This may throw an exception. */
1809 static struct frame_info *
1810 get_prev_frame_always_1 (struct frame_info *this_frame)
1812 struct gdbarch *gdbarch;
1814 gdb_assert (this_frame != NULL);
1815 gdbarch = get_frame_arch (this_frame);
1817 if (frame_debug)
1819 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1820 if (this_frame != NULL)
1821 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1822 else
1823 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1824 fprintf_unfiltered (gdb_stdlog, ") ");
1827 /* Only try to do the unwind once. */
1828 if (this_frame->prev_p)
1830 if (frame_debug)
1832 fprintf_unfiltered (gdb_stdlog, "-> ");
1833 fprint_frame (gdb_stdlog, this_frame->prev);
1834 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1836 return this_frame->prev;
1839 /* If the frame unwinder hasn't been selected yet, we must do so
1840 before setting prev_p; otherwise the check for misbehaved
1841 sniffers will think that this frame's sniffer tried to unwind
1842 further (see frame_cleanup_after_sniffer). */
1843 if (this_frame->unwind == NULL)
1844 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1846 this_frame->prev_p = 1;
1847 this_frame->stop_reason = UNWIND_NO_REASON;
1849 /* If we are unwinding from an inline frame, all of the below tests
1850 were already performed when we unwound from the next non-inline
1851 frame. We must skip them, since we can not get THIS_FRAME's ID
1852 until we have unwound all the way down to the previous non-inline
1853 frame. */
1854 if (get_frame_type (this_frame) == INLINE_FRAME)
1855 return get_prev_frame_if_no_cycle (this_frame);
1857 /* Check that this frame is unwindable. If it isn't, don't try to
1858 unwind to the prev frame. */
1859 this_frame->stop_reason
1860 = this_frame->unwind->stop_reason (this_frame,
1861 &this_frame->prologue_cache);
1863 if (this_frame->stop_reason != UNWIND_NO_REASON)
1865 if (frame_debug)
1867 enum unwind_stop_reason reason = this_frame->stop_reason;
1869 fprintf_unfiltered (gdb_stdlog, "-> ");
1870 fprint_frame (gdb_stdlog, NULL);
1871 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1872 frame_stop_reason_symbol_string (reason));
1874 return NULL;
1877 /* Check that this frame's ID isn't inner to (younger, below, next)
1878 the next frame. This happens when a frame unwind goes backwards.
1879 This check is valid only if this frame and the next frame are NORMAL.
1880 See the comment at frame_id_inner for details. */
1881 if (get_frame_type (this_frame) == NORMAL_FRAME
1882 && this_frame->next->unwind->type == NORMAL_FRAME
1883 && frame_id_inner (get_frame_arch (this_frame->next),
1884 get_frame_id (this_frame),
1885 get_frame_id (this_frame->next)))
1887 CORE_ADDR this_pc_in_block;
1888 struct minimal_symbol *morestack_msym;
1889 const char *morestack_name = NULL;
1891 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1892 this_pc_in_block = get_frame_address_in_block (this_frame);
1893 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1894 if (morestack_msym)
1895 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
1896 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1898 if (frame_debug)
1900 fprintf_unfiltered (gdb_stdlog, "-> ");
1901 fprint_frame (gdb_stdlog, NULL);
1902 fprintf_unfiltered (gdb_stdlog,
1903 " // this frame ID is inner }\n");
1905 this_frame->stop_reason = UNWIND_INNER_ID;
1906 return NULL;
1910 /* Check that this and the next frame do not unwind the PC register
1911 to the same memory location. If they do, then even though they
1912 have different frame IDs, the new frame will be bogus; two
1913 functions can't share a register save slot for the PC. This can
1914 happen when the prologue analyzer finds a stack adjustment, but
1915 no PC save.
1917 This check does assume that the "PC register" is roughly a
1918 traditional PC, even if the gdbarch_unwind_pc method adjusts
1919 it (we do not rely on the value, only on the unwound PC being
1920 dependent on this value). A potential improvement would be
1921 to have the frame prev_pc method and the gdbarch unwind_pc
1922 method set the same lval and location information as
1923 frame_register_unwind. */
1924 if (this_frame->level > 0
1925 && gdbarch_pc_regnum (gdbarch) >= 0
1926 && get_frame_type (this_frame) == NORMAL_FRAME
1927 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1928 || get_frame_type (this_frame->next) == INLINE_FRAME))
1930 int optimized, realnum, nrealnum;
1931 enum lval_type lval, nlval;
1932 CORE_ADDR addr, naddr;
1934 frame_register_unwind_location (this_frame,
1935 gdbarch_pc_regnum (gdbarch),
1936 &optimized, &lval, &addr, &realnum);
1937 frame_register_unwind_location (get_next_frame (this_frame),
1938 gdbarch_pc_regnum (gdbarch),
1939 &optimized, &nlval, &naddr, &nrealnum);
1941 if ((lval == lval_memory && lval == nlval && addr == naddr)
1942 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1944 if (frame_debug)
1946 fprintf_unfiltered (gdb_stdlog, "-> ");
1947 fprint_frame (gdb_stdlog, NULL);
1948 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1951 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1952 this_frame->prev = NULL;
1953 return NULL;
1957 return get_prev_frame_if_no_cycle (this_frame);
1960 /* Return a "struct frame_info" corresponding to the frame that called
1961 THIS_FRAME. Returns NULL if there is no such frame.
1963 Unlike get_prev_frame, this function always tries to unwind the
1964 frame. */
1966 struct frame_info *
1967 get_prev_frame_always (struct frame_info *this_frame)
1969 struct frame_info *prev_frame = NULL;
1973 prev_frame = get_prev_frame_always_1 (this_frame);
1975 CATCH (ex, RETURN_MASK_ERROR)
1977 if (ex.error == MEMORY_ERROR)
1979 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
1980 if (ex.message != NULL)
1982 char *stop_string;
1983 size_t size;
1985 /* The error needs to live as long as the frame does.
1986 Allocate using stack local STOP_STRING then assign the
1987 pointer to the frame, this allows the STOP_STRING on the
1988 frame to be of type 'const char *'. */
1989 size = strlen (ex.message) + 1;
1990 stop_string = frame_obstack_zalloc (size);
1991 memcpy (stop_string, ex.message, size);
1992 this_frame->stop_string = stop_string;
1994 prev_frame = NULL;
1996 else
1997 throw_exception (ex);
1999 END_CATCH
2001 return prev_frame;
2004 /* Construct a new "struct frame_info" and link it previous to
2005 this_frame. */
2007 static struct frame_info *
2008 get_prev_frame_raw (struct frame_info *this_frame)
2010 struct frame_info *prev_frame;
2012 /* Allocate the new frame but do not wire it in to the frame chain.
2013 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2014 frame->next to pull some fancy tricks (of course such code is, by
2015 definition, recursive). Try to prevent it.
2017 There is no reason to worry about memory leaks, should the
2018 remainder of the function fail. The allocated memory will be
2019 quickly reclaimed when the frame cache is flushed, and the `we've
2020 been here before' check above will stop repeated memory
2021 allocation calls. */
2022 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2023 prev_frame->level = this_frame->level + 1;
2025 /* For now, assume we don't have frame chains crossing address
2026 spaces. */
2027 prev_frame->pspace = this_frame->pspace;
2028 prev_frame->aspace = this_frame->aspace;
2030 /* Don't yet compute ->unwind (and hence ->type). It is computed
2031 on-demand in get_frame_type, frame_register_unwind, and
2032 get_frame_id. */
2034 /* Don't yet compute the frame's ID. It is computed on-demand by
2035 get_frame_id(). */
2037 /* The unwound frame ID is validate at the start of this function,
2038 as part of the logic to decide if that frame should be further
2039 unwound, and not here while the prev frame is being created.
2040 Doing this makes it possible for the user to examine a frame that
2041 has an invalid frame ID.
2043 Some very old VAX code noted: [...] For the sake of argument,
2044 suppose that the stack is somewhat trashed (which is one reason
2045 that "info frame" exists). So, return 0 (indicating we don't
2046 know the address of the arglist) if we don't know what frame this
2047 frame calls. */
2049 /* Link it in. */
2050 this_frame->prev = prev_frame;
2051 prev_frame->next = this_frame;
2053 if (frame_debug)
2055 fprintf_unfiltered (gdb_stdlog, "-> ");
2056 fprint_frame (gdb_stdlog, prev_frame);
2057 fprintf_unfiltered (gdb_stdlog, " }\n");
2060 return prev_frame;
2063 /* Debug routine to print a NULL frame being returned. */
2065 static void
2066 frame_debug_got_null_frame (struct frame_info *this_frame,
2067 const char *reason)
2069 if (frame_debug)
2071 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2072 if (this_frame != NULL)
2073 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2074 else
2075 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2076 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2080 /* Is this (non-sentinel) frame in the "main"() function? */
2082 static int
2083 inside_main_func (struct frame_info *this_frame)
2085 struct bound_minimal_symbol msymbol;
2086 CORE_ADDR maddr;
2088 if (symfile_objfile == 0)
2089 return 0;
2090 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2091 if (msymbol.minsym == NULL)
2092 return 0;
2093 /* Make certain that the code, and not descriptor, address is
2094 returned. */
2095 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2096 BMSYMBOL_VALUE_ADDRESS (msymbol),
2097 &current_target);
2098 return maddr == get_frame_func (this_frame);
2101 /* Test whether THIS_FRAME is inside the process entry point function. */
2103 static int
2104 inside_entry_func (struct frame_info *this_frame)
2106 CORE_ADDR entry_point;
2108 if (!entry_point_address_query (&entry_point))
2109 return 0;
2111 return get_frame_func (this_frame) == entry_point;
2114 /* Return a structure containing various interesting information about
2115 the frame that called THIS_FRAME. Returns NULL if there is entier
2116 no such frame or the frame fails any of a set of target-independent
2117 condition that should terminate the frame chain (e.g., as unwinding
2118 past main()).
2120 This function should not contain target-dependent tests, such as
2121 checking whether the program-counter is zero. */
2123 struct frame_info *
2124 get_prev_frame (struct frame_info *this_frame)
2126 CORE_ADDR frame_pc;
2127 int frame_pc_p;
2129 /* There is always a frame. If this assertion fails, suspect that
2130 something should be calling get_selected_frame() or
2131 get_current_frame(). */
2132 gdb_assert (this_frame != NULL);
2133 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2135 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2136 sense to stop unwinding at a dummy frame. One place where a dummy
2137 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2138 pcsqh register (space register for the instruction at the head of the
2139 instruction queue) cannot be written directly; the only way to set it
2140 is to branch to code that is in the target space. In order to implement
2141 frame dummies on HPUX, the called function is made to jump back to where
2142 the inferior was when the user function was called. If gdb was inside
2143 the main function when we created the dummy frame, the dummy frame will
2144 point inside the main function. */
2145 if (this_frame->level >= 0
2146 && get_frame_type (this_frame) == NORMAL_FRAME
2147 && !backtrace_past_main
2148 && frame_pc_p
2149 && inside_main_func (this_frame))
2150 /* Don't unwind past main(). Note, this is done _before_ the
2151 frame has been marked as previously unwound. That way if the
2152 user later decides to enable unwinds past main(), that will
2153 automatically happen. */
2155 frame_debug_got_null_frame (this_frame, "inside main func");
2156 return NULL;
2159 /* If the user's backtrace limit has been exceeded, stop. We must
2160 add two to the current level; one of those accounts for backtrace_limit
2161 being 1-based and the level being 0-based, and the other accounts for
2162 the level of the new frame instead of the level of the current
2163 frame. */
2164 if (this_frame->level + 2 > backtrace_limit)
2166 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2167 return NULL;
2170 /* If we're already inside the entry function for the main objfile,
2171 then it isn't valid. Don't apply this test to a dummy frame -
2172 dummy frame PCs typically land in the entry func. Don't apply
2173 this test to the sentinel frame. Sentinel frames should always
2174 be allowed to unwind. */
2175 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2176 wasn't checking for "main" in the minimal symbols. With that
2177 fixed asm-source tests now stop in "main" instead of halting the
2178 backtrace in weird and wonderful ways somewhere inside the entry
2179 file. Suspect that tests for inside the entry file/func were
2180 added to work around that (now fixed) case. */
2181 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2182 suggested having the inside_entry_func test use the
2183 inside_main_func() msymbol trick (along with entry_point_address()
2184 I guess) to determine the address range of the start function.
2185 That should provide a far better stopper than the current
2186 heuristics. */
2187 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2188 applied tail-call optimizations to main so that a function called
2189 from main returns directly to the caller of main. Since we don't
2190 stop at main, we should at least stop at the entry point of the
2191 application. */
2192 if (this_frame->level >= 0
2193 && get_frame_type (this_frame) == NORMAL_FRAME
2194 && !backtrace_past_entry
2195 && frame_pc_p
2196 && inside_entry_func (this_frame))
2198 frame_debug_got_null_frame (this_frame, "inside entry func");
2199 return NULL;
2202 /* Assume that the only way to get a zero PC is through something
2203 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2204 will never unwind a zero PC. */
2205 if (this_frame->level > 0
2206 && (get_frame_type (this_frame) == NORMAL_FRAME
2207 || get_frame_type (this_frame) == INLINE_FRAME)
2208 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2209 && frame_pc_p && frame_pc == 0)
2211 frame_debug_got_null_frame (this_frame, "zero PC");
2212 return NULL;
2215 return get_prev_frame_always (this_frame);
2218 CORE_ADDR
2219 get_frame_pc (struct frame_info *frame)
2221 gdb_assert (frame->next != NULL);
2222 return frame_unwind_pc (frame->next);
2226 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2229 gdb_assert (frame->next != NULL);
2233 *pc = frame_unwind_pc (frame->next);
2235 CATCH (ex, RETURN_MASK_ERROR)
2237 if (ex.error == NOT_AVAILABLE_ERROR)
2238 return 0;
2239 else
2240 throw_exception (ex);
2242 END_CATCH
2244 return 1;
2247 /* Return an address that falls within THIS_FRAME's code block. */
2249 CORE_ADDR
2250 get_frame_address_in_block (struct frame_info *this_frame)
2252 /* A draft address. */
2253 CORE_ADDR pc = get_frame_pc (this_frame);
2255 struct frame_info *next_frame = this_frame->next;
2257 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2258 Normally the resume address is inside the body of the function
2259 associated with THIS_FRAME, but there is a special case: when
2260 calling a function which the compiler knows will never return
2261 (for instance abort), the call may be the very last instruction
2262 in the calling function. The resume address will point after the
2263 call and may be at the beginning of a different function
2264 entirely.
2266 If THIS_FRAME is a signal frame or dummy frame, then we should
2267 not adjust the unwound PC. For a dummy frame, GDB pushed the
2268 resume address manually onto the stack. For a signal frame, the
2269 OS may have pushed the resume address manually and invoked the
2270 handler (e.g. GNU/Linux), or invoked the trampoline which called
2271 the signal handler - but in either case the signal handler is
2272 expected to return to the trampoline. So in both of these
2273 cases we know that the resume address is executable and
2274 related. So we only need to adjust the PC if THIS_FRAME
2275 is a normal function.
2277 If the program has been interrupted while THIS_FRAME is current,
2278 then clearly the resume address is inside the associated
2279 function. There are three kinds of interruption: debugger stop
2280 (next frame will be SENTINEL_FRAME), operating system
2281 signal or exception (next frame will be SIGTRAMP_FRAME),
2282 or debugger-induced function call (next frame will be
2283 DUMMY_FRAME). So we only need to adjust the PC if
2284 NEXT_FRAME is a normal function.
2286 We check the type of NEXT_FRAME first, since it is already
2287 known; frame type is determined by the unwinder, and since
2288 we have THIS_FRAME we've already selected an unwinder for
2289 NEXT_FRAME.
2291 If the next frame is inlined, we need to keep going until we find
2292 the real function - for instance, if a signal handler is invoked
2293 while in an inlined function, then the code address of the
2294 "calling" normal function should not be adjusted either. */
2296 while (get_frame_type (next_frame) == INLINE_FRAME)
2297 next_frame = next_frame->next;
2299 if ((get_frame_type (next_frame) == NORMAL_FRAME
2300 || get_frame_type (next_frame) == TAILCALL_FRAME)
2301 && (get_frame_type (this_frame) == NORMAL_FRAME
2302 || get_frame_type (this_frame) == TAILCALL_FRAME
2303 || get_frame_type (this_frame) == INLINE_FRAME))
2304 return pc - 1;
2306 return pc;
2310 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2311 CORE_ADDR *pc)
2316 *pc = get_frame_address_in_block (this_frame);
2318 CATCH (ex, RETURN_MASK_ERROR)
2320 if (ex.error == NOT_AVAILABLE_ERROR)
2321 return 0;
2322 throw_exception (ex);
2324 END_CATCH
2326 return 1;
2329 void
2330 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2332 struct frame_info *next_frame;
2333 int notcurrent;
2334 CORE_ADDR pc;
2336 /* If the next frame represents an inlined function call, this frame's
2337 sal is the "call site" of that inlined function, which can not
2338 be inferred from get_frame_pc. */
2339 next_frame = get_next_frame (frame);
2340 if (frame_inlined_callees (frame) > 0)
2342 struct symbol *sym;
2344 if (next_frame)
2345 sym = get_frame_function (next_frame);
2346 else
2347 sym = inline_skipped_symbol (inferior_ptid);
2349 /* If frame is inline, it certainly has symbols. */
2350 gdb_assert (sym);
2351 init_sal (sal);
2352 if (SYMBOL_LINE (sym) != 0)
2354 sal->symtab = symbol_symtab (sym);
2355 sal->line = SYMBOL_LINE (sym);
2357 else
2358 /* If the symbol does not have a location, we don't know where
2359 the call site is. Do not pretend to. This is jarring, but
2360 we can't do much better. */
2361 sal->pc = get_frame_pc (frame);
2363 sal->pspace = get_frame_program_space (frame);
2365 return;
2368 /* If FRAME is not the innermost frame, that normally means that
2369 FRAME->pc points at the return instruction (which is *after* the
2370 call instruction), and we want to get the line containing the
2371 call (because the call is where the user thinks the program is).
2372 However, if the next frame is either a SIGTRAMP_FRAME or a
2373 DUMMY_FRAME, then the next frame will contain a saved interrupt
2374 PC and such a PC indicates the current (rather than next)
2375 instruction/line, consequently, for such cases, want to get the
2376 line containing fi->pc. */
2377 if (!get_frame_pc_if_available (frame, &pc))
2379 init_sal (sal);
2380 return;
2383 notcurrent = (pc != get_frame_address_in_block (frame));
2384 (*sal) = find_pc_line (pc, notcurrent);
2387 /* Per "frame.h", return the ``address'' of the frame. Code should
2388 really be using get_frame_id(). */
2389 CORE_ADDR
2390 get_frame_base (struct frame_info *fi)
2392 return get_frame_id (fi).stack_addr;
2395 /* High-level offsets into the frame. Used by the debug info. */
2397 CORE_ADDR
2398 get_frame_base_address (struct frame_info *fi)
2400 if (get_frame_type (fi) != NORMAL_FRAME)
2401 return 0;
2402 if (fi->base == NULL)
2403 fi->base = frame_base_find_by_frame (fi);
2404 /* Sneaky: If the low-level unwind and high-level base code share a
2405 common unwinder, let them share the prologue cache. */
2406 if (fi->base->unwind == fi->unwind)
2407 return fi->base->this_base (fi, &fi->prologue_cache);
2408 return fi->base->this_base (fi, &fi->base_cache);
2411 CORE_ADDR
2412 get_frame_locals_address (struct frame_info *fi)
2414 if (get_frame_type (fi) != NORMAL_FRAME)
2415 return 0;
2416 /* If there isn't a frame address method, find it. */
2417 if (fi->base == NULL)
2418 fi->base = frame_base_find_by_frame (fi);
2419 /* Sneaky: If the low-level unwind and high-level base code share a
2420 common unwinder, let them share the prologue cache. */
2421 if (fi->base->unwind == fi->unwind)
2422 return fi->base->this_locals (fi, &fi->prologue_cache);
2423 return fi->base->this_locals (fi, &fi->base_cache);
2426 CORE_ADDR
2427 get_frame_args_address (struct frame_info *fi)
2429 if (get_frame_type (fi) != NORMAL_FRAME)
2430 return 0;
2431 /* If there isn't a frame address method, find it. */
2432 if (fi->base == NULL)
2433 fi->base = frame_base_find_by_frame (fi);
2434 /* Sneaky: If the low-level unwind and high-level base code share a
2435 common unwinder, let them share the prologue cache. */
2436 if (fi->base->unwind == fi->unwind)
2437 return fi->base->this_args (fi, &fi->prologue_cache);
2438 return fi->base->this_args (fi, &fi->base_cache);
2441 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2442 otherwise. */
2445 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2447 if (fi->unwind == NULL)
2448 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2449 return fi->unwind == unwinder;
2452 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2453 or -1 for a NULL frame. */
2456 frame_relative_level (struct frame_info *fi)
2458 if (fi == NULL)
2459 return -1;
2460 else
2461 return fi->level;
2464 enum frame_type
2465 get_frame_type (struct frame_info *frame)
2467 if (frame->unwind == NULL)
2468 /* Initialize the frame's unwinder because that's what
2469 provides the frame's type. */
2470 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2471 return frame->unwind->type;
2474 struct program_space *
2475 get_frame_program_space (struct frame_info *frame)
2477 return frame->pspace;
2480 struct program_space *
2481 frame_unwind_program_space (struct frame_info *this_frame)
2483 gdb_assert (this_frame);
2485 /* This is really a placeholder to keep the API consistent --- we
2486 assume for now that we don't have frame chains crossing
2487 spaces. */
2488 return this_frame->pspace;
2491 struct address_space *
2492 get_frame_address_space (struct frame_info *frame)
2494 return frame->aspace;
2497 /* Memory access methods. */
2499 void
2500 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2501 gdb_byte *buf, int len)
2503 read_memory (addr, buf, len);
2506 LONGEST
2507 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2508 int len)
2510 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2511 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2513 return read_memory_integer (addr, len, byte_order);
2516 ULONGEST
2517 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2518 int len)
2520 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2523 return read_memory_unsigned_integer (addr, len, byte_order);
2527 safe_frame_unwind_memory (struct frame_info *this_frame,
2528 CORE_ADDR addr, gdb_byte *buf, int len)
2530 /* NOTE: target_read_memory returns zero on success! */
2531 return !target_read_memory (addr, buf, len);
2534 /* Architecture methods. */
2536 struct gdbarch *
2537 get_frame_arch (struct frame_info *this_frame)
2539 return frame_unwind_arch (this_frame->next);
2542 struct gdbarch *
2543 frame_unwind_arch (struct frame_info *next_frame)
2545 if (!next_frame->prev_arch.p)
2547 struct gdbarch *arch;
2549 if (next_frame->unwind == NULL)
2550 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2552 if (next_frame->unwind->prev_arch != NULL)
2553 arch = next_frame->unwind->prev_arch (next_frame,
2554 &next_frame->prologue_cache);
2555 else
2556 arch = get_frame_arch (next_frame);
2558 next_frame->prev_arch.arch = arch;
2559 next_frame->prev_arch.p = 1;
2560 if (frame_debug)
2561 fprintf_unfiltered (gdb_stdlog,
2562 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2563 next_frame->level,
2564 gdbarch_bfd_arch_info (arch)->printable_name);
2567 return next_frame->prev_arch.arch;
2570 struct gdbarch *
2571 frame_unwind_caller_arch (struct frame_info *next_frame)
2573 return frame_unwind_arch (skip_artificial_frames (next_frame));
2576 /* Stack pointer methods. */
2578 CORE_ADDR
2579 get_frame_sp (struct frame_info *this_frame)
2581 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2583 /* Normality - an architecture that provides a way of obtaining any
2584 frame inner-most address. */
2585 if (gdbarch_unwind_sp_p (gdbarch))
2586 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2587 operate on THIS_FRAME now. */
2588 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2589 /* Now things are really are grim. Hope that the value returned by
2590 the gdbarch_sp_regnum register is meaningful. */
2591 if (gdbarch_sp_regnum (gdbarch) >= 0)
2592 return get_frame_register_unsigned (this_frame,
2593 gdbarch_sp_regnum (gdbarch));
2594 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2597 /* Return the reason why we can't unwind past FRAME. */
2599 enum unwind_stop_reason
2600 get_frame_unwind_stop_reason (struct frame_info *frame)
2602 /* Fill-in STOP_REASON. */
2603 get_prev_frame_always (frame);
2604 gdb_assert (frame->prev_p);
2606 return frame->stop_reason;
2609 /* Return a string explaining REASON. */
2611 const char *
2612 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2614 switch (reason)
2616 #define SET(name, description) \
2617 case name: return _(description);
2618 #include "unwind_stop_reasons.def"
2619 #undef SET
2621 default:
2622 internal_error (__FILE__, __LINE__,
2623 "Invalid frame stop reason");
2627 const char *
2628 frame_stop_reason_string (struct frame_info *fi)
2630 gdb_assert (fi->prev_p);
2631 gdb_assert (fi->prev == NULL);
2633 /* Return the specific string if we have one. */
2634 if (fi->stop_string != NULL)
2635 return fi->stop_string;
2637 /* Return the generic string if we have nothing better. */
2638 return unwind_stop_reason_to_string (fi->stop_reason);
2641 /* Return the enum symbol name of REASON as a string, to use in debug
2642 output. */
2644 static const char *
2645 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2647 switch (reason)
2649 #define SET(name, description) \
2650 case name: return #name;
2651 #include "unwind_stop_reasons.def"
2652 #undef SET
2654 default:
2655 internal_error (__FILE__, __LINE__,
2656 "Invalid frame stop reason");
2660 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2661 FRAME. */
2663 static void
2664 frame_cleanup_after_sniffer (void *arg)
2666 struct frame_info *frame = arg;
2668 /* The sniffer should not allocate a prologue cache if it did not
2669 match this frame. */
2670 gdb_assert (frame->prologue_cache == NULL);
2672 /* No sniffer should extend the frame chain; sniff based on what is
2673 already certain. */
2674 gdb_assert (!frame->prev_p);
2676 /* The sniffer should not check the frame's ID; that's circular. */
2677 gdb_assert (!frame->this_id.p);
2679 /* Clear cached fields dependent on the unwinder.
2681 The previous PC is independent of the unwinder, but the previous
2682 function is not (see get_frame_address_in_block). */
2683 frame->prev_func.p = 0;
2684 frame->prev_func.addr = 0;
2686 /* Discard the unwinder last, so that we can easily find it if an assertion
2687 in this function triggers. */
2688 frame->unwind = NULL;
2691 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2692 Return a cleanup which should be called if unwinding fails, and
2693 discarded if it succeeds. */
2695 struct cleanup *
2696 frame_prepare_for_sniffer (struct frame_info *frame,
2697 const struct frame_unwind *unwind)
2699 gdb_assert (frame->unwind == NULL);
2700 frame->unwind = unwind;
2701 return make_cleanup (frame_cleanup_after_sniffer, frame);
2704 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2706 static struct cmd_list_element *set_backtrace_cmdlist;
2707 static struct cmd_list_element *show_backtrace_cmdlist;
2709 static void
2710 set_backtrace_cmd (char *args, int from_tty)
2712 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2713 gdb_stdout);
2716 static void
2717 show_backtrace_cmd (char *args, int from_tty)
2719 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2722 void
2723 _initialize_frame (void)
2725 obstack_init (&frame_cache_obstack);
2727 frame_stash_create ();
2729 observer_attach_target_changed (frame_observer_target_changed);
2731 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2732 Set backtrace specific variables.\n\
2733 Configure backtrace variables such as the backtrace limit"),
2734 &set_backtrace_cmdlist, "set backtrace ",
2735 0/*allow-unknown*/, &setlist);
2736 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2737 Show backtrace specific variables\n\
2738 Show backtrace variables such as the backtrace limit"),
2739 &show_backtrace_cmdlist, "show backtrace ",
2740 0/*allow-unknown*/, &showlist);
2742 add_setshow_boolean_cmd ("past-main", class_obscure,
2743 &backtrace_past_main, _("\
2744 Set whether backtraces should continue past \"main\"."), _("\
2745 Show whether backtraces should continue past \"main\"."), _("\
2746 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2747 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2748 of the stack trace."),
2749 NULL,
2750 show_backtrace_past_main,
2751 &set_backtrace_cmdlist,
2752 &show_backtrace_cmdlist);
2754 add_setshow_boolean_cmd ("past-entry", class_obscure,
2755 &backtrace_past_entry, _("\
2756 Set whether backtraces should continue past the entry point of a program."),
2757 _("\
2758 Show whether backtraces should continue past the entry point of a program."),
2759 _("\
2760 Normally there are no callers beyond the entry point of a program, so GDB\n\
2761 will terminate the backtrace there. Set this variable if you need to see\n\
2762 the rest of the stack trace."),
2763 NULL,
2764 show_backtrace_past_entry,
2765 &set_backtrace_cmdlist,
2766 &show_backtrace_cmdlist);
2768 add_setshow_uinteger_cmd ("limit", class_obscure,
2769 &backtrace_limit, _("\
2770 Set an upper bound on the number of backtrace levels."), _("\
2771 Show the upper bound on the number of backtrace levels."), _("\
2772 No more than the specified number of frames can be displayed or examined.\n\
2773 Literal \"unlimited\" or zero means no limit."),
2774 NULL,
2775 show_backtrace_limit,
2776 &set_backtrace_cmdlist,
2777 &show_backtrace_cmdlist);
2779 /* Debug this files internals. */
2780 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2781 Set frame debugging."), _("\
2782 Show frame debugging."), _("\
2783 When non-zero, frame specific internal debugging is enabled."),
2784 NULL,
2785 show_frame_debug,
2786 &setdebuglist, &showdebuglist);