s390-vregs.exp: Avoid compile errors with older GCCs and on 31-bit targets
[binutils-gdb.git] / gdb / dwarf2-frame.c
blob8fb2ac77718ff3b47b06269eaf142b9c5145bcbc
1 /* Frame unwinder for frames with DWARF Call Frame Information.
3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
5 Contributed by Mark Kettenis.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "ax.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame-tailcall.h"
42 struct comp_unit;
44 /* Call Frame Information (CFI). */
46 /* Common Information Entry (CIE). */
48 struct dwarf2_cie
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
64 /* Return address column. */
65 ULONGEST return_address_register;
67 /* Instruction sequence to initialize a register set. */
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
74 /* Encoding of addresses. */
75 gdb_byte encoding;
77 /* Target address size in bytes. */
78 int addr_size;
80 /* Target pointer size in bytes. */
81 int ptr_size;
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
89 /* The version recorded in the CIE. */
90 unsigned char version;
92 /* The segment size. */
93 unsigned char segment_size;
96 struct dwarf2_cie_table
98 int num_entries;
99 struct dwarf2_cie **entries;
102 /* Frame Description Entry (FDE). */
104 struct dwarf2_fde
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
115 /* Instruction sequence. */
116 const gdb_byte *instructions;
117 const gdb_byte *end;
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
124 struct dwarf2_fde_table
126 int num_entries;
127 struct dwarf2_fde **entries;
130 /* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
133 struct comp_unit
135 /* Keep the bfd convenient. */
136 bfd *abfd;
138 struct objfile *objfile;
140 /* Pointer to the .debug_frame section loaded into memory. */
141 const gdb_byte *dwarf_frame_buffer;
143 /* Length of the loaded .debug_frame section. */
144 bfd_size_type dwarf_frame_size;
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
156 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
159 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
162 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
163 int ptr_len, const gdb_byte *buf,
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
168 enum cfa_how_kind
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
175 struct dwarf2_frame_state_reg_info
177 struct dwarf2_frame_state_reg *reg;
178 int num_regs;
180 LONGEST cfa_offset;
181 ULONGEST cfa_reg;
182 enum cfa_how_kind cfa_how;
183 const gdb_byte *cfa_exp;
185 /* Used to implement DW_CFA_remember_state. */
186 struct dwarf2_frame_state_reg_info *prev;
189 /* Structure describing a frame state. */
191 struct dwarf2_frame_state
193 /* Each register save state can be described in terms of a CFA slot,
194 another register, or a location expression. */
195 struct dwarf2_frame_state_reg_info regs;
197 /* The PC described by the current frame state. */
198 CORE_ADDR pc;
200 /* Initial register set from the CIE.
201 Used to implement DW_CFA_restore. */
202 struct dwarf2_frame_state_reg_info initial;
204 /* The information we care about from the CIE. */
205 LONGEST data_align;
206 ULONGEST code_align;
207 ULONGEST retaddr_column;
209 /* Flags for known producer quirks. */
211 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
212 and DW_CFA_def_cfa_offset takes a factored offset. */
213 int armcc_cfa_offsets_sf;
215 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
216 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
217 int armcc_cfa_offsets_reversed;
220 /* Store the length the expression for the CFA in the `cfa_reg' field,
221 which is unused in that case. */
222 #define cfa_exp_len cfa_reg
224 /* Assert that the register set RS is large enough to store gdbarch_num_regs
225 columns. If necessary, enlarge the register set. */
227 static void
228 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
229 int num_regs)
231 size_t size = sizeof (struct dwarf2_frame_state_reg);
233 if (num_regs <= rs->num_regs)
234 return;
236 rs->reg = (struct dwarf2_frame_state_reg *)
237 xrealloc (rs->reg, num_regs * size);
239 /* Initialize newly allocated registers. */
240 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
241 rs->num_regs = num_regs;
244 /* Copy the register columns in register set RS into newly allocated
245 memory and return a pointer to this newly created copy. */
247 static struct dwarf2_frame_state_reg *
248 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
250 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
251 struct dwarf2_frame_state_reg *reg;
253 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
254 memcpy (reg, rs->reg, size);
256 return reg;
259 /* Release the memory allocated to register set RS. */
261 static void
262 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
264 if (rs)
266 dwarf2_frame_state_free_regs (rs->prev);
268 xfree (rs->reg);
269 xfree (rs);
273 /* Release the memory allocated to the frame state FS. */
275 static void
276 dwarf2_frame_state_free (void *p)
278 struct dwarf2_frame_state *fs = p;
280 dwarf2_frame_state_free_regs (fs->initial.prev);
281 dwarf2_frame_state_free_regs (fs->regs.prev);
282 xfree (fs->initial.reg);
283 xfree (fs->regs.reg);
284 xfree (fs);
288 /* Helper functions for execute_stack_op. */
290 static CORE_ADDR
291 read_addr_from_reg (void *baton, int reg)
293 struct frame_info *this_frame = (struct frame_info *) baton;
294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
295 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
297 return address_from_register (regnum, this_frame);
300 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
302 static struct value *
303 get_reg_value (void *baton, struct type *type, int reg)
305 struct frame_info *this_frame = (struct frame_info *) baton;
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
307 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
309 return value_from_register (type, regnum, this_frame);
312 static void
313 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
315 read_memory (addr, buf, len);
318 /* Execute the required actions for both the DW_CFA_restore and
319 DW_CFA_restore_extended instructions. */
320 static void
321 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
322 struct dwarf2_frame_state *fs, int eh_frame_p)
324 ULONGEST reg;
326 gdb_assert (fs->initial.reg);
327 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
330 /* Check if this register was explicitly initialized in the
331 CIE initial instructions. If not, default the rule to
332 UNSPECIFIED. */
333 if (reg < fs->initial.num_regs)
334 fs->regs.reg[reg] = fs->initial.reg[reg];
335 else
336 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
338 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
339 complaint (&symfile_complaints, _("\
340 incomplete CFI data; DW_CFA_restore unspecified\n\
341 register %s (#%d) at %s"),
342 gdbarch_register_name
343 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
344 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
345 paddress (gdbarch, fs->pc));
348 /* Virtual method table for execute_stack_op below. */
350 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
352 read_addr_from_reg,
353 get_reg_value,
354 read_mem,
355 ctx_no_get_frame_base,
356 ctx_no_get_frame_cfa,
357 ctx_no_get_frame_pc,
358 ctx_no_get_tls_address,
359 ctx_no_dwarf_call,
360 ctx_no_get_base_type,
361 ctx_no_push_dwarf_reg_entry_value,
362 ctx_no_get_addr_index
365 static CORE_ADDR
366 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
367 CORE_ADDR offset, struct frame_info *this_frame,
368 CORE_ADDR initial, int initial_in_stack_memory)
370 struct dwarf_expr_context *ctx;
371 CORE_ADDR result;
372 struct cleanup *old_chain;
374 ctx = new_dwarf_expr_context ();
375 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
376 make_cleanup_value_free_to_mark (value_mark ());
378 ctx->gdbarch = get_frame_arch (this_frame);
379 ctx->addr_size = addr_size;
380 ctx->ref_addr_size = -1;
381 ctx->offset = offset;
382 ctx->baton = this_frame;
383 ctx->funcs = &dwarf2_frame_ctx_funcs;
385 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
386 dwarf_expr_eval (ctx, exp, len);
388 if (ctx->location == DWARF_VALUE_MEMORY)
389 result = dwarf_expr_fetch_address (ctx, 0);
390 else if (ctx->location == DWARF_VALUE_REGISTER)
391 result = read_addr_from_reg (this_frame,
392 value_as_long (dwarf_expr_fetch (ctx, 0)));
393 else
395 /* This is actually invalid DWARF, but if we ever do run across
396 it somehow, we might as well support it. So, instead, report
397 it as unimplemented. */
398 error (_("\
399 Not implemented: computing unwound register using explicit value operator"));
402 do_cleanups (old_chain);
404 return result;
408 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
409 PC. Modify FS state accordingly. Return current INSN_PTR where the
410 execution has stopped, one can resume it on the next call. */
412 static const gdb_byte *
413 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
414 const gdb_byte *insn_end, struct gdbarch *gdbarch,
415 CORE_ADDR pc, struct dwarf2_frame_state *fs)
417 int eh_frame_p = fde->eh_frame_p;
418 unsigned int bytes_read;
419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
421 while (insn_ptr < insn_end && fs->pc <= pc)
423 gdb_byte insn = *insn_ptr++;
424 uint64_t utmp, reg;
425 int64_t offset;
427 if ((insn & 0xc0) == DW_CFA_advance_loc)
428 fs->pc += (insn & 0x3f) * fs->code_align;
429 else if ((insn & 0xc0) == DW_CFA_offset)
431 reg = insn & 0x3f;
432 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
433 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
434 offset = utmp * fs->data_align;
435 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
436 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
437 fs->regs.reg[reg].loc.offset = offset;
439 else if ((insn & 0xc0) == DW_CFA_restore)
441 reg = insn & 0x3f;
442 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
444 else
446 switch (insn)
448 case DW_CFA_set_loc:
449 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
450 fde->cie->ptr_size, insn_ptr,
451 &bytes_read, fde->initial_location);
452 /* Apply the objfile offset for relocatable objects. */
453 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
454 SECT_OFF_TEXT (fde->cie->unit->objfile));
455 insn_ptr += bytes_read;
456 break;
458 case DW_CFA_advance_loc1:
459 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
460 fs->pc += utmp * fs->code_align;
461 insn_ptr++;
462 break;
463 case DW_CFA_advance_loc2:
464 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 2;
467 break;
468 case DW_CFA_advance_loc4:
469 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
470 fs->pc += utmp * fs->code_align;
471 insn_ptr += 4;
472 break;
474 case DW_CFA_offset_extended:
475 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
476 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
477 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
478 offset = utmp * fs->data_align;
479 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
480 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
481 fs->regs.reg[reg].loc.offset = offset;
482 break;
484 case DW_CFA_restore_extended:
485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
486 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
487 break;
489 case DW_CFA_undefined:
490 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
491 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
492 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
493 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
494 break;
496 case DW_CFA_same_value:
497 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
498 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
499 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
500 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
501 break;
503 case DW_CFA_register:
504 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
505 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
506 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
507 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
508 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
509 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
510 fs->regs.reg[reg].loc.reg = utmp;
511 break;
513 case DW_CFA_remember_state:
515 struct dwarf2_frame_state_reg_info *new_rs;
517 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
518 *new_rs = fs->regs;
519 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
520 fs->regs.prev = new_rs;
522 break;
524 case DW_CFA_restore_state:
526 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
528 if (old_rs == NULL)
530 complaint (&symfile_complaints, _("\
531 bad CFI data; mismatched DW_CFA_restore_state at %s"),
532 paddress (gdbarch, fs->pc));
534 else
536 xfree (fs->regs.reg);
537 fs->regs = *old_rs;
538 xfree (old_rs);
541 break;
543 case DW_CFA_def_cfa:
544 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
545 fs->regs.cfa_reg = reg;
546 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
548 if (fs->armcc_cfa_offsets_sf)
549 utmp *= fs->data_align;
551 fs->regs.cfa_offset = utmp;
552 fs->regs.cfa_how = CFA_REG_OFFSET;
553 break;
555 case DW_CFA_def_cfa_register:
556 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
557 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
558 eh_frame_p);
559 fs->regs.cfa_how = CFA_REG_OFFSET;
560 break;
562 case DW_CFA_def_cfa_offset:
563 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
565 if (fs->armcc_cfa_offsets_sf)
566 utmp *= fs->data_align;
568 fs->regs.cfa_offset = utmp;
569 /* cfa_how deliberately not set. */
570 break;
572 case DW_CFA_nop:
573 break;
575 case DW_CFA_def_cfa_expression:
576 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
577 fs->regs.cfa_exp_len = utmp;
578 fs->regs.cfa_exp = insn_ptr;
579 fs->regs.cfa_how = CFA_EXP;
580 insn_ptr += fs->regs.cfa_exp_len;
581 break;
583 case DW_CFA_expression:
584 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
585 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
586 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
587 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
588 fs->regs.reg[reg].loc.exp = insn_ptr;
589 fs->regs.reg[reg].exp_len = utmp;
590 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
591 insn_ptr += utmp;
592 break;
594 case DW_CFA_offset_extended_sf:
595 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
596 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
597 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
598 offset *= fs->data_align;
599 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
600 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
601 fs->regs.reg[reg].loc.offset = offset;
602 break;
604 case DW_CFA_val_offset:
605 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
606 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
607 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
608 offset = utmp * fs->data_align;
609 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
610 fs->regs.reg[reg].loc.offset = offset;
611 break;
613 case DW_CFA_val_offset_sf:
614 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
615 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
616 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
617 offset *= fs->data_align;
618 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
619 fs->regs.reg[reg].loc.offset = offset;
620 break;
622 case DW_CFA_val_expression:
623 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
624 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
625 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
626 fs->regs.reg[reg].loc.exp = insn_ptr;
627 fs->regs.reg[reg].exp_len = utmp;
628 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
629 insn_ptr += utmp;
630 break;
632 case DW_CFA_def_cfa_sf:
633 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
634 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
635 eh_frame_p);
636 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
637 fs->regs.cfa_offset = offset * fs->data_align;
638 fs->regs.cfa_how = CFA_REG_OFFSET;
639 break;
641 case DW_CFA_def_cfa_offset_sf:
642 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
643 fs->regs.cfa_offset = offset * fs->data_align;
644 /* cfa_how deliberately not set. */
645 break;
647 case DW_CFA_GNU_window_save:
648 /* This is SPARC-specific code, and contains hard-coded
649 constants for the register numbering scheme used by
650 GCC. Rather than having a architecture-specific
651 operation that's only ever used by a single
652 architecture, we provide the implementation here.
653 Incidentally that's what GCC does too in its
654 unwinder. */
656 int size = register_size (gdbarch, 0);
658 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
659 for (reg = 8; reg < 16; reg++)
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
662 fs->regs.reg[reg].loc.reg = reg + 16;
664 for (reg = 16; reg < 32; reg++)
666 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
667 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
670 break;
672 case DW_CFA_GNU_args_size:
673 /* Ignored. */
674 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
675 break;
677 case DW_CFA_GNU_negative_offset_extended:
678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
679 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
680 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
681 offset = utmp * fs->data_align;
682 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
683 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
684 fs->regs.reg[reg].loc.offset = -offset;
685 break;
687 default:
688 internal_error (__FILE__, __LINE__,
689 _("Unknown CFI encountered."));
694 if (fs->initial.reg == NULL)
696 /* Don't allow remember/restore between CIE and FDE programs. */
697 dwarf2_frame_state_free_regs (fs->regs.prev);
698 fs->regs.prev = NULL;
701 return insn_ptr;
705 /* Architecture-specific operations. */
707 /* Per-architecture data key. */
708 static struct gdbarch_data *dwarf2_frame_data;
710 struct dwarf2_frame_ops
712 /* Pre-initialize the register state REG for register REGNUM. */
713 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
714 struct frame_info *);
716 /* Check whether the THIS_FRAME is a signal trampoline. */
717 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
719 /* Convert .eh_frame register number to DWARF register number, or
720 adjust .debug_frame register number. */
721 int (*adjust_regnum) (struct gdbarch *, int, int);
724 /* Default architecture-specific register state initialization
725 function. */
727 static void
728 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
729 struct dwarf2_frame_state_reg *reg,
730 struct frame_info *this_frame)
732 /* If we have a register that acts as a program counter, mark it as
733 a destination for the return address. If we have a register that
734 serves as the stack pointer, arrange for it to be filled with the
735 call frame address (CFA). The other registers are marked as
736 unspecified.
738 We copy the return address to the program counter, since many
739 parts in GDB assume that it is possible to get the return address
740 by unwinding the program counter register. However, on ISA's
741 with a dedicated return address register, the CFI usually only
742 contains information to unwind that return address register.
744 The reason we're treating the stack pointer special here is
745 because in many cases GCC doesn't emit CFI for the stack pointer
746 and implicitly assumes that it is equal to the CFA. This makes
747 some sense since the DWARF specification (version 3, draft 8,
748 p. 102) says that:
750 "Typically, the CFA is defined to be the value of the stack
751 pointer at the call site in the previous frame (which may be
752 different from its value on entry to the current frame)."
754 However, this isn't true for all platforms supported by GCC
755 (e.g. IBM S/390 and zSeries). Those architectures should provide
756 their own architecture-specific initialization function. */
758 if (regnum == gdbarch_pc_regnum (gdbarch))
759 reg->how = DWARF2_FRAME_REG_RA;
760 else if (regnum == gdbarch_sp_regnum (gdbarch))
761 reg->how = DWARF2_FRAME_REG_CFA;
764 /* Return a default for the architecture-specific operations. */
766 static void *
767 dwarf2_frame_init (struct obstack *obstack)
769 struct dwarf2_frame_ops *ops;
771 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
772 ops->init_reg = dwarf2_frame_default_init_reg;
773 return ops;
776 /* Set the architecture-specific register state initialization
777 function for GDBARCH to INIT_REG. */
779 void
780 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
781 void (*init_reg) (struct gdbarch *, int,
782 struct dwarf2_frame_state_reg *,
783 struct frame_info *))
785 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
787 ops->init_reg = init_reg;
790 /* Pre-initialize the register state REG for register REGNUM. */
792 static void
793 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
794 struct dwarf2_frame_state_reg *reg,
795 struct frame_info *this_frame)
797 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
799 ops->init_reg (gdbarch, regnum, reg, this_frame);
802 /* Set the architecture-specific signal trampoline recognition
803 function for GDBARCH to SIGNAL_FRAME_P. */
805 void
806 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
807 int (*signal_frame_p) (struct gdbarch *,
808 struct frame_info *))
810 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
812 ops->signal_frame_p = signal_frame_p;
815 /* Query the architecture-specific signal frame recognizer for
816 THIS_FRAME. */
818 static int
819 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
820 struct frame_info *this_frame)
822 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
824 if (ops->signal_frame_p == NULL)
825 return 0;
826 return ops->signal_frame_p (gdbarch, this_frame);
829 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
830 register numbers. */
832 void
833 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
834 int (*adjust_regnum) (struct gdbarch *,
835 int, int))
837 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
839 ops->adjust_regnum = adjust_regnum;
842 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
843 register. */
845 static int
846 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
847 int regnum, int eh_frame_p)
849 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
851 if (ops->adjust_regnum == NULL)
852 return regnum;
853 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
856 static void
857 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
858 struct dwarf2_fde *fde)
860 struct compunit_symtab *cust;
862 cust = find_pc_compunit_symtab (fs->pc);
863 if (cust == NULL)
864 return;
866 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
868 if (fde->cie->version == 1)
869 fs->armcc_cfa_offsets_sf = 1;
871 if (fde->cie->version == 1)
872 fs->armcc_cfa_offsets_reversed = 1;
874 /* The reversed offset problem is present in some compilers
875 using DWARF3, but it was eventually fixed. Check the ARM
876 defined augmentations, which are in the format "armcc" followed
877 by a list of one-character options. The "+" option means
878 this problem is fixed (no quirk needed). If the armcc
879 augmentation is missing, the quirk is needed. */
880 if (fde->cie->version == 3
881 && (!startswith (fde->cie->augmentation, "armcc")
882 || strchr (fde->cie->augmentation + 5, '+') == NULL))
883 fs->armcc_cfa_offsets_reversed = 1;
885 return;
890 /* See dwarf2-frame.h. */
893 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
894 struct dwarf2_per_cu_data *data,
895 int *regnum_out, LONGEST *offset_out,
896 CORE_ADDR *text_offset_out,
897 const gdb_byte **cfa_start_out,
898 const gdb_byte **cfa_end_out)
900 struct dwarf2_fde *fde;
901 CORE_ADDR text_offset;
902 struct dwarf2_frame_state fs;
903 int addr_size;
905 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
907 fs.pc = pc;
909 /* Find the correct FDE. */
910 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
911 if (fde == NULL)
912 error (_("Could not compute CFA; needed to translate this expression"));
914 /* Extract any interesting information from the CIE. */
915 fs.data_align = fde->cie->data_alignment_factor;
916 fs.code_align = fde->cie->code_alignment_factor;
917 fs.retaddr_column = fde->cie->return_address_register;
918 addr_size = fde->cie->addr_size;
920 /* Check for "quirks" - known bugs in producers. */
921 dwarf2_frame_find_quirks (&fs, fde);
923 /* First decode all the insns in the CIE. */
924 execute_cfa_program (fde, fde->cie->initial_instructions,
925 fde->cie->end, gdbarch, pc, &fs);
927 /* Save the initialized register set. */
928 fs.initial = fs.regs;
929 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
931 /* Then decode the insns in the FDE up to our target PC. */
932 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
934 /* Calculate the CFA. */
935 switch (fs.regs.cfa_how)
937 case CFA_REG_OFFSET:
939 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
941 if (regnum == -1)
942 error (_("Unable to access DWARF register number %d"),
943 (int) fs.regs.cfa_reg); /* FIXME */
945 *regnum_out = regnum;
946 if (fs.armcc_cfa_offsets_reversed)
947 *offset_out = -fs.regs.cfa_offset;
948 else
949 *offset_out = fs.regs.cfa_offset;
950 return 1;
953 case CFA_EXP:
954 *text_offset_out = text_offset;
955 *cfa_start_out = fs.regs.cfa_exp;
956 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
957 return 0;
959 default:
960 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
965 struct dwarf2_frame_cache
967 /* DWARF Call Frame Address. */
968 CORE_ADDR cfa;
970 /* Set if the return address column was marked as unavailable
971 (required non-collected memory or registers to compute). */
972 int unavailable_retaddr;
974 /* Set if the return address column was marked as undefined. */
975 int undefined_retaddr;
977 /* Saved registers, indexed by GDB register number, not by DWARF
978 register number. */
979 struct dwarf2_frame_state_reg *reg;
981 /* Return address register. */
982 struct dwarf2_frame_state_reg retaddr_reg;
984 /* Target address size in bytes. */
985 int addr_size;
987 /* The .text offset. */
988 CORE_ADDR text_offset;
990 /* True if we already checked whether this frame is the bottom frame
991 of a virtual tail call frame chain. */
992 int checked_tailcall_bottom;
994 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
995 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
996 involved. Non-bottom frames of a virtual tail call frames chain use
997 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
998 them. */
999 void *tailcall_cache;
1001 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1002 base to get the SP, to simulate the return address pushed on the
1003 stack. */
1004 LONGEST entry_cfa_sp_offset;
1005 int entry_cfa_sp_offset_p;
1008 /* A cleanup that sets a pointer to NULL. */
1010 static void
1011 clear_pointer_cleanup (void *arg)
1013 void **ptr = arg;
1015 *ptr = NULL;
1018 static struct dwarf2_frame_cache *
1019 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1021 struct cleanup *reset_cache_cleanup, *old_chain;
1022 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1023 const int num_regs = gdbarch_num_regs (gdbarch)
1024 + gdbarch_num_pseudo_regs (gdbarch);
1025 struct dwarf2_frame_cache *cache;
1026 struct dwarf2_frame_state *fs;
1027 struct dwarf2_fde *fde;
1028 CORE_ADDR entry_pc;
1029 const gdb_byte *instr;
1031 if (*this_cache)
1032 return *this_cache;
1034 /* Allocate a new cache. */
1035 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1036 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1037 *this_cache = cache;
1038 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1040 /* Allocate and initialize the frame state. */
1041 fs = XCNEW (struct dwarf2_frame_state);
1042 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1044 /* Unwind the PC.
1046 Note that if the next frame is never supposed to return (i.e. a call
1047 to abort), the compiler might optimize away the instruction at
1048 its return address. As a result the return address will
1049 point at some random instruction, and the CFI for that
1050 instruction is probably worthless to us. GCC's unwinder solves
1051 this problem by substracting 1 from the return address to get an
1052 address in the middle of a presumed call instruction (or the
1053 instruction in the associated delay slot). This should only be
1054 done for "normal" frames and not for resume-type frames (signal
1055 handlers, sentinel frames, dummy frames). The function
1056 get_frame_address_in_block does just this. It's not clear how
1057 reliable the method is though; there is the potential for the
1058 register state pre-call being different to that on return. */
1059 fs->pc = get_frame_address_in_block (this_frame);
1061 /* Find the correct FDE. */
1062 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1063 gdb_assert (fde != NULL);
1065 /* Extract any interesting information from the CIE. */
1066 fs->data_align = fde->cie->data_alignment_factor;
1067 fs->code_align = fde->cie->code_alignment_factor;
1068 fs->retaddr_column = fde->cie->return_address_register;
1069 cache->addr_size = fde->cie->addr_size;
1071 /* Check for "quirks" - known bugs in producers. */
1072 dwarf2_frame_find_quirks (fs, fde);
1074 /* First decode all the insns in the CIE. */
1075 execute_cfa_program (fde, fde->cie->initial_instructions,
1076 fde->cie->end, gdbarch,
1077 get_frame_address_in_block (this_frame), fs);
1079 /* Save the initialized register set. */
1080 fs->initial = fs->regs;
1081 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1083 if (get_frame_func_if_available (this_frame, &entry_pc))
1085 /* Decode the insns in the FDE up to the entry PC. */
1086 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1087 entry_pc, fs);
1089 if (fs->regs.cfa_how == CFA_REG_OFFSET
1090 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1091 == gdbarch_sp_regnum (gdbarch)))
1093 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1094 cache->entry_cfa_sp_offset_p = 1;
1097 else
1098 instr = fde->instructions;
1100 /* Then decode the insns in the FDE up to our target PC. */
1101 execute_cfa_program (fde, instr, fde->end, gdbarch,
1102 get_frame_address_in_block (this_frame), fs);
1106 /* Calculate the CFA. */
1107 switch (fs->regs.cfa_how)
1109 case CFA_REG_OFFSET:
1110 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1111 if (fs->armcc_cfa_offsets_reversed)
1112 cache->cfa -= fs->regs.cfa_offset;
1113 else
1114 cache->cfa += fs->regs.cfa_offset;
1115 break;
1117 case CFA_EXP:
1118 cache->cfa =
1119 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1120 cache->addr_size, cache->text_offset,
1121 this_frame, 0, 0);
1122 break;
1124 default:
1125 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1128 CATCH (ex, RETURN_MASK_ERROR)
1130 if (ex.error == NOT_AVAILABLE_ERROR)
1132 cache->unavailable_retaddr = 1;
1133 do_cleanups (old_chain);
1134 discard_cleanups (reset_cache_cleanup);
1135 return cache;
1138 throw_exception (ex);
1140 END_CATCH
1142 /* Initialize the register state. */
1144 int regnum;
1146 for (regnum = 0; regnum < num_regs; regnum++)
1147 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1150 /* Go through the DWARF2 CFI generated table and save its register
1151 location information in the cache. Note that we don't skip the
1152 return address column; it's perfectly all right for it to
1153 correspond to a real register. If it doesn't correspond to a
1154 real register, or if we shouldn't treat it as such,
1155 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1156 the range [0, gdbarch_num_regs). */
1158 int column; /* CFI speak for "register number". */
1160 for (column = 0; column < fs->regs.num_regs; column++)
1162 /* Use the GDB register number as the destination index. */
1163 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1165 /* If there's no corresponding GDB register, ignore it. */
1166 if (regnum < 0 || regnum >= num_regs)
1167 continue;
1169 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1170 of all debug info registers. If it doesn't, complain (but
1171 not too loudly). It turns out that GCC assumes that an
1172 unspecified register implies "same value" when CFI (draft
1173 7) specifies nothing at all. Such a register could equally
1174 be interpreted as "undefined". Also note that this check
1175 isn't sufficient; it only checks that all registers in the
1176 range [0 .. max column] are specified, and won't detect
1177 problems when a debug info register falls outside of the
1178 table. We need a way of iterating through all the valid
1179 DWARF2 register numbers. */
1180 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1182 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1183 complaint (&symfile_complaints, _("\
1184 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1185 gdbarch_register_name (gdbarch, regnum),
1186 paddress (gdbarch, fs->pc));
1188 else
1189 cache->reg[regnum] = fs->regs.reg[column];
1193 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1194 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1196 int regnum;
1198 for (regnum = 0; regnum < num_regs; regnum++)
1200 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1201 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1203 struct dwarf2_frame_state_reg *retaddr_reg =
1204 &fs->regs.reg[fs->retaddr_column];
1206 /* It seems rather bizarre to specify an "empty" column as
1207 the return adress column. However, this is exactly
1208 what GCC does on some targets. It turns out that GCC
1209 assumes that the return address can be found in the
1210 register corresponding to the return address column.
1211 Incidentally, that's how we should treat a return
1212 address column specifying "same value" too. */
1213 if (fs->retaddr_column < fs->regs.num_regs
1214 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1215 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1217 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1218 cache->reg[regnum] = *retaddr_reg;
1219 else
1220 cache->retaddr_reg = *retaddr_reg;
1222 else
1224 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1226 cache->reg[regnum].loc.reg = fs->retaddr_column;
1227 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1229 else
1231 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1232 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1239 if (fs->retaddr_column < fs->regs.num_regs
1240 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1241 cache->undefined_retaddr = 1;
1243 do_cleanups (old_chain);
1244 discard_cleanups (reset_cache_cleanup);
1245 return cache;
1248 static enum unwind_stop_reason
1249 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1250 void **this_cache)
1252 struct dwarf2_frame_cache *cache
1253 = dwarf2_frame_cache (this_frame, this_cache);
1255 if (cache->unavailable_retaddr)
1256 return UNWIND_UNAVAILABLE;
1258 if (cache->undefined_retaddr)
1259 return UNWIND_OUTERMOST;
1261 return UNWIND_NO_REASON;
1264 static void
1265 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1266 struct frame_id *this_id)
1268 struct dwarf2_frame_cache *cache =
1269 dwarf2_frame_cache (this_frame, this_cache);
1271 if (cache->unavailable_retaddr)
1272 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1273 else if (cache->undefined_retaddr)
1274 return;
1275 else
1276 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1279 static struct value *
1280 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1281 int regnum)
1283 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1284 struct dwarf2_frame_cache *cache =
1285 dwarf2_frame_cache (this_frame, this_cache);
1286 CORE_ADDR addr;
1287 int realnum;
1289 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1290 call frame chain. */
1291 if (!cache->checked_tailcall_bottom)
1293 cache->checked_tailcall_bottom = 1;
1294 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1295 (cache->entry_cfa_sp_offset_p
1296 ? &cache->entry_cfa_sp_offset : NULL));
1299 /* Non-bottom frames of a virtual tail call frames chain use
1300 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1301 them. If dwarf2_tailcall_prev_register_first does not have specific value
1302 unwind the register, tail call frames are assumed to have the register set
1303 of the top caller. */
1304 if (cache->tailcall_cache)
1306 struct value *val;
1308 val = dwarf2_tailcall_prev_register_first (this_frame,
1309 &cache->tailcall_cache,
1310 regnum);
1311 if (val)
1312 return val;
1315 switch (cache->reg[regnum].how)
1317 case DWARF2_FRAME_REG_UNDEFINED:
1318 /* If CFI explicitly specified that the value isn't defined,
1319 mark it as optimized away; the value isn't available. */
1320 return frame_unwind_got_optimized (this_frame, regnum);
1322 case DWARF2_FRAME_REG_SAVED_OFFSET:
1323 addr = cache->cfa + cache->reg[regnum].loc.offset;
1324 return frame_unwind_got_memory (this_frame, regnum, addr);
1326 case DWARF2_FRAME_REG_SAVED_REG:
1327 realnum
1328 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1329 return frame_unwind_got_register (this_frame, regnum, realnum);
1331 case DWARF2_FRAME_REG_SAVED_EXP:
1332 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1333 cache->reg[regnum].exp_len,
1334 cache->addr_size, cache->text_offset,
1335 this_frame, cache->cfa, 1);
1336 return frame_unwind_got_memory (this_frame, regnum, addr);
1338 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1339 addr = cache->cfa + cache->reg[regnum].loc.offset;
1340 return frame_unwind_got_constant (this_frame, regnum, addr);
1342 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1343 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1344 cache->reg[regnum].exp_len,
1345 cache->addr_size, cache->text_offset,
1346 this_frame, cache->cfa, 1);
1347 return frame_unwind_got_constant (this_frame, regnum, addr);
1349 case DWARF2_FRAME_REG_UNSPECIFIED:
1350 /* GCC, in its infinite wisdom decided to not provide unwind
1351 information for registers that are "same value". Since
1352 DWARF2 (3 draft 7) doesn't define such behavior, said
1353 registers are actually undefined (which is different to CFI
1354 "undefined"). Code above issues a complaint about this.
1355 Here just fudge the books, assume GCC, and that the value is
1356 more inner on the stack. */
1357 return frame_unwind_got_register (this_frame, regnum, regnum);
1359 case DWARF2_FRAME_REG_SAME_VALUE:
1360 return frame_unwind_got_register (this_frame, regnum, regnum);
1362 case DWARF2_FRAME_REG_CFA:
1363 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1365 case DWARF2_FRAME_REG_CFA_OFFSET:
1366 addr = cache->cfa + cache->reg[regnum].loc.offset;
1367 return frame_unwind_got_address (this_frame, regnum, addr);
1369 case DWARF2_FRAME_REG_RA_OFFSET:
1370 addr = cache->reg[regnum].loc.offset;
1371 regnum = gdbarch_dwarf2_reg_to_regnum
1372 (gdbarch, cache->retaddr_reg.loc.reg);
1373 addr += get_frame_register_unsigned (this_frame, regnum);
1374 return frame_unwind_got_address (this_frame, regnum, addr);
1376 case DWARF2_FRAME_REG_FN:
1377 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1379 default:
1380 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1384 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1385 call frames chain. */
1387 static void
1388 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1390 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1392 if (cache->tailcall_cache)
1393 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1396 static int
1397 dwarf2_frame_sniffer (const struct frame_unwind *self,
1398 struct frame_info *this_frame, void **this_cache)
1400 /* Grab an address that is guarenteed to reside somewhere within the
1401 function. get_frame_pc(), with a no-return next function, can
1402 end up returning something past the end of this function's body.
1403 If the frame we're sniffing for is a signal frame whose start
1404 address is placed on the stack by the OS, its FDE must
1405 extend one byte before its start address or we could potentially
1406 select the FDE of the previous function. */
1407 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1408 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1410 if (!fde)
1411 return 0;
1413 /* On some targets, signal trampolines may have unwind information.
1414 We need to recognize them so that we set the frame type
1415 correctly. */
1417 if (fde->cie->signal_frame
1418 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1419 this_frame))
1420 return self->type == SIGTRAMP_FRAME;
1422 if (self->type != NORMAL_FRAME)
1423 return 0;
1425 return 1;
1428 static const struct frame_unwind dwarf2_frame_unwind =
1430 NORMAL_FRAME,
1431 dwarf2_frame_unwind_stop_reason,
1432 dwarf2_frame_this_id,
1433 dwarf2_frame_prev_register,
1434 NULL,
1435 dwarf2_frame_sniffer,
1436 dwarf2_frame_dealloc_cache
1439 static const struct frame_unwind dwarf2_signal_frame_unwind =
1441 SIGTRAMP_FRAME,
1442 dwarf2_frame_unwind_stop_reason,
1443 dwarf2_frame_this_id,
1444 dwarf2_frame_prev_register,
1445 NULL,
1446 dwarf2_frame_sniffer,
1448 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1449 NULL
1452 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1454 void
1455 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1457 /* TAILCALL_FRAME must be first to find the record by
1458 dwarf2_tailcall_sniffer_first. */
1459 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1461 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1462 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1466 /* There is no explicitly defined relationship between the CFA and the
1467 location of frame's local variables and arguments/parameters.
1468 Therefore, frame base methods on this page should probably only be
1469 used as a last resort, just to avoid printing total garbage as a
1470 response to the "info frame" command. */
1472 static CORE_ADDR
1473 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1475 struct dwarf2_frame_cache *cache =
1476 dwarf2_frame_cache (this_frame, this_cache);
1478 return cache->cfa;
1481 static const struct frame_base dwarf2_frame_base =
1483 &dwarf2_frame_unwind,
1484 dwarf2_frame_base_address,
1485 dwarf2_frame_base_address,
1486 dwarf2_frame_base_address
1489 const struct frame_base *
1490 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1492 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1494 if (dwarf2_frame_find_fde (&block_addr, NULL))
1495 return &dwarf2_frame_base;
1497 return NULL;
1500 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1501 the DWARF unwinder. This is used to implement
1502 DW_OP_call_frame_cfa. */
1504 CORE_ADDR
1505 dwarf2_frame_cfa (struct frame_info *this_frame)
1507 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1508 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1509 throw_error (NOT_AVAILABLE_ERROR,
1510 _("cfa not available for record btrace target"));
1512 while (get_frame_type (this_frame) == INLINE_FRAME)
1513 this_frame = get_prev_frame (this_frame);
1514 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1515 throw_error (NOT_AVAILABLE_ERROR,
1516 _("can't compute CFA for this frame: "
1517 "required registers or memory are unavailable"));
1519 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1520 throw_error (NOT_AVAILABLE_ERROR,
1521 _("can't compute CFA for this frame: "
1522 "frame base not available"));
1524 return get_frame_base (this_frame);
1527 const struct objfile_data *dwarf2_frame_objfile_data;
1529 static unsigned int
1530 read_1_byte (bfd *abfd, const gdb_byte *buf)
1532 return bfd_get_8 (abfd, buf);
1535 static unsigned int
1536 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1538 return bfd_get_32 (abfd, buf);
1541 static ULONGEST
1542 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1544 return bfd_get_64 (abfd, buf);
1547 static ULONGEST
1548 read_initial_length (bfd *abfd, const gdb_byte *buf,
1549 unsigned int *bytes_read_ptr)
1551 LONGEST result;
1553 result = bfd_get_32 (abfd, buf);
1554 if (result == 0xffffffff)
1556 result = bfd_get_64 (abfd, buf + 4);
1557 *bytes_read_ptr = 12;
1559 else
1560 *bytes_read_ptr = 4;
1562 return result;
1566 /* Pointer encoding helper functions. */
1568 /* GCC supports exception handling based on DWARF2 CFI. However, for
1569 technical reasons, it encodes addresses in its FDE's in a different
1570 way. Several "pointer encodings" are supported. The encoding
1571 that's used for a particular FDE is determined by the 'R'
1572 augmentation in the associated CIE. The argument of this
1573 augmentation is a single byte.
1575 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1576 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1577 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1578 address should be interpreted (absolute, relative to the current
1579 position in the FDE, ...). Bit 7, indicates that the address
1580 should be dereferenced. */
1582 static gdb_byte
1583 encoding_for_size (unsigned int size)
1585 switch (size)
1587 case 2:
1588 return DW_EH_PE_udata2;
1589 case 4:
1590 return DW_EH_PE_udata4;
1591 case 8:
1592 return DW_EH_PE_udata8;
1593 default:
1594 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1598 static CORE_ADDR
1599 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1600 int ptr_len, const gdb_byte *buf,
1601 unsigned int *bytes_read_ptr,
1602 CORE_ADDR func_base)
1604 ptrdiff_t offset;
1605 CORE_ADDR base;
1607 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1608 FDE's. */
1609 if (encoding & DW_EH_PE_indirect)
1610 internal_error (__FILE__, __LINE__,
1611 _("Unsupported encoding: DW_EH_PE_indirect"));
1613 *bytes_read_ptr = 0;
1615 switch (encoding & 0x70)
1617 case DW_EH_PE_absptr:
1618 base = 0;
1619 break;
1620 case DW_EH_PE_pcrel:
1621 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1622 base += (buf - unit->dwarf_frame_buffer);
1623 break;
1624 case DW_EH_PE_datarel:
1625 base = unit->dbase;
1626 break;
1627 case DW_EH_PE_textrel:
1628 base = unit->tbase;
1629 break;
1630 case DW_EH_PE_funcrel:
1631 base = func_base;
1632 break;
1633 case DW_EH_PE_aligned:
1634 base = 0;
1635 offset = buf - unit->dwarf_frame_buffer;
1636 if ((offset % ptr_len) != 0)
1638 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1639 buf += *bytes_read_ptr;
1641 break;
1642 default:
1643 internal_error (__FILE__, __LINE__,
1644 _("Invalid or unsupported encoding"));
1647 if ((encoding & 0x07) == 0x00)
1649 encoding |= encoding_for_size (ptr_len);
1650 if (bfd_get_sign_extend_vma (unit->abfd))
1651 encoding |= DW_EH_PE_signed;
1654 switch (encoding & 0x0f)
1656 case DW_EH_PE_uleb128:
1658 uint64_t value;
1659 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1661 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1662 return base + value;
1664 case DW_EH_PE_udata2:
1665 *bytes_read_ptr += 2;
1666 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1667 case DW_EH_PE_udata4:
1668 *bytes_read_ptr += 4;
1669 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1670 case DW_EH_PE_udata8:
1671 *bytes_read_ptr += 8;
1672 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1673 case DW_EH_PE_sleb128:
1675 int64_t value;
1676 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1678 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1679 return base + value;
1681 case DW_EH_PE_sdata2:
1682 *bytes_read_ptr += 2;
1683 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1684 case DW_EH_PE_sdata4:
1685 *bytes_read_ptr += 4;
1686 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1687 case DW_EH_PE_sdata8:
1688 *bytes_read_ptr += 8;
1689 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1690 default:
1691 internal_error (__FILE__, __LINE__,
1692 _("Invalid or unsupported encoding"));
1697 static int
1698 bsearch_cie_cmp (const void *key, const void *element)
1700 ULONGEST cie_pointer = *(ULONGEST *) key;
1701 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1703 if (cie_pointer == cie->cie_pointer)
1704 return 0;
1706 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1709 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1710 static struct dwarf2_cie *
1711 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1713 struct dwarf2_cie **p_cie;
1715 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1716 bsearch be non-NULL. */
1717 if (cie_table->entries == NULL)
1719 gdb_assert (cie_table->num_entries == 0);
1720 return NULL;
1723 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1724 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1725 if (p_cie != NULL)
1726 return *p_cie;
1727 return NULL;
1730 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1731 static void
1732 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1734 const int n = cie_table->num_entries;
1736 gdb_assert (n < 1
1737 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1739 cie_table->entries =
1740 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1741 cie_table->entries[n] = cie;
1742 cie_table->num_entries = n + 1;
1745 static int
1746 bsearch_fde_cmp (const void *key, const void *element)
1748 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1749 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1751 if (seek_pc < fde->initial_location)
1752 return -1;
1753 if (seek_pc < fde->initial_location + fde->address_range)
1754 return 0;
1755 return 1;
1758 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1759 inital location associated with it into *PC. */
1761 static struct dwarf2_fde *
1762 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1764 struct objfile *objfile;
1766 ALL_OBJFILES (objfile)
1768 struct dwarf2_fde_table *fde_table;
1769 struct dwarf2_fde **p_fde;
1770 CORE_ADDR offset;
1771 CORE_ADDR seek_pc;
1773 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1774 if (fde_table == NULL)
1776 dwarf2_build_frame_info (objfile);
1777 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1779 gdb_assert (fde_table != NULL);
1781 if (fde_table->num_entries == 0)
1782 continue;
1784 gdb_assert (objfile->section_offsets);
1785 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1787 gdb_assert (fde_table->num_entries > 0);
1788 if (*pc < offset + fde_table->entries[0]->initial_location)
1789 continue;
1791 seek_pc = *pc - offset;
1792 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1793 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1794 if (p_fde != NULL)
1796 *pc = (*p_fde)->initial_location + offset;
1797 if (out_offset)
1798 *out_offset = offset;
1799 return *p_fde;
1802 return NULL;
1805 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1806 static void
1807 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1809 if (fde->address_range == 0)
1810 /* Discard useless FDEs. */
1811 return;
1813 fde_table->num_entries += 1;
1814 fde_table->entries =
1815 xrealloc (fde_table->entries,
1816 fde_table->num_entries * sizeof (fde_table->entries[0]));
1817 fde_table->entries[fde_table->num_entries - 1] = fde;
1820 #define DW64_CIE_ID 0xffffffffffffffffULL
1822 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1823 or any of them. */
1825 enum eh_frame_type
1827 EH_CIE_TYPE_ID = 1 << 0,
1828 EH_FDE_TYPE_ID = 1 << 1,
1829 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1832 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1833 const gdb_byte *start,
1834 int eh_frame_p,
1835 struct dwarf2_cie_table *cie_table,
1836 struct dwarf2_fde_table *fde_table,
1837 enum eh_frame_type entry_type);
1839 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1840 Return NULL if invalid input, otherwise the next byte to be processed. */
1842 static const gdb_byte *
1843 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1844 int eh_frame_p,
1845 struct dwarf2_cie_table *cie_table,
1846 struct dwarf2_fde_table *fde_table,
1847 enum eh_frame_type entry_type)
1849 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1850 const gdb_byte *buf, *end;
1851 LONGEST length;
1852 unsigned int bytes_read;
1853 int dwarf64_p;
1854 ULONGEST cie_id;
1855 ULONGEST cie_pointer;
1856 int64_t sleb128;
1857 uint64_t uleb128;
1859 buf = start;
1860 length = read_initial_length (unit->abfd, buf, &bytes_read);
1861 buf += bytes_read;
1862 end = buf + length;
1864 /* Are we still within the section? */
1865 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1866 return NULL;
1868 if (length == 0)
1869 return end;
1871 /* Distinguish between 32 and 64-bit encoded frame info. */
1872 dwarf64_p = (bytes_read == 12);
1874 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1875 if (eh_frame_p)
1876 cie_id = 0;
1877 else if (dwarf64_p)
1878 cie_id = DW64_CIE_ID;
1879 else
1880 cie_id = DW_CIE_ID;
1882 if (dwarf64_p)
1884 cie_pointer = read_8_bytes (unit->abfd, buf);
1885 buf += 8;
1887 else
1889 cie_pointer = read_4_bytes (unit->abfd, buf);
1890 buf += 4;
1893 if (cie_pointer == cie_id)
1895 /* This is a CIE. */
1896 struct dwarf2_cie *cie;
1897 char *augmentation;
1898 unsigned int cie_version;
1900 /* Check that a CIE was expected. */
1901 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1902 error (_("Found a CIE when not expecting it."));
1904 /* Record the offset into the .debug_frame section of this CIE. */
1905 cie_pointer = start - unit->dwarf_frame_buffer;
1907 /* Check whether we've already read it. */
1908 if (find_cie (cie_table, cie_pointer))
1909 return end;
1911 cie = (struct dwarf2_cie *)
1912 obstack_alloc (&unit->objfile->objfile_obstack,
1913 sizeof (struct dwarf2_cie));
1914 cie->initial_instructions = NULL;
1915 cie->cie_pointer = cie_pointer;
1917 /* The encoding for FDE's in a normal .debug_frame section
1918 depends on the target address size. */
1919 cie->encoding = DW_EH_PE_absptr;
1921 /* We'll determine the final value later, but we need to
1922 initialize it conservatively. */
1923 cie->signal_frame = 0;
1925 /* Check version number. */
1926 cie_version = read_1_byte (unit->abfd, buf);
1927 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1928 return NULL;
1929 cie->version = cie_version;
1930 buf += 1;
1932 /* Interpret the interesting bits of the augmentation. */
1933 cie->augmentation = augmentation = (char *) buf;
1934 buf += (strlen (augmentation) + 1);
1936 /* Ignore armcc augmentations. We only use them for quirks,
1937 and that doesn't happen until later. */
1938 if (startswith (augmentation, "armcc"))
1939 augmentation += strlen (augmentation);
1941 /* The GCC 2.x "eh" augmentation has a pointer immediately
1942 following the augmentation string, so it must be handled
1943 first. */
1944 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1946 /* Skip. */
1947 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1948 augmentation += 2;
1951 if (cie->version >= 4)
1953 /* FIXME: check that this is the same as from the CU header. */
1954 cie->addr_size = read_1_byte (unit->abfd, buf);
1955 ++buf;
1956 cie->segment_size = read_1_byte (unit->abfd, buf);
1957 ++buf;
1959 else
1961 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1962 cie->segment_size = 0;
1964 /* Address values in .eh_frame sections are defined to have the
1965 target's pointer size. Watchout: This breaks frame info for
1966 targets with pointer size < address size, unless a .debug_frame
1967 section exists as well. */
1968 if (eh_frame_p)
1969 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1970 else
1971 cie->ptr_size = cie->addr_size;
1973 buf = gdb_read_uleb128 (buf, end, &uleb128);
1974 if (buf == NULL)
1975 return NULL;
1976 cie->code_alignment_factor = uleb128;
1978 buf = gdb_read_sleb128 (buf, end, &sleb128);
1979 if (buf == NULL)
1980 return NULL;
1981 cie->data_alignment_factor = sleb128;
1983 if (cie_version == 1)
1985 cie->return_address_register = read_1_byte (unit->abfd, buf);
1986 ++buf;
1988 else
1990 buf = gdb_read_uleb128 (buf, end, &uleb128);
1991 if (buf == NULL)
1992 return NULL;
1993 cie->return_address_register = uleb128;
1996 cie->return_address_register
1997 = dwarf2_frame_adjust_regnum (gdbarch,
1998 cie->return_address_register,
1999 eh_frame_p);
2001 cie->saw_z_augmentation = (*augmentation == 'z');
2002 if (cie->saw_z_augmentation)
2004 uint64_t length;
2006 buf = gdb_read_uleb128 (buf, end, &length);
2007 if (buf == NULL)
2008 return NULL;
2009 cie->initial_instructions = buf + length;
2010 augmentation++;
2013 while (*augmentation)
2015 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2016 if (*augmentation == 'L')
2018 /* Skip. */
2019 buf++;
2020 augmentation++;
2023 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2024 else if (*augmentation == 'R')
2026 cie->encoding = *buf++;
2027 augmentation++;
2030 /* "P" indicates a personality routine in the CIE augmentation. */
2031 else if (*augmentation == 'P')
2033 /* Skip. Avoid indirection since we throw away the result. */
2034 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2035 read_encoded_value (unit, encoding, cie->ptr_size,
2036 buf, &bytes_read, 0);
2037 buf += bytes_read;
2038 augmentation++;
2041 /* "S" indicates a signal frame, such that the return
2042 address must not be decremented to locate the call frame
2043 info for the previous frame; it might even be the first
2044 instruction of a function, so decrementing it would take
2045 us to a different function. */
2046 else if (*augmentation == 'S')
2048 cie->signal_frame = 1;
2049 augmentation++;
2052 /* Otherwise we have an unknown augmentation. Assume that either
2053 there is no augmentation data, or we saw a 'z' prefix. */
2054 else
2056 if (cie->initial_instructions)
2057 buf = cie->initial_instructions;
2058 break;
2062 cie->initial_instructions = buf;
2063 cie->end = end;
2064 cie->unit = unit;
2066 add_cie (cie_table, cie);
2068 else
2070 /* This is a FDE. */
2071 struct dwarf2_fde *fde;
2072 CORE_ADDR addr;
2074 /* Check that an FDE was expected. */
2075 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2076 error (_("Found an FDE when not expecting it."));
2078 /* In an .eh_frame section, the CIE pointer is the delta between the
2079 address within the FDE where the CIE pointer is stored and the
2080 address of the CIE. Convert it to an offset into the .eh_frame
2081 section. */
2082 if (eh_frame_p)
2084 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2085 cie_pointer -= (dwarf64_p ? 8 : 4);
2088 /* In either case, validate the result is still within the section. */
2089 if (cie_pointer >= unit->dwarf_frame_size)
2090 return NULL;
2092 fde = (struct dwarf2_fde *)
2093 obstack_alloc (&unit->objfile->objfile_obstack,
2094 sizeof (struct dwarf2_fde));
2095 fde->cie = find_cie (cie_table, cie_pointer);
2096 if (fde->cie == NULL)
2098 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2099 eh_frame_p, cie_table, fde_table,
2100 EH_CIE_TYPE_ID);
2101 fde->cie = find_cie (cie_table, cie_pointer);
2104 gdb_assert (fde->cie != NULL);
2106 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2107 buf, &bytes_read, 0);
2108 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
2109 buf += bytes_read;
2111 fde->address_range =
2112 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2113 fde->cie->ptr_size, buf, &bytes_read, 0);
2114 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2115 fde->address_range = addr - fde->initial_location;
2116 buf += bytes_read;
2118 /* A 'z' augmentation in the CIE implies the presence of an
2119 augmentation field in the FDE as well. The only thing known
2120 to be in here at present is the LSDA entry for EH. So we
2121 can skip the whole thing. */
2122 if (fde->cie->saw_z_augmentation)
2124 uint64_t length;
2126 buf = gdb_read_uleb128 (buf, end, &length);
2127 if (buf == NULL)
2128 return NULL;
2129 buf += length;
2130 if (buf > end)
2131 return NULL;
2134 fde->instructions = buf;
2135 fde->end = end;
2137 fde->eh_frame_p = eh_frame_p;
2139 add_fde (fde_table, fde);
2142 return end;
2145 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2146 expect an FDE or a CIE. */
2148 static const gdb_byte *
2149 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2150 int eh_frame_p,
2151 struct dwarf2_cie_table *cie_table,
2152 struct dwarf2_fde_table *fde_table,
2153 enum eh_frame_type entry_type)
2155 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2156 const gdb_byte *ret;
2157 ptrdiff_t start_offset;
2159 while (1)
2161 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2162 cie_table, fde_table, entry_type);
2163 if (ret != NULL)
2164 break;
2166 /* We have corrupt input data of some form. */
2168 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2169 and mismatches wrt padding and alignment of debug sections. */
2170 /* Note that there is no requirement in the standard for any
2171 alignment at all in the frame unwind sections. Testing for
2172 alignment before trying to interpret data would be incorrect.
2174 However, GCC traditionally arranged for frame sections to be
2175 sized such that the FDE length and CIE fields happen to be
2176 aligned (in theory, for performance). This, unfortunately,
2177 was done with .align directives, which had the side effect of
2178 forcing the section to be aligned by the linker.
2180 This becomes a problem when you have some other producer that
2181 creates frame sections that are not as strictly aligned. That
2182 produces a hole in the frame info that gets filled by the
2183 linker with zeros.
2185 The GCC behaviour is arguably a bug, but it's effectively now
2186 part of the ABI, so we're now stuck with it, at least at the
2187 object file level. A smart linker may decide, in the process
2188 of compressing duplicate CIE information, that it can rewrite
2189 the entire output section without this extra padding. */
2191 start_offset = start - unit->dwarf_frame_buffer;
2192 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2194 start += 4 - (start_offset & 3);
2195 workaround = ALIGN4;
2196 continue;
2198 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2200 start += 8 - (start_offset & 7);
2201 workaround = ALIGN8;
2202 continue;
2205 /* Nothing left to try. Arrange to return as if we've consumed
2206 the entire input section. Hopefully we'll get valid info from
2207 the other of .debug_frame/.eh_frame. */
2208 workaround = FAIL;
2209 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2210 break;
2213 switch (workaround)
2215 case NONE:
2216 break;
2218 case ALIGN4:
2219 complaint (&symfile_complaints, _("\
2220 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2221 unit->dwarf_frame_section->owner->filename,
2222 unit->dwarf_frame_section->name);
2223 break;
2225 case ALIGN8:
2226 complaint (&symfile_complaints, _("\
2227 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2228 unit->dwarf_frame_section->owner->filename,
2229 unit->dwarf_frame_section->name);
2230 break;
2232 default:
2233 complaint (&symfile_complaints,
2234 _("Corrupt data in %s:%s"),
2235 unit->dwarf_frame_section->owner->filename,
2236 unit->dwarf_frame_section->name);
2237 break;
2240 return ret;
2243 static int
2244 qsort_fde_cmp (const void *a, const void *b)
2246 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2247 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2249 if (aa->initial_location == bb->initial_location)
2251 if (aa->address_range != bb->address_range
2252 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2253 /* Linker bug, e.g. gold/10400.
2254 Work around it by keeping stable sort order. */
2255 return (a < b) ? -1 : 1;
2256 else
2257 /* Put eh_frame entries after debug_frame ones. */
2258 return aa->eh_frame_p - bb->eh_frame_p;
2261 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2264 void
2265 dwarf2_build_frame_info (struct objfile *objfile)
2267 struct comp_unit *unit;
2268 const gdb_byte *frame_ptr;
2269 struct dwarf2_cie_table cie_table;
2270 struct dwarf2_fde_table fde_table;
2271 struct dwarf2_fde_table *fde_table2;
2273 cie_table.num_entries = 0;
2274 cie_table.entries = NULL;
2276 fde_table.num_entries = 0;
2277 fde_table.entries = NULL;
2279 /* Build a minimal decoding of the DWARF2 compilation unit. */
2280 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2281 sizeof (struct comp_unit));
2282 unit->abfd = objfile->obfd;
2283 unit->objfile = objfile;
2284 unit->dbase = 0;
2285 unit->tbase = 0;
2287 if (objfile->separate_debug_objfile_backlink == NULL)
2289 /* Do not read .eh_frame from separate file as they must be also
2290 present in the main file. */
2291 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2292 &unit->dwarf_frame_section,
2293 &unit->dwarf_frame_buffer,
2294 &unit->dwarf_frame_size);
2295 if (unit->dwarf_frame_size)
2297 asection *got, *txt;
2299 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2300 that is used for the i386/amd64 target, which currently is
2301 the only target in GCC that supports/uses the
2302 DW_EH_PE_datarel encoding. */
2303 got = bfd_get_section_by_name (unit->abfd, ".got");
2304 if (got)
2305 unit->dbase = got->vma;
2307 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2308 so far. */
2309 txt = bfd_get_section_by_name (unit->abfd, ".text");
2310 if (txt)
2311 unit->tbase = txt->vma;
2315 frame_ptr = unit->dwarf_frame_buffer;
2316 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2317 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2318 &cie_table, &fde_table,
2319 EH_CIE_OR_FDE_TYPE_ID);
2322 CATCH (e, RETURN_MASK_ERROR)
2324 warning (_("skipping .eh_frame info of %s: %s"),
2325 objfile_name (objfile), e.message);
2327 if (fde_table.num_entries != 0)
2329 xfree (fde_table.entries);
2330 fde_table.entries = NULL;
2331 fde_table.num_entries = 0;
2333 /* The cie_table is discarded by the next if. */
2335 END_CATCH
2337 if (cie_table.num_entries != 0)
2339 /* Reinit cie_table: debug_frame has different CIEs. */
2340 xfree (cie_table.entries);
2341 cie_table.num_entries = 0;
2342 cie_table.entries = NULL;
2347 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2348 &unit->dwarf_frame_section,
2349 &unit->dwarf_frame_buffer,
2350 &unit->dwarf_frame_size);
2351 if (unit->dwarf_frame_size)
2353 int num_old_fde_entries = fde_table.num_entries;
2357 frame_ptr = unit->dwarf_frame_buffer;
2358 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2359 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2360 &cie_table, &fde_table,
2361 EH_CIE_OR_FDE_TYPE_ID);
2363 CATCH (e, RETURN_MASK_ERROR)
2365 warning (_("skipping .debug_frame info of %s: %s"),
2366 objfile_name (objfile), e.message);
2368 if (fde_table.num_entries != 0)
2370 fde_table.num_entries = num_old_fde_entries;
2371 if (num_old_fde_entries == 0)
2373 xfree (fde_table.entries);
2374 fde_table.entries = NULL;
2376 else
2378 fde_table.entries = xrealloc (fde_table.entries,
2379 fde_table.num_entries *
2380 sizeof (fde_table.entries[0]));
2383 fde_table.num_entries = num_old_fde_entries;
2384 /* The cie_table is discarded by the next if. */
2386 END_CATCH
2389 /* Discard the cie_table, it is no longer needed. */
2390 if (cie_table.num_entries != 0)
2392 xfree (cie_table.entries);
2393 cie_table.entries = NULL; /* Paranoia. */
2394 cie_table.num_entries = 0; /* Paranoia. */
2397 /* Copy fde_table to obstack: it is needed at runtime. */
2398 fde_table2 = (struct dwarf2_fde_table *)
2399 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2401 if (fde_table.num_entries == 0)
2403 fde_table2->entries = NULL;
2404 fde_table2->num_entries = 0;
2406 else
2408 struct dwarf2_fde *fde_prev = NULL;
2409 struct dwarf2_fde *first_non_zero_fde = NULL;
2410 int i;
2412 /* Prepare FDE table for lookups. */
2413 qsort (fde_table.entries, fde_table.num_entries,
2414 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2416 /* Check for leftovers from --gc-sections. The GNU linker sets
2417 the relevant symbols to zero, but doesn't zero the FDE *end*
2418 ranges because there's no relocation there. It's (offset,
2419 length), not (start, end). On targets where address zero is
2420 just another valid address this can be a problem, since the
2421 FDEs appear to be non-empty in the output --- we could pick
2422 out the wrong FDE. To work around this, when overlaps are
2423 detected, we prefer FDEs that do not start at zero.
2425 Start by finding the first FDE with non-zero start. Below
2426 we'll discard all FDEs that start at zero and overlap this
2427 one. */
2428 for (i = 0; i < fde_table.num_entries; i++)
2430 struct dwarf2_fde *fde = fde_table.entries[i];
2432 if (fde->initial_location != 0)
2434 first_non_zero_fde = fde;
2435 break;
2439 /* Since we'll be doing bsearch, squeeze out identical (except
2440 for eh_frame_p) fde entries so bsearch result is predictable.
2441 Also discard leftovers from --gc-sections. */
2442 fde_table2->num_entries = 0;
2443 for (i = 0; i < fde_table.num_entries; i++)
2445 struct dwarf2_fde *fde = fde_table.entries[i];
2447 if (fde->initial_location == 0
2448 && first_non_zero_fde != NULL
2449 && (first_non_zero_fde->initial_location
2450 < fde->initial_location + fde->address_range))
2451 continue;
2453 if (fde_prev != NULL
2454 && fde_prev->initial_location == fde->initial_location)
2455 continue;
2457 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2458 sizeof (fde_table.entries[0]));
2459 ++fde_table2->num_entries;
2460 fde_prev = fde;
2462 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2464 /* Discard the original fde_table. */
2465 xfree (fde_table.entries);
2468 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2471 /* Provide a prototype to silence -Wmissing-prototypes. */
2472 void _initialize_dwarf2_frame (void);
2474 void
2475 _initialize_dwarf2_frame (void)
2477 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2478 dwarf2_frame_objfile_data = register_objfile_data ();