Add documentation for the MIPS assembler's -march=from-abi command line option
[binutils-gdb.git] / sim / common / hw-device.h
blob6818baef5956129212930b2e078f5a433f0068a5
1 /* The common simulator framework for GDB, the GNU Debugger.
3 Copyright 2002-2023 Free Software Foundation, Inc.
5 Contributed by Andrew Cagney and Red Hat.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #ifndef HW_DEVICE_H
24 #define HW_DEVICE_H
26 #include <stdarg.h>
28 #include "ansidecl.h"
30 /* Introduction:
32 As explained in earlier sections, the device, device instance,
33 property and ports lie at the heart of PSIM's device model.
35 In the below a synopsis of the device object and the operations it
36 supports are given.
40 /* Creation:
42 The devices are created using a sequence of steps. In particular:
44 o A tree framework is created.
46 At this point, properties can be modified and extra
47 devices inserted (or removed?).
49 #if LATER
51 Any properties that have a run-time value (eg ihandle
52 or device instance pointer properties) are entered
53 into the device tree using a named reference to the
54 corresponding runtime object that is to be created.
56 #endif
58 o Real devices are created for all the dummy devices.
60 A device can assume that all of its parents have been
61 initialized.
63 A device can assume that all non run-time properties
64 have been initialized.
66 As part of being created, the device normally attaches
67 itself to its parent bus.
69 #if LATER
71 Device instance data is initialized.
73 #endif
75 #if LATER
77 o Any run-time properties are created.
79 #endif
81 #if MUCH_MUCH_LATER
83 o Some devices, as part of their initialization
84 might want to refer to ihandle properties
85 in the device tree.
87 #endif
89 NOTES:
91 o It is important to separate the creation
92 of an actual device from the creation
93 of the tree. The alternative creating
94 the device in two stages: As a separate
95 entity and then as a part of the tree.
97 #if LATER
98 o Run-time properties can not be created
99 until after the devices in the tree
100 have been created. Hence an extra pass
101 for handling them.
102 #endif
106 /* Relationships:
108 A device is able to determine its relationship to other devices
109 within the tree. Operations include querying for a devices parent,
110 sibling, child, name, and path (from the root).
115 #define hw_parent(hw) ((hw)->parent_of_hw + 0)
117 #define hw_sibling(hw) ((hw)->sibling_of_hw + 0)
119 #define hw_child(hw) ((hw)->child_of_hw + 0)
123 /* Herritage:
127 #define hw_family(hw) ((hw)->family_of_hw + 0)
129 #define hw_name(hw) ((hw)->name_of_hw + 0)
131 #define hw_args(hw) ((hw)->args_of_hw + 0)
133 #define hw_path(hw) ((hw)->path_of_hw + 0)
137 /* Short cut to the root node of the tree */
139 #define hw_root(hw) ((hw)->root_of_hw + 0)
141 /* Short cut back to the simulator object */
143 #define hw_system(hw) ((hw)->system_of_hw)
145 /* For requests initiated by a CPU the cpu that initiated the request */
147 struct _sim_cpu *hw_system_cpu (struct hw *hw);
150 /* Device private data */
152 #define hw_data(hw) ((hw)->data_of_hw)
154 #define set_hw_data(hw, value) \
155 ((hw)->data_of_hw = (value))
159 /* Perform a soft reset of the device */
161 typedef unsigned (hw_reset_method)
162 (struct hw *me);
164 #define hw_reset(hw) ((hw)->to_reset (hw))
166 #define set_hw_reset(hw, method) \
167 ((hw)->to_reset = method)
170 /* Hardware operations:
172 Connecting a parent to its children is a common bus. The parent
173 node is described as the bus owner and is responisble for
174 co-ordinating bus operations. On the bus, a SPACE:ADDR pair is used
175 to specify an address. A device that is both a bus owner (parent)
176 and bus client (child) are referred to as a bridging device.
178 A child performing a data (DMA) transfer will pass its request to
179 the bus owner (the devices parent). The bus owner will then either
180 reflect the request to one of the other devices attached to the bus
181 (a child of the bus owner) or bridge the request up the tree to the
182 next bus. */
185 /* Children attached to a bus can register (attach) themselves to
186 specific addresses on their attached bus.
188 (A device may also be implicitly attached to certain bus
189 addresses).
191 The SPACE:ADDR pair specify an address on the common bus that
192 connects the parent and child devices. */
194 typedef void (hw_attach_address_method)
195 (struct hw *me,
196 int level,
197 int space,
198 address_word addr,
199 address_word nr_bytes,
200 struct hw *client); /*callback/default*/
202 #define hw_attach_address(me, level, space, addr, nr_bytes, client) \
203 ((me)->to_attach_address (me, level, space, addr, nr_bytes, client))
205 #define set_hw_attach_address(hw, method) \
206 ((hw)->to_attach_address = (method))
208 typedef void (hw_detach_address_method)
209 (struct hw *me,
210 int level,
211 int space,
212 address_word addr,
213 address_word nr_bytes,
214 struct hw *client); /*callback/default*/
216 #define hw_detach_address(me, level, space, addr, nr_bytes, client) \
217 ((me)->to_detach_address (me, level, space, addr, nr_bytes, client))
219 #define set_hw_detach_address(hw, method) \
220 ((hw)->to_detach_address = (method))
223 /* An IO operation from a parent to a child via the conecting bus.
225 The SPACE:ADDR pair specify an address on the bus shared between
226 the parent and child devices. */
228 typedef unsigned (hw_io_read_buffer_method)
229 (struct hw *me,
230 void *dest,
231 int space,
232 unsigned_word addr,
233 unsigned nr_bytes);
235 #define hw_io_read_buffer(hw, dest, space, addr, nr_bytes) \
236 ((hw)->to_io_read_buffer (hw, dest, space, addr, nr_bytes))
238 #define set_hw_io_read_buffer(hw, method) \
239 ((hw)->to_io_read_buffer = (method))
241 typedef unsigned (hw_io_write_buffer_method)
242 (struct hw *me,
243 const void *source,
244 int space,
245 unsigned_word addr,
246 unsigned nr_bytes);
248 #define hw_io_write_buffer(hw, src, space, addr, nr_bytes) \
249 ((hw)->to_io_write_buffer (hw, src, space, addr, nr_bytes))
251 #define set_hw_io_write_buffer(hw, method) \
252 ((hw)->to_io_write_buffer = (method))
255 /* Conversly, the device pci1000,1@1 may need to perform a dma transfer
256 into the cpu/memory core. Just as I/O moves towards the leaves,
257 dma transfers move towards the core via the initiating devices
258 parent nodes. The root device (special) converts the DMA transfer
259 into reads/writes to memory.
261 The SPACE:ADDR pair specify an address on the common bus connecting
262 the parent and child devices. */
264 typedef unsigned (hw_dma_read_buffer_method)
265 (struct hw *bus,
266 void *dest,
267 int space,
268 unsigned_word addr,
269 unsigned nr_bytes);
271 #define hw_dma_read_buffer(bus, dest, space, addr, nr_bytes) \
272 ((bus)->to_dma_read_buffer (bus, dest, space, addr, nr_bytes))
274 #define set_hw_dma_read_buffer(me, method) \
275 ((me)->to_dma_read_buffer = (method))
277 typedef unsigned (hw_dma_write_buffer_method)
278 (struct hw *bus,
279 const void *source,
280 int space,
281 unsigned_word addr,
282 unsigned nr_bytes,
283 int violate_read_only_section);
285 #define hw_dma_write_buffer(bus, src, space, addr, nr_bytes, violate_ro) \
286 ((bus)->to_dma_write_buffer (bus, src, space, addr, nr_bytes, violate_ro))
288 #define set_hw_dma_write_buffer(me, method) \
289 ((me)->to_dma_write_buffer = (method))
291 /* Address/size specs for devices are encoded following a convention
292 similar to that used by OpenFirmware. In particular, an
293 address/size is packed into a sequence of up to four cell words.
294 The number of words determined by the number of {address,size}
295 cells attributes of the device. */
297 typedef struct _hw_unit
299 int nr_cells;
300 unsigned_cell cells[4]; /* unused cells are zero */
301 } hw_unit;
304 /* For the given bus, the number of address and size cells used in a
305 hw_unit. */
307 #define hw_unit_nr_address_cells(bus) ((bus)->nr_address_cells_of_hw_unit + 0)
309 #define hw_unit_nr_size_cells(bus) ((bus)->nr_size_cells_of_hw_unit + 0)
312 /* For the given device, its identifying hw_unit address.
314 Each device has an identifying hw_unit address. That address is
315 used when identifying one of a number of identical devices on a
316 common controller bus. ex fd0&fd1. */
318 const hw_unit *hw_unit_address
319 (struct hw *me);
322 /* Convert between a textual and the internal representation of a
323 hw_unit address/size.
325 NOTE: A device asks its parent to translate between a hw_unit and
326 textual representation. This is because the textual address of a
327 device is specified using the parent busses notation. */
329 typedef int (hw_unit_decode_method)
330 (struct hw *bus,
331 const char *encoded,
332 hw_unit *unit);
334 #define hw_unit_decode(bus, encoded, unit) \
335 ((bus)->to_unit_decode (bus, encoded, unit))
337 #define set_hw_unit_decode(hw, method) \
338 ((hw)->to_unit_decode = (method))
340 typedef int (hw_unit_encode_method)
341 (struct hw *bus,
342 const hw_unit *unit,
343 char *encoded,
344 int sizeof_buf);
346 #define hw_unit_encode(bus, unit, encoded, sizeof_encoded) \
347 ((bus)->to_unit_encode (bus, unit, encoded, sizeof_encoded))
349 #define set_hw_unit_encode(hw, method) \
350 ((hw)->to_unit_encode = (method))
353 /* As the bus that the device is attached too, to translate a devices
354 hw_unit address/size into a form suitable for an attach address
355 call.
357 Return a zero result if the address should be ignored when looking
358 for attach addresses. */
360 typedef int (hw_unit_address_to_attach_address_method)
361 (struct hw *bus,
362 const hw_unit *unit_addr,
363 int *attach_space,
364 unsigned_word *attach_addr,
365 struct hw *client);
367 #define hw_unit_address_to_attach_address(bus, unit_addr, attach_space, attach_addr, client) \
368 ((bus)->to_unit_address_to_attach_address (bus, unit_addr, attach_space, attach_addr, client))
370 #define set_hw_unit_address_to_attach_address(hw, method) \
371 ((hw)->to_unit_address_to_attach_address = (method))
373 typedef int (hw_unit_size_to_attach_size_method)
374 (struct hw *bus,
375 const hw_unit *unit_size,
376 unsigned *attach_size,
377 struct hw *client);
379 #define hw_unit_size_to_attach_size(bus, unit_size, attach_size, client) \
380 ((bus)->to_unit_size_to_attach_size (bus, unit_size, attach_size, client))
382 #define set_hw_unit_size_to_attach_size(hw, method) \
383 ((hw)->to_unit_size_to_attach_size = (method))
386 extern char *hw_strdup (struct hw *me, const char *str);
389 /* Utilities:
393 /* IOCTL::
395 Often devices require `out of band' operations to be performed.
396 For instance a pal device may need to notify a PCI bridge device
397 that an interrupt ack cycle needs to be performed on the PCI bus.
398 Within PSIM such operations are performed by using the generic
399 ioctl call <<hw_ioctl()>>.
403 typedef enum
405 hw_ioctl_break, /* unsigned_word requested_break */
406 hw_ioctl_set_trace, /* void */
407 hw_ioctl_create_stack, /* unsigned_word *sp, char **argv, char **envp */
408 hw_ioctl_change_media, /* const char *new_image (possibly NULL) */
409 nr_hw_ioctl_requests,
410 } hw_ioctl_request;
412 typedef int (hw_ioctl_method)
413 (struct hw *me,
414 hw_ioctl_request request,
415 va_list ap);
417 int hw_ioctl
418 (struct hw *me,
419 hw_ioctl_request request,
420 ...);
423 /* Error reporting::
425 So that errors originating from devices appear in a consistent
426 format, the <<hw_abort()>> function can be used. Formats and
427 outputs the error message before aborting the simulation
429 Devices should use this function to abort the simulation except
430 when the abort reason leaves the simulation in a hazardous
431 condition (for instance a failed malloc).
435 void hw_abort
436 (struct hw *me,
437 const char *fmt,
438 ...) ATTRIBUTE_PRINTF (2, 3) ATTRIBUTE_NORETURN;
440 extern void hw_vabort (struct hw *me, const char *fmt, va_list ap)
441 ATTRIBUTE_NORETURN ATTRIBUTE_PRINTF (2, 0);
443 void hw_halt
444 (struct hw *me,
445 int reason,
446 int status) ATTRIBUTE_NORETURN;
449 #define hw_trace_p(hw) ((hw)->trace_of_hw_p + 0)
451 void hw_trace
452 (struct hw *me,
453 const char *fmt,
454 ...) ATTRIBUTE_PRINTF (2, 3);
456 #define HW_TRACE(ARGS) \
457 do { \
458 if (hw_trace_p (me)) \
460 hw_trace ARGS; \
462 } while (0)
465 /* Some of the related functions require specific types */
467 struct hw_property_data;
468 struct hw_port_data;
469 struct hw_base_data;
470 struct hw_alloc_data;
471 struct hw_event_data;
472 struct hw_handle_data;
473 struct hw_instance_data;
475 /* Finally the hardware device - keep your grubby little mits off of
476 these internals! :-) */
478 struct hw
481 /* our relatives */
482 struct hw *parent_of_hw;
483 struct hw *sibling_of_hw;
484 struct hw *child_of_hw;
486 /* our identity */
487 const char *name_of_hw;
488 const char *family_of_hw;
489 const char *args_of_hw;
490 const char *path_of_hw;
492 /* our data */
493 void *data_of_hw;
495 /* hot links */
496 struct hw *root_of_hw;
497 struct sim_state *system_of_hw;
499 /* identifying data */
500 hw_unit unit_address_of_hw;
501 int nr_address_cells_of_hw_unit;
502 int nr_size_cells_of_hw_unit;
504 /* Soft reset */
505 hw_reset_method *to_reset;
507 /* Basic callbacks */
508 hw_io_read_buffer_method *to_io_read_buffer;
509 hw_io_write_buffer_method *to_io_write_buffer;
510 hw_dma_read_buffer_method *to_dma_read_buffer;
511 hw_dma_write_buffer_method *to_dma_write_buffer;
512 hw_attach_address_method *to_attach_address;
513 hw_detach_address_method *to_detach_address;
515 /* More complicated callbacks */
516 hw_ioctl_method *to_ioctl;
517 int trace_of_hw_p;
519 /* address callbacks */
520 hw_unit_decode_method *to_unit_decode;
521 hw_unit_encode_method *to_unit_encode;
522 hw_unit_address_to_attach_address_method *to_unit_address_to_attach_address;
523 hw_unit_size_to_attach_size_method *to_unit_size_to_attach_size;
525 /* related data */
526 struct hw_property_data *properties_of_hw;
527 struct hw_port_data *ports_of_hw;
528 struct hw_base_data *base_of_hw;
529 struct hw_alloc_data *alloc_of_hw;
530 struct hw_event_data *events_of_hw;
531 struct hw_handle_data *handles_of_hw;
532 struct hw_instance_data *instances_of_hw;
537 #endif