1 // mips.cc -- mips target support for gold.
3 // Copyright (C) 2011-2022 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
8 // This file is part of gold.
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
33 #include "parameters.h"
40 #include "copy-relocs.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
47 #include "attributes.h"
54 template<int size
, bool big_endian
>
55 class Mips_output_data_plt
;
57 template<int size
, bool big_endian
>
58 class Mips_output_data_got
;
60 template<int size
, bool big_endian
>
63 template<int size
, bool big_endian
>
64 class Mips_output_section_reginfo
;
66 template<int size
, bool big_endian
>
67 class Mips_output_section_options
;
69 template<int size
, bool big_endian
>
70 class Mips_output_data_la25_stub
;
72 template<int size
, bool big_endian
>
73 class Mips_output_data_mips_stubs
;
78 template<int size
, bool big_endian
>
81 template<int size
, bool big_endian
>
84 class Mips16_stub_section_base
;
86 template<int size
, bool big_endian
>
87 class Mips16_stub_section
;
89 // The ABI says that every symbol used by dynamic relocations must have
90 // a global GOT entry. Among other things, this provides the dynamic
91 // linker with a free, directly-indexed cache. The GOT can therefore
92 // contain symbols that are not referenced by GOT relocations themselves
93 // (in other words, it may have symbols that are not referenced by things
94 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
96 // GOT relocations are less likely to overflow if we put the associated
97 // GOT entries towards the beginning. We therefore divide the global
98 // GOT entries into two areas: "normal" and "reloc-only". Entries in
99 // the first area can be used for both dynamic relocations and GP-relative
100 // accesses, while those in the "reloc-only" area are for dynamic
103 // These GGA_* ("Global GOT Area") values are organised so that lower
104 // values are more general than higher values. Also, non-GGA_NONE
105 // values are ordered by the position of the area in the GOT.
114 // The types of GOT entries needed for this platform.
115 // These values are exposed to the ABI in an incremental link.
116 // Do not renumber existing values without changing the version
117 // number of the .gnu_incremental_inputs section.
120 GOT_TYPE_STANDARD
= 0, // GOT entry for a regular symbol
121 GOT_TYPE_TLS_OFFSET
= 1, // GOT entry for TLS offset
122 GOT_TYPE_TLS_PAIR
= 2, // GOT entry for TLS module/offset pair
124 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
125 GOT_TYPE_STANDARD_MULTIGOT
= 3,
126 GOT_TYPE_TLS_OFFSET_MULTIGOT
= GOT_TYPE_STANDARD_MULTIGOT
+ 1024,
127 GOT_TYPE_TLS_PAIR_MULTIGOT
= GOT_TYPE_TLS_OFFSET_MULTIGOT
+ 1024
130 // TLS type of GOT entry.
139 // Values found in the r_ssym field of a relocation entry.
140 enum Special_relocation_symbol
142 RSS_UNDEF
= 0, // None - value is zero.
143 RSS_GP
= 1, // Value of GP.
144 RSS_GP0
= 2, // Value of GP in object being relocated.
145 RSS_LOC
= 3 // Address of location being relocated.
148 // Whether the section is readonly.
150 is_readonly_section(Output_section
* output_section
)
152 elfcpp::Elf_Xword section_flags
= output_section
->flags();
153 elfcpp::Elf_Word section_type
= output_section
->type();
155 if (section_type
== elfcpp::SHT_NOBITS
)
158 if (section_flags
& elfcpp::SHF_WRITE
)
164 // Return TRUE if a relocation of type R_TYPE from OBJECT might
165 // require an la25 stub. See also local_pic_function, which determines
166 // whether the destination function ever requires a stub.
167 template<int size
, bool big_endian
>
169 relocation_needs_la25_stub(Mips_relobj
<size
, big_endian
>* object
,
170 unsigned int r_type
, bool target_is_16_bit_code
)
172 // We specifically ignore branches and jumps from EF_PIC objects,
173 // where the onus is on the compiler or programmer to perform any
174 // necessary initialization of $25. Sometimes such initialization
175 // is unnecessary; for example, -mno-shared functions do not use
176 // the incoming value of $25, and may therefore be called directly.
177 if (object
->is_pic())
182 case elfcpp::R_MIPS_26
:
183 case elfcpp::R_MIPS_PC16
:
184 case elfcpp::R_MIPS_PC21_S2
:
185 case elfcpp::R_MIPS_PC26_S2
:
186 case elfcpp::R_MICROMIPS_26_S1
:
187 case elfcpp::R_MICROMIPS_PC7_S1
:
188 case elfcpp::R_MICROMIPS_PC10_S1
:
189 case elfcpp::R_MICROMIPS_PC16_S1
:
190 case elfcpp::R_MICROMIPS_PC23_S2
:
193 case elfcpp::R_MIPS16_26
:
194 return !target_is_16_bit_code
;
201 // Return true if SYM is a locally-defined PIC function, in the sense
202 // that it or its fn_stub might need $25 to be valid on entry.
203 // Note that MIPS16 functions set up $gp using PC-relative instructions,
204 // so they themselves never need $25 to be valid. Only non-MIPS16
205 // entry points are of interest here.
206 template<int size
, bool big_endian
>
208 local_pic_function(Mips_symbol
<size
>* sym
)
210 bool def_regular
= (sym
->source() == Symbol::FROM_OBJECT
211 && !sym
->object()->is_dynamic()
212 && !sym
->is_undefined());
214 if (sym
->is_defined() && def_regular
)
216 Mips_relobj
<size
, big_endian
>* object
=
217 static_cast<Mips_relobj
<size
, big_endian
>*>(sym
->object());
219 if ((object
->is_pic() || sym
->is_pic())
220 && (!sym
->is_mips16()
221 || (sym
->has_mips16_fn_stub() && sym
->need_fn_stub())))
228 hi16_reloc(int r_type
)
230 return (r_type
== elfcpp::R_MIPS_HI16
231 || r_type
== elfcpp::R_MIPS16_HI16
232 || r_type
== elfcpp::R_MICROMIPS_HI16
233 || r_type
== elfcpp::R_MIPS_PCHI16
);
237 lo16_reloc(int r_type
)
239 return (r_type
== elfcpp::R_MIPS_LO16
240 || r_type
== elfcpp::R_MIPS16_LO16
241 || r_type
== elfcpp::R_MICROMIPS_LO16
242 || r_type
== elfcpp::R_MIPS_PCLO16
);
246 got16_reloc(unsigned int r_type
)
248 return (r_type
== elfcpp::R_MIPS_GOT16
249 || r_type
== elfcpp::R_MIPS16_GOT16
250 || r_type
== elfcpp::R_MICROMIPS_GOT16
);
254 call_lo16_reloc(unsigned int r_type
)
256 return (r_type
== elfcpp::R_MIPS_CALL_LO16
257 || r_type
== elfcpp::R_MICROMIPS_CALL_LO16
);
261 got_lo16_reloc(unsigned int r_type
)
263 return (r_type
== elfcpp::R_MIPS_GOT_LO16
264 || r_type
== elfcpp::R_MICROMIPS_GOT_LO16
);
268 eh_reloc(unsigned int r_type
)
270 return (r_type
== elfcpp::R_MIPS_EH
);
274 got_disp_reloc(unsigned int r_type
)
276 return (r_type
== elfcpp::R_MIPS_GOT_DISP
277 || r_type
== elfcpp::R_MICROMIPS_GOT_DISP
);
281 got_page_reloc(unsigned int r_type
)
283 return (r_type
== elfcpp::R_MIPS_GOT_PAGE
284 || r_type
== elfcpp::R_MICROMIPS_GOT_PAGE
);
288 tls_gd_reloc(unsigned int r_type
)
290 return (r_type
== elfcpp::R_MIPS_TLS_GD
291 || r_type
== elfcpp::R_MIPS16_TLS_GD
292 || r_type
== elfcpp::R_MICROMIPS_TLS_GD
);
296 tls_gottprel_reloc(unsigned int r_type
)
298 return (r_type
== elfcpp::R_MIPS_TLS_GOTTPREL
299 || r_type
== elfcpp::R_MIPS16_TLS_GOTTPREL
300 || r_type
== elfcpp::R_MICROMIPS_TLS_GOTTPREL
);
304 tls_ldm_reloc(unsigned int r_type
)
306 return (r_type
== elfcpp::R_MIPS_TLS_LDM
307 || r_type
== elfcpp::R_MIPS16_TLS_LDM
308 || r_type
== elfcpp::R_MICROMIPS_TLS_LDM
);
312 mips16_call_reloc(unsigned int r_type
)
314 return (r_type
== elfcpp::R_MIPS16_26
315 || r_type
== elfcpp::R_MIPS16_CALL16
);
319 jal_reloc(unsigned int r_type
)
321 return (r_type
== elfcpp::R_MIPS_26
322 || r_type
== elfcpp::R_MIPS16_26
323 || r_type
== elfcpp::R_MICROMIPS_26_S1
);
327 micromips_branch_reloc(unsigned int r_type
)
329 return (r_type
== elfcpp::R_MICROMIPS_26_S1
330 || r_type
== elfcpp::R_MICROMIPS_PC16_S1
331 || r_type
== elfcpp::R_MICROMIPS_PC10_S1
332 || r_type
== elfcpp::R_MICROMIPS_PC7_S1
);
335 // Check if R_TYPE is a MIPS16 reloc.
337 mips16_reloc(unsigned int r_type
)
341 case elfcpp::R_MIPS16_26
:
342 case elfcpp::R_MIPS16_GPREL
:
343 case elfcpp::R_MIPS16_GOT16
:
344 case elfcpp::R_MIPS16_CALL16
:
345 case elfcpp::R_MIPS16_HI16
:
346 case elfcpp::R_MIPS16_LO16
:
347 case elfcpp::R_MIPS16_TLS_GD
:
348 case elfcpp::R_MIPS16_TLS_LDM
:
349 case elfcpp::R_MIPS16_TLS_DTPREL_HI16
:
350 case elfcpp::R_MIPS16_TLS_DTPREL_LO16
:
351 case elfcpp::R_MIPS16_TLS_GOTTPREL
:
352 case elfcpp::R_MIPS16_TLS_TPREL_HI16
:
353 case elfcpp::R_MIPS16_TLS_TPREL_LO16
:
361 // Check if R_TYPE is a microMIPS reloc.
363 micromips_reloc(unsigned int r_type
)
367 case elfcpp::R_MICROMIPS_26_S1
:
368 case elfcpp::R_MICROMIPS_HI16
:
369 case elfcpp::R_MICROMIPS_LO16
:
370 case elfcpp::R_MICROMIPS_GPREL16
:
371 case elfcpp::R_MICROMIPS_LITERAL
:
372 case elfcpp::R_MICROMIPS_GOT16
:
373 case elfcpp::R_MICROMIPS_PC7_S1
:
374 case elfcpp::R_MICROMIPS_PC10_S1
:
375 case elfcpp::R_MICROMIPS_PC16_S1
:
376 case elfcpp::R_MICROMIPS_CALL16
:
377 case elfcpp::R_MICROMIPS_GOT_DISP
:
378 case elfcpp::R_MICROMIPS_GOT_PAGE
:
379 case elfcpp::R_MICROMIPS_GOT_OFST
:
380 case elfcpp::R_MICROMIPS_GOT_HI16
:
381 case elfcpp::R_MICROMIPS_GOT_LO16
:
382 case elfcpp::R_MICROMIPS_SUB
:
383 case elfcpp::R_MICROMIPS_HIGHER
:
384 case elfcpp::R_MICROMIPS_HIGHEST
:
385 case elfcpp::R_MICROMIPS_CALL_HI16
:
386 case elfcpp::R_MICROMIPS_CALL_LO16
:
387 case elfcpp::R_MICROMIPS_SCN_DISP
:
388 case elfcpp::R_MICROMIPS_JALR
:
389 case elfcpp::R_MICROMIPS_HI0_LO16
:
390 case elfcpp::R_MICROMIPS_TLS_GD
:
391 case elfcpp::R_MICROMIPS_TLS_LDM
:
392 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16
:
393 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16
:
394 case elfcpp::R_MICROMIPS_TLS_GOTTPREL
:
395 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16
:
396 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16
:
397 case elfcpp::R_MICROMIPS_GPREL7_S2
:
398 case elfcpp::R_MICROMIPS_PC23_S2
:
407 is_matching_lo16_reloc(unsigned int high_reloc
, unsigned int lo16_reloc
)
411 case elfcpp::R_MIPS_HI16
:
412 case elfcpp::R_MIPS_GOT16
:
413 return lo16_reloc
== elfcpp::R_MIPS_LO16
;
414 case elfcpp::R_MIPS_PCHI16
:
415 return lo16_reloc
== elfcpp::R_MIPS_PCLO16
;
416 case elfcpp::R_MIPS16_HI16
:
417 case elfcpp::R_MIPS16_GOT16
:
418 return lo16_reloc
== elfcpp::R_MIPS16_LO16
;
419 case elfcpp::R_MICROMIPS_HI16
:
420 case elfcpp::R_MICROMIPS_GOT16
:
421 return lo16_reloc
== elfcpp::R_MICROMIPS_LO16
;
427 // This class is used to hold information about one GOT entry.
428 // There are three types of entry:
430 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
431 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
432 // (2) a SYMBOL address, where SYMBOL is not local to an input object
433 // (sym != NULL, symndx == -1)
434 // (3) a TLS LDM slot (there's only one of these per GOT.)
435 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
437 template<int size
, bool big_endian
>
440 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Mips_address
;
443 Mips_got_entry(Mips_relobj
<size
, big_endian
>* object
, unsigned int symndx
,
444 Mips_address addend
, unsigned char tls_type
,
445 unsigned int shndx
, bool is_section_symbol
)
446 : addend_(addend
), symndx_(symndx
), tls_type_(tls_type
),
447 is_section_symbol_(is_section_symbol
), shndx_(shndx
)
448 { this->d
.object
= object
; }
450 Mips_got_entry(Mips_symbol
<size
>* sym
, unsigned char tls_type
)
451 : addend_(0), symndx_(-1U), tls_type_(tls_type
),
452 is_section_symbol_(false), shndx_(-1U)
453 { this->d
.sym
= sym
; }
455 // Return whether this entry is for a local symbol.
457 is_for_local_symbol() const
458 { return this->symndx_
!= -1U; }
460 // Return whether this entry is for a global symbol.
462 is_for_global_symbol() const
463 { return this->symndx_
== -1U; }
465 // Return the hash of this entry.
469 if (this->tls_type_
== GOT_TLS_LDM
)
470 return this->symndx_
+ (1 << 18);
472 size_t name_hash_value
= gold::string_hash
<char>(
473 (this->symndx_
!= -1U)
474 ? this->d
.object
->name().c_str()
475 : this->d
.sym
->name());
476 size_t addend
= this->addend_
;
477 return name_hash_value
^ this->symndx_
^ (addend
<< 16);
480 // Return whether this entry is equal to OTHER.
482 equals(Mips_got_entry
<size
, big_endian
>* other
) const
484 if (this->symndx_
!= other
->symndx_
485 || this->tls_type_
!= other
->tls_type_
)
488 if (this->tls_type_
== GOT_TLS_LDM
)
491 return (((this->symndx_
!= -1U)
492 ? (this->d
.object
== other
->d
.object
)
493 : (this->d
.sym
== other
->d
.sym
))
494 && (this->addend_
== other
->addend_
));
497 // Return input object that needs this GOT entry.
498 Mips_relobj
<size
, big_endian
>*
501 gold_assert(this->symndx_
!= -1U);
502 return this->d
.object
;
505 // Return local symbol index for local GOT entries.
509 gold_assert(this->symndx_
!= -1U);
510 return this->symndx_
;
513 // Return the relocation addend for local GOT entries.
516 { return this->addend_
; }
518 // Return global symbol for global GOT entries.
522 gold_assert(this->symndx_
== -1U);
526 // Return whether this is a TLS GOT entry.
529 { return this->tls_type_
!= GOT_TLS_NONE
; }
531 // Return TLS type of this GOT entry.
534 { return this->tls_type_
; }
536 // Return section index of the local symbol for local GOT entries.
539 { return this->shndx_
; }
541 // Return whether this is a STT_SECTION symbol.
543 is_section_symbol() const
544 { return this->is_section_symbol_
; }
548 Mips_address addend_
;
550 // The index of the symbol if we have a local symbol; -1 otherwise.
551 unsigned int symndx_
;
555 // The input object for local symbols that needs the GOT entry.
556 Mips_relobj
<size
, big_endian
>* object
;
557 // If symndx == -1, the global symbol corresponding to this GOT entry. The
558 // symbol's entry is in the local area if mips_sym->global_got_area is
559 // GGA_NONE, otherwise it is in the global area.
560 Mips_symbol
<size
>* sym
;
563 // The TLS type of this GOT entry. An LDM GOT entry will be a local
564 // symbol entry with r_symndx == 0.
565 unsigned char tls_type_
;
567 // Whether this is a STT_SECTION symbol.
568 bool is_section_symbol_
;
570 // For local GOT entries, section index of the local symbol.
574 // Hash for Mips_got_entry.
576 template<int size
, bool big_endian
>
577 class Mips_got_entry_hash
581 operator()(Mips_got_entry
<size
, big_endian
>* entry
) const
582 { return entry
->hash(); }
585 // Equality for Mips_got_entry.
587 template<int size
, bool big_endian
>
588 class Mips_got_entry_eq
592 operator()(Mips_got_entry
<size
, big_endian
>* e1
,
593 Mips_got_entry
<size
, big_endian
>* e2
) const
594 { return e1
->equals(e2
); }
597 // Hash for Mips_symbol.
600 class Mips_symbol_hash
604 operator()(Mips_symbol
<size
>* sym
) const
605 { return sym
->hash(); }
608 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
609 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
610 // increasing MIN_ADDEND.
612 struct Got_page_range
615 : next(NULL
), min_addend(0), max_addend(0)
618 Got_page_range
* next
;
622 // Return the maximum number of GOT page entries required.
625 { return (this->max_addend
- this->min_addend
+ 0x1ffff) >> 16; }
628 // Got_page_entry. This class describes the range of addends that are applied
629 // to page relocations against a given symbol.
631 struct Got_page_entry
634 : object(NULL
), symndx(-1U), ranges(NULL
)
637 Got_page_entry(Object
* object_
, unsigned int symndx_
)
638 : object(object_
), symndx(symndx_
), ranges(NULL
)
641 // The input object that needs the GOT page entry.
643 // The index of the symbol, as stored in the relocation r_info.
645 // The ranges for this page entry.
646 Got_page_range
* ranges
;
649 // Hash for Got_page_entry.
651 struct Got_page_entry_hash
654 operator()(Got_page_entry
* entry
) const
655 { return reinterpret_cast<uintptr_t>(entry
->object
) + entry
->symndx
; }
658 // Equality for Got_page_entry.
660 struct Got_page_entry_eq
663 operator()(Got_page_entry
* entry1
, Got_page_entry
* entry2
) const
665 return entry1
->object
== entry2
->object
&& entry1
->symndx
== entry2
->symndx
;
669 // This class is used to hold .got information when linking.
671 template<int size
, bool big_endian
>
674 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Mips_address
;
675 typedef Output_data_reloc
<elfcpp::SHT_REL
, true, size
, big_endian
>
677 typedef Unordered_map
<unsigned int, unsigned int> Got_page_offsets
;
679 // Unordered set of GOT entries.
680 typedef Unordered_set
<Mips_got_entry
<size
, big_endian
>*,
681 Mips_got_entry_hash
<size
, big_endian
>,
682 Mips_got_entry_eq
<size
, big_endian
> > Got_entry_set
;
684 // Unordered set of GOT page entries.
685 typedef Unordered_set
<Got_page_entry
*,
686 Got_page_entry_hash
, Got_page_entry_eq
> Got_page_entry_set
;
688 // Unordered set of global GOT entries.
689 typedef Unordered_set
<Mips_symbol
<size
>*, Mips_symbol_hash
<size
> >
690 Global_got_entry_set
;
694 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
695 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
696 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
697 got_page_offset_next_(0), got_page_offsets_(), next_(NULL
), index_(-1U),
701 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
702 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
704 record_local_got_symbol(Mips_relobj
<size
, big_endian
>* object
,
705 unsigned int symndx
, Mips_address addend
,
706 unsigned int r_type
, unsigned int shndx
,
707 bool is_section_symbol
);
709 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
710 // in OBJECT. FOR_CALL is true if the caller is only interested in
711 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
714 record_global_got_symbol(Mips_symbol
<size
>* mips_sym
,
715 Mips_relobj
<size
, big_endian
>* object
,
716 unsigned int r_type
, bool dyn_reloc
, bool for_call
);
718 // Add ENTRY to master GOT and to OBJECT's GOT.
720 record_got_entry(Mips_got_entry
<size
, big_endian
>* entry
,
721 Mips_relobj
<size
, big_endian
>* object
);
723 // Record that OBJECT has a page relocation against symbol SYMNDX and
724 // that ADDEND is the addend for that relocation.
726 record_got_page_entry(Mips_relobj
<size
, big_endian
>* object
,
727 unsigned int symndx
, int addend
);
729 // Create all entries that should be in the local part of the GOT.
731 add_local_entries(Target_mips
<size
, big_endian
>* target
, Layout
* layout
);
733 // Create GOT page entries.
735 add_page_entries(Target_mips
<size
, big_endian
>* target
, Layout
* layout
);
737 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
739 add_global_entries(Target_mips
<size
, big_endian
>* target
, Layout
* layout
,
740 unsigned int non_reloc_only_global_gotno
);
742 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
744 add_reloc_only_entries(Mips_output_data_got
<size
, big_endian
>* got
);
746 // Create TLS GOT entries.
748 add_tls_entries(Target_mips
<size
, big_endian
>* target
, Layout
* layout
);
750 // Decide whether the symbol needs an entry in the global part of the primary
751 // GOT, setting global_got_area accordingly. Count the number of global
752 // symbols that are in the primary GOT only because they have dynamic
753 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
755 count_got_symbols(Symbol_table
* symtab
);
757 // Return the offset of GOT page entry for VALUE.
759 get_got_page_offset(Mips_address value
,
760 Mips_output_data_got
<size
, big_endian
>* got
);
762 // Count the number of GOT entries required.
766 // Count the number of GOT entries required by ENTRY. Accumulate the result.
768 count_got_entry(Mips_got_entry
<size
, big_endian
>* entry
);
770 // Add FROM's GOT entries.
772 add_got_entries(Mips_got_info
<size
, big_endian
>* from
);
774 // Add FROM's GOT page entries.
776 add_got_page_count(Mips_got_info
<size
, big_endian
>* from
);
781 { return ((2 + this->local_gotno_
+ this->page_gotno_
+ this->global_gotno_
782 + this->tls_gotno_
) * size
/8);
785 // Return the number of local GOT entries.
788 { return this->local_gotno_
; }
790 // Return the maximum number of page GOT entries needed.
793 { return this->page_gotno_
; }
795 // Return the number of global GOT entries.
798 { return this->global_gotno_
; }
800 // Set the number of global GOT entries.
802 set_global_gotno(unsigned int global_gotno
)
803 { this->global_gotno_
= global_gotno
; }
805 // Return the number of GGA_RELOC_ONLY global GOT entries.
807 reloc_only_gotno() const
808 { return this->reloc_only_gotno_
; }
810 // Return the number of TLS GOT entries.
813 { return this->tls_gotno_
; }
815 // Return the GOT type for this GOT. Used for multi-GOT links only.
817 multigot_got_type(unsigned int got_type
) const
821 case GOT_TYPE_STANDARD
:
822 return GOT_TYPE_STANDARD_MULTIGOT
+ this->index_
;
823 case GOT_TYPE_TLS_OFFSET
:
824 return GOT_TYPE_TLS_OFFSET_MULTIGOT
+ this->index_
;
825 case GOT_TYPE_TLS_PAIR
:
826 return GOT_TYPE_TLS_PAIR_MULTIGOT
+ this->index_
;
832 // Remove lazy-binding stubs for global symbols in this GOT.
834 remove_lazy_stubs(Target_mips
<size
, big_endian
>* target
);
836 // Return offset of this GOT from the start of .got section.
839 { return this->offset_
; }
841 // Set offset of this GOT from the start of .got section.
843 set_offset(unsigned int offset
)
844 { this->offset_
= offset
; }
846 // Set index of this GOT in multi-GOT links.
848 set_index(unsigned int index
)
849 { this->index_
= index
; }
851 // Return next GOT in multi-GOT links.
852 Mips_got_info
<size
, big_endian
>*
854 { return this->next_
; }
856 // Set next GOT in multi-GOT links.
858 set_next(Mips_got_info
<size
, big_endian
>* next
)
859 { this->next_
= next
; }
861 // Return the offset of TLS LDM entry for this GOT.
863 tls_ldm_offset() const
864 { return this->tls_ldm_offset_
; }
866 // Set the offset of TLS LDM entry for this GOT.
868 set_tls_ldm_offset(unsigned int tls_ldm_offset
)
869 { this->tls_ldm_offset_
= tls_ldm_offset
; }
871 Global_got_entry_set
&
873 { return this->global_got_symbols_
; }
875 // Return the GOT_TLS_* type required by relocation type R_TYPE.
877 mips_elf_reloc_tls_type(unsigned int r_type
)
879 if (tls_gd_reloc(r_type
))
882 if (tls_ldm_reloc(r_type
))
885 if (tls_gottprel_reloc(r_type
))
891 // Return the number of GOT slots needed for GOT TLS type TYPE.
893 mips_tls_got_entries(unsigned int type
)
913 // The number of local GOT entries.
914 unsigned int local_gotno_
;
915 // The maximum number of page GOT entries needed.
916 unsigned int page_gotno_
;
917 // The number of global GOT entries.
918 unsigned int global_gotno_
;
919 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
920 unsigned int reloc_only_gotno_
;
921 // The number of TLS GOT entries.
922 unsigned int tls_gotno_
;
923 // The offset of TLS LDM entry for this GOT.
924 unsigned int tls_ldm_offset_
;
925 // All symbols that have global GOT entry.
926 Global_got_entry_set global_got_symbols_
;
927 // A hash table holding GOT entries.
928 Got_entry_set got_entries_
;
929 // A hash table of GOT page entries (only used in master GOT).
930 Got_page_entry_set got_page_entries_
;
931 // The offset of first GOT page entry for this GOT.
932 unsigned int got_page_offset_start_
;
933 // The offset of next available GOT page entry for this GOT.
934 unsigned int got_page_offset_next_
;
935 // A hash table that maps GOT page entry value to the GOT offset where
936 // the entry is located.
937 Got_page_offsets got_page_offsets_
;
938 // In multi-GOT links, a pointer to the next GOT.
939 Mips_got_info
<size
, big_endian
>* next_
;
940 // Index of this GOT in multi-GOT links.
942 // The offset of this GOT in multi-GOT links.
943 unsigned int offset_
;
946 // This is a helper class used during relocation scan. It records GOT16 addend.
948 template<int size
, bool big_endian
>
951 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Mips_address
;
953 got16_addend(const Sized_relobj_file
<size
, big_endian
>* _object
,
954 unsigned int _shndx
, unsigned int _r_type
, unsigned int _r_sym
,
955 Mips_address _addend
)
956 : object(_object
), shndx(_shndx
), r_type(_r_type
), r_sym(_r_sym
),
960 const Sized_relobj_file
<size
, big_endian
>* object
;
967 // .MIPS.abiflags section content
969 template<bool big_endian
>
972 typedef typename
elfcpp::Swap
<8, big_endian
>::Valtype Valtype8
;
973 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype16
;
974 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype32
;
977 : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
978 cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
981 // Version of flags structure.
983 // The level of the ISA: 1-5, 32, 64.
985 // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
987 // The size of general purpose registers.
989 // The size of co-processor 1 registers.
991 // The size of co-processor 2 registers.
993 // The floating-point ABI.
995 // Processor-specific extension.
997 // Mask of ASEs used.
999 // Mask of general flags.
1004 // Mips_symbol class. Holds additional symbol information needed for Mips.
1007 class Mips_symbol
: public Sized_symbol
<size
>
1011 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1012 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1013 pointer_equality_needed_(false), global_got_area_(GGA_NONE
),
1014 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1015 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1016 comp_plt_offset_(-1U), mips16_fn_stub_(NULL
), mips16_call_stub_(NULL
),
1017 mips16_call_fp_stub_(NULL
), applied_secondary_got_fixup_(false)
1020 // Return whether this is a MIPS16 symbol.
1024 // (st_other & STO_MIPS16) == STO_MIPS16
1025 return ((this->nonvis() & (elfcpp::STO_MIPS16
>> 2))
1026 == elfcpp::STO_MIPS16
>> 2);
1029 // Return whether this is a microMIPS symbol.
1031 is_micromips() const
1033 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1034 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA
>> 2))
1035 == elfcpp::STO_MICROMIPS
>> 2);
1038 // Return whether the symbol needs MIPS16 fn_stub.
1040 need_fn_stub() const
1041 { return this->need_fn_stub_
; }
1043 // Set that the symbol needs MIPS16 fn_stub.
1046 { this->need_fn_stub_
= true; }
1048 // Return whether this symbol is referenced by branch relocations from
1049 // any non-PIC input file.
1051 has_nonpic_branches() const
1052 { return this->has_nonpic_branches_
; }
1054 // Set that this symbol is referenced by branch relocations from
1055 // any non-PIC input file.
1057 set_has_nonpic_branches()
1058 { this->has_nonpic_branches_
= true; }
1060 // Return the offset of the la25 stub for this symbol from the start of the
1061 // la25 stub section.
1063 la25_stub_offset() const
1064 { return this->la25_stub_offset_
; }
1066 // Set the offset of the la25 stub for this symbol from the start of the
1067 // la25 stub section.
1069 set_la25_stub_offset(unsigned int offset
)
1070 { this->la25_stub_offset_
= offset
; }
1072 // Return whether the symbol has la25 stub. This is true if this symbol is
1073 // for a PIC function, and there are non-PIC branches and jumps to it.
1075 has_la25_stub() const
1076 { return this->la25_stub_offset_
!= -1U; }
1078 // Return whether there is a relocation against this symbol that must be
1079 // resolved by the static linker (that is, the relocation cannot possibly
1080 // be made dynamic).
1082 has_static_relocs() const
1083 { return this->has_static_relocs_
; }
1085 // Set that there is a relocation against this symbol that must be resolved
1086 // by the static linker (that is, the relocation cannot possibly be made
1089 set_has_static_relocs()
1090 { this->has_static_relocs_
= true; }
1092 // Return whether we must not create a lazy-binding stub for this symbol.
1094 no_lazy_stub() const
1095 { return this->no_lazy_stub_
; }
1097 // Set that we must not create a lazy-binding stub for this symbol.
1100 { this->no_lazy_stub_
= true; }
1102 // Return the offset of the lazy-binding stub for this symbol from the start
1103 // of .MIPS.stubs section.
1105 lazy_stub_offset() const
1106 { return this->lazy_stub_offset_
; }
1108 // Set the offset of the lazy-binding stub for this symbol from the start
1109 // of .MIPS.stubs section.
1111 set_lazy_stub_offset(unsigned int offset
)
1112 { this->lazy_stub_offset_
= offset
; }
1114 // Return whether there are any relocations for this symbol where
1115 // pointer equality matters.
1117 pointer_equality_needed() const
1118 { return this->pointer_equality_needed_
; }
1120 // Set that there are relocations for this symbol where pointer equality
1123 set_pointer_equality_needed()
1124 { this->pointer_equality_needed_
= true; }
1126 // Return global GOT area where this symbol in located.
1128 global_got_area() const
1129 { return this->global_got_area_
; }
1131 // Set global GOT area where this symbol in located.
1133 set_global_got_area(Global_got_area global_got_area
)
1134 { this->global_got_area_
= global_got_area
; }
1136 // Return the global GOT offset for this symbol. For multi-GOT links, this
1137 // returns the offset from the start of .got section to the first GOT entry
1138 // for the symbol. Note that in multi-GOT links the symbol can have entry
1139 // in more than one GOT.
1141 global_gotoffset() const
1142 { return this->global_gotoffset_
; }
1144 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1145 // the symbol can have entry in more than one GOT. This method will set
1146 // the offset only if it is less than current offset.
1148 set_global_gotoffset(unsigned int offset
)
1150 if (this->global_gotoffset_
== -1U || offset
< this->global_gotoffset_
)
1151 this->global_gotoffset_
= offset
;
1154 // Return whether all GOT relocations for this symbol are for calls.
1156 got_only_for_calls() const
1157 { return this->got_only_for_calls_
; }
1159 // Set that there is a GOT relocation for this symbol that is not for call.
1161 set_got_not_only_for_calls()
1162 { this->got_only_for_calls_
= false; }
1164 // Return whether this is a PIC symbol.
1168 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1169 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS
>> 2))
1170 == (elfcpp::STO_MIPS_PIC
>> 2));
1173 // Set the flag in st_other field that marks this symbol as PIC.
1177 if (this->is_mips16())
1178 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1179 this->set_nonvis((this->nonvis()
1180 & ~((elfcpp::STO_MIPS16
>> 2)
1181 | (elfcpp::STO_MIPS_FLAGS
>> 2)))
1182 | (elfcpp::STO_MIPS_PIC
>> 2));
1184 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1185 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS
>> 2))
1186 | (elfcpp::STO_MIPS_PIC
>> 2));
1189 // Set the flag in st_other field that marks this symbol as PLT.
1193 if (this->is_mips16())
1194 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1195 this->set_nonvis((this->nonvis()
1196 & ((elfcpp::STO_MIPS16
>> 2)
1197 | ~(elfcpp::STO_MIPS_FLAGS
>> 2)))
1198 | (elfcpp::STO_MIPS_PLT
>> 2));
1201 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1202 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS
>> 2))
1203 | (elfcpp::STO_MIPS_PLT
>> 2));
1206 // Downcast a base pointer to a Mips_symbol pointer.
1207 static Mips_symbol
<size
>*
1208 as_mips_sym(Symbol
* sym
)
1209 { return static_cast<Mips_symbol
<size
>*>(sym
); }
1211 // Downcast a base pointer to a Mips_symbol pointer.
1212 static const Mips_symbol
<size
>*
1213 as_mips_sym(const Symbol
* sym
)
1214 { return static_cast<const Mips_symbol
<size
>*>(sym
); }
1216 // Return whether the symbol has lazy-binding stub.
1218 has_lazy_stub() const
1219 { return this->has_lazy_stub_
; }
1221 // Set whether the symbol has lazy-binding stub.
1223 set_has_lazy_stub(bool has_lazy_stub
)
1224 { this->has_lazy_stub_
= has_lazy_stub
; }
1226 // Return whether the symbol needs a standard PLT entry.
1228 needs_mips_plt() const
1229 { return this->needs_mips_plt_
; }
1231 // Set whether the symbol needs a standard PLT entry.
1233 set_needs_mips_plt(bool needs_mips_plt
)
1234 { this->needs_mips_plt_
= needs_mips_plt
; }
1236 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1239 needs_comp_plt() const
1240 { return this->needs_comp_plt_
; }
1242 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1244 set_needs_comp_plt(bool needs_comp_plt
)
1245 { this->needs_comp_plt_
= needs_comp_plt
; }
1247 // Return standard PLT entry offset, or -1 if none.
1249 mips_plt_offset() const
1250 { return this->mips_plt_offset_
; }
1252 // Set standard PLT entry offset.
1254 set_mips_plt_offset(unsigned int mips_plt_offset
)
1255 { this->mips_plt_offset_
= mips_plt_offset
; }
1257 // Return whether the symbol has standard PLT entry.
1259 has_mips_plt_offset() const
1260 { return this->mips_plt_offset_
!= -1U; }
1262 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1264 comp_plt_offset() const
1265 { return this->comp_plt_offset_
; }
1267 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1269 set_comp_plt_offset(unsigned int comp_plt_offset
)
1270 { this->comp_plt_offset_
= comp_plt_offset
; }
1272 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1274 has_comp_plt_offset() const
1275 { return this->comp_plt_offset_
!= -1U; }
1277 // Return MIPS16 fn stub for a symbol.
1278 template<bool big_endian
>
1279 Mips16_stub_section
<size
, big_endian
>*
1280 get_mips16_fn_stub() const
1282 return static_cast<Mips16_stub_section
<size
, big_endian
>*>(mips16_fn_stub_
);
1285 // Set MIPS16 fn stub for a symbol.
1287 set_mips16_fn_stub(Mips16_stub_section_base
* stub
)
1288 { this->mips16_fn_stub_
= stub
; }
1290 // Return whether symbol has MIPS16 fn stub.
1292 has_mips16_fn_stub() const
1293 { return this->mips16_fn_stub_
!= NULL
; }
1295 // Return MIPS16 call stub for a symbol.
1296 template<bool big_endian
>
1297 Mips16_stub_section
<size
, big_endian
>*
1298 get_mips16_call_stub() const
1300 return static_cast<Mips16_stub_section
<size
, big_endian
>*>(
1304 // Set MIPS16 call stub for a symbol.
1306 set_mips16_call_stub(Mips16_stub_section_base
* stub
)
1307 { this->mips16_call_stub_
= stub
; }
1309 // Return whether symbol has MIPS16 call stub.
1311 has_mips16_call_stub() const
1312 { return this->mips16_call_stub_
!= NULL
; }
1314 // Return MIPS16 call_fp stub for a symbol.
1315 template<bool big_endian
>
1316 Mips16_stub_section
<size
, big_endian
>*
1317 get_mips16_call_fp_stub() const
1319 return static_cast<Mips16_stub_section
<size
, big_endian
>*>(
1320 mips16_call_fp_stub_
);
1323 // Set MIPS16 call_fp stub for a symbol.
1325 set_mips16_call_fp_stub(Mips16_stub_section_base
* stub
)
1326 { this->mips16_call_fp_stub_
= stub
; }
1328 // Return whether symbol has MIPS16 call_fp stub.
1330 has_mips16_call_fp_stub() const
1331 { return this->mips16_call_fp_stub_
!= NULL
; }
1334 get_applied_secondary_got_fixup() const
1335 { return applied_secondary_got_fixup_
; }
1338 set_applied_secondary_got_fixup()
1339 { this->applied_secondary_got_fixup_
= true; }
1341 // Return the hash of this symbol.
1345 return gold::string_hash
<char>(this->name());
1349 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1350 // appears in any relocs other than a 16 bit call.
1353 // True if this symbol is referenced by branch relocations from
1354 // any non-PIC input file. This is used to determine whether an
1355 // la25 stub is required.
1356 bool has_nonpic_branches_
;
1358 // The offset of the la25 stub for this symbol from the start of the
1359 // la25 stub section.
1360 unsigned int la25_stub_offset_
;
1362 // True if there is a relocation against this symbol that must be
1363 // resolved by the static linker (that is, the relocation cannot
1364 // possibly be made dynamic).
1365 bool has_static_relocs_
;
1367 // Whether we must not create a lazy-binding stub for this symbol.
1368 // This is true if the symbol has relocations related to taking the
1369 // function's address.
1372 // The offset of the lazy-binding stub for this symbol from the start of
1373 // .MIPS.stubs section.
1374 unsigned int lazy_stub_offset_
;
1376 // True if there are any relocations for this symbol where pointer equality
1378 bool pointer_equality_needed_
;
1380 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1381 // in the global part of the GOT.
1382 Global_got_area global_got_area_
;
1384 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1385 // from the start of .got section to the first GOT entry for the symbol.
1386 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1387 unsigned int global_gotoffset_
;
1389 // Whether all GOT relocations for this symbol are for calls.
1390 bool got_only_for_calls_
;
1391 // Whether the symbol has lazy-binding stub.
1392 bool has_lazy_stub_
;
1393 // Whether the symbol needs a standard PLT entry.
1394 bool needs_mips_plt_
;
1395 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1396 bool needs_comp_plt_
;
1397 // Standard PLT entry offset, or -1 if none.
1398 unsigned int mips_plt_offset_
;
1399 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1400 unsigned int comp_plt_offset_
;
1401 // MIPS16 fn stub for a symbol.
1402 Mips16_stub_section_base
* mips16_fn_stub_
;
1403 // MIPS16 call stub for a symbol.
1404 Mips16_stub_section_base
* mips16_call_stub_
;
1405 // MIPS16 call_fp stub for a symbol.
1406 Mips16_stub_section_base
* mips16_call_fp_stub_
;
1408 bool applied_secondary_got_fixup_
;
1411 // Mips16_stub_section class.
1413 // The mips16 compiler uses a couple of special sections to handle
1414 // floating point arguments.
1416 // Section names that look like .mips16.fn.FNNAME contain stubs that
1417 // copy floating point arguments from the fp regs to the gp regs and
1418 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1419 // call should be redirected to the stub instead. If no 32 bit
1420 // function calls FNNAME, the stub should be discarded. We need to
1421 // consider any reference to the function, not just a call, because
1422 // if the address of the function is taken we will need the stub,
1423 // since the address might be passed to a 32 bit function.
1425 // Section names that look like .mips16.call.FNNAME contain stubs
1426 // that copy floating point arguments from the gp regs to the fp
1427 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1428 // then any 16 bit function that calls FNNAME should be redirected
1429 // to the stub instead. If FNNAME is not a 32 bit function, the
1430 // stub should be discarded.
1432 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1433 // which call FNNAME and then copy the return value from the fp regs
1434 // to the gp regs. These stubs store the return address in $18 while
1435 // calling FNNAME; any function which might call one of these stubs
1436 // must arrange to save $18 around the call. (This case is not
1437 // needed for 32 bit functions that call 16 bit functions, because
1438 // 16 bit functions always return floating point values in both
1439 // $f0/$f1 and $2/$3.)
1441 // Note that in all cases FNNAME might be defined statically.
1442 // Therefore, FNNAME is not used literally. Instead, the relocation
1443 // information will indicate which symbol the section is for.
1445 // We record any stubs that we find in the symbol table.
1447 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1449 class Mips16_stub_section_base
{ };
1451 template<int size
, bool big_endian
>
1452 class Mips16_stub_section
: public Mips16_stub_section_base
1454 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Mips_address
;
1457 Mips16_stub_section(Mips_relobj
<size
, big_endian
>* object
, unsigned int shndx
)
1458 : object_(object
), shndx_(shndx
), r_sym_(0), gsym_(NULL
),
1459 found_r_mips_none_(false)
1461 gold_assert(object
->is_mips16_fn_stub_section(shndx
)
1462 || object
->is_mips16_call_stub_section(shndx
)
1463 || object
->is_mips16_call_fp_stub_section(shndx
));
1466 // Return the object of this stub section.
1467 Mips_relobj
<size
, big_endian
>*
1469 { return this->object_
; }
1471 // Return the size of a section.
1473 section_size() const
1474 { return this->object_
->section_size(this->shndx_
); }
1476 // Return section index of this stub section.
1479 { return this->shndx_
; }
1481 // Return symbol index, if stub is for a local function.
1484 { return this->r_sym_
; }
1486 // Return symbol, if stub is for a global function.
1489 { return this->gsym_
; }
1491 // Return whether stub is for a local function.
1493 is_for_local_function() const
1494 { return this->gsym_
== NULL
; }
1496 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1497 // is found in the stub section. Try to find stub target.
1499 new_local_reloc_found(unsigned int r_type
, unsigned int r_sym
)
1501 // To find target symbol for this stub, trust the first R_MIPS_NONE
1502 // relocation, if any. Otherwise trust the first relocation, whatever
1504 if (this->found_r_mips_none_
)
1506 if (r_type
== elfcpp::R_MIPS_NONE
)
1508 this->r_sym_
= r_sym
;
1510 this->found_r_mips_none_
= true;
1512 else if (!is_target_found())
1513 this->r_sym_
= r_sym
;
1516 // This method is called when a new relocation R_TYPE for global symbol GSYM
1517 // is found in the stub section. Try to find stub target.
1519 new_global_reloc_found(unsigned int r_type
, Mips_symbol
<size
>* gsym
)
1521 // To find target symbol for this stub, trust the first R_MIPS_NONE
1522 // relocation, if any. Otherwise trust the first relocation, whatever
1524 if (this->found_r_mips_none_
)
1526 if (r_type
== elfcpp::R_MIPS_NONE
)
1530 this->found_r_mips_none_
= true;
1532 else if (!is_target_found())
1536 // Return whether we found the stub target.
1538 is_target_found() const
1539 { return this->r_sym_
!= 0 || this->gsym_
!= NULL
; }
1541 // Return whether this is a fn stub.
1544 { return this->object_
->is_mips16_fn_stub_section(this->shndx_
); }
1546 // Return whether this is a call stub.
1548 is_call_stub() const
1549 { return this->object_
->is_mips16_call_stub_section(this->shndx_
); }
1551 // Return whether this is a call_fp stub.
1553 is_call_fp_stub() const
1554 { return this->object_
->is_mips16_call_fp_stub_section(this->shndx_
); }
1556 // Return the output address.
1558 output_address() const
1560 return (this->object_
->output_section(this->shndx_
)->address()
1561 + this->object_
->output_section_offset(this->shndx_
));
1565 // The object of this stub section.
1566 Mips_relobj
<size
, big_endian
>* object_
;
1567 // The section index of this stub section.
1568 unsigned int shndx_
;
1569 // The symbol index, if stub is for a local function.
1570 unsigned int r_sym_
;
1571 // The symbol, if stub is for a global function.
1572 Mips_symbol
<size
>* gsym_
;
1573 // True if we found R_MIPS_NONE relocation in this stub.
1574 bool found_r_mips_none_
;
1577 // Mips_relobj class.
1579 template<int size
, bool big_endian
>
1580 class Mips_relobj
: public Sized_relobj_file
<size
, big_endian
>
1582 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Mips_address
;
1583 typedef std::map
<unsigned int, Mips16_stub_section
<size
, big_endian
>*>
1584 Mips16_stubs_int_map
;
1585 typedef typename
elfcpp::Swap
<size
, big_endian
>::Valtype Valtype
;
1588 Mips_relobj(const std::string
& name
, Input_file
* input_file
, off_t offset
,
1589 const typename
elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
1590 : Sized_relobj_file
<size
, big_endian
>(name
, input_file
, offset
, ehdr
),
1591 processor_specific_flags_(0), local_symbol_is_mips16_(),
1592 local_symbol_is_micromips_(), mips16_stub_sections_(),
1593 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1594 local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1595 merge_processor_specific_data_(true), got_info_(NULL
),
1596 section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1597 section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U),
1598 attributes_section_data_(NULL
), abiflags_(NULL
), gprmask_(0),
1599 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1601 this->is_pic_
= (ehdr
.get_e_flags() & elfcpp::EF_MIPS_PIC
) != 0;
1602 this->is_n32_
= elfcpp::abi_n32(ehdr
.get_e_flags());
1606 { delete this->attributes_section_data_
; }
1608 // Downcast a base pointer to a Mips_relobj pointer. This is
1609 // not type-safe but we only use Mips_relobj not the base class.
1610 static Mips_relobj
<size
, big_endian
>*
1611 as_mips_relobj(Relobj
* relobj
)
1612 { return static_cast<Mips_relobj
<size
, big_endian
>*>(relobj
); }
1614 // Downcast a base pointer to a Mips_relobj pointer. This is
1615 // not type-safe but we only use Mips_relobj not the base class.
1616 static const Mips_relobj
<size
, big_endian
>*
1617 as_mips_relobj(const Relobj
* relobj
)
1618 { return static_cast<const Mips_relobj
<size
, big_endian
>*>(relobj
); }
1620 // Processor-specific flags in ELF file header. This is valid only after
1623 processor_specific_flags() const
1624 { return this->processor_specific_flags_
; }
1626 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1627 // index. This is only valid after do_count_local_symbol is called.
1629 local_symbol_is_mips16(unsigned int r_sym
) const
1631 gold_assert(r_sym
< this->local_symbol_is_mips16_
.size());
1632 return this->local_symbol_is_mips16_
[r_sym
];
1635 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1636 // index. This is only valid after do_count_local_symbol is called.
1638 local_symbol_is_micromips(unsigned int r_sym
) const
1640 gold_assert(r_sym
< this->local_symbol_is_micromips_
.size());
1641 return this->local_symbol_is_micromips_
[r_sym
];
1644 // Get or create MIPS16 stub section.
1645 Mips16_stub_section
<size
, big_endian
>*
1646 get_mips16_stub_section(unsigned int shndx
)
1648 typename
Mips16_stubs_int_map::const_iterator it
=
1649 this->mips16_stub_sections_
.find(shndx
);
1650 if (it
!= this->mips16_stub_sections_
.end())
1651 return (*it
).second
;
1653 Mips16_stub_section
<size
, big_endian
>* stub_section
=
1654 new Mips16_stub_section
<size
, big_endian
>(this, shndx
);
1655 this->mips16_stub_sections_
.insert(
1656 std::pair
<unsigned int, Mips16_stub_section
<size
, big_endian
>*>(
1657 stub_section
->shndx(), stub_section
));
1658 return stub_section
;
1661 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1662 // object doesn't have fn stub for R_SYM.
1663 Mips16_stub_section
<size
, big_endian
>*
1664 get_local_mips16_fn_stub(unsigned int r_sym
) const
1666 typename
Mips16_stubs_int_map::const_iterator it
=
1667 this->local_mips16_fn_stubs_
.find(r_sym
);
1668 if (it
!= this->local_mips16_fn_stubs_
.end())
1669 return (*it
).second
;
1673 // Record that this object has MIPS16 fn stub for local symbol. This method
1674 // is only called if we decided not to discard the stub.
1676 add_local_mips16_fn_stub(Mips16_stub_section
<size
, big_endian
>* stub
)
1678 gold_assert(stub
->is_for_local_function());
1679 unsigned int r_sym
= stub
->r_sym();
1680 this->local_mips16_fn_stubs_
.insert(
1681 std::pair
<unsigned int, Mips16_stub_section
<size
, big_endian
>*>(
1685 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1686 // object doesn't have call stub for R_SYM.
1687 Mips16_stub_section
<size
, big_endian
>*
1688 get_local_mips16_call_stub(unsigned int r_sym
) const
1690 typename
Mips16_stubs_int_map::const_iterator it
=
1691 this->local_mips16_call_stubs_
.find(r_sym
);
1692 if (it
!= this->local_mips16_call_stubs_
.end())
1693 return (*it
).second
;
1697 // Record that this object has MIPS16 call stub for local symbol. This method
1698 // is only called if we decided not to discard the stub.
1700 add_local_mips16_call_stub(Mips16_stub_section
<size
, big_endian
>* stub
)
1702 gold_assert(stub
->is_for_local_function());
1703 unsigned int r_sym
= stub
->r_sym();
1704 this->local_mips16_call_stubs_
.insert(
1705 std::pair
<unsigned int, Mips16_stub_section
<size
, big_endian
>*>(
1709 // Record that we found "non 16-bit" call relocation against local symbol
1710 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1713 add_local_non_16bit_call(unsigned int symndx
)
1714 { this->local_non_16bit_calls_
.insert(symndx
); }
1716 // Return true if there is any "non 16-bit" call relocation against local
1717 // symbol SYMNDX in this object.
1719 has_local_non_16bit_call_relocs(unsigned int symndx
)
1721 return (this->local_non_16bit_calls_
.find(symndx
)
1722 != this->local_non_16bit_calls_
.end());
1725 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1726 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1727 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1729 add_local_16bit_call(unsigned int symndx
)
1730 { this->local_16bit_calls_
.insert(symndx
); }
1732 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1733 // symbol SYMNDX in this object.
1735 has_local_16bit_call_relocs(unsigned int symndx
)
1737 return (this->local_16bit_calls_
.find(symndx
)
1738 != this->local_16bit_calls_
.end());
1741 // Get gp value that was used to create this object.
1744 { return this->gp_
; }
1746 // Return whether the object is a PIC object.
1749 { return this->is_pic_
; }
1751 // Return whether the object uses N32 ABI.
1754 { return this->is_n32_
; }
1756 // Return whether the object uses N64 ABI.
1759 { return size
== 64; }
1761 // Return whether the object uses NewABI conventions.
1764 { return this->is_n32() || this->is_n64(); }
1766 // Return Mips_got_info for this object.
1767 Mips_got_info
<size
, big_endian
>*
1768 get_got_info() const
1769 { return this->got_info_
; }
1771 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1772 Mips_got_info
<size
, big_endian
>*
1773 get_or_create_got_info()
1775 if (!this->got_info_
)
1776 this->got_info_
= new Mips_got_info
<size
, big_endian
>();
1777 return this->got_info_
;
1780 // Set Mips_got_info for this object.
1782 set_got_info(Mips_got_info
<size
, big_endian
>* got_info
)
1783 { this->got_info_
= got_info
; }
1785 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1786 // after do_read_symbols is called.
1788 is_mips16_stub_section(unsigned int shndx
)
1790 return (is_mips16_fn_stub_section(shndx
)
1791 || is_mips16_call_stub_section(shndx
)
1792 || is_mips16_call_fp_stub_section(shndx
));
1795 // Return TRUE if relocations in section SHNDX can refer directly to a
1796 // MIPS16 function rather than to a hard-float stub. This is only valid
1797 // after do_read_symbols is called.
1799 section_allows_mips16_refs(unsigned int shndx
)
1801 return (this->is_mips16_stub_section(shndx
) || shndx
== this->pdr_shndx_
);
1804 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1805 // after do_read_symbols is called.
1807 is_mips16_fn_stub_section(unsigned int shndx
)
1809 gold_assert(shndx
< this->section_is_mips16_fn_stub_
.size());
1810 return this->section_is_mips16_fn_stub_
[shndx
];
1813 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1814 // after do_read_symbols is called.
1816 is_mips16_call_stub_section(unsigned int shndx
)
1818 gold_assert(shndx
< this->section_is_mips16_call_stub_
.size());
1819 return this->section_is_mips16_call_stub_
[shndx
];
1822 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1823 // valid after do_read_symbols is called.
1825 is_mips16_call_fp_stub_section(unsigned int shndx
)
1827 gold_assert(shndx
< this->section_is_mips16_call_fp_stub_
.size());
1828 return this->section_is_mips16_call_fp_stub_
[shndx
];
1831 // Discard MIPS16 stub secions that are not needed.
1833 discard_mips16_stub_sections(Symbol_table
* symtab
);
1835 // Return whether there is a .reginfo section.
1837 has_reginfo_section() const
1838 { return this->has_reginfo_section_
; }
1840 // Return whether we want to merge processor-specific data.
1842 merge_processor_specific_data() const
1843 { return this->merge_processor_specific_data_
; }
1845 // Return gprmask from the .reginfo section of this object.
1848 { return this->gprmask_
; }
1850 // Return cprmask1 from the .reginfo section of this object.
1853 { return this->cprmask1_
; }
1855 // Return cprmask2 from the .reginfo section of this object.
1858 { return this->cprmask2_
; }
1860 // Return cprmask3 from the .reginfo section of this object.
1863 { return this->cprmask3_
; }
1865 // Return cprmask4 from the .reginfo section of this object.
1868 { return this->cprmask4_
; }
1870 // This is the contents of the .MIPS.abiflags section if there is one.
1871 Mips_abiflags
<big_endian
>*
1873 { return this->abiflags_
; }
1875 // This is the contents of the .gnu.attribute section if there is one.
1876 const Attributes_section_data
*
1877 attributes_section_data() const
1878 { return this->attributes_section_data_
; }
1881 // Count the local symbols.
1883 do_count_local_symbols(Stringpool_template
<char>*,
1884 Stringpool_template
<char>*);
1886 // Read the symbol information.
1888 do_read_symbols(Read_symbols_data
* sd
);
1891 // The name of the options section.
1892 const char* mips_elf_options_section_name()
1893 { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1895 // processor-specific flags in ELF file header.
1896 elfcpp::Elf_Word processor_specific_flags_
;
1898 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1899 // This is only valid after do_count_local_symbol is called.
1900 std::vector
<bool> local_symbol_is_mips16_
;
1902 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1903 // This is only valid after do_count_local_symbol is called.
1904 std::vector
<bool> local_symbol_is_micromips_
;
1906 // Map from section index to the MIPS16 stub for that section. This contains
1907 // all stubs found in this object.
1908 Mips16_stubs_int_map mips16_stub_sections_
;
1910 // Local symbols that have "non 16-bit" call relocation. This relocation
1911 // would need to refer to a MIPS16 fn stub, if there is one.
1912 std::set
<unsigned int> local_non_16bit_calls_
;
1914 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1915 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1916 // relocation that refers to the stub symbol.
1917 std::set
<unsigned int> local_16bit_calls_
;
1919 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1920 // This contains only the stubs that we decided not to discard.
1921 Mips16_stubs_int_map local_mips16_fn_stubs_
;
1923 // Map from local symbol index to the MIPS16 call stub for that symbol.
1924 // This contains only the stubs that we decided not to discard.
1925 Mips16_stubs_int_map local_mips16_call_stubs_
;
1927 // gp value that was used to create this object.
1929 // Whether the object is a PIC object.
1931 // Whether the object uses N32 ABI.
1933 // Whether the object contains a .reginfo section.
1934 bool has_reginfo_section_
: 1;
1935 // Whether we merge processor-specific data of this object to output.
1936 bool merge_processor_specific_data_
: 1;
1937 // The Mips_got_info for this object.
1938 Mips_got_info
<size
, big_endian
>* got_info_
;
1940 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1941 // This is only valid after do_read_symbols is called.
1942 std::vector
<bool> section_is_mips16_fn_stub_
;
1944 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1945 // This is only valid after do_read_symbols is called.
1946 std::vector
<bool> section_is_mips16_call_stub_
;
1948 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1949 // This is only valid after do_read_symbols is called.
1950 std::vector
<bool> section_is_mips16_call_fp_stub_
;
1952 // .pdr section index.
1953 unsigned int pdr_shndx_
;
1955 // Object attributes if there is a .gnu.attributes section or NULL.
1956 Attributes_section_data
* attributes_section_data_
;
1958 // Object abiflags if there is a .MIPS.abiflags section or NULL.
1959 Mips_abiflags
<big_endian
>* abiflags_
;
1961 // gprmask from the .reginfo section of this object.
1963 // cprmask1 from the .reginfo section of this object.
1965 // cprmask2 from the .reginfo section of this object.
1967 // cprmask3 from the .reginfo section of this object.
1969 // cprmask4 from the .reginfo section of this object.
1973 // Mips_output_data_got class.
1975 template<int size
, bool big_endian
>
1976 class Mips_output_data_got
: public Output_data_got
<size
, big_endian
>
1978 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Mips_address
;
1979 typedef Output_data_reloc
<elfcpp::SHT_REL
, true, size
, big_endian
>
1981 typedef typename
elfcpp::Swap
<size
, big_endian
>::Valtype Valtype
;
1984 Mips_output_data_got(Target_mips
<size
, big_endian
>* target
,
1985 Symbol_table
* symtab
, Layout
* layout
)
1986 : Output_data_got
<size
, big_endian
>(), target_(target
),
1987 symbol_table_(symtab
), layout_(layout
), static_relocs_(), got_view_(NULL
),
1988 first_global_got_dynsym_index_(-1U), primary_got_(NULL
),
1989 secondary_got_relocs_()
1991 this->master_got_info_
= new Mips_got_info
<size
, big_endian
>();
1992 this->set_addralign(16);
1995 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1996 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1998 record_local_got_symbol(Mips_relobj
<size
, big_endian
>* object
,
1999 unsigned int symndx
, Mips_address addend
,
2000 unsigned int r_type
, unsigned int shndx
,
2001 bool is_section_symbol
)
2003 this->master_got_info_
->record_local_got_symbol(object
, symndx
, addend
,
2008 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
2009 // in OBJECT. FOR_CALL is true if the caller is only interested in
2010 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
2013 record_global_got_symbol(Mips_symbol
<size
>* mips_sym
,
2014 Mips_relobj
<size
, big_endian
>* object
,
2015 unsigned int r_type
, bool dyn_reloc
, bool for_call
)
2017 this->master_got_info_
->record_global_got_symbol(mips_sym
, object
, r_type
,
2018 dyn_reloc
, for_call
);
2021 // Record that OBJECT has a page relocation against symbol SYMNDX and
2022 // that ADDEND is the addend for that relocation.
2024 record_got_page_entry(Mips_relobj
<size
, big_endian
>* object
,
2025 unsigned int symndx
, int addend
)
2026 { this->master_got_info_
->record_got_page_entry(object
, symndx
, addend
); }
2028 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
2029 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2030 // applied in a static link.
2032 add_static_reloc(unsigned int got_offset
, unsigned int r_type
,
2033 Mips_symbol
<size
>* gsym
)
2034 { this->static_relocs_
.push_back(Static_reloc(got_offset
, r_type
, gsym
)); }
2036 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
2037 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
2038 // relocation that needs to be applied in a static link.
2040 add_static_reloc(unsigned int got_offset
, unsigned int r_type
,
2041 Sized_relobj_file
<size
, big_endian
>* relobj
,
2044 this->static_relocs_
.push_back(Static_reloc(got_offset
, r_type
, relobj
,
2048 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2049 // secondary GOT at OFFSET.
2051 add_secondary_got_reloc(unsigned int got_offset
, unsigned int r_type
,
2052 Mips_symbol
<size
>* gsym
)
2054 this->secondary_got_relocs_
.push_back(Static_reloc(got_offset
,
2058 // Update GOT entry at OFFSET with VALUE.
2060 update_got_entry(unsigned int offset
, Mips_address value
)
2062 elfcpp::Swap
<size
, big_endian
>::writeval(this->got_view_
+ offset
, value
);
2065 // Return the number of entries in local part of the GOT. This includes
2066 // local entries, page entries and 2 reserved entries.
2068 get_local_gotno() const
2070 if (!this->multi_got())
2072 return (2 + this->master_got_info_
->local_gotno()
2073 + this->master_got_info_
->page_gotno());
2076 return 2 + this->primary_got_
->local_gotno() + this->primary_got_
->page_gotno();
2079 // Return dynamic symbol table index of the first symbol with global GOT
2082 first_global_got_dynsym_index() const
2083 { return this->first_global_got_dynsym_index_
; }
2085 // Set dynamic symbol table index of the first symbol with global GOT entry.
2087 set_first_global_got_dynsym_index(unsigned int index
)
2088 { this->first_global_got_dynsym_index_
= index
; }
2090 // Lay out the GOT. Add local, global and TLS entries. If GOT is
2091 // larger than 64K, create multi-GOT.
2093 lay_out_got(Layout
* layout
, Symbol_table
* symtab
,
2094 const Input_objects
* input_objects
);
2096 // Create multi-GOT. For every GOT, add local, global and TLS entries.
2098 lay_out_multi_got(Layout
* layout
, const Input_objects
* input_objects
);
2100 // Attempt to merge GOTs of different input objects.
2102 merge_gots(const Input_objects
* input_objects
);
2104 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
2105 // this would lead to overflow, true if they were merged successfully.
2107 merge_got_with(Mips_got_info
<size
, big_endian
>* from
,
2108 Mips_relobj
<size
, big_endian
>* object
,
2109 Mips_got_info
<size
, big_endian
>* to
);
2111 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
2112 // use OBJECT's GOT.
2114 get_got_page_offset(Mips_address value
,
2115 const Mips_relobj
<size
, big_endian
>* object
)
2117 Mips_got_info
<size
, big_endian
>* g
= (!this->multi_got()
2118 ? this->master_got_info_
2119 : object
->get_got_info());
2120 gold_assert(g
!= NULL
);
2121 return g
->get_got_page_offset(value
, this);
2124 // Return the GOT offset of type GOT_TYPE of the global symbol
2125 // GSYM. For multi-GOT links, use OBJECT's GOT.
2126 unsigned int got_offset(const Symbol
* gsym
, unsigned int got_type
,
2127 Mips_relobj
<size
, big_endian
>* object
) const
2129 if (!this->multi_got())
2130 return gsym
->got_offset(got_type
);
2133 Mips_got_info
<size
, big_endian
>* g
= object
->get_got_info();
2134 gold_assert(g
!= NULL
);
2135 return gsym
->got_offset(g
->multigot_got_type(got_type
));
2139 // Return the GOT offset of type GOT_TYPE of the local symbol
2142 got_offset(unsigned int symndx
, unsigned int got_type
,
2143 Sized_relobj_file
<size
, big_endian
>* object
,
2144 uint64_t addend
) const
2145 { return object
->local_got_offset(symndx
, got_type
, addend
); }
2147 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2149 tls_ldm_offset(Mips_relobj
<size
, big_endian
>* object
) const
2151 Mips_got_info
<size
, big_endian
>* g
= (!this->multi_got()
2152 ? this->master_got_info_
2153 : object
->get_got_info());
2154 gold_assert(g
!= NULL
);
2155 return g
->tls_ldm_offset();
2158 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2160 set_tls_ldm_offset(unsigned int tls_ldm_offset
,
2161 Mips_relobj
<size
, big_endian
>* object
)
2163 Mips_got_info
<size
, big_endian
>* g
= (!this->multi_got()
2164 ? this->master_got_info_
2165 : object
->get_got_info());
2166 gold_assert(g
!= NULL
);
2167 g
->set_tls_ldm_offset(tls_ldm_offset
);
2170 // Return true for multi-GOT links.
2173 { return this->primary_got_
!= NULL
; }
2175 // Return the offset of OBJECT's GOT from the start of .got section.
2177 get_got_offset(const Mips_relobj
<size
, big_endian
>* object
)
2179 if (!this->multi_got())
2183 Mips_got_info
<size
, big_endian
>* g
= object
->get_got_info();
2184 return g
!= NULL
? g
->offset() : 0;
2188 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2190 add_reloc_only_entries()
2191 { this->master_got_info_
->add_reloc_only_entries(this); }
2193 // Return offset of the primary GOT's entry for global symbol.
2195 get_primary_got_offset(const Mips_symbol
<size
>* sym
) const
2197 gold_assert(sym
->global_got_area() != GGA_NONE
);
2198 return (this->get_local_gotno() + sym
->dynsym_index()
2199 - this->first_global_got_dynsym_index()) * size
/8;
2202 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2203 // Input argument GOT_OFFSET is always global offset from the start of
2204 // .got section, for both single and multi-GOT links.
2205 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2206 // links, the return value is object_got_offset - 0x7FF0, where
2207 // object_got_offset is offset in the OBJECT's GOT.
2209 gp_offset(unsigned int got_offset
,
2210 const Mips_relobj
<size
, big_endian
>* object
) const
2212 return (this->address() + got_offset
2213 - this->target_
->adjusted_gp_value(object
));
2217 // Write out the GOT table.
2219 do_write(Output_file
*);
2223 // This class represent dynamic relocations that need to be applied by
2224 // gold because we are using TLS relocations in a static link.
2228 Static_reloc(unsigned int got_offset
, unsigned int r_type
,
2229 Mips_symbol
<size
>* gsym
)
2230 : got_offset_(got_offset
), r_type_(r_type
), symbol_is_global_(true)
2231 { this->u_
.global
.symbol
= gsym
; }
2233 Static_reloc(unsigned int got_offset
, unsigned int r_type
,
2234 Sized_relobj_file
<size
, big_endian
>* relobj
, unsigned int index
)
2235 : got_offset_(got_offset
), r_type_(r_type
), symbol_is_global_(false)
2237 this->u_
.local
.relobj
= relobj
;
2238 this->u_
.local
.index
= index
;
2241 // Return the GOT offset.
2244 { return this->got_offset_
; }
2249 { return this->r_type_
; }
2251 // Whether the symbol is global or not.
2253 symbol_is_global() const
2254 { return this->symbol_is_global_
; }
2256 // For a relocation against a global symbol, the global symbol.
2260 gold_assert(this->symbol_is_global_
);
2261 return this->u_
.global
.symbol
;
2264 // For a relocation against a local symbol, the defining object.
2265 Sized_relobj_file
<size
, big_endian
>*
2268 gold_assert(!this->symbol_is_global_
);
2269 return this->u_
.local
.relobj
;
2272 // For a relocation against a local symbol, the local symbol index.
2276 gold_assert(!this->symbol_is_global_
);
2277 return this->u_
.local
.index
;
2281 // GOT offset of the entry to which this relocation is applied.
2282 unsigned int got_offset_
;
2283 // Type of relocation.
2284 unsigned int r_type_
;
2285 // Whether this relocation is against a global symbol.
2286 bool symbol_is_global_
;
2287 // A global or local symbol.
2292 // For a global symbol, the symbol itself.
2293 Mips_symbol
<size
>* symbol
;
2297 // For a local symbol, the object defining object.
2298 Sized_relobj_file
<size
, big_endian
>* relobj
;
2299 // For a local symbol, the symbol index.
2306 Target_mips
<size
, big_endian
>* target_
;
2307 // The symbol table.
2308 Symbol_table
* symbol_table_
;
2311 // Static relocs to be applied to the GOT.
2312 std::vector
<Static_reloc
> static_relocs_
;
2313 // .got section view.
2314 unsigned char* got_view_
;
2315 // The dynamic symbol table index of the first symbol with global GOT entry.
2316 unsigned int first_global_got_dynsym_index_
;
2317 // The master GOT information.
2318 Mips_got_info
<size
, big_endian
>* master_got_info_
;
2319 // The primary GOT information.
2320 Mips_got_info
<size
, big_endian
>* primary_got_
;
2321 // Secondary GOT fixups.
2322 std::vector
<Static_reloc
> secondary_got_relocs_
;
2325 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2326 // two ways of creating these interfaces. The first is to add:
2328 // lui $25,%hi(func)
2330 // addiu $25,$25,%lo(func)
2332 // to a separate trampoline section. The second is to add:
2334 // lui $25,%hi(func)
2335 // addiu $25,$25,%lo(func)
2337 // immediately before a PIC function "func", but only if a function is at the
2338 // beginning of the section, and the section is not too heavily aligned (i.e we
2339 // would need to add no more than 2 nops before the stub.)
2341 // We only create stubs of the first type.
2343 template<int size
, bool big_endian
>
2344 class Mips_output_data_la25_stub
: public Output_section_data
2346 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Mips_address
;
2349 Mips_output_data_la25_stub()
2350 : Output_section_data(size
== 32 ? 4 : 8), symbols_()
2353 // Create LA25 stub for a symbol.
2355 create_la25_stub(Symbol_table
* symtab
, Target_mips
<size
, big_endian
>* target
,
2356 Mips_symbol
<size
>* gsym
);
2358 // Return output address of a stub.
2360 stub_address(const Mips_symbol
<size
>* sym
) const
2362 gold_assert(sym
->has_la25_stub());
2363 return this->address() + sym
->la25_stub_offset();
2368 do_adjust_output_section(Output_section
* os
)
2369 { os
->set_entsize(0); }
2372 // Template for standard LA25 stub.
2373 static const uint32_t la25_stub_entry
[];
2374 // Template for microMIPS LA25 stub.
2375 static const uint32_t la25_stub_micromips_entry
[];
2377 // Set the final size.
2379 set_final_data_size()
2380 { this->set_data_size(this->symbols_
.size() * 16); }
2382 // Create a symbol for SYM stub's value and size, to help make the
2383 // disassembly easier to read.
2385 create_stub_symbol(Mips_symbol
<size
>* sym
, Symbol_table
* symtab
,
2386 Target_mips
<size
, big_endian
>* target
, uint64_t symsize
);
2388 // Write to a map file.
2390 do_print_to_mapfile(Mapfile
* mapfile
) const
2391 { mapfile
->print_output_data(this, _(".LA25.stubs")); }
2393 // Write out the LA25 stub section.
2395 do_write(Output_file
*);
2397 // Symbols that have LA25 stubs.
2398 std::vector
<Mips_symbol
<size
>*> symbols_
;
2401 // MIPS-specific relocation writer.
2403 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
2404 struct Mips_output_reloc_writer
;
2406 template<int sh_type
, bool dynamic
, bool big_endian
>
2407 struct Mips_output_reloc_writer
<sh_type
, dynamic
, 32, big_endian
>
2409 typedef Output_reloc
<sh_type
, dynamic
, 32, big_endian
> Output_reloc_type
;
2410 typedef std::vector
<Output_reloc_type
> Relocs
;
2413 write(typename
Relocs::const_iterator p
, unsigned char* pov
)
2417 template<int sh_type
, bool dynamic
, bool big_endian
>
2418 struct Mips_output_reloc_writer
<sh_type
, dynamic
, 64, big_endian
>
2420 typedef Output_reloc
<sh_type
, dynamic
, 64, big_endian
> Output_reloc_type
;
2421 typedef std::vector
<Output_reloc_type
> Relocs
;
2424 write(typename
Relocs::const_iterator p
, unsigned char* pov
)
2426 elfcpp::Mips64_rel_write
<big_endian
> orel(pov
);
2427 orel
.put_r_offset(p
->get_address());
2428 orel
.put_r_sym(p
->get_symbol_index());
2429 orel
.put_r_ssym(RSS_UNDEF
);
2430 orel
.put_r_type(p
->type());
2431 if (p
->type() == elfcpp::R_MIPS_REL32
)
2432 orel
.put_r_type2(elfcpp::R_MIPS_64
);
2434 orel
.put_r_type2(elfcpp::R_MIPS_NONE
);
2435 orel
.put_r_type3(elfcpp::R_MIPS_NONE
);
2439 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
2440 class Mips_output_data_reloc
: public Output_data_reloc
<sh_type
, dynamic
,
2444 Mips_output_data_reloc(bool sort_relocs
)
2445 : Output_data_reloc
<sh_type
, dynamic
, size
, big_endian
>(sort_relocs
)
2449 // Write out the data.
2451 do_write(Output_file
* of
)
2453 typedef Mips_output_reloc_writer
<sh_type
, dynamic
, size
,
2455 this->template do_write_generic
<Writer
>(of
);
2460 // A class to handle the PLT data.
2462 template<int size
, bool big_endian
>
2463 class Mips_output_data_plt
: public Output_section_data
2465 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Mips_address
;
2466 typedef Mips_output_data_reloc
<elfcpp::SHT_REL
, true,
2467 size
, big_endian
> Reloc_section
;
2470 // Create the PLT section. The ordinary .got section is an argument,
2471 // since we need to refer to the start.
2472 Mips_output_data_plt(Layout
* layout
, Output_data_space
* got_plt
,
2473 Target_mips
<size
, big_endian
>* target
)
2474 : Output_section_data(size
== 32 ? 4 : 8), got_plt_(got_plt
), symbols_(),
2475 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2478 this->rel_
= new Reloc_section(false);
2479 layout
->add_output_section_data(".rel.plt", elfcpp::SHT_REL
,
2480 elfcpp::SHF_ALLOC
, this->rel_
,
2481 ORDER_DYNAMIC_PLT_RELOCS
, false);
2484 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2486 add_entry(Mips_symbol
<size
>* gsym
, unsigned int r_type
);
2488 // Return the .rel.plt section data.
2491 { return this->rel_
; }
2493 // Return the number of PLT entries.
2496 { return this->symbols_
.size(); }
2498 // Return the offset of the first non-reserved PLT entry.
2500 first_plt_entry_offset() const
2501 { return sizeof(plt0_entry_o32
); }
2503 // Return the size of a PLT entry.
2505 plt_entry_size() const
2506 { return sizeof(plt_entry
); }
2508 // Set final PLT offsets. For each symbol, determine whether standard or
2509 // compressed (MIPS16 or microMIPS) PLT entry is used.
2513 // Return the offset of the first standard PLT entry.
2515 first_mips_plt_offset() const
2516 { return this->plt_header_size_
; }
2518 // Return the offset of the first compressed PLT entry.
2520 first_comp_plt_offset() const
2521 { return this->plt_header_size_
+ this->plt_mips_offset_
; }
2523 // Return whether there are any standard PLT entries.
2525 has_standard_entries() const
2526 { return this->plt_mips_offset_
> 0; }
2528 // Return the output address of standard PLT entry.
2530 mips_entry_address(const Mips_symbol
<size
>* sym
) const
2532 gold_assert (sym
->has_mips_plt_offset());
2533 return (this->address() + this->first_mips_plt_offset()
2534 + sym
->mips_plt_offset());
2537 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2539 comp_entry_address(const Mips_symbol
<size
>* sym
) const
2541 gold_assert (sym
->has_comp_plt_offset());
2542 return (this->address() + this->first_comp_plt_offset()
2543 + sym
->comp_plt_offset());
2548 do_adjust_output_section(Output_section
* os
)
2549 { os
->set_entsize(0); }
2551 // Write to a map file.
2553 do_print_to_mapfile(Mapfile
* mapfile
) const
2554 { mapfile
->print_output_data(this, _(".plt")); }
2557 // Template for the first PLT entry.
2558 static const uint32_t plt0_entry_o32
[];
2559 static const uint32_t plt0_entry_n32
[];
2560 static const uint32_t plt0_entry_n64
[];
2561 static const uint32_t plt0_entry_micromips_o32
[];
2562 static const uint32_t plt0_entry_micromips32_o32
[];
2564 // Template for subsequent PLT entries.
2565 static const uint32_t plt_entry
[];
2566 static const uint32_t plt_entry_r6
[];
2567 static const uint32_t plt_entry_mips16_o32
[];
2568 static const uint32_t plt_entry_micromips_o32
[];
2569 static const uint32_t plt_entry_micromips32_o32
[];
2571 // Set the final size.
2573 set_final_data_size()
2575 this->set_data_size(this->plt_header_size_
+ this->plt_mips_offset_
2576 + this->plt_comp_offset_
);
2579 // Write out the PLT data.
2581 do_write(Output_file
*);
2583 // Return whether the plt header contains microMIPS code. For the sake of
2584 // cache alignment always use a standard header whenever any standard entries
2585 // are present even if microMIPS entries are present as well. This also lets
2586 // the microMIPS header rely on the value of $v0 only set by microMIPS
2587 // entries, for a small size reduction.
2589 is_plt_header_compressed() const
2591 gold_assert(this->plt_mips_offset_
+ this->plt_comp_offset_
!= 0);
2592 return this->target_
->is_output_micromips() && this->plt_mips_offset_
== 0;
2595 // Return the size of the PLT header.
2597 get_plt_header_size() const
2599 if (this->target_
->is_output_n64())
2600 return 4 * sizeof(plt0_entry_n64
) / sizeof(plt0_entry_n64
[0]);
2601 else if (this->target_
->is_output_n32())
2602 return 4 * sizeof(plt0_entry_n32
) / sizeof(plt0_entry_n32
[0]);
2603 else if (!this->is_plt_header_compressed())
2604 return 4 * sizeof(plt0_entry_o32
) / sizeof(plt0_entry_o32
[0]);
2605 else if (this->target_
->use_32bit_micromips_instructions())
2606 return (2 * sizeof(plt0_entry_micromips32_o32
)
2607 / sizeof(plt0_entry_micromips32_o32
[0]));
2609 return (2 * sizeof(plt0_entry_micromips_o32
)
2610 / sizeof(plt0_entry_micromips_o32
[0]));
2613 // Return the PLT header entry.
2615 get_plt_header_entry() const
2617 if (this->target_
->is_output_n64())
2618 return plt0_entry_n64
;
2619 else if (this->target_
->is_output_n32())
2620 return plt0_entry_n32
;
2621 else if (!this->is_plt_header_compressed())
2622 return plt0_entry_o32
;
2623 else if (this->target_
->use_32bit_micromips_instructions())
2624 return plt0_entry_micromips32_o32
;
2626 return plt0_entry_micromips_o32
;
2629 // Return the size of the standard PLT entry.
2631 standard_plt_entry_size() const
2632 { return 4 * sizeof(plt_entry
) / sizeof(plt_entry
[0]); }
2634 // Return the size of the compressed PLT entry.
2636 compressed_plt_entry_size() const
2638 gold_assert(!this->target_
->is_output_newabi());
2640 if (!this->target_
->is_output_micromips())
2641 return (2 * sizeof(plt_entry_mips16_o32
)
2642 / sizeof(plt_entry_mips16_o32
[0]));
2643 else if (this->target_
->use_32bit_micromips_instructions())
2644 return (2 * sizeof(plt_entry_micromips32_o32
)
2645 / sizeof(plt_entry_micromips32_o32
[0]));
2647 return (2 * sizeof(plt_entry_micromips_o32
)
2648 / sizeof(plt_entry_micromips_o32
[0]));
2651 // The reloc section.
2652 Reloc_section
* rel_
;
2653 // The .got.plt section.
2654 Output_data_space
* got_plt_
;
2655 // Symbols that have PLT entry.
2656 std::vector
<Mips_symbol
<size
>*> symbols_
;
2657 // The offset of the next standard PLT entry to create.
2658 unsigned int plt_mips_offset_
;
2659 // The offset of the next compressed PLT entry to create.
2660 unsigned int plt_comp_offset_
;
2661 // The size of the PLT header in bytes.
2662 unsigned int plt_header_size_
;
2664 Target_mips
<size
, big_endian
>* target_
;
2667 // A class to handle the .MIPS.stubs data.
2669 template<int size
, bool big_endian
>
2670 class Mips_output_data_mips_stubs
: public Output_section_data
2672 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Mips_address
;
2674 // Unordered set of .MIPS.stubs entries.
2675 typedef Unordered_set
<Mips_symbol
<size
>*, Mips_symbol_hash
<size
> >
2676 Mips_stubs_entry_set
;
2679 Mips_output_data_mips_stubs(Target_mips
<size
, big_endian
>* target
)
2680 : Output_section_data(size
== 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2681 stub_offsets_are_set_(false), target_(target
)
2684 // Create entry for a symbol.
2686 make_entry(Mips_symbol
<size
>*);
2688 // Remove entry for a symbol.
2690 remove_entry(Mips_symbol
<size
>* gsym
);
2692 // Set stub offsets for symbols. This method expects that the number of
2693 // entries in dynamic symbol table is set.
2695 set_lazy_stub_offsets();
2698 set_needs_dynsym_value();
2700 // Set the number of entries in dynamic symbol table.
2702 set_dynsym_count(unsigned int dynsym_count
)
2703 { this->dynsym_count_
= dynsym_count
; }
2705 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2706 // count is greater than 0x10000. If the dynamic symbol count is less than
2707 // 0x10000, the stub will be 4 bytes smaller.
2708 // There's no disadvantage from using microMIPS code here, so for the sake of
2709 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2710 // output produced at all. This has a benefit of stubs being shorter by
2711 // 4 bytes each too, unless in the insn32 mode.
2713 stub_max_size() const
2715 if (!this->target_
->is_output_micromips()
2716 || this->target_
->use_32bit_micromips_instructions())
2722 // Return the size of the stub. This method expects that the final dynsym
2727 gold_assert(this->dynsym_count_
!= -1U);
2728 if (this->dynsym_count_
> 0x10000)
2729 return this->stub_max_size();
2731 return this->stub_max_size() - 4;
2734 // Return output address of a stub.
2736 stub_address(const Mips_symbol
<size
>* sym
) const
2738 gold_assert(sym
->has_lazy_stub());
2739 return this->address() + sym
->lazy_stub_offset();
2744 do_adjust_output_section(Output_section
* os
)
2745 { os
->set_entsize(0); }
2747 // Write to a map file.
2749 do_print_to_mapfile(Mapfile
* mapfile
) const
2750 { mapfile
->print_output_data(this, _(".MIPS.stubs")); }
2753 static const uint32_t lazy_stub_normal_1
[];
2754 static const uint32_t lazy_stub_normal_1_n64
[];
2755 static const uint32_t lazy_stub_normal_2
[];
2756 static const uint32_t lazy_stub_normal_2_n64
[];
2757 static const uint32_t lazy_stub_big
[];
2758 static const uint32_t lazy_stub_big_n64
[];
2760 static const uint32_t lazy_stub_micromips_normal_1
[];
2761 static const uint32_t lazy_stub_micromips_normal_1_n64
[];
2762 static const uint32_t lazy_stub_micromips_normal_2
[];
2763 static const uint32_t lazy_stub_micromips_normal_2_n64
[];
2764 static const uint32_t lazy_stub_micromips_big
[];
2765 static const uint32_t lazy_stub_micromips_big_n64
[];
2767 static const uint32_t lazy_stub_micromips32_normal_1
[];
2768 static const uint32_t lazy_stub_micromips32_normal_1_n64
[];
2769 static const uint32_t lazy_stub_micromips32_normal_2
[];
2770 static const uint32_t lazy_stub_micromips32_normal_2_n64
[];
2771 static const uint32_t lazy_stub_micromips32_big
[];
2772 static const uint32_t lazy_stub_micromips32_big_n64
[];
2774 // Set the final size.
2776 set_final_data_size()
2777 { this->set_data_size(this->symbols_
.size() * this->stub_max_size()); }
2779 // Write out the .MIPS.stubs data.
2781 do_write(Output_file
*);
2783 // .MIPS.stubs symbols
2784 Mips_stubs_entry_set symbols_
;
2785 // Number of entries in dynamic symbol table.
2786 unsigned int dynsym_count_
;
2787 // Whether the stub offsets are set.
2788 bool stub_offsets_are_set_
;
2790 Target_mips
<size
, big_endian
>* target_
;
2793 // This class handles Mips .reginfo output section.
2795 template<int size
, bool big_endian
>
2796 class Mips_output_section_reginfo
: public Output_section_data
2798 typedef typename
elfcpp::Swap
<size
, big_endian
>::Valtype Valtype
;
2801 Mips_output_section_reginfo(Target_mips
<size
, big_endian
>* target
,
2802 Valtype gprmask
, Valtype cprmask1
,
2803 Valtype cprmask2
, Valtype cprmask3
,
2805 : Output_section_data(24, 4, true), target_(target
),
2806 gprmask_(gprmask
), cprmask1_(cprmask1
), cprmask2_(cprmask2
),
2807 cprmask3_(cprmask3
), cprmask4_(cprmask4
)
2811 // Write to a map file.
2813 do_print_to_mapfile(Mapfile
* mapfile
) const
2814 { mapfile
->print_output_data(this, _(".reginfo")); }
2816 // Write out reginfo section.
2818 do_write(Output_file
* of
);
2821 Target_mips
<size
, big_endian
>* target_
;
2823 // gprmask of the output .reginfo section.
2825 // cprmask1 of the output .reginfo section.
2827 // cprmask2 of the output .reginfo section.
2829 // cprmask3 of the output .reginfo section.
2831 // cprmask4 of the output .reginfo section.
2835 // This class handles .MIPS.options output section.
2837 template<int size
, bool big_endian
>
2838 class Mips_output_section_options
: public Output_section
2841 Mips_output_section_options(const char* name
, elfcpp::Elf_Word type
,
2842 elfcpp::Elf_Xword flags
,
2843 Target_mips
<size
, big_endian
>* target
)
2844 : Output_section(name
, type
, flags
), target_(target
)
2846 // After the input sections are written, we only need to update
2847 // ri_gp_value field of ODK_REGINFO entries.
2848 this->set_after_input_sections();
2852 // Write out option section.
2854 do_write(Output_file
* of
);
2857 Target_mips
<size
, big_endian
>* target_
;
2860 // This class handles .MIPS.abiflags output section.
2862 template<int size
, bool big_endian
>
2863 class Mips_output_section_abiflags
: public Output_section_data
2866 Mips_output_section_abiflags(const Mips_abiflags
<big_endian
>& abiflags
)
2867 : Output_section_data(24, 8, true), abiflags_(abiflags
)
2871 // Write to a map file.
2873 do_print_to_mapfile(Mapfile
* mapfile
) const
2874 { mapfile
->print_output_data(this, _(".MIPS.abiflags")); }
2877 do_write(Output_file
* of
);
2880 const Mips_abiflags
<big_endian
>& abiflags_
;
2883 // The MIPS target has relocation types which default handling of relocatable
2884 // relocation cannot process. So we have to extend the default code.
2886 template<bool big_endian
, typename Classify_reloc
>
2887 class Mips_scan_relocatable_relocs
:
2888 public Default_scan_relocatable_relocs
<Classify_reloc
>
2891 // Return the strategy to use for a local symbol which is a section
2892 // symbol, given the relocation type.
2893 inline Relocatable_relocs::Reloc_strategy
2894 local_section_strategy(unsigned int r_type
, Relobj
* object
)
2896 if (Classify_reloc::sh_type
== elfcpp::SHT_RELA
)
2897 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA
;
2902 case elfcpp::R_MIPS_26
:
2903 return Relocatable_relocs::RELOC_SPECIAL
;
2906 return Default_scan_relocatable_relocs
<Classify_reloc
>::
2907 local_section_strategy(r_type
, object
);
2913 // Mips_copy_relocs class. The only difference from the base class is the
2914 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2915 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2916 // cannot be made dynamic, a COPY reloc is emitted.
2918 template<int sh_type
, int size
, bool big_endian
>
2919 class Mips_copy_relocs
: public Copy_relocs
<sh_type
, size
, big_endian
>
2923 : Copy_relocs
<sh_type
, size
, big_endian
>(elfcpp::R_MIPS_COPY
)
2926 // Emit any saved relocations which turn out to be needed. This is
2927 // called after all the relocs have been scanned.
2929 emit_mips(Output_data_reloc
<sh_type
, true, size
, big_endian
>*,
2930 Symbol_table
*, Layout
*, Target_mips
<size
, big_endian
>*);
2933 typedef typename Copy_relocs
<sh_type
, size
, big_endian
>::Copy_reloc_entry
2936 // Emit this reloc if appropriate. This is called after we have
2937 // scanned all the relocations, so we know whether we emitted a
2938 // COPY relocation for SYM_.
2940 emit_entry(Copy_reloc_entry
& entry
,
2941 Output_data_reloc
<sh_type
, true, size
, big_endian
>* reloc_section
,
2942 Symbol_table
* symtab
, Layout
* layout
,
2943 Target_mips
<size
, big_endian
>* target
);
2947 // Return true if the symbol SYM should be considered to resolve local
2948 // to the current module, and false otherwise. The logic is taken from
2949 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2951 symbol_refs_local(const Symbol
* sym
, bool has_dynsym_entry
,
2952 bool local_protected
)
2954 // If it's a local sym, of course we resolve locally.
2958 // STV_HIDDEN or STV_INTERNAL ones must be local.
2959 if (sym
->visibility() == elfcpp::STV_HIDDEN
2960 || sym
->visibility() == elfcpp::STV_INTERNAL
)
2963 // If we don't have a definition in a regular file, then we can't
2964 // resolve locally. The sym is either undefined or dynamic.
2965 if (sym
->is_from_dynobj() || sym
->is_undefined())
2968 // Forced local symbols resolve locally.
2969 if (sym
->is_forced_local())
2972 // As do non-dynamic symbols.
2973 if (!has_dynsym_entry
)
2976 // At this point, we know the symbol is defined and dynamic. In an
2977 // executable it must resolve locally, likewise when building symbolic
2978 // shared libraries.
2979 if (parameters
->options().output_is_executable()
2980 || parameters
->options().Bsymbolic())
2983 // Now deal with defined dynamic symbols in shared libraries. Ones
2984 // with default visibility might not resolve locally.
2985 if (sym
->visibility() == elfcpp::STV_DEFAULT
)
2988 // STV_PROTECTED non-function symbols are local.
2989 if (sym
->type() != elfcpp::STT_FUNC
)
2992 // Function pointer equality tests may require that STV_PROTECTED
2993 // symbols be treated as dynamic symbols. If the address of a
2994 // function not defined in an executable is set to that function's
2995 // plt entry in the executable, then the address of the function in
2996 // a shared library must also be the plt entry in the executable.
2997 return local_protected
;
3000 // Return TRUE if references to this symbol always reference the symbol in this
3003 symbol_references_local(const Symbol
* sym
, bool has_dynsym_entry
)
3005 return symbol_refs_local(sym
, has_dynsym_entry
, false);
3008 // Return TRUE if calls to this symbol always call the version in this object.
3010 symbol_calls_local(const Symbol
* sym
, bool has_dynsym_entry
)
3012 return symbol_refs_local(sym
, has_dynsym_entry
, true);
3015 // Compare GOT offsets of two symbols.
3017 template<int size
, bool big_endian
>
3019 got_offset_compare(Symbol
* sym1
, Symbol
* sym2
)
3021 Mips_symbol
<size
>* mips_sym1
= Mips_symbol
<size
>::as_mips_sym(sym1
);
3022 Mips_symbol
<size
>* mips_sym2
= Mips_symbol
<size
>::as_mips_sym(sym2
);
3023 unsigned int area1
= mips_sym1
->global_got_area();
3024 unsigned int area2
= mips_sym2
->global_got_area();
3025 gold_assert(area1
!= GGA_NONE
&& area1
!= GGA_NONE
);
3027 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
3029 return area1
< area2
;
3031 return mips_sym1
->global_gotoffset() < mips_sym2
->global_gotoffset();
3034 // This method divides dynamic symbols into symbols that have GOT entry, and
3035 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
3036 // Mips ABI requires that symbols with the GOT entry must be at the end of
3037 // dynamic symbol table, and the order in dynamic symbol table must match the
3040 template<int size
, bool big_endian
>
3042 reorder_dyn_symbols(std::vector
<Symbol
*>* dyn_symbols
,
3043 std::vector
<Symbol
*>* non_got_symbols
,
3044 std::vector
<Symbol
*>* got_symbols
)
3046 for (std::vector
<Symbol
*>::iterator p
= dyn_symbols
->begin();
3047 p
!= dyn_symbols
->end();
3050 Mips_symbol
<size
>* mips_sym
= Mips_symbol
<size
>::as_mips_sym(*p
);
3051 if (mips_sym
->global_got_area() == GGA_NORMAL
3052 || mips_sym
->global_got_area() == GGA_RELOC_ONLY
)
3053 got_symbols
->push_back(mips_sym
);
3055 non_got_symbols
->push_back(mips_sym
);
3058 std::sort(got_symbols
->begin(), got_symbols
->end(),
3059 got_offset_compare
<size
, big_endian
>);
3062 // Functor class for processing the global symbol table.
3064 template<int size
, bool big_endian
>
3065 class Symbol_visitor_check_symbols
3068 Symbol_visitor_check_symbols(Target_mips
<size
, big_endian
>* target
,
3069 Layout
* layout
, Symbol_table
* symtab
)
3070 : target_(target
), layout_(layout
), symtab_(symtab
)
3074 operator()(Sized_symbol
<size
>* sym
)
3076 Mips_symbol
<size
>* mips_sym
= Mips_symbol
<size
>::as_mips_sym(sym
);
3077 if (local_pic_function
<size
, big_endian
>(mips_sym
))
3079 // SYM is a function that might need $25 to be valid on entry.
3080 // If we're creating a non-PIC relocatable object, mark SYM as
3081 // being PIC. If we're creating a non-relocatable object with
3082 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3084 if (parameters
->options().relocatable())
3086 if (!parameters
->options().output_is_position_independent())
3087 mips_sym
->set_pic();
3089 else if (mips_sym
->has_nonpic_branches())
3091 this->target_
->la25_stub_section(layout_
)
3092 ->create_la25_stub(this->symtab_
, this->target_
, mips_sym
);
3098 Target_mips
<size
, big_endian
>* target_
;
3100 Symbol_table
* symtab_
;
3103 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3104 // and endianness. The relocation format for MIPS-64 is non-standard.
3106 template<int sh_type
, int size
, bool big_endian
>
3107 struct Mips_reloc_types
;
3109 template<bool big_endian
>
3110 struct Mips_reloc_types
<elfcpp::SHT_REL
, 32, big_endian
>
3112 typedef typename
elfcpp::Rel
<32, big_endian
> Reloc
;
3113 typedef typename
elfcpp::Rel_write
<32, big_endian
> Reloc_write
;
3115 static typename
elfcpp::Elf_types
<32>::Elf_Swxword
3116 get_r_addend(const Reloc
*)
3120 set_reloc_addend(Reloc_write
*,
3121 typename
elfcpp::Elf_types
<32>::Elf_Swxword
)
3122 { gold_unreachable(); }
3125 template<bool big_endian
>
3126 struct Mips_reloc_types
<elfcpp::SHT_RELA
, 32, big_endian
>
3128 typedef typename
elfcpp::Rela
<32, big_endian
> Reloc
;
3129 typedef typename
elfcpp::Rela_write
<32, big_endian
> Reloc_write
;
3131 static typename
elfcpp::Elf_types
<32>::Elf_Swxword
3132 get_r_addend(const Reloc
* reloc
)
3133 { return reloc
->get_r_addend(); }
3136 set_reloc_addend(Reloc_write
* p
,
3137 typename
elfcpp::Elf_types
<32>::Elf_Swxword val
)
3138 { p
->put_r_addend(val
); }
3141 template<bool big_endian
>
3142 struct Mips_reloc_types
<elfcpp::SHT_REL
, 64, big_endian
>
3144 typedef typename
elfcpp::Mips64_rel
<big_endian
> Reloc
;
3145 typedef typename
elfcpp::Mips64_rel_write
<big_endian
> Reloc_write
;
3147 static typename
elfcpp::Elf_types
<64>::Elf_Swxword
3148 get_r_addend(const Reloc
*)
3152 set_reloc_addend(Reloc_write
*,
3153 typename
elfcpp::Elf_types
<64>::Elf_Swxword
)
3154 { gold_unreachable(); }
3157 template<bool big_endian
>
3158 struct Mips_reloc_types
<elfcpp::SHT_RELA
, 64, big_endian
>
3160 typedef typename
elfcpp::Mips64_rela
<big_endian
> Reloc
;
3161 typedef typename
elfcpp::Mips64_rela_write
<big_endian
> Reloc_write
;
3163 static typename
elfcpp::Elf_types
<64>::Elf_Swxword
3164 get_r_addend(const Reloc
* reloc
)
3165 { return reloc
->get_r_addend(); }
3168 set_reloc_addend(Reloc_write
* p
,
3169 typename
elfcpp::Elf_types
<64>::Elf_Swxword val
)
3170 { p
->put_r_addend(val
); }
3173 // Forward declaration.
3175 mips_get_size_for_reloc(unsigned int, Relobj
*);
3177 // A class for inquiring about properties of a relocation,
3178 // used while scanning relocs during a relocatable link and
3179 // garbage collection.
3181 template<int sh_type_
, int size
, bool big_endian
>
3182 class Mips_classify_reloc
;
3184 template<int sh_type_
, bool big_endian
>
3185 class Mips_classify_reloc
<sh_type_
, 32, big_endian
> :
3186 public gold::Default_classify_reloc
<sh_type_
, 32, big_endian
>
3189 typedef typename Mips_reloc_types
<sh_type_
, 32, big_endian
>::Reloc
3191 typedef typename Mips_reloc_types
<sh_type_
, 32, big_endian
>::Reloc_write
3194 // Return the symbol referred to by the relocation.
3195 static inline unsigned int
3196 get_r_sym(const Reltype
* reloc
)
3197 { return elfcpp::elf_r_sym
<32>(reloc
->get_r_info()); }
3199 // Return the type of the relocation.
3200 static inline unsigned int
3201 get_r_type(const Reltype
* reloc
)
3202 { return elfcpp::elf_r_type
<32>(reloc
->get_r_info()); }
3204 static inline unsigned int
3205 get_r_type2(const Reltype
*)
3208 static inline unsigned int
3209 get_r_type3(const Reltype
*)
3212 static inline unsigned int
3213 get_r_ssym(const Reltype
*)
3216 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3217 static inline unsigned int
3218 get_r_addend(const Reltype
* reloc
)
3220 if (sh_type_
== elfcpp::SHT_REL
)
3222 return Mips_reloc_types
<sh_type_
, 32, big_endian
>::get_r_addend(reloc
);
3225 // Write the r_info field to a new reloc, using the r_info field from
3226 // the original reloc, replacing the r_sym field with R_SYM.
3228 put_r_info(Reltype_write
* new_reloc
, Reltype
* reloc
, unsigned int r_sym
)
3230 unsigned int r_type
= elfcpp::elf_r_type
<32>(reloc
->get_r_info());
3231 new_reloc
->put_r_info(elfcpp::elf_r_info
<32>(r_sym
, r_type
));
3234 // Write the r_addend field to a new reloc.
3236 put_r_addend(Reltype_write
* to
,
3237 typename
elfcpp::Elf_types
<32>::Elf_Swxword addend
)
3238 { Mips_reloc_types
<sh_type_
, 32, big_endian
>::set_reloc_addend(to
, addend
); }
3240 // Return the size of the addend of the relocation (only used for SHT_REL).
3242 get_size_for_reloc(unsigned int r_type
, Relobj
* obj
)
3243 { return mips_get_size_for_reloc(r_type
, obj
); }
3246 template<int sh_type_
, bool big_endian
>
3247 class Mips_classify_reloc
<sh_type_
, 64, big_endian
> :
3248 public gold::Default_classify_reloc
<sh_type_
, 64, big_endian
>
3251 typedef typename Mips_reloc_types
<sh_type_
, 64, big_endian
>::Reloc
3253 typedef typename Mips_reloc_types
<sh_type_
, 64, big_endian
>::Reloc_write
3256 // Return the symbol referred to by the relocation.
3257 static inline unsigned int
3258 get_r_sym(const Reltype
* reloc
)
3259 { return reloc
->get_r_sym(); }
3261 // Return the r_type of the relocation.
3262 static inline unsigned int
3263 get_r_type(const Reltype
* reloc
)
3264 { return reloc
->get_r_type(); }
3266 // Return the r_type2 of the relocation.
3267 static inline unsigned int
3268 get_r_type2(const Reltype
* reloc
)
3269 { return reloc
->get_r_type2(); }
3271 // Return the r_type3 of the relocation.
3272 static inline unsigned int
3273 get_r_type3(const Reltype
* reloc
)
3274 { return reloc
->get_r_type3(); }
3276 // Return the special symbol of the relocation.
3277 static inline unsigned int
3278 get_r_ssym(const Reltype
* reloc
)
3279 { return reloc
->get_r_ssym(); }
3281 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3282 static inline typename
elfcpp::Elf_types
<64>::Elf_Swxword
3283 get_r_addend(const Reltype
* reloc
)
3285 if (sh_type_
== elfcpp::SHT_REL
)
3287 return Mips_reloc_types
<sh_type_
, 64, big_endian
>::get_r_addend(reloc
);
3290 // Write the r_info field to a new reloc, using the r_info field from
3291 // the original reloc, replacing the r_sym field with R_SYM.
3293 put_r_info(Reltype_write
* new_reloc
, Reltype
* reloc
, unsigned int r_sym
)
3295 new_reloc
->put_r_sym(r_sym
);
3296 new_reloc
->put_r_ssym(reloc
->get_r_ssym());
3297 new_reloc
->put_r_type3(reloc
->get_r_type3());
3298 new_reloc
->put_r_type2(reloc
->get_r_type2());
3299 new_reloc
->put_r_type(reloc
->get_r_type());
3302 // Write the r_addend field to a new reloc.
3304 put_r_addend(Reltype_write
* to
,
3305 typename
elfcpp::Elf_types
<64>::Elf_Swxword addend
)
3306 { Mips_reloc_types
<sh_type_
, 64, big_endian
>::set_reloc_addend(to
, addend
); }
3308 // Return the size of the addend of the relocation (only used for SHT_REL).
3310 get_size_for_reloc(unsigned int r_type
, Relobj
* obj
)
3311 { return mips_get_size_for_reloc(r_type
, obj
); }
3314 template<int size
, bool big_endian
>
3315 class Target_mips
: public Sized_target
<size
, big_endian
>
3317 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Mips_address
;
3318 typedef Mips_output_data_reloc
<elfcpp::SHT_REL
, true, size
, big_endian
>
3320 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype32
;
3321 typedef typename
elfcpp::Swap
<size
, big_endian
>::Valtype Valtype
;
3322 typedef typename Mips_reloc_types
<elfcpp::SHT_REL
, size
, big_endian
>::Reloc
3324 typedef typename Mips_reloc_types
<elfcpp::SHT_RELA
, size
, big_endian
>::Reloc
3328 Target_mips(const Target::Target_info
* info
= &mips_info
)
3329 : Sized_target
<size
, big_endian
>(info
), got_(NULL
), gp_(NULL
), plt_(NULL
),
3330 got_plt_(NULL
), rel_dyn_(NULL
), rld_map_(NULL
), copy_relocs_(),
3331 dyn_relocs_(), la25_stub_(NULL
), mips_mach_extensions_(),
3332 mips_stubs_(NULL
), attributes_section_data_(NULL
), abiflags_(NULL
),
3333 mach_(0), layout_(NULL
), got16_addends_(), has_abiflags_section_(false),
3334 entry_symbol_is_compressed_(false), insn32_(false)
3336 this->add_machine_extensions();
3339 // The offset of $gp from the beginning of the .got section.
3340 static const unsigned int MIPS_GP_OFFSET
= 0x7ff0;
3342 // The maximum size of the GOT for it to be addressable using 16-bit
3343 // offsets from $gp.
3344 static const unsigned int MIPS_GOT_MAX_SIZE
= MIPS_GP_OFFSET
+ 0x7fff;
3346 // Make a new symbol table entry for the Mips target.
3348 make_symbol(const char*, elfcpp::STT
, Object
*, unsigned int, uint64_t)
3349 { return new Mips_symbol
<size
>(); }
3351 // Process the relocations to determine unreferenced sections for
3352 // garbage collection.
3354 gc_process_relocs(Symbol_table
* symtab
,
3356 Sized_relobj_file
<size
, big_endian
>* object
,
3357 unsigned int data_shndx
,
3358 unsigned int sh_type
,
3359 const unsigned char* prelocs
,
3361 Output_section
* output_section
,
3362 bool needs_special_offset_handling
,
3363 size_t local_symbol_count
,
3364 const unsigned char* plocal_symbols
);
3366 // Scan the relocations to look for symbol adjustments.
3368 scan_relocs(Symbol_table
* symtab
,
3370 Sized_relobj_file
<size
, big_endian
>* object
,
3371 unsigned int data_shndx
,
3372 unsigned int sh_type
,
3373 const unsigned char* prelocs
,
3375 Output_section
* output_section
,
3376 bool needs_special_offset_handling
,
3377 size_t local_symbol_count
,
3378 const unsigned char* plocal_symbols
);
3380 // Finalize the sections.
3382 do_finalize_sections(Layout
*, const Input_objects
*, Symbol_table
*);
3384 // Relocate a section.
3386 relocate_section(const Relocate_info
<size
, big_endian
>*,
3387 unsigned int sh_type
,
3388 const unsigned char* prelocs
,
3390 Output_section
* output_section
,
3391 bool needs_special_offset_handling
,
3392 unsigned char* view
,
3393 Mips_address view_address
,
3394 section_size_type view_size
,
3395 const Reloc_symbol_changes
*);
3397 // Scan the relocs during a relocatable link.
3399 scan_relocatable_relocs(Symbol_table
* symtab
,
3401 Sized_relobj_file
<size
, big_endian
>* object
,
3402 unsigned int data_shndx
,
3403 unsigned int sh_type
,
3404 const unsigned char* prelocs
,
3406 Output_section
* output_section
,
3407 bool needs_special_offset_handling
,
3408 size_t local_symbol_count
,
3409 const unsigned char* plocal_symbols
,
3410 Relocatable_relocs
*);
3412 // Scan the relocs for --emit-relocs.
3414 emit_relocs_scan(Symbol_table
* symtab
,
3416 Sized_relobj_file
<size
, big_endian
>* object
,
3417 unsigned int data_shndx
,
3418 unsigned int sh_type
,
3419 const unsigned char* prelocs
,
3421 Output_section
* output_section
,
3422 bool needs_special_offset_handling
,
3423 size_t local_symbol_count
,
3424 const unsigned char* plocal_syms
,
3425 Relocatable_relocs
* rr
);
3427 // Emit relocations for a section.
3429 relocate_relocs(const Relocate_info
<size
, big_endian
>*,
3430 unsigned int sh_type
,
3431 const unsigned char* prelocs
,
3433 Output_section
* output_section
,
3434 typename
elfcpp::Elf_types
<size
>::Elf_Off
3435 offset_in_output_section
,
3436 unsigned char* view
,
3437 Mips_address view_address
,
3438 section_size_type view_size
,
3439 unsigned char* reloc_view
,
3440 section_size_type reloc_view_size
);
3442 // Perform target-specific processing in a relocatable link. This is
3443 // only used if we use the relocation strategy RELOC_SPECIAL.
3445 relocate_special_relocatable(const Relocate_info
<size
, big_endian
>* relinfo
,
3446 unsigned int sh_type
,
3447 const unsigned char* preloc_in
,
3449 Output_section
* output_section
,
3450 typename
elfcpp::Elf_types
<size
>::Elf_Off
3451 offset_in_output_section
,
3452 unsigned char* view
,
3453 Mips_address view_address
,
3454 section_size_type view_size
,
3455 unsigned char* preloc_out
);
3457 // Return whether SYM is defined by the ABI.
3459 do_is_defined_by_abi(const Symbol
* sym
) const
3461 return ((strcmp(sym
->name(), "__gnu_local_gp") == 0)
3462 || (strcmp(sym
->name(), "_gp_disp") == 0)
3463 || (strcmp(sym
->name(), "___tls_get_addr") == 0));
3466 // Return the number of entries in the GOT.
3468 got_entry_count() const
3470 if (!this->has_got_section())
3472 return this->got_size() / (size
/8);
3475 // Return the number of entries in the PLT.
3477 plt_entry_count() const
3479 if (this->plt_
== NULL
)
3481 return this->plt_
->entry_count();
3484 // Return the offset of the first non-reserved PLT entry.
3486 first_plt_entry_offset() const
3487 { return this->plt_
->first_plt_entry_offset(); }
3489 // Return the size of each PLT entry.
3491 plt_entry_size() const
3492 { return this->plt_
->plt_entry_size(); }
3494 // Get the GOT section, creating it if necessary.
3495 Mips_output_data_got
<size
, big_endian
>*
3496 got_section(Symbol_table
*, Layout
*);
3498 // Get the GOT section.
3499 Mips_output_data_got
<size
, big_endian
>*
3502 gold_assert(this->got_
!= NULL
);
3506 // Get the .MIPS.stubs section, creating it if necessary.
3507 Mips_output_data_mips_stubs
<size
, big_endian
>*
3508 mips_stubs_section(Layout
* layout
);
3510 // Get the .MIPS.stubs section.
3511 Mips_output_data_mips_stubs
<size
, big_endian
>*
3512 mips_stubs_section() const
3514 gold_assert(this->mips_stubs_
!= NULL
);
3515 return this->mips_stubs_
;
3518 // Get the LA25 stub section, creating it if necessary.
3519 Mips_output_data_la25_stub
<size
, big_endian
>*
3520 la25_stub_section(Layout
*);
3522 // Get the LA25 stub section.
3523 Mips_output_data_la25_stub
<size
, big_endian
>*
3526 gold_assert(this->la25_stub_
!= NULL
);
3527 return this->la25_stub_
;
3530 // Get gp value. It has the value of .got + 0x7FF0.
3534 if (this->gp_
!= NULL
)
3535 return this->gp_
->value();
3539 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3540 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3542 adjusted_gp_value(const Mips_relobj
<size
, big_endian
>* object
)
3544 if (this->gp_
== NULL
)
3547 bool multi_got
= false;
3548 if (this->has_got_section())
3549 multi_got
= this->got_section()->multi_got();
3551 return this->gp_
->value();
3553 return this->gp_
->value() + this->got_section()->get_got_offset(object
);
3556 // Get the dynamic reloc section, creating it if necessary.
3558 rel_dyn_section(Layout
*);
3561 do_has_custom_set_dynsym_indexes() const
3564 // Don't emit input .reginfo/.MIPS.abiflags sections to
3565 // output .reginfo/.MIPS.abiflags.
3567 do_should_include_section(elfcpp::Elf_Word sh_type
) const
3569 return ((sh_type
!= elfcpp::SHT_MIPS_REGINFO
)
3570 && (sh_type
!= elfcpp::SHT_MIPS_ABIFLAGS
));
3573 // Set the dynamic symbol indexes. INDEX is the index of the first
3574 // global dynamic symbol. Pointers to the symbols are stored into the
3575 // vector SYMS. The names are added to DYNPOOL. This returns an
3576 // updated dynamic symbol index.
3578 do_set_dynsym_indexes(std::vector
<Symbol
*>* dyn_symbols
, unsigned int index
,
3579 std::vector
<Symbol
*>* syms
, Stringpool
* dynpool
,
3580 Versions
* versions
, Symbol_table
* symtab
) const;
3582 // Remove .MIPS.stubs entry for a symbol.
3584 remove_lazy_stub_entry(Mips_symbol
<size
>* sym
)
3586 if (this->mips_stubs_
!= NULL
)
3587 this->mips_stubs_
->remove_entry(sym
);
3590 // The value to write into got[1] for SVR4 targets, to identify it is
3591 // a GNU object. The dynamic linker can then use got[1] to store the
3594 mips_elf_gnu_got1_mask()
3596 if (this->is_output_n64())
3597 return (uint64_t)1 << 63;
3602 // Whether the output has microMIPS code. This is valid only after
3603 // merge_obj_e_flags() is called.
3605 is_output_micromips() const
3607 gold_assert(this->are_processor_specific_flags_set());
3608 return elfcpp::is_micromips(this->processor_specific_flags());
3611 // Whether the output uses N32 ABI. This is valid only after
3612 // merge_obj_e_flags() is called.
3614 is_output_n32() const
3616 gold_assert(this->are_processor_specific_flags_set());
3617 return elfcpp::abi_n32(this->processor_specific_flags());
3620 // Whether the output uses R6 ISA. This is valid only after
3621 // merge_obj_e_flags() is called.
3623 is_output_r6() const
3625 gold_assert(this->are_processor_specific_flags_set());
3626 return elfcpp::r6_isa(this->processor_specific_flags());
3629 // Whether the output uses N64 ABI.
3631 is_output_n64() const
3632 { return size
== 64; }
3634 // Whether the output uses NEWABI. This is valid only after
3635 // merge_obj_e_flags() is called.
3637 is_output_newabi() const
3638 { return this->is_output_n32() || this->is_output_n64(); }
3640 // Whether we can only use 32-bit microMIPS instructions.
3642 use_32bit_micromips_instructions() const
3643 { return this->insn32_
; }
3645 // Return the r_sym field from a relocation.
3647 get_r_sym(const unsigned char* preloc
) const
3649 // Since REL and RELA relocs share the same structure through
3650 // the r_info field, we can just use REL here.
3651 Reltype
rel(preloc
);
3652 return Mips_classify_reloc
<elfcpp::SHT_REL
, size
, big_endian
>::
3657 // Return the value to use for a dynamic symbol which requires special
3658 // treatment. This is how we support equality comparisons of function
3659 // pointers across shared library boundaries, as described in the
3660 // processor specific ABI supplement.
3662 do_dynsym_value(const Symbol
* gsym
) const;
3664 // Make an ELF object.
3666 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
3667 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
);
3670 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
3671 const elfcpp::Ehdr
<size
, !big_endian
>&)
3672 { gold_unreachable(); }
3674 // Make an output section.
3676 do_make_output_section(const char* name
, elfcpp::Elf_Word type
,
3677 elfcpp::Elf_Xword flags
)
3679 if (type
== elfcpp::SHT_MIPS_OPTIONS
)
3680 return new Mips_output_section_options
<size
, big_endian
>(name
, type
,
3683 return new Output_section(name
, type
, flags
);
3686 // Adjust ELF file header.
3688 do_adjust_elf_header(unsigned char* view
, int len
);
3690 // Get the custom dynamic tag value.
3692 do_dynamic_tag_custom_value(elfcpp::DT
) const;
3694 // Adjust the value written to the dynamic symbol table.
3696 do_adjust_dyn_symbol(const Symbol
* sym
, unsigned char* view
) const
3698 elfcpp::Sym
<size
, big_endian
> isym(view
);
3699 elfcpp::Sym_write
<size
, big_endian
> osym(view
);
3700 const Mips_symbol
<size
>* mips_sym
= Mips_symbol
<size
>::as_mips_sym(sym
);
3702 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3703 // to treat compressed symbols like any other.
3704 Mips_address value
= isym
.get_st_value();
3705 if (mips_sym
->is_mips16() && value
!= 0)
3707 if (!mips_sym
->has_mips16_fn_stub())
3711 // If we have a MIPS16 function with a stub, the dynamic symbol
3712 // must refer to the stub, since only the stub uses the standard
3713 // calling conventions. Stub contains MIPS32 code, so don't add +1
3716 // There is a code which does this in the method
3717 // Target_mips::do_dynsym_value, but that code will only be
3718 // executed if the symbol is from dynobj.
3719 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3722 Mips16_stub_section
<size
, big_endian
>* fn_stub
=
3723 mips_sym
->template get_mips16_fn_stub
<big_endian
>();
3724 value
= fn_stub
->output_address();
3725 osym
.put_st_size(fn_stub
->section_size());
3728 osym
.put_st_value(value
);
3729 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(),
3730 mips_sym
->nonvis() - (elfcpp::STO_MIPS16
>> 2)));
3732 else if ((mips_sym
->is_micromips()
3733 // Stubs are always microMIPS if there is any microMIPS code in
3735 || (this->is_output_micromips() && mips_sym
->has_lazy_stub()))
3738 osym
.put_st_value(value
| 1);
3739 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(),
3740 mips_sym
->nonvis() - (elfcpp::STO_MICROMIPS
>> 2)));
3745 // The class which scans relocations.
3753 get_reference_flags(unsigned int r_type
);
3756 local(Symbol_table
* symtab
, Layout
* layout
, Target_mips
* target
,
3757 Sized_relobj_file
<size
, big_endian
>* object
,
3758 unsigned int data_shndx
,
3759 Output_section
* output_section
,
3760 const Reltype
& reloc
, unsigned int r_type
,
3761 const elfcpp::Sym
<size
, big_endian
>& lsym
,
3765 local(Symbol_table
* symtab
, Layout
* layout
, Target_mips
* target
,
3766 Sized_relobj_file
<size
, big_endian
>* object
,
3767 unsigned int data_shndx
,
3768 Output_section
* output_section
,
3769 const Relatype
& reloc
, unsigned int r_type
,
3770 const elfcpp::Sym
<size
, big_endian
>& lsym
,
3774 local(Symbol_table
* symtab
, Layout
* layout
, Target_mips
* target
,
3775 Sized_relobj_file
<size
, big_endian
>* object
,
3776 unsigned int data_shndx
,
3777 Output_section
* output_section
,
3778 const Relatype
* rela
,
3780 unsigned int rel_type
,
3781 unsigned int r_type
,
3782 const elfcpp::Sym
<size
, big_endian
>& lsym
,
3786 global(Symbol_table
* symtab
, Layout
* layout
, Target_mips
* target
,
3787 Sized_relobj_file
<size
, big_endian
>* object
,
3788 unsigned int data_shndx
,
3789 Output_section
* output_section
,
3790 const Reltype
& reloc
, unsigned int r_type
,
3794 global(Symbol_table
* symtab
, Layout
* layout
, Target_mips
* target
,
3795 Sized_relobj_file
<size
, big_endian
>* object
,
3796 unsigned int data_shndx
,
3797 Output_section
* output_section
,
3798 const Relatype
& reloc
, unsigned int r_type
,
3802 global(Symbol_table
* symtab
, Layout
* layout
, Target_mips
* target
,
3803 Sized_relobj_file
<size
, big_endian
>* object
,
3804 unsigned int data_shndx
,
3805 Output_section
* output_section
,
3806 const Relatype
* rela
,
3808 unsigned int rel_type
,
3809 unsigned int r_type
,
3813 local_reloc_may_be_function_pointer(Symbol_table
* , Layout
*,
3815 Sized_relobj_file
<size
, big_endian
>*,
3820 const elfcpp::Sym
<size
, big_endian
>&)
3824 global_reloc_may_be_function_pointer(Symbol_table
*, Layout
*,
3826 Sized_relobj_file
<size
, big_endian
>*,
3830 unsigned int, Symbol
*)
3834 local_reloc_may_be_function_pointer(Symbol_table
*, Layout
*,
3836 Sized_relobj_file
<size
, big_endian
>*,
3841 const elfcpp::Sym
<size
, big_endian
>&)
3845 global_reloc_may_be_function_pointer(Symbol_table
*, Layout
*,
3847 Sized_relobj_file
<size
, big_endian
>*,
3851 unsigned int, Symbol
*)
3855 unsupported_reloc_local(Sized_relobj_file
<size
, big_endian
>*,
3856 unsigned int r_type
);
3859 unsupported_reloc_global(Sized_relobj_file
<size
, big_endian
>*,
3860 unsigned int r_type
, Symbol
*);
3863 // The class which implements relocation.
3868 : calculated_value_(0), calculate_only_(false)
3874 // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3876 should_apply_static_reloc(const Mips_symbol
<size
>* gsym
,
3877 unsigned int r_type
,
3878 Output_section
* output_section
,
3879 Target_mips
* target
);
3881 // Do a relocation. Return false if the caller should not issue
3882 // any warnings about this relocation.
3884 relocate(const Relocate_info
<size
, big_endian
>*, unsigned int,
3885 Target_mips
*, Output_section
*, size_t, const unsigned char*,
3886 const Sized_symbol
<size
>*, const Symbol_value
<size
>*,
3887 unsigned char*, Mips_address
, section_size_type
);
3890 // Result of the relocation.
3891 Valtype calculated_value_
;
3892 // Whether we have to calculate relocation instead of applying it.
3893 bool calculate_only_
;
3896 // This POD class holds the dynamic relocations that should be emitted instead
3897 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3898 // relocations if it turns out that the symbol does not have static
3903 Dyn_reloc(Mips_symbol
<size
>* sym
, unsigned int r_type
,
3904 Mips_relobj
<size
, big_endian
>* relobj
, unsigned int shndx
,
3905 Output_section
* output_section
, Mips_address r_offset
)
3906 : sym_(sym
), r_type_(r_type
), relobj_(relobj
),
3907 shndx_(shndx
), output_section_(output_section
),
3911 // Emit this reloc if appropriate. This is called after we have
3912 // scanned all the relocations, so we know whether the symbol has
3913 // static relocations.
3915 emit(Reloc_section
* rel_dyn
, Mips_output_data_got
<size
, big_endian
>* got
,
3916 Symbol_table
* symtab
)
3918 if (!this->sym_
->has_static_relocs())
3920 got
->record_global_got_symbol(this->sym_
, this->relobj_
,
3921 this->r_type_
, true, false);
3922 if (!symbol_references_local(this->sym_
,
3923 this->sym_
->should_add_dynsym_entry(symtab
)))
3924 rel_dyn
->add_global(this->sym_
, this->r_type_
,
3925 this->output_section_
, this->relobj_
,
3926 this->shndx_
, this->r_offset_
);
3928 rel_dyn
->add_symbolless_global_addend(this->sym_
, this->r_type_
,
3929 this->output_section_
, this->relobj_
,
3930 this->shndx_
, this->r_offset_
);
3935 Mips_symbol
<size
>* sym_
;
3936 unsigned int r_type_
;
3937 Mips_relobj
<size
, big_endian
>* relobj_
;
3938 unsigned int shndx_
;
3939 Output_section
* output_section_
;
3940 Mips_address r_offset_
;
3943 // Adjust TLS relocation type based on the options and whether this
3944 // is a local symbol.
3945 static tls::Tls_optimization
3946 optimize_tls_reloc(bool is_final
, int r_type
);
3948 // Return whether there is a GOT section.
3950 has_got_section() const
3951 { return this->got_
!= NULL
; }
3953 // Check whether the given ELF header flags describe a 32-bit binary.
3955 mips_32bit_flags(elfcpp::Elf_Word
);
3958 mach_mips3000
= 3000,
3959 mach_mips3900
= 3900,
3960 mach_mips4000
= 4000,
3961 mach_mips4010
= 4010,
3962 mach_mips4100
= 4100,
3963 mach_mips4111
= 4111,
3964 mach_mips4120
= 4120,
3965 mach_mips4300
= 4300,
3966 mach_mips4400
= 4400,
3967 mach_mips4600
= 4600,
3968 mach_mips4650
= 4650,
3969 mach_mips5000
= 5000,
3970 mach_mips5400
= 5400,
3971 mach_mips5500
= 5500,
3972 mach_mips5900
= 5900,
3973 mach_mips6000
= 6000,
3974 mach_mips7000
= 7000,
3975 mach_mips8000
= 8000,
3976 mach_mips9000
= 9000,
3977 mach_mips10000
= 10000,
3978 mach_mips12000
= 12000,
3979 mach_mips14000
= 14000,
3980 mach_mips16000
= 16000,
3983 mach_mips_loongson_2e
= 3001,
3984 mach_mips_loongson_2f
= 3002,
3985 mach_mips_gs464
= 3003,
3986 mach_mips_gs464e
= 3004,
3987 mach_mips_gs264e
= 3005,
3988 mach_mips_sb1
= 12310201, // octal 'SB', 01
3989 mach_mips_octeon
= 6501,
3990 mach_mips_octeonp
= 6601,
3991 mach_mips_octeon2
= 6502,
3992 mach_mips_octeon3
= 6503,
3993 mach_mips_xlr
= 887682, // decimal 'XLR'
3994 mach_mipsisa32
= 32,
3995 mach_mipsisa32r2
= 33,
3996 mach_mipsisa32r3
= 34,
3997 mach_mipsisa32r5
= 36,
3998 mach_mipsisa32r6
= 37,
3999 mach_mipsisa64
= 64,
4000 mach_mipsisa64r2
= 65,
4001 mach_mipsisa64r3
= 66,
4002 mach_mipsisa64r5
= 68,
4003 mach_mipsisa64r6
= 69,
4004 mach_mips_micromips
= 96
4007 // Return the MACH for a MIPS e_flags value.
4009 elf_mips_mach(elfcpp::Elf_Word
);
4011 // Return the MACH for each .MIPS.abiflags ISA Extension.
4013 mips_isa_ext_mach(unsigned int);
4015 // Return the .MIPS.abiflags value representing each ISA Extension.
4017 mips_isa_ext(unsigned int);
4019 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
4021 update_abiflags_isa(const std::string
&, elfcpp::Elf_Word
,
4022 Mips_abiflags
<big_endian
>*);
4024 // Infer the content of the ABI flags based on the elf header.
4026 infer_abiflags(Mips_relobj
<size
, big_endian
>*, Mips_abiflags
<big_endian
>*);
4028 // Create abiflags from elf header or from .MIPS.abiflags section.
4030 create_abiflags(Mips_relobj
<size
, big_endian
>*, Mips_abiflags
<big_endian
>*);
4032 // Return the meaning of fp_abi, or "unknown" if not known.
4038 select_fp_abi(const std::string
&, int, int);
4040 // Merge attributes from input object.
4042 merge_obj_attributes(const std::string
&, const Attributes_section_data
*);
4044 // Merge abiflags from input object.
4046 merge_obj_abiflags(const std::string
&, Mips_abiflags
<big_endian
>*);
4048 // Check whether machine EXTENSION is an extension of machine BASE.
4050 mips_mach_extends(unsigned int, unsigned int);
4052 // Merge file header flags from input object.
4054 merge_obj_e_flags(const std::string
&, elfcpp::Elf_Word
);
4056 // Encode ISA level and revision as a single value.
4058 level_rev(unsigned char isa_level
, unsigned char isa_rev
) const
4059 { return (isa_level
<< 3) | isa_rev
; }
4061 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4066 // True if we are linking for CPUs that are faster if JALR is converted to
4067 // BAL. This should be safe for all architectures. We enable this predicate
4073 // True if we are linking for CPUs that are faster if JR is converted to B.
4074 // This should be safe for all architectures. We enable this predicate for
4080 // Return the size of the GOT section.
4084 gold_assert(this->got_
!= NULL
);
4085 return this->got_
->data_size();
4088 // Create a PLT entry for a global symbol referenced by r_type relocation.
4090 make_plt_entry(Symbol_table
*, Layout
*, Mips_symbol
<size
>*,
4091 unsigned int r_type
);
4093 // Get the PLT section.
4094 Mips_output_data_plt
<size
, big_endian
>*
4097 gold_assert(this->plt_
!= NULL
);
4101 // Get the GOT PLT section.
4102 const Mips_output_data_plt
<size
, big_endian
>*
4103 got_plt_section() const
4105 gold_assert(this->got_plt_
!= NULL
);
4106 return this->got_plt_
;
4109 // Copy a relocation against a global symbol.
4111 copy_reloc(Symbol_table
* symtab
, Layout
* layout
,
4112 Sized_relobj_file
<size
, big_endian
>* object
,
4113 unsigned int shndx
, Output_section
* output_section
,
4114 Symbol
* sym
, unsigned int r_type
, Mips_address r_offset
)
4116 this->copy_relocs_
.copy_reloc(symtab
, layout
,
4117 symtab
->get_sized_symbol
<size
>(sym
),
4118 object
, shndx
, output_section
,
4119 r_type
, r_offset
, 0,
4120 this->rel_dyn_section(layout
));
4124 dynamic_reloc(Mips_symbol
<size
>* sym
, unsigned int r_type
,
4125 Mips_relobj
<size
, big_endian
>* relobj
,
4126 unsigned int shndx
, Output_section
* output_section
,
4127 Mips_address r_offset
)
4129 this->dyn_relocs_
.push_back(Dyn_reloc(sym
, r_type
, relobj
, shndx
,
4130 output_section
, r_offset
));
4133 // Calculate value of _gp symbol.
4135 set_gp(Layout
*, Symbol_table
*);
4138 elf_mips_abi_name(elfcpp::Elf_Word e_flags
);
4140 elf_mips_mach_name(elfcpp::Elf_Word e_flags
);
4142 // Adds entries that describe how machines relate to one another. The entries
4143 // are ordered topologically with MIPS I extensions listed last. First
4144 // element is extension, second element is base.
4146 add_machine_extensions()
4148 // MIPS64r2 extensions.
4149 this->add_extension(mach_mips_octeon3
, mach_mips_octeon2
);
4150 this->add_extension(mach_mips_octeon2
, mach_mips_octeonp
);
4151 this->add_extension(mach_mips_octeonp
, mach_mips_octeon
);
4152 this->add_extension(mach_mips_octeon
, mach_mipsisa64r2
);
4153 this->add_extension(mach_mips_gs264e
, mach_mips_gs464e
);
4154 this->add_extension(mach_mips_gs464e
, mach_mips_gs464
);
4155 this->add_extension(mach_mips_gs464
, mach_mipsisa64r2
);
4157 // MIPS64 extensions.
4158 this->add_extension(mach_mipsisa64r2
, mach_mipsisa64
);
4159 this->add_extension(mach_mips_sb1
, mach_mipsisa64
);
4160 this->add_extension(mach_mips_xlr
, mach_mipsisa64
);
4162 // MIPS V extensions.
4163 this->add_extension(mach_mipsisa64
, mach_mips5
);
4165 // R10000 extensions.
4166 this->add_extension(mach_mips12000
, mach_mips10000
);
4167 this->add_extension(mach_mips14000
, mach_mips10000
);
4168 this->add_extension(mach_mips16000
, mach_mips10000
);
4170 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
4171 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
4172 // better to allow vr5400 and vr5500 code to be merged anyway, since
4173 // many libraries will just use the core ISA. Perhaps we could add
4174 // some sort of ASE flag if this ever proves a problem.
4175 this->add_extension(mach_mips5500
, mach_mips5400
);
4176 this->add_extension(mach_mips5400
, mach_mips5000
);
4178 // MIPS IV extensions.
4179 this->add_extension(mach_mips5
, mach_mips8000
);
4180 this->add_extension(mach_mips10000
, mach_mips8000
);
4181 this->add_extension(mach_mips5000
, mach_mips8000
);
4182 this->add_extension(mach_mips7000
, mach_mips8000
);
4183 this->add_extension(mach_mips9000
, mach_mips8000
);
4185 // VR4100 extensions.
4186 this->add_extension(mach_mips4120
, mach_mips4100
);
4187 this->add_extension(mach_mips4111
, mach_mips4100
);
4189 // MIPS III extensions.
4190 this->add_extension(mach_mips_loongson_2e
, mach_mips4000
);
4191 this->add_extension(mach_mips_loongson_2f
, mach_mips4000
);
4192 this->add_extension(mach_mips8000
, mach_mips4000
);
4193 this->add_extension(mach_mips4650
, mach_mips4000
);
4194 this->add_extension(mach_mips4600
, mach_mips4000
);
4195 this->add_extension(mach_mips4400
, mach_mips4000
);
4196 this->add_extension(mach_mips4300
, mach_mips4000
);
4197 this->add_extension(mach_mips4100
, mach_mips4000
);
4198 this->add_extension(mach_mips4010
, mach_mips4000
);
4199 this->add_extension(mach_mips5900
, mach_mips4000
);
4201 // MIPS32 extensions.
4202 this->add_extension(mach_mipsisa32r2
, mach_mipsisa32
);
4204 // MIPS II extensions.
4205 this->add_extension(mach_mips4000
, mach_mips6000
);
4206 this->add_extension(mach_mipsisa32
, mach_mips6000
);
4208 // MIPS I extensions.
4209 this->add_extension(mach_mips6000
, mach_mips3000
);
4210 this->add_extension(mach_mips3900
, mach_mips3000
);
4213 // Add value to MIPS extenstions.
4215 add_extension(unsigned int base
, unsigned int extension
)
4217 std::pair
<unsigned int, unsigned int> ext(base
, extension
);
4218 this->mips_mach_extensions_
.push_back(ext
);
4221 // Return the number of entries in the .dynsym section.
4222 unsigned int get_dt_mips_symtabno() const
4224 return ((unsigned int)(this->layout_
->dynsym_section()->data_size()
4225 / elfcpp::Elf_sizes
<size
>::sym_size
));
4226 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4229 // Information about this specific target which we pass to the
4230 // general Target structure.
4231 static const Target::Target_info mips_info
;
4233 Mips_output_data_got
<size
, big_endian
>* got_
;
4234 // gp symbol. It has the value of .got + 0x7FF0.
4235 Sized_symbol
<size
>* gp_
;
4237 Mips_output_data_plt
<size
, big_endian
>* plt_
;
4238 // The GOT PLT section.
4239 Output_data_space
* got_plt_
;
4240 // The dynamic reloc section.
4241 Reloc_section
* rel_dyn_
;
4242 // The .rld_map section.
4243 Output_data_zero_fill
* rld_map_
;
4244 // Relocs saved to avoid a COPY reloc.
4245 Mips_copy_relocs
<elfcpp::SHT_REL
, size
, big_endian
> copy_relocs_
;
4247 // A list of dyn relocs to be saved.
4248 std::vector
<Dyn_reloc
> dyn_relocs_
;
4250 // The LA25 stub section.
4251 Mips_output_data_la25_stub
<size
, big_endian
>* la25_stub_
;
4252 // Architecture extensions.
4253 std::vector
<std::pair
<unsigned int, unsigned int> > mips_mach_extensions_
;
4255 Mips_output_data_mips_stubs
<size
, big_endian
>* mips_stubs_
;
4257 // Attributes section data in output.
4258 Attributes_section_data
* attributes_section_data_
;
4259 // .MIPS.abiflags section data in output.
4260 Mips_abiflags
<big_endian
>* abiflags_
;
4265 typename
std::list
<got16_addend
<size
, big_endian
> > got16_addends_
;
4267 // Whether there is an input .MIPS.abiflags section.
4268 bool has_abiflags_section_
;
4270 // Whether the entry symbol is mips16 or micromips.
4271 bool entry_symbol_is_compressed_
;
4273 // Whether we can use only 32-bit microMIPS instructions.
4274 // TODO(sasa): This should be a linker option.
4278 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4279 // It records high part of the relocation pair.
4281 template<int size
, bool big_endian
>
4284 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Mips_address
;
4286 reloc_high(unsigned char* _view
, const Mips_relobj
<size
, big_endian
>* _object
,
4287 const Symbol_value
<size
>* _psymval
, Mips_address _addend
,
4288 unsigned int _r_type
, unsigned int _r_sym
, bool _extract_addend
,
4289 Mips_address _address
= 0, bool _gp_disp
= false)
4290 : view(_view
), object(_object
), psymval(_psymval
), addend(_addend
),
4291 r_type(_r_type
), r_sym(_r_sym
), extract_addend(_extract_addend
),
4292 address(_address
), gp_disp(_gp_disp
)
4295 unsigned char* view
;
4296 const Mips_relobj
<size
, big_endian
>* object
;
4297 const Symbol_value
<size
>* psymval
;
4298 Mips_address addend
;
4299 unsigned int r_type
;
4301 bool extract_addend
;
4302 Mips_address address
;
4306 template<int size
, bool big_endian
>
4307 class Mips_relocate_functions
: public Relocate_functions
<size
, big_endian
>
4309 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Mips_address
;
4310 typedef typename
elfcpp::Swap
<size
, big_endian
>::Valtype Valtype
;
4311 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype16
;
4312 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype32
;
4313 typedef typename
elfcpp::Swap
<64, big_endian
>::Valtype Valtype64
;
4318 STATUS_OKAY
, // No error during relocation.
4319 STATUS_OVERFLOW
, // Relocation overflow.
4320 STATUS_BAD_RELOC
, // Relocation cannot be applied.
4321 STATUS_PCREL_UNALIGNED
// Unaligned PC-relative relocation.
4325 typedef Relocate_functions
<size
, big_endian
> Base
;
4326 typedef Mips_relocate_functions
<size
, big_endian
> This
;
4328 static typename
std::list
<reloc_high
<size
, big_endian
> > hi16_relocs
;
4329 static typename
std::list
<reloc_high
<size
, big_endian
> > got16_relocs
;
4330 static typename
std::list
<reloc_high
<size
, big_endian
> > pchi16_relocs
;
4332 template<int valsize
>
4333 static inline typename
This::Status
4334 check_overflow(Valtype value
)
4337 return (Bits
<valsize
>::has_overflow32(value
)
4338 ? This::STATUS_OVERFLOW
4339 : This::STATUS_OKAY
);
4341 return (Bits
<valsize
>::has_overflow(value
)
4342 ? This::STATUS_OVERFLOW
4343 : This::STATUS_OKAY
);
4347 should_shuffle_micromips_reloc(unsigned int r_type
)
4349 return (micromips_reloc(r_type
)
4350 && r_type
!= elfcpp::R_MICROMIPS_PC7_S1
4351 && r_type
!= elfcpp::R_MICROMIPS_PC10_S1
);
4355 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4356 // Most mips16 instructions are 16 bits, but these instructions
4359 // The format of these instructions is:
4361 // +--------------+--------------------------------+
4362 // | JALX | X| Imm 20:16 | Imm 25:21 |
4363 // +--------------+--------------------------------+
4364 // | Immediate 15:0 |
4365 // +-----------------------------------------------+
4367 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
4368 // Note that the immediate value in the first word is swapped.
4370 // When producing a relocatable object file, R_MIPS16_26 is
4371 // handled mostly like R_MIPS_26. In particular, the addend is
4372 // stored as a straight 26-bit value in a 32-bit instruction.
4373 // (gas makes life simpler for itself by never adjusting a
4374 // R_MIPS16_26 reloc to be against a section, so the addend is
4375 // always zero). However, the 32 bit instruction is stored as 2
4376 // 16-bit values, rather than a single 32-bit value. In a
4377 // big-endian file, the result is the same; in a little-endian
4378 // file, the two 16-bit halves of the 32 bit value are swapped.
4379 // This is so that a disassembler can recognize the jal
4382 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4383 // instruction stored as two 16-bit values. The addend A is the
4384 // contents of the targ26 field. The calculation is the same as
4385 // R_MIPS_26. When storing the calculated value, reorder the
4386 // immediate value as shown above, and don't forget to store the
4387 // value as two 16-bit values.
4389 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4393 // +--------+----------------------+
4397 // +--------+----------------------+
4400 // +----------+------+-------------+
4402 // | sub1 | | sub2 |
4403 // |0 9|10 15|16 31|
4404 // +----------+--------------------+
4405 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4406 // ((sub1 << 16) | sub2)).
4408 // When producing a relocatable object file, the calculation is
4409 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4410 // When producing a fully linked file, the calculation is
4411 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4412 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4414 // The table below lists the other MIPS16 instruction relocations.
4415 // Each one is calculated in the same way as the non-MIPS16 relocation
4416 // given on the right, but using the extended MIPS16 layout of 16-bit
4417 // immediate fields:
4419 // R_MIPS16_GPREL R_MIPS_GPREL16
4420 // R_MIPS16_GOT16 R_MIPS_GOT16
4421 // R_MIPS16_CALL16 R_MIPS_CALL16
4422 // R_MIPS16_HI16 R_MIPS_HI16
4423 // R_MIPS16_LO16 R_MIPS_LO16
4425 // A typical instruction will have a format like this:
4427 // +--------------+--------------------------------+
4428 // | EXTEND | Imm 10:5 | Imm 15:11 |
4429 // +--------------+--------------------------------+
4430 // | Major | rx | ry | Imm 4:0 |
4431 // +--------------+--------------------------------+
4433 // EXTEND is the five bit value 11110. Major is the instruction
4436 // All we need to do here is shuffle the bits appropriately.
4437 // As above, the two 16-bit halves must be swapped on a
4438 // little-endian system.
4440 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4441 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
4442 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4445 mips_reloc_unshuffle(unsigned char* view
, unsigned int r_type
,
4448 if (!mips16_reloc(r_type
)
4449 && !should_shuffle_micromips_reloc(r_type
))
4452 // Pick up the first and second halfwords of the instruction.
4453 Valtype16 first
= elfcpp::Swap
<16, big_endian
>::readval(view
);
4454 Valtype16 second
= elfcpp::Swap
<16, big_endian
>::readval(view
+ 2);
4457 if (micromips_reloc(r_type
)
4458 || (r_type
== elfcpp::R_MIPS16_26
&& !jal_shuffle
))
4459 val
= first
<< 16 | second
;
4460 else if (r_type
!= elfcpp::R_MIPS16_26
)
4461 val
= (((first
& 0xf800) << 16) | ((second
& 0xffe0) << 11)
4462 | ((first
& 0x1f) << 11) | (first
& 0x7e0) | (second
& 0x1f));
4464 val
= (((first
& 0xfc00) << 16) | ((first
& 0x3e0) << 11)
4465 | ((first
& 0x1f) << 21) | second
);
4467 elfcpp::Swap
<32, big_endian
>::writeval(view
, val
);
4471 mips_reloc_shuffle(unsigned char* view
, unsigned int r_type
, bool jal_shuffle
)
4473 if (!mips16_reloc(r_type
)
4474 && !should_shuffle_micromips_reloc(r_type
))
4477 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(view
);
4478 Valtype16 first
, second
;
4480 if (micromips_reloc(r_type
)
4481 || (r_type
== elfcpp::R_MIPS16_26
&& !jal_shuffle
))
4483 second
= val
& 0xffff;
4486 else if (r_type
!= elfcpp::R_MIPS16_26
)
4488 second
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
4489 first
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
4493 second
= val
& 0xffff;
4494 first
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
4495 | ((val
>> 21) & 0x1f);
4498 elfcpp::Swap
<16, big_endian
>::writeval(view
+ 2, second
);
4499 elfcpp::Swap
<16, big_endian
>::writeval(view
, first
);
4502 // R_MIPS_16: S + sign-extend(A)
4503 static inline typename
This::Status
4504 rel16(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4505 const Symbol_value
<size
>* psymval
, Mips_address addend_a
,
4506 bool extract_addend
, bool calculate_only
, Valtype
* calculated_value
)
4508 Valtype16
* wv
= reinterpret_cast<Valtype16
*>(view
);
4509 Valtype16 val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
4511 Valtype addend
= (extract_addend
? Bits
<16>::sign_extend32(val
)
4514 Valtype x
= psymval
->value(object
, addend
);
4515 val
= Bits
<16>::bit_select32(val
, x
, 0xffffU
);
4519 *calculated_value
= x
;
4520 return This::STATUS_OKAY
;
4523 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
);
4525 return check_overflow
<16>(x
);
4529 static inline typename
This::Status
4530 rel32(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4531 const Symbol_value
<size
>* psymval
, Mips_address addend_a
,
4532 bool extract_addend
, bool calculate_only
, Valtype
* calculated_value
)
4534 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4535 Valtype addend
= (extract_addend
4536 ? elfcpp::Swap
<32, big_endian
>::readval(wv
)
4538 Valtype x
= psymval
->value(object
, addend
);
4541 *calculated_value
= x
;
4543 elfcpp::Swap
<32, big_endian
>::writeval(wv
, x
);
4545 return This::STATUS_OKAY
;
4548 // R_MIPS_JALR, R_MICROMIPS_JALR
4549 static inline typename
This::Status
4550 reljalr(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4551 const Symbol_value
<size
>* psymval
, Mips_address address
,
4552 Mips_address addend_a
, bool extract_addend
, bool cross_mode_jump
,
4553 unsigned int r_type
, bool jalr_to_bal
, bool jr_to_b
,
4554 bool calculate_only
, Valtype
* calculated_value
)
4556 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4557 Valtype addend
= extract_addend
? 0 : addend_a
;
4558 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
4560 // Try converting J(AL)R to B(AL), if the target is in range.
4561 if (r_type
== elfcpp::R_MIPS_JALR
4563 && ((jalr_to_bal
&& val
== 0x0320f809) // jalr t9
4564 || (jr_to_b
&& val
== 0x03200008))) // jr t9
4566 int offset
= psymval
->value(object
, addend
) - (address
+ 4);
4567 if (!Bits
<18>::has_overflow32(offset
))
4569 if (val
== 0x03200008) // jr t9
4570 val
= 0x10000000 | (((Valtype32
)offset
>> 2) & 0xffff); // b addr
4572 val
= 0x04110000 | (((Valtype32
)offset
>> 2) & 0xffff); //bal addr
4577 *calculated_value
= val
;
4579 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
4581 return This::STATUS_OKAY
;
4584 // R_MIPS_PC32: S + A - P
4585 static inline typename
This::Status
4586 relpc32(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4587 const Symbol_value
<size
>* psymval
, Mips_address address
,
4588 Mips_address addend_a
, bool extract_addend
, bool calculate_only
,
4589 Valtype
* calculated_value
)
4591 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4592 Valtype addend
= (extract_addend
4593 ? elfcpp::Swap
<32, big_endian
>::readval(wv
)
4595 Valtype x
= psymval
->value(object
, addend
) - address
;
4598 *calculated_value
= x
;
4600 elfcpp::Swap
<32, big_endian
>::writeval(wv
, x
);
4602 return This::STATUS_OKAY
;
4605 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4606 static inline typename
This::Status
4607 rel26(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4608 const Symbol_value
<size
>* psymval
, Mips_address address
,
4609 bool local
, Mips_address addend_a
, bool extract_addend
,
4610 const Symbol
* gsym
, bool cross_mode_jump
, unsigned int r_type
,
4611 bool jal_to_bal
, bool calculate_only
, Valtype
* calculated_value
)
4613 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4614 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
4619 if (r_type
== elfcpp::R_MICROMIPS_26_S1
)
4620 addend
= (val
& 0x03ffffff) << 1;
4622 addend
= (val
& 0x03ffffff) << 2;
4627 // Make sure the target of JALX is word-aligned. Bit 0 must be
4628 // the correct ISA mode selector and bit 1 must be 0.
4629 if (!calculate_only
&& cross_mode_jump
4630 && (psymval
->value(object
, 0) & 3) != (r_type
== elfcpp::R_MIPS_26
))
4632 gold_warning(_("JALX to a non-word-aligned address"));
4633 return This::STATUS_BAD_RELOC
;
4636 // Shift is 2, unusually, for microMIPS JALX.
4637 unsigned int shift
=
4638 (!cross_mode_jump
&& r_type
== elfcpp::R_MICROMIPS_26_S1
) ? 1 : 2;
4642 x
= addend
| ((address
+ 4) & (0xfc000000 << shift
));
4646 x
= Bits
<27>::sign_extend32(addend
);
4648 x
= Bits
<28>::sign_extend32(addend
);
4650 x
= psymval
->value(object
, x
) >> shift
;
4652 if (!calculate_only
&& !local
&& !gsym
->is_weak_undefined()
4653 && ((x
>> 26) != ((address
+ 4) >> (26 + shift
))))
4654 return This::STATUS_OVERFLOW
;
4656 val
= Bits
<32>::bit_select32(val
, x
, 0x03ffffff);
4658 // If required, turn JAL into JALX.
4659 if (cross_mode_jump
)
4662 Valtype32 opcode
= val
>> 26;
4663 Valtype32 jalx_opcode
;
4665 // Check to see if the opcode is already JAL or JALX.
4666 if (r_type
== elfcpp::R_MIPS16_26
)
4668 ok
= (opcode
== 0x6) || (opcode
== 0x7);
4671 else if (r_type
== elfcpp::R_MICROMIPS_26_S1
)
4673 ok
= (opcode
== 0x3d) || (opcode
== 0x3c);
4678 ok
= (opcode
== 0x3) || (opcode
== 0x1d);
4682 // If the opcode is not JAL or JALX, there's a problem. We cannot
4683 // convert J or JALS to JALX.
4684 if (!calculate_only
&& !ok
)
4686 gold_error(_("Unsupported jump between ISA modes; consider "
4687 "recompiling with interlinking enabled."));
4688 return This::STATUS_BAD_RELOC
;
4691 // Make this the JALX opcode.
4692 val
= (val
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
4695 // Try converting JAL to BAL, if the target is in range.
4696 if (!parameters
->options().relocatable()
4699 && r_type
== elfcpp::R_MIPS_26
4700 && (val
>> 26) == 0x3))) // jal addr
4702 Valtype32 dest
= (x
<< 2) | (((address
+ 4) >> 28) << 28);
4703 int offset
= dest
- (address
+ 4);
4704 if (!Bits
<18>::has_overflow32(offset
))
4706 if (val
== 0x03200008) // jr t9
4707 val
= 0x10000000 | (((Valtype32
)offset
>> 2) & 0xffff); // b addr
4709 val
= 0x04110000 | (((Valtype32
)offset
>> 2) & 0xffff); //bal addr
4714 *calculated_value
= val
;
4716 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
4718 return This::STATUS_OKAY
;
4722 static inline typename
This::Status
4723 relpc16(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4724 const Symbol_value
<size
>* psymval
, Mips_address address
,
4725 Mips_address addend_a
, bool extract_addend
, bool calculate_only
,
4726 Valtype
* calculated_value
)
4728 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4729 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
4731 Valtype addend
= (extract_addend
4732 ? Bits
<18>::sign_extend32((val
& 0xffff) << 2)
4735 Valtype x
= psymval
->value(object
, addend
) - address
;
4736 val
= Bits
<16>::bit_select32(val
, x
>> 2, 0xffff);
4740 *calculated_value
= x
>> 2;
4741 return This::STATUS_OKAY
;
4744 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
4746 if (psymval
->value(object
, addend
) & 3)
4747 return This::STATUS_PCREL_UNALIGNED
;
4749 return check_overflow
<18>(x
);
4753 static inline typename
This::Status
4754 relpc21(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4755 const Symbol_value
<size
>* psymval
, Mips_address address
,
4756 Mips_address addend_a
, bool extract_addend
, bool calculate_only
,
4757 Valtype
* calculated_value
)
4759 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4760 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
4762 Valtype addend
= (extract_addend
4763 ? Bits
<23>::sign_extend32((val
& 0x1fffff) << 2)
4766 Valtype x
= psymval
->value(object
, addend
) - address
;
4767 val
= Bits
<21>::bit_select32(val
, x
>> 2, 0x1fffff);
4771 *calculated_value
= x
>> 2;
4772 return This::STATUS_OKAY
;
4775 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
4777 if (psymval
->value(object
, addend
) & 3)
4778 return This::STATUS_PCREL_UNALIGNED
;
4780 return check_overflow
<23>(x
);
4784 static inline typename
This::Status
4785 relpc26(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4786 const Symbol_value
<size
>* psymval
, Mips_address address
,
4787 Mips_address addend_a
, bool extract_addend
, bool calculate_only
,
4788 Valtype
* calculated_value
)
4790 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4791 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
4793 Valtype addend
= (extract_addend
4794 ? Bits
<28>::sign_extend32((val
& 0x3ffffff) << 2)
4797 Valtype x
= psymval
->value(object
, addend
) - address
;
4798 val
= Bits
<26>::bit_select32(val
, x
>> 2, 0x3ffffff);
4802 *calculated_value
= x
>> 2;
4803 return This::STATUS_OKAY
;
4806 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
4808 if (psymval
->value(object
, addend
) & 3)
4809 return This::STATUS_PCREL_UNALIGNED
;
4811 return check_overflow
<28>(x
);
4815 static inline typename
This::Status
4816 relpc18(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4817 const Symbol_value
<size
>* psymval
, Mips_address address
,
4818 Mips_address addend_a
, bool extract_addend
, bool calculate_only
,
4819 Valtype
* calculated_value
)
4821 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4822 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
4824 Valtype addend
= (extract_addend
4825 ? Bits
<21>::sign_extend32((val
& 0x3ffff) << 3)
4828 Valtype x
= psymval
->value(object
, addend
) - ((address
| 7) ^ 7);
4829 val
= Bits
<18>::bit_select32(val
, x
>> 3, 0x3ffff);
4833 *calculated_value
= x
>> 3;
4834 return This::STATUS_OKAY
;
4837 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
4839 if (psymval
->value(object
, addend
) & 7)
4840 return This::STATUS_PCREL_UNALIGNED
;
4842 return check_overflow
<21>(x
);
4846 static inline typename
This::Status
4847 relpc19(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4848 const Symbol_value
<size
>* psymval
, Mips_address address
,
4849 Mips_address addend_a
, bool extract_addend
, bool calculate_only
,
4850 Valtype
* calculated_value
)
4852 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4853 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
4855 Valtype addend
= (extract_addend
4856 ? Bits
<21>::sign_extend32((val
& 0x7ffff) << 2)
4859 Valtype x
= psymval
->value(object
, addend
) - address
;
4860 val
= Bits
<19>::bit_select32(val
, x
>> 2, 0x7ffff);
4864 *calculated_value
= x
>> 2;
4865 return This::STATUS_OKAY
;
4868 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
4870 if (psymval
->value(object
, addend
) & 3)
4871 return This::STATUS_PCREL_UNALIGNED
;
4873 return check_overflow
<21>(x
);
4877 static inline typename
This::Status
4878 relpchi16(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4879 const Symbol_value
<size
>* psymval
, Mips_address addend
,
4880 Mips_address address
, unsigned int r_sym
, bool extract_addend
)
4882 // Record the relocation. It will be resolved when we find pclo16 part.
4883 pchi16_relocs
.push_back(reloc_high
<size
, big_endian
>(view
, object
, psymval
,
4884 addend
, 0, r_sym
, extract_addend
, address
));
4885 return This::STATUS_OKAY
;
4889 static inline typename
This::Status
4890 do_relpchi16(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4891 const Symbol_value
<size
>* psymval
, Mips_address addend_hi
,
4892 Mips_address address
, bool extract_addend
, Valtype32 addend_lo
,
4893 bool calculate_only
, Valtype
* calculated_value
)
4895 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4896 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
4898 Valtype addend
= (extract_addend
? ((val
& 0xffff) << 16) + addend_lo
4901 Valtype value
= psymval
->value(object
, addend
) - address
;
4902 Valtype x
= ((value
+ 0x8000) >> 16) & 0xffff;
4903 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
4906 *calculated_value
= x
;
4908 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
4910 return This::STATUS_OKAY
;
4914 static inline typename
This::Status
4915 relpclo16(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
4916 const Symbol_value
<size
>* psymval
, Mips_address addend_a
,
4917 bool extract_addend
, Mips_address address
, unsigned int r_sym
,
4918 unsigned int rel_type
, bool calculate_only
,
4919 Valtype
* calculated_value
)
4921 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4922 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
4924 Valtype addend
= (extract_addend
? Bits
<16>::sign_extend32(val
& 0xffff)
4927 if (rel_type
== elfcpp::SHT_REL
)
4929 // Resolve pending R_MIPS_PCHI16 relocations.
4930 typename
std::list
<reloc_high
<size
, big_endian
> >::iterator it
=
4931 pchi16_relocs
.begin();
4932 while (it
!= pchi16_relocs
.end())
4934 reloc_high
<size
, big_endian
> pchi16
= *it
;
4935 if (pchi16
.r_sym
== r_sym
)
4937 do_relpchi16(pchi16
.view
, pchi16
.object
, pchi16
.psymval
,
4938 pchi16
.addend
, pchi16
.address
,
4939 pchi16
.extract_addend
, addend
, calculate_only
,
4941 it
= pchi16_relocs
.erase(it
);
4948 // Resolve R_MIPS_PCLO16 relocation.
4949 Valtype x
= psymval
->value(object
, addend
) - address
;
4950 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
4953 *calculated_value
= x
;
4955 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
4957 return This::STATUS_OKAY
;
4960 // R_MICROMIPS_PC7_S1
4961 static inline typename
This::Status
4962 relmicromips_pc7_s1(unsigned char* view
,
4963 const Mips_relobj
<size
, big_endian
>* object
,
4964 const Symbol_value
<size
>* psymval
, Mips_address address
,
4965 Mips_address addend_a
, bool extract_addend
,
4966 bool calculate_only
, Valtype
* calculated_value
)
4968 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4969 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
4971 Valtype addend
= extract_addend
? Bits
<8>::sign_extend32((val
& 0x7f) << 1)
4974 Valtype x
= psymval
->value(object
, addend
) - address
;
4975 val
= Bits
<16>::bit_select32(val
, x
>> 1, 0x7f);
4979 *calculated_value
= x
>> 1;
4980 return This::STATUS_OKAY
;
4983 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
4985 return check_overflow
<8>(x
);
4988 // R_MICROMIPS_PC10_S1
4989 static inline typename
This::Status
4990 relmicromips_pc10_s1(unsigned char* view
,
4991 const Mips_relobj
<size
, big_endian
>* object
,
4992 const Symbol_value
<size
>* psymval
, Mips_address address
,
4993 Mips_address addend_a
, bool extract_addend
,
4994 bool calculate_only
, Valtype
* calculated_value
)
4996 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
4997 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
4999 Valtype addend
= (extract_addend
5000 ? Bits
<11>::sign_extend32((val
& 0x3ff) << 1)
5003 Valtype x
= psymval
->value(object
, addend
) - address
;
5004 val
= Bits
<16>::bit_select32(val
, x
>> 1, 0x3ff);
5008 *calculated_value
= x
>> 1;
5009 return This::STATUS_OKAY
;
5012 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5014 return check_overflow
<11>(x
);
5017 // R_MICROMIPS_PC16_S1
5018 static inline typename
This::Status
5019 relmicromips_pc16_s1(unsigned char* view
,
5020 const Mips_relobj
<size
, big_endian
>* object
,
5021 const Symbol_value
<size
>* psymval
, Mips_address address
,
5022 Mips_address addend_a
, bool extract_addend
,
5023 bool calculate_only
, Valtype
* calculated_value
)
5025 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5026 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5028 Valtype addend
= (extract_addend
5029 ? Bits
<17>::sign_extend32((val
& 0xffff) << 1)
5032 Valtype x
= psymval
->value(object
, addend
) - address
;
5033 val
= Bits
<16>::bit_select32(val
, x
>> 1, 0xffff);
5037 *calculated_value
= x
>> 1;
5038 return This::STATUS_OKAY
;
5041 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5043 return check_overflow
<17>(x
);
5046 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5047 static inline typename
This::Status
5048 relhi16(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
5049 const Symbol_value
<size
>* psymval
, Mips_address addend
,
5050 Mips_address address
, bool gp_disp
, unsigned int r_type
,
5051 unsigned int r_sym
, bool extract_addend
)
5053 // Record the relocation. It will be resolved when we find lo16 part.
5054 hi16_relocs
.push_back(reloc_high
<size
, big_endian
>(view
, object
, psymval
,
5055 addend
, r_type
, r_sym
, extract_addend
, address
,
5057 return This::STATUS_OKAY
;
5060 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5061 static inline typename
This::Status
5062 do_relhi16(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
5063 const Symbol_value
<size
>* psymval
, Mips_address addend_hi
,
5064 Mips_address address
, bool is_gp_disp
, unsigned int r_type
,
5065 bool extract_addend
, Valtype32 addend_lo
,
5066 Target_mips
<size
, big_endian
>* target
, bool calculate_only
,
5067 Valtype
* calculated_value
)
5069 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5070 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5072 Valtype addend
= (extract_addend
? ((val
& 0xffff) << 16) + addend_lo
5077 value
= psymval
->value(object
, addend
);
5080 // For MIPS16 ABI code we generate this sequence
5081 // 0: li $v0,%hi(_gp_disp)
5082 // 4: addiupc $v1,%lo(_gp_disp)
5086 // So the offsets of hi and lo relocs are the same, but the
5087 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5088 // ADDIUPC clears the low two bits of the instruction address,
5089 // so the base is ($t9 + 4) & ~3.
5091 if (r_type
== elfcpp::R_MIPS16_HI16
)
5092 gp_disp
= (target
->adjusted_gp_value(object
)
5093 - ((address
+ 4) & ~0x3));
5094 // The microMIPS .cpload sequence uses the same assembly
5095 // instructions as the traditional psABI version, but the
5096 // incoming $t9 has the low bit set.
5097 else if (r_type
== elfcpp::R_MICROMIPS_HI16
)
5098 gp_disp
= target
->adjusted_gp_value(object
) - address
- 1;
5100 gp_disp
= target
->adjusted_gp_value(object
) - address
;
5101 value
= gp_disp
+ addend
;
5103 Valtype x
= ((value
+ 0x8000) >> 16) & 0xffff;
5104 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5108 *calculated_value
= x
;
5109 return This::STATUS_OKAY
;
5112 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5114 return (is_gp_disp
? check_overflow
<16>(x
)
5115 : This::STATUS_OKAY
);
5118 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5119 static inline typename
This::Status
5120 relgot16_local(unsigned char* view
,
5121 const Mips_relobj
<size
, big_endian
>* object
,
5122 const Symbol_value
<size
>* psymval
, Mips_address addend_a
,
5123 bool extract_addend
, unsigned int r_type
, unsigned int r_sym
)
5125 // Record the relocation. It will be resolved when we find lo16 part.
5126 got16_relocs
.push_back(reloc_high
<size
, big_endian
>(view
, object
, psymval
,
5127 addend_a
, r_type
, r_sym
, extract_addend
));
5128 return This::STATUS_OKAY
;
5131 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5132 static inline typename
This::Status
5133 do_relgot16_local(unsigned char* view
,
5134 const Mips_relobj
<size
, big_endian
>* object
,
5135 const Symbol_value
<size
>* psymval
, Mips_address addend_hi
,
5136 bool extract_addend
, Valtype32 addend_lo
,
5137 Target_mips
<size
, big_endian
>* target
, bool calculate_only
,
5138 Valtype
* calculated_value
)
5140 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5141 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5143 Valtype addend
= (extract_addend
? ((val
& 0xffff) << 16) + addend_lo
5146 // Find GOT page entry.
5147 Mips_address value
= ((psymval
->value(object
, addend
) + 0x8000) >> 16)
5150 unsigned int got_offset
=
5151 target
->got_section()->get_got_page_offset(value
, object
);
5153 // Resolve the relocation.
5154 Valtype x
= target
->got_section()->gp_offset(got_offset
, object
);
5155 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5159 *calculated_value
= x
;
5160 return This::STATUS_OKAY
;
5163 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5165 return check_overflow
<16>(x
);
5168 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5169 static inline typename
This::Status
5170 rello16(Target_mips
<size
, big_endian
>* target
, unsigned char* view
,
5171 const Mips_relobj
<size
, big_endian
>* object
,
5172 const Symbol_value
<size
>* psymval
, Mips_address addend_a
,
5173 bool extract_addend
, Mips_address address
, bool is_gp_disp
,
5174 unsigned int r_type
, unsigned int r_sym
, unsigned int rel_type
,
5175 bool calculate_only
, Valtype
* calculated_value
)
5177 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5178 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5180 Valtype addend
= (extract_addend
? Bits
<16>::sign_extend32(val
& 0xffff)
5183 if (rel_type
== elfcpp::SHT_REL
)
5185 typename
This::Status reloc_status
= This::STATUS_OKAY
;
5186 // Resolve pending R_MIPS_HI16 relocations.
5187 typename
std::list
<reloc_high
<size
, big_endian
> >::iterator it
=
5188 hi16_relocs
.begin();
5189 while (it
!= hi16_relocs
.end())
5191 reloc_high
<size
, big_endian
> hi16
= *it
;
5192 if (hi16
.r_sym
== r_sym
5193 && is_matching_lo16_reloc(hi16
.r_type
, r_type
))
5195 mips_reloc_unshuffle(hi16
.view
, hi16
.r_type
, false);
5196 reloc_status
= do_relhi16(hi16
.view
, hi16
.object
, hi16
.psymval
,
5197 hi16
.addend
, hi16
.address
, hi16
.gp_disp
,
5198 hi16
.r_type
, hi16
.extract_addend
, addend
,
5199 target
, calculate_only
, calculated_value
);
5200 mips_reloc_shuffle(hi16
.view
, hi16
.r_type
, false);
5201 if (reloc_status
== This::STATUS_OVERFLOW
)
5202 return This::STATUS_OVERFLOW
;
5203 it
= hi16_relocs
.erase(it
);
5209 // Resolve pending local R_MIPS_GOT16 relocations.
5210 typename
std::list
<reloc_high
<size
, big_endian
> >::iterator it2
=
5211 got16_relocs
.begin();
5212 while (it2
!= got16_relocs
.end())
5214 reloc_high
<size
, big_endian
> got16
= *it2
;
5215 if (got16
.r_sym
== r_sym
5216 && is_matching_lo16_reloc(got16
.r_type
, r_type
))
5218 mips_reloc_unshuffle(got16
.view
, got16
.r_type
, false);
5220 reloc_status
= do_relgot16_local(got16
.view
, got16
.object
,
5221 got16
.psymval
, got16
.addend
,
5222 got16
.extract_addend
, addend
, target
,
5223 calculate_only
, calculated_value
);
5225 mips_reloc_shuffle(got16
.view
, got16
.r_type
, false);
5226 if (reloc_status
== This::STATUS_OVERFLOW
)
5227 return This::STATUS_OVERFLOW
;
5228 it2
= got16_relocs
.erase(it2
);
5235 // Resolve R_MIPS_LO16 relocation.
5238 x
= psymval
->value(object
, addend
);
5241 // See the comment for R_MIPS16_HI16 above for the reason
5242 // for this conditional.
5244 if (r_type
== elfcpp::R_MIPS16_LO16
)
5245 gp_disp
= target
->adjusted_gp_value(object
) - (address
& ~0x3);
5246 else if (r_type
== elfcpp::R_MICROMIPS_LO16
5247 || r_type
== elfcpp::R_MICROMIPS_HI0_LO16
)
5248 gp_disp
= target
->adjusted_gp_value(object
) - address
+ 3;
5250 gp_disp
= target
->adjusted_gp_value(object
) - address
+ 4;
5251 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5252 // for overflow. Relocations against _gp_disp are normally
5253 // generated from the .cpload pseudo-op. It generates code
5254 // that normally looks like this:
5256 // lui $gp,%hi(_gp_disp)
5257 // addiu $gp,$gp,%lo(_gp_disp)
5260 // Here $t9 holds the address of the function being called,
5261 // as required by the MIPS ELF ABI. The R_MIPS_LO16
5262 // relocation can easily overflow in this situation, but the
5263 // R_MIPS_HI16 relocation will handle the overflow.
5264 // Therefore, we consider this a bug in the MIPS ABI, and do
5265 // not check for overflow here.
5266 x
= gp_disp
+ addend
;
5268 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5271 *calculated_value
= x
;
5273 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5275 return This::STATUS_OKAY
;
5278 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5279 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5280 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5281 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5282 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5283 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5284 static inline typename
This::Status
5285 relgot(unsigned char* view
, int gp_offset
, bool calculate_only
,
5286 Valtype
* calculated_value
)
5288 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5289 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5290 Valtype x
= gp_offset
;
5291 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5295 *calculated_value
= x
;
5296 return This::STATUS_OKAY
;
5299 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5301 return check_overflow
<16>(x
);
5305 static inline typename
This::Status
5306 releh(unsigned char* view
, int gp_offset
, bool calculate_only
,
5307 Valtype
* calculated_value
)
5309 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5310 Valtype x
= gp_offset
;
5314 *calculated_value
= x
;
5315 return This::STATUS_OKAY
;
5318 elfcpp::Swap
<32, big_endian
>::writeval(wv
, x
);
5320 return check_overflow
<32>(x
);
5323 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5324 static inline typename
This::Status
5325 relgotpage(Target_mips
<size
, big_endian
>* target
, unsigned char* view
,
5326 const Mips_relobj
<size
, big_endian
>* object
,
5327 const Symbol_value
<size
>* psymval
, Mips_address addend_a
,
5328 bool extract_addend
, bool calculate_only
,
5329 Valtype
* calculated_value
)
5331 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5332 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(view
);
5333 Valtype addend
= extract_addend
? val
& 0xffff : addend_a
;
5335 // Find a GOT page entry that points to within 32KB of symbol + addend.
5336 Mips_address value
= (psymval
->value(object
, addend
) + 0x8000) & ~0xffff;
5337 unsigned int got_offset
=
5338 target
->got_section()->get_got_page_offset(value
, object
);
5340 Valtype x
= target
->got_section()->gp_offset(got_offset
, object
);
5341 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5345 *calculated_value
= x
;
5346 return This::STATUS_OKAY
;
5349 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5351 return check_overflow
<16>(x
);
5354 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5355 static inline typename
This::Status
5356 relgotofst(Target_mips
<size
, big_endian
>* target
, unsigned char* view
,
5357 const Mips_relobj
<size
, big_endian
>* object
,
5358 const Symbol_value
<size
>* psymval
, Mips_address addend_a
,
5359 bool extract_addend
, bool local
, bool calculate_only
,
5360 Valtype
* calculated_value
)
5362 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5363 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(view
);
5364 Valtype addend
= extract_addend
? val
& 0xffff : addend_a
;
5366 // For a local symbol, find a GOT page entry that points to within 32KB of
5367 // symbol + addend. Relocation value is the offset of the GOT page entry's
5368 // value from symbol + addend.
5369 // For a global symbol, relocation value is addend.
5373 // Find GOT page entry.
5374 Mips_address value
= ((psymval
->value(object
, addend
) + 0x8000)
5376 target
->got_section()->get_got_page_offset(value
, object
);
5378 x
= psymval
->value(object
, addend
) - value
;
5382 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5386 *calculated_value
= x
;
5387 return This::STATUS_OKAY
;
5390 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5392 return check_overflow
<16>(x
);
5395 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5396 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5397 static inline typename
This::Status
5398 relgot_hi16(unsigned char* view
, int gp_offset
, bool calculate_only
,
5399 Valtype
* calculated_value
)
5401 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5402 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5403 Valtype x
= gp_offset
;
5404 x
= ((x
+ 0x8000) >> 16) & 0xffff;
5405 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5408 *calculated_value
= x
;
5410 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5412 return This::STATUS_OKAY
;
5415 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5416 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5417 static inline typename
This::Status
5418 relgot_lo16(unsigned char* view
, int gp_offset
, bool calculate_only
,
5419 Valtype
* calculated_value
)
5421 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5422 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5423 Valtype x
= gp_offset
;
5424 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5427 *calculated_value
= x
;
5429 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5431 return This::STATUS_OKAY
;
5434 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5435 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5436 static inline typename
This::Status
5437 relgprel(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
5438 const Symbol_value
<size
>* psymval
, Mips_address gp
,
5439 Mips_address addend_a
, bool extract_addend
, bool local
,
5440 unsigned int r_type
, bool calculate_only
,
5441 Valtype
* calculated_value
)
5443 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5444 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5449 if (r_type
== elfcpp::R_MICROMIPS_GPREL7_S2
)
5450 addend
= (val
& 0x7f) << 2;
5452 addend
= val
& 0xffff;
5453 // Only sign-extend the addend if it was extracted from the
5454 // instruction. If the addend was separate, leave it alone,
5455 // otherwise we may lose significant bits.
5456 addend
= Bits
<16>::sign_extend32(addend
);
5461 Valtype x
= psymval
->value(object
, addend
) - gp
;
5463 // If the symbol was local, any earlier relocatable links will
5464 // have adjusted its addend with the gp offset, so compensate
5465 // for that now. Don't do it for symbols forced local in this
5466 // link, though, since they won't have had the gp offset applied
5469 x
+= object
->gp_value();
5471 if (r_type
== elfcpp::R_MICROMIPS_GPREL7_S2
)
5472 val
= Bits
<32>::bit_select32(val
, x
, 0x7f);
5474 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5478 *calculated_value
= x
;
5479 return This::STATUS_OKAY
;
5482 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5484 if (check_overflow
<16>(x
) == This::STATUS_OVERFLOW
)
5486 gold_error(_("small-data section exceeds 64KB; lower small-data size "
5487 "limit (see option -G)"));
5488 return This::STATUS_OVERFLOW
;
5490 return This::STATUS_OKAY
;
5494 static inline typename
This::Status
5495 relgprel32(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
5496 const Symbol_value
<size
>* psymval
, Mips_address gp
,
5497 Mips_address addend_a
, bool extract_addend
, bool calculate_only
,
5498 Valtype
* calculated_value
)
5500 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5501 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5502 Valtype addend
= extract_addend
? val
: addend_a
;
5504 // R_MIPS_GPREL32 relocations are defined for local symbols only.
5505 Valtype x
= psymval
->value(object
, addend
) + object
->gp_value() - gp
;
5508 *calculated_value
= x
;
5510 elfcpp::Swap
<32, big_endian
>::writeval(wv
, x
);
5512 return This::STATUS_OKAY
;
5515 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5516 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5517 // R_MICROMIPS_TLS_DTPREL_HI16
5518 static inline typename
This::Status
5519 tlsrelhi16(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
5520 const Symbol_value
<size
>* psymval
, Valtype32 tp_offset
,
5521 Mips_address addend_a
, bool extract_addend
, bool calculate_only
,
5522 Valtype
* calculated_value
)
5524 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5525 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5526 Valtype addend
= extract_addend
? val
& 0xffff : addend_a
;
5528 // tls symbol values are relative to tls_segment()->vaddr()
5529 Valtype x
= ((psymval
->value(object
, addend
) - tp_offset
) + 0x8000) >> 16;
5530 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5533 *calculated_value
= x
;
5535 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5537 return This::STATUS_OKAY
;
5540 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5541 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5542 // R_MICROMIPS_TLS_DTPREL_LO16,
5543 static inline typename
This::Status
5544 tlsrello16(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
5545 const Symbol_value
<size
>* psymval
, Valtype32 tp_offset
,
5546 Mips_address addend_a
, bool extract_addend
, bool calculate_only
,
5547 Valtype
* calculated_value
)
5549 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5550 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5551 Valtype addend
= extract_addend
? val
& 0xffff : addend_a
;
5553 // tls symbol values are relative to tls_segment()->vaddr()
5554 Valtype x
= psymval
->value(object
, addend
) - tp_offset
;
5555 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5558 *calculated_value
= x
;
5560 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5562 return This::STATUS_OKAY
;
5565 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5566 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5567 static inline typename
This::Status
5568 tlsrel32(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
5569 const Symbol_value
<size
>* psymval
, Valtype32 tp_offset
,
5570 Mips_address addend_a
, bool extract_addend
, bool calculate_only
,
5571 Valtype
* calculated_value
)
5573 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5574 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5575 Valtype addend
= extract_addend
? val
: addend_a
;
5577 // tls symbol values are relative to tls_segment()->vaddr()
5578 Valtype x
= psymval
->value(object
, addend
) - tp_offset
;
5581 *calculated_value
= x
;
5583 elfcpp::Swap
<32, big_endian
>::writeval(wv
, x
);
5585 return This::STATUS_OKAY
;
5588 // R_MIPS_SUB, R_MICROMIPS_SUB
5589 static inline typename
This::Status
5590 relsub(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
5591 const Symbol_value
<size
>* psymval
, Mips_address addend_a
,
5592 bool extract_addend
, bool calculate_only
, Valtype
* calculated_value
)
5594 Valtype64
* wv
= reinterpret_cast<Valtype64
*>(view
);
5595 Valtype64 addend
= (extract_addend
5596 ? elfcpp::Swap
<64, big_endian
>::readval(wv
)
5599 Valtype64 x
= psymval
->value(object
, -addend
);
5601 *calculated_value
= x
;
5603 elfcpp::Swap
<64, big_endian
>::writeval(wv
, x
);
5605 return This::STATUS_OKAY
;
5609 static inline typename
This::Status
5610 rel64(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
5611 const Symbol_value
<size
>* psymval
, Mips_address addend_a
,
5612 bool extract_addend
, bool calculate_only
, Valtype
* calculated_value
,
5613 bool apply_addend_only
)
5615 Valtype64
* wv
= reinterpret_cast<Valtype64
*>(view
);
5616 Valtype64 addend
= (extract_addend
5617 ? elfcpp::Swap
<64, big_endian
>::readval(wv
)
5620 Valtype64 x
= psymval
->value(object
, addend
);
5622 *calculated_value
= x
;
5625 if (apply_addend_only
)
5627 elfcpp::Swap
<64, big_endian
>::writeval(wv
, x
);
5630 return This::STATUS_OKAY
;
5633 // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5634 static inline typename
This::Status
5635 relhigher(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
5636 const Symbol_value
<size
>* psymval
, Mips_address addend_a
,
5637 bool extract_addend
, bool calculate_only
, Valtype
* calculated_value
)
5639 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5640 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5641 Valtype addend
= (extract_addend
? Bits
<16>::sign_extend32(val
& 0xffff)
5644 Valtype x
= psymval
->value(object
, addend
);
5645 x
= ((x
+ (uint64_t) 0x80008000) >> 32) & 0xffff;
5646 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5649 *calculated_value
= x
;
5651 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5653 return This::STATUS_OKAY
;
5656 // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5657 static inline typename
This::Status
5658 relhighest(unsigned char* view
, const Mips_relobj
<size
, big_endian
>* object
,
5659 const Symbol_value
<size
>* psymval
, Mips_address addend_a
,
5660 bool extract_addend
, bool calculate_only
,
5661 Valtype
* calculated_value
)
5663 Valtype32
* wv
= reinterpret_cast<Valtype32
*>(view
);
5664 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5665 Valtype addend
= (extract_addend
? Bits
<16>::sign_extend32(val
& 0xffff)
5668 Valtype x
= psymval
->value(object
, addend
);
5669 x
= ((x
+ (uint64_t) 0x800080008000llu
) >> 48) & 0xffff;
5670 val
= Bits
<32>::bit_select32(val
, x
, 0xffff);
5673 *calculated_value
= x
;
5675 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
5677 return This::STATUS_OKAY
;
5681 template<int size
, bool big_endian
>
5682 typename
std::list
<reloc_high
<size
, big_endian
> >
5683 Mips_relocate_functions
<size
, big_endian
>::hi16_relocs
;
5685 template<int size
, bool big_endian
>
5686 typename
std::list
<reloc_high
<size
, big_endian
> >
5687 Mips_relocate_functions
<size
, big_endian
>::got16_relocs
;
5689 template<int size
, bool big_endian
>
5690 typename
std::list
<reloc_high
<size
, big_endian
> >
5691 Mips_relocate_functions
<size
, big_endian
>::pchi16_relocs
;
5693 // Mips_got_info methods.
5695 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5696 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5698 template<int size
, bool big_endian
>
5700 Mips_got_info
<size
, big_endian
>::record_local_got_symbol(
5701 Mips_relobj
<size
, big_endian
>* object
, unsigned int symndx
,
5702 Mips_address addend
, unsigned int r_type
, unsigned int shndx
,
5703 bool is_section_symbol
)
5705 Mips_got_entry
<size
, big_endian
>* entry
=
5706 new Mips_got_entry
<size
, big_endian
>(object
, symndx
, addend
,
5707 mips_elf_reloc_tls_type(r_type
),
5708 shndx
, is_section_symbol
);
5709 this->record_got_entry(entry
, object
);
5712 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5713 // in OBJECT. FOR_CALL is true if the caller is only interested in
5714 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
5717 template<int size
, bool big_endian
>
5719 Mips_got_info
<size
, big_endian
>::record_global_got_symbol(
5720 Mips_symbol
<size
>* mips_sym
, Mips_relobj
<size
, big_endian
>* object
,
5721 unsigned int r_type
, bool dyn_reloc
, bool for_call
)
5724 mips_sym
->set_got_not_only_for_calls();
5726 // A global symbol in the GOT must also be in the dynamic symbol table.
5727 if (!mips_sym
->needs_dynsym_entry() && !mips_sym
->is_forced_local())
5729 switch (mips_sym
->visibility())
5731 case elfcpp::STV_INTERNAL
:
5732 case elfcpp::STV_HIDDEN
:
5733 mips_sym
->set_is_forced_local();
5736 mips_sym
->set_needs_dynsym_entry();
5741 unsigned char tls_type
= mips_elf_reloc_tls_type(r_type
);
5742 if (tls_type
== GOT_TLS_NONE
)
5743 this->global_got_symbols_
.insert(mips_sym
);
5747 if (mips_sym
->global_got_area() == GGA_NONE
)
5748 mips_sym
->set_global_got_area(GGA_RELOC_ONLY
);
5752 Mips_got_entry
<size
, big_endian
>* entry
=
5753 new Mips_got_entry
<size
, big_endian
>(mips_sym
, tls_type
);
5755 this->record_got_entry(entry
, object
);
5758 // Add ENTRY to master GOT and to OBJECT's GOT.
5760 template<int size
, bool big_endian
>
5762 Mips_got_info
<size
, big_endian
>::record_got_entry(
5763 Mips_got_entry
<size
, big_endian
>* entry
,
5764 Mips_relobj
<size
, big_endian
>* object
)
5766 this->got_entries_
.insert(entry
);
5768 // Create the GOT entry for the OBJECT's GOT.
5769 Mips_got_info
<size
, big_endian
>* g
= object
->get_or_create_got_info();
5770 Mips_got_entry
<size
, big_endian
>* entry2
=
5771 new Mips_got_entry
<size
, big_endian
>(*entry
);
5773 g
->got_entries_
.insert(entry2
);
5776 // Record that OBJECT has a page relocation against symbol SYMNDX and
5777 // that ADDEND is the addend for that relocation.
5778 // This function creates an upper bound on the number of GOT slots
5779 // required; no attempt is made to combine references to non-overridable
5780 // global symbols across multiple input files.
5782 template<int size
, bool big_endian
>
5784 Mips_got_info
<size
, big_endian
>::record_got_page_entry(
5785 Mips_relobj
<size
, big_endian
>* object
, unsigned int symndx
, int addend
)
5787 struct Got_page_range
**range_ptr
, *range
;
5788 int old_pages
, new_pages
;
5790 // Find the Got_page_entry for this symbol.
5791 Got_page_entry
* entry
= new Got_page_entry(object
, symndx
);
5792 typename
Got_page_entry_set::iterator it
=
5793 this->got_page_entries_
.find(entry
);
5794 if (it
!= this->got_page_entries_
.end())
5797 this->got_page_entries_
.insert(entry
);
5799 // Get the object's GOT, but we don't need to insert an entry here.
5800 Mips_got_info
<size
, big_endian
>* g2
= object
->get_or_create_got_info();
5802 // Skip over ranges whose maximum extent cannot share a page entry
5804 range_ptr
= &entry
->ranges
;
5805 while (*range_ptr
&& addend
> (*range_ptr
)->max_addend
+ 0xffff)
5806 range_ptr
= &(*range_ptr
)->next
;
5808 // If we scanned to the end of the list, or found a range whose
5809 // minimum extent cannot share a page entry with ADDEND, create
5810 // a new singleton range.
5812 if (!range
|| addend
< range
->min_addend
- 0xffff)
5814 range
= new Got_page_range();
5815 range
->next
= *range_ptr
;
5816 range
->min_addend
= addend
;
5817 range
->max_addend
= addend
;
5820 ++this->page_gotno_
;
5825 // Remember how many pages the old range contributed.
5826 old_pages
= range
->get_max_pages();
5828 // Update the ranges.
5829 if (addend
< range
->min_addend
)
5830 range
->min_addend
= addend
;
5831 else if (addend
> range
->max_addend
)
5833 if (range
->next
&& addend
>= range
->next
->min_addend
- 0xffff)
5835 old_pages
+= range
->next
->get_max_pages();
5836 range
->max_addend
= range
->next
->max_addend
;
5837 range
->next
= range
->next
->next
;
5840 range
->max_addend
= addend
;
5843 // Record any change in the total estimate.
5844 new_pages
= range
->get_max_pages();
5845 if (old_pages
!= new_pages
)
5847 this->page_gotno_
+= new_pages
- old_pages
;
5848 g2
->page_gotno_
+= new_pages
- old_pages
;
5852 // Create all entries that should be in the local part of the GOT.
5854 template<int size
, bool big_endian
>
5856 Mips_got_info
<size
, big_endian
>::add_local_entries(
5857 Target_mips
<size
, big_endian
>* target
, Layout
* layout
)
5859 Mips_output_data_got
<size
, big_endian
>* got
= target
->got_section();
5860 // First two GOT entries are reserved. The first entry will be filled at
5861 // runtime. The second entry will be used by some runtime loaders.
5862 got
->add_constant(0);
5863 got
->add_constant(target
->mips_elf_gnu_got1_mask());
5865 for (typename
Got_entry_set::iterator
5866 p
= this->got_entries_
.begin();
5867 p
!= this->got_entries_
.end();
5870 Mips_got_entry
<size
, big_endian
>* entry
= *p
;
5871 if (entry
->is_for_local_symbol() && !entry
->is_tls_entry())
5873 got
->add_local(entry
->object(), entry
->symndx(),
5874 GOT_TYPE_STANDARD
, entry
->addend());
5875 unsigned int got_offset
= entry
->object()->local_got_offset(
5876 entry
->symndx(), GOT_TYPE_STANDARD
, entry
->addend());
5877 if (got
->multi_got() && this->index_
> 0
5878 && parameters
->options().output_is_position_independent())
5880 if (!entry
->is_section_symbol())
5881 target
->rel_dyn_section(layout
)->add_local(entry
->object(),
5882 entry
->symndx(), elfcpp::R_MIPS_REL32
, got
, got_offset
);
5884 target
->rel_dyn_section(layout
)->add_symbolless_local_addend(
5885 entry
->object(), entry
->symndx(), elfcpp::R_MIPS_REL32
,
5891 this->add_page_entries(target
, layout
);
5893 // Add global entries that should be in the local area.
5894 for (typename
Got_entry_set::iterator
5895 p
= this->got_entries_
.begin();
5896 p
!= this->got_entries_
.end();
5899 Mips_got_entry
<size
, big_endian
>* entry
= *p
;
5900 if (!entry
->is_for_global_symbol())
5903 Mips_symbol
<size
>* mips_sym
= entry
->sym();
5904 if (mips_sym
->global_got_area() == GGA_NONE
&& !entry
->is_tls_entry())
5906 unsigned int got_type
;
5907 if (!got
->multi_got())
5908 got_type
= GOT_TYPE_STANDARD
;
5910 got_type
= GOT_TYPE_STANDARD_MULTIGOT
+ this->index_
;
5911 if (got
->add_global(mips_sym
, got_type
))
5913 mips_sym
->set_global_gotoffset(mips_sym
->got_offset(got_type
));
5914 if (got
->multi_got() && this->index_
> 0
5915 && parameters
->options().output_is_position_independent())
5916 target
->rel_dyn_section(layout
)->add_symbolless_global_addend(
5917 mips_sym
, elfcpp::R_MIPS_REL32
, got
,
5918 mips_sym
->got_offset(got_type
));
5924 // Create GOT page entries.
5926 template<int size
, bool big_endian
>
5928 Mips_got_info
<size
, big_endian
>::add_page_entries(
5929 Target_mips
<size
, big_endian
>* target
, Layout
* layout
)
5931 if (this->page_gotno_
== 0)
5934 Mips_output_data_got
<size
, big_endian
>* got
= target
->got_section();
5935 this->got_page_offset_start_
= got
->add_constant(0);
5936 if (got
->multi_got() && this->index_
> 0
5937 && parameters
->options().output_is_position_independent())
5938 target
->rel_dyn_section(layout
)->add_absolute(elfcpp::R_MIPS_REL32
, got
,
5939 this->got_page_offset_start_
);
5940 int num_entries
= this->page_gotno_
;
5941 unsigned int prev_offset
= this->got_page_offset_start_
;
5942 while (--num_entries
> 0)
5944 unsigned int next_offset
= got
->add_constant(0);
5945 if (got
->multi_got() && this->index_
> 0
5946 && parameters
->options().output_is_position_independent())
5947 target
->rel_dyn_section(layout
)->add_absolute(elfcpp::R_MIPS_REL32
, got
,
5949 gold_assert(next_offset
== prev_offset
+ size
/8);
5950 prev_offset
= next_offset
;
5952 this->got_page_offset_next_
= this->got_page_offset_start_
;
5955 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5957 template<int size
, bool big_endian
>
5959 Mips_got_info
<size
, big_endian
>::add_global_entries(
5960 Target_mips
<size
, big_endian
>* target
, Layout
* layout
,
5961 unsigned int non_reloc_only_global_gotno
)
5963 Mips_output_data_got
<size
, big_endian
>* got
= target
->got_section();
5964 // Add GGA_NORMAL entries.
5965 unsigned int count
= 0;
5966 for (typename
Got_entry_set::iterator
5967 p
= this->got_entries_
.begin();
5968 p
!= this->got_entries_
.end();
5971 Mips_got_entry
<size
, big_endian
>* entry
= *p
;
5972 if (!entry
->is_for_global_symbol())
5975 Mips_symbol
<size
>* mips_sym
= entry
->sym();
5976 if (mips_sym
->global_got_area() != GGA_NORMAL
)
5979 unsigned int got_type
;
5980 if (!got
->multi_got())
5981 got_type
= GOT_TYPE_STANDARD
;
5983 // In multi-GOT links, global symbol can be in both primary and
5984 // secondary GOT(s). By creating custom GOT type
5985 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5986 // is added to secondary GOT(s).
5987 got_type
= GOT_TYPE_STANDARD_MULTIGOT
+ this->index_
;
5988 if (!got
->add_global(mips_sym
, got_type
))
5991 mips_sym
->set_global_gotoffset(mips_sym
->got_offset(got_type
));
5992 if (got
->multi_got() && this->index_
== 0)
5994 if (got
->multi_got() && this->index_
> 0)
5996 if (parameters
->options().output_is_position_independent()
5997 || (!parameters
->doing_static_link()
5998 && mips_sym
->is_from_dynobj() && !mips_sym
->is_undefined()))
6000 target
->rel_dyn_section(layout
)->add_global(
6001 mips_sym
, elfcpp::R_MIPS_REL32
, got
,
6002 mips_sym
->got_offset(got_type
));
6003 got
->add_secondary_got_reloc(mips_sym
->got_offset(got_type
),
6004 elfcpp::R_MIPS_REL32
, mips_sym
);
6009 if (!got
->multi_got() || this->index_
== 0)
6011 if (got
->multi_got())
6013 // We need to allocate space in the primary GOT for GGA_NORMAL entries
6014 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
6015 // entries correspond to dynamic symbol indexes.
6016 while (count
< non_reloc_only_global_gotno
)
6018 got
->add_constant(0);
6023 // Add GGA_RELOC_ONLY entries.
6024 got
->add_reloc_only_entries();
6028 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
6030 template<int size
, bool big_endian
>
6032 Mips_got_info
<size
, big_endian
>::add_reloc_only_entries(
6033 Mips_output_data_got
<size
, big_endian
>* got
)
6035 for (typename
Global_got_entry_set::iterator
6036 p
= this->global_got_symbols_
.begin();
6037 p
!= this->global_got_symbols_
.end();
6040 Mips_symbol
<size
>* mips_sym
= *p
;
6041 if (mips_sym
->global_got_area() == GGA_RELOC_ONLY
)
6043 unsigned int got_type
;
6044 if (!got
->multi_got())
6045 got_type
= GOT_TYPE_STANDARD
;
6047 got_type
= GOT_TYPE_STANDARD_MULTIGOT
;
6048 if (got
->add_global(mips_sym
, got_type
))
6049 mips_sym
->set_global_gotoffset(mips_sym
->got_offset(got_type
));
6054 // Create TLS GOT entries.
6056 template<int size
, bool big_endian
>
6058 Mips_got_info
<size
, big_endian
>::add_tls_entries(
6059 Target_mips
<size
, big_endian
>* target
, Layout
* layout
)
6061 Mips_output_data_got
<size
, big_endian
>* got
= target
->got_section();
6062 // Add local tls entries.
6063 for (typename
Got_entry_set::iterator
6064 p
= this->got_entries_
.begin();
6065 p
!= this->got_entries_
.end();
6068 Mips_got_entry
<size
, big_endian
>* entry
= *p
;
6069 if (!entry
->is_tls_entry() || !entry
->is_for_local_symbol())
6072 if (entry
->tls_type() == GOT_TLS_GD
)
6074 unsigned int got_type
= GOT_TYPE_TLS_PAIR
;
6075 unsigned int r_type1
= (size
== 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6076 : elfcpp::R_MIPS_TLS_DTPMOD64
);
6077 unsigned int r_type2
= (size
== 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6078 : elfcpp::R_MIPS_TLS_DTPREL64
);
6080 if (!parameters
->doing_static_link())
6082 got
->add_local_pair_with_rel(entry
->object(), entry
->symndx(),
6083 entry
->shndx(), got_type
,
6084 target
->rel_dyn_section(layout
),
6085 r_type1
, entry
->addend());
6086 unsigned int got_offset
=
6087 entry
->object()->local_got_offset(entry
->symndx(), got_type
,
6089 got
->add_static_reloc(got_offset
+ size
/8, r_type2
,
6090 entry
->object(), entry
->symndx());
6094 // We are doing a static link. Mark it as belong to module 1,
6096 unsigned int got_offset
= got
->add_constant(1);
6097 entry
->object()->set_local_got_offset(entry
->symndx(), got_type
,
6100 got
->add_constant(0);
6101 got
->add_static_reloc(got_offset
+ size
/8, r_type2
,
6102 entry
->object(), entry
->symndx());
6105 else if (entry
->tls_type() == GOT_TLS_IE
)
6107 unsigned int got_type
= GOT_TYPE_TLS_OFFSET
;
6108 unsigned int r_type
= (size
== 32 ? elfcpp::R_MIPS_TLS_TPREL32
6109 : elfcpp::R_MIPS_TLS_TPREL64
);
6110 if (!parameters
->doing_static_link())
6111 got
->add_local_with_rel(entry
->object(), entry
->symndx(), got_type
,
6112 target
->rel_dyn_section(layout
), r_type
,
6116 got
->add_local(entry
->object(), entry
->symndx(), got_type
,
6118 unsigned int got_offset
=
6119 entry
->object()->local_got_offset(entry
->symndx(), got_type
,
6121 got
->add_static_reloc(got_offset
, r_type
, entry
->object(),
6125 else if (entry
->tls_type() == GOT_TLS_LDM
)
6127 unsigned int r_type
= (size
== 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6128 : elfcpp::R_MIPS_TLS_DTPMOD64
);
6129 unsigned int got_offset
;
6130 if (!parameters
->doing_static_link())
6132 got_offset
= got
->add_constant(0);
6133 target
->rel_dyn_section(layout
)->add_local(
6134 entry
->object(), 0, r_type
, got
, got_offset
);
6137 // We are doing a static link. Just mark it as belong to module 1,
6139 got_offset
= got
->add_constant(1);
6141 got
->add_constant(0);
6142 got
->set_tls_ldm_offset(got_offset
, entry
->object());
6148 // Add global tls entries.
6149 for (typename
Got_entry_set::iterator
6150 p
= this->got_entries_
.begin();
6151 p
!= this->got_entries_
.end();
6154 Mips_got_entry
<size
, big_endian
>* entry
= *p
;
6155 if (!entry
->is_tls_entry() || !entry
->is_for_global_symbol())
6158 Mips_symbol
<size
>* mips_sym
= entry
->sym();
6159 if (entry
->tls_type() == GOT_TLS_GD
)
6161 unsigned int got_type
;
6162 if (!got
->multi_got())
6163 got_type
= GOT_TYPE_TLS_PAIR
;
6165 got_type
= GOT_TYPE_TLS_PAIR_MULTIGOT
+ this->index_
;
6166 unsigned int r_type1
= (size
== 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6167 : elfcpp::R_MIPS_TLS_DTPMOD64
);
6168 unsigned int r_type2
= (size
== 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6169 : elfcpp::R_MIPS_TLS_DTPREL64
);
6170 if (!parameters
->doing_static_link())
6171 got
->add_global_pair_with_rel(mips_sym
, got_type
,
6172 target
->rel_dyn_section(layout
), r_type1
, r_type2
);
6175 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
6176 // GOT entries. The first one is initialized to be 1, which is the
6177 // module index for the main executable and the second one 0. A
6178 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6179 // the second GOT entry and will be applied by gold.
6180 unsigned int got_offset
= got
->add_constant(1);
6181 mips_sym
->set_got_offset(got_type
, got_offset
);
6182 got
->add_constant(0);
6183 got
->add_static_reloc(got_offset
+ size
/8, r_type2
, mips_sym
);
6186 else if (entry
->tls_type() == GOT_TLS_IE
)
6188 unsigned int got_type
;
6189 if (!got
->multi_got())
6190 got_type
= GOT_TYPE_TLS_OFFSET
;
6192 got_type
= GOT_TYPE_TLS_OFFSET_MULTIGOT
+ this->index_
;
6193 unsigned int r_type
= (size
== 32 ? elfcpp::R_MIPS_TLS_TPREL32
6194 : elfcpp::R_MIPS_TLS_TPREL64
);
6195 if (!parameters
->doing_static_link())
6196 got
->add_global_with_rel(mips_sym
, got_type
,
6197 target
->rel_dyn_section(layout
), r_type
);
6200 got
->add_global(mips_sym
, got_type
);
6201 unsigned int got_offset
= mips_sym
->got_offset(got_type
);
6202 got
->add_static_reloc(got_offset
, r_type
, mips_sym
);
6210 // Decide whether the symbol needs an entry in the global part of the primary
6211 // GOT, setting global_got_area accordingly. Count the number of global
6212 // symbols that are in the primary GOT only because they have dynamic
6213 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6215 template<int size
, bool big_endian
>
6217 Mips_got_info
<size
, big_endian
>::count_got_symbols(Symbol_table
* symtab
)
6219 for (typename
Global_got_entry_set::iterator
6220 p
= this->global_got_symbols_
.begin();
6221 p
!= this->global_got_symbols_
.end();
6224 Mips_symbol
<size
>* sym
= *p
;
6225 // Make a final decision about whether the symbol belongs in the
6226 // local or global GOT. Symbols that bind locally can (and in the
6227 // case of forced-local symbols, must) live in the local GOT.
6228 // Those that are aren't in the dynamic symbol table must also
6229 // live in the local GOT.
6231 if (!sym
->should_add_dynsym_entry(symtab
)
6232 || (sym
->got_only_for_calls()
6233 ? symbol_calls_local(sym
, sym
->should_add_dynsym_entry(symtab
))
6234 : symbol_references_local(sym
,
6235 sym
->should_add_dynsym_entry(symtab
))))
6236 // The symbol belongs in the local GOT. We no longer need this
6237 // entry if it was only used for relocations; those relocations
6238 // will be against the null or section symbol instead.
6239 sym
->set_global_got_area(GGA_NONE
);
6240 else if (sym
->global_got_area() == GGA_RELOC_ONLY
)
6242 ++this->reloc_only_gotno_
;
6243 ++this->global_gotno_
;
6248 // Return the offset of GOT page entry for VALUE. Initialize the entry with
6249 // VALUE if it is not initialized.
6251 template<int size
, bool big_endian
>
6253 Mips_got_info
<size
, big_endian
>::get_got_page_offset(Mips_address value
,
6254 Mips_output_data_got
<size
, big_endian
>* got
)
6256 typename
Got_page_offsets::iterator it
= this->got_page_offsets_
.find(value
);
6257 if (it
!= this->got_page_offsets_
.end())
6260 gold_assert(this->got_page_offset_next_
< this->got_page_offset_start_
6261 + (size
/8) * this->page_gotno_
);
6263 unsigned int got_offset
= this->got_page_offset_next_
;
6264 this->got_page_offsets_
[value
] = got_offset
;
6265 this->got_page_offset_next_
+= size
/8;
6266 got
->update_got_entry(got_offset
, value
);
6270 // Remove lazy-binding stubs for global symbols in this GOT.
6272 template<int size
, bool big_endian
>
6274 Mips_got_info
<size
, big_endian
>::remove_lazy_stubs(
6275 Target_mips
<size
, big_endian
>* target
)
6277 for (typename
Got_entry_set::iterator
6278 p
= this->got_entries_
.begin();
6279 p
!= this->got_entries_
.end();
6282 Mips_got_entry
<size
, big_endian
>* entry
= *p
;
6283 if (entry
->is_for_global_symbol())
6284 target
->remove_lazy_stub_entry(entry
->sym());
6288 // Count the number of GOT entries required.
6290 template<int size
, bool big_endian
>
6292 Mips_got_info
<size
, big_endian
>::count_got_entries()
6294 for (typename
Got_entry_set::iterator
6295 p
= this->got_entries_
.begin();
6296 p
!= this->got_entries_
.end();
6299 this->count_got_entry(*p
);
6303 // Count the number of GOT entries required by ENTRY. Accumulate the result.
6305 template<int size
, bool big_endian
>
6307 Mips_got_info
<size
, big_endian
>::count_got_entry(
6308 Mips_got_entry
<size
, big_endian
>* entry
)
6310 if (entry
->is_tls_entry())
6311 this->tls_gotno_
+= mips_tls_got_entries(entry
->tls_type());
6312 else if (entry
->is_for_local_symbol()
6313 || entry
->sym()->global_got_area() == GGA_NONE
)
6314 ++this->local_gotno_
;
6316 ++this->global_gotno_
;
6319 // Add FROM's GOT entries.
6321 template<int size
, bool big_endian
>
6323 Mips_got_info
<size
, big_endian
>::add_got_entries(
6324 Mips_got_info
<size
, big_endian
>* from
)
6326 for (typename
Got_entry_set::iterator
6327 p
= from
->got_entries_
.begin();
6328 p
!= from
->got_entries_
.end();
6331 Mips_got_entry
<size
, big_endian
>* entry
= *p
;
6332 if (this->got_entries_
.find(entry
) == this->got_entries_
.end())
6334 Mips_got_entry
<size
, big_endian
>* entry2
=
6335 new Mips_got_entry
<size
, big_endian
>(*entry
);
6336 this->got_entries_
.insert(entry2
);
6337 this->count_got_entry(entry
);
6342 // Add FROM's GOT page entries.
6344 template<int size
, bool big_endian
>
6346 Mips_got_info
<size
, big_endian
>::add_got_page_count(
6347 Mips_got_info
<size
, big_endian
>* from
)
6349 this->page_gotno_
+= from
->page_gotno_
;
6352 // Mips_output_data_got methods.
6354 // Lay out the GOT. Add local, global and TLS entries. If GOT is
6355 // larger than 64K, create multi-GOT.
6357 template<int size
, bool big_endian
>
6359 Mips_output_data_got
<size
, big_endian
>::lay_out_got(Layout
* layout
,
6360 Symbol_table
* symtab
, const Input_objects
* input_objects
)
6362 // Decide which symbols need to go in the global part of the GOT and
6363 // count the number of reloc-only GOT symbols.
6364 this->master_got_info_
->count_got_symbols(symtab
);
6366 // Count the number of GOT entries.
6367 this->master_got_info_
->count_got_entries();
6369 unsigned int got_size
= this->master_got_info_
->got_size();
6370 if (got_size
> Target_mips
<size
, big_endian
>::MIPS_GOT_MAX_SIZE
)
6371 this->lay_out_multi_got(layout
, input_objects
);
6374 // Record that all objects use single GOT.
6375 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
6376 p
!= input_objects
->relobj_end();
6379 Mips_relobj
<size
, big_endian
>* object
=
6380 Mips_relobj
<size
, big_endian
>::as_mips_relobj(*p
);
6381 if (object
->get_got_info() != NULL
)
6382 object
->set_got_info(this->master_got_info_
);
6385 this->master_got_info_
->add_local_entries(this->target_
, layout
);
6386 this->master_got_info_
->add_global_entries(this->target_
, layout
,
6388 this->master_got_info_
->add_tls_entries(this->target_
, layout
);
6392 // Create multi-GOT. For every GOT, add local, global and TLS entries.
6394 template<int size
, bool big_endian
>
6396 Mips_output_data_got
<size
, big_endian
>::lay_out_multi_got(Layout
* layout
,
6397 const Input_objects
* input_objects
)
6399 // Try to merge the GOTs of input objects together, as long as they
6400 // don't seem to exceed the maximum GOT size, choosing one of them
6401 // to be the primary GOT.
6402 this->merge_gots(input_objects
);
6404 // Every symbol that is referenced in a dynamic relocation must be
6405 // present in the primary GOT.
6406 this->primary_got_
->set_global_gotno(this->master_got_info_
->global_gotno());
6410 unsigned int offset
= 0;
6411 Mips_got_info
<size
, big_endian
>* g
= this->primary_got_
;
6415 g
->set_offset(offset
);
6417 g
->add_local_entries(this->target_
, layout
);
6419 g
->add_global_entries(this->target_
, layout
,
6420 (this->master_got_info_
->global_gotno()
6421 - this->master_got_info_
->reloc_only_gotno()));
6423 g
->add_global_entries(this->target_
, layout
, /*not used*/-1U);
6424 g
->add_tls_entries(this->target_
, layout
);
6426 // Forbid global symbols in every non-primary GOT from having
6427 // lazy-binding stubs.
6429 g
->remove_lazy_stubs(this->target_
);
6432 offset
+= g
->got_size();
6438 // Attempt to merge GOTs of different input objects. Try to use as much as
6439 // possible of the primary GOT, since it doesn't require explicit dynamic
6440 // relocations, but don't use objects that would reference global symbols
6441 // out of the addressable range. Failing the primary GOT, attempt to merge
6442 // with the current GOT, or finish the current GOT and then make make the new
6445 template<int size
, bool big_endian
>
6447 Mips_output_data_got
<size
, big_endian
>::merge_gots(
6448 const Input_objects
* input_objects
)
6450 gold_assert(this->primary_got_
== NULL
);
6451 Mips_got_info
<size
, big_endian
>* current
= NULL
;
6453 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
6454 p
!= input_objects
->relobj_end();
6457 Mips_relobj
<size
, big_endian
>* object
=
6458 Mips_relobj
<size
, big_endian
>::as_mips_relobj(*p
);
6460 Mips_got_info
<size
, big_endian
>* g
= object
->get_got_info();
6464 g
->count_got_entries();
6466 // Work out the number of page, local and TLS entries.
6467 unsigned int estimate
= this->master_got_info_
->page_gotno();
6468 if (estimate
> g
->page_gotno())
6469 estimate
= g
->page_gotno();
6470 estimate
+= g
->local_gotno() + g
->tls_gotno();
6472 // We place TLS GOT entries after both locals and globals. The globals
6473 // for the primary GOT may overflow the normal GOT size limit, so be
6474 // sure not to merge a GOT which requires TLS with the primary GOT in that
6475 // case. This doesn't affect non-primary GOTs.
6476 estimate
+= (g
->tls_gotno() > 0 ? this->master_got_info_
->global_gotno()
6477 : g
->global_gotno());
6479 unsigned int max_count
=
6480 Target_mips
<size
, big_endian
>::MIPS_GOT_MAX_SIZE
/ (size
/8) - 2;
6481 if (estimate
<= max_count
)
6483 // If we don't have a primary GOT, use it as
6484 // a starting point for the primary GOT.
6485 if (!this->primary_got_
)
6487 this->primary_got_
= g
;
6491 // Try merging with the primary GOT.
6492 if (this->merge_got_with(g
, object
, this->primary_got_
))
6496 // If we can merge with the last-created GOT, do it.
6497 if (current
&& this->merge_got_with(g
, object
, current
))
6500 // Well, we couldn't merge, so create a new GOT. Don't check if it
6501 // fits; if it turns out that it doesn't, we'll get relocation
6502 // overflows anyway.
6503 g
->set_next(current
);
6507 // If we do not find any suitable primary GOT, create an empty one.
6508 if (this->primary_got_
== NULL
)
6509 this->primary_got_
= new Mips_got_info
<size
, big_endian
>();
6511 // Link primary GOT with secondary GOTs.
6512 this->primary_got_
->set_next(current
);
6515 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
6516 // this would lead to overflow, true if they were merged successfully.
6518 template<int size
, bool big_endian
>
6520 Mips_output_data_got
<size
, big_endian
>::merge_got_with(
6521 Mips_got_info
<size
, big_endian
>* from
,
6522 Mips_relobj
<size
, big_endian
>* object
,
6523 Mips_got_info
<size
, big_endian
>* to
)
6525 // Work out how many page entries we would need for the combined GOT.
6526 unsigned int estimate
= this->master_got_info_
->page_gotno();
6527 if (estimate
>= from
->page_gotno() + to
->page_gotno())
6528 estimate
= from
->page_gotno() + to
->page_gotno();
6530 // Conservatively estimate how many local and TLS entries would be needed.
6531 estimate
+= from
->local_gotno() + to
->local_gotno();
6532 estimate
+= from
->tls_gotno() + to
->tls_gotno();
6534 // If we're merging with the primary got, any TLS relocations will
6535 // come after the full set of global entries. Otherwise estimate those
6536 // conservatively as well.
6537 if (to
== this->primary_got_
&& (from
->tls_gotno() + to
->tls_gotno()) > 0)
6538 estimate
+= this->master_got_info_
->global_gotno();
6540 estimate
+= from
->global_gotno() + to
->global_gotno();
6542 // Bail out if the combined GOT might be too big.
6543 unsigned int max_count
=
6544 Target_mips
<size
, big_endian
>::MIPS_GOT_MAX_SIZE
/ (size
/8) - 2;
6545 if (estimate
> max_count
)
6548 // Transfer the object's GOT information from FROM to TO.
6549 to
->add_got_entries(from
);
6550 to
->add_got_page_count(from
);
6552 // Record that OBJECT should use output GOT TO.
6553 object
->set_got_info(to
);
6558 // Write out the GOT.
6560 template<int size
, bool big_endian
>
6562 Mips_output_data_got
<size
, big_endian
>::do_write(Output_file
* of
)
6564 typedef Unordered_set
<Mips_symbol
<size
>*, Mips_symbol_hash
<size
> >
6565 Mips_stubs_entry_set
;
6567 // Call parent to write out GOT.
6568 Output_data_got
<size
, big_endian
>::do_write(of
);
6570 const off_t offset
= this->offset();
6571 const section_size_type oview_size
=
6572 convert_to_section_size_type(this->data_size());
6573 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
6575 // Needed for fixing values of .got section.
6576 this->got_view_
= oview
;
6578 // Write lazy stub addresses.
6579 for (typename
Mips_stubs_entry_set::iterator
6580 p
= this->master_got_info_
->global_got_symbols().begin();
6581 p
!= this->master_got_info_
->global_got_symbols().end();
6584 Mips_symbol
<size
>* mips_sym
= *p
;
6585 if (mips_sym
->has_lazy_stub())
6587 Valtype
* wv
= reinterpret_cast<Valtype
*>(
6588 oview
+ this->get_primary_got_offset(mips_sym
));
6590 this->target_
->mips_stubs_section()->stub_address(mips_sym
);
6591 elfcpp::Swap
<size
, big_endian
>::writeval(wv
, value
);
6595 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6596 for (typename
Mips_stubs_entry_set::iterator
6597 p
= this->master_got_info_
->global_got_symbols().begin();
6598 p
!= this->master_got_info_
->global_got_symbols().end();
6601 Mips_symbol
<size
>* mips_sym
= *p
;
6602 if (!this->multi_got()
6603 && (mips_sym
->is_mips16() || mips_sym
->is_micromips())
6604 && mips_sym
->global_got_area() == GGA_NONE
6605 && mips_sym
->has_got_offset(GOT_TYPE_STANDARD
))
6607 Valtype
* wv
= reinterpret_cast<Valtype
*>(
6608 oview
+ mips_sym
->got_offset(GOT_TYPE_STANDARD
));
6609 Valtype value
= elfcpp::Swap
<size
, big_endian
>::readval(wv
);
6613 elfcpp::Swap
<size
, big_endian
>::writeval(wv
, value
);
6618 if (!this->secondary_got_relocs_
.empty())
6620 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
6621 // secondary GOT entries with non-zero initial value copy the value
6622 // to the corresponding primary GOT entry, and set the secondary GOT
6624 // TODO(sasa): This is workaround. It needs to be investigated further.
6626 for (size_t i
= 0; i
< this->secondary_got_relocs_
.size(); ++i
)
6628 Static_reloc
& reloc(this->secondary_got_relocs_
[i
]);
6629 if (reloc
.symbol_is_global())
6631 Mips_symbol
<size
>* gsym
= reloc
.symbol();
6632 gold_assert(gsym
!= NULL
);
6634 unsigned got_offset
= reloc
.got_offset();
6635 gold_assert(got_offset
< oview_size
);
6637 // Find primary GOT entry.
6638 Valtype
* wv_prim
= reinterpret_cast<Valtype
*>(
6639 oview
+ this->get_primary_got_offset(gsym
));
6641 // Find secondary GOT entry.
6642 Valtype
* wv_sec
= reinterpret_cast<Valtype
*>(oview
+ got_offset
);
6644 Valtype value
= elfcpp::Swap
<size
, big_endian
>::readval(wv_sec
);
6647 elfcpp::Swap
<size
, big_endian
>::writeval(wv_prim
, value
);
6648 elfcpp::Swap
<size
, big_endian
>::writeval(wv_sec
, 0);
6649 gsym
->set_applied_secondary_got_fixup();
6654 of
->write_output_view(offset
, oview_size
, oview
);
6657 // We are done if there is no fix up.
6658 if (this->static_relocs_
.empty())
6661 Output_segment
* tls_segment
= this->layout_
->tls_segment();
6662 gold_assert(tls_segment
!= NULL
);
6664 for (size_t i
= 0; i
< this->static_relocs_
.size(); ++i
)
6666 Static_reloc
& reloc(this->static_relocs_
[i
]);
6669 if (!reloc
.symbol_is_global())
6671 Sized_relobj_file
<size
, big_endian
>* object
= reloc
.relobj();
6672 const Symbol_value
<size
>* psymval
=
6673 object
->local_symbol(reloc
.index());
6675 // We are doing static linking. Issue an error and skip this
6676 // relocation if the symbol is undefined or in a discarded_section.
6678 unsigned int shndx
= psymval
->input_shndx(&is_ordinary
);
6679 if ((shndx
== elfcpp::SHN_UNDEF
)
6681 && shndx
!= elfcpp::SHN_UNDEF
6682 && !object
->is_section_included(shndx
)
6683 && !this->symbol_table_
->is_section_folded(object
, shndx
)))
6685 gold_error(_("undefined or discarded local symbol %u from "
6686 " object %s in GOT"),
6687 reloc
.index(), reloc
.relobj()->name().c_str());
6691 value
= psymval
->value(object
, 0);
6695 const Mips_symbol
<size
>* gsym
= reloc
.symbol();
6696 gold_assert(gsym
!= NULL
);
6698 // We are doing static linking. Issue an error and skip this
6699 // relocation if the symbol is undefined or in a discarded_section
6700 // unless it is a weakly_undefined symbol.
6701 if ((gsym
->is_defined_in_discarded_section() || gsym
->is_undefined())
6702 && !gsym
->is_weak_undefined())
6704 gold_error(_("undefined or discarded symbol %s in GOT"),
6709 if (!gsym
->is_weak_undefined())
6710 value
= gsym
->value();
6715 unsigned got_offset
= reloc
.got_offset();
6716 gold_assert(got_offset
< oview_size
);
6718 Valtype
* wv
= reinterpret_cast<Valtype
*>(oview
+ got_offset
);
6721 switch (reloc
.r_type())
6723 case elfcpp::R_MIPS_TLS_DTPMOD32
:
6724 case elfcpp::R_MIPS_TLS_DTPMOD64
:
6727 case elfcpp::R_MIPS_TLS_DTPREL32
:
6728 case elfcpp::R_MIPS_TLS_DTPREL64
:
6729 x
= value
- elfcpp::DTP_OFFSET
;
6731 case elfcpp::R_MIPS_TLS_TPREL32
:
6732 case elfcpp::R_MIPS_TLS_TPREL64
:
6733 x
= value
- elfcpp::TP_OFFSET
;
6740 elfcpp::Swap
<size
, big_endian
>::writeval(wv
, x
);
6743 of
->write_output_view(offset
, oview_size
, oview
);
6746 // Mips_relobj methods.
6748 // Count the local symbols. The Mips backend needs to know if a symbol
6749 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
6750 // because the Symbol object keeps the ELF symbol type and st_other field.
6751 // For local symbol it is harder because we cannot access this information.
6752 // So we override the do_count_local_symbol in parent and scan local symbols to
6753 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
6754 // I do not want to slow down other ports by calling a per symbol target hook
6755 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6757 template<int size
, bool big_endian
>
6759 Mips_relobj
<size
, big_endian
>::do_count_local_symbols(
6760 Stringpool_template
<char>* pool
,
6761 Stringpool_template
<char>* dynpool
)
6763 // Ask parent to count the local symbols.
6764 Sized_relobj_file
<size
, big_endian
>::do_count_local_symbols(pool
, dynpool
);
6765 const unsigned int loccount
= this->local_symbol_count();
6769 // Initialize the mips16 and micromips function bit-vector.
6770 this->local_symbol_is_mips16_
.resize(loccount
, false);
6771 this->local_symbol_is_micromips_
.resize(loccount
, false);
6773 // Read the symbol table section header.
6774 const unsigned int symtab_shndx
= this->symtab_shndx();
6775 elfcpp::Shdr
<size
, big_endian
>
6776 symtabshdr(this, this->elf_file()->section_header(symtab_shndx
));
6777 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
6779 // Read the local symbols.
6780 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
6781 gold_assert(loccount
== symtabshdr
.get_sh_info());
6782 off_t locsize
= loccount
* sym_size
;
6783 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
6784 locsize
, true, true);
6786 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6788 // Skip the first dummy symbol.
6790 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
6792 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
6793 unsigned char st_other
= sym
.get_st_other();
6794 this->local_symbol_is_mips16_
[i
] = elfcpp::elf_st_is_mips16(st_other
);
6795 this->local_symbol_is_micromips_
[i
] =
6796 elfcpp::elf_st_is_micromips(st_other
);
6800 // Read the symbol information.
6802 template<int size
, bool big_endian
>
6804 Mips_relobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
6806 // Call parent class to read symbol information.
6807 this->base_read_symbols(sd
);
6809 // If this input file is a binary file, it has no processor
6811 Input_file::Format format
= this->input_file()->format();
6812 if (format
!= Input_file::FORMAT_ELF
)
6814 gold_assert(format
== Input_file::FORMAT_BINARY
);
6815 this->merge_processor_specific_data_
= false;
6819 // Read processor-specific flags in ELF file header.
6820 const unsigned char* pehdr
= this->get_view(elfcpp::file_header_offset
,
6821 elfcpp::Elf_sizes
<size
>::ehdr_size
,
6823 elfcpp::Ehdr
<size
, big_endian
> ehdr(pehdr
);
6824 this->processor_specific_flags_
= ehdr
.get_e_flags();
6826 // Get the section names.
6827 const unsigned char* pnamesu
= sd
->section_names
->data();
6828 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
6830 // Initialize the mips16 stub section bit-vectors.
6831 this->section_is_mips16_fn_stub_
.resize(this->shnum(), false);
6832 this->section_is_mips16_call_stub_
.resize(this->shnum(), false);
6833 this->section_is_mips16_call_fp_stub_
.resize(this->shnum(), false);
6835 const size_t shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
6836 const unsigned char* pshdrs
= sd
->section_headers
->data();
6837 const unsigned char* ps
= pshdrs
+ shdr_size
;
6838 bool must_merge_processor_specific_data
= false;
6839 for (unsigned int i
= 1; i
< this->shnum(); ++i
, ps
+= shdr_size
)
6841 elfcpp::Shdr
<size
, big_endian
> shdr(ps
);
6843 // Sometimes an object has no contents except the section name string
6844 // table and an empty symbol table with the undefined symbol. We
6845 // don't want to merge processor-specific data from such an object.
6846 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
6848 // Symbol table is not empty.
6849 const typename
elfcpp::Elf_types
<size
>::Elf_WXword sym_size
=
6850 elfcpp::Elf_sizes
<size
>::sym_size
;
6851 if (shdr
.get_sh_size() > sym_size
)
6852 must_merge_processor_specific_data
= true;
6854 else if (shdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
6855 // If this is neither an empty symbol table nor a string table,
6857 must_merge_processor_specific_data
= true;
6859 if (shdr
.get_sh_type() == elfcpp::SHT_MIPS_REGINFO
)
6861 this->has_reginfo_section_
= true;
6862 // Read the gp value that was used to create this object. We need the
6863 // gp value while processing relocs. The .reginfo section is not used
6864 // in the 64-bit MIPS ELF ABI.
6865 section_offset_type section_offset
= shdr
.get_sh_offset();
6866 section_size_type section_size
=
6867 convert_to_section_size_type(shdr
.get_sh_size());
6868 const unsigned char* view
=
6869 this->get_view(section_offset
, section_size
, true, false);
6871 this->gp_
= elfcpp::Swap
<size
, big_endian
>::readval(view
+ 20);
6873 // Read the rest of .reginfo.
6874 this->gprmask_
= elfcpp::Swap
<size
, big_endian
>::readval(view
);
6875 this->cprmask1_
= elfcpp::Swap
<size
, big_endian
>::readval(view
+ 4);
6876 this->cprmask2_
= elfcpp::Swap
<size
, big_endian
>::readval(view
+ 8);
6877 this->cprmask3_
= elfcpp::Swap
<size
, big_endian
>::readval(view
+ 12);
6878 this->cprmask4_
= elfcpp::Swap
<size
, big_endian
>::readval(view
+ 16);
6881 if (shdr
.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES
)
6883 gold_assert(this->attributes_section_data_
== NULL
);
6884 section_offset_type section_offset
= shdr
.get_sh_offset();
6885 section_size_type section_size
=
6886 convert_to_section_size_type(shdr
.get_sh_size());
6887 const unsigned char* view
=
6888 this->get_view(section_offset
, section_size
, true, false);
6889 this->attributes_section_data_
=
6890 new Attributes_section_data(view
, section_size
);
6893 if (shdr
.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS
)
6895 gold_assert(this->abiflags_
== NULL
);
6896 section_offset_type section_offset
= shdr
.get_sh_offset();
6897 section_size_type section_size
=
6898 convert_to_section_size_type(shdr
.get_sh_size());
6899 const unsigned char* view
=
6900 this->get_view(section_offset
, section_size
, true, false);
6901 this->abiflags_
= new Mips_abiflags
<big_endian
>();
6903 this->abiflags_
->version
=
6904 elfcpp::Swap
<16, big_endian
>::readval(view
);
6905 if (this->abiflags_
->version
!= 0)
6907 gold_error(_("%s: .MIPS.abiflags section has "
6908 "unsupported version %u"),
6909 this->name().c_str(),
6910 this->abiflags_
->version
);
6913 this->abiflags_
->isa_level
=
6914 elfcpp::Swap
<8, big_endian
>::readval(view
+ 2);
6915 this->abiflags_
->isa_rev
=
6916 elfcpp::Swap
<8, big_endian
>::readval(view
+ 3);
6917 this->abiflags_
->gpr_size
=
6918 elfcpp::Swap
<8, big_endian
>::readval(view
+ 4);
6919 this->abiflags_
->cpr1_size
=
6920 elfcpp::Swap
<8, big_endian
>::readval(view
+ 5);
6921 this->abiflags_
->cpr2_size
=
6922 elfcpp::Swap
<8, big_endian
>::readval(view
+ 6);
6923 this->abiflags_
->fp_abi
=
6924 elfcpp::Swap
<8, big_endian
>::readval(view
+ 7);
6925 this->abiflags_
->isa_ext
=
6926 elfcpp::Swap
<32, big_endian
>::readval(view
+ 8);
6927 this->abiflags_
->ases
=
6928 elfcpp::Swap
<32, big_endian
>::readval(view
+ 12);
6929 this->abiflags_
->flags1
=
6930 elfcpp::Swap
<32, big_endian
>::readval(view
+ 16);
6931 this->abiflags_
->flags2
=
6932 elfcpp::Swap
<32, big_endian
>::readval(view
+ 20);
6935 // In the 64-bit ABI, .MIPS.options section holds register information.
6936 // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6937 // starts with this header:
6941 // // Type of option.
6942 // unsigned char kind[1];
6943 // // Size of option descriptor, including header.
6944 // unsigned char size[1];
6945 // // Section index of affected section, or 0 for global option.
6946 // unsigned char section[2];
6947 // // Information specific to this kind of option.
6948 // unsigned char info[4];
6951 // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6952 // the gp value based on what we find. We may see both SHT_MIPS_REGINFO
6953 // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6955 if (shdr
.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS
)
6957 section_offset_type section_offset
= shdr
.get_sh_offset();
6958 section_size_type section_size
=
6959 convert_to_section_size_type(shdr
.get_sh_size());
6960 const unsigned char* view
=
6961 this->get_view(section_offset
, section_size
, true, false);
6962 const unsigned char* end
= view
+ section_size
;
6964 while (view
+ 8 <= end
)
6966 unsigned char kind
= elfcpp::Swap
<8, big_endian
>::readval(view
);
6967 unsigned char sz
= elfcpp::Swap
<8, big_endian
>::readval(view
+ 1);
6970 gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6972 this->name().c_str(),
6973 this->mips_elf_options_section_name(), sz
);
6977 if (this->is_n64() && kind
== elfcpp::ODK_REGINFO
)
6979 // In the 64 bit ABI, an ODK_REGINFO option is the following
6980 // structure. The info field of the options header is not
6985 // // Mask of general purpose registers used.
6986 // unsigned char ri_gprmask[4];
6988 // unsigned char ri_pad[4];
6989 // // Mask of co-processor registers used.
6990 // unsigned char ri_cprmask[4][4];
6991 // // GP register value for this object file.
6992 // unsigned char ri_gp_value[8];
6995 this->gp_
= elfcpp::Swap
<size
, big_endian
>::readval(view
6998 else if (kind
== elfcpp::ODK_REGINFO
)
7000 // In the 32 bit ABI, an ODK_REGINFO option is the following
7001 // structure. The info field of the options header is not
7002 // used. The same structure is used in .reginfo section.
7006 // unsigned char ri_gprmask[4];
7007 // unsigned char ri_cprmask[4][4];
7008 // unsigned char ri_gp_value[4];
7011 this->gp_
= elfcpp::Swap
<size
, big_endian
>::readval(view
7018 const char* name
= pnames
+ shdr
.get_sh_name();
7019 this->section_is_mips16_fn_stub_
[i
] = is_prefix_of(".mips16.fn", name
);
7020 this->section_is_mips16_call_stub_
[i
] =
7021 is_prefix_of(".mips16.call.", name
);
7022 this->section_is_mips16_call_fp_stub_
[i
] =
7023 is_prefix_of(".mips16.call.fp.", name
);
7025 if (strcmp(name
, ".pdr") == 0)
7027 gold_assert(this->pdr_shndx_
== -1U);
7028 this->pdr_shndx_
= i
;
7033 if (!must_merge_processor_specific_data
)
7034 this->merge_processor_specific_data_
= false;
7037 // Discard MIPS16 stub secions that are not needed.
7039 template<int size
, bool big_endian
>
7041 Mips_relobj
<size
, big_endian
>::discard_mips16_stub_sections(Symbol_table
* symtab
)
7043 for (typename
Mips16_stubs_int_map::const_iterator
7044 it
= this->mips16_stub_sections_
.begin();
7045 it
!= this->mips16_stub_sections_
.end(); ++it
)
7047 Mips16_stub_section
<size
, big_endian
>* stub_section
= it
->second
;
7048 if (!stub_section
->is_target_found())
7050 gold_error(_("no relocation found in mips16 stub section '%s'"),
7051 stub_section
->object()
7052 ->section_name(stub_section
->shndx()).c_str());
7055 bool discard
= false;
7056 if (stub_section
->is_for_local_function())
7058 if (stub_section
->is_fn_stub())
7060 // This stub is for a local symbol. This stub will only
7061 // be needed if there is some relocation in this object,
7062 // other than a 16 bit function call, which refers to this
7064 if (!this->has_local_non_16bit_call_relocs(stub_section
->r_sym()))
7067 this->add_local_mips16_fn_stub(stub_section
);
7071 // This stub is for a local symbol. This stub will only
7072 // be needed if there is some relocation (R_MIPS16_26) in
7073 // this object that refers to this symbol.
7074 gold_assert(stub_section
->is_call_stub()
7075 || stub_section
->is_call_fp_stub());
7076 if (!this->has_local_16bit_call_relocs(stub_section
->r_sym()))
7079 this->add_local_mips16_call_stub(stub_section
);
7084 Mips_symbol
<size
>* gsym
= stub_section
->gsym();
7085 if (stub_section
->is_fn_stub())
7087 if (gsym
->has_mips16_fn_stub())
7088 // We already have a stub for this function.
7092 gsym
->set_mips16_fn_stub(stub_section
);
7093 if (gsym
->should_add_dynsym_entry(symtab
))
7095 // If we have a MIPS16 function with a stub, the
7096 // dynamic symbol must refer to the stub, since only
7097 // the stub uses the standard calling conventions.
7098 gsym
->set_need_fn_stub();
7099 if (gsym
->is_from_dynobj())
7100 gsym
->set_needs_dynsym_value();
7103 if (!gsym
->need_fn_stub())
7106 else if (stub_section
->is_call_stub())
7108 if (gsym
->is_mips16())
7109 // We don't need the call_stub; this is a 16 bit
7110 // function, so calls from other 16 bit functions are
7113 else if (gsym
->has_mips16_call_stub())
7114 // We already have a stub for this function.
7117 gsym
->set_mips16_call_stub(stub_section
);
7121 gold_assert(stub_section
->is_call_fp_stub());
7122 if (gsym
->is_mips16())
7123 // We don't need the call_stub; this is a 16 bit
7124 // function, so calls from other 16 bit functions are
7127 else if (gsym
->has_mips16_call_fp_stub())
7128 // We already have a stub for this function.
7131 gsym
->set_mips16_call_fp_stub(stub_section
);
7135 this->set_output_section(stub_section
->shndx(), NULL
);
7139 // Mips_output_data_la25_stub methods.
7141 // Template for standard LA25 stub.
7142 template<int size
, bool big_endian
>
7144 Mips_output_data_la25_stub
<size
, big_endian
>::la25_stub_entry
[] =
7146 0x3c190000, // lui $25,%hi(func)
7147 0x08000000, // j func
7148 0x27390000, // add $25,$25,%lo(func)
7152 // Template for microMIPS LA25 stub.
7153 template<int size
, bool big_endian
>
7155 Mips_output_data_la25_stub
<size
, big_endian
>::la25_stub_micromips_entry
[] =
7157 0x41b9, 0x0000, // lui t9,%hi(func)
7158 0xd400, 0x0000, // j func
7159 0x3339, 0x0000, // addiu t9,t9,%lo(func)
7160 0x0000, 0x0000 // nop
7163 // Create la25 stub for a symbol.
7165 template<int size
, bool big_endian
>
7167 Mips_output_data_la25_stub
<size
, big_endian
>::create_la25_stub(
7168 Symbol_table
* symtab
, Target_mips
<size
, big_endian
>* target
,
7169 Mips_symbol
<size
>* gsym
)
7171 if (!gsym
->has_la25_stub())
7173 gsym
->set_la25_stub_offset(this->symbols_
.size() * 16);
7174 this->symbols_
.push_back(gsym
);
7175 this->create_stub_symbol(gsym
, symtab
, target
, 16);
7179 // Create a symbol for SYM stub's value and size, to help make the disassembly
7182 template<int size
, bool big_endian
>
7184 Mips_output_data_la25_stub
<size
, big_endian
>::create_stub_symbol(
7185 Mips_symbol
<size
>* sym
, Symbol_table
* symtab
,
7186 Target_mips
<size
, big_endian
>* target
, uint64_t symsize
)
7188 std::string
name(".pic.");
7189 name
+= sym
->name();
7191 unsigned int offset
= sym
->la25_stub_offset();
7192 if (sym
->is_micromips())
7195 // Make it a local function.
7196 Symbol
* new_sym
= symtab
->define_in_output_data(name
.c_str(), NULL
,
7197 Symbol_table::PREDEFINED
,
7198 target
->la25_stub_section(),
7199 offset
, symsize
, elfcpp::STT_FUNC
,
7201 elfcpp::STV_DEFAULT
, 0,
7203 new_sym
->set_is_forced_local();
7206 // Write out la25 stubs. This uses the hand-coded instructions above,
7207 // and adjusts them as needed.
7209 template<int size
, bool big_endian
>
7211 Mips_output_data_la25_stub
<size
, big_endian
>::do_write(Output_file
* of
)
7213 const off_t offset
= this->offset();
7214 const section_size_type oview_size
=
7215 convert_to_section_size_type(this->data_size());
7216 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
7218 for (typename
std::vector
<Mips_symbol
<size
>*>::iterator
7219 p
= this->symbols_
.begin();
7220 p
!= this->symbols_
.end();
7223 Mips_symbol
<size
>* sym
= *p
;
7224 unsigned char* pov
= oview
+ sym
->la25_stub_offset();
7226 Mips_address target
= sym
->value();
7227 if (!sym
->is_micromips())
7229 elfcpp::Swap
<32, big_endian
>::writeval(pov
,
7230 la25_stub_entry
[0] | (((target
+ 0x8000) >> 16) & 0xffff));
7231 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 4,
7232 la25_stub_entry
[1] | ((target
>> 2) & 0x3ffffff));
7233 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 8,
7234 la25_stub_entry
[2] | (target
& 0xffff));
7235 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 12, la25_stub_entry
[3]);
7240 // First stub instruction. Paste high 16-bits of the target.
7241 elfcpp::Swap
<16, big_endian
>::writeval(pov
,
7242 la25_stub_micromips_entry
[0]);
7243 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 2,
7244 ((target
+ 0x8000) >> 16) & 0xffff);
7245 // Second stub instruction. Paste low 26-bits of the target, shifted
7247 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 4,
7248 la25_stub_micromips_entry
[2] | ((target
>> 17) & 0x3ff));
7249 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 6,
7250 la25_stub_micromips_entry
[3] | ((target
>> 1) & 0xffff));
7251 // Third stub instruction. Paste low 16-bits of the target.
7252 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 8,
7253 la25_stub_micromips_entry
[4]);
7254 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 10, target
& 0xffff);
7255 // Fourth stub instruction.
7256 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 12,
7257 la25_stub_micromips_entry
[6]);
7258 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 14,
7259 la25_stub_micromips_entry
[7]);
7263 of
->write_output_view(offset
, oview_size
, oview
);
7266 // Mips_output_data_plt methods.
7268 // The format of the first PLT entry in an O32 executable.
7269 template<int size
, bool big_endian
>
7270 const uint32_t Mips_output_data_plt
<size
, big_endian
>::plt0_entry_o32
[] =
7272 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
7273 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
7274 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
7275 0x031cc023, // subu $24, $24, $28
7276 0x03e07825, // or $15, $31, zero
7277 0x0018c082, // srl $24, $24, 2
7278 0x0320f809, // jalr $25
7279 0x2718fffe // subu $24, $24, 2
7282 // The format of the first PLT entry in an N32 executable. Different
7283 // because gp ($28) is not available; we use t2 ($14) instead.
7284 template<int size
, bool big_endian
>
7285 const uint32_t Mips_output_data_plt
<size
, big_endian
>::plt0_entry_n32
[] =
7287 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7288 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
7289 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7290 0x030ec023, // subu $24, $24, $14
7291 0x03e07825, // or $15, $31, zero
7292 0x0018c082, // srl $24, $24, 2
7293 0x0320f809, // jalr $25
7294 0x2718fffe // subu $24, $24, 2
7297 // The format of the first PLT entry in an N64 executable. Different
7298 // from N32 because of the increased size of GOT entries.
7299 template<int size
, bool big_endian
>
7300 const uint32_t Mips_output_data_plt
<size
, big_endian
>::plt0_entry_n64
[] =
7302 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7303 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
7304 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7305 0x030ec023, // subu $24, $24, $14
7306 0x03e07825, // or $15, $31, zero
7307 0x0018c0c2, // srl $24, $24, 3
7308 0x0320f809, // jalr $25
7309 0x2718fffe // subu $24, $24, 2
7312 // The format of the microMIPS first PLT entry in an O32 executable.
7313 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7314 // of the GOTPLT entry handled, so this stub may only be used when
7315 // all the subsequent PLT entries are microMIPS code too.
7317 // The trailing NOP is for alignment and correct disassembly only.
7318 template<int size
, bool big_endian
>
7319 const uint32_t Mips_output_data_plt
<size
, big_endian
>::
7320 plt0_entry_micromips_o32
[] =
7322 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
7323 0xff23, 0x0000, // lw $25, 0($3)
7324 0x0535, // subu $2, $2, $3
7325 0x2525, // srl $2, $2, 2
7326 0x3302, 0xfffe, // subu $24, $2, 2
7327 0x0dff, // move $15, $31
7328 0x45f9, // jalrs $25
7329 0x0f83, // move $28, $3
7333 // The format of the microMIPS first PLT entry in an O32 executable
7334 // in the insn32 mode.
7335 template<int size
, bool big_endian
>
7336 const uint32_t Mips_output_data_plt
<size
, big_endian
>::
7337 plt0_entry_micromips32_o32
[] =
7339 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
7340 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
7341 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
7342 0x0398, 0xc1d0, // subu $24, $24, $28
7343 0x001f, 0x7a90, // or $15, $31, zero
7344 0x0318, 0x1040, // srl $24, $24, 2
7345 0x03f9, 0x0f3c, // jalr $25
7346 0x3318, 0xfffe // subu $24, $24, 2
7349 // The format of subsequent standard entries in the PLT.
7350 template<int size
, bool big_endian
>
7351 const uint32_t Mips_output_data_plt
<size
, big_endian
>::plt_entry
[] =
7353 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7354 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7355 0x03200008, // jr $25
7356 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7359 // The format of subsequent R6 PLT entries.
7360 template<int size
, bool big_endian
>
7361 const uint32_t Mips_output_data_plt
<size
, big_endian
>::plt_entry_r6
[] =
7363 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7364 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7365 0x03200009, // jr $25
7366 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7369 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
7370 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7371 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7372 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7373 // target function address in register v0.
7374 template<int size
, bool big_endian
>
7375 const uint32_t Mips_output_data_plt
<size
, big_endian
>::plt_entry_mips16_o32
[] =
7377 0xb303, // lw $3, 12($pc)
7378 0x651b, // move $24, $3
7379 0x9b60, // lw $3, 0($3)
7381 0x653b, // move $25, $3
7383 0x0000, 0x0000 // .word (.got.plt entry)
7386 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
7387 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7388 template<int size
, bool big_endian
>
7389 const uint32_t Mips_output_data_plt
<size
, big_endian
>::
7390 plt_entry_micromips_o32
[] =
7392 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
7393 0xff22, 0x0000, // lw $25, 0($2)
7395 0x0f02 // move $24, $2
7398 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7399 template<int size
, bool big_endian
>
7400 const uint32_t Mips_output_data_plt
<size
, big_endian
>::
7401 plt_entry_micromips32_o32
[] =
7403 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
7404 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
7405 0x0019, 0x0f3c, // jr $25
7406 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
7409 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7411 template<int size
, bool big_endian
>
7413 Mips_output_data_plt
<size
, big_endian
>::add_entry(Mips_symbol
<size
>* gsym
,
7414 unsigned int r_type
)
7416 gold_assert(!gsym
->has_plt_offset());
7418 // Final PLT offset for a symbol will be set in method set_plt_offsets().
7419 gsym
->set_plt_offset(this->entry_count() * sizeof(plt_entry
)
7420 + sizeof(plt0_entry_o32
));
7421 this->symbols_
.push_back(gsym
);
7423 // Record whether the relocation requires a standard MIPS
7424 // or a compressed code entry.
7425 if (jal_reloc(r_type
))
7427 if (r_type
== elfcpp::R_MIPS_26
)
7428 gsym
->set_needs_mips_plt(true);
7430 gsym
->set_needs_comp_plt(true);
7433 section_offset_type got_offset
= this->got_plt_
->current_data_size();
7435 // Every PLT entry needs a GOT entry which points back to the PLT
7436 // entry (this will be changed by the dynamic linker, normally
7437 // lazily when the function is called).
7438 this->got_plt_
->set_current_data_size(got_offset
+ size
/8);
7440 gsym
->set_needs_dynsym_entry();
7441 this->rel_
->add_global(gsym
, elfcpp::R_MIPS_JUMP_SLOT
, this->got_plt_
,
7445 // Set final PLT offsets. For each symbol, determine whether standard or
7446 // compressed (MIPS16 or microMIPS) PLT entry is used.
7448 template<int size
, bool big_endian
>
7450 Mips_output_data_plt
<size
, big_endian
>::set_plt_offsets()
7452 // The sizes of individual PLT entries.
7453 unsigned int plt_mips_entry_size
= this->standard_plt_entry_size();
7454 unsigned int plt_comp_entry_size
= (!this->target_
->is_output_newabi()
7455 ? this->compressed_plt_entry_size() : 0);
7457 for (typename
std::vector
<Mips_symbol
<size
>*>::const_iterator
7458 p
= this->symbols_
.begin(); p
!= this->symbols_
.end(); ++p
)
7460 Mips_symbol
<size
>* mips_sym
= *p
;
7462 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7463 // so always use a standard entry there.
7465 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7466 // all MIPS16 calls will go via that stub, and there is no benefit
7467 // to having a MIPS16 entry. And in the case of call_stub a
7468 // standard entry actually has to be used as the stub ends with a J
7470 if (this->target_
->is_output_newabi()
7471 || mips_sym
->has_mips16_call_stub()
7472 || mips_sym
->has_mips16_call_fp_stub())
7474 mips_sym
->set_needs_mips_plt(true);
7475 mips_sym
->set_needs_comp_plt(false);
7478 // Otherwise, if there are no direct calls to the function, we
7479 // have a free choice of whether to use standard or compressed
7480 // entries. Prefer microMIPS entries if the object is known to
7481 // contain microMIPS code, so that it becomes possible to create
7482 // pure microMIPS binaries. Prefer standard entries otherwise,
7483 // because MIPS16 ones are no smaller and are usually slower.
7484 if (!mips_sym
->needs_mips_plt() && !mips_sym
->needs_comp_plt())
7486 if (this->target_
->is_output_micromips())
7487 mips_sym
->set_needs_comp_plt(true);
7489 mips_sym
->set_needs_mips_plt(true);
7492 if (mips_sym
->needs_mips_plt())
7494 mips_sym
->set_mips_plt_offset(this->plt_mips_offset_
);
7495 this->plt_mips_offset_
+= plt_mips_entry_size
;
7497 if (mips_sym
->needs_comp_plt())
7499 mips_sym
->set_comp_plt_offset(this->plt_comp_offset_
);
7500 this->plt_comp_offset_
+= plt_comp_entry_size
;
7504 // Figure out the size of the PLT header if we know that we are using it.
7505 if (this->plt_mips_offset_
+ this->plt_comp_offset_
!= 0)
7506 this->plt_header_size_
= this->get_plt_header_size();
7509 // Write out the PLT. This uses the hand-coded instructions above,
7510 // and adjusts them as needed.
7512 template<int size
, bool big_endian
>
7514 Mips_output_data_plt
<size
, big_endian
>::do_write(Output_file
* of
)
7516 const off_t offset
= this->offset();
7517 const section_size_type oview_size
=
7518 convert_to_section_size_type(this->data_size());
7519 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
7521 const off_t gotplt_file_offset
= this->got_plt_
->offset();
7522 const section_size_type gotplt_size
=
7523 convert_to_section_size_type(this->got_plt_
->data_size());
7524 unsigned char* const gotplt_view
= of
->get_output_view(gotplt_file_offset
,
7526 unsigned char* pov
= oview
;
7528 Mips_address plt_address
= this->address();
7530 // Calculate the address of .got.plt.
7531 Mips_address gotplt_addr
= this->got_plt_
->address();
7532 Mips_address gotplt_addr_high
= ((gotplt_addr
+ 0x8000) >> 16) & 0xffff;
7533 Mips_address gotplt_addr_low
= gotplt_addr
& 0xffff;
7535 // The PLT sequence is not safe for N64 if .got.plt's address can
7536 // not be loaded in two instructions.
7537 gold_assert((gotplt_addr
& ~(Mips_address
) 0x7fffffff) == 0
7538 || ~(gotplt_addr
| 0x7fffffff) == 0);
7540 // Write the PLT header.
7541 const uint32_t* plt0_entry
= this->get_plt_header_entry();
7542 if (plt0_entry
== plt0_entry_micromips_o32
)
7544 // Write microMIPS PLT header.
7545 gold_assert(gotplt_addr
% 4 == 0);
7547 Mips_address gotpc_offset
= gotplt_addr
- ((plt_address
| 3) ^ 3);
7549 // ADDIUPC has a span of +/-16MB, check we're in range.
7550 if (gotpc_offset
+ 0x1000000 >= 0x2000000)
7552 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7553 "ADDIUPC"), (long)gotpc_offset
);
7557 elfcpp::Swap
<16, big_endian
>::writeval(pov
,
7558 plt0_entry
[0] | ((gotpc_offset
>> 18) & 0x7f));
7559 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 2,
7560 (gotpc_offset
>> 2) & 0xffff);
7562 for (unsigned int i
= 2;
7563 i
< (sizeof(plt0_entry_micromips_o32
)
7564 / sizeof(plt0_entry_micromips_o32
[0]));
7567 elfcpp::Swap
<16, big_endian
>::writeval(pov
, plt0_entry
[i
]);
7571 else if (plt0_entry
== plt0_entry_micromips32_o32
)
7573 // Write microMIPS PLT header in insn32 mode.
7574 elfcpp::Swap
<16, big_endian
>::writeval(pov
, plt0_entry
[0]);
7575 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 2, gotplt_addr_high
);
7576 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 4, plt0_entry
[2]);
7577 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 6, gotplt_addr_low
);
7578 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 8, plt0_entry
[4]);
7579 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 10, gotplt_addr_low
);
7581 for (unsigned int i
= 6;
7582 i
< (sizeof(plt0_entry_micromips32_o32
)
7583 / sizeof(plt0_entry_micromips32_o32
[0]));
7586 elfcpp::Swap
<16, big_endian
>::writeval(pov
, plt0_entry
[i
]);
7592 // Write standard PLT header.
7593 elfcpp::Swap
<32, big_endian
>::writeval(pov
,
7594 plt0_entry
[0] | gotplt_addr_high
);
7595 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 4,
7596 plt0_entry
[1] | gotplt_addr_low
);
7597 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 8,
7598 plt0_entry
[2] | gotplt_addr_low
);
7600 for (int i
= 3; i
< 8; i
++)
7602 elfcpp::Swap
<32, big_endian
>::writeval(pov
, plt0_entry
[i
]);
7608 unsigned char* gotplt_pov
= gotplt_view
;
7609 unsigned int got_entry_size
= size
/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7611 // The first two entries in .got.plt are reserved.
7612 elfcpp::Swap
<size
, big_endian
>::writeval(gotplt_pov
, 0);
7613 elfcpp::Swap
<size
, big_endian
>::writeval(gotplt_pov
+ got_entry_size
, 0);
7615 unsigned int gotplt_offset
= 2 * got_entry_size
;
7616 gotplt_pov
+= 2 * got_entry_size
;
7618 // Calculate the address of the PLT header.
7619 Mips_address header_address
= (plt_address
7620 + (this->is_plt_header_compressed() ? 1 : 0));
7622 // Initialize compressed PLT area view.
7623 unsigned char* pov2
= pov
+ this->plt_mips_offset_
;
7625 // Write the PLT entries.
7626 for (typename
std::vector
<Mips_symbol
<size
>*>::const_iterator
7627 p
= this->symbols_
.begin();
7628 p
!= this->symbols_
.end();
7629 ++p
, gotplt_pov
+= got_entry_size
, gotplt_offset
+= got_entry_size
)
7631 Mips_symbol
<size
>* mips_sym
= *p
;
7633 // Calculate the address of the .got.plt entry.
7634 uint32_t gotplt_entry_addr
= (gotplt_addr
+ gotplt_offset
);
7635 uint32_t gotplt_entry_addr_hi
= (((gotplt_entry_addr
+ 0x8000) >> 16)
7637 uint32_t gotplt_entry_addr_lo
= gotplt_entry_addr
& 0xffff;
7639 // Initially point the .got.plt entry at the PLT header.
7640 if (this->target_
->is_output_n64())
7641 elfcpp::Swap
<64, big_endian
>::writeval(gotplt_pov
, header_address
);
7643 elfcpp::Swap
<32, big_endian
>::writeval(gotplt_pov
, header_address
);
7645 // Now handle the PLT itself. First the standard entry.
7646 if (mips_sym
->has_mips_plt_offset())
7648 // Pick the load opcode (LW or LD).
7649 uint64_t load
= this->target_
->is_output_n64() ? 0xdc000000
7652 const uint32_t* entry
= this->target_
->is_output_r6() ? plt_entry_r6
7655 // Fill in the PLT entry itself.
7656 elfcpp::Swap
<32, big_endian
>::writeval(pov
,
7657 entry
[0] | gotplt_entry_addr_hi
);
7658 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 4,
7659 entry
[1] | gotplt_entry_addr_lo
| load
);
7660 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 8, entry
[2]);
7661 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 12,
7662 entry
[3] | gotplt_entry_addr_lo
);
7666 // Now the compressed entry. They come after any standard ones.
7667 if (mips_sym
->has_comp_plt_offset())
7669 if (!this->target_
->is_output_micromips())
7671 // Write MIPS16 PLT entry.
7672 const uint32_t* plt_entry
= plt_entry_mips16_o32
;
7674 elfcpp::Swap
<16, big_endian
>::writeval(pov2
, plt_entry
[0]);
7675 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 2, plt_entry
[1]);
7676 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 4, plt_entry
[2]);
7677 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 6, plt_entry
[3]);
7678 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 8, plt_entry
[4]);
7679 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 10, plt_entry
[5]);
7680 elfcpp::Swap
<32, big_endian
>::writeval(pov2
+ 12,
7684 else if (this->target_
->use_32bit_micromips_instructions())
7686 // Write microMIPS PLT entry in insn32 mode.
7687 const uint32_t* plt_entry
= plt_entry_micromips32_o32
;
7689 elfcpp::Swap
<16, big_endian
>::writeval(pov2
, plt_entry
[0]);
7690 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 2,
7691 gotplt_entry_addr_hi
);
7692 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 4, plt_entry
[2]);
7693 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 6,
7694 gotplt_entry_addr_lo
);
7695 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 8, plt_entry
[4]);
7696 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 10, plt_entry
[5]);
7697 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 12, plt_entry
[6]);
7698 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 14,
7699 gotplt_entry_addr_lo
);
7704 // Write microMIPS PLT entry.
7705 const uint32_t* plt_entry
= plt_entry_micromips_o32
;
7707 gold_assert(gotplt_entry_addr
% 4 == 0);
7709 Mips_address loc_address
= plt_address
+ pov2
- oview
;
7710 int gotpc_offset
= gotplt_entry_addr
- ((loc_address
| 3) ^ 3);
7712 // ADDIUPC has a span of +/-16MB, check we're in range.
7713 if (gotpc_offset
+ 0x1000000 >= 0x2000000)
7715 gold_error(_(".got.plt offset of %ld from .plt beyond the "
7716 "range of ADDIUPC"), (long)gotpc_offset
);
7720 elfcpp::Swap
<16, big_endian
>::writeval(pov2
,
7721 plt_entry
[0] | ((gotpc_offset
>> 18) & 0x7f));
7722 elfcpp::Swap
<16, big_endian
>::writeval(
7723 pov2
+ 2, (gotpc_offset
>> 2) & 0xffff);
7724 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 4, plt_entry
[2]);
7725 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 6, plt_entry
[3]);
7726 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 8, plt_entry
[4]);
7727 elfcpp::Swap
<16, big_endian
>::writeval(pov2
+ 10, plt_entry
[5]);
7733 // Check the number of bytes written for standard entries.
7734 gold_assert(static_cast<section_size_type
>(
7735 pov
- oview
- this->plt_header_size_
) == this->plt_mips_offset_
);
7736 // Check the number of bytes written for compressed entries.
7737 gold_assert((static_cast<section_size_type
>(pov2
- pov
)
7738 == this->plt_comp_offset_
));
7739 // Check the total number of bytes written.
7740 gold_assert(static_cast<section_size_type
>(pov2
- oview
) == oview_size
);
7742 gold_assert(static_cast<section_size_type
>(gotplt_pov
- gotplt_view
)
7745 of
->write_output_view(offset
, oview_size
, oview
);
7746 of
->write_output_view(gotplt_file_offset
, gotplt_size
, gotplt_view
);
7749 // Mips_output_data_mips_stubs methods.
7751 // The format of the lazy binding stub when dynamic symbol count is less than
7752 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7753 template<int size
, bool big_endian
>
7755 Mips_output_data_mips_stubs
<size
, big_endian
>::lazy_stub_normal_1
[4] =
7757 0x8f998010, // lw t9,0x8010(gp)
7758 0x03e07825, // or t7,ra,zero
7759 0x0320f809, // jalr t9,ra
7760 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
7763 // The format of the lazy binding stub when dynamic symbol count is less than
7764 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7765 template<int size
, bool big_endian
>
7767 Mips_output_data_mips_stubs
<size
, big_endian
>::lazy_stub_normal_1_n64
[4] =
7769 0xdf998010, // ld t9,0x8010(gp)
7770 0x03e07825, // or t7,ra,zero
7771 0x0320f809, // jalr t9,ra
7772 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
7775 // The format of the lazy binding stub when dynamic symbol count is less than
7776 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7777 template<int size
, bool big_endian
>
7779 Mips_output_data_mips_stubs
<size
, big_endian
>::lazy_stub_normal_2
[4] =
7781 0x8f998010, // lw t9,0x8010(gp)
7782 0x03e07825, // or t7,ra,zero
7783 0x0320f809, // jalr t9,ra
7784 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7787 // The format of the lazy binding stub when dynamic symbol count is less than
7788 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7789 template<int size
, bool big_endian
>
7791 Mips_output_data_mips_stubs
<size
, big_endian
>::lazy_stub_normal_2_n64
[4] =
7793 0xdf998010, // ld t9,0x8010(gp)
7794 0x03e07825, // or t7,ra,zero
7795 0x0320f809, // jalr t9,ra
7796 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7799 // The format of the lazy binding stub when dynamic symbol count is greater than
7800 // 64K, and ABI is not N64.
7801 template<int size
, bool big_endian
>
7802 const uint32_t Mips_output_data_mips_stubs
<size
, big_endian
>::lazy_stub_big
[5] =
7804 0x8f998010, // lw t9,0x8010(gp)
7805 0x03e07825, // or t7,ra,zero
7806 0x3c180000, // lui t8,DYN_INDEX
7807 0x0320f809, // jalr t9,ra
7808 0x37180000 // ori t8,t8,DYN_INDEX
7811 // The format of the lazy binding stub when dynamic symbol count is greater than
7812 // 64K, and ABI is N64.
7813 template<int size
, bool big_endian
>
7815 Mips_output_data_mips_stubs
<size
, big_endian
>::lazy_stub_big_n64
[5] =
7817 0xdf998010, // ld t9,0x8010(gp)
7818 0x03e07825, // or t7,ra,zero
7819 0x3c180000, // lui t8,DYN_INDEX
7820 0x0320f809, // jalr t9,ra
7821 0x37180000 // ori t8,t8,DYN_INDEX
7826 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7827 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7828 template<int size
, bool big_endian
>
7830 Mips_output_data_mips_stubs
<size
, big_endian
>::lazy_stub_micromips_normal_1
[] =
7832 0xff3c, 0x8010, // lw t9,0x8010(gp)
7833 0x0dff, // move t7,ra
7835 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7838 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7839 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7840 template<int size
, bool big_endian
>
7842 Mips_output_data_mips_stubs
<size
, big_endian
>::
7843 lazy_stub_micromips_normal_1_n64
[] =
7845 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7846 0x0dff, // move t7,ra
7848 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7851 // The format of the microMIPS lazy binding stub when dynamic symbol
7852 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7853 // and ABI is not N64.
7854 template<int size
, bool big_endian
>
7856 Mips_output_data_mips_stubs
<size
, big_endian
>::lazy_stub_micromips_normal_2
[] =
7858 0xff3c, 0x8010, // lw t9,0x8010(gp)
7859 0x0dff, // move t7,ra
7861 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7864 // The format of the microMIPS lazy binding stub when dynamic symbol
7865 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7867 template<int size
, bool big_endian
>
7869 Mips_output_data_mips_stubs
<size
, big_endian
>::
7870 lazy_stub_micromips_normal_2_n64
[] =
7872 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7873 0x0dff, // move t7,ra
7875 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7878 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7879 // greater than 64K, and ABI is not N64.
7880 template<int size
, bool big_endian
>
7882 Mips_output_data_mips_stubs
<size
, big_endian
>::lazy_stub_micromips_big
[] =
7884 0xff3c, 0x8010, // lw t9,0x8010(gp)
7885 0x0dff, // move t7,ra
7886 0x41b8, 0x0000, // lui t8,DYN_INDEX
7888 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7891 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7892 // greater than 64K, and ABI is N64.
7893 template<int size
, bool big_endian
>
7895 Mips_output_data_mips_stubs
<size
, big_endian
>::lazy_stub_micromips_big_n64
[] =
7897 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7898 0x0dff, // move t7,ra
7899 0x41b8, 0x0000, // lui t8,DYN_INDEX
7901 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7904 // 32-bit microMIPS stubs.
7906 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7907 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7908 // can use only 32-bit instructions.
7909 template<int size
, bool big_endian
>
7911 Mips_output_data_mips_stubs
<size
, big_endian
>::
7912 lazy_stub_micromips32_normal_1
[] =
7914 0xff3c, 0x8010, // lw t9,0x8010(gp)
7915 0x001f, 0x7a90, // or t7,ra,zero
7916 0x03f9, 0x0f3c, // jalr ra,t9
7917 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7920 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7921 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7922 // use only 32-bit instructions.
7923 template<int size
, bool big_endian
>
7925 Mips_output_data_mips_stubs
<size
, big_endian
>::
7926 lazy_stub_micromips32_normal_1_n64
[] =
7928 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7929 0x001f, 0x7a90, // or t7,ra,zero
7930 0x03f9, 0x0f3c, // jalr ra,t9
7931 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7934 // The format of the microMIPS lazy binding stub when dynamic symbol
7935 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7936 // ABI is not N64, and we can use only 32-bit instructions.
7937 template<int size
, bool big_endian
>
7939 Mips_output_data_mips_stubs
<size
, big_endian
>::
7940 lazy_stub_micromips32_normal_2
[] =
7942 0xff3c, 0x8010, // lw t9,0x8010(gp)
7943 0x001f, 0x7a90, // or t7,ra,zero
7944 0x03f9, 0x0f3c, // jalr ra,t9
7945 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7948 // The format of the microMIPS lazy binding stub when dynamic symbol
7949 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7950 // ABI is N64, and we can use only 32-bit instructions.
7951 template<int size
, bool big_endian
>
7953 Mips_output_data_mips_stubs
<size
, big_endian
>::
7954 lazy_stub_micromips32_normal_2_n64
[] =
7956 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7957 0x001f, 0x7a90, // or t7,ra,zero
7958 0x03f9, 0x0f3c, // jalr ra,t9
7959 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7962 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7963 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7964 template<int size
, bool big_endian
>
7966 Mips_output_data_mips_stubs
<size
, big_endian
>::lazy_stub_micromips32_big
[] =
7968 0xff3c, 0x8010, // lw t9,0x8010(gp)
7969 0x001f, 0x7a90, // or t7,ra,zero
7970 0x41b8, 0x0000, // lui t8,DYN_INDEX
7971 0x03f9, 0x0f3c, // jalr ra,t9
7972 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7975 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7976 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7977 template<int size
, bool big_endian
>
7979 Mips_output_data_mips_stubs
<size
, big_endian
>::lazy_stub_micromips32_big_n64
[] =
7981 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7982 0x001f, 0x7a90, // or t7,ra,zero
7983 0x41b8, 0x0000, // lui t8,DYN_INDEX
7984 0x03f9, 0x0f3c, // jalr ra,t9
7985 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7988 // Create entry for a symbol.
7990 template<int size
, bool big_endian
>
7992 Mips_output_data_mips_stubs
<size
, big_endian
>::make_entry(
7993 Mips_symbol
<size
>* gsym
)
7995 if (!gsym
->has_lazy_stub() && !gsym
->has_plt_offset())
7997 this->symbols_
.insert(gsym
);
7998 gsym
->set_has_lazy_stub(true);
8002 // Remove entry for a symbol.
8004 template<int size
, bool big_endian
>
8006 Mips_output_data_mips_stubs
<size
, big_endian
>::remove_entry(
8007 Mips_symbol
<size
>* gsym
)
8009 if (gsym
->has_lazy_stub())
8011 this->symbols_
.erase(gsym
);
8012 gsym
->set_has_lazy_stub(false);
8016 // Set stub offsets for symbols. This method expects that the number of
8017 // entries in dynamic symbol table is set.
8019 template<int size
, bool big_endian
>
8021 Mips_output_data_mips_stubs
<size
, big_endian
>::set_lazy_stub_offsets()
8023 gold_assert(this->dynsym_count_
!= -1U);
8025 if (this->stub_offsets_are_set_
)
8028 unsigned int stub_size
= this->stub_size();
8029 unsigned int offset
= 0;
8030 for (typename
Mips_stubs_entry_set::const_iterator
8031 p
= this->symbols_
.begin();
8032 p
!= this->symbols_
.end();
8033 ++p
, offset
+= stub_size
)
8035 Mips_symbol
<size
>* mips_sym
= *p
;
8036 mips_sym
->set_lazy_stub_offset(offset
);
8038 this->stub_offsets_are_set_
= true;
8041 template<int size
, bool big_endian
>
8043 Mips_output_data_mips_stubs
<size
, big_endian
>::set_needs_dynsym_value()
8045 for (typename
Mips_stubs_entry_set::const_iterator
8046 p
= this->symbols_
.begin(); p
!= this->symbols_
.end(); ++p
)
8048 Mips_symbol
<size
>* sym
= *p
;
8049 if (sym
->is_from_dynobj())
8050 sym
->set_needs_dynsym_value();
8054 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
8055 // adjusts them as needed.
8057 template<int size
, bool big_endian
>
8059 Mips_output_data_mips_stubs
<size
, big_endian
>::do_write(Output_file
* of
)
8061 const off_t offset
= this->offset();
8062 const section_size_type oview_size
=
8063 convert_to_section_size_type(this->data_size());
8064 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
8066 bool big_stub
= this->dynsym_count_
> 0x10000;
8068 unsigned char* pov
= oview
;
8069 for (typename
Mips_stubs_entry_set::const_iterator
8070 p
= this->symbols_
.begin(); p
!= this->symbols_
.end(); ++p
)
8072 Mips_symbol
<size
>* sym
= *p
;
8073 const uint32_t* lazy_stub
;
8074 bool n64
= this->target_
->is_output_n64();
8076 if (!this->target_
->is_output_micromips())
8078 // Write standard (non-microMIPS) stub.
8081 if (sym
->dynsym_index() & ~0x7fff)
8082 // Dynsym index is between 32K and 64K.
8083 lazy_stub
= n64
? lazy_stub_normal_2_n64
: lazy_stub_normal_2
;
8085 // Dynsym index is less than 32K.
8086 lazy_stub
= n64
? lazy_stub_normal_1_n64
: lazy_stub_normal_1
;
8089 lazy_stub
= n64
? lazy_stub_big_n64
: lazy_stub_big
;
8092 elfcpp::Swap
<32, big_endian
>::writeval(pov
, lazy_stub
[i
]);
8093 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 4, lazy_stub
[i
+ 1]);
8099 // LUI instruction of the big stub. Paste high 16 bits of the
8101 elfcpp::Swap
<32, big_endian
>::writeval(pov
,
8102 lazy_stub
[i
] | ((sym
->dynsym_index() >> 16) & 0x7fff));
8106 elfcpp::Swap
<32, big_endian
>::writeval(pov
, lazy_stub
[i
]);
8107 // Last stub instruction. Paste low 16 bits of the dynsym index.
8108 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 4,
8109 lazy_stub
[i
+ 1] | (sym
->dynsym_index() & 0xffff));
8112 else if (this->target_
->use_32bit_micromips_instructions())
8114 // Write microMIPS stub in insn32 mode.
8117 if (sym
->dynsym_index() & ~0x7fff)
8118 // Dynsym index is between 32K and 64K.
8119 lazy_stub
= n64
? lazy_stub_micromips32_normal_2_n64
8120 : lazy_stub_micromips32_normal_2
;
8122 // Dynsym index is less than 32K.
8123 lazy_stub
= n64
? lazy_stub_micromips32_normal_1_n64
8124 : lazy_stub_micromips32_normal_1
;
8127 lazy_stub
= n64
? lazy_stub_micromips32_big_n64
8128 : lazy_stub_micromips32_big
;
8131 // First stub instruction. We emit 32-bit microMIPS instructions by
8132 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8133 // the instruction where the opcode is must always come first, for
8134 // both little and big endian.
8135 elfcpp::Swap
<16, big_endian
>::writeval(pov
, lazy_stub
[i
]);
8136 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 2, lazy_stub
[i
+ 1]);
8137 // Second stub instruction.
8138 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 4, lazy_stub
[i
+ 2]);
8139 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 6, lazy_stub
[i
+ 3]);
8144 // LUI instruction of the big stub. Paste high 16 bits of the
8146 elfcpp::Swap
<16, big_endian
>::writeval(pov
, lazy_stub
[i
]);
8147 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 2,
8148 (sym
->dynsym_index() >> 16) & 0x7fff);
8152 elfcpp::Swap
<16, big_endian
>::writeval(pov
, lazy_stub
[i
]);
8153 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 2, lazy_stub
[i
+ 1]);
8154 // Last stub instruction. Paste low 16 bits of the dynsym index.
8155 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 4, lazy_stub
[i
+ 2]);
8156 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 6,
8157 sym
->dynsym_index() & 0xffff);
8162 // Write microMIPS stub.
8165 if (sym
->dynsym_index() & ~0x7fff)
8166 // Dynsym index is between 32K and 64K.
8167 lazy_stub
= n64
? lazy_stub_micromips_normal_2_n64
8168 : lazy_stub_micromips_normal_2
;
8170 // Dynsym index is less than 32K.
8171 lazy_stub
= n64
? lazy_stub_micromips_normal_1_n64
8172 : lazy_stub_micromips_normal_1
;
8175 lazy_stub
= n64
? lazy_stub_micromips_big_n64
8176 : lazy_stub_micromips_big
;
8179 // First stub instruction. We emit 32-bit microMIPS instructions by
8180 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8181 // the instruction where the opcode is must always come first, for
8182 // both little and big endian.
8183 elfcpp::Swap
<16, big_endian
>::writeval(pov
, lazy_stub
[i
]);
8184 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 2, lazy_stub
[i
+ 1]);
8185 // Second stub instruction.
8186 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 4, lazy_stub
[i
+ 2]);
8191 // LUI instruction of the big stub. Paste high 16 bits of the
8193 elfcpp::Swap
<16, big_endian
>::writeval(pov
, lazy_stub
[i
]);
8194 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 2,
8195 (sym
->dynsym_index() >> 16) & 0x7fff);
8199 elfcpp::Swap
<16, big_endian
>::writeval(pov
, lazy_stub
[i
]);
8200 // Last stub instruction. Paste low 16 bits of the dynsym index.
8201 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 2, lazy_stub
[i
+ 1]);
8202 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 4,
8203 sym
->dynsym_index() & 0xffff);
8208 // We always allocate 20 bytes for every stub, because final dynsym count is
8209 // not known in method do_finalize_sections. There are 4 unused bytes per
8210 // stub if final dynsym count is less than 0x10000.
8211 unsigned int used
= pov
- oview
;
8212 unsigned int unused
= big_stub
? 0 : this->symbols_
.size() * 4;
8213 gold_assert(static_cast<section_size_type
>(used
+ unused
) == oview_size
);
8215 // Fill the unused space with zeroes.
8216 // TODO(sasa): Can we strip unused bytes during the relaxation?
8218 memset(pov
, 0, unused
);
8220 of
->write_output_view(offset
, oview_size
, oview
);
8223 // Mips_output_section_reginfo methods.
8225 template<int size
, bool big_endian
>
8227 Mips_output_section_reginfo
<size
, big_endian
>::do_write(Output_file
* of
)
8229 off_t offset
= this->offset();
8230 off_t data_size
= this->data_size();
8232 unsigned char* view
= of
->get_output_view(offset
, data_size
);
8233 elfcpp::Swap
<size
, big_endian
>::writeval(view
, this->gprmask_
);
8234 elfcpp::Swap
<size
, big_endian
>::writeval(view
+ 4, this->cprmask1_
);
8235 elfcpp::Swap
<size
, big_endian
>::writeval(view
+ 8, this->cprmask2_
);
8236 elfcpp::Swap
<size
, big_endian
>::writeval(view
+ 12, this->cprmask3_
);
8237 elfcpp::Swap
<size
, big_endian
>::writeval(view
+ 16, this->cprmask4_
);
8238 // Write the gp value.
8239 elfcpp::Swap
<size
, big_endian
>::writeval(view
+ 20,
8240 this->target_
->gp_value());
8242 of
->write_output_view(offset
, data_size
, view
);
8245 // Mips_output_section_options methods.
8247 template<int size
, bool big_endian
>
8249 Mips_output_section_options
<size
, big_endian
>::do_write(Output_file
* of
)
8251 off_t offset
= this->offset();
8252 const section_size_type oview_size
=
8253 convert_to_section_size_type(this->data_size());
8254 unsigned char* view
= of
->get_output_view(offset
, oview_size
);
8255 const unsigned char* end
= view
+ oview_size
;
8257 while (view
+ 8 <= end
)
8259 unsigned char kind
= elfcpp::Swap
<8, big_endian
>::readval(view
);
8260 unsigned char sz
= elfcpp::Swap
<8, big_endian
>::readval(view
+ 1);
8263 gold_error(_("Warning: bad `%s' option size %u smaller "
8264 "than its header in output section"),
8269 // Only update ri_gp_value (GP register value) field of ODK_REGINFO entry.
8270 if (this->target_
->is_output_n64() && kind
== elfcpp::ODK_REGINFO
)
8271 elfcpp::Swap
<size
, big_endian
>::writeval(view
+ 32,
8272 this->target_
->gp_value());
8273 else if (kind
== elfcpp::ODK_REGINFO
)
8274 elfcpp::Swap
<size
, big_endian
>::writeval(view
+ 28,
8275 this->target_
->gp_value());
8280 of
->write_output_view(offset
, oview_size
, view
);
8283 // Mips_output_section_abiflags methods.
8285 template<int size
, bool big_endian
>
8287 Mips_output_section_abiflags
<size
, big_endian
>::do_write(Output_file
* of
)
8289 off_t offset
= this->offset();
8290 off_t data_size
= this->data_size();
8292 unsigned char* view
= of
->get_output_view(offset
, data_size
);
8293 elfcpp::Swap
<16, big_endian
>::writeval(view
, this->abiflags_
.version
);
8294 elfcpp::Swap
<8, big_endian
>::writeval(view
+ 2, this->abiflags_
.isa_level
);
8295 elfcpp::Swap
<8, big_endian
>::writeval(view
+ 3, this->abiflags_
.isa_rev
);
8296 elfcpp::Swap
<8, big_endian
>::writeval(view
+ 4, this->abiflags_
.gpr_size
);
8297 elfcpp::Swap
<8, big_endian
>::writeval(view
+ 5, this->abiflags_
.cpr1_size
);
8298 elfcpp::Swap
<8, big_endian
>::writeval(view
+ 6, this->abiflags_
.cpr2_size
);
8299 elfcpp::Swap
<8, big_endian
>::writeval(view
+ 7, this->abiflags_
.fp_abi
);
8300 elfcpp::Swap
<32, big_endian
>::writeval(view
+ 8, this->abiflags_
.isa_ext
);
8301 elfcpp::Swap
<32, big_endian
>::writeval(view
+ 12, this->abiflags_
.ases
);
8302 elfcpp::Swap
<32, big_endian
>::writeval(view
+ 16, this->abiflags_
.flags1
);
8303 elfcpp::Swap
<32, big_endian
>::writeval(view
+ 20, this->abiflags_
.flags2
);
8305 of
->write_output_view(offset
, data_size
, view
);
8308 // Mips_copy_relocs methods.
8310 // Emit any saved relocs.
8312 template<int sh_type
, int size
, bool big_endian
>
8314 Mips_copy_relocs
<sh_type
, size
, big_endian
>::emit_mips(
8315 Output_data_reloc
<sh_type
, true, size
, big_endian
>* reloc_section
,
8316 Symbol_table
* symtab
, Layout
* layout
, Target_mips
<size
, big_endian
>* target
)
8318 for (typename Copy_relocs
<sh_type
, size
, big_endian
>::
8319 Copy_reloc_entries::iterator p
= this->entries_
.begin();
8320 p
!= this->entries_
.end();
8322 emit_entry(*p
, reloc_section
, symtab
, layout
, target
);
8324 // We no longer need the saved information.
8325 this->entries_
.clear();
8328 // Emit the reloc if appropriate.
8330 template<int sh_type
, int size
, bool big_endian
>
8332 Mips_copy_relocs
<sh_type
, size
, big_endian
>::emit_entry(
8333 Copy_reloc_entry
& entry
,
8334 Output_data_reloc
<sh_type
, true, size
, big_endian
>* reloc_section
,
8335 Symbol_table
* symtab
, Layout
* layout
, Target_mips
<size
, big_endian
>* target
)
8337 // If the symbol is no longer defined in a dynamic object, then we
8338 // emitted a COPY relocation, and we do not want to emit this
8339 // dynamic relocation.
8340 if (!entry
.sym_
->is_from_dynobj())
8343 bool can_make_dynamic
= (entry
.reloc_type_
== elfcpp::R_MIPS_32
8344 || entry
.reloc_type_
== elfcpp::R_MIPS_REL32
8345 || entry
.reloc_type_
== elfcpp::R_MIPS_64
);
8347 Mips_symbol
<size
>* sym
= Mips_symbol
<size
>::as_mips_sym(entry
.sym_
);
8348 if (can_make_dynamic
&& !sym
->has_static_relocs())
8350 Mips_relobj
<size
, big_endian
>* object
=
8351 Mips_relobj
<size
, big_endian
>::as_mips_relobj(entry
.relobj_
);
8352 target
->got_section(symtab
, layout
)->record_global_got_symbol(
8353 sym
, object
, entry
.reloc_type_
, true, false);
8354 if (!symbol_references_local(sym
, sym
->should_add_dynsym_entry(symtab
)))
8355 target
->rel_dyn_section(layout
)->add_global(sym
, elfcpp::R_MIPS_REL32
,
8356 entry
.output_section_
, entry
.relobj_
, entry
.shndx_
, entry
.address_
);
8358 target
->rel_dyn_section(layout
)->add_symbolless_global_addend(
8359 sym
, elfcpp::R_MIPS_REL32
, entry
.output_section_
, entry
.relobj_
,
8360 entry
.shndx_
, entry
.address_
);
8363 this->make_copy_reloc(symtab
, layout
,
8364 static_cast<Sized_symbol
<size
>*>(entry
.sym_
),
8369 // Target_mips methods.
8371 // Return the value to use for a dynamic symbol which requires special
8372 // treatment. This is how we support equality comparisons of function
8373 // pointers across shared library boundaries, as described in the
8374 // processor specific ABI supplement.
8376 template<int size
, bool big_endian
>
8378 Target_mips
<size
, big_endian
>::do_dynsym_value(const Symbol
* gsym
) const
8381 const Mips_symbol
<size
>* mips_sym
= Mips_symbol
<size
>::as_mips_sym(gsym
);
8383 if (!mips_sym
->has_lazy_stub())
8385 if (mips_sym
->has_plt_offset())
8387 // We distinguish between PLT entries and lazy-binding stubs by
8388 // giving the former an st_other value of STO_MIPS_PLT. Set the
8389 // value to the stub address if there are any relocations in the
8390 // binary where pointer equality matters.
8391 if (mips_sym
->pointer_equality_needed())
8393 // Prefer a standard MIPS PLT entry.
8394 if (mips_sym
->has_mips_plt_offset())
8395 value
= this->plt_section()->mips_entry_address(mips_sym
);
8397 value
= this->plt_section()->comp_entry_address(mips_sym
) + 1;
8405 // First, set stub offsets for symbols. This method expects that the
8406 // number of entries in dynamic symbol table is set.
8407 this->mips_stubs_section()->set_lazy_stub_offsets();
8409 // The run-time linker uses the st_value field of the symbol
8410 // to reset the global offset table entry for this external
8411 // to its stub address when unlinking a shared object.
8412 value
= this->mips_stubs_section()->stub_address(mips_sym
);
8415 if (mips_sym
->has_mips16_fn_stub())
8417 // If we have a MIPS16 function with a stub, the dynamic symbol must
8418 // refer to the stub, since only the stub uses the standard calling
8420 value
= mips_sym
->template
8421 get_mips16_fn_stub
<big_endian
>()->output_address();
8427 // Get the dynamic reloc section, creating it if necessary. It's always
8428 // .rel.dyn, even for MIPS64.
8430 template<int size
, bool big_endian
>
8431 typename Target_mips
<size
, big_endian
>::Reloc_section
*
8432 Target_mips
<size
, big_endian
>::rel_dyn_section(Layout
* layout
)
8434 if (this->rel_dyn_
== NULL
)
8436 gold_assert(layout
!= NULL
);
8437 this->rel_dyn_
= new Reloc_section(parameters
->options().combreloc());
8438 layout
->add_output_section_data(".rel.dyn", elfcpp::SHT_REL
,
8439 elfcpp::SHF_ALLOC
, this->rel_dyn_
,
8440 ORDER_DYNAMIC_RELOCS
, false);
8442 // First entry in .rel.dyn has to be null.
8443 // This is hack - we define dummy output data and set its address to 0,
8444 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8445 // This ensures that the entry is null.
8446 Output_data
* od
= new Output_data_zero_fill(0, 0);
8448 this->rel_dyn_
->add_absolute(elfcpp::R_MIPS_NONE
, od
, 0);
8450 return this->rel_dyn_
;
8453 // Get the GOT section, creating it if necessary.
8455 template<int size
, bool big_endian
>
8456 Mips_output_data_got
<size
, big_endian
>*
8457 Target_mips
<size
, big_endian
>::got_section(Symbol_table
* symtab
,
8460 if (this->got_
== NULL
)
8462 gold_assert(symtab
!= NULL
&& layout
!= NULL
);
8464 this->got_
= new Mips_output_data_got
<size
, big_endian
>(this, symtab
,
8466 layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
8467 (elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
|
8468 elfcpp::SHF_MIPS_GPREL
),
8469 this->got_
, ORDER_DATA
, false);
8471 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8472 symtab
->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL
,
8473 Symbol_table::PREDEFINED
,
8475 0, 0, elfcpp::STT_OBJECT
,
8477 elfcpp::STV_HIDDEN
, 0,
8484 // Calculate value of _gp symbol.
8486 template<int size
, bool big_endian
>
8488 Target_mips
<size
, big_endian
>::set_gp(Layout
* layout
, Symbol_table
* symtab
)
8490 gold_assert(this->gp_
== NULL
);
8492 Sized_symbol
<size
>* gp
=
8493 static_cast<Sized_symbol
<size
>*>(symtab
->lookup("_gp"));
8495 // Set _gp symbol if the linker script hasn't created it.
8496 if (gp
== NULL
|| gp
->source() != Symbol::IS_CONSTANT
)
8498 // If there is no .got section, gp should be based on .sdata.
8499 Output_data
* gp_section
= (this->got_
!= NULL
8500 ? this->got_
->output_section()
8501 : layout
->find_output_section(".sdata"));
8503 if (gp_section
!= NULL
)
8504 gp
= static_cast<Sized_symbol
<size
>*>(symtab
->define_in_output_data(
8505 "_gp", NULL
, Symbol_table::PREDEFINED
,
8506 gp_section
, MIPS_GP_OFFSET
, 0,
8509 elfcpp::STV_DEFAULT
,
8516 // Set the dynamic symbol indexes. INDEX is the index of the first
8517 // global dynamic symbol. Pointers to the symbols are stored into the
8518 // vector SYMS. The names are added to DYNPOOL. This returns an
8519 // updated dynamic symbol index.
8521 template<int size
, bool big_endian
>
8523 Target_mips
<size
, big_endian
>::do_set_dynsym_indexes(
8524 std::vector
<Symbol
*>* dyn_symbols
, unsigned int index
,
8525 std::vector
<Symbol
*>* syms
, Stringpool
* dynpool
,
8526 Versions
* versions
, Symbol_table
* symtab
) const
8528 std::vector
<Symbol
*> non_got_symbols
;
8529 std::vector
<Symbol
*> got_symbols
;
8531 reorder_dyn_symbols
<size
, big_endian
>(dyn_symbols
, &non_got_symbols
,
8534 for (std::vector
<Symbol
*>::iterator p
= non_got_symbols
.begin();
8535 p
!= non_got_symbols
.end();
8540 // Note that SYM may already have a dynamic symbol index, since
8541 // some symbols appear more than once in the symbol table, with
8542 // and without a version.
8544 if (!sym
->has_dynsym_index())
8546 sym
->set_dynsym_index(index
);
8548 syms
->push_back(sym
);
8549 dynpool
->add(sym
->name(), false, NULL
);
8551 // Record any version information.
8552 if (sym
->version() != NULL
)
8553 versions
->record_version(symtab
, dynpool
, sym
);
8555 // If the symbol is defined in a dynamic object and is
8556 // referenced in a regular object, then mark the dynamic
8557 // object as needed. This is used to implement --as-needed.
8558 if (sym
->is_from_dynobj() && sym
->in_reg())
8559 sym
->object()->set_is_needed();
8563 for (std::vector
<Symbol
*>::iterator p
= got_symbols
.begin();
8564 p
!= got_symbols
.end();
8568 if (!sym
->has_dynsym_index())
8570 // Record any version information.
8571 if (sym
->version() != NULL
)
8572 versions
->record_version(symtab
, dynpool
, sym
);
8576 index
= versions
->finalize(symtab
, index
, syms
);
8578 int got_sym_count
= 0;
8579 for (std::vector
<Symbol
*>::iterator p
= got_symbols
.begin();
8580 p
!= got_symbols
.end();
8585 if (!sym
->has_dynsym_index())
8588 sym
->set_dynsym_index(index
);
8590 syms
->push_back(sym
);
8591 dynpool
->add(sym
->name(), false, NULL
);
8593 // If the symbol is defined in a dynamic object and is
8594 // referenced in a regular object, then mark the dynamic
8595 // object as needed. This is used to implement --as-needed.
8596 if (sym
->is_from_dynobj() && sym
->in_reg())
8597 sym
->object()->set_is_needed();
8601 // Set index of the first symbol that has .got entry.
8602 this->got_
->set_first_global_got_dynsym_index(
8603 got_sym_count
> 0 ? index
- got_sym_count
: -1U);
8605 if (this->mips_stubs_
!= NULL
)
8606 this->mips_stubs_
->set_dynsym_count(index
);
8611 // Create a PLT entry for a global symbol referenced by r_type relocation.
8613 template<int size
, bool big_endian
>
8615 Target_mips
<size
, big_endian
>::make_plt_entry(Symbol_table
* symtab
,
8617 Mips_symbol
<size
>* gsym
,
8618 unsigned int r_type
)
8620 if (gsym
->has_lazy_stub() || gsym
->has_plt_offset())
8623 if (this->plt_
== NULL
)
8625 // Create the GOT section first.
8626 this->got_section(symtab
, layout
);
8628 this->got_plt_
= new Output_data_space(4, "** GOT PLT");
8629 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
8630 (elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
),
8631 this->got_plt_
, ORDER_DATA
, false);
8633 // The first two entries are reserved.
8634 this->got_plt_
->set_current_data_size(2 * size
/8);
8636 this->plt_
= new Mips_output_data_plt
<size
, big_endian
>(layout
,
8639 layout
->add_output_section_data(".plt", elfcpp::SHT_PROGBITS
,
8641 | elfcpp::SHF_EXECINSTR
),
8642 this->plt_
, ORDER_PLT
, false);
8644 // Make the sh_info field of .rel.plt point to .plt.
8645 Output_section
* rel_plt_os
= this->plt_
->rel_plt()->output_section();
8646 rel_plt_os
->set_info_section(this->plt_
->output_section());
8649 this->plt_
->add_entry(gsym
, r_type
);
8653 // Get the .MIPS.stubs section, creating it if necessary.
8655 template<int size
, bool big_endian
>
8656 Mips_output_data_mips_stubs
<size
, big_endian
>*
8657 Target_mips
<size
, big_endian
>::mips_stubs_section(Layout
* layout
)
8659 if (this->mips_stubs_
== NULL
)
8662 new Mips_output_data_mips_stubs
<size
, big_endian
>(this);
8663 layout
->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS
,
8665 | elfcpp::SHF_EXECINSTR
),
8666 this->mips_stubs_
, ORDER_PLT
, false);
8668 return this->mips_stubs_
;
8671 // Get the LA25 stub section, creating it if necessary.
8673 template<int size
, bool big_endian
>
8674 Mips_output_data_la25_stub
<size
, big_endian
>*
8675 Target_mips
<size
, big_endian
>::la25_stub_section(Layout
* layout
)
8677 if (this->la25_stub_
== NULL
)
8679 this->la25_stub_
= new Mips_output_data_la25_stub
<size
, big_endian
>();
8680 layout
->add_output_section_data(".text", elfcpp::SHT_PROGBITS
,
8682 | elfcpp::SHF_EXECINSTR
),
8683 this->la25_stub_
, ORDER_TEXT
, false);
8685 return this->la25_stub_
;
8688 // Process the relocations to determine unreferenced sections for
8689 // garbage collection.
8691 template<int size
, bool big_endian
>
8693 Target_mips
<size
, big_endian
>::gc_process_relocs(
8694 Symbol_table
* symtab
,
8696 Sized_relobj_file
<size
, big_endian
>* object
,
8697 unsigned int data_shndx
,
8698 unsigned int sh_type
,
8699 const unsigned char* prelocs
,
8701 Output_section
* output_section
,
8702 bool needs_special_offset_handling
,
8703 size_t local_symbol_count
,
8704 const unsigned char* plocal_symbols
)
8706 typedef Target_mips
<size
, big_endian
> Mips
;
8708 if (sh_type
== elfcpp::SHT_REL
)
8710 typedef Mips_classify_reloc
<elfcpp::SHT_REL
, size
, big_endian
>
8713 gold::gc_process_relocs
<size
, big_endian
, Mips
, Scan
, Classify_reloc
>(
8722 needs_special_offset_handling
,
8726 else if (sh_type
== elfcpp::SHT_RELA
)
8728 typedef Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
8731 gold::gc_process_relocs
<size
, big_endian
, Mips
, Scan
, Classify_reloc
>(
8740 needs_special_offset_handling
,
8748 // Scan relocations for a section.
8750 template<int size
, bool big_endian
>
8752 Target_mips
<size
, big_endian
>::scan_relocs(
8753 Symbol_table
* symtab
,
8755 Sized_relobj_file
<size
, big_endian
>* object
,
8756 unsigned int data_shndx
,
8757 unsigned int sh_type
,
8758 const unsigned char* prelocs
,
8760 Output_section
* output_section
,
8761 bool needs_special_offset_handling
,
8762 size_t local_symbol_count
,
8763 const unsigned char* plocal_symbols
)
8765 typedef Target_mips
<size
, big_endian
> Mips
;
8767 if (sh_type
== elfcpp::SHT_REL
)
8769 typedef Mips_classify_reloc
<elfcpp::SHT_REL
, size
, big_endian
>
8772 gold::scan_relocs
<size
, big_endian
, Mips
, Scan
, Classify_reloc
>(
8781 needs_special_offset_handling
,
8785 else if (sh_type
== elfcpp::SHT_RELA
)
8787 typedef Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
8790 gold::scan_relocs
<size
, big_endian
, Mips
, Scan
, Classify_reloc
>(
8799 needs_special_offset_handling
,
8805 template<int size
, bool big_endian
>
8807 Target_mips
<size
, big_endian
>::mips_32bit_flags(elfcpp::Elf_Word flags
)
8809 return ((flags
& elfcpp::EF_MIPS_32BITMODE
) != 0
8810 || (flags
& elfcpp::EF_MIPS_ABI
) == elfcpp::E_MIPS_ABI_O32
8811 || (flags
& elfcpp::EF_MIPS_ABI
) == elfcpp::E_MIPS_ABI_EABI32
8812 || (flags
& elfcpp::EF_MIPS_ARCH
) == elfcpp::E_MIPS_ARCH_1
8813 || (flags
& elfcpp::EF_MIPS_ARCH
) == elfcpp::E_MIPS_ARCH_2
8814 || (flags
& elfcpp::EF_MIPS_ARCH
) == elfcpp::E_MIPS_ARCH_32
8815 || (flags
& elfcpp::EF_MIPS_ARCH
) == elfcpp::E_MIPS_ARCH_32R2
8816 || (flags
& elfcpp::EF_MIPS_ARCH
) == elfcpp::E_MIPS_ARCH_32R6
);
8819 // Return the MACH for a MIPS e_flags value.
8820 template<int size
, bool big_endian
>
8822 Target_mips
<size
, big_endian
>::elf_mips_mach(elfcpp::Elf_Word flags
)
8824 switch (flags
& elfcpp::EF_MIPS_MACH
)
8826 case elfcpp::E_MIPS_MACH_3900
:
8827 return mach_mips3900
;
8829 case elfcpp::E_MIPS_MACH_4010
:
8830 return mach_mips4010
;
8832 case elfcpp::E_MIPS_MACH_4100
:
8833 return mach_mips4100
;
8835 case elfcpp::E_MIPS_MACH_4111
:
8836 return mach_mips4111
;
8838 case elfcpp::E_MIPS_MACH_4120
:
8839 return mach_mips4120
;
8841 case elfcpp::E_MIPS_MACH_4650
:
8842 return mach_mips4650
;
8844 case elfcpp::E_MIPS_MACH_5400
:
8845 return mach_mips5400
;
8847 case elfcpp::E_MIPS_MACH_5500
:
8848 return mach_mips5500
;
8850 case elfcpp::E_MIPS_MACH_5900
:
8851 return mach_mips5900
;
8853 case elfcpp::E_MIPS_MACH_9000
:
8854 return mach_mips9000
;
8856 case elfcpp::E_MIPS_MACH_SB1
:
8857 return mach_mips_sb1
;
8859 case elfcpp::E_MIPS_MACH_LS2E
:
8860 return mach_mips_loongson_2e
;
8862 case elfcpp::E_MIPS_MACH_LS2F
:
8863 return mach_mips_loongson_2f
;
8865 case elfcpp::E_MIPS_MACH_GS464
:
8866 return mach_mips_gs464
;
8868 case elfcpp::E_MIPS_MACH_GS464E
:
8869 return mach_mips_gs464e
;
8871 case elfcpp::E_MIPS_MACH_GS264E
:
8872 return mach_mips_gs264e
;
8874 case elfcpp::E_MIPS_MACH_OCTEON3
:
8875 return mach_mips_octeon3
;
8877 case elfcpp::E_MIPS_MACH_OCTEON2
:
8878 return mach_mips_octeon2
;
8880 case elfcpp::E_MIPS_MACH_OCTEON
:
8881 return mach_mips_octeon
;
8883 case elfcpp::E_MIPS_MACH_XLR
:
8884 return mach_mips_xlr
;
8887 switch (flags
& elfcpp::EF_MIPS_ARCH
)
8890 case elfcpp::E_MIPS_ARCH_1
:
8891 return mach_mips3000
;
8893 case elfcpp::E_MIPS_ARCH_2
:
8894 return mach_mips6000
;
8896 case elfcpp::E_MIPS_ARCH_3
:
8897 return mach_mips4000
;
8899 case elfcpp::E_MIPS_ARCH_4
:
8900 return mach_mips8000
;
8902 case elfcpp::E_MIPS_ARCH_5
:
8905 case elfcpp::E_MIPS_ARCH_32
:
8906 return mach_mipsisa32
;
8908 case elfcpp::E_MIPS_ARCH_64
:
8909 return mach_mipsisa64
;
8911 case elfcpp::E_MIPS_ARCH_32R2
:
8912 return mach_mipsisa32r2
;
8914 case elfcpp::E_MIPS_ARCH_32R6
:
8915 return mach_mipsisa32r6
;
8917 case elfcpp::E_MIPS_ARCH_64R2
:
8918 return mach_mipsisa64r2
;
8920 case elfcpp::E_MIPS_ARCH_64R6
:
8921 return mach_mipsisa64r6
;
8928 // Return the MACH for each .MIPS.abiflags ISA Extension.
8930 template<int size
, bool big_endian
>
8932 Target_mips
<size
, big_endian
>::mips_isa_ext_mach(unsigned int isa_ext
)
8936 case elfcpp::AFL_EXT_3900
:
8937 return mach_mips3900
;
8939 case elfcpp::AFL_EXT_4010
:
8940 return mach_mips4010
;
8942 case elfcpp::AFL_EXT_4100
:
8943 return mach_mips4100
;
8945 case elfcpp::AFL_EXT_4111
:
8946 return mach_mips4111
;
8948 case elfcpp::AFL_EXT_4120
:
8949 return mach_mips4120
;
8951 case elfcpp::AFL_EXT_4650
:
8952 return mach_mips4650
;
8954 case elfcpp::AFL_EXT_5400
:
8955 return mach_mips5400
;
8957 case elfcpp::AFL_EXT_5500
:
8958 return mach_mips5500
;
8960 case elfcpp::AFL_EXT_5900
:
8961 return mach_mips5900
;
8963 case elfcpp::AFL_EXT_10000
:
8964 return mach_mips10000
;
8966 case elfcpp::AFL_EXT_LOONGSON_2E
:
8967 return mach_mips_loongson_2e
;
8969 case elfcpp::AFL_EXT_LOONGSON_2F
:
8970 return mach_mips_loongson_2f
;
8972 case elfcpp::AFL_EXT_SB1
:
8973 return mach_mips_sb1
;
8975 case elfcpp::AFL_EXT_OCTEON
:
8976 return mach_mips_octeon
;
8978 case elfcpp::AFL_EXT_OCTEONP
:
8979 return mach_mips_octeonp
;
8981 case elfcpp::AFL_EXT_OCTEON2
:
8982 return mach_mips_octeon2
;
8984 case elfcpp::AFL_EXT_XLR
:
8985 return mach_mips_xlr
;
8988 return mach_mips3000
;
8992 // Return the .MIPS.abiflags value representing each ISA Extension.
8994 template<int size
, bool big_endian
>
8996 Target_mips
<size
, big_endian
>::mips_isa_ext(unsigned int mips_mach
)
9001 return elfcpp::AFL_EXT_3900
;
9004 return elfcpp::AFL_EXT_4010
;
9007 return elfcpp::AFL_EXT_4100
;
9010 return elfcpp::AFL_EXT_4111
;
9013 return elfcpp::AFL_EXT_4120
;
9016 return elfcpp::AFL_EXT_4650
;
9019 return elfcpp::AFL_EXT_5400
;
9022 return elfcpp::AFL_EXT_5500
;
9025 return elfcpp::AFL_EXT_5900
;
9027 case mach_mips10000
:
9028 return elfcpp::AFL_EXT_10000
;
9030 case mach_mips_loongson_2e
:
9031 return elfcpp::AFL_EXT_LOONGSON_2E
;
9033 case mach_mips_loongson_2f
:
9034 return elfcpp::AFL_EXT_LOONGSON_2F
;
9037 return elfcpp::AFL_EXT_SB1
;
9039 case mach_mips_octeon
:
9040 return elfcpp::AFL_EXT_OCTEON
;
9042 case mach_mips_octeonp
:
9043 return elfcpp::AFL_EXT_OCTEONP
;
9045 case mach_mips_octeon3
:
9046 return elfcpp::AFL_EXT_OCTEON3
;
9048 case mach_mips_octeon2
:
9049 return elfcpp::AFL_EXT_OCTEON2
;
9052 return elfcpp::AFL_EXT_XLR
;
9059 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
9061 template<int size
, bool big_endian
>
9063 Target_mips
<size
, big_endian
>::update_abiflags_isa(const std::string
& name
,
9064 elfcpp::Elf_Word e_flags
, Mips_abiflags
<big_endian
>* abiflags
)
9067 switch (e_flags
& elfcpp::EF_MIPS_ARCH
)
9069 case elfcpp::E_MIPS_ARCH_1
:
9070 new_isa
= this->level_rev(1, 0);
9072 case elfcpp::E_MIPS_ARCH_2
:
9073 new_isa
= this->level_rev(2, 0);
9075 case elfcpp::E_MIPS_ARCH_3
:
9076 new_isa
= this->level_rev(3, 0);
9078 case elfcpp::E_MIPS_ARCH_4
:
9079 new_isa
= this->level_rev(4, 0);
9081 case elfcpp::E_MIPS_ARCH_5
:
9082 new_isa
= this->level_rev(5, 0);
9084 case elfcpp::E_MIPS_ARCH_32
:
9085 new_isa
= this->level_rev(32, 1);
9087 case elfcpp::E_MIPS_ARCH_32R2
:
9088 new_isa
= this->level_rev(32, 2);
9090 case elfcpp::E_MIPS_ARCH_32R6
:
9091 new_isa
= this->level_rev(32, 6);
9093 case elfcpp::E_MIPS_ARCH_64
:
9094 new_isa
= this->level_rev(64, 1);
9096 case elfcpp::E_MIPS_ARCH_64R2
:
9097 new_isa
= this->level_rev(64, 2);
9099 case elfcpp::E_MIPS_ARCH_64R6
:
9100 new_isa
= this->level_rev(64, 6);
9103 gold_error(_("%s: Unknown architecture %s"), name
.c_str(),
9104 this->elf_mips_mach_name(e_flags
));
9107 if (new_isa
> this->level_rev(abiflags
->isa_level
, abiflags
->isa_rev
))
9109 // Decode a single value into level and revision.
9110 abiflags
->isa_level
= new_isa
>> 3;
9111 abiflags
->isa_rev
= new_isa
& 0x7;
9114 // Update the isa_ext if needed.
9115 if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags
->isa_ext
),
9116 this->elf_mips_mach(e_flags
)))
9117 abiflags
->isa_ext
= this->mips_isa_ext(this->elf_mips_mach(e_flags
));
9120 // Infer the content of the ABI flags based on the elf header.
9122 template<int size
, bool big_endian
>
9124 Target_mips
<size
, big_endian
>::infer_abiflags(
9125 Mips_relobj
<size
, big_endian
>* relobj
, Mips_abiflags
<big_endian
>* abiflags
)
9127 const Attributes_section_data
* pasd
= relobj
->attributes_section_data();
9128 int attr_fp_abi
= elfcpp::Val_GNU_MIPS_ABI_FP_ANY
;
9129 elfcpp::Elf_Word e_flags
= relobj
->processor_specific_flags();
9131 this->update_abiflags_isa(relobj
->name(), e_flags
, abiflags
);
9134 // Read fp_abi from the .gnu.attribute section.
9135 const Object_attribute
* attr
=
9136 pasd
->known_attributes(Object_attribute::OBJ_ATTR_GNU
);
9137 attr_fp_abi
= attr
[elfcpp::Tag_GNU_MIPS_ABI_FP
].int_value();
9140 abiflags
->fp_abi
= attr_fp_abi
;
9141 abiflags
->cpr1_size
= elfcpp::AFL_REG_NONE
;
9142 abiflags
->cpr2_size
= elfcpp::AFL_REG_NONE
;
9143 abiflags
->gpr_size
= this->mips_32bit_flags(e_flags
) ? elfcpp::AFL_REG_32
9144 : elfcpp::AFL_REG_64
;
9146 if (abiflags
->fp_abi
== elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9147 || abiflags
->fp_abi
== elfcpp::Val_GNU_MIPS_ABI_FP_XX
9148 || (abiflags
->fp_abi
== elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9149 && abiflags
->gpr_size
== elfcpp::AFL_REG_32
))
9150 abiflags
->cpr1_size
= elfcpp::AFL_REG_32
;
9151 else if (abiflags
->fp_abi
== elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9152 || abiflags
->fp_abi
== elfcpp::Val_GNU_MIPS_ABI_FP_64
9153 || abiflags
->fp_abi
== elfcpp::Val_GNU_MIPS_ABI_FP_64A
)
9154 abiflags
->cpr1_size
= elfcpp::AFL_REG_64
;
9156 if (e_flags
& elfcpp::EF_MIPS_ARCH_ASE_MDMX
)
9157 abiflags
->ases
|= elfcpp::AFL_ASE_MDMX
;
9158 if (e_flags
& elfcpp::EF_MIPS_ARCH_ASE_M16
)
9159 abiflags
->ases
|= elfcpp::AFL_ASE_MIPS16
;
9160 if (e_flags
& elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS
)
9161 abiflags
->ases
|= elfcpp::AFL_ASE_MICROMIPS
;
9163 if (abiflags
->fp_abi
!= elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9164 && abiflags
->fp_abi
!= elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9165 && abiflags
->fp_abi
!= elfcpp::Val_GNU_MIPS_ABI_FP_64A
9166 && abiflags
->isa_level
>= 32
9167 && abiflags
->ases
!= elfcpp::AFL_ASE_LOONGSON_EXT
)
9168 abiflags
->flags1
|= elfcpp::AFL_FLAGS1_ODDSPREG
;
9171 // Create abiflags from elf header or from .MIPS.abiflags section.
9173 template<int size
, bool big_endian
>
9175 Target_mips
<size
, big_endian
>::create_abiflags(
9176 Mips_relobj
<size
, big_endian
>* relobj
,
9177 Mips_abiflags
<big_endian
>* abiflags
)
9179 Mips_abiflags
<big_endian
>* sec_abiflags
= relobj
->abiflags();
9180 Mips_abiflags
<big_endian
> header_abiflags
;
9182 this->infer_abiflags(relobj
, &header_abiflags
);
9184 if (sec_abiflags
== NULL
)
9186 // If there is no input .MIPS.abiflags section, use abiflags created
9188 *abiflags
= header_abiflags
;
9192 this->has_abiflags_section_
= true;
9194 // It is not possible to infer the correct ISA revision for R3 or R5
9195 // so drop down to R2 for the checks.
9196 unsigned char isa_rev
= sec_abiflags
->isa_rev
;
9197 if (isa_rev
== 3 || isa_rev
== 5)
9200 // Check compatibility between abiflags created from elf header
9201 // and abiflags from .MIPS.abiflags section in this object file.
9202 if (this->level_rev(sec_abiflags
->isa_level
, isa_rev
)
9203 < this->level_rev(header_abiflags
.isa_level
, header_abiflags
.isa_rev
))
9204 gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9205 relobj
->name().c_str());
9206 if (header_abiflags
.fp_abi
!= elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9207 && sec_abiflags
->fp_abi
!= header_abiflags
.fp_abi
)
9208 gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9209 ".MIPS.abiflags"), relobj
->name().c_str());
9210 if ((sec_abiflags
->ases
& header_abiflags
.ases
) != header_abiflags
.ases
)
9211 gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9212 relobj
->name().c_str());
9213 // The isa_ext is allowed to be an extension of what can be inferred
9215 if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags
.isa_ext
),
9216 this->mips_isa_ext_mach(sec_abiflags
->isa_ext
)))
9217 gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9218 ".MIPS.abiflags"), relobj
->name().c_str());
9219 if (sec_abiflags
->flags2
!= 0)
9220 gold_warning(_("%s: Unexpected flag in the flags2 field of "
9221 ".MIPS.abiflags (0x%x)"), relobj
->name().c_str(),
9222 sec_abiflags
->flags2
);
9223 // Use abiflags from .MIPS.abiflags section.
9224 *abiflags
= *sec_abiflags
;
9227 // Return the meaning of fp_abi, or "unknown" if not known.
9229 template<int size
, bool big_endian
>
9231 Target_mips
<size
, big_endian
>::fp_abi_string(int fp
)
9235 case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
:
9236 return "-mdouble-float";
9237 case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
:
9238 return "-msingle-float";
9239 case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
:
9240 return "-msoft-float";
9241 case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64
:
9242 return _("-mips32r2 -mfp64 (12 callee-saved)");
9243 case elfcpp::Val_GNU_MIPS_ABI_FP_XX
:
9245 case elfcpp::Val_GNU_MIPS_ABI_FP_64
:
9246 return "-mgp32 -mfp64";
9247 case elfcpp::Val_GNU_MIPS_ABI_FP_64A
:
9248 return "-mgp32 -mfp64 -mno-odd-spreg";
9256 template<int size
, bool big_endian
>
9258 Target_mips
<size
, big_endian
>::select_fp_abi(const std::string
& name
, int in_fp
,
9261 if (in_fp
== out_fp
)
9264 if (out_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_ANY
)
9266 else if (out_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_XX
9267 && (in_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9268 || in_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_64
9269 || in_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_64A
))
9271 else if (in_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_XX
9272 && (out_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9273 || out_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_64
9274 || out_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_64A
))
9275 return out_fp
; // Keep the current setting.
9276 else if (out_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_64A
9277 && in_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_64
)
9279 else if (in_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_64A
9280 && out_fp
== elfcpp::Val_GNU_MIPS_ABI_FP_64
)
9281 return out_fp
; // Keep the current setting.
9282 else if (in_fp
!= elfcpp::Val_GNU_MIPS_ABI_FP_ANY
)
9283 gold_warning(_("%s: FP ABI %s is incompatible with %s"), name
.c_str(),
9284 fp_abi_string(in_fp
), fp_abi_string(out_fp
));
9288 // Merge attributes from input object.
9290 template<int size
, bool big_endian
>
9292 Target_mips
<size
, big_endian
>::merge_obj_attributes(const std::string
& name
,
9293 const Attributes_section_data
* pasd
)
9295 // Return if there is no attributes section data.
9299 // If output has no object attributes, just copy.
9300 if (this->attributes_section_data_
== NULL
)
9302 this->attributes_section_data_
= new Attributes_section_data(*pasd
);
9306 Object_attribute
* out_attr
= this->attributes_section_data_
->known_attributes(
9307 Object_attribute::OBJ_ATTR_GNU
);
9309 out_attr
[elfcpp::Tag_GNU_MIPS_ABI_FP
].set_type(1);
9310 out_attr
[elfcpp::Tag_GNU_MIPS_ABI_FP
].set_int_value(this->abiflags_
->fp_abi
);
9312 // Merge Tag_compatibility attributes and any common GNU ones.
9313 this->attributes_section_data_
->merge(name
.c_str(), pasd
);
9316 // Merge abiflags from input object.
9318 template<int size
, bool big_endian
>
9320 Target_mips
<size
, big_endian
>::merge_obj_abiflags(const std::string
& name
,
9321 Mips_abiflags
<big_endian
>* in_abiflags
)
9323 // If output has no abiflags, just copy.
9324 if (this->abiflags_
== NULL
)
9326 this->abiflags_
= new Mips_abiflags
<big_endian
>(*in_abiflags
);
9330 this->abiflags_
->fp_abi
= this->select_fp_abi(name
, in_abiflags
->fp_abi
,
9331 this->abiflags_
->fp_abi
);
9334 this->abiflags_
->isa_level
= std::max(this->abiflags_
->isa_level
,
9335 in_abiflags
->isa_level
);
9336 this->abiflags_
->isa_rev
= std::max(this->abiflags_
->isa_rev
,
9337 in_abiflags
->isa_rev
);
9338 this->abiflags_
->gpr_size
= std::max(this->abiflags_
->gpr_size
,
9339 in_abiflags
->gpr_size
);
9340 this->abiflags_
->cpr1_size
= std::max(this->abiflags_
->cpr1_size
,
9341 in_abiflags
->cpr1_size
);
9342 this->abiflags_
->cpr2_size
= std::max(this->abiflags_
->cpr2_size
,
9343 in_abiflags
->cpr2_size
);
9344 this->abiflags_
->ases
|= in_abiflags
->ases
;
9345 this->abiflags_
->flags1
|= in_abiflags
->flags1
;
9348 // Check whether machine EXTENSION is an extension of machine BASE.
9349 template<int size
, bool big_endian
>
9351 Target_mips
<size
, big_endian
>::mips_mach_extends(unsigned int base
,
9352 unsigned int extension
)
9354 if (extension
== base
)
9357 if ((base
== mach_mipsisa32
)
9358 && this->mips_mach_extends(mach_mipsisa64
, extension
))
9361 if ((base
== mach_mipsisa32r2
)
9362 && this->mips_mach_extends(mach_mipsisa64r2
, extension
))
9365 for (unsigned int i
= 0; i
< this->mips_mach_extensions_
.size(); ++i
)
9366 if (extension
== this->mips_mach_extensions_
[i
].first
)
9368 extension
= this->mips_mach_extensions_
[i
].second
;
9369 if (extension
== base
)
9376 // Merge file header flags from input object.
9378 template<int size
, bool big_endian
>
9380 Target_mips
<size
, big_endian
>::merge_obj_e_flags(const std::string
& name
,
9381 elfcpp::Elf_Word in_flags
)
9383 // If flags are not set yet, just copy them.
9384 if (!this->are_processor_specific_flags_set())
9386 this->set_processor_specific_flags(in_flags
);
9387 this->mach_
= this->elf_mips_mach(in_flags
);
9391 elfcpp::Elf_Word new_flags
= in_flags
;
9392 elfcpp::Elf_Word old_flags
= this->processor_specific_flags();
9393 elfcpp::Elf_Word merged_flags
= this->processor_specific_flags();
9394 merged_flags
|= new_flags
& elfcpp::EF_MIPS_NOREORDER
;
9396 // Check flag compatibility.
9397 new_flags
&= ~elfcpp::EF_MIPS_NOREORDER
;
9398 old_flags
&= ~elfcpp::EF_MIPS_NOREORDER
;
9400 // Some IRIX 6 BSD-compatibility objects have this bit set. It
9401 // doesn't seem to matter.
9402 new_flags
&= ~elfcpp::EF_MIPS_XGOT
;
9403 old_flags
&= ~elfcpp::EF_MIPS_XGOT
;
9405 // MIPSpro generates ucode info in n64 objects. Again, we should
9406 // just be able to ignore this.
9407 new_flags
&= ~elfcpp::EF_MIPS_UCODE
;
9408 old_flags
&= ~elfcpp::EF_MIPS_UCODE
;
9410 if (new_flags
== old_flags
)
9412 this->set_processor_specific_flags(merged_flags
);
9416 if (((new_flags
& (elfcpp::EF_MIPS_PIC
| elfcpp::EF_MIPS_CPIC
)) != 0)
9417 != ((old_flags
& (elfcpp::EF_MIPS_PIC
| elfcpp::EF_MIPS_CPIC
)) != 0))
9418 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9421 if (new_flags
& (elfcpp::EF_MIPS_PIC
| elfcpp::EF_MIPS_CPIC
))
9422 merged_flags
|= elfcpp::EF_MIPS_CPIC
;
9423 if (!(new_flags
& elfcpp::EF_MIPS_PIC
))
9424 merged_flags
&= ~elfcpp::EF_MIPS_PIC
;
9426 new_flags
&= ~(elfcpp::EF_MIPS_PIC
| elfcpp::EF_MIPS_CPIC
);
9427 old_flags
&= ~(elfcpp::EF_MIPS_PIC
| elfcpp::EF_MIPS_CPIC
);
9429 // Compare the ISAs.
9430 if (mips_32bit_flags(old_flags
) != mips_32bit_flags(new_flags
))
9431 gold_error(_("%s: linking 32-bit code with 64-bit code"), name
.c_str());
9432 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags
), this->mach_
))
9434 // Output ISA isn't the same as, or an extension of, input ISA.
9435 if (this->mips_mach_extends(this->mach_
, this->elf_mips_mach(in_flags
)))
9437 // Copy the architecture info from input object to output. Also copy
9438 // the 32-bit flag (if set) so that we continue to recognise
9439 // output as a 32-bit binary.
9440 this->mach_
= this->elf_mips_mach(in_flags
);
9441 merged_flags
&= ~(elfcpp::EF_MIPS_ARCH
| elfcpp::EF_MIPS_MACH
);
9442 merged_flags
|= (new_flags
& (elfcpp::EF_MIPS_ARCH
9443 | elfcpp::EF_MIPS_MACH
| elfcpp::EF_MIPS_32BITMODE
));
9445 // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9446 this->update_abiflags_isa(name
, merged_flags
, this->abiflags_
);
9448 // Copy across the ABI flags if output doesn't use them
9449 // and if that was what caused us to treat input object as 32-bit.
9450 if ((old_flags
& elfcpp::EF_MIPS_ABI
) == 0
9451 && this->mips_32bit_flags(new_flags
)
9452 && !this->mips_32bit_flags(new_flags
& ~elfcpp::EF_MIPS_ABI
))
9453 merged_flags
|= new_flags
& elfcpp::EF_MIPS_ABI
;
9456 // The ISAs aren't compatible.
9457 gold_error(_("%s: linking %s module with previous %s modules"),
9458 name
.c_str(), this->elf_mips_mach_name(in_flags
),
9459 this->elf_mips_mach_name(merged_flags
));
9462 new_flags
&= (~(elfcpp::EF_MIPS_ARCH
| elfcpp::EF_MIPS_MACH
9463 | elfcpp::EF_MIPS_32BITMODE
));
9464 old_flags
&= (~(elfcpp::EF_MIPS_ARCH
| elfcpp::EF_MIPS_MACH
9465 | elfcpp::EF_MIPS_32BITMODE
));
9468 if ((new_flags
& elfcpp::EF_MIPS_ABI
) != (old_flags
& elfcpp::EF_MIPS_ABI
))
9470 // Only error if both are set (to different values).
9471 if ((new_flags
& elfcpp::EF_MIPS_ABI
)
9472 && (old_flags
& elfcpp::EF_MIPS_ABI
))
9473 gold_error(_("%s: ABI mismatch: linking %s module with "
9474 "previous %s modules"), name
.c_str(),
9475 this->elf_mips_abi_name(in_flags
),
9476 this->elf_mips_abi_name(merged_flags
));
9478 new_flags
&= ~elfcpp::EF_MIPS_ABI
;
9479 old_flags
&= ~elfcpp::EF_MIPS_ABI
;
9482 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
9483 // and allow arbitrary mixing of the remaining ASEs (retain the union).
9484 if ((new_flags
& elfcpp::EF_MIPS_ARCH_ASE
)
9485 != (old_flags
& elfcpp::EF_MIPS_ARCH_ASE
))
9487 int old_micro
= old_flags
& elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS
;
9488 int new_micro
= new_flags
& elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS
;
9489 int old_m16
= old_flags
& elfcpp::EF_MIPS_ARCH_ASE_M16
;
9490 int new_m16
= new_flags
& elfcpp::EF_MIPS_ARCH_ASE_M16
;
9491 int micro_mis
= old_m16
&& new_micro
;
9492 int m16_mis
= old_micro
&& new_m16
;
9494 if (m16_mis
|| micro_mis
)
9495 gold_error(_("%s: ASE mismatch: linking %s module with "
9496 "previous %s modules"), name
.c_str(),
9497 m16_mis
? "MIPS16" : "microMIPS",
9498 m16_mis
? "microMIPS" : "MIPS16");
9500 merged_flags
|= new_flags
& elfcpp::EF_MIPS_ARCH_ASE
;
9502 new_flags
&= ~ elfcpp::EF_MIPS_ARCH_ASE
;
9503 old_flags
&= ~ elfcpp::EF_MIPS_ARCH_ASE
;
9506 // Compare NaN encodings.
9507 if ((new_flags
& elfcpp::EF_MIPS_NAN2008
) != (old_flags
& elfcpp::EF_MIPS_NAN2008
))
9509 gold_error(_("%s: linking %s module with previous %s modules"),
9511 (new_flags
& elfcpp::EF_MIPS_NAN2008
9512 ? "-mnan=2008" : "-mnan=legacy"),
9513 (old_flags
& elfcpp::EF_MIPS_NAN2008
9514 ? "-mnan=2008" : "-mnan=legacy"));
9516 new_flags
&= ~elfcpp::EF_MIPS_NAN2008
;
9517 old_flags
&= ~elfcpp::EF_MIPS_NAN2008
;
9520 // Compare FP64 state.
9521 if ((new_flags
& elfcpp::EF_MIPS_FP64
) != (old_flags
& elfcpp::EF_MIPS_FP64
))
9523 gold_error(_("%s: linking %s module with previous %s modules"),
9525 (new_flags
& elfcpp::EF_MIPS_FP64
9526 ? "-mfp64" : "-mfp32"),
9527 (old_flags
& elfcpp::EF_MIPS_FP64
9528 ? "-mfp64" : "-mfp32"));
9530 new_flags
&= ~elfcpp::EF_MIPS_FP64
;
9531 old_flags
&= ~elfcpp::EF_MIPS_FP64
;
9534 // Warn about any other mismatches.
9535 if (new_flags
!= old_flags
)
9536 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9537 "modules (0x%x)"), name
.c_str(), new_flags
, old_flags
);
9539 this->set_processor_specific_flags(merged_flags
);
9542 // Adjust ELF file header.
9544 template<int size
, bool big_endian
>
9546 Target_mips
<size
, big_endian
>::do_adjust_elf_header(
9547 unsigned char* view
,
9550 gold_assert(len
== elfcpp::Elf_sizes
<size
>::ehdr_size
);
9552 elfcpp::Ehdr
<size
, big_endian
> ehdr(view
);
9553 unsigned char e_ident
[elfcpp::EI_NIDENT
];
9554 elfcpp::Elf_Word flags
= this->processor_specific_flags();
9555 memcpy(e_ident
, ehdr
.get_e_ident(), elfcpp::EI_NIDENT
);
9557 unsigned char ei_abiversion
= 0;
9558 elfcpp::Elf_Half type
= ehdr
.get_e_type();
9559 if (type
== elfcpp::ET_EXEC
9560 && parameters
->options().copyreloc()
9561 && (flags
& (elfcpp::EF_MIPS_PIC
| elfcpp::EF_MIPS_CPIC
))
9562 == elfcpp::EF_MIPS_CPIC
)
9565 if (this->abiflags_
!= NULL
9566 && (this->abiflags_
->fp_abi
== elfcpp::Val_GNU_MIPS_ABI_FP_64
9567 || this->abiflags_
->fp_abi
== elfcpp::Val_GNU_MIPS_ABI_FP_64A
))
9570 e_ident
[elfcpp::EI_ABIVERSION
] = ei_abiversion
;
9571 elfcpp::Ehdr_write
<size
, big_endian
> oehdr(view
);
9572 oehdr
.put_e_ident(e_ident
);
9574 if (this->entry_symbol_is_compressed_
)
9575 oehdr
.put_e_entry(ehdr
.get_e_entry() + 1);
9578 // do_make_elf_object to override the same function in the base class.
9579 // We need to use a target-specific sub-class of
9580 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9581 // Hence we need to have our own ELF object creation.
9583 template<int size
, bool big_endian
>
9585 Target_mips
<size
, big_endian
>::do_make_elf_object(
9586 const std::string
& name
,
9587 Input_file
* input_file
,
9588 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
9590 int et
= ehdr
.get_e_type();
9591 // ET_EXEC files are valid input for --just-symbols/-R,
9592 // and we treat them as relocatable objects.
9593 if (et
== elfcpp::ET_REL
9594 || (et
== elfcpp::ET_EXEC
&& input_file
->just_symbols()))
9596 Mips_relobj
<size
, big_endian
>* obj
=
9597 new Mips_relobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
9601 else if (et
== elfcpp::ET_DYN
)
9603 // TODO(sasa): Should we create Mips_dynobj?
9604 return Target::do_make_elf_object(name
, input_file
, offset
, ehdr
);
9608 gold_error(_("%s: unsupported ELF file type %d"),
9614 // Finalize the sections.
9616 template <int size
, bool big_endian
>
9618 Target_mips
<size
, big_endian
>::do_finalize_sections(Layout
* layout
,
9619 const Input_objects
* input_objects
,
9620 Symbol_table
* symtab
)
9622 const bool relocatable
= parameters
->options().relocatable();
9624 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9625 // DT_FINI have correct values.
9626 Mips_symbol
<size
>* init
= static_cast<Mips_symbol
<size
>*>(
9627 symtab
->lookup(parameters
->options().init()));
9628 if (init
!= NULL
&& (init
->is_mips16() || init
->is_micromips()))
9629 init
->set_value(init
->value() | 1);
9630 Mips_symbol
<size
>* fini
= static_cast<Mips_symbol
<size
>*>(
9631 symtab
->lookup(parameters
->options().fini()));
9632 if (fini
!= NULL
&& (fini
->is_mips16() || fini
->is_micromips()))
9633 fini
->set_value(fini
->value() | 1);
9635 // Check whether the entry symbol is mips16 or micromips. This is needed to
9636 // adjust entry address in ELF header.
9637 Mips_symbol
<size
>* entry
=
9638 static_cast<Mips_symbol
<size
>*>(symtab
->lookup(this->entry_symbol_name()));
9639 this->entry_symbol_is_compressed_
= (entry
!= NULL
&& (entry
->is_mips16()
9640 || entry
->is_micromips()));
9642 if (!parameters
->doing_static_link()
9643 && (strcmp(parameters
->options().hash_style(), "gnu") == 0
9644 || strcmp(parameters
->options().hash_style(), "both") == 0))
9646 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9647 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
9648 // MIPS ABI requires a mapping between the GOT and the symbol table.
9649 gold_error(".gnu.hash is incompatible with the MIPS ABI");
9652 // Check whether the final section that was scanned has HI16 or GOT16
9653 // relocations without the corresponding LO16 part.
9654 if (this->got16_addends_
.size() > 0)
9655 gold_error("Can't find matching LO16 reloc");
9657 Valtype gprmask
= 0;
9658 Valtype cprmask1
= 0;
9659 Valtype cprmask2
= 0;
9660 Valtype cprmask3
= 0;
9661 Valtype cprmask4
= 0;
9662 bool has_reginfo_section
= false;
9664 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
9665 p
!= input_objects
->relobj_end();
9668 Mips_relobj
<size
, big_endian
>* relobj
=
9669 Mips_relobj
<size
, big_endian
>::as_mips_relobj(*p
);
9671 // Check for any mips16 stub sections that we can discard.
9673 relobj
->discard_mips16_stub_sections(symtab
);
9675 if (!relobj
->merge_processor_specific_data())
9678 // Merge .reginfo contents of input objects.
9679 if (relobj
->has_reginfo_section())
9681 has_reginfo_section
= true;
9682 gprmask
|= relobj
->gprmask();
9683 cprmask1
|= relobj
->cprmask1();
9684 cprmask2
|= relobj
->cprmask2();
9685 cprmask3
|= relobj
->cprmask3();
9686 cprmask4
|= relobj
->cprmask4();
9689 // Merge processor specific flags.
9690 Mips_abiflags
<big_endian
> in_abiflags
;
9692 this->create_abiflags(relobj
, &in_abiflags
);
9693 this->merge_obj_e_flags(relobj
->name(),
9694 relobj
->processor_specific_flags());
9695 this->merge_obj_abiflags(relobj
->name(), &in_abiflags
);
9696 this->merge_obj_attributes(relobj
->name(),
9697 relobj
->attributes_section_data());
9700 // Create a .gnu.attributes section if we have merged any attributes
9702 if (this->attributes_section_data_
!= NULL
)
9704 Output_attributes_section_data
* attributes_section
=
9705 new Output_attributes_section_data(*this->attributes_section_data_
);
9706 layout
->add_output_section_data(".gnu.attributes",
9707 elfcpp::SHT_GNU_ATTRIBUTES
, 0,
9708 attributes_section
, ORDER_INVALID
, false);
9711 // Create .MIPS.abiflags output section if there is an input section.
9712 if (this->has_abiflags_section_
)
9714 Mips_output_section_abiflags
<size
, big_endian
>* abiflags_section
=
9715 new Mips_output_section_abiflags
<size
, big_endian
>(*this->abiflags_
);
9717 Output_section
* os
=
9718 layout
->add_output_section_data(".MIPS.abiflags",
9719 elfcpp::SHT_MIPS_ABIFLAGS
,
9721 abiflags_section
, ORDER_INVALID
, false);
9723 if (!relocatable
&& os
!= NULL
)
9725 Output_segment
* abiflags_segment
=
9726 layout
->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS
, elfcpp::PF_R
);
9727 abiflags_segment
->add_output_section_to_nonload(os
, elfcpp::PF_R
);
9731 if (has_reginfo_section
&& !parameters
->options().gc_sections())
9733 // Create .reginfo output section.
9734 Mips_output_section_reginfo
<size
, big_endian
>* reginfo_section
=
9735 new Mips_output_section_reginfo
<size
, big_endian
>(this, gprmask
,
9737 cprmask3
, cprmask4
);
9739 Output_section
* os
=
9740 layout
->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO
,
9741 elfcpp::SHF_ALLOC
, reginfo_section
,
9742 ORDER_INVALID
, false);
9744 if (!relocatable
&& os
!= NULL
)
9746 Output_segment
* reginfo_segment
=
9747 layout
->make_output_segment(elfcpp::PT_MIPS_REGINFO
,
9749 reginfo_segment
->add_output_section_to_nonload(os
, elfcpp::PF_R
);
9753 if (this->plt_
!= NULL
)
9755 // Set final PLT offsets for symbols.
9756 this->plt_section()->set_plt_offsets();
9758 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9759 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9760 // there are no standard PLT entries present.
9761 unsigned char nonvis
= 0;
9762 if (this->is_output_micromips()
9763 && !this->plt_section()->has_standard_entries())
9764 nonvis
= elfcpp::STO_MICROMIPS
>> 2;
9765 symtab
->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL
,
9766 Symbol_table::PREDEFINED
,
9768 0, 0, elfcpp::STT_FUNC
,
9770 elfcpp::STV_DEFAULT
, nonvis
,
9774 if (this->mips_stubs_
!= NULL
)
9776 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9777 unsigned char nonvis
= 0;
9778 if (this->is_output_micromips())
9779 nonvis
= elfcpp::STO_MICROMIPS
>> 2;
9780 symtab
->define_in_output_data("_MIPS_STUBS_", NULL
,
9781 Symbol_table::PREDEFINED
,
9783 0, 0, elfcpp::STT_FUNC
,
9785 elfcpp::STV_DEFAULT
, nonvis
,
9789 if (!relocatable
&& !parameters
->doing_static_link())
9790 // In case there is no .got section, create one.
9791 this->got_section(symtab
, layout
);
9793 // Emit any relocs we saved in an attempt to avoid generating COPY
9795 if (this->copy_relocs_
.any_saved_relocs())
9796 this->copy_relocs_
.emit_mips(this->rel_dyn_section(layout
), symtab
, layout
,
9800 this->set_gp(layout
, symtab
);
9802 // Emit dynamic relocs.
9803 for (typename
std::vector
<Dyn_reloc
>::iterator p
= this->dyn_relocs_
.begin();
9804 p
!= this->dyn_relocs_
.end();
9806 p
->emit(this->rel_dyn_section(layout
), this->got_section(), symtab
);
9808 if (this->has_got_section())
9809 this->got_section()->lay_out_got(layout
, symtab
, input_objects
);
9811 if (this->mips_stubs_
!= NULL
)
9812 this->mips_stubs_
->set_needs_dynsym_value();
9814 // Check for functions that might need $25 to be valid on entry.
9815 // TODO(sasa): Can we do this without iterating over all symbols?
9816 typedef Symbol_visitor_check_symbols
<size
, big_endian
> Symbol_visitor
;
9817 symtab
->for_all_symbols
<size
, Symbol_visitor
>(Symbol_visitor(this, layout
,
9820 // Add NULL segment.
9822 layout
->make_output_segment(elfcpp::PT_NULL
, 0);
9824 // Fill in some more dynamic tags.
9825 // TODO(sasa): Add more dynamic tags.
9826 const Reloc_section
* rel_plt
= (this->plt_
== NULL
9827 ? NULL
: this->plt_
->rel_plt());
9828 layout
->add_target_dynamic_tags(true, this->got_
, rel_plt
,
9829 this->rel_dyn_
, true, false);
9831 Output_data_dynamic
* const odyn
= layout
->dynamic_data();
9834 && !parameters
->doing_static_link())
9837 // This element holds a 32-bit version id for the Runtime
9838 // Linker Interface. This will start at integer value 1.
9840 odyn
->add_constant(elfcpp::DT_MIPS_RLD_VERSION
, d_val
);
9843 d_val
= elfcpp::RHF_NOTPOT
;
9844 odyn
->add_constant(elfcpp::DT_MIPS_FLAGS
, d_val
);
9846 // Save layout for using when emitting custom dynamic tags.
9847 this->layout_
= layout
;
9849 // This member holds the base address of the segment.
9850 odyn
->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS
);
9852 // This member holds the number of entries in the .dynsym section.
9853 odyn
->add_custom(elfcpp::DT_MIPS_SYMTABNO
);
9855 // This member holds the index of the first dynamic symbol
9856 // table entry that corresponds to an entry in the global offset table.
9857 odyn
->add_custom(elfcpp::DT_MIPS_GOTSYM
);
9859 // This member holds the number of local GOT entries.
9860 odyn
->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO
,
9861 this->got_
->get_local_gotno());
9863 if (this->plt_
!= NULL
)
9864 // DT_MIPS_PLTGOT dynamic tag
9865 odyn
->add_section_address(elfcpp::DT_MIPS_PLTGOT
, this->got_plt_
);
9867 if (!parameters
->options().shared())
9869 this->rld_map_
= new Output_data_zero_fill(size
/ 8, size
/ 8);
9871 layout
->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS
,
9872 (elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
),
9873 this->rld_map_
, ORDER_INVALID
, false);
9875 // __RLD_MAP will be filled in by the runtime loader to contain
9876 // a pointer to the _r_debug structure.
9877 Symbol
* rld_map
= symtab
->define_in_output_data("__RLD_MAP", NULL
,
9878 Symbol_table::PREDEFINED
,
9880 0, 0, elfcpp::STT_OBJECT
,
9882 elfcpp::STV_DEFAULT
, 0,
9885 if (!rld_map
->is_forced_local())
9886 rld_map
->set_needs_dynsym_entry();
9888 if (!parameters
->options().pie())
9889 // This member holds the absolute address of the debug pointer.
9890 odyn
->add_section_address(elfcpp::DT_MIPS_RLD_MAP
, this->rld_map_
);
9892 // This member holds the offset to the debug pointer,
9893 // relative to the address of the tag.
9894 odyn
->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL
);
9899 // Get the custom dynamic tag value.
9900 template<int size
, bool big_endian
>
9902 Target_mips
<size
, big_endian
>::do_dynamic_tag_custom_value(elfcpp::DT tag
) const
9906 case elfcpp::DT_MIPS_BASE_ADDRESS
:
9908 // The base address of the segment.
9909 // At this point, the segment list has been sorted into final order,
9910 // so just return vaddr of the first readable PT_LOAD segment.
9911 Output_segment
* seg
=
9912 this->layout_
->find_output_segment(elfcpp::PT_LOAD
, elfcpp::PF_R
, 0);
9913 gold_assert(seg
!= NULL
);
9914 return seg
->vaddr();
9917 case elfcpp::DT_MIPS_SYMTABNO
:
9918 // The number of entries in the .dynsym section.
9919 return this->get_dt_mips_symtabno();
9921 case elfcpp::DT_MIPS_GOTSYM
:
9923 // The index of the first dynamic symbol table entry that corresponds
9924 // to an entry in the GOT.
9925 if (this->got_
->first_global_got_dynsym_index() != -1U)
9926 return this->got_
->first_global_got_dynsym_index();
9928 // In case if we don't have global GOT symbols we default to setting
9929 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9930 return this->get_dt_mips_symtabno();
9933 case elfcpp::DT_MIPS_RLD_MAP_REL
:
9935 // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9936 // relative to the address of the tag.
9937 Output_data_dynamic
* const odyn
= this->layout_
->dynamic_data();
9938 unsigned int entry_offset
=
9939 odyn
->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL
);
9940 gold_assert(entry_offset
!= -1U);
9941 return this->rld_map_
->address() - (odyn
->address() + entry_offset
);
9944 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag
);
9947 return (unsigned int)-1;
9950 // Relocate section data.
9952 template<int size
, bool big_endian
>
9954 Target_mips
<size
, big_endian
>::relocate_section(
9955 const Relocate_info
<size
, big_endian
>* relinfo
,
9956 unsigned int sh_type
,
9957 const unsigned char* prelocs
,
9959 Output_section
* output_section
,
9960 bool needs_special_offset_handling
,
9961 unsigned char* view
,
9962 Mips_address address
,
9963 section_size_type view_size
,
9964 const Reloc_symbol_changes
* reloc_symbol_changes
)
9966 typedef Target_mips
<size
, big_endian
> Mips
;
9967 typedef typename Target_mips
<size
, big_endian
>::Relocate Mips_relocate
;
9969 if (sh_type
== elfcpp::SHT_REL
)
9971 typedef Mips_classify_reloc
<elfcpp::SHT_REL
, size
, big_endian
>
9974 gold::relocate_section
<size
, big_endian
, Mips
, Mips_relocate
,
9975 gold::Default_comdat_behavior
, Classify_reloc
>(
9981 needs_special_offset_handling
,
9985 reloc_symbol_changes
);
9987 else if (sh_type
== elfcpp::SHT_RELA
)
9989 typedef Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
9992 gold::relocate_section
<size
, big_endian
, Mips
, Mips_relocate
,
9993 gold::Default_comdat_behavior
, Classify_reloc
>(
9999 needs_special_offset_handling
,
10003 reloc_symbol_changes
);
10007 // Return the size of a relocation while scanning during a relocatable
10011 mips_get_size_for_reloc(unsigned int r_type
, Relobj
* object
)
10015 case elfcpp::R_MIPS_NONE
:
10016 case elfcpp::R_MIPS_TLS_DTPMOD64
:
10017 case elfcpp::R_MIPS_TLS_DTPREL64
:
10018 case elfcpp::R_MIPS_TLS_TPREL64
:
10021 case elfcpp::R_MIPS_32
:
10022 case elfcpp::R_MIPS_TLS_DTPMOD32
:
10023 case elfcpp::R_MIPS_TLS_DTPREL32
:
10024 case elfcpp::R_MIPS_TLS_TPREL32
:
10025 case elfcpp::R_MIPS_REL32
:
10026 case elfcpp::R_MIPS_PC32
:
10027 case elfcpp::R_MIPS_GPREL32
:
10028 case elfcpp::R_MIPS_JALR
:
10029 case elfcpp::R_MIPS_EH
:
10032 case elfcpp::R_MIPS_16
:
10033 case elfcpp::R_MIPS_HI16
:
10034 case elfcpp::R_MIPS_LO16
:
10035 case elfcpp::R_MIPS_HIGHER
:
10036 case elfcpp::R_MIPS_HIGHEST
:
10037 case elfcpp::R_MIPS_GPREL16
:
10038 case elfcpp::R_MIPS16_HI16
:
10039 case elfcpp::R_MIPS16_LO16
:
10040 case elfcpp::R_MIPS_PC16
:
10041 case elfcpp::R_MIPS_PCHI16
:
10042 case elfcpp::R_MIPS_PCLO16
:
10043 case elfcpp::R_MIPS_GOT16
:
10044 case elfcpp::R_MIPS16_GOT16
:
10045 case elfcpp::R_MIPS_CALL16
:
10046 case elfcpp::R_MIPS16_CALL16
:
10047 case elfcpp::R_MIPS_GOT_HI16
:
10048 case elfcpp::R_MIPS_CALL_HI16
:
10049 case elfcpp::R_MIPS_GOT_LO16
:
10050 case elfcpp::R_MIPS_CALL_LO16
:
10051 case elfcpp::R_MIPS_TLS_DTPREL_HI16
:
10052 case elfcpp::R_MIPS_TLS_DTPREL_LO16
:
10053 case elfcpp::R_MIPS_TLS_TPREL_HI16
:
10054 case elfcpp::R_MIPS_TLS_TPREL_LO16
:
10055 case elfcpp::R_MIPS16_GPREL
:
10056 case elfcpp::R_MIPS_GOT_DISP
:
10057 case elfcpp::R_MIPS_LITERAL
:
10058 case elfcpp::R_MIPS_GOT_PAGE
:
10059 case elfcpp::R_MIPS_GOT_OFST
:
10060 case elfcpp::R_MIPS_TLS_GD
:
10061 case elfcpp::R_MIPS_TLS_LDM
:
10062 case elfcpp::R_MIPS_TLS_GOTTPREL
:
10065 // These relocations are not byte sized
10066 case elfcpp::R_MIPS_26
:
10067 case elfcpp::R_MIPS16_26
:
10068 case elfcpp::R_MIPS_PC21_S2
:
10069 case elfcpp::R_MIPS_PC26_S2
:
10070 case elfcpp::R_MIPS_PC18_S3
:
10071 case elfcpp::R_MIPS_PC19_S2
:
10074 case elfcpp::R_MIPS_COPY
:
10075 case elfcpp::R_MIPS_JUMP_SLOT
:
10076 object
->error(_("unexpected reloc %u in object file"), r_type
);
10080 object
->error(_("unsupported reloc %u in object file"), r_type
);
10085 // Scan the relocs during a relocatable link.
10087 template<int size
, bool big_endian
>
10089 Target_mips
<size
, big_endian
>::scan_relocatable_relocs(
10090 Symbol_table
* symtab
,
10092 Sized_relobj_file
<size
, big_endian
>* object
,
10093 unsigned int data_shndx
,
10094 unsigned int sh_type
,
10095 const unsigned char* prelocs
,
10096 size_t reloc_count
,
10097 Output_section
* output_section
,
10098 bool needs_special_offset_handling
,
10099 size_t local_symbol_count
,
10100 const unsigned char* plocal_symbols
,
10101 Relocatable_relocs
* rr
)
10103 if (sh_type
== elfcpp::SHT_REL
)
10105 typedef Mips_classify_reloc
<elfcpp::SHT_REL
, size
, big_endian
>
10107 typedef Mips_scan_relocatable_relocs
<big_endian
, Classify_reloc
>
10108 Scan_relocatable_relocs
;
10110 gold::scan_relocatable_relocs
<size
, big_endian
, Scan_relocatable_relocs
>(
10118 needs_special_offset_handling
,
10119 local_symbol_count
,
10123 else if (sh_type
== elfcpp::SHT_RELA
)
10125 typedef Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
10127 typedef Mips_scan_relocatable_relocs
<big_endian
, Classify_reloc
>
10128 Scan_relocatable_relocs
;
10130 gold::scan_relocatable_relocs
<size
, big_endian
, Scan_relocatable_relocs
>(
10138 needs_special_offset_handling
,
10139 local_symbol_count
,
10144 gold_unreachable();
10147 // Scan the relocs for --emit-relocs.
10149 template<int size
, bool big_endian
>
10151 Target_mips
<size
, big_endian
>::emit_relocs_scan(
10152 Symbol_table
* symtab
,
10154 Sized_relobj_file
<size
, big_endian
>* object
,
10155 unsigned int data_shndx
,
10156 unsigned int sh_type
,
10157 const unsigned char* prelocs
,
10158 size_t reloc_count
,
10159 Output_section
* output_section
,
10160 bool needs_special_offset_handling
,
10161 size_t local_symbol_count
,
10162 const unsigned char* plocal_syms
,
10163 Relocatable_relocs
* rr
)
10165 if (sh_type
== elfcpp::SHT_REL
)
10167 typedef Mips_classify_reloc
<elfcpp::SHT_REL
, size
, big_endian
>
10169 typedef gold::Default_emit_relocs_strategy
<Classify_reloc
>
10170 Emit_relocs_strategy
;
10172 gold::scan_relocatable_relocs
<size
, big_endian
, Emit_relocs_strategy
>(
10180 needs_special_offset_handling
,
10181 local_symbol_count
,
10185 else if (sh_type
== elfcpp::SHT_RELA
)
10187 typedef Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
10189 typedef gold::Default_emit_relocs_strategy
<Classify_reloc
>
10190 Emit_relocs_strategy
;
10192 gold::scan_relocatable_relocs
<size
, big_endian
, Emit_relocs_strategy
>(
10200 needs_special_offset_handling
,
10201 local_symbol_count
,
10206 gold_unreachable();
10209 // Emit relocations for a section.
10211 template<int size
, bool big_endian
>
10213 Target_mips
<size
, big_endian
>::relocate_relocs(
10214 const Relocate_info
<size
, big_endian
>* relinfo
,
10215 unsigned int sh_type
,
10216 const unsigned char* prelocs
,
10217 size_t reloc_count
,
10218 Output_section
* output_section
,
10219 typename
elfcpp::Elf_types
<size
>::Elf_Off
10220 offset_in_output_section
,
10221 unsigned char* view
,
10222 Mips_address view_address
,
10223 section_size_type view_size
,
10224 unsigned char* reloc_view
,
10225 section_size_type reloc_view_size
)
10227 if (sh_type
== elfcpp::SHT_REL
)
10229 typedef Mips_classify_reloc
<elfcpp::SHT_REL
, size
, big_endian
>
10232 gold::relocate_relocs
<size
, big_endian
, Classify_reloc
>(
10237 offset_in_output_section
,
10244 else if (sh_type
== elfcpp::SHT_RELA
)
10246 typedef Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
10249 gold::relocate_relocs
<size
, big_endian
, Classify_reloc
>(
10254 offset_in_output_section
,
10262 gold_unreachable();
10265 // Perform target-specific processing in a relocatable link. This is
10266 // only used if we use the relocation strategy RELOC_SPECIAL.
10268 template<int size
, bool big_endian
>
10270 Target_mips
<size
, big_endian
>::relocate_special_relocatable(
10271 const Relocate_info
<size
, big_endian
>* relinfo
,
10272 unsigned int sh_type
,
10273 const unsigned char* preloc_in
,
10275 Output_section
* output_section
,
10276 typename
elfcpp::Elf_types
<size
>::Elf_Off offset_in_output_section
,
10277 unsigned char* view
,
10278 Mips_address view_address
,
10280 unsigned char* preloc_out
)
10282 // We can only handle REL type relocation sections.
10283 gold_assert(sh_type
== elfcpp::SHT_REL
);
10285 typedef typename Reloc_types
<elfcpp::SHT_REL
, size
, big_endian
>::Reloc
10287 typedef typename Reloc_types
<elfcpp::SHT_REL
, size
, big_endian
>::Reloc_write
10290 typedef Mips_relocate_functions
<size
, big_endian
> Reloc_funcs
;
10292 const Mips_address invalid_address
= static_cast<Mips_address
>(0) - 1;
10294 Mips_relobj
<size
, big_endian
>* object
=
10295 Mips_relobj
<size
, big_endian
>::as_mips_relobj(relinfo
->object
);
10296 const unsigned int local_count
= object
->local_symbol_count();
10298 Reltype
reloc(preloc_in
);
10299 Reltype_write
reloc_write(preloc_out
);
10301 elfcpp::Elf_types
<32>::Elf_WXword r_info
= reloc
.get_r_info();
10302 const unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(r_info
);
10303 const unsigned int r_type
= elfcpp::elf_r_type
<size
>(r_info
);
10305 // Get the new symbol index.
10306 // We only use RELOC_SPECIAL strategy in local relocations.
10307 gold_assert(r_sym
< local_count
);
10309 // We are adjusting a section symbol. We need to find
10310 // the symbol table index of the section symbol for
10311 // the output section corresponding to input section
10312 // in which this symbol is defined.
10314 unsigned int shndx
= object
->local_symbol_input_shndx(r_sym
, &is_ordinary
);
10315 gold_assert(is_ordinary
);
10316 Output_section
* os
= object
->output_section(shndx
);
10317 gold_assert(os
!= NULL
);
10318 gold_assert(os
->needs_symtab_index());
10319 unsigned int new_symndx
= os
->symtab_index();
10321 // Get the new offset--the location in the output section where
10322 // this relocation should be applied.
10324 Mips_address offset
= reloc
.get_r_offset();
10325 Mips_address new_offset
;
10326 if (offset_in_output_section
!= invalid_address
)
10327 new_offset
= offset
+ offset_in_output_section
;
10330 section_offset_type sot_offset
=
10331 convert_types
<section_offset_type
, Mips_address
>(offset
);
10332 section_offset_type new_sot_offset
=
10333 output_section
->output_offset(object
, relinfo
->data_shndx
,
10335 gold_assert(new_sot_offset
!= -1);
10336 new_offset
= new_sot_offset
;
10339 // In an object file, r_offset is an offset within the section.
10340 // In an executable or dynamic object, generated by
10341 // --emit-relocs, r_offset is an absolute address.
10342 if (!parameters
->options().relocatable())
10344 new_offset
+= view_address
;
10345 if (offset_in_output_section
!= invalid_address
)
10346 new_offset
-= offset_in_output_section
;
10349 reloc_write
.put_r_offset(new_offset
);
10350 reloc_write
.put_r_info(elfcpp::elf_r_info
<32>(new_symndx
, r_type
));
10352 // Handle the reloc addend.
10353 // The relocation uses a section symbol in the input file.
10354 // We are adjusting it to use a section symbol in the output
10355 // file. The input section symbol refers to some address in
10356 // the input section. We need the relocation in the output
10357 // file to refer to that same address. This adjustment to
10358 // the addend is the same calculation we use for a simple
10359 // absolute relocation for the input section symbol.
10360 Valtype calculated_value
= 0;
10361 const Symbol_value
<size
>* psymval
= object
->local_symbol(r_sym
);
10363 unsigned char* paddend
= view
+ offset
;
10364 typename
Reloc_funcs::Status reloc_status
= Reloc_funcs::STATUS_OKAY
;
10367 case elfcpp::R_MIPS_26
:
10368 reloc_status
= Reloc_funcs::rel26(paddend
, object
, psymval
,
10369 offset_in_output_section
, true, 0, sh_type
== elfcpp::SHT_REL
, NULL
,
10370 false /*TODO(sasa): cross mode jump*/, r_type
, this->jal_to_bal(),
10371 false, &calculated_value
);
10375 gold_unreachable();
10378 // Report any errors.
10379 switch (reloc_status
)
10381 case Reloc_funcs::STATUS_OKAY
:
10383 case Reloc_funcs::STATUS_OVERFLOW
:
10384 gold_error_at_location(relinfo
, relnum
, reloc
.get_r_offset(),
10385 _("relocation overflow: "
10386 "%u against local symbol %u in %s"),
10387 r_type
, r_sym
, object
->name().c_str());
10389 case Reloc_funcs::STATUS_BAD_RELOC
:
10390 gold_error_at_location(relinfo
, relnum
, reloc
.get_r_offset(),
10391 _("unexpected opcode while processing relocation"));
10394 gold_unreachable();
10398 // Optimize the TLS relocation type based on what we know about the
10399 // symbol. IS_FINAL is true if the final address of this symbol is
10400 // known at link time.
10402 template<int size
, bool big_endian
>
10403 tls::Tls_optimization
10404 Target_mips
<size
, big_endian
>::optimize_tls_reloc(bool, int)
10406 // FIXME: Currently we do not do any TLS optimization.
10407 return tls::TLSOPT_NONE
;
10410 // Scan a relocation for a local symbol.
10412 template<int size
, bool big_endian
>
10414 Target_mips
<size
, big_endian
>::Scan::local(
10415 Symbol_table
* symtab
,
10417 Target_mips
<size
, big_endian
>* target
,
10418 Sized_relobj_file
<size
, big_endian
>* object
,
10419 unsigned int data_shndx
,
10420 Output_section
* output_section
,
10421 const Relatype
* rela
,
10422 const Reltype
* rel
,
10423 unsigned int rel_type
,
10424 unsigned int r_type
,
10425 const elfcpp::Sym
<size
, big_endian
>& lsym
,
10431 Mips_address r_offset
;
10432 unsigned int r_sym
;
10433 typename
elfcpp::Elf_types
<size
>::Elf_Swxword r_addend
;
10435 if (rel_type
== elfcpp::SHT_RELA
)
10437 r_offset
= rela
->get_r_offset();
10438 r_sym
= Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>::
10440 r_addend
= rela
->get_r_addend();
10444 r_offset
= rel
->get_r_offset();
10445 r_sym
= Mips_classify_reloc
<elfcpp::SHT_REL
, size
, big_endian
>::
10450 Mips_relobj
<size
, big_endian
>* mips_obj
=
10451 Mips_relobj
<size
, big_endian
>::as_mips_relobj(object
);
10453 if (mips_obj
->is_mips16_stub_section(data_shndx
))
10455 mips_obj
->get_mips16_stub_section(data_shndx
)
10456 ->new_local_reloc_found(r_type
, r_sym
);
10459 if (r_type
== elfcpp::R_MIPS_NONE
)
10460 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10464 if (!mips16_call_reloc(r_type
)
10465 && !mips_obj
->section_allows_mips16_refs(data_shndx
))
10466 // This reloc would need to refer to a MIPS16 hard-float stub, if
10467 // there is one. We ignore MIPS16 stub sections and .pdr section when
10468 // looking for relocs that would need to refer to MIPS16 stubs.
10469 mips_obj
->add_local_non_16bit_call(r_sym
);
10471 if (r_type
== elfcpp::R_MIPS16_26
10472 && !mips_obj
->section_allows_mips16_refs(data_shndx
))
10473 mips_obj
->add_local_16bit_call(r_sym
);
10477 case elfcpp::R_MIPS_GOT16
:
10478 case elfcpp::R_MIPS_CALL16
:
10479 case elfcpp::R_MIPS_CALL_HI16
:
10480 case elfcpp::R_MIPS_CALL_LO16
:
10481 case elfcpp::R_MIPS_GOT_HI16
:
10482 case elfcpp::R_MIPS_GOT_LO16
:
10483 case elfcpp::R_MIPS_GOT_PAGE
:
10484 case elfcpp::R_MIPS_GOT_OFST
:
10485 case elfcpp::R_MIPS_GOT_DISP
:
10486 case elfcpp::R_MIPS_TLS_GOTTPREL
:
10487 case elfcpp::R_MIPS_TLS_GD
:
10488 case elfcpp::R_MIPS_TLS_LDM
:
10489 case elfcpp::R_MIPS16_GOT16
:
10490 case elfcpp::R_MIPS16_CALL16
:
10491 case elfcpp::R_MIPS16_TLS_GOTTPREL
:
10492 case elfcpp::R_MIPS16_TLS_GD
:
10493 case elfcpp::R_MIPS16_TLS_LDM
:
10494 case elfcpp::R_MICROMIPS_GOT16
:
10495 case elfcpp::R_MICROMIPS_CALL16
:
10496 case elfcpp::R_MICROMIPS_CALL_HI16
:
10497 case elfcpp::R_MICROMIPS_CALL_LO16
:
10498 case elfcpp::R_MICROMIPS_GOT_HI16
:
10499 case elfcpp::R_MICROMIPS_GOT_LO16
:
10500 case elfcpp::R_MICROMIPS_GOT_PAGE
:
10501 case elfcpp::R_MICROMIPS_GOT_OFST
:
10502 case elfcpp::R_MICROMIPS_GOT_DISP
:
10503 case elfcpp::R_MICROMIPS_TLS_GOTTPREL
:
10504 case elfcpp::R_MICROMIPS_TLS_GD
:
10505 case elfcpp::R_MICROMIPS_TLS_LDM
:
10506 case elfcpp::R_MIPS_EH
:
10507 // We need a GOT section.
10508 target
->got_section(symtab
, layout
);
10515 if (call_lo16_reloc(r_type
)
10516 || got_lo16_reloc(r_type
)
10517 || got_disp_reloc(r_type
)
10518 || eh_reloc(r_type
))
10520 // We may need a local GOT entry for this relocation. We
10521 // don't count R_MIPS_GOT_PAGE because we can estimate the
10522 // maximum number of pages needed by looking at the size of
10523 // the segment. Similar comments apply to R_MIPS*_GOT16 and
10524 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
10525 // R_MIPS_CALL_HI16 because these are always followed by an
10526 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10527 Mips_output_data_got
<size
, big_endian
>* got
=
10528 target
->got_section(symtab
, layout
);
10529 bool is_section_symbol
= lsym
.get_st_type() == elfcpp::STT_SECTION
;
10530 got
->record_local_got_symbol(mips_obj
, r_sym
, r_addend
, r_type
, -1U,
10531 is_section_symbol
);
10536 case elfcpp::R_MIPS_CALL16
:
10537 case elfcpp::R_MIPS16_CALL16
:
10538 case elfcpp::R_MICROMIPS_CALL16
:
10539 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10540 (unsigned long)r_offset
);
10543 case elfcpp::R_MIPS_GOT_PAGE
:
10544 case elfcpp::R_MICROMIPS_GOT_PAGE
:
10545 case elfcpp::R_MIPS16_GOT16
:
10546 case elfcpp::R_MIPS_GOT16
:
10547 case elfcpp::R_MIPS_GOT_HI16
:
10548 case elfcpp::R_MIPS_GOT_LO16
:
10549 case elfcpp::R_MICROMIPS_GOT16
:
10550 case elfcpp::R_MICROMIPS_GOT_HI16
:
10551 case elfcpp::R_MICROMIPS_GOT_LO16
:
10553 // This relocation needs a page entry in the GOT.
10554 // Get the section contents.
10555 section_size_type view_size
= 0;
10556 const unsigned char* view
= object
->section_contents(data_shndx
,
10557 &view_size
, false);
10560 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(view
);
10561 Valtype32 addend
= (rel_type
== elfcpp::SHT_REL
? val
& 0xffff
10564 if (rel_type
== elfcpp::SHT_REL
&& got16_reloc(r_type
))
10565 target
->got16_addends_
.push_back(got16_addend
<size
, big_endian
>(
10566 object
, data_shndx
, r_type
, r_sym
, addend
));
10568 target
->got_section()->record_got_page_entry(mips_obj
, r_sym
, addend
);
10572 case elfcpp::R_MIPS_HI16
:
10573 case elfcpp::R_MIPS_PCHI16
:
10574 case elfcpp::R_MIPS16_HI16
:
10575 case elfcpp::R_MICROMIPS_HI16
:
10576 // Record the reloc so that we can check whether the corresponding LO16
10578 if (rel_type
== elfcpp::SHT_REL
)
10579 target
->got16_addends_
.push_back(got16_addend
<size
, big_endian
>(
10580 object
, data_shndx
, r_type
, r_sym
, 0));
10583 case elfcpp::R_MIPS_LO16
:
10584 case elfcpp::R_MIPS_PCLO16
:
10585 case elfcpp::R_MIPS16_LO16
:
10586 case elfcpp::R_MICROMIPS_LO16
:
10588 if (rel_type
!= elfcpp::SHT_REL
)
10591 // Find corresponding GOT16/HI16 relocation.
10593 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10594 // be immediately following. However, for the IRIX6 ABI, the next
10595 // relocation may be a composed relocation consisting of several
10596 // relocations for the same address. In that case, the R_MIPS_LO16
10597 // relocation may occur as one of these. We permit a similar
10598 // extension in general, as that is useful for GCC.
10600 // In some cases GCC dead code elimination removes the LO16 but
10601 // keeps the corresponding HI16. This is strictly speaking a
10602 // violation of the ABI but not immediately harmful.
10604 typename
std::list
<got16_addend
<size
, big_endian
> >::iterator it
=
10605 target
->got16_addends_
.begin();
10606 while (it
!= target
->got16_addends_
.end())
10608 got16_addend
<size
, big_endian
> _got16_addend
= *it
;
10610 // TODO(sasa): Split got16_addends_ list into two lists - one for
10611 // GOT16 relocs and the other for HI16 relocs.
10613 // Report an error if we find HI16 or GOT16 reloc from the
10614 // previous section without the matching LO16 part.
10615 if (_got16_addend
.object
!= object
10616 || _got16_addend
.shndx
!= data_shndx
)
10618 gold_error("Can't find matching LO16 reloc");
10622 if (_got16_addend
.r_sym
!= r_sym
10623 || !is_matching_lo16_reloc(_got16_addend
.r_type
, r_type
))
10629 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10630 // For GOT16, we need to calculate combined addend and record GOT page
10632 if (got16_reloc(_got16_addend
.r_type
))
10635 section_size_type view_size
= 0;
10636 const unsigned char* view
= object
->section_contents(data_shndx
,
10641 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(view
);
10642 int32_t addend
= Bits
<16>::sign_extend32(val
& 0xffff);
10644 addend
= (_got16_addend
.addend
<< 16) + addend
;
10645 target
->got_section()->record_got_page_entry(mips_obj
, r_sym
,
10649 it
= target
->got16_addends_
.erase(it
);
10657 case elfcpp::R_MIPS_32
:
10658 case elfcpp::R_MIPS_REL32
:
10659 case elfcpp::R_MIPS_64
:
10661 if (parameters
->options().output_is_position_independent())
10663 // If building a shared library (or a position-independent
10664 // executable), we need to create a dynamic relocation for
10666 if (is_readonly_section(output_section
))
10668 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
10669 rel_dyn
->add_symbolless_local_addend(object
, r_sym
,
10670 elfcpp::R_MIPS_REL32
,
10671 output_section
, data_shndx
,
10677 case elfcpp::R_MIPS_TLS_GOTTPREL
:
10678 case elfcpp::R_MIPS16_TLS_GOTTPREL
:
10679 case elfcpp::R_MICROMIPS_TLS_GOTTPREL
:
10680 case elfcpp::R_MIPS_TLS_LDM
:
10681 case elfcpp::R_MIPS16_TLS_LDM
:
10682 case elfcpp::R_MICROMIPS_TLS_LDM
:
10683 case elfcpp::R_MIPS_TLS_GD
:
10684 case elfcpp::R_MIPS16_TLS_GD
:
10685 case elfcpp::R_MICROMIPS_TLS_GD
:
10687 bool output_is_shared
= parameters
->options().shared();
10688 const tls::Tls_optimization optimized_type
10689 = Target_mips
<size
, big_endian
>::optimize_tls_reloc(
10690 !output_is_shared
, r_type
);
10693 case elfcpp::R_MIPS_TLS_GD
:
10694 case elfcpp::R_MIPS16_TLS_GD
:
10695 case elfcpp::R_MICROMIPS_TLS_GD
:
10696 if (optimized_type
== tls::TLSOPT_NONE
)
10698 // Create a pair of GOT entries for the module index and
10699 // dtv-relative offset.
10700 Mips_output_data_got
<size
, big_endian
>* got
=
10701 target
->got_section(symtab
, layout
);
10702 unsigned int shndx
= lsym
.get_st_shndx();
10704 shndx
= object
->adjust_sym_shndx(r_sym
, shndx
, &is_ordinary
);
10707 object
->error(_("local symbol %u has bad shndx %u"),
10711 got
->record_local_got_symbol(mips_obj
, r_sym
, r_addend
, r_type
,
10716 // FIXME: TLS optimization not supported yet.
10717 gold_unreachable();
10721 case elfcpp::R_MIPS_TLS_LDM
:
10722 case elfcpp::R_MIPS16_TLS_LDM
:
10723 case elfcpp::R_MICROMIPS_TLS_LDM
:
10724 if (optimized_type
== tls::TLSOPT_NONE
)
10726 // We always record LDM symbols as local with index 0.
10727 target
->got_section()->record_local_got_symbol(mips_obj
, 0,
10733 // FIXME: TLS optimization not supported yet.
10734 gold_unreachable();
10737 case elfcpp::R_MIPS_TLS_GOTTPREL
:
10738 case elfcpp::R_MIPS16_TLS_GOTTPREL
:
10739 case elfcpp::R_MICROMIPS_TLS_GOTTPREL
:
10740 layout
->set_has_static_tls();
10741 if (optimized_type
== tls::TLSOPT_NONE
)
10743 // Create a GOT entry for the tp-relative offset.
10744 Mips_output_data_got
<size
, big_endian
>* got
=
10745 target
->got_section(symtab
, layout
);
10746 got
->record_local_got_symbol(mips_obj
, r_sym
, r_addend
, r_type
,
10751 // FIXME: TLS optimization not supported yet.
10752 gold_unreachable();
10757 gold_unreachable();
10766 // Refuse some position-dependent relocations when creating a
10767 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
10768 // not PIC, but we can create dynamic relocations and the result
10769 // will be fine. Also do not refuse R_MIPS_LO16, which can be
10770 // combined with R_MIPS_GOT16.
10771 if (parameters
->options().shared())
10775 case elfcpp::R_MIPS16_HI16
:
10776 case elfcpp::R_MIPS_HI16
:
10777 case elfcpp::R_MIPS_HIGHER
:
10778 case elfcpp::R_MIPS_HIGHEST
:
10779 case elfcpp::R_MICROMIPS_HI16
:
10780 case elfcpp::R_MICROMIPS_HIGHER
:
10781 case elfcpp::R_MICROMIPS_HIGHEST
:
10782 // Don't refuse a high part relocation if it's against
10783 // no symbol (e.g. part of a compound relocation).
10788 case elfcpp::R_MIPS16_26
:
10789 case elfcpp::R_MIPS_26
:
10790 case elfcpp::R_MICROMIPS_26_S1
:
10791 gold_error(_("%s: relocation %u against `%s' can not be used when "
10792 "making a shared object; recompile with -fPIC"),
10793 object
->name().c_str(), r_type
, "a local symbol");
10800 template<int size
, bool big_endian
>
10802 Target_mips
<size
, big_endian
>::Scan::local(
10803 Symbol_table
* symtab
,
10805 Target_mips
<size
, big_endian
>* target
,
10806 Sized_relobj_file
<size
, big_endian
>* object
,
10807 unsigned int data_shndx
,
10808 Output_section
* output_section
,
10809 const Reltype
& reloc
,
10810 unsigned int r_type
,
10811 const elfcpp::Sym
<size
, big_endian
>& lsym
,
10824 (const Relatype
*) NULL
,
10828 lsym
, is_discarded
);
10832 template<int size
, bool big_endian
>
10834 Target_mips
<size
, big_endian
>::Scan::local(
10835 Symbol_table
* symtab
,
10837 Target_mips
<size
, big_endian
>* target
,
10838 Sized_relobj_file
<size
, big_endian
>* object
,
10839 unsigned int data_shndx
,
10840 Output_section
* output_section
,
10841 const Relatype
& reloc
,
10842 unsigned int r_type
,
10843 const elfcpp::Sym
<size
, big_endian
>& lsym
,
10857 (const Reltype
*) NULL
,
10860 lsym
, is_discarded
);
10863 // Scan a relocation for a global symbol.
10865 template<int size
, bool big_endian
>
10867 Target_mips
<size
, big_endian
>::Scan::global(
10868 Symbol_table
* symtab
,
10870 Target_mips
<size
, big_endian
>* target
,
10871 Sized_relobj_file
<size
, big_endian
>* object
,
10872 unsigned int data_shndx
,
10873 Output_section
* output_section
,
10874 const Relatype
* rela
,
10875 const Reltype
* rel
,
10876 unsigned int rel_type
,
10877 unsigned int r_type
,
10880 Mips_address r_offset
;
10881 unsigned int r_sym
;
10882 typename
elfcpp::Elf_types
<size
>::Elf_Swxword r_addend
;
10884 if (rel_type
== elfcpp::SHT_RELA
)
10886 r_offset
= rela
->get_r_offset();
10887 r_sym
= Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>::
10889 r_addend
= rela
->get_r_addend();
10893 r_offset
= rel
->get_r_offset();
10894 r_sym
= Mips_classify_reloc
<elfcpp::SHT_REL
, size
, big_endian
>::
10899 Mips_relobj
<size
, big_endian
>* mips_obj
=
10900 Mips_relobj
<size
, big_endian
>::as_mips_relobj(object
);
10901 Mips_symbol
<size
>* mips_sym
= Mips_symbol
<size
>::as_mips_sym(gsym
);
10903 if (mips_obj
->is_mips16_stub_section(data_shndx
))
10905 mips_obj
->get_mips16_stub_section(data_shndx
)
10906 ->new_global_reloc_found(r_type
, mips_sym
);
10909 if (r_type
== elfcpp::R_MIPS_NONE
)
10910 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10914 if (!mips16_call_reloc(r_type
)
10915 && !mips_obj
->section_allows_mips16_refs(data_shndx
))
10916 // This reloc would need to refer to a MIPS16 hard-float stub, if
10917 // there is one. We ignore MIPS16 stub sections and .pdr section when
10918 // looking for relocs that would need to refer to MIPS16 stubs.
10919 mips_sym
->set_need_fn_stub();
10921 // We need PLT entries if there are static-only relocations against
10922 // an externally-defined function. This can technically occur for
10923 // shared libraries if there are branches to the symbol, although it
10924 // is unlikely that this will be used in practice due to the short
10925 // ranges involved. It can occur for any relative or absolute relocation
10926 // in executables; in that case, the PLT entry becomes the function's
10927 // canonical address.
10928 bool static_reloc
= false;
10930 // Set CAN_MAKE_DYNAMIC to true if we can convert this
10931 // relocation into a dynamic one.
10932 bool can_make_dynamic
= false;
10935 case elfcpp::R_MIPS_GOT16
:
10936 case elfcpp::R_MIPS_CALL16
:
10937 case elfcpp::R_MIPS_CALL_HI16
:
10938 case elfcpp::R_MIPS_CALL_LO16
:
10939 case elfcpp::R_MIPS_GOT_HI16
:
10940 case elfcpp::R_MIPS_GOT_LO16
:
10941 case elfcpp::R_MIPS_GOT_PAGE
:
10942 case elfcpp::R_MIPS_GOT_OFST
:
10943 case elfcpp::R_MIPS_GOT_DISP
:
10944 case elfcpp::R_MIPS_TLS_GOTTPREL
:
10945 case elfcpp::R_MIPS_TLS_GD
:
10946 case elfcpp::R_MIPS_TLS_LDM
:
10947 case elfcpp::R_MIPS16_GOT16
:
10948 case elfcpp::R_MIPS16_CALL16
:
10949 case elfcpp::R_MIPS16_TLS_GOTTPREL
:
10950 case elfcpp::R_MIPS16_TLS_GD
:
10951 case elfcpp::R_MIPS16_TLS_LDM
:
10952 case elfcpp::R_MICROMIPS_GOT16
:
10953 case elfcpp::R_MICROMIPS_CALL16
:
10954 case elfcpp::R_MICROMIPS_CALL_HI16
:
10955 case elfcpp::R_MICROMIPS_CALL_LO16
:
10956 case elfcpp::R_MICROMIPS_GOT_HI16
:
10957 case elfcpp::R_MICROMIPS_GOT_LO16
:
10958 case elfcpp::R_MICROMIPS_GOT_PAGE
:
10959 case elfcpp::R_MICROMIPS_GOT_OFST
:
10960 case elfcpp::R_MICROMIPS_GOT_DISP
:
10961 case elfcpp::R_MICROMIPS_TLS_GOTTPREL
:
10962 case elfcpp::R_MICROMIPS_TLS_GD
:
10963 case elfcpp::R_MICROMIPS_TLS_LDM
:
10964 case elfcpp::R_MIPS_EH
:
10965 // We need a GOT section.
10966 target
->got_section(symtab
, layout
);
10969 // This is just a hint; it can safely be ignored. Don't set
10970 // has_static_relocs for the corresponding symbol.
10971 case elfcpp::R_MIPS_JALR
:
10972 case elfcpp::R_MICROMIPS_JALR
:
10975 case elfcpp::R_MIPS_GPREL16
:
10976 case elfcpp::R_MIPS_GPREL32
:
10977 case elfcpp::R_MIPS16_GPREL
:
10978 case elfcpp::R_MICROMIPS_GPREL16
:
10980 // GP-relative relocations always resolve to a definition in a
10981 // regular input file, ignoring the one-definition rule. This is
10982 // important for the GP setup sequence in NewABI code, which
10983 // always resolves to a local function even if other relocations
10984 // against the symbol wouldn't.
10985 //constrain_symbol_p = FALSE;
10988 case elfcpp::R_MIPS_32
:
10989 case elfcpp::R_MIPS_REL32
:
10990 case elfcpp::R_MIPS_64
:
10991 if ((parameters
->options().shared()
10992 || (strcmp(gsym
->name(), "__gnu_local_gp") != 0
10993 && (!is_readonly_section(output_section
)
10994 || mips_obj
->is_pic())))
10995 && (output_section
->flags() & elfcpp::SHF_ALLOC
) != 0)
10997 if (r_type
!= elfcpp::R_MIPS_REL32
)
10998 mips_sym
->set_pointer_equality_needed();
10999 can_make_dynamic
= true;
11005 // Most static relocations require pointer equality, except
11007 mips_sym
->set_pointer_equality_needed();
11010 case elfcpp::R_MIPS_26
:
11011 case elfcpp::R_MIPS_PC16
:
11012 case elfcpp::R_MIPS_PC21_S2
:
11013 case elfcpp::R_MIPS_PC26_S2
:
11014 case elfcpp::R_MIPS16_26
:
11015 case elfcpp::R_MICROMIPS_26_S1
:
11016 case elfcpp::R_MICROMIPS_PC7_S1
:
11017 case elfcpp::R_MICROMIPS_PC10_S1
:
11018 case elfcpp::R_MICROMIPS_PC16_S1
:
11019 case elfcpp::R_MICROMIPS_PC23_S2
:
11020 static_reloc
= true;
11021 mips_sym
->set_has_static_relocs();
11025 // If there are call relocations against an externally-defined symbol,
11026 // see whether we can create a MIPS lazy-binding stub for it. We can
11027 // only do this if all references to the function are through call
11028 // relocations, and in that case, the traditional lazy-binding stubs
11029 // are much more efficient than PLT entries.
11032 case elfcpp::R_MIPS16_CALL16
:
11033 case elfcpp::R_MIPS_CALL16
:
11034 case elfcpp::R_MIPS_CALL_HI16
:
11035 case elfcpp::R_MIPS_CALL_LO16
:
11036 case elfcpp::R_MIPS_JALR
:
11037 case elfcpp::R_MICROMIPS_CALL16
:
11038 case elfcpp::R_MICROMIPS_CALL_HI16
:
11039 case elfcpp::R_MICROMIPS_CALL_LO16
:
11040 case elfcpp::R_MICROMIPS_JALR
:
11041 if (!mips_sym
->no_lazy_stub())
11043 if ((mips_sym
->needs_plt_entry() && mips_sym
->is_from_dynobj())
11044 // Calls from shared objects to undefined symbols of type
11045 // STT_NOTYPE need lazy-binding stub.
11046 || (mips_sym
->is_undefined() && parameters
->options().shared()))
11047 target
->mips_stubs_section(layout
)->make_entry(mips_sym
);
11052 // We must not create a stub for a symbol that has relocations
11053 // related to taking the function's address.
11054 mips_sym
->set_no_lazy_stub();
11055 target
->remove_lazy_stub_entry(mips_sym
);
11060 if (relocation_needs_la25_stub
<size
, big_endian
>(mips_obj
, r_type
,
11061 mips_sym
->is_mips16()))
11062 mips_sym
->set_has_nonpic_branches();
11064 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11065 // and has a special meaning.
11066 bool gp_disp_against_hi16
= (!mips_obj
->is_newabi()
11067 && strcmp(gsym
->name(), "_gp_disp") == 0
11068 && (hi16_reloc(r_type
) || lo16_reloc(r_type
)));
11069 if (static_reloc
&& gsym
->needs_plt_entry())
11071 target
->make_plt_entry(symtab
, layout
, mips_sym
, r_type
);
11073 // Since this is not a PC-relative relocation, we may be
11074 // taking the address of a function. In that case we need to
11075 // set the entry in the dynamic symbol table to the address of
11077 if (gsym
->is_from_dynobj() && !parameters
->options().shared())
11079 gsym
->set_needs_dynsym_value();
11080 // We distinguish between PLT entries and lazy-binding stubs by
11081 // giving the former an st_other value of STO_MIPS_PLT. Set the
11082 // flag if there are any relocations in the binary where pointer
11083 // equality matters.
11084 if (mips_sym
->pointer_equality_needed())
11085 mips_sym
->set_mips_plt();
11088 if ((static_reloc
|| can_make_dynamic
) && !gp_disp_against_hi16
)
11090 // Absolute addressing relocations.
11091 // Make a dynamic relocation if necessary.
11092 if (gsym
->needs_dynamic_reloc(Scan::get_reference_flags(r_type
)))
11094 if (gsym
->may_need_copy_reloc())
11096 target
->copy_reloc(symtab
, layout
, object
, data_shndx
,
11097 output_section
, gsym
, r_type
, r_offset
);
11099 else if (can_make_dynamic
)
11101 // Create .rel.dyn section.
11102 target
->rel_dyn_section(layout
);
11103 target
->dynamic_reloc(mips_sym
, elfcpp::R_MIPS_REL32
, mips_obj
,
11104 data_shndx
, output_section
, r_offset
);
11107 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11112 bool for_call
= false;
11115 case elfcpp::R_MIPS_CALL16
:
11116 case elfcpp::R_MIPS16_CALL16
:
11117 case elfcpp::R_MICROMIPS_CALL16
:
11118 case elfcpp::R_MIPS_CALL_HI16
:
11119 case elfcpp::R_MIPS_CALL_LO16
:
11120 case elfcpp::R_MICROMIPS_CALL_HI16
:
11121 case elfcpp::R_MICROMIPS_CALL_LO16
:
11125 case elfcpp::R_MIPS16_GOT16
:
11126 case elfcpp::R_MIPS_GOT16
:
11127 case elfcpp::R_MIPS_GOT_HI16
:
11128 case elfcpp::R_MIPS_GOT_LO16
:
11129 case elfcpp::R_MICROMIPS_GOT16
:
11130 case elfcpp::R_MICROMIPS_GOT_HI16
:
11131 case elfcpp::R_MICROMIPS_GOT_LO16
:
11132 case elfcpp::R_MIPS_GOT_DISP
:
11133 case elfcpp::R_MICROMIPS_GOT_DISP
:
11134 case elfcpp::R_MIPS_EH
:
11136 // The symbol requires a GOT entry.
11137 Mips_output_data_got
<size
, big_endian
>* got
=
11138 target
->got_section(symtab
, layout
);
11139 got
->record_global_got_symbol(mips_sym
, mips_obj
, r_type
, false,
11141 mips_sym
->set_global_got_area(GGA_NORMAL
);
11145 case elfcpp::R_MIPS_GOT_PAGE
:
11146 case elfcpp::R_MICROMIPS_GOT_PAGE
:
11148 // This relocation needs a page entry in the GOT.
11149 // Get the section contents.
11150 section_size_type view_size
= 0;
11151 const unsigned char* view
=
11152 object
->section_contents(data_shndx
, &view_size
, false);
11155 Valtype32 val
= elfcpp::Swap
<32, big_endian
>::readval(view
);
11156 Valtype32 addend
= (rel_type
== elfcpp::SHT_REL
? val
& 0xffff
11158 Mips_output_data_got
<size
, big_endian
>* got
=
11159 target
->got_section(symtab
, layout
);
11160 got
->record_got_page_entry(mips_obj
, r_sym
, addend
);
11162 // If this is a global, overridable symbol, GOT_PAGE will
11163 // decay to GOT_DISP, so we'll need a GOT entry for it.
11164 bool def_regular
= (mips_sym
->source() == Symbol::FROM_OBJECT
11165 && !mips_sym
->object()->is_dynamic()
11166 && !mips_sym
->is_undefined());
11168 || (parameters
->options().output_is_position_independent()
11169 && !parameters
->options().Bsymbolic()
11170 && !mips_sym
->is_forced_local()))
11172 got
->record_global_got_symbol(mips_sym
, mips_obj
, r_type
, false,
11174 mips_sym
->set_global_got_area(GGA_NORMAL
);
11179 case elfcpp::R_MIPS_TLS_GOTTPREL
:
11180 case elfcpp::R_MIPS16_TLS_GOTTPREL
:
11181 case elfcpp::R_MICROMIPS_TLS_GOTTPREL
:
11182 case elfcpp::R_MIPS_TLS_LDM
:
11183 case elfcpp::R_MIPS16_TLS_LDM
:
11184 case elfcpp::R_MICROMIPS_TLS_LDM
:
11185 case elfcpp::R_MIPS_TLS_GD
:
11186 case elfcpp::R_MIPS16_TLS_GD
:
11187 case elfcpp::R_MICROMIPS_TLS_GD
:
11189 const bool is_final
= gsym
->final_value_is_known();
11190 const tls::Tls_optimization optimized_type
=
11191 Target_mips
<size
, big_endian
>::optimize_tls_reloc(is_final
, r_type
);
11195 case elfcpp::R_MIPS_TLS_GD
:
11196 case elfcpp::R_MIPS16_TLS_GD
:
11197 case elfcpp::R_MICROMIPS_TLS_GD
:
11198 if (optimized_type
== tls::TLSOPT_NONE
)
11200 // Create a pair of GOT entries for the module index and
11201 // dtv-relative offset.
11202 Mips_output_data_got
<size
, big_endian
>* got
=
11203 target
->got_section(symtab
, layout
);
11204 got
->record_global_got_symbol(mips_sym
, mips_obj
, r_type
, false,
11209 // FIXME: TLS optimization not supported yet.
11210 gold_unreachable();
11214 case elfcpp::R_MIPS_TLS_LDM
:
11215 case elfcpp::R_MIPS16_TLS_LDM
:
11216 case elfcpp::R_MICROMIPS_TLS_LDM
:
11217 if (optimized_type
== tls::TLSOPT_NONE
)
11219 // We always record LDM symbols as local with index 0.
11220 target
->got_section()->record_local_got_symbol(mips_obj
, 0,
11226 // FIXME: TLS optimization not supported yet.
11227 gold_unreachable();
11230 case elfcpp::R_MIPS_TLS_GOTTPREL
:
11231 case elfcpp::R_MIPS16_TLS_GOTTPREL
:
11232 case elfcpp::R_MICROMIPS_TLS_GOTTPREL
:
11233 layout
->set_has_static_tls();
11234 if (optimized_type
== tls::TLSOPT_NONE
)
11236 // Create a GOT entry for the tp-relative offset.
11237 Mips_output_data_got
<size
, big_endian
>* got
=
11238 target
->got_section(symtab
, layout
);
11239 got
->record_global_got_symbol(mips_sym
, mips_obj
, r_type
, false,
11244 // FIXME: TLS optimization not supported yet.
11245 gold_unreachable();
11250 gold_unreachable();
11254 case elfcpp::R_MIPS_COPY
:
11255 case elfcpp::R_MIPS_JUMP_SLOT
:
11256 // These are relocations which should only be seen by the
11257 // dynamic linker, and should never be seen here.
11258 gold_error(_("%s: unexpected reloc %u in object file"),
11259 object
->name().c_str(), r_type
);
11266 // Refuse some position-dependent relocations when creating a
11267 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
11268 // not PIC, but we can create dynamic relocations and the result
11269 // will be fine. Also do not refuse R_MIPS_LO16, which can be
11270 // combined with R_MIPS_GOT16.
11271 if (parameters
->options().shared())
11275 case elfcpp::R_MIPS16_HI16
:
11276 case elfcpp::R_MIPS_HI16
:
11277 case elfcpp::R_MIPS_HIGHER
:
11278 case elfcpp::R_MIPS_HIGHEST
:
11279 case elfcpp::R_MICROMIPS_HI16
:
11280 case elfcpp::R_MICROMIPS_HIGHER
:
11281 case elfcpp::R_MICROMIPS_HIGHEST
:
11282 // Don't refuse a high part relocation if it's against
11283 // no symbol (e.g. part of a compound relocation).
11287 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11288 // and has a special meaning.
11289 if (!mips_obj
->is_newabi() && strcmp(gsym
->name(), "_gp_disp") == 0)
11293 case elfcpp::R_MIPS16_26
:
11294 case elfcpp::R_MIPS_26
:
11295 case elfcpp::R_MICROMIPS_26_S1
:
11296 gold_error(_("%s: relocation %u against `%s' can not be used when "
11297 "making a shared object; recompile with -fPIC"),
11298 object
->name().c_str(), r_type
, gsym
->name());
11305 template<int size
, bool big_endian
>
11307 Target_mips
<size
, big_endian
>::Scan::global(
11308 Symbol_table
* symtab
,
11310 Target_mips
<size
, big_endian
>* target
,
11311 Sized_relobj_file
<size
, big_endian
>* object
,
11312 unsigned int data_shndx
,
11313 Output_section
* output_section
,
11314 const Relatype
& reloc
,
11315 unsigned int r_type
,
11326 (const Reltype
*) NULL
,
11332 template<int size
, bool big_endian
>
11334 Target_mips
<size
, big_endian
>::Scan::global(
11335 Symbol_table
* symtab
,
11337 Target_mips
<size
, big_endian
>* target
,
11338 Sized_relobj_file
<size
, big_endian
>* object
,
11339 unsigned int data_shndx
,
11340 Output_section
* output_section
,
11341 const Reltype
& reloc
,
11342 unsigned int r_type
,
11352 (const Relatype
*) NULL
,
11359 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11360 // In cases where Scan::local() or Scan::global() has created
11361 // a dynamic relocation, the addend of the relocation is carried
11362 // in the data, and we must not apply the static relocation.
11364 template<int size
, bool big_endian
>
11366 Target_mips
<size
, big_endian
>::Relocate::should_apply_static_reloc(
11367 const Mips_symbol
<size
>* gsym
,
11368 unsigned int r_type
,
11369 Output_section
* output_section
,
11370 Target_mips
* target
)
11372 // If the output section is not allocated, then we didn't call
11373 // scan_relocs, we didn't create a dynamic reloc, and we must apply
11375 if ((output_section
->flags() & elfcpp::SHF_ALLOC
) == 0)
11382 // For global symbols, we use the same helper routines used in the
11384 if (gsym
->needs_dynamic_reloc(Scan::get_reference_flags(r_type
))
11385 && !gsym
->may_need_copy_reloc())
11387 // We have generated dynamic reloc (R_MIPS_REL32).
11389 bool multi_got
= false;
11390 if (target
->has_got_section())
11391 multi_got
= target
->got_section()->multi_got();
11392 bool has_got_offset
;
11394 has_got_offset
= gsym
->has_got_offset(GOT_TYPE_STANDARD
);
11396 has_got_offset
= gsym
->global_gotoffset() != -1U;
11397 if (!has_got_offset
)
11400 // Apply the relocation only if the symbol is in the local got.
11401 // Do not apply the relocation if the symbol is in the global
11403 return symbol_references_local(gsym
, gsym
->has_dynsym_index());
11406 // We have not generated dynamic reloc.
11411 // Perform a relocation.
11413 template<int size
, bool big_endian
>
11415 Target_mips
<size
, big_endian
>::Relocate::relocate(
11416 const Relocate_info
<size
, big_endian
>* relinfo
,
11417 unsigned int rel_type
,
11418 Target_mips
* target
,
11419 Output_section
* output_section
,
11421 const unsigned char* preloc
,
11422 const Sized_symbol
<size
>* gsym
,
11423 const Symbol_value
<size
>* psymval
,
11424 unsigned char* view
,
11425 Mips_address address
,
11428 Mips_address r_offset
;
11429 unsigned int r_sym
;
11430 unsigned int r_type
;
11431 unsigned int r_type2
;
11432 unsigned int r_type3
;
11433 unsigned char r_ssym
;
11434 typename
elfcpp::Elf_types
<size
>::Elf_Swxword r_addend
;
11435 // r_offset and r_type of the next relocation is needed for resolving multiple
11436 // consecutive relocations with the same offset.
11437 Mips_address next_r_offset
= static_cast<Mips_address
>(0) - 1;
11438 unsigned int next_r_type
= elfcpp::R_MIPS_NONE
;
11440 elfcpp::Shdr
<size
, big_endian
> shdr(relinfo
->reloc_shdr
);
11441 size_t reloc_count
= shdr
.get_sh_size() / shdr
.get_sh_entsize();
11443 if (rel_type
== elfcpp::SHT_RELA
)
11445 const Relatype
rela(preloc
);
11446 r_offset
= rela
.get_r_offset();
11447 r_sym
= Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>::
11449 r_type
= Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>::
11451 r_type2
= Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>::
11452 get_r_type2(&rela
);
11453 r_type3
= Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>::
11454 get_r_type3(&rela
);
11455 r_ssym
= Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>::
11457 r_addend
= rela
.get_r_addend();
11458 // If this is not last relocation, get r_offset and r_type of the next
11460 if (relnum
+ 1 < reloc_count
)
11462 const int reloc_size
= elfcpp::Elf_sizes
<size
>::rela_size
;
11463 const Relatype
next_rela(preloc
+ reloc_size
);
11464 next_r_offset
= next_rela
.get_r_offset();
11466 Mips_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>::
11467 get_r_type(&next_rela
);
11472 const Reltype
rel(preloc
);
11473 r_offset
= rel
.get_r_offset();
11474 r_sym
= Mips_classify_reloc
<elfcpp::SHT_REL
, size
, big_endian
>::
11476 r_type
= Mips_classify_reloc
<elfcpp::SHT_REL
, size
, big_endian
>::
11479 r_type2
= elfcpp::R_MIPS_NONE
;
11480 r_type3
= elfcpp::R_MIPS_NONE
;
11482 // If this is not last relocation, get r_offset and r_type of the next
11484 if (relnum
+ 1 < reloc_count
)
11486 const int reloc_size
= elfcpp::Elf_sizes
<size
>::rel_size
;
11487 const Reltype
next_rel(preloc
+ reloc_size
);
11488 next_r_offset
= next_rel
.get_r_offset();
11489 next_r_type
= Mips_classify_reloc
<elfcpp::SHT_REL
, size
, big_endian
>::
11490 get_r_type(&next_rel
);
11494 typedef Mips_relocate_functions
<size
, big_endian
> Reloc_funcs
;
11495 typename
Reloc_funcs::Status reloc_status
= Reloc_funcs::STATUS_OKAY
;
11497 Mips_relobj
<size
, big_endian
>* object
=
11498 Mips_relobj
<size
, big_endian
>::as_mips_relobj(relinfo
->object
);
11500 bool target_is_16_bit_code
= false;
11501 bool target_is_micromips_code
= false;
11502 bool cross_mode_jump
;
11504 Symbol_value
<size
> symval
;
11506 const Mips_symbol
<size
>* mips_sym
= Mips_symbol
<size
>::as_mips_sym(gsym
);
11508 bool changed_symbol_value
= false;
11511 target_is_16_bit_code
= object
->local_symbol_is_mips16(r_sym
);
11512 target_is_micromips_code
= object
->local_symbol_is_micromips(r_sym
);
11513 if (target_is_16_bit_code
|| target_is_micromips_code
)
11515 // MIPS16/microMIPS text labels should be treated as odd.
11516 symval
.set_output_value(psymval
->value(object
, 1));
11518 changed_symbol_value
= true;
11523 target_is_16_bit_code
= mips_sym
->is_mips16();
11524 target_is_micromips_code
= mips_sym
->is_micromips();
11526 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11527 // it odd. This will cause something like .word SYM to come up with
11528 // the right value when it is loaded into the PC.
11530 if ((mips_sym
->is_mips16() || mips_sym
->is_micromips())
11531 && psymval
->value(object
, 0) != 0)
11533 symval
.set_output_value(psymval
->value(object
, 0) | 1);
11535 changed_symbol_value
= true;
11538 // Pick the value to use for symbols defined in shared objects.
11539 if (mips_sym
->use_plt_offset(Scan::get_reference_flags(r_type
))
11540 || mips_sym
->has_lazy_stub())
11542 Mips_address value
;
11543 if (!mips_sym
->has_lazy_stub())
11545 // Prefer a standard MIPS PLT entry.
11546 if (mips_sym
->has_mips_plt_offset())
11548 value
= target
->plt_section()->mips_entry_address(mips_sym
);
11549 target_is_micromips_code
= false;
11550 target_is_16_bit_code
= false;
11554 value
= (target
->plt_section()->comp_entry_address(mips_sym
)
11556 if (target
->is_output_micromips())
11557 target_is_micromips_code
= true;
11559 target_is_16_bit_code
= true;
11563 value
= target
->mips_stubs_section()->stub_address(mips_sym
);
11565 symval
.set_output_value(value
);
11570 // TRUE if the symbol referred to by this relocation is "_gp_disp".
11571 // Note that such a symbol must always be a global symbol.
11572 bool gp_disp
= (gsym
!= NULL
&& (strcmp(gsym
->name(), "_gp_disp") == 0)
11573 && !object
->is_newabi());
11575 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11576 // Note that such a symbol must always be a global symbol.
11577 bool gnu_local_gp
= gsym
&& (strcmp(gsym
->name(), "__gnu_local_gp") == 0);
11582 if (!hi16_reloc(r_type
) && !lo16_reloc(r_type
))
11583 gold_error_at_location(relinfo
, relnum
, r_offset
,
11584 _("relocations against _gp_disp are permitted only"
11585 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11587 else if (gnu_local_gp
)
11589 // __gnu_local_gp is _gp symbol.
11590 symval
.set_output_value(target
->adjusted_gp_value(object
));
11594 // If this is a reference to a 16-bit function with a stub, we need
11595 // to redirect the relocation to the stub unless:
11597 // (a) the relocation is for a MIPS16 JAL;
11599 // (b) the relocation is for a MIPS16 PIC call, and there are no
11600 // non-MIPS16 uses of the GOT slot; or
11602 // (c) the section allows direct references to MIPS16 functions.
11603 if (r_type
!= elfcpp::R_MIPS16_26
11604 && ((mips_sym
!= NULL
11605 && mips_sym
->has_mips16_fn_stub()
11606 && (r_type
!= elfcpp::R_MIPS16_CALL16
|| mips_sym
->need_fn_stub()))
11607 || (mips_sym
== NULL
11608 && object
->get_local_mips16_fn_stub(r_sym
) != NULL
))
11609 && !object
->section_allows_mips16_refs(relinfo
->data_shndx
))
11611 // This is a 32- or 64-bit call to a 16-bit function. We should
11612 // have already noticed that we were going to need the
11614 Mips_address value
;
11615 if (mips_sym
== NULL
)
11616 value
= object
->get_local_mips16_fn_stub(r_sym
)->output_address();
11619 gold_assert(mips_sym
->need_fn_stub());
11620 if (mips_sym
->has_la25_stub())
11621 value
= target
->la25_stub_section()->stub_address(mips_sym
);
11624 value
= mips_sym
->template
11625 get_mips16_fn_stub
<big_endian
>()->output_address();
11628 symval
.set_output_value(value
);
11630 changed_symbol_value
= true;
11632 // The target is 16-bit, but the stub isn't.
11633 target_is_16_bit_code
= false;
11635 // If this is a MIPS16 call with a stub, that is made through the PLT or
11636 // to a standard MIPS function, we need to redirect the call to the stub.
11637 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11638 // indirect calls should use an indirect stub instead.
11639 else if (r_type
== elfcpp::R_MIPS16_26
11640 && ((mips_sym
!= NULL
11641 && (mips_sym
->has_mips16_call_stub()
11642 || mips_sym
->has_mips16_call_fp_stub()))
11643 || (mips_sym
== NULL
11644 && object
->get_local_mips16_call_stub(r_sym
) != NULL
))
11645 && ((mips_sym
!= NULL
&& mips_sym
->has_plt_offset())
11646 || !target_is_16_bit_code
))
11648 Mips16_stub_section
<size
, big_endian
>* call_stub
;
11649 if (mips_sym
== NULL
)
11650 call_stub
= object
->get_local_mips16_call_stub(r_sym
);
11653 // If both call_stub and call_fp_stub are defined, we can figure
11654 // out which one to use by checking which one appears in the input
11656 if (mips_sym
->has_mips16_call_stub()
11657 && mips_sym
->has_mips16_call_fp_stub())
11660 for (unsigned int i
= 1; i
< object
->shnum(); ++i
)
11662 if (object
->is_mips16_call_fp_stub_section(i
))
11664 call_stub
= mips_sym
->template
11665 get_mips16_call_fp_stub
<big_endian
>();
11670 if (call_stub
== NULL
)
11672 mips_sym
->template get_mips16_call_stub
<big_endian
>();
11674 else if (mips_sym
->has_mips16_call_stub())
11675 call_stub
= mips_sym
->template get_mips16_call_stub
<big_endian
>();
11677 call_stub
= mips_sym
->template get_mips16_call_fp_stub
<big_endian
>();
11680 symval
.set_output_value(call_stub
->output_address());
11682 changed_symbol_value
= true;
11684 // If this is a direct call to a PIC function, redirect to the
11686 else if (mips_sym
!= NULL
11687 && mips_sym
->has_la25_stub()
11688 && relocation_needs_la25_stub
<size
, big_endian
>(
11689 object
, r_type
, target_is_16_bit_code
))
11691 Mips_address value
= target
->la25_stub_section()->stub_address(mips_sym
);
11692 if (mips_sym
->is_micromips())
11694 symval
.set_output_value(value
);
11697 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11698 // entry is used if a standard PLT entry has also been made.
11699 else if ((r_type
== elfcpp::R_MIPS16_26
11700 || r_type
== elfcpp::R_MICROMIPS_26_S1
)
11701 && mips_sym
!= NULL
11702 && mips_sym
->has_plt_offset()
11703 && mips_sym
->has_comp_plt_offset()
11704 && mips_sym
->has_mips_plt_offset())
11706 Mips_address value
= (target
->plt_section()->comp_entry_address(mips_sym
)
11708 symval
.set_output_value(value
);
11711 target_is_16_bit_code
= !target
->is_output_micromips();
11712 target_is_micromips_code
= target
->is_output_micromips();
11715 // Make sure MIPS16 and microMIPS are not used together.
11716 if ((r_type
== elfcpp::R_MIPS16_26
&& target_is_micromips_code
)
11717 || (micromips_branch_reloc(r_type
) && target_is_16_bit_code
))
11719 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11722 // Calls from 16-bit code to 32-bit code and vice versa require the
11723 // mode change. However, we can ignore calls to undefined weak symbols,
11724 // which should never be executed at runtime. This exception is important
11725 // because the assembly writer may have "known" that any definition of the
11726 // symbol would be 16-bit code, and that direct jumps were therefore
11729 (!(gsym
!= NULL
&& gsym
->is_weak_undefined())
11730 && ((r_type
== elfcpp::R_MIPS16_26
&& !target_is_16_bit_code
)
11731 || (r_type
== elfcpp::R_MICROMIPS_26_S1
&& !target_is_micromips_code
)
11732 || ((r_type
== elfcpp::R_MIPS_26
|| r_type
== elfcpp::R_MIPS_JALR
)
11733 && (target_is_16_bit_code
|| target_is_micromips_code
))));
11735 bool local
= (mips_sym
== NULL
11736 || (mips_sym
->got_only_for_calls()
11737 ? symbol_calls_local(mips_sym
, mips_sym
->has_dynsym_index())
11738 : symbol_references_local(mips_sym
,
11739 mips_sym
->has_dynsym_index())));
11741 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11742 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
11743 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11744 if (got_page_reloc(r_type
) && !local
)
11745 r_type
= (micromips_reloc(r_type
) ? elfcpp::R_MICROMIPS_GOT_DISP
11746 : elfcpp::R_MIPS_GOT_DISP
);
11748 unsigned int got_offset
= 0;
11751 // Whether we have to extract addend from instruction.
11752 bool extract_addend
= rel_type
== elfcpp::SHT_REL
;
11753 unsigned int r_types
[3] = { r_type
, r_type2
, r_type3
};
11755 Reloc_funcs::mips_reloc_unshuffle(view
, r_type
, false);
11757 // For Mips64 N64 ABI, there may be up to three operations specified per
11758 // record, by the fields r_type, r_type2, and r_type3. The first operation
11759 // takes its addend from the relocation record. Each subsequent operation
11760 // takes as its addend the result of the previous operation.
11761 // The first operation in a record which references a symbol uses the symbol
11762 // implied by r_sym. The next operation in a record which references a symbol
11763 // uses the special symbol value given by the r_ssym field. A third operation
11764 // in a record which references a symbol will assume a NULL symbol,
11765 // i.e. value zero.
11768 // Check if a record references to a symbol.
11769 for (unsigned int i
= 0; i
< 3; ++i
)
11771 if (r_types
[i
] == elfcpp::R_MIPS_NONE
)
11774 // If we didn't apply previous relocation, use its result as addend
11776 if (this->calculate_only_
)
11778 r_addend
= this->calculated_value_
;
11779 extract_addend
= false;
11782 // In the N32 and 64-bit ABIs there may be multiple consecutive
11783 // relocations for the same offset. In that case we are
11784 // supposed to treat the output of each relocation as the addend
11785 // for the next. For N64 ABI, we are checking offsets only in a
11786 // third operation in a record (r_type3).
11787 this->calculate_only_
=
11788 (object
->is_n64() && i
< 2
11789 ? r_types
[i
+1] != elfcpp::R_MIPS_NONE
11790 : (r_offset
== next_r_offset
) && (next_r_type
!= elfcpp::R_MIPS_NONE
));
11792 if (object
->is_n64())
11796 // Handle special symbol for r_type2 relocation type.
11800 symval
.set_output_value(0);
11803 symval
.set_output_value(target
->gp_value());
11806 symval
.set_output_value(object
->gp_value());
11809 symval
.set_output_value(address
);
11812 gold_unreachable();
11818 // For r_type3 symbol value is 0.
11819 symval
.set_output_value(0);
11823 bool update_got_entry
= false;
11824 switch (r_types
[i
])
11826 case elfcpp::R_MIPS_NONE
:
11828 case elfcpp::R_MIPS_16
:
11829 reloc_status
= Reloc_funcs::rel16(view
, object
, psymval
, r_addend
,
11831 this->calculate_only_
,
11832 &this->calculated_value_
);
11835 case elfcpp::R_MIPS_32
:
11836 if (should_apply_static_reloc(mips_sym
, r_types
[i
], output_section
,
11838 reloc_status
= Reloc_funcs::rel32(view
, object
, psymval
, r_addend
,
11840 this->calculate_only_
,
11841 &this->calculated_value_
);
11842 if (mips_sym
!= NULL
11843 && (mips_sym
->is_mips16() || mips_sym
->is_micromips())
11844 && mips_sym
->global_got_area() == GGA_RELOC_ONLY
)
11846 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11847 // already updated by adding +1.
11848 if (mips_sym
->has_mips16_fn_stub())
11850 gold_assert(mips_sym
->need_fn_stub());
11851 Mips16_stub_section
<size
, big_endian
>* fn_stub
=
11852 mips_sym
->template get_mips16_fn_stub
<big_endian
>();
11854 symval
.set_output_value(fn_stub
->output_address());
11857 got_offset
= mips_sym
->global_gotoffset();
11858 update_got_entry
= true;
11862 case elfcpp::R_MIPS_64
:
11863 if (should_apply_static_reloc(mips_sym
, r_types
[i
], output_section
,
11865 reloc_status
= Reloc_funcs::rel64(view
, object
, psymval
, r_addend
,
11867 this->calculate_only_
,
11868 &this->calculated_value_
, false);
11869 else if (target
->is_output_n64() && r_addend
!= 0)
11870 // Only apply the addend. The static relocation was RELA, but the
11871 // dynamic relocation is REL, so we need to apply the addend.
11872 reloc_status
= Reloc_funcs::rel64(view
, object
, psymval
, r_addend
,
11874 this->calculate_only_
,
11875 &this->calculated_value_
, true);
11877 case elfcpp::R_MIPS_REL32
:
11878 gold_unreachable();
11880 case elfcpp::R_MIPS_PC32
:
11881 reloc_status
= Reloc_funcs::relpc32(view
, object
, psymval
, address
,
11882 r_addend
, extract_addend
,
11883 this->calculate_only_
,
11884 &this->calculated_value_
);
11887 case elfcpp::R_MIPS16_26
:
11888 // The calculation for R_MIPS16_26 is just the same as for an
11889 // R_MIPS_26. It's only the storage of the relocated field into
11890 // the output file that's different. So, we just fall through to the
11891 // R_MIPS_26 case here.
11892 case elfcpp::R_MIPS_26
:
11893 case elfcpp::R_MICROMIPS_26_S1
:
11894 reloc_status
= Reloc_funcs::rel26(view
, object
, psymval
, address
,
11895 gsym
== NULL
, r_addend
, extract_addend
, gsym
, cross_mode_jump
,
11896 r_types
[i
], target
->jal_to_bal(), this->calculate_only_
,
11897 &this->calculated_value_
);
11900 case elfcpp::R_MIPS_HI16
:
11901 case elfcpp::R_MIPS16_HI16
:
11902 case elfcpp::R_MICROMIPS_HI16
:
11903 if (rel_type
== elfcpp::SHT_RELA
)
11904 reloc_status
= Reloc_funcs::do_relhi16(view
, object
, psymval
,
11906 gp_disp
, r_types
[i
],
11909 this->calculate_only_
,
11910 &this->calculated_value_
);
11911 else if (rel_type
== elfcpp::SHT_REL
)
11912 reloc_status
= Reloc_funcs::relhi16(view
, object
, psymval
, r_addend
,
11913 address
, gp_disp
, r_types
[i
],
11914 r_sym
, extract_addend
);
11916 gold_unreachable();
11919 case elfcpp::R_MIPS_LO16
:
11920 case elfcpp::R_MIPS16_LO16
:
11921 case elfcpp::R_MICROMIPS_LO16
:
11922 case elfcpp::R_MICROMIPS_HI0_LO16
:
11923 reloc_status
= Reloc_funcs::rello16(target
, view
, object
, psymval
,
11924 r_addend
, extract_addend
, address
,
11925 gp_disp
, r_types
[i
], r_sym
,
11926 rel_type
, this->calculate_only_
,
11927 &this->calculated_value_
);
11930 case elfcpp::R_MIPS_LITERAL
:
11931 case elfcpp::R_MICROMIPS_LITERAL
:
11932 // Because we don't merge literal sections, we can handle this
11933 // just like R_MIPS_GPREL16. In the long run, we should merge
11934 // shared literals, and then we will need to additional work
11939 case elfcpp::R_MIPS_GPREL16
:
11940 case elfcpp::R_MIPS16_GPREL
:
11941 case elfcpp::R_MICROMIPS_GPREL7_S2
:
11942 case elfcpp::R_MICROMIPS_GPREL16
:
11943 reloc_status
= Reloc_funcs::relgprel(view
, object
, psymval
,
11944 target
->adjusted_gp_value(object
),
11945 r_addend
, extract_addend
,
11946 gsym
== NULL
, r_types
[i
],
11947 this->calculate_only_
,
11948 &this->calculated_value_
);
11951 case elfcpp::R_MIPS_PC16
:
11952 reloc_status
= Reloc_funcs::relpc16(view
, object
, psymval
, address
,
11953 r_addend
, extract_addend
,
11954 this->calculate_only_
,
11955 &this->calculated_value_
);
11958 case elfcpp::R_MIPS_PC21_S2
:
11959 reloc_status
= Reloc_funcs::relpc21(view
, object
, psymval
, address
,
11960 r_addend
, extract_addend
,
11961 this->calculate_only_
,
11962 &this->calculated_value_
);
11965 case elfcpp::R_MIPS_PC26_S2
:
11966 reloc_status
= Reloc_funcs::relpc26(view
, object
, psymval
, address
,
11967 r_addend
, extract_addend
,
11968 this->calculate_only_
,
11969 &this->calculated_value_
);
11972 case elfcpp::R_MIPS_PC18_S3
:
11973 reloc_status
= Reloc_funcs::relpc18(view
, object
, psymval
, address
,
11974 r_addend
, extract_addend
,
11975 this->calculate_only_
,
11976 &this->calculated_value_
);
11979 case elfcpp::R_MIPS_PC19_S2
:
11980 reloc_status
= Reloc_funcs::relpc19(view
, object
, psymval
, address
,
11981 r_addend
, extract_addend
,
11982 this->calculate_only_
,
11983 &this->calculated_value_
);
11986 case elfcpp::R_MIPS_PCHI16
:
11987 if (rel_type
== elfcpp::SHT_RELA
)
11988 reloc_status
= Reloc_funcs::do_relpchi16(view
, object
, psymval
,
11991 this->calculate_only_
,
11992 &this->calculated_value_
);
11993 else if (rel_type
== elfcpp::SHT_REL
)
11994 reloc_status
= Reloc_funcs::relpchi16(view
, object
, psymval
,
11995 r_addend
, address
, r_sym
,
11998 gold_unreachable();
12001 case elfcpp::R_MIPS_PCLO16
:
12002 reloc_status
= Reloc_funcs::relpclo16(view
, object
, psymval
, r_addend
,
12003 extract_addend
, address
, r_sym
,
12004 rel_type
, this->calculate_only_
,
12005 &this->calculated_value_
);
12007 case elfcpp::R_MICROMIPS_PC7_S1
:
12008 reloc_status
= Reloc_funcs::relmicromips_pc7_s1(view
, object
, psymval
,
12011 this->calculate_only_
,
12012 &this->calculated_value_
);
12014 case elfcpp::R_MICROMIPS_PC10_S1
:
12015 reloc_status
= Reloc_funcs::relmicromips_pc10_s1(view
, object
,
12017 r_addend
, extract_addend
,
12018 this->calculate_only_
,
12019 &this->calculated_value_
);
12021 case elfcpp::R_MICROMIPS_PC16_S1
:
12022 reloc_status
= Reloc_funcs::relmicromips_pc16_s1(view
, object
,
12024 r_addend
, extract_addend
,
12025 this->calculate_only_
,
12026 &this->calculated_value_
);
12028 case elfcpp::R_MIPS_GPREL32
:
12029 reloc_status
= Reloc_funcs::relgprel32(view
, object
, psymval
,
12030 target
->adjusted_gp_value(object
),
12031 r_addend
, extract_addend
,
12032 this->calculate_only_
,
12033 &this->calculated_value_
);
12035 case elfcpp::R_MIPS_GOT_HI16
:
12036 case elfcpp::R_MIPS_CALL_HI16
:
12037 case elfcpp::R_MICROMIPS_GOT_HI16
:
12038 case elfcpp::R_MICROMIPS_CALL_HI16
:
12040 got_offset
= target
->got_section()->got_offset(gsym
,
12044 got_offset
= target
->got_section()->got_offset(r_sym
,
12047 gp_offset
= target
->got_section()->gp_offset(got_offset
, object
);
12048 reloc_status
= Reloc_funcs::relgot_hi16(view
, gp_offset
,
12049 this->calculate_only_
,
12050 &this->calculated_value_
);
12051 update_got_entry
= changed_symbol_value
;
12054 case elfcpp::R_MIPS_GOT_LO16
:
12055 case elfcpp::R_MIPS_CALL_LO16
:
12056 case elfcpp::R_MICROMIPS_GOT_LO16
:
12057 case elfcpp::R_MICROMIPS_CALL_LO16
:
12059 got_offset
= target
->got_section()->got_offset(gsym
,
12063 got_offset
= target
->got_section()->got_offset(r_sym
,
12066 gp_offset
= target
->got_section()->gp_offset(got_offset
, object
);
12067 reloc_status
= Reloc_funcs::relgot_lo16(view
, gp_offset
,
12068 this->calculate_only_
,
12069 &this->calculated_value_
);
12070 update_got_entry
= changed_symbol_value
;
12073 case elfcpp::R_MIPS_GOT_DISP
:
12074 case elfcpp::R_MICROMIPS_GOT_DISP
:
12075 case elfcpp::R_MIPS_EH
:
12077 got_offset
= target
->got_section()->got_offset(gsym
,
12081 got_offset
= target
->got_section()->got_offset(r_sym
,
12084 gp_offset
= target
->got_section()->gp_offset(got_offset
, object
);
12085 if (eh_reloc(r_types
[i
]))
12086 reloc_status
= Reloc_funcs::releh(view
, gp_offset
,
12087 this->calculate_only_
,
12088 &this->calculated_value_
);
12090 reloc_status
= Reloc_funcs::relgot(view
, gp_offset
,
12091 this->calculate_only_
,
12092 &this->calculated_value_
);
12094 case elfcpp::R_MIPS_CALL16
:
12095 case elfcpp::R_MIPS16_CALL16
:
12096 case elfcpp::R_MICROMIPS_CALL16
:
12097 gold_assert(gsym
!= NULL
);
12098 got_offset
= target
->got_section()->got_offset(gsym
,
12101 gp_offset
= target
->got_section()->gp_offset(got_offset
, object
);
12102 reloc_status
= Reloc_funcs::relgot(view
, gp_offset
,
12103 this->calculate_only_
,
12104 &this->calculated_value_
);
12105 // TODO(sasa): We should also initialize update_got_entry
12106 // in other place swhere relgot is called.
12107 update_got_entry
= changed_symbol_value
;
12110 case elfcpp::R_MIPS_GOT16
:
12111 case elfcpp::R_MIPS16_GOT16
:
12112 case elfcpp::R_MICROMIPS_GOT16
:
12115 got_offset
= target
->got_section()->got_offset(gsym
,
12118 gp_offset
= target
->got_section()->gp_offset(got_offset
, object
);
12119 reloc_status
= Reloc_funcs::relgot(view
, gp_offset
,
12120 this->calculate_only_
,
12121 &this->calculated_value_
);
12125 if (rel_type
== elfcpp::SHT_RELA
)
12126 reloc_status
= Reloc_funcs::do_relgot16_local(view
, object
,
12130 this->calculate_only_
,
12131 &this->calculated_value_
);
12132 else if (rel_type
== elfcpp::SHT_REL
)
12133 reloc_status
= Reloc_funcs::relgot16_local(view
, object
,
12136 r_types
[i
], r_sym
);
12138 gold_unreachable();
12140 update_got_entry
= changed_symbol_value
;
12143 case elfcpp::R_MIPS_TLS_GD
:
12144 case elfcpp::R_MIPS16_TLS_GD
:
12145 case elfcpp::R_MICROMIPS_TLS_GD
:
12147 got_offset
= target
->got_section()->got_offset(gsym
,
12151 got_offset
= target
->got_section()->got_offset(r_sym
,
12154 gp_offset
= target
->got_section()->gp_offset(got_offset
, object
);
12155 reloc_status
= Reloc_funcs::relgot(view
, gp_offset
,
12156 this->calculate_only_
,
12157 &this->calculated_value_
);
12160 case elfcpp::R_MIPS_TLS_GOTTPREL
:
12161 case elfcpp::R_MIPS16_TLS_GOTTPREL
:
12162 case elfcpp::R_MICROMIPS_TLS_GOTTPREL
:
12164 got_offset
= target
->got_section()->got_offset(gsym
,
12165 GOT_TYPE_TLS_OFFSET
,
12168 got_offset
= target
->got_section()->got_offset(r_sym
,
12169 GOT_TYPE_TLS_OFFSET
,
12171 gp_offset
= target
->got_section()->gp_offset(got_offset
, object
);
12172 reloc_status
= Reloc_funcs::relgot(view
, gp_offset
,
12173 this->calculate_only_
,
12174 &this->calculated_value_
);
12177 case elfcpp::R_MIPS_TLS_LDM
:
12178 case elfcpp::R_MIPS16_TLS_LDM
:
12179 case elfcpp::R_MICROMIPS_TLS_LDM
:
12180 // Relocate the field with the offset of the GOT entry for
12181 // the module index.
12182 got_offset
= target
->got_section()->tls_ldm_offset(object
);
12183 gp_offset
= target
->got_section()->gp_offset(got_offset
, object
);
12184 reloc_status
= Reloc_funcs::relgot(view
, gp_offset
,
12185 this->calculate_only_
,
12186 &this->calculated_value_
);
12189 case elfcpp::R_MIPS_GOT_PAGE
:
12190 case elfcpp::R_MICROMIPS_GOT_PAGE
:
12191 reloc_status
= Reloc_funcs::relgotpage(target
, view
, object
, psymval
,
12192 r_addend
, extract_addend
,
12193 this->calculate_only_
,
12194 &this->calculated_value_
);
12197 case elfcpp::R_MIPS_GOT_OFST
:
12198 case elfcpp::R_MICROMIPS_GOT_OFST
:
12199 reloc_status
= Reloc_funcs::relgotofst(target
, view
, object
, psymval
,
12200 r_addend
, extract_addend
,
12201 local
, this->calculate_only_
,
12202 &this->calculated_value_
);
12205 case elfcpp::R_MIPS_JALR
:
12206 case elfcpp::R_MICROMIPS_JALR
:
12207 // This relocation is only a hint. In some cases, we optimize
12208 // it into a bal instruction. But we don't try to optimize
12209 // when the symbol does not resolve locally.
12211 || symbol_calls_local(gsym
, gsym
->has_dynsym_index()))
12212 reloc_status
= Reloc_funcs::reljalr(view
, object
, psymval
, address
,
12213 r_addend
, extract_addend
,
12214 cross_mode_jump
, r_types
[i
],
12215 target
->jalr_to_bal(),
12217 this->calculate_only_
,
12218 &this->calculated_value_
);
12221 case elfcpp::R_MIPS_TLS_DTPREL_HI16
:
12222 case elfcpp::R_MIPS16_TLS_DTPREL_HI16
:
12223 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16
:
12224 reloc_status
= Reloc_funcs::tlsrelhi16(view
, object
, psymval
,
12225 elfcpp::DTP_OFFSET
, r_addend
,
12227 this->calculate_only_
,
12228 &this->calculated_value_
);
12230 case elfcpp::R_MIPS_TLS_DTPREL_LO16
:
12231 case elfcpp::R_MIPS16_TLS_DTPREL_LO16
:
12232 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16
:
12233 reloc_status
= Reloc_funcs::tlsrello16(view
, object
, psymval
,
12234 elfcpp::DTP_OFFSET
, r_addend
,
12236 this->calculate_only_
,
12237 &this->calculated_value_
);
12239 case elfcpp::R_MIPS_TLS_DTPREL32
:
12240 case elfcpp::R_MIPS_TLS_DTPREL64
:
12241 reloc_status
= Reloc_funcs::tlsrel32(view
, object
, psymval
,
12242 elfcpp::DTP_OFFSET
, r_addend
,
12244 this->calculate_only_
,
12245 &this->calculated_value_
);
12247 case elfcpp::R_MIPS_TLS_TPREL_HI16
:
12248 case elfcpp::R_MIPS16_TLS_TPREL_HI16
:
12249 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16
:
12250 reloc_status
= Reloc_funcs::tlsrelhi16(view
, object
, psymval
,
12251 elfcpp::TP_OFFSET
, r_addend
,
12253 this->calculate_only_
,
12254 &this->calculated_value_
);
12256 case elfcpp::R_MIPS_TLS_TPREL_LO16
:
12257 case elfcpp::R_MIPS16_TLS_TPREL_LO16
:
12258 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16
:
12259 reloc_status
= Reloc_funcs::tlsrello16(view
, object
, psymval
,
12260 elfcpp::TP_OFFSET
, r_addend
,
12262 this->calculate_only_
,
12263 &this->calculated_value_
);
12265 case elfcpp::R_MIPS_TLS_TPREL32
:
12266 case elfcpp::R_MIPS_TLS_TPREL64
:
12267 reloc_status
= Reloc_funcs::tlsrel32(view
, object
, psymval
,
12268 elfcpp::TP_OFFSET
, r_addend
,
12270 this->calculate_only_
,
12271 &this->calculated_value_
);
12273 case elfcpp::R_MIPS_SUB
:
12274 case elfcpp::R_MICROMIPS_SUB
:
12275 reloc_status
= Reloc_funcs::relsub(view
, object
, psymval
, r_addend
,
12277 this->calculate_only_
,
12278 &this->calculated_value_
);
12280 case elfcpp::R_MIPS_HIGHER
:
12281 case elfcpp::R_MICROMIPS_HIGHER
:
12282 reloc_status
= Reloc_funcs::relhigher(view
, object
, psymval
, r_addend
,
12284 this->calculate_only_
,
12285 &this->calculated_value_
);
12287 case elfcpp::R_MIPS_HIGHEST
:
12288 case elfcpp::R_MICROMIPS_HIGHEST
:
12289 reloc_status
= Reloc_funcs::relhighest(view
, object
, psymval
,
12290 r_addend
, extract_addend
,
12291 this->calculate_only_
,
12292 &this->calculated_value_
);
12295 gold_error_at_location(relinfo
, relnum
, r_offset
,
12296 _("unsupported reloc %u"), r_types
[i
]);
12300 if (update_got_entry
)
12302 Mips_output_data_got
<size
, big_endian
>* got
= target
->got_section();
12303 if (mips_sym
!= NULL
&& mips_sym
->get_applied_secondary_got_fixup())
12304 got
->update_got_entry(got
->get_primary_got_offset(mips_sym
),
12305 psymval
->value(object
, 0));
12307 got
->update_got_entry(got_offset
, psymval
->value(object
, 0));
12311 bool jal_shuffle
= jal_reloc(r_type
);
12312 Reloc_funcs::mips_reloc_shuffle(view
, r_type
, jal_shuffle
);
12314 // Report any errors.
12315 switch (reloc_status
)
12317 case Reloc_funcs::STATUS_OKAY
:
12319 case Reloc_funcs::STATUS_OVERFLOW
:
12321 gold_error_at_location(relinfo
, relnum
, r_offset
,
12322 _("relocation overflow: "
12323 "%u against local symbol %u in %s"),
12324 r_type
, r_sym
, object
->name().c_str());
12325 else if (gsym
->is_defined() && gsym
->source() == Symbol::FROM_OBJECT
)
12326 gold_error_at_location(relinfo
, relnum
, r_offset
,
12327 _("relocation overflow: "
12328 "%u against '%s' defined in %s"),
12329 r_type
, gsym
->demangled_name().c_str(),
12330 gsym
->object()->name().c_str());
12332 gold_error_at_location(relinfo
, relnum
, r_offset
,
12333 _("relocation overflow: %u against '%s'"),
12334 r_type
, gsym
->demangled_name().c_str());
12336 case Reloc_funcs::STATUS_BAD_RELOC
:
12337 gold_error_at_location(relinfo
, relnum
, r_offset
,
12338 _("unexpected opcode while processing relocation"));
12340 case Reloc_funcs::STATUS_PCREL_UNALIGNED
:
12341 gold_error_at_location(relinfo
, relnum
, r_offset
,
12342 _("unaligned PC-relative relocation"));
12345 gold_unreachable();
12351 // Get the Reference_flags for a particular relocation.
12353 template<int size
, bool big_endian
>
12355 Target_mips
<size
, big_endian
>::Scan::get_reference_flags(
12356 unsigned int r_type
)
12360 case elfcpp::R_MIPS_NONE
:
12361 // No symbol reference.
12364 case elfcpp::R_MIPS_16
:
12365 case elfcpp::R_MIPS_32
:
12366 case elfcpp::R_MIPS_64
:
12367 case elfcpp::R_MIPS_HI16
:
12368 case elfcpp::R_MIPS_LO16
:
12369 case elfcpp::R_MIPS_HIGHER
:
12370 case elfcpp::R_MIPS_HIGHEST
:
12371 case elfcpp::R_MIPS16_HI16
:
12372 case elfcpp::R_MIPS16_LO16
:
12373 case elfcpp::R_MICROMIPS_HI16
:
12374 case elfcpp::R_MICROMIPS_LO16
:
12375 case elfcpp::R_MICROMIPS_HIGHER
:
12376 case elfcpp::R_MICROMIPS_HIGHEST
:
12377 return Symbol::ABSOLUTE_REF
;
12379 case elfcpp::R_MIPS_26
:
12380 case elfcpp::R_MIPS16_26
:
12381 case elfcpp::R_MICROMIPS_26_S1
:
12382 return Symbol::FUNCTION_CALL
| Symbol::ABSOLUTE_REF
;
12384 case elfcpp::R_MIPS_PC18_S3
:
12385 case elfcpp::R_MIPS_PC19_S2
:
12386 case elfcpp::R_MIPS_PCHI16
:
12387 case elfcpp::R_MIPS_PCLO16
:
12388 case elfcpp::R_MIPS_GPREL32
:
12389 case elfcpp::R_MIPS_GPREL16
:
12390 case elfcpp::R_MIPS_REL32
:
12391 case elfcpp::R_MIPS16_GPREL
:
12392 return Symbol::RELATIVE_REF
;
12394 case elfcpp::R_MIPS_PC16
:
12395 case elfcpp::R_MIPS_PC32
:
12396 case elfcpp::R_MIPS_PC21_S2
:
12397 case elfcpp::R_MIPS_PC26_S2
:
12398 case elfcpp::R_MIPS_JALR
:
12399 case elfcpp::R_MICROMIPS_JALR
:
12400 return Symbol::FUNCTION_CALL
| Symbol::RELATIVE_REF
;
12402 case elfcpp::R_MIPS_GOT16
:
12403 case elfcpp::R_MIPS_CALL16
:
12404 case elfcpp::R_MIPS_GOT_DISP
:
12405 case elfcpp::R_MIPS_GOT_HI16
:
12406 case elfcpp::R_MIPS_GOT_LO16
:
12407 case elfcpp::R_MIPS_CALL_HI16
:
12408 case elfcpp::R_MIPS_CALL_LO16
:
12409 case elfcpp::R_MIPS_LITERAL
:
12410 case elfcpp::R_MIPS_GOT_PAGE
:
12411 case elfcpp::R_MIPS_GOT_OFST
:
12412 case elfcpp::R_MIPS16_GOT16
:
12413 case elfcpp::R_MIPS16_CALL16
:
12414 case elfcpp::R_MICROMIPS_GOT16
:
12415 case elfcpp::R_MICROMIPS_CALL16
:
12416 case elfcpp::R_MICROMIPS_GOT_HI16
:
12417 case elfcpp::R_MICROMIPS_GOT_LO16
:
12418 case elfcpp::R_MICROMIPS_CALL_HI16
:
12419 case elfcpp::R_MICROMIPS_CALL_LO16
:
12420 case elfcpp::R_MIPS_EH
:
12421 // Absolute in GOT.
12422 return Symbol::RELATIVE_REF
;
12424 case elfcpp::R_MIPS_TLS_DTPMOD32
:
12425 case elfcpp::R_MIPS_TLS_DTPREL32
:
12426 case elfcpp::R_MIPS_TLS_DTPMOD64
:
12427 case elfcpp::R_MIPS_TLS_DTPREL64
:
12428 case elfcpp::R_MIPS_TLS_GD
:
12429 case elfcpp::R_MIPS_TLS_LDM
:
12430 case elfcpp::R_MIPS_TLS_DTPREL_HI16
:
12431 case elfcpp::R_MIPS_TLS_DTPREL_LO16
:
12432 case elfcpp::R_MIPS_TLS_GOTTPREL
:
12433 case elfcpp::R_MIPS_TLS_TPREL32
:
12434 case elfcpp::R_MIPS_TLS_TPREL64
:
12435 case elfcpp::R_MIPS_TLS_TPREL_HI16
:
12436 case elfcpp::R_MIPS_TLS_TPREL_LO16
:
12437 case elfcpp::R_MIPS16_TLS_GD
:
12438 case elfcpp::R_MIPS16_TLS_GOTTPREL
:
12439 case elfcpp::R_MICROMIPS_TLS_GD
:
12440 case elfcpp::R_MICROMIPS_TLS_GOTTPREL
:
12441 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16
:
12442 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16
:
12443 return Symbol::TLS_REF
;
12445 case elfcpp::R_MIPS_COPY
:
12446 case elfcpp::R_MIPS_JUMP_SLOT
:
12448 // Not expected. We will give an error later.
12453 // Report an unsupported relocation against a local symbol.
12455 template<int size
, bool big_endian
>
12457 Target_mips
<size
, big_endian
>::Scan::unsupported_reloc_local(
12458 Sized_relobj_file
<size
, big_endian
>* object
,
12459 unsigned int r_type
)
12461 gold_error(_("%s: unsupported reloc %u against local symbol"),
12462 object
->name().c_str(), r_type
);
12465 // Report an unsupported relocation against a global symbol.
12467 template<int size
, bool big_endian
>
12469 Target_mips
<size
, big_endian
>::Scan::unsupported_reloc_global(
12470 Sized_relobj_file
<size
, big_endian
>* object
,
12471 unsigned int r_type
,
12474 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12475 object
->name().c_str(), r_type
, gsym
->demangled_name().c_str());
12478 // Return printable name for ABI.
12479 template<int size
, bool big_endian
>
12481 Target_mips
<size
, big_endian
>::elf_mips_abi_name(elfcpp::Elf_Word e_flags
)
12483 switch (e_flags
& elfcpp::EF_MIPS_ABI
)
12486 if ((e_flags
& elfcpp::EF_MIPS_ABI2
) != 0)
12488 else if (size
== 64)
12492 case elfcpp::E_MIPS_ABI_O32
:
12494 case elfcpp::E_MIPS_ABI_O64
:
12496 case elfcpp::E_MIPS_ABI_EABI32
:
12498 case elfcpp::E_MIPS_ABI_EABI64
:
12501 return "unknown abi";
12505 template<int size
, bool big_endian
>
12507 Target_mips
<size
, big_endian
>::elf_mips_mach_name(elfcpp::Elf_Word e_flags
)
12509 switch (e_flags
& elfcpp::EF_MIPS_MACH
)
12511 case elfcpp::E_MIPS_MACH_3900
:
12512 return "mips:3900";
12513 case elfcpp::E_MIPS_MACH_4010
:
12514 return "mips:4010";
12515 case elfcpp::E_MIPS_MACH_4100
:
12516 return "mips:4100";
12517 case elfcpp::E_MIPS_MACH_4111
:
12518 return "mips:4111";
12519 case elfcpp::E_MIPS_MACH_4120
:
12520 return "mips:4120";
12521 case elfcpp::E_MIPS_MACH_4650
:
12522 return "mips:4650";
12523 case elfcpp::E_MIPS_MACH_5400
:
12524 return "mips:5400";
12525 case elfcpp::E_MIPS_MACH_5500
:
12526 return "mips:5500";
12527 case elfcpp::E_MIPS_MACH_5900
:
12528 return "mips:5900";
12529 case elfcpp::E_MIPS_MACH_SB1
:
12531 case elfcpp::E_MIPS_MACH_9000
:
12532 return "mips:9000";
12533 case elfcpp::E_MIPS_MACH_LS2E
:
12534 return "mips:loongson_2e";
12535 case elfcpp::E_MIPS_MACH_LS2F
:
12536 return "mips:loongson_2f";
12537 case elfcpp::E_MIPS_MACH_GS464
:
12538 return "mips:gs464";
12539 case elfcpp::E_MIPS_MACH_GS464E
:
12540 return "mips:gs464e";
12541 case elfcpp::E_MIPS_MACH_GS264E
:
12542 return "mips:gs264e";
12543 case elfcpp::E_MIPS_MACH_OCTEON
:
12544 return "mips:octeon";
12545 case elfcpp::E_MIPS_MACH_OCTEON2
:
12546 return "mips:octeon2";
12547 case elfcpp::E_MIPS_MACH_OCTEON3
:
12548 return "mips:octeon3";
12549 case elfcpp::E_MIPS_MACH_XLR
:
12552 switch (e_flags
& elfcpp::EF_MIPS_ARCH
)
12555 case elfcpp::E_MIPS_ARCH_1
:
12556 return "mips:3000";
12558 case elfcpp::E_MIPS_ARCH_2
:
12559 return "mips:6000";
12561 case elfcpp::E_MIPS_ARCH_3
:
12562 return "mips:4000";
12564 case elfcpp::E_MIPS_ARCH_4
:
12565 return "mips:8000";
12567 case elfcpp::E_MIPS_ARCH_5
:
12568 return "mips:mips5";
12570 case elfcpp::E_MIPS_ARCH_32
:
12571 return "mips:isa32";
12573 case elfcpp::E_MIPS_ARCH_64
:
12574 return "mips:isa64";
12576 case elfcpp::E_MIPS_ARCH_32R2
:
12577 return "mips:isa32r2";
12579 case elfcpp::E_MIPS_ARCH_32R6
:
12580 return "mips:isa32r6";
12582 case elfcpp::E_MIPS_ARCH_64R2
:
12583 return "mips:isa64r2";
12585 case elfcpp::E_MIPS_ARCH_64R6
:
12586 return "mips:isa64r6";
12589 return "unknown CPU";
12592 template<int size
, bool big_endian
>
12593 const Target::Target_info Target_mips
<size
, big_endian
>::mips_info
=
12596 big_endian
, // is_big_endian
12597 elfcpp::EM_MIPS
, // machine_code
12598 true, // has_make_symbol
12599 false, // has_resolve
12600 false, // has_code_fill
12601 true, // is_default_stack_executable
12602 false, // can_icf_inline_merge_sections
12604 size
== 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
12605 0x400000, // default_text_segment_address
12606 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
12607 4 * 1024, // common_pagesize (overridable by -z common-page-size)
12608 false, // isolate_execinstr
12609 0, // rosegment_gap
12610 elfcpp::SHN_UNDEF
, // small_common_shndx
12611 elfcpp::SHN_UNDEF
, // large_common_shndx
12612 0, // small_common_section_flags
12613 0, // large_common_section_flags
12614 NULL
, // attributes_section
12615 NULL
, // attributes_vendor
12616 "__start", // entry_symbol_name
12617 32, // hash_entry_size
12618 elfcpp::SHT_PROGBITS
, // unwind_section_type
12621 template<int size
, bool big_endian
>
12622 class Target_mips_nacl
: public Target_mips
<size
, big_endian
>
12626 : Target_mips
<size
, big_endian
>(&mips_nacl_info
)
12630 static const Target::Target_info mips_nacl_info
;
12633 template<int size
, bool big_endian
>
12634 const Target::Target_info Target_mips_nacl
<size
, big_endian
>::mips_nacl_info
=
12637 big_endian
, // is_big_endian
12638 elfcpp::EM_MIPS
, // machine_code
12639 true, // has_make_symbol
12640 false, // has_resolve
12641 false, // has_code_fill
12642 true, // is_default_stack_executable
12643 false, // can_icf_inline_merge_sections
12645 "/lib/ld.so.1", // dynamic_linker
12646 0x20000, // default_text_segment_address
12647 0x10000, // abi_pagesize (overridable by -z max-page-size)
12648 0x10000, // common_pagesize (overridable by -z common-page-size)
12649 true, // isolate_execinstr
12650 0x10000000, // rosegment_gap
12651 elfcpp::SHN_UNDEF
, // small_common_shndx
12652 elfcpp::SHN_UNDEF
, // large_common_shndx
12653 0, // small_common_section_flags
12654 0, // large_common_section_flags
12655 NULL
, // attributes_section
12656 NULL
, // attributes_vendor
12657 "_start", // entry_symbol_name
12658 32, // hash_entry_size
12659 elfcpp::SHT_PROGBITS
, // unwind_section_type
12662 // Target selector for Mips. Note this is never instantiated directly.
12663 // It's only used in Target_selector_mips_nacl, below.
12665 template<int size
, bool big_endian
>
12666 class Target_selector_mips
: public Target_selector
12669 Target_selector_mips()
12670 : Target_selector(elfcpp::EM_MIPS
, size
, big_endian
,
12672 (big_endian
? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12673 (big_endian
? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12675 (big_endian
? "elf64btsmip" : "elf64ltsmip") :
12676 (big_endian
? "elf32btsmip" : "elf32ltsmip")))
12679 Target
* do_instantiate_target()
12680 { return new Target_mips
<size
, big_endian
>(); }
12683 template<int size
, bool big_endian
>
12684 class Target_selector_mips_nacl
12685 : public Target_selector_nacl
<Target_selector_mips
<size
, big_endian
>,
12686 Target_mips_nacl
<size
, big_endian
> >
12689 Target_selector_mips_nacl()
12690 : Target_selector_nacl
<Target_selector_mips
<size
, big_endian
>,
12691 Target_mips_nacl
<size
, big_endian
> >(
12692 // NaCl currently supports only MIPS32 little-endian.
12693 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12697 Target_selector_mips_nacl
<32, true> target_selector_mips32
;
12698 Target_selector_mips_nacl
<32, false> target_selector_mips32el
;
12699 Target_selector_mips_nacl
<64, true> target_selector_mips64
;
12700 Target_selector_mips_nacl
<64, false> target_selector_mips64el
;
12702 } // End anonymous namespace.