1 /* bfdlink.h -- header file for BFD link routines
2 Copyright (C) 1993-2022 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
25 /* Which symbols to strip during a link. */
28 strip_none
, /* Don't strip any symbols. */
29 strip_debugger
, /* Strip debugging symbols. */
30 strip_some
, /* keep_hash is the list of symbols to keep. */
31 strip_all
/* Strip all symbols. */
34 /* Which local symbols to discard during a link. This is irrelevant
35 if strip_all is used. */
38 discard_sec_merge
, /* Discard local temporary symbols in SEC_MERGE
40 discard_none
, /* Don't discard any locals. */
41 discard_l
, /* Discard local temporary symbols. */
42 discard_all
/* Discard all locals. */
45 enum notice_asneeded_action
{
51 /* Whether to generate ELF common symbols with the STT_COMMON type
52 during a relocatable link. */
53 enum bfd_link_elf_stt_common
60 /* Describes the type of hash table entry structure being used.
61 Different hash table structure have different fields and so
62 support different linking features. */
63 enum bfd_link_hash_table_type
65 bfd_link_generic_hash_table
,
66 bfd_link_elf_hash_table
69 /* These are the possible types of an entry in the BFD link hash
72 enum bfd_link_hash_type
74 bfd_link_hash_new
, /* Symbol is new. */
75 bfd_link_hash_undefined
, /* Symbol seen before, but undefined. */
76 bfd_link_hash_undefweak
, /* Symbol is weak and undefined. */
77 bfd_link_hash_defined
, /* Symbol is defined. */
78 bfd_link_hash_defweak
, /* Symbol is weak and defined. */
79 bfd_link_hash_common
, /* Symbol is common. */
80 bfd_link_hash_indirect
, /* Symbol is an indirect link. */
81 bfd_link_hash_warning
/* Like indirect, but warn if referenced. */
84 enum bfd_link_common_skip_ar_symbols
86 bfd_link_common_skip_none
,
87 bfd_link_common_skip_text
,
88 bfd_link_common_skip_data
,
89 bfd_link_common_skip_all
92 struct bfd_link_hash_common_entry
94 unsigned int alignment_power
; /* Alignment. */
95 asection
*section
; /* Symbol section. */
98 /* The linking routines use a hash table which uses this structure for
101 struct bfd_link_hash_entry
103 /* Base hash table entry structure. */
104 struct bfd_hash_entry root
;
106 /* Type of this entry. */
107 ENUM_BITFIELD (bfd_link_hash_type
) type
: 8;
109 /* Symbol is referenced in a normal regular object file,
110 as distinct from a LTO IR object file. */
111 unsigned int non_ir_ref_regular
: 1;
113 /* Symbol is referenced in a normal dynamic object file,
114 as distinct from a LTO IR object file. */
115 unsigned int non_ir_ref_dynamic
: 1;
117 /* Symbol is a built-in define. These will be overridden by PROVIDE
118 in a linker script. */
119 unsigned int linker_def
: 1;
121 /* Symbol defined in a linker script. */
122 unsigned int ldscript_def
: 1;
124 /* Symbol will be converted from absolute to section-relative. Set for
125 symbols defined by a script from "dot" (also SEGMENT_START or ORIGIN)
126 outside of an output section statement. */
127 unsigned int rel_from_abs
: 1;
129 /* A union of information depending upon the type. */
132 /* Nothing is kept for bfd_hash_new. */
133 /* bfd_link_hash_undefined, bfd_link_hash_undefweak. */
136 /* Undefined and common symbols are kept in a linked list through
137 this field. This field is present in all of the union element
138 so that we don't need to remove entries from the list when we
139 change their type. Removing entries would either require the
140 list to be doubly linked, which would waste more memory, or
141 require a traversal. When an undefined or common symbol is
142 created, it should be added to this list, the head of which is in
143 the link hash table itself. As symbols are defined, they need
144 not be removed from the list; anything which reads the list must
145 doublecheck the symbol type.
147 Weak symbols are not kept on this list.
149 Defined and defweak symbols use this field as a reference marker.
150 If the field is not NULL, or this structure is the tail of the
151 undefined symbol list, the symbol has been referenced. If the
152 symbol is undefined and becomes defined, this field will
153 automatically be non-NULL since the symbol will have been on the
154 undefined symbol list. */
155 struct bfd_link_hash_entry
*next
;
156 /* BFD symbol was found in. */
159 /* bfd_link_hash_defined, bfd_link_hash_defweak. */
162 struct bfd_link_hash_entry
*next
;
163 /* Symbol section. */
168 /* bfd_link_hash_indirect, bfd_link_hash_warning. */
171 struct bfd_link_hash_entry
*next
;
173 struct bfd_link_hash_entry
*link
;
174 /* Warning message (bfd_link_hash_warning only). */
177 /* bfd_link_hash_common. */
180 struct bfd_link_hash_entry
*next
;
181 /* The linker needs to know three things about common
182 symbols: the size, the alignment, and the section in
183 which the symbol should be placed. We store the size
184 here, and we allocate a small structure to hold the
185 section and the alignment. The alignment is stored as a
186 power of two. We don't store all the information
187 directly because we don't want to increase the size of
188 the union; this structure is a major space user in the
190 struct bfd_link_hash_common_entry
*p
;
191 /* Common symbol size. */
197 /* This is the link hash table. It is a derived class of
200 struct bfd_link_hash_table
202 /* The hash table itself. */
203 struct bfd_hash_table table
;
204 /* A linked list of undefined and common symbols, linked through the
205 next field in the bfd_link_hash_entry structure. */
206 struct bfd_link_hash_entry
*undefs
;
207 /* Entries are added to the tail of the undefs list. */
208 struct bfd_link_hash_entry
*undefs_tail
;
209 /* Function to free the hash table on closing BFD. */
210 void (*hash_table_free
) (bfd
*);
211 /* The type of the link hash table. */
212 enum bfd_link_hash_table_type type
;
215 /* Look up an entry in a link hash table. If FOLLOW is TRUE, this
216 follows bfd_link_hash_indirect and bfd_link_hash_warning links to
218 extern struct bfd_link_hash_entry
*bfd_link_hash_lookup
219 (struct bfd_link_hash_table
*, const char *, bool create
,
220 bool copy
, bool follow
);
222 /* Look up an entry in the main linker hash table if the symbol might
223 be wrapped. This should only be used for references to an
224 undefined symbol, not for definitions of a symbol. */
226 extern struct bfd_link_hash_entry
*bfd_wrapped_link_hash_lookup
227 (bfd
*, struct bfd_link_info
*, const char *, bool, bool, bool);
229 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
230 and the remainder is found in wrap_hash, return the real symbol. */
232 extern struct bfd_link_hash_entry
*unwrap_hash_lookup
233 (struct bfd_link_info
*, bfd
*, struct bfd_link_hash_entry
*);
235 /* Traverse a link hash table. */
236 extern void bfd_link_hash_traverse
237 (struct bfd_link_hash_table
*,
238 bool (*) (struct bfd_link_hash_entry
*, void *),
241 /* Add an entry to the undefs list. */
242 extern void bfd_link_add_undef
243 (struct bfd_link_hash_table
*, struct bfd_link_hash_entry
*);
245 /* Remove symbols from the undefs list that don't belong there. */
246 extern void bfd_link_repair_undef_list
247 (struct bfd_link_hash_table
*table
);
249 /* Read symbols and cache symbol pointer array in outsymbols. */
250 extern bool bfd_generic_link_read_symbols (bfd
*);
252 /* Check the relocs in the BFD. Called after all the input
253 files have been loaded, and garbage collection has tagged
254 any unneeded sections. */
255 extern bool bfd_link_check_relocs (bfd
*,struct bfd_link_info
*);
259 struct bfd_sym_chain
*next
;
263 /* How to handle unresolved symbols.
264 There are four possibilities which are enumerated below: */
267 /* This is the initial value when then link_info structure is created.
268 It allows the various stages of the linker to determine whether they
269 allowed to set the value. */
275 /* How to handle DT_TEXTREL. */
277 enum textrel_check_method
280 textrel_check_warning
,
284 #define bfd_link_textrel_check(info) \
285 (info->textrel_check != textrel_check_none)
287 typedef enum {with_flags
, without_flags
} flag_type
;
289 /* A section flag list. */
290 struct flag_info_list
295 struct flag_info_list
*next
;
298 /* Section flag info. */
301 flagword only_with_flags
;
302 flagword not_with_flags
;
303 struct flag_info_list
*flag_list
;
304 bool flags_initialized
;
307 struct bfd_elf_dynamic_list
;
308 struct bfd_elf_version_tree
;
310 /* Types of output. */
320 #define bfd_link_pde(info) ((info)->type == type_pde)
321 #define bfd_link_dll(info) ((info)->type == type_dll)
322 #define bfd_link_relocatable(info) ((info)->type == type_relocatable)
323 #define bfd_link_pie(info) ((info)->type == type_pie)
324 #define bfd_link_executable(info) (bfd_link_pde (info) || bfd_link_pie (info))
325 #define bfd_link_pic(info) (bfd_link_dll (info) || bfd_link_pie (info))
327 /* This structure holds all the information needed to communicate
328 between BFD and the linker when doing a link. */
333 ENUM_BITFIELD (output_type
) type
: 2;
335 /* TRUE if BFD should pre-bind symbols in a shared object. */
336 unsigned int symbolic
: 1;
338 /* TRUE if BFD should export all symbols in the dynamic symbol table
339 of an executable, rather than only those used. */
340 unsigned int export_dynamic
: 1;
342 /* TRUE if a default symbol version should be created and used for
344 unsigned int create_default_symver
: 1;
346 /* TRUE if unreferenced sections should be removed. */
347 unsigned int gc_sections
: 1;
349 /* TRUE if exported symbols should be kept during section gc. */
350 unsigned int gc_keep_exported
: 1;
352 /* TRUE if every symbol should be reported back via the notice
354 unsigned int notice_all
: 1;
356 /* TRUE if the LTO plugin is active. */
357 unsigned int lto_plugin_active
: 1;
359 /* TRUE if all LTO IR symbols have been read. */
360 unsigned int lto_all_symbols_read
: 1;
362 /* TRUE if global symbols in discarded sections should be stripped. */
363 unsigned int strip_discarded
: 1;
365 /* TRUE if all data symbols should be dynamic. */
366 unsigned int dynamic_data
: 1;
368 /* TRUE if section groups should be resolved. */
369 unsigned int resolve_section_groups
: 1;
371 /* Set if output file is big-endian, or if that is unknown, from
372 the command line or first input file endianness. */
373 unsigned int big_endian
: 1;
375 /* Which symbols to strip. */
376 ENUM_BITFIELD (bfd_link_strip
) strip
: 2;
378 /* Which local symbols to discard. */
379 ENUM_BITFIELD (bfd_link_discard
) discard
: 2;
381 /* Whether to generate ELF common symbols with the STT_COMMON type. */
382 ENUM_BITFIELD (bfd_link_elf_stt_common
) elf_stt_common
: 2;
384 /* Criteria for skipping symbols when determining
385 whether to include an object from an archive. */
386 ENUM_BITFIELD (bfd_link_common_skip_ar_symbols
) common_skip_ar_symbols
: 2;
388 /* What to do with unresolved symbols in an object file.
389 When producing executables the default is GENERATE_ERROR.
390 When producing shared libraries the default is IGNORE. The
391 assumption with shared libraries is that the reference will be
392 resolved at load/execution time. */
393 ENUM_BITFIELD (report_method
) unresolved_syms_in_objects
: 2;
395 /* What to do with unresolved symbols in a shared library.
396 The same defaults apply. */
397 ENUM_BITFIELD (report_method
) unresolved_syms_in_shared_libs
: 2;
399 /* TRUE if unresolved symbols are to be warned, rather than errored. */
400 unsigned int warn_unresolved_syms
: 1;
402 /* TRUE if shared objects should be linked directly, not shared. */
403 unsigned int static_link
: 1;
405 /* TRUE if symbols should be retained in memory, FALSE if they
406 should be freed and reread. */
407 unsigned int keep_memory
: 1;
409 /* TRUE if BFD should generate relocation information in the final
411 unsigned int emitrelocations
: 1;
413 /* TRUE if PT_GNU_RELRO segment should be created. */
414 unsigned int relro
: 1;
416 /* TRUE if DT_RELR should be enabled for compact relative
418 unsigned int enable_dt_relr
: 1;
420 /* TRUE if separate code segment should be created. */
421 unsigned int separate_code
: 1;
423 /* Nonzero if .eh_frame_hdr section and PT_GNU_EH_FRAME ELF segment
424 should be created. 1 for DWARF2 tables, 2 for compact tables. */
425 unsigned int eh_frame_hdr_type
: 2;
427 /* What to do with DT_TEXTREL in output. */
428 ENUM_BITFIELD (textrel_check_method
) textrel_check
: 2;
430 /* TRUE if .hash section should be created. */
431 unsigned int emit_hash
: 1;
433 /* TRUE if .gnu.hash section should be created. */
434 unsigned int emit_gnu_hash
: 1;
436 /* If TRUE reduce memory overheads, at the expense of speed. This will
437 cause map file generation to use an O(N^2) algorithm and disable
438 caching ELF symbol buffer. */
439 unsigned int reduce_memory_overheads
: 1;
441 /* TRUE if the output file should be in a traditional format. This
442 is equivalent to the setting of the BFD_TRADITIONAL_FORMAT flag
443 on the output file, but may be checked when reading the input
445 unsigned int traditional_format
: 1;
447 /* TRUE if non-PLT relocs should be merged into one reloc section
448 and sorted so that relocs against the same symbol come together. */
449 unsigned int combreloc
: 1;
451 /* TRUE if a default symbol version should be created and used for
453 unsigned int default_imported_symver
: 1;
455 /* TRUE if the new ELF dynamic tags are enabled. */
456 unsigned int new_dtags
: 1;
458 /* FALSE if .eh_frame unwind info should be generated for PLT and other
459 linker created sections, TRUE if it should be omitted. */
460 unsigned int no_ld_generated_unwind_info
: 1;
462 /* TRUE if BFD should generate a "task linked" object file,
463 similar to relocatable but also with globals converted to
465 unsigned int task_link
: 1;
467 /* TRUE if ok to have multiple definitions, without warning. */
468 unsigned int allow_multiple_definition
: 1;
470 /* TRUE if multiple definition of absolute symbols (eg. from -R) should
472 unsigned int prohibit_multiple_definition_absolute
: 1;
474 /* TRUE if multiple definitions should only warn. */
475 unsigned int warn_multiple_definition
: 1;
477 /* TRUE if ok to have version with no definition. */
478 unsigned int allow_undefined_version
: 1;
480 /* TRUE if some symbols have to be dynamic, controlled by
481 --dynamic-list command line options. */
482 unsigned int dynamic
: 1;
484 /* TRUE if PT_GNU_STACK segment should be created with PF_R|PF_W|PF_X
486 unsigned int execstack
: 1;
488 /* TRUE if PT_GNU_STACK segment should be created with PF_R|PF_W
490 unsigned int noexecstack
: 1;
492 /* TRUE if we want to produced optimized output files. This might
493 need much more time and therefore must be explicitly selected. */
494 unsigned int optimize
: 1;
496 /* TRUE if user should be informed of removed unreferenced sections. */
497 unsigned int print_gc_sections
: 1;
499 /* TRUE if we should warn alternate ELF machine code. */
500 unsigned int warn_alternate_em
: 1;
502 /* TRUE if the linker script contained an explicit PHDRS command. */
503 unsigned int user_phdrs
: 1;
505 /* TRUE if program headers ought to be loaded. */
506 unsigned int load_phdrs
: 1;
508 /* TRUE if we should check relocations after all input files have
510 unsigned int check_relocs_after_open_input
: 1;
512 /* TRUE if generation of .interp/PT_INTERP should be suppressed. */
513 unsigned int nointerp
: 1;
515 /* TRUE if common symbols should be treated as undefined. */
516 unsigned int inhibit_common_definition
: 1;
518 /* TRUE if "-Map map" is passed to linker. */
519 unsigned int has_map_file
: 1;
521 /* TRUE if "--enable-non-contiguous-regions" is passed to the
523 unsigned int non_contiguous_regions
: 1;
525 /* TRUE if "--enable-non-contiguous-regions-warnings" is passed to
527 unsigned int non_contiguous_regions_warnings
: 1;
529 /* TRUE if all symbol names should be unique. */
530 unsigned int unique_symbol
: 1;
532 /* TRUE if maxpagesize is set on command-line. */
533 unsigned int maxpagesize_is_set
: 1;
535 /* TRUE if commonpagesize is set on command-line. */
536 unsigned int commonpagesize_is_set
: 1;
538 /* Char that may appear as the first char of a symbol, but should be
539 skipped (like symbol_leading_char) when looking up symbols in
540 wrap_hash. Used by PowerPC Linux for 'dot' symbols. */
543 /* Separator between archive and filename in linker script filespecs. */
546 /* Compress DWARF debug sections. */
547 enum compressed_debug_section_type compress_debug
;
549 /* Default stack size. Zero means default (often zero itself), -1
550 means explicitly zero-sized. */
551 bfd_signed_vma stacksize
;
553 /* Enable or disable target specific optimizations.
555 Not all targets have optimizations to enable.
557 Normally these optimizations are disabled by default but some targets
558 prefer to enable them by default. So this field is a tri-state variable.
561 zero: Enable the optimizations (either from --relax being specified on
562 the command line or the backend's before_allocation emulation function.
564 positive: The user has requested that these optimizations be disabled.
565 (Via the --no-relax command line option).
567 negative: The optimizations are disabled. (Set when initializing the
568 args_type structure in ldmain.c:main. */
569 signed int disable_target_specific_optimizations
;
571 /* Function callbacks. */
572 const struct bfd_link_callbacks
*callbacks
;
574 /* Hash table handled by BFD. */
575 struct bfd_link_hash_table
*hash
;
577 /* Hash table of symbols to keep. This is NULL unless strip is
579 struct bfd_hash_table
*keep_hash
;
581 /* Hash table of symbols to report back via the notice callback. If
582 this is NULL, and notice_all is FALSE, then no symbols are
584 struct bfd_hash_table
*notice_hash
;
586 /* Hash table of symbols which are being wrapped (the --wrap linker
587 option). If this is NULL, no symbols are being wrapped. */
588 struct bfd_hash_table
*wrap_hash
;
590 /* Hash table of symbols which may be left unresolved during
591 a link. If this is NULL, no symbols can be left unresolved. */
592 struct bfd_hash_table
*ignore_hash
;
594 /* The output BFD. */
597 /* The import library generated. */
600 /* The list of input BFD's involved in the link. These are chained
601 together via the link.next field. */
603 bfd
**input_bfds_tail
;
605 /* If a symbol should be created for each input BFD, this is section
606 where those symbols should be placed. It must be a section in
607 the output BFD. It may be NULL, in which case no such symbols
608 will be created. This is to support CREATE_OBJECT_SYMBOLS in the
609 linker command language. */
610 asection
*create_object_symbols_section
;
612 /* List of global symbol names that are starting points for marking
613 sections against garbage collection. */
614 struct bfd_sym_chain
*gc_sym_list
;
616 /* If a base output file is wanted, then this points to it */
619 /* The function to call when the executable or shared object is
621 const char *init_function
;
623 /* The function to call when the executable or shared object is
625 const char *fini_function
;
627 /* Number of relaxation passes. Usually only one relaxation pass
628 is needed. But a backend can have as many relaxation passes as
629 necessary. During bfd_relax_section call, it is set to the
630 current pass, starting from 0. */
633 /* Number of relaxation trips. This number is incremented every
634 time the relaxation pass is restarted due to a previous
635 relaxation returning true in *AGAIN. */
638 /* > 0 to treat protected data defined in the shared library as
639 reference external. 0 to treat it as internal. -1 to let
640 backend to decide. */
641 int extern_protected_data
;
643 /* 1 to make undefined weak symbols dynamic when building a dynamic
644 object. 0 to resolve undefined weak symbols to zero. -1 to let
645 the backend decide. */
646 int dynamic_undefined_weak
;
648 /* Non-zero if auto-import thunks for DATA items in pei386 DLLs
649 should be generated/linked against. Set to 1 if this feature
650 is explicitly requested by the user, -1 if enabled by default. */
651 int pei386_auto_import
;
653 /* Non-zero if runtime relocs for DATA items with non-zero addends
654 in pei386 DLLs should be generated. Set to 1 if this feature
655 is explicitly requested by the user, -1 if enabled by default. */
656 int pei386_runtime_pseudo_reloc
;
658 /* How many spare .dynamic DT_NULL entries should be added? */
659 unsigned int spare_dynamic_tags
;
661 /* GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS control:
662 > 1: Turn on by -z indirect-extern-access or by backend.
663 == 1: Turn on by an input.
665 < 0: Turn on if it is set on any inputs or let backend to
667 int indirect_extern_access
;
669 /* Non-zero if executable should not contain copy relocs.
670 > 1: Implied by indirect_extern_access.
671 == 1: Turn on by -z nocopyreloc.
673 Setting this to non-zero may result in a non-sharable text
677 /* Pointer to the GNU_PROPERTY_1_NEEDED property in memory. */
678 bfd_byte
*needed_1_p
;
680 /* May be used to set DT_FLAGS for ELF. */
683 /* May be used to set DT_FLAGS_1 for ELF. */
686 /* May be used to set DT_GNU_FLAGS_1 for ELF. */
689 /* TRUE if references to __start_/__stop_ synthesized symbols do not
690 specially retain C identifier named sections. */
693 /* May be used to set ELF visibility for __start_* / __stop_. */
694 unsigned int start_stop_visibility
;
696 /* The maximum page size for ELF. */
699 /* The common page size for ELF. */
700 bfd_vma commonpagesize
;
702 /* Start and end of RELRO region. */
703 bfd_vma relro_start
, relro_end
;
705 /* List of symbols should be dynamic. */
706 struct bfd_elf_dynamic_list
*dynamic_list
;
708 /* The version information. */
709 struct bfd_elf_version_tree
*version_info
;
711 /* Size of cache. Backend can use it to keep strace cache size. */
712 bfd_size_type cache_size
;
714 /* The maximum cache size. Backend can use cache_size and and
715 max_cache_size to decide if keep_memory should be honored. */
716 bfd_size_type max_cache_size
;
719 /* Some forward-definitions used by some callbacks. */
721 struct elf_strtab_hash
;
722 struct elf_internal_sym
;
724 /* This structures holds a set of callback functions. These are called
725 by the BFD linker routines. */
727 struct bfd_link_callbacks
729 /* A function which is called when an object is added from an
730 archive. ABFD is the archive element being added. NAME is the
731 name of the symbol which caused the archive element to be pulled
732 in. This function may set *SUBSBFD to point to an alternative
733 BFD from which symbols should in fact be added in place of the
734 original BFD's symbols. Returns TRUE if the object should be
735 added, FALSE if it should be skipped. */
736 bool (*add_archive_element
)
737 (struct bfd_link_info
*, bfd
*abfd
, const char *name
, bfd
**subsbfd
);
738 /* A function which is called when a symbol is found with multiple
739 definitions. H is the symbol which is defined multiple times.
740 NBFD is the new BFD, NSEC is the new section, and NVAL is the new
741 value. NSEC may be bfd_com_section or bfd_ind_section. */
742 void (*multiple_definition
)
743 (struct bfd_link_info
*, struct bfd_link_hash_entry
*h
,
744 bfd
*nbfd
, asection
*nsec
, bfd_vma nval
);
745 /* A function which is called when a common symbol is defined
746 multiple times. H is the symbol appearing multiple times.
747 NBFD is the BFD of the new symbol. NTYPE is the type of the new
748 symbol, one of bfd_link_hash_defined, bfd_link_hash_common, or
749 bfd_link_hash_indirect. If NTYPE is bfd_link_hash_common, NSIZE
750 is the size of the new symbol. */
751 void (*multiple_common
)
752 (struct bfd_link_info
*, struct bfd_link_hash_entry
*h
,
753 bfd
*nbfd
, enum bfd_link_hash_type ntype
, bfd_vma nsize
);
754 /* A function which is called to add a symbol to a set. ENTRY is
755 the link hash table entry for the set itself (e.g.,
756 __CTOR_LIST__). RELOC is the relocation to use for an entry in
757 the set when generating a relocatable file, and is also used to
758 get the size of the entry when generating an executable file.
759 ABFD, SEC and VALUE identify the value to add to the set. */
761 (struct bfd_link_info
*, struct bfd_link_hash_entry
*entry
,
762 bfd_reloc_code_real_type reloc
, bfd
*abfd
, asection
*sec
, bfd_vma value
);
763 /* A function which is called when the name of a g++ constructor or
764 destructor is found. This is only called by some object file
765 formats. CONSTRUCTOR is TRUE for a constructor, FALSE for a
766 destructor. This will use BFD_RELOC_CTOR when generating a
767 relocatable file. NAME is the name of the symbol found. ABFD,
768 SECTION and VALUE are the value of the symbol. */
770 (struct bfd_link_info
*, bool constructor
, const char *name
,
771 bfd
*abfd
, asection
*sec
, bfd_vma value
);
772 /* A function which is called to issue a linker warning. For
773 example, this is called when there is a reference to a warning
774 symbol. WARNING is the warning to be issued. SYMBOL is the name
775 of the symbol which triggered the warning; it may be NULL if
776 there is none. ABFD, SECTION and ADDRESS identify the location
777 which trigerred the warning; either ABFD or SECTION or both may
778 be NULL if the location is not known. */
780 (struct bfd_link_info
*, const char *warning
, const char *symbol
,
781 bfd
*abfd
, asection
*section
, bfd_vma address
);
782 /* A function which is called when a relocation is attempted against
783 an undefined symbol. NAME is the symbol which is undefined.
784 ABFD, SECTION and ADDRESS identify the location from which the
785 reference is made. IS_FATAL indicates whether an undefined symbol is
786 a fatal error or not. In some cases SECTION may be NULL. */
787 void (*undefined_symbol
)
788 (struct bfd_link_info
*, const char *name
, bfd
*abfd
,
789 asection
*section
, bfd_vma address
, bool is_fatal
);
790 /* A function which is called when a reloc overflow occurs. ENTRY is
791 the link hash table entry for the symbol the reloc is against.
792 NAME is the name of the local symbol or section the reloc is
793 against, RELOC_NAME is the name of the relocation, and ADDEND is
794 any addend that is used. ABFD, SECTION and ADDRESS identify the
795 location at which the overflow occurs; if this is the result of a
796 bfd_section_reloc_link_order or bfd_symbol_reloc_link_order, then
797 ABFD will be NULL. */
798 void (*reloc_overflow
)
799 (struct bfd_link_info
*, struct bfd_link_hash_entry
*entry
,
800 const char *name
, const char *reloc_name
, bfd_vma addend
,
801 bfd
*abfd
, asection
*section
, bfd_vma address
);
802 /* A function which is called when a dangerous reloc is performed.
803 MESSAGE is an appropriate message.
804 ABFD, SECTION and ADDRESS identify the location at which the
805 problem occurred; if this is the result of a
806 bfd_section_reloc_link_order or bfd_symbol_reloc_link_order, then
807 ABFD will be NULL. */
808 void (*reloc_dangerous
)
809 (struct bfd_link_info
*, const char *message
,
810 bfd
*abfd
, asection
*section
, bfd_vma address
);
811 /* A function which is called when a reloc is found to be attached
812 to a symbol which is not being written out. NAME is the name of
813 the symbol. ABFD, SECTION and ADDRESS identify the location of
814 the reloc; if this is the result of a
815 bfd_section_reloc_link_order or bfd_symbol_reloc_link_order, then
816 ABFD will be NULL. */
817 void (*unattached_reloc
)
818 (struct bfd_link_info
*, const char *name
,
819 bfd
*abfd
, asection
*section
, bfd_vma address
);
820 /* A function which is called when a symbol in notice_hash is
821 defined or referenced. H is the symbol, INH the indirect symbol
822 if applicable. ABFD, SECTION and ADDRESS are the (new) value of
823 the symbol. If SECTION is bfd_und_section, this is a reference.
824 FLAGS are the symbol BSF_* flags. */
826 (struct bfd_link_info
*, struct bfd_link_hash_entry
*h
,
827 struct bfd_link_hash_entry
*inh
,
828 bfd
*abfd
, asection
*section
, bfd_vma address
, flagword flags
);
829 /* Error or warning link info message. */
831 (const char *fmt
, ...);
832 /* General link info message. */
834 (const char *fmt
, ...);
835 /* Message to be printed in linker map file. */
837 (const char *fmt
, ...);
838 /* This callback provides a chance for users of the BFD library to
839 override its decision about whether to place two adjacent sections
840 into the same segment. */
841 bool (*override_segment_assignment
)
842 (struct bfd_link_info
*, bfd
* abfd
,
843 asection
* current_section
, asection
* previous_section
,
845 /* This callback provides a chance for callers of the BFD to examine the
846 ELF (dynamic) string table once it is complete. */
847 void (*examine_strtab
)
848 (struct elf_strtab_hash
*symstrtab
);
849 /* This callback is called just before a symbol is swapped out, so that the
850 CTF machinery can look up symbols during construction. The name is
851 already an external strtab offset at this point. */
852 void (*ctf_new_symbol
)
853 (int symidx
, struct elf_internal_sym
*sym
);
854 /* Likewise, for dynamic symbols. */
855 void (*ctf_new_dynsym
)
856 (int symidx
, struct elf_internal_sym
*sym
);
857 /* This callback should emit the CTF section into a non-loadable section in
858 the output BFD named .ctf or a name beginning with ".ctf.". */
863 /* The linker builds link_order structures which tell the code how to
864 include input data in the output file. */
866 /* These are the types of link_order structures. */
868 enum bfd_link_order_type
870 bfd_undefined_link_order
, /* Undefined. */
871 bfd_indirect_link_order
, /* Built from a section. */
872 bfd_data_link_order
, /* Set to explicit data. */
873 bfd_section_reloc_link_order
, /* Relocate against a section. */
874 bfd_symbol_reloc_link_order
/* Relocate against a symbol. */
877 /* This is the link_order structure itself. These form a chain
878 attached to the output section whose contents they are describing. */
880 struct bfd_link_order
882 /* Next link_order in chain. */
883 struct bfd_link_order
*next
;
884 /* Type of link_order. */
885 enum bfd_link_order_type type
;
886 /* Offset within output section in bytes. */
888 /* Size within output section in octets. */
890 /* Type specific information. */
895 /* Section to include. If this is used, then
896 section->output_section must be the section the
897 link_order is attached to, section->output_offset must
898 equal the link_order offset field, and section->size
899 must equal the link_order size field. Maybe these
900 restrictions should be relaxed someday. */
905 /* Size of contents, or zero when contents should be filled by
906 the architecture-dependent fill function.
907 A non-zero value allows filling of the output section
908 with an arbitrary repeated pattern. */
910 /* Data to put into file. */
915 /* Description of reloc to generate. Used for
916 bfd_section_reloc_link_order and
917 bfd_symbol_reloc_link_order. */
918 struct bfd_link_order_reloc
*p
;
923 /* A linker order of type bfd_section_reloc_link_order or
924 bfd_symbol_reloc_link_order means to create a reloc against a
925 section or symbol, respectively. This is used to implement -Ur to
926 generate relocs for the constructor tables. The
927 bfd_link_order_reloc structure describes the reloc that BFD should
928 create. It is similar to a arelent, but I didn't use arelent
929 because the linker does not know anything about most symbols, and
930 any asymbol structure it creates will be partially meaningless.
931 This information could logically be in the bfd_link_order struct,
932 but I didn't want to waste the space since these types of relocs
933 are relatively rare. */
935 struct bfd_link_order_reloc
938 bfd_reloc_code_real_type reloc
;
942 /* For type bfd_section_reloc_link_order, this is the section
943 the reloc should be against. This must be a section in the
944 output BFD, not any of the input BFDs. */
946 /* For type bfd_symbol_reloc_link_order, this is the name of the
947 symbol the reloc should be against. */
951 /* Addend to use. The object file should contain zero. The BFD
952 backend is responsible for filling in the contents of the object
953 file correctly. For some object file formats (e.g., COFF) the
954 addend must be stored into in the object file, and for some
955 (e.g., SPARC a.out) it is kept in the reloc. */
959 /* Allocate a new link_order for a section. */
960 extern struct bfd_link_order
*bfd_new_link_order (bfd
*, asection
*);
962 struct bfd_section_already_linked
;
964 extern bool bfd_section_already_linked_table_init (void);
965 extern void bfd_section_already_linked_table_free (void);
966 extern bool _bfd_handle_already_linked
967 (struct bfd_section
*, struct bfd_section_already_linked
*,
968 struct bfd_link_info
*);
970 extern struct bfd_section
*_bfd_nearby_section
971 (bfd
*, struct bfd_section
*, bfd_vma
);
973 extern void _bfd_fix_excluded_sec_syms
974 (bfd
*, struct bfd_link_info
*);
976 /* These structures are used to describe version information for the
977 ELF linker. These structures could be manipulated entirely inside
978 BFD, but it would be a pain. Instead, the regular linker sets up
979 these structures, and then passes them into BFD. */
981 /* Glob pattern for a version. */
983 struct bfd_elf_version_expr
985 /* Next glob pattern for this version. */
986 struct bfd_elf_version_expr
*next
;
989 /* Set if pattern is not a glob. */
990 unsigned int literal
: 1;
991 /* Defined by ".symver". */
992 unsigned int symver
: 1;
993 /* Defined by version script. */
994 unsigned int script
: 1;
996 #define BFD_ELF_VERSION_C_TYPE 1
997 #define BFD_ELF_VERSION_CXX_TYPE 2
998 #define BFD_ELF_VERSION_JAVA_TYPE 4
999 unsigned int mask
: 3;
1002 struct bfd_elf_version_expr_head
1004 /* List of all patterns, both wildcards and non-wildcards. */
1005 struct bfd_elf_version_expr
*list
;
1006 /* Hash table for non-wildcards. */
1008 /* Remaining patterns. */
1009 struct bfd_elf_version_expr
*remaining
;
1010 /* What kind of pattern types are present in list (bitmask). */
1014 /* Version dependencies. */
1016 struct bfd_elf_version_deps
1018 /* Next dependency for this version. */
1019 struct bfd_elf_version_deps
*next
;
1020 /* The version which this version depends upon. */
1021 struct bfd_elf_version_tree
*version_needed
;
1024 /* A node in the version tree. */
1026 struct bfd_elf_version_tree
1029 struct bfd_elf_version_tree
*next
;
1030 /* Name of this version. */
1032 /* Version number. */
1033 unsigned int vernum
;
1034 /* Regular expressions for global symbols in this version. */
1035 struct bfd_elf_version_expr_head globals
;
1036 /* Regular expressions for local symbols in this version. */
1037 struct bfd_elf_version_expr_head locals
;
1038 /* List of versions which this version depends upon. */
1039 struct bfd_elf_version_deps
*deps
;
1040 /* Index of the version name. This is used within BFD. */
1041 unsigned int name_indx
;
1042 /* Whether this version tree was used. This is used within BFD. */
1044 /* Matching hook. */
1045 struct bfd_elf_version_expr
*(*match
)
1046 (struct bfd_elf_version_expr_head
*head
,
1047 struct bfd_elf_version_expr
*prev
, const char *sym
);
1050 struct bfd_elf_dynamic_list
1052 struct bfd_elf_version_expr_head head
;
1053 struct bfd_elf_version_expr
*(*match
)
1054 (struct bfd_elf_version_expr_head
*head
,
1055 struct bfd_elf_version_expr
*prev
, const char *sym
);