2010-10-11 Andreas Krebbel <Andreas.Krebbel@de.ibm.com>
[binutils-gdb.git] / gdb / symfile.c
blob91f076557a7569da778dfcfa05806e5a80c1c0f3
1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
7 Contributed by Cygnus Support, using pieces from other GDB modules.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
68 #include "psymtab.h"
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
79 static void clear_symtab_users_cleanup (void *ignore);
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
84 /* External variables and functions referenced. */
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
88 /* Functions this file defines */
90 #if 0
91 static int simple_read_overlay_region_table (void);
92 static void simple_free_overlay_region_table (void);
93 #endif
95 static void load_command (char *, int);
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
99 static void add_symbol_file_command (char *, int);
101 bfd *symfile_bfd_open (char *);
103 int get_section_index (struct objfile *, char *);
105 static const struct sym_fns *find_sym_fns (bfd *);
107 static void decrement_reading_symtab (void *);
109 static void overlay_invalidate_all (void);
111 void list_overlays_command (char *, int);
113 void map_overlay_command (char *, int);
115 void unmap_overlay_command (char *, int);
117 static void overlay_auto_command (char *, int);
119 static void overlay_manual_command (char *, int);
121 static void overlay_off_command (char *, int);
123 static void overlay_load_command (char *, int);
125 static void overlay_command (char *, int);
127 static void simple_free_overlay_table (void);
129 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
132 static int simple_read_overlay_table (void);
134 static int simple_overlay_update_1 (struct obj_section *);
136 static void add_filename_language (char *ext, enum language lang);
138 static void info_ext_lang_command (char *args, int from_tty);
140 static void init_filename_language_table (void);
142 static void symfile_find_segment_sections (struct objfile *objfile);
144 void _initialize_symfile (void);
146 /* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
150 typedef const struct sym_fns *sym_fns_ptr;
151 DEF_VEC_P (sym_fns_ptr);
153 static VEC (sym_fns_ptr) *symtab_fns = NULL;
155 /* Flag for whether user will be reloading symbols multiple times.
156 Defaults to ON for VxWorks, otherwise OFF. */
158 #ifdef SYMBOL_RELOADING_DEFAULT
159 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
160 #else
161 int symbol_reloading = 0;
162 #endif
163 static void
164 show_symbol_reloading (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
167 fprintf_filtered (file, _("\
168 Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 value);
172 /* If non-zero, shared library symbols will be added automatically
173 when the inferior is created, new libraries are loaded, or when
174 attaching to the inferior. This is almost always what users will
175 want to have happen; but for very large programs, the startup time
176 will be excessive, and so if this is a problem, the user can clear
177 this flag and then add the shared library symbols as needed. Note
178 that there is a potential for confusion, since if the shared
179 library symbols are not loaded, commands like "info fun" will *not*
180 report all the functions that are actually present. */
182 int auto_solib_add = 1;
184 /* For systems that support it, a threshold size in megabytes. If
185 automatically adding a new library's symbol table to those already
186 known to the debugger would cause the total shared library symbol
187 size to exceed this threshhold, then the shlib's symbols are not
188 added. The threshold is ignored if the user explicitly asks for a
189 shlib to be added, such as when using the "sharedlibrary"
190 command. */
192 int auto_solib_limit;
195 /* Make a null terminated copy of the string at PTR with SIZE characters in
196 the obstack pointed to by OBSTACKP . Returns the address of the copy.
197 Note that the string at PTR does not have to be null terminated, I.E. it
198 may be part of a larger string and we are only saving a substring. */
200 char *
201 obsavestring (const char *ptr, int size, struct obstack *obstackp)
203 char *p = (char *) obstack_alloc (obstackp, size + 1);
204 /* Open-coded memcpy--saves function call time. These strings are usually
205 short. FIXME: Is this really still true with a compiler that can
206 inline memcpy? */
208 const char *p1 = ptr;
209 char *p2 = p;
210 const char *end = ptr + size;
212 while (p1 != end)
213 *p2++ = *p1++;
215 p[size] = 0;
216 return p;
219 /* Concatenate NULL terminated variable argument list of `const char *' strings;
220 return the new string. Space is found in the OBSTACKP. Argument list must
221 be terminated by a sentinel expression `(char *) NULL'. */
223 char *
224 obconcat (struct obstack *obstackp, ...)
226 va_list ap;
228 va_start (ap, obstackp);
229 for (;;)
231 const char *s = va_arg (ap, const char *);
233 if (s == NULL)
234 break;
236 obstack_grow_str (obstackp, s);
238 va_end (ap);
239 obstack_1grow (obstackp, 0);
241 return obstack_finish (obstackp);
244 /* True if we are reading a symbol table. */
246 int currently_reading_symtab = 0;
248 static void
249 decrement_reading_symtab (void *dummy)
251 currently_reading_symtab--;
254 /* Increment currently_reading_symtab and return a cleanup that can be
255 used to decrement it. */
256 struct cleanup *
257 increment_reading_symtab (void)
259 ++currently_reading_symtab;
260 return make_cleanup (decrement_reading_symtab, NULL);
263 /* Remember the lowest-addressed loadable section we've seen.
264 This function is called via bfd_map_over_sections.
266 In case of equal vmas, the section with the largest size becomes the
267 lowest-addressed loadable section.
269 If the vmas and sizes are equal, the last section is considered the
270 lowest-addressed loadable section. */
272 void
273 find_lowest_section (bfd *abfd, asection *sect, void *obj)
275 asection **lowest = (asection **) obj;
277 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
278 return;
279 if (!*lowest)
280 *lowest = sect; /* First loadable section */
281 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
282 *lowest = sect; /* A lower loadable section */
283 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
284 && (bfd_section_size (abfd, (*lowest))
285 <= bfd_section_size (abfd, sect)))
286 *lowest = sect;
289 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
291 struct section_addr_info *
292 alloc_section_addr_info (size_t num_sections)
294 struct section_addr_info *sap;
295 size_t size;
297 size = (sizeof (struct section_addr_info)
298 + sizeof (struct other_sections) * (num_sections - 1));
299 sap = (struct section_addr_info *) xmalloc (size);
300 memset (sap, 0, size);
301 sap->num_sections = num_sections;
303 return sap;
306 /* Build (allocate and populate) a section_addr_info struct from
307 an existing section table. */
309 extern struct section_addr_info *
310 build_section_addr_info_from_section_table (const struct target_section *start,
311 const struct target_section *end)
313 struct section_addr_info *sap;
314 const struct target_section *stp;
315 int oidx;
317 sap = alloc_section_addr_info (end - start);
319 for (stp = start, oidx = 0; stp != end; stp++)
321 if (bfd_get_section_flags (stp->bfd,
322 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
323 && oidx < end - start)
325 sap->other[oidx].addr = stp->addr;
326 sap->other[oidx].name
327 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
328 sap->other[oidx].sectindex = stp->the_bfd_section->index;
329 oidx++;
333 return sap;
336 /* Create a section_addr_info from section offsets in ABFD. */
338 static struct section_addr_info *
339 build_section_addr_info_from_bfd (bfd *abfd)
341 struct section_addr_info *sap;
342 int i;
343 struct bfd_section *sec;
345 sap = alloc_section_addr_info (bfd_count_sections (abfd));
346 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
347 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
349 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
350 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
351 sap->other[i].sectindex = sec->index;
352 i++;
354 return sap;
357 /* Create a section_addr_info from section offsets in OBJFILE. */
359 struct section_addr_info *
360 build_section_addr_info_from_objfile (const struct objfile *objfile)
362 struct section_addr_info *sap;
363 int i;
365 /* Before reread_symbols gets rewritten it is not safe to call:
366 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
368 sap = build_section_addr_info_from_bfd (objfile->obfd);
369 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
371 int sectindex = sap->other[i].sectindex;
373 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
375 return sap;
378 /* Free all memory allocated by build_section_addr_info_from_section_table. */
380 extern void
381 free_section_addr_info (struct section_addr_info *sap)
383 int idx;
385 for (idx = 0; idx < sap->num_sections; idx++)
386 if (sap->other[idx].name)
387 xfree (sap->other[idx].name);
388 xfree (sap);
392 /* Initialize OBJFILE's sect_index_* members. */
393 static void
394 init_objfile_sect_indices (struct objfile *objfile)
396 asection *sect;
397 int i;
399 sect = bfd_get_section_by_name (objfile->obfd, ".text");
400 if (sect)
401 objfile->sect_index_text = sect->index;
403 sect = bfd_get_section_by_name (objfile->obfd, ".data");
404 if (sect)
405 objfile->sect_index_data = sect->index;
407 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
408 if (sect)
409 objfile->sect_index_bss = sect->index;
411 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
412 if (sect)
413 objfile->sect_index_rodata = sect->index;
415 /* This is where things get really weird... We MUST have valid
416 indices for the various sect_index_* members or gdb will abort.
417 So if for example, there is no ".text" section, we have to
418 accomodate that. First, check for a file with the standard
419 one or two segments. */
421 symfile_find_segment_sections (objfile);
423 /* Except when explicitly adding symbol files at some address,
424 section_offsets contains nothing but zeros, so it doesn't matter
425 which slot in section_offsets the individual sect_index_* members
426 index into. So if they are all zero, it is safe to just point
427 all the currently uninitialized indices to the first slot. But
428 beware: if this is the main executable, it may be relocated
429 later, e.g. by the remote qOffsets packet, and then this will
430 be wrong! That's why we try segments first. */
432 for (i = 0; i < objfile->num_sections; i++)
434 if (ANOFFSET (objfile->section_offsets, i) != 0)
436 break;
439 if (i == objfile->num_sections)
441 if (objfile->sect_index_text == -1)
442 objfile->sect_index_text = 0;
443 if (objfile->sect_index_data == -1)
444 objfile->sect_index_data = 0;
445 if (objfile->sect_index_bss == -1)
446 objfile->sect_index_bss = 0;
447 if (objfile->sect_index_rodata == -1)
448 objfile->sect_index_rodata = 0;
452 /* The arguments to place_section. */
454 struct place_section_arg
456 struct section_offsets *offsets;
457 CORE_ADDR lowest;
460 /* Find a unique offset to use for loadable section SECT if
461 the user did not provide an offset. */
463 static void
464 place_section (bfd *abfd, asection *sect, void *obj)
466 struct place_section_arg *arg = obj;
467 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
468 int done;
469 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
471 /* We are only interested in allocated sections. */
472 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
473 return;
475 /* If the user specified an offset, honor it. */
476 if (offsets[sect->index] != 0)
477 return;
479 /* Otherwise, let's try to find a place for the section. */
480 start_addr = (arg->lowest + align - 1) & -align;
482 do {
483 asection *cur_sec;
485 done = 1;
487 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
489 int indx = cur_sec->index;
491 /* We don't need to compare against ourself. */
492 if (cur_sec == sect)
493 continue;
495 /* We can only conflict with allocated sections. */
496 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
497 continue;
499 /* If the section offset is 0, either the section has not been placed
500 yet, or it was the lowest section placed (in which case LOWEST
501 will be past its end). */
502 if (offsets[indx] == 0)
503 continue;
505 /* If this section would overlap us, then we must move up. */
506 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
507 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
509 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
510 start_addr = (start_addr + align - 1) & -align;
511 done = 0;
512 break;
515 /* Otherwise, we appear to be OK. So far. */
518 while (!done);
520 offsets[sect->index] = start_addr;
521 arg->lowest = start_addr + bfd_get_section_size (sect);
524 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
525 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
526 entries. */
528 void
529 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
530 int num_sections,
531 struct section_addr_info *addrs)
533 int i;
535 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
537 /* Now calculate offsets for section that were specified by the caller. */
538 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
540 struct other_sections *osp;
542 osp = &addrs->other[i];
543 if (osp->addr == 0)
544 continue;
546 /* Record all sections in offsets */
547 /* The section_offsets in the objfile are here filled in using
548 the BFD index. */
549 section_offsets->offsets[osp->sectindex] = osp->addr;
553 /* Transform section name S for a name comparison. prelink can split section
554 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
555 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
556 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
557 (`.sbss') section has invalid (increased) virtual address. */
559 static const char *
560 addr_section_name (const char *s)
562 if (strcmp (s, ".dynbss") == 0)
563 return ".bss";
564 if (strcmp (s, ".sdynbss") == 0)
565 return ".sbss";
567 return s;
570 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
571 their (name, sectindex) pair. sectindex makes the sort by name stable. */
573 static int
574 addrs_section_compar (const void *ap, const void *bp)
576 const struct other_sections *a = *((struct other_sections **) ap);
577 const struct other_sections *b = *((struct other_sections **) bp);
578 int retval, a_idx, b_idx;
580 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
581 if (retval)
582 return retval;
584 /* SECTINDEX is undefined iff ADDR is zero. */
585 a_idx = a->addr == 0 ? 0 : a->sectindex;
586 b_idx = b->addr == 0 ? 0 : b->sectindex;
587 return a_idx - b_idx;
590 /* Provide sorted array of pointers to sections of ADDRS. The array is
591 terminated by NULL. Caller is responsible to call xfree for it. */
593 static struct other_sections **
594 addrs_section_sort (struct section_addr_info *addrs)
596 struct other_sections **array;
597 int i;
599 /* `+ 1' for the NULL terminator. */
600 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
601 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
602 array[i] = &addrs->other[i];
603 array[i] = NULL;
605 qsort (array, i, sizeof (*array), addrs_section_compar);
607 return array;
610 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
611 also SECTINDEXes specific to ABFD there. This function can be used to
612 rebase ADDRS to start referencing different BFD than before. */
614 void
615 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
617 asection *lower_sect;
618 CORE_ADDR lower_offset;
619 int i;
620 struct cleanup *my_cleanup;
621 struct section_addr_info *abfd_addrs;
622 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
623 struct other_sections **addrs_to_abfd_addrs;
625 /* Find lowest loadable section to be used as starting point for
626 continguous sections. */
627 lower_sect = NULL;
628 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
629 if (lower_sect == NULL)
631 warning (_("no loadable sections found in added symbol-file %s"),
632 bfd_get_filename (abfd));
633 lower_offset = 0;
635 else
636 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
638 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
639 in ABFD. Section names are not unique - there can be multiple sections of
640 the same name. Also the sections of the same name do not have to be
641 adjacent to each other. Some sections may be present only in one of the
642 files. Even sections present in both files do not have to be in the same
643 order.
645 Use stable sort by name for the sections in both files. Then linearly
646 scan both lists matching as most of the entries as possible. */
648 addrs_sorted = addrs_section_sort (addrs);
649 my_cleanup = make_cleanup (xfree, addrs_sorted);
651 abfd_addrs = build_section_addr_info_from_bfd (abfd);
652 make_cleanup_free_section_addr_info (abfd_addrs);
653 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
654 make_cleanup (xfree, abfd_addrs_sorted);
656 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
658 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
659 * addrs->num_sections);
660 make_cleanup (xfree, addrs_to_abfd_addrs);
662 while (*addrs_sorted)
664 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
666 while (*abfd_addrs_sorted
667 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
668 sect_name) < 0)
669 abfd_addrs_sorted++;
671 if (*abfd_addrs_sorted
672 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
673 sect_name) == 0)
675 int index_in_addrs;
677 /* Make the found item directly addressable from ADDRS. */
678 index_in_addrs = *addrs_sorted - addrs->other;
679 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
680 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
682 /* Never use the same ABFD entry twice. */
683 abfd_addrs_sorted++;
686 addrs_sorted++;
689 /* Calculate offsets for the loadable sections.
690 FIXME! Sections must be in order of increasing loadable section
691 so that contiguous sections can use the lower-offset!!!
693 Adjust offsets if the segments are not contiguous.
694 If the section is contiguous, its offset should be set to
695 the offset of the highest loadable section lower than it
696 (the loadable section directly below it in memory).
697 this_offset = lower_offset = lower_addr - lower_orig_addr */
699 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
701 struct other_sections *sect = addrs_to_abfd_addrs[i];
703 if (sect)
705 /* This is the index used by BFD. */
706 addrs->other[i].sectindex = sect->sectindex;
708 if (addrs->other[i].addr != 0)
710 addrs->other[i].addr -= sect->addr;
711 lower_offset = addrs->other[i].addr;
713 else
714 addrs->other[i].addr = lower_offset;
716 else
718 /* addr_section_name transformation is not used for SECT_NAME. */
719 const char *sect_name = addrs->other[i].name;
721 /* This section does not exist in ABFD, which is normally
722 unexpected and we want to issue a warning.
724 However, the ELF prelinker does create a few sections which are
725 marked in the main executable as loadable (they are loaded in
726 memory from the DYNAMIC segment) and yet are not present in
727 separate debug info files. This is fine, and should not cause
728 a warning. Shared libraries contain just the section
729 ".gnu.liblist" but it is not marked as loadable there. There is
730 no other way to identify them than by their name as the sections
731 created by prelink have no special flags.
733 For the sections `.bss' and `.sbss' see addr_section_name. */
735 if (!(strcmp (sect_name, ".gnu.liblist") == 0
736 || strcmp (sect_name, ".gnu.conflict") == 0
737 || (strcmp (sect_name, ".bss") == 0
738 && i > 0
739 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
740 && addrs_to_abfd_addrs[i - 1] != NULL)
741 || (strcmp (sect_name, ".sbss") == 0
742 && i > 0
743 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
744 && addrs_to_abfd_addrs[i - 1] != NULL)))
745 warning (_("section %s not found in %s"), sect_name,
746 bfd_get_filename (abfd));
748 addrs->other[i].addr = 0;
750 /* SECTINDEX is invalid if ADDR is zero. */
754 do_cleanups (my_cleanup);
757 /* Parse the user's idea of an offset for dynamic linking, into our idea
758 of how to represent it for fast symbol reading. This is the default
759 version of the sym_fns.sym_offsets function for symbol readers that
760 don't need to do anything special. It allocates a section_offsets table
761 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
763 void
764 default_symfile_offsets (struct objfile *objfile,
765 struct section_addr_info *addrs)
767 objfile->num_sections = bfd_count_sections (objfile->obfd);
768 objfile->section_offsets = (struct section_offsets *)
769 obstack_alloc (&objfile->objfile_obstack,
770 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
771 relative_addr_info_to_section_offsets (objfile->section_offsets,
772 objfile->num_sections, addrs);
774 /* For relocatable files, all loadable sections will start at zero.
775 The zero is meaningless, so try to pick arbitrary addresses such
776 that no loadable sections overlap. This algorithm is quadratic,
777 but the number of sections in a single object file is generally
778 small. */
779 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
781 struct place_section_arg arg;
782 bfd *abfd = objfile->obfd;
783 asection *cur_sec;
785 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
786 /* We do not expect this to happen; just skip this step if the
787 relocatable file has a section with an assigned VMA. */
788 if (bfd_section_vma (abfd, cur_sec) != 0)
789 break;
791 if (cur_sec == NULL)
793 CORE_ADDR *offsets = objfile->section_offsets->offsets;
795 /* Pick non-overlapping offsets for sections the user did not
796 place explicitly. */
797 arg.offsets = objfile->section_offsets;
798 arg.lowest = 0;
799 bfd_map_over_sections (objfile->obfd, place_section, &arg);
801 /* Correctly filling in the section offsets is not quite
802 enough. Relocatable files have two properties that
803 (most) shared objects do not:
805 - Their debug information will contain relocations. Some
806 shared libraries do also, but many do not, so this can not
807 be assumed.
809 - If there are multiple code sections they will be loaded
810 at different relative addresses in memory than they are
811 in the objfile, since all sections in the file will start
812 at address zero.
814 Because GDB has very limited ability to map from an
815 address in debug info to the correct code section,
816 it relies on adding SECT_OFF_TEXT to things which might be
817 code. If we clear all the section offsets, and set the
818 section VMAs instead, then symfile_relocate_debug_section
819 will return meaningful debug information pointing at the
820 correct sections.
822 GDB has too many different data structures for section
823 addresses - a bfd, objfile, and so_list all have section
824 tables, as does exec_ops. Some of these could probably
825 be eliminated. */
827 for (cur_sec = abfd->sections; cur_sec != NULL;
828 cur_sec = cur_sec->next)
830 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
831 continue;
833 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
834 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
835 offsets[cur_sec->index]);
836 offsets[cur_sec->index] = 0;
841 /* Remember the bfd indexes for the .text, .data, .bss and
842 .rodata sections. */
843 init_objfile_sect_indices (objfile);
847 /* Divide the file into segments, which are individual relocatable units.
848 This is the default version of the sym_fns.sym_segments function for
849 symbol readers that do not have an explicit representation of segments.
850 It assumes that object files do not have segments, and fully linked
851 files have a single segment. */
853 struct symfile_segment_data *
854 default_symfile_segments (bfd *abfd)
856 int num_sections, i;
857 asection *sect;
858 struct symfile_segment_data *data;
859 CORE_ADDR low, high;
861 /* Relocatable files contain enough information to position each
862 loadable section independently; they should not be relocated
863 in segments. */
864 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
865 return NULL;
867 /* Make sure there is at least one loadable section in the file. */
868 for (sect = abfd->sections; sect != NULL; sect = sect->next)
870 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
871 continue;
873 break;
875 if (sect == NULL)
876 return NULL;
878 low = bfd_get_section_vma (abfd, sect);
879 high = low + bfd_get_section_size (sect);
881 data = XZALLOC (struct symfile_segment_data);
882 data->num_segments = 1;
883 data->segment_bases = XCALLOC (1, CORE_ADDR);
884 data->segment_sizes = XCALLOC (1, CORE_ADDR);
886 num_sections = bfd_count_sections (abfd);
887 data->segment_info = XCALLOC (num_sections, int);
889 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
891 CORE_ADDR vma;
893 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
894 continue;
896 vma = bfd_get_section_vma (abfd, sect);
897 if (vma < low)
898 low = vma;
899 if (vma + bfd_get_section_size (sect) > high)
900 high = vma + bfd_get_section_size (sect);
902 data->segment_info[i] = 1;
905 data->segment_bases[0] = low;
906 data->segment_sizes[0] = high - low;
908 return data;
911 /* Process a symbol file, as either the main file or as a dynamically
912 loaded file.
914 OBJFILE is where the symbols are to be read from.
916 ADDRS is the list of section load addresses. If the user has given
917 an 'add-symbol-file' command, then this is the list of offsets and
918 addresses he or she provided as arguments to the command; or, if
919 we're handling a shared library, these are the actual addresses the
920 sections are loaded at, according to the inferior's dynamic linker
921 (as gleaned by GDB's shared library code). We convert each address
922 into an offset from the section VMA's as it appears in the object
923 file, and then call the file's sym_offsets function to convert this
924 into a format-specific offset table --- a `struct section_offsets'.
925 If ADDRS is non-zero, OFFSETS must be zero.
927 OFFSETS is a table of section offsets already in the right
928 format-specific representation. NUM_OFFSETS is the number of
929 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
930 assume this is the proper table the call to sym_offsets described
931 above would produce. Instead of calling sym_offsets, we just dump
932 it right into objfile->section_offsets. (When we're re-reading
933 symbols from an objfile, we don't have the original load address
934 list any more; all we have is the section offset table.) If
935 OFFSETS is non-zero, ADDRS must be zero.
937 ADD_FLAGS encodes verbosity level, whether this is main symbol or
938 an extra symbol file such as dynamically loaded code, and wether
939 breakpoint reset should be deferred. */
941 void
942 syms_from_objfile (struct objfile *objfile,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
946 int add_flags)
948 struct section_addr_info *local_addr = NULL;
949 struct cleanup *old_chain;
950 const int mainline = add_flags & SYMFILE_MAINLINE;
952 gdb_assert (! (addrs && offsets));
954 init_entry_point_info (objfile);
955 objfile->sf = find_sym_fns (objfile->obfd);
957 if (objfile->sf == NULL)
958 return; /* No symbols. */
960 /* Make sure that partially constructed symbol tables will be cleaned up
961 if an error occurs during symbol reading. */
962 old_chain = make_cleanup_free_objfile (objfile);
964 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
965 list. We now establish the convention that an addr of zero means
966 no load address was specified. */
967 if (! addrs && ! offsets)
969 local_addr
970 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
971 make_cleanup (xfree, local_addr);
972 addrs = local_addr;
975 /* Now either addrs or offsets is non-zero. */
977 if (mainline)
979 /* We will modify the main symbol table, make sure that all its users
980 will be cleaned up if an error occurs during symbol reading. */
981 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
983 /* Since no error yet, throw away the old symbol table. */
985 if (symfile_objfile != NULL)
987 free_objfile (symfile_objfile);
988 gdb_assert (symfile_objfile == NULL);
991 /* Currently we keep symbols from the add-symbol-file command.
992 If the user wants to get rid of them, they should do "symbol-file"
993 without arguments first. Not sure this is the best behavior
994 (PR 2207). */
996 (*objfile->sf->sym_new_init) (objfile);
999 /* Convert addr into an offset rather than an absolute address.
1000 We find the lowest address of a loaded segment in the objfile,
1001 and assume that <addr> is where that got loaded.
1003 We no longer warn if the lowest section is not a text segment (as
1004 happens for the PA64 port. */
1005 if (addrs && addrs->other[0].name)
1006 addr_info_make_relative (addrs, objfile->obfd);
1008 /* Initialize symbol reading routines for this objfile, allow complaints to
1009 appear for this new file, and record how verbose to be, then do the
1010 initial symbol reading for this file. */
1012 (*objfile->sf->sym_init) (objfile);
1013 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1015 if (addrs)
1016 (*objfile->sf->sym_offsets) (objfile, addrs);
1017 else
1019 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1021 /* Just copy in the offset table directly as given to us. */
1022 objfile->num_sections = num_offsets;
1023 objfile->section_offsets
1024 = ((struct section_offsets *)
1025 obstack_alloc (&objfile->objfile_obstack, size));
1026 memcpy (objfile->section_offsets, offsets, size);
1028 init_objfile_sect_indices (objfile);
1031 (*objfile->sf->sym_read) (objfile, add_flags);
1033 /* Discard cleanups as symbol reading was successful. */
1035 discard_cleanups (old_chain);
1036 xfree (local_addr);
1039 /* Perform required actions after either reading in the initial
1040 symbols for a new objfile, or mapping in the symbols from a reusable
1041 objfile. */
1043 void
1044 new_symfile_objfile (struct objfile *objfile, int add_flags)
1046 /* If this is the main symbol file we have to clean up all users of the
1047 old main symbol file. Otherwise it is sufficient to fixup all the
1048 breakpoints that may have been redefined by this symbol file. */
1049 if (add_flags & SYMFILE_MAINLINE)
1051 /* OK, make it the "real" symbol file. */
1052 symfile_objfile = objfile;
1054 clear_symtab_users ();
1056 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1058 breakpoint_re_set ();
1061 /* We're done reading the symbol file; finish off complaints. */
1062 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1065 /* Process a symbol file, as either the main file or as a dynamically
1066 loaded file.
1068 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1069 This BFD will be closed on error, and is always consumed by this function.
1071 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1072 extra, such as dynamically loaded code, and what to do with breakpoins.
1074 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1075 syms_from_objfile, above.
1076 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1078 Upon success, returns a pointer to the objfile that was added.
1079 Upon failure, jumps back to command level (never returns). */
1081 static struct objfile *
1082 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1083 int add_flags,
1084 struct section_addr_info *addrs,
1085 struct section_offsets *offsets,
1086 int num_offsets,
1087 int flags)
1089 struct objfile *objfile;
1090 struct cleanup *my_cleanups;
1091 const char *name = bfd_get_filename (abfd);
1092 const int from_tty = add_flags & SYMFILE_VERBOSE;
1094 if (readnow_symbol_files)
1095 flags |= OBJF_READNOW;
1097 my_cleanups = make_cleanup_bfd_close (abfd);
1099 /* Give user a chance to burp if we'd be
1100 interactively wiping out any existing symbols. */
1102 if ((have_full_symbols () || have_partial_symbols ())
1103 && (add_flags & SYMFILE_MAINLINE)
1104 && from_tty
1105 && !query (_("Load new symbol table from \"%s\"? "), name))
1106 error (_("Not confirmed."));
1108 objfile = allocate_objfile (abfd, flags);
1109 discard_cleanups (my_cleanups);
1111 /* We either created a new mapped symbol table, mapped an existing
1112 symbol table file which has not had initial symbol reading
1113 performed, or need to read an unmapped symbol table. */
1114 if (from_tty || info_verbose)
1116 if (deprecated_pre_add_symbol_hook)
1117 deprecated_pre_add_symbol_hook (name);
1118 else
1120 printf_unfiltered (_("Reading symbols from %s..."), name);
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1125 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1126 add_flags);
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
1131 all partial symbol tables for this objfile if so. */
1133 if ((flags & OBJF_READNOW))
1135 if (from_tty || info_verbose)
1137 printf_unfiltered (_("expanding to full symbols..."));
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
1146 if ((from_tty || info_verbose)
1147 && !objfile_has_symbols (objfile))
1149 wrap_here ("");
1150 printf_unfiltered (_("(no debugging symbols found)..."));
1151 wrap_here ("");
1154 if (from_tty || info_verbose)
1156 if (deprecated_post_add_symbol_hook)
1157 deprecated_post_add_symbol_hook ();
1158 else
1159 printf_unfiltered (_("done.\n"));
1162 /* We print some messages regardless of whether 'from_tty ||
1163 info_verbose' is true, so make sure they go out at the right
1164 time. */
1165 gdb_flush (gdb_stdout);
1167 do_cleanups (my_cleanups);
1169 if (objfile->sf == NULL)
1171 observer_notify_new_objfile (objfile);
1172 return objfile; /* No symbols. */
1175 new_symfile_objfile (objfile, add_flags);
1177 observer_notify_new_objfile (objfile);
1179 bfd_cache_close_all ();
1180 return (objfile);
1183 /* Add BFD as a separate debug file for OBJFILE. */
1185 void
1186 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1188 struct objfile *new_objfile;
1189 struct section_addr_info *sap;
1190 struct cleanup *my_cleanup;
1192 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1193 because sections of BFD may not match sections of OBJFILE and because
1194 vma may have been modified by tools such as prelink. */
1195 sap = build_section_addr_info_from_objfile (objfile);
1196 my_cleanup = make_cleanup_free_section_addr_info (sap);
1198 new_objfile = symbol_file_add_with_addrs_or_offsets
1199 (bfd, symfile_flags,
1200 sap, NULL, 0,
1201 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1202 | OBJF_USERLOADED));
1204 do_cleanups (my_cleanup);
1206 add_separate_debug_objfile (new_objfile, objfile);
1209 /* Process the symbol file ABFD, as either the main file or as a
1210 dynamically loaded file.
1212 See symbol_file_add_with_addrs_or_offsets's comments for
1213 details. */
1214 struct objfile *
1215 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1216 struct section_addr_info *addrs,
1217 int flags)
1219 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1220 flags);
1224 /* Process a symbol file, as either the main file or as a dynamically
1225 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1226 for details. */
1227 struct objfile *
1228 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1229 int flags)
1231 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1232 flags);
1236 /* Call symbol_file_add() with default values and update whatever is
1237 affected by the loading of a new main().
1238 Used when the file is supplied in the gdb command line
1239 and by some targets with special loading requirements.
1240 The auxiliary function, symbol_file_add_main_1(), has the flags
1241 argument for the switches that can only be specified in the symbol_file
1242 command itself. */
1244 void
1245 symbol_file_add_main (char *args, int from_tty)
1247 symbol_file_add_main_1 (args, from_tty, 0);
1250 static void
1251 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1253 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1254 symbol_file_add (args, add_flags, NULL, flags);
1256 /* Getting new symbols may change our opinion about
1257 what is frameless. */
1258 reinit_frame_cache ();
1260 set_initial_language ();
1263 void
1264 symbol_file_clear (int from_tty)
1266 if ((have_full_symbols () || have_partial_symbols ())
1267 && from_tty
1268 && (symfile_objfile
1269 ? !query (_("Discard symbol table from `%s'? "),
1270 symfile_objfile->name)
1271 : !query (_("Discard symbol table? "))))
1272 error (_("Not confirmed."));
1274 /* solib descriptors may have handles to objfiles. Wipe them before their
1275 objfiles get stale by free_all_objfiles. */
1276 no_shared_libraries (NULL, from_tty);
1278 free_all_objfiles ();
1280 gdb_assert (symfile_objfile == NULL);
1281 if (from_tty)
1282 printf_unfiltered (_("No symbol file now.\n"));
1285 static char *
1286 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1288 asection *sect;
1289 bfd_size_type debuglink_size;
1290 unsigned long crc32;
1291 char *contents;
1292 int crc_offset;
1294 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1296 if (sect == NULL)
1297 return NULL;
1299 debuglink_size = bfd_section_size (objfile->obfd, sect);
1301 contents = xmalloc (debuglink_size);
1302 bfd_get_section_contents (objfile->obfd, sect, contents,
1303 (file_ptr)0, (bfd_size_type)debuglink_size);
1305 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1306 crc_offset = strlen (contents) + 1;
1307 crc_offset = (crc_offset + 3) & ~3;
1309 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1311 *crc32_out = crc32;
1312 return contents;
1315 static int
1316 separate_debug_file_exists (const char *name, unsigned long crc,
1317 struct objfile *parent_objfile)
1319 unsigned long file_crc = 0;
1320 bfd *abfd;
1321 gdb_byte buffer[8*1024];
1322 int count;
1323 struct stat parent_stat, abfd_stat;
1325 /* Find a separate debug info file as if symbols would be present in
1326 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1327 section can contain just the basename of PARENT_OBJFILE without any
1328 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1329 the separate debug infos with the same basename can exist. */
1331 if (strcmp (name, parent_objfile->name) == 0)
1332 return 0;
1334 abfd = bfd_open_maybe_remote (name);
1336 if (!abfd)
1337 return 0;
1339 /* Verify symlinks were not the cause of strcmp name difference above.
1341 Some operating systems, e.g. Windows, do not provide a meaningful
1342 st_ino; they always set it to zero. (Windows does provide a
1343 meaningful st_dev.) Do not indicate a duplicate library in that
1344 case. While there is no guarantee that a system that provides
1345 meaningful inode numbers will never set st_ino to zero, this is
1346 merely an optimization, so we do not need to worry about false
1347 negatives. */
1349 if (bfd_stat (abfd, &abfd_stat) == 0
1350 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1351 && abfd_stat.st_dev == parent_stat.st_dev
1352 && abfd_stat.st_ino == parent_stat.st_ino
1353 && abfd_stat.st_ino != 0)
1355 bfd_close (abfd);
1356 return 0;
1359 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1360 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1362 bfd_close (abfd);
1364 if (crc != file_crc)
1366 warning (_("the debug information found in \"%s\""
1367 " does not match \"%s\" (CRC mismatch).\n"),
1368 name, parent_objfile->name);
1369 return 0;
1372 return 1;
1375 char *debug_file_directory = NULL;
1376 static void
1377 show_debug_file_directory (struct ui_file *file, int from_tty,
1378 struct cmd_list_element *c, const char *value)
1380 fprintf_filtered (file, _("\
1381 The directory where separate debug symbols are searched for is \"%s\".\n"),
1382 value);
1385 #if ! defined (DEBUG_SUBDIRECTORY)
1386 #define DEBUG_SUBDIRECTORY ".debug"
1387 #endif
1389 char *
1390 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1392 char *basename, *debugdir;
1393 char *dir = NULL;
1394 char *debugfile = NULL;
1395 char *canon_name = NULL;
1396 unsigned long crc32;
1397 int i;
1399 basename = get_debug_link_info (objfile, &crc32);
1401 if (basename == NULL)
1402 /* There's no separate debug info, hence there's no way we could
1403 load it => no warning. */
1404 goto cleanup_return_debugfile;
1406 dir = xstrdup (objfile->name);
1408 /* Strip off the final filename part, leaving the directory name,
1409 followed by a slash. The directory can be relative or absolute. */
1410 for (i = strlen(dir) - 1; i >= 0; i--)
1412 if (IS_DIR_SEPARATOR (dir[i]))
1413 break;
1415 /* If I is -1 then no directory is present there and DIR will be "". */
1416 dir[i+1] = '\0';
1418 /* Set I to max (strlen (canon_name), strlen (dir)). */
1419 canon_name = lrealpath (dir);
1420 i = strlen (dir);
1421 if (canon_name && strlen (canon_name) > i)
1422 i = strlen (canon_name);
1424 debugfile = xmalloc (strlen (debug_file_directory) + 1
1426 + strlen (DEBUG_SUBDIRECTORY)
1427 + strlen ("/")
1428 + strlen (basename)
1429 + 1);
1431 /* First try in the same directory as the original file. */
1432 strcpy (debugfile, dir);
1433 strcat (debugfile, basename);
1435 if (separate_debug_file_exists (debugfile, crc32, objfile))
1436 goto cleanup_return_debugfile;
1438 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1439 strcpy (debugfile, dir);
1440 strcat (debugfile, DEBUG_SUBDIRECTORY);
1441 strcat (debugfile, "/");
1442 strcat (debugfile, basename);
1444 if (separate_debug_file_exists (debugfile, crc32, objfile))
1445 goto cleanup_return_debugfile;
1447 /* Then try in the global debugfile directories.
1449 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1450 cause "/..." lookups. */
1452 debugdir = debug_file_directory;
1455 char *debugdir_end;
1457 while (*debugdir == DIRNAME_SEPARATOR)
1458 debugdir++;
1460 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1461 if (debugdir_end == NULL)
1462 debugdir_end = &debugdir[strlen (debugdir)];
1464 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1465 debugfile[debugdir_end - debugdir] = 0;
1466 strcat (debugfile, "/");
1467 strcat (debugfile, dir);
1468 strcat (debugfile, basename);
1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
1471 goto cleanup_return_debugfile;
1473 /* If the file is in the sysroot, try using its base path in the
1474 global debugfile directory. */
1475 if (canon_name
1476 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1477 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1479 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1480 debugfile[debugdir_end - debugdir] = 0;
1481 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1482 strcat (debugfile, "/");
1483 strcat (debugfile, basename);
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1486 goto cleanup_return_debugfile;
1489 debugdir = debugdir_end;
1491 while (*debugdir != 0);
1493 xfree (debugfile);
1494 debugfile = NULL;
1496 cleanup_return_debugfile:
1497 xfree (canon_name);
1498 xfree (basename);
1499 xfree (dir);
1500 return debugfile;
1504 /* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
1506 the command is rather bizarre:
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1515 3. The order of options matters, which is contrary to GNU
1516 conventions (because it is confusing and inconvenient). */
1518 void
1519 symbol_file_command (char *args, int from_tty)
1521 dont_repeat ();
1523 if (args == NULL)
1525 symbol_file_clear (from_tty);
1527 else
1529 char **argv = gdb_buildargv (args);
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1534 cleanups = make_cleanup_freeargv (argv);
1535 while (*argv != NULL)
1537 if (strcmp (*argv, "-readnow") == 0)
1538 flags |= OBJF_READNOW;
1539 else if (**argv == '-')
1540 error (_("unknown option `%s'"), *argv);
1541 else
1543 symbol_file_add_main_1 (*argv, from_tty, flags);
1544 name = *argv;
1547 argv++;
1550 if (name == NULL)
1551 error (_("no symbol file name was specified"));
1553 do_cleanups (cleanups);
1557 /* Set the initial language.
1559 FIXME: A better solution would be to record the language in the
1560 psymtab when reading partial symbols, and then use it (if known) to
1561 set the language. This would be a win for formats that encode the
1562 language in an easily discoverable place, such as DWARF. For
1563 stabs, we can jump through hoops looking for specially named
1564 symbols or try to intuit the language from the specific type of
1565 stabs we find, but we can't do that until later when we read in
1566 full symbols. */
1568 void
1569 set_initial_language (void)
1571 const char *filename;
1572 enum language lang = language_unknown;
1574 filename = find_main_filename ();
1575 if (filename != NULL)
1576 lang = deduce_language_from_filename (filename);
1578 if (lang == language_unknown)
1580 /* Make C the default language */
1581 lang = language_c;
1584 set_language (lang);
1585 expected_language = current_language; /* Don't warn the user. */
1588 /* If NAME is a remote name open the file using remote protocol, otherwise
1589 open it normally. */
1591 bfd *
1592 bfd_open_maybe_remote (const char *name)
1594 if (remote_filename_p (name))
1595 return remote_bfd_open (name, gnutarget);
1596 else
1597 return bfd_openr (name, gnutarget);
1601 /* Open the file specified by NAME and hand it off to BFD for
1602 preliminary analysis. Return a newly initialized bfd *, which
1603 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1604 absolute). In case of trouble, error() is called. */
1606 bfd *
1607 symfile_bfd_open (char *name)
1609 bfd *sym_bfd;
1610 int desc;
1611 char *absolute_name;
1613 if (remote_filename_p (name))
1615 name = xstrdup (name);
1616 sym_bfd = remote_bfd_open (name, gnutarget);
1617 if (!sym_bfd)
1619 make_cleanup (xfree, name);
1620 error (_("`%s': can't open to read symbols: %s."), name,
1621 bfd_errmsg (bfd_get_error ()));
1624 if (!bfd_check_format (sym_bfd, bfd_object))
1626 bfd_close (sym_bfd);
1627 make_cleanup (xfree, name);
1628 error (_("`%s': can't read symbols: %s."), name,
1629 bfd_errmsg (bfd_get_error ()));
1632 return sym_bfd;
1635 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1637 /* Look down path for it, allocate 2nd new malloc'd copy. */
1638 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1639 O_RDONLY | O_BINARY, &absolute_name);
1640 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1641 if (desc < 0)
1643 char *exename = alloca (strlen (name) + 5);
1645 strcat (strcpy (exename, name), ".exe");
1646 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1647 O_RDONLY | O_BINARY, &absolute_name);
1649 #endif
1650 if (desc < 0)
1652 make_cleanup (xfree, name);
1653 perror_with_name (name);
1656 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1657 bfd. It'll be freed in free_objfile(). */
1658 xfree (name);
1659 name = absolute_name;
1661 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1662 if (!sym_bfd)
1664 close (desc);
1665 make_cleanup (xfree, name);
1666 error (_("`%s': can't open to read symbols: %s."), name,
1667 bfd_errmsg (bfd_get_error ()));
1669 bfd_set_cacheable (sym_bfd, 1);
1671 if (!bfd_check_format (sym_bfd, bfd_object))
1673 /* FIXME: should be checking for errors from bfd_close (for one
1674 thing, on error it does not free all the storage associated
1675 with the bfd). */
1676 bfd_close (sym_bfd); /* This also closes desc. */
1677 make_cleanup (xfree, name);
1678 error (_("`%s': can't read symbols: %s."), name,
1679 bfd_errmsg (bfd_get_error ()));
1682 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1683 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1685 return sym_bfd;
1688 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1689 the section was not found. */
1692 get_section_index (struct objfile *objfile, char *section_name)
1694 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1696 if (sect)
1697 return sect->index;
1698 else
1699 return -1;
1702 /* Link SF into the global symtab_fns list. Called on startup by the
1703 _initialize routine in each object file format reader, to register
1704 information about each format the the reader is prepared to
1705 handle. */
1707 void
1708 add_symtab_fns (const struct sym_fns *sf)
1710 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1713 /* Initialize OBJFILE to read symbols from its associated BFD. It
1714 either returns or calls error(). The result is an initialized
1715 struct sym_fns in the objfile structure, that contains cached
1716 information about the symbol file. */
1718 static const struct sym_fns *
1719 find_sym_fns (bfd *abfd)
1721 const struct sym_fns *sf;
1722 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1723 int i;
1725 if (our_flavour == bfd_target_srec_flavour
1726 || our_flavour == bfd_target_ihex_flavour
1727 || our_flavour == bfd_target_tekhex_flavour)
1728 return NULL; /* No symbols. */
1730 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1731 if (our_flavour == sf->sym_flavour)
1732 return sf;
1734 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1735 bfd_get_target (abfd));
1739 /* This function runs the load command of our current target. */
1741 static void
1742 load_command (char *arg, int from_tty)
1744 /* The user might be reloading because the binary has changed. Take
1745 this opportunity to check. */
1746 reopen_exec_file ();
1747 reread_symbols ();
1749 if (arg == NULL)
1751 char *parg;
1752 int count = 0;
1754 parg = arg = get_exec_file (1);
1756 /* Count how many \ " ' tab space there are in the name. */
1757 while ((parg = strpbrk (parg, "\\\"'\t ")))
1759 parg++;
1760 count++;
1763 if (count)
1765 /* We need to quote this string so buildargv can pull it apart. */
1766 char *temp = xmalloc (strlen (arg) + count + 1 );
1767 char *ptemp = temp;
1768 char *prev;
1770 make_cleanup (xfree, temp);
1772 prev = parg = arg;
1773 while ((parg = strpbrk (parg, "\\\"'\t ")))
1775 strncpy (ptemp, prev, parg - prev);
1776 ptemp += parg - prev;
1777 prev = parg++;
1778 *ptemp++ = '\\';
1780 strcpy (ptemp, prev);
1782 arg = temp;
1786 target_load (arg, from_tty);
1788 /* After re-loading the executable, we don't really know which
1789 overlays are mapped any more. */
1790 overlay_cache_invalid = 1;
1793 /* This version of "load" should be usable for any target. Currently
1794 it is just used for remote targets, not inftarg.c or core files,
1795 on the theory that only in that case is it useful.
1797 Avoiding xmodem and the like seems like a win (a) because we don't have
1798 to worry about finding it, and (b) On VMS, fork() is very slow and so
1799 we don't want to run a subprocess. On the other hand, I'm not sure how
1800 performance compares. */
1802 static int validate_download = 0;
1804 /* Callback service function for generic_load (bfd_map_over_sections). */
1806 static void
1807 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1809 bfd_size_type *sum = data;
1811 *sum += bfd_get_section_size (asec);
1814 /* Opaque data for load_section_callback. */
1815 struct load_section_data {
1816 unsigned long load_offset;
1817 struct load_progress_data *progress_data;
1818 VEC(memory_write_request_s) *requests;
1821 /* Opaque data for load_progress. */
1822 struct load_progress_data {
1823 /* Cumulative data. */
1824 unsigned long write_count;
1825 unsigned long data_count;
1826 bfd_size_type total_size;
1829 /* Opaque data for load_progress for a single section. */
1830 struct load_progress_section_data {
1831 struct load_progress_data *cumulative;
1833 /* Per-section data. */
1834 const char *section_name;
1835 ULONGEST section_sent;
1836 ULONGEST section_size;
1837 CORE_ADDR lma;
1838 gdb_byte *buffer;
1841 /* Target write callback routine for progress reporting. */
1843 static void
1844 load_progress (ULONGEST bytes, void *untyped_arg)
1846 struct load_progress_section_data *args = untyped_arg;
1847 struct load_progress_data *totals;
1849 if (args == NULL)
1850 /* Writing padding data. No easy way to get at the cumulative
1851 stats, so just ignore this. */
1852 return;
1854 totals = args->cumulative;
1856 if (bytes == 0 && args->section_sent == 0)
1858 /* The write is just starting. Let the user know we've started
1859 this section. */
1860 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1861 args->section_name, hex_string (args->section_size),
1862 paddress (target_gdbarch, args->lma));
1863 return;
1866 if (validate_download)
1868 /* Broken memories and broken monitors manifest themselves here
1869 when bring new computers to life. This doubles already slow
1870 downloads. */
1871 /* NOTE: cagney/1999-10-18: A more efficient implementation
1872 might add a verify_memory() method to the target vector and
1873 then use that. remote.c could implement that method using
1874 the ``qCRC'' packet. */
1875 gdb_byte *check = xmalloc (bytes);
1876 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1878 if (target_read_memory (args->lma, check, bytes) != 0)
1879 error (_("Download verify read failed at %s"),
1880 paddress (target_gdbarch, args->lma));
1881 if (memcmp (args->buffer, check, bytes) != 0)
1882 error (_("Download verify compare failed at %s"),
1883 paddress (target_gdbarch, args->lma));
1884 do_cleanups (verify_cleanups);
1886 totals->data_count += bytes;
1887 args->lma += bytes;
1888 args->buffer += bytes;
1889 totals->write_count += 1;
1890 args->section_sent += bytes;
1891 if (quit_flag
1892 || (deprecated_ui_load_progress_hook != NULL
1893 && deprecated_ui_load_progress_hook (args->section_name,
1894 args->section_sent)))
1895 error (_("Canceled the download"));
1897 if (deprecated_show_load_progress != NULL)
1898 deprecated_show_load_progress (args->section_name,
1899 args->section_sent,
1900 args->section_size,
1901 totals->data_count,
1902 totals->total_size);
1905 /* Callback service function for generic_load (bfd_map_over_sections). */
1907 static void
1908 load_section_callback (bfd *abfd, asection *asec, void *data)
1910 struct memory_write_request *new_request;
1911 struct load_section_data *args = data;
1912 struct load_progress_section_data *section_data;
1913 bfd_size_type size = bfd_get_section_size (asec);
1914 gdb_byte *buffer;
1915 const char *sect_name = bfd_get_section_name (abfd, asec);
1917 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1918 return;
1920 if (size == 0)
1921 return;
1923 new_request = VEC_safe_push (memory_write_request_s,
1924 args->requests, NULL);
1925 memset (new_request, 0, sizeof (struct memory_write_request));
1926 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1927 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1928 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1929 new_request->data = xmalloc (size);
1930 new_request->baton = section_data;
1932 buffer = new_request->data;
1934 section_data->cumulative = args->progress_data;
1935 section_data->section_name = sect_name;
1936 section_data->section_size = size;
1937 section_data->lma = new_request->begin;
1938 section_data->buffer = buffer;
1940 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1943 /* Clean up an entire memory request vector, including load
1944 data and progress records. */
1946 static void
1947 clear_memory_write_data (void *arg)
1949 VEC(memory_write_request_s) **vec_p = arg;
1950 VEC(memory_write_request_s) *vec = *vec_p;
1951 int i;
1952 struct memory_write_request *mr;
1954 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1956 xfree (mr->data);
1957 xfree (mr->baton);
1959 VEC_free (memory_write_request_s, vec);
1962 void
1963 generic_load (char *args, int from_tty)
1965 bfd *loadfile_bfd;
1966 struct timeval start_time, end_time;
1967 char *filename;
1968 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1969 struct load_section_data cbdata;
1970 struct load_progress_data total_progress;
1972 CORE_ADDR entry;
1973 char **argv;
1975 memset (&cbdata, 0, sizeof (cbdata));
1976 memset (&total_progress, 0, sizeof (total_progress));
1977 cbdata.progress_data = &total_progress;
1979 make_cleanup (clear_memory_write_data, &cbdata.requests);
1981 if (args == NULL)
1982 error_no_arg (_("file to load"));
1984 argv = gdb_buildargv (args);
1985 make_cleanup_freeargv (argv);
1987 filename = tilde_expand (argv[0]);
1988 make_cleanup (xfree, filename);
1990 if (argv[1] != NULL)
1992 char *endptr;
1994 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1996 /* If the last word was not a valid number then
1997 treat it as a file name with spaces in. */
1998 if (argv[1] == endptr)
1999 error (_("Invalid download offset:%s."), argv[1]);
2001 if (argv[2] != NULL)
2002 error (_("Too many parameters."));
2005 /* Open the file for loading. */
2006 loadfile_bfd = bfd_openr (filename, gnutarget);
2007 if (loadfile_bfd == NULL)
2009 perror_with_name (filename);
2010 return;
2013 /* FIXME: should be checking for errors from bfd_close (for one thing,
2014 on error it does not free all the storage associated with the
2015 bfd). */
2016 make_cleanup_bfd_close (loadfile_bfd);
2018 if (!bfd_check_format (loadfile_bfd, bfd_object))
2020 error (_("\"%s\" is not an object file: %s"), filename,
2021 bfd_errmsg (bfd_get_error ()));
2024 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2025 (void *) &total_progress.total_size);
2027 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2029 gettimeofday (&start_time, NULL);
2031 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2032 load_progress) != 0)
2033 error (_("Load failed"));
2035 gettimeofday (&end_time, NULL);
2037 entry = bfd_get_start_address (loadfile_bfd);
2038 ui_out_text (uiout, "Start address ");
2039 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2040 ui_out_text (uiout, ", load size ");
2041 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2042 ui_out_text (uiout, "\n");
2043 /* We were doing this in remote-mips.c, I suspect it is right
2044 for other targets too. */
2045 regcache_write_pc (get_current_regcache (), entry);
2047 /* Reset breakpoints, now that we have changed the load image. For
2048 instance, breakpoints may have been set (or reset, by
2049 post_create_inferior) while connected to the target but before we
2050 loaded the program. In that case, the prologue analyzer could
2051 have read instructions from the target to find the right
2052 breakpoint locations. Loading has changed the contents of that
2053 memory. */
2055 breakpoint_re_set ();
2057 /* FIXME: are we supposed to call symbol_file_add or not? According
2058 to a comment from remote-mips.c (where a call to symbol_file_add
2059 was commented out), making the call confuses GDB if more than one
2060 file is loaded in. Some targets do (e.g., remote-vx.c) but
2061 others don't (or didn't - perhaps they have all been deleted). */
2063 print_transfer_performance (gdb_stdout, total_progress.data_count,
2064 total_progress.write_count,
2065 &start_time, &end_time);
2067 do_cleanups (old_cleanups);
2070 /* Report how fast the transfer went. */
2072 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2073 replaced by print_transfer_performance (with a very different
2074 function signature). */
2076 void
2077 report_transfer_performance (unsigned long data_count, time_t start_time,
2078 time_t end_time)
2080 struct timeval start, end;
2082 start.tv_sec = start_time;
2083 start.tv_usec = 0;
2084 end.tv_sec = end_time;
2085 end.tv_usec = 0;
2087 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2090 void
2091 print_transfer_performance (struct ui_file *stream,
2092 unsigned long data_count,
2093 unsigned long write_count,
2094 const struct timeval *start_time,
2095 const struct timeval *end_time)
2097 ULONGEST time_count;
2099 /* Compute the elapsed time in milliseconds, as a tradeoff between
2100 accuracy and overflow. */
2101 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2102 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2104 ui_out_text (uiout, "Transfer rate: ");
2105 if (time_count > 0)
2107 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2109 if (ui_out_is_mi_like_p (uiout))
2111 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2112 ui_out_text (uiout, " bits/sec");
2114 else if (rate < 1024)
2116 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2117 ui_out_text (uiout, " bytes/sec");
2119 else
2121 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2122 ui_out_text (uiout, " KB/sec");
2125 else
2127 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2128 ui_out_text (uiout, " bits in <1 sec");
2130 if (write_count > 0)
2132 ui_out_text (uiout, ", ");
2133 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2134 ui_out_text (uiout, " bytes/write");
2136 ui_out_text (uiout, ".\n");
2139 /* This function allows the addition of incrementally linked object files.
2140 It does not modify any state in the target, only in the debugger. */
2141 /* Note: ezannoni 2000-04-13 This function/command used to have a
2142 special case syntax for the rombug target (Rombug is the boot
2143 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2144 rombug case, the user doesn't need to supply a text address,
2145 instead a call to target_link() (in target.c) would supply the
2146 value to use. We are now discontinuing this type of ad hoc syntax. */
2148 static void
2149 add_symbol_file_command (char *args, int from_tty)
2151 struct gdbarch *gdbarch = get_current_arch ();
2152 char *filename = NULL;
2153 int flags = OBJF_USERLOADED;
2154 char *arg;
2155 int section_index = 0;
2156 int argcnt = 0;
2157 int sec_num = 0;
2158 int i;
2159 int expecting_sec_name = 0;
2160 int expecting_sec_addr = 0;
2161 char **argv;
2163 struct sect_opt
2165 char *name;
2166 char *value;
2169 struct section_addr_info *section_addrs;
2170 struct sect_opt *sect_opts = NULL;
2171 size_t num_sect_opts = 0;
2172 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2174 num_sect_opts = 16;
2175 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2176 * sizeof (struct sect_opt));
2178 dont_repeat ();
2180 if (args == NULL)
2181 error (_("add-symbol-file takes a file name and an address"));
2183 argv = gdb_buildargv (args);
2184 make_cleanup_freeargv (argv);
2186 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2188 /* Process the argument. */
2189 if (argcnt == 0)
2191 /* The first argument is the file name. */
2192 filename = tilde_expand (arg);
2193 make_cleanup (xfree, filename);
2195 else
2196 if (argcnt == 1)
2198 /* The second argument is always the text address at which
2199 to load the program. */
2200 sect_opts[section_index].name = ".text";
2201 sect_opts[section_index].value = arg;
2202 if (++section_index >= num_sect_opts)
2204 num_sect_opts *= 2;
2205 sect_opts = ((struct sect_opt *)
2206 xrealloc (sect_opts,
2207 num_sect_opts
2208 * sizeof (struct sect_opt)));
2211 else
2213 /* It's an option (starting with '-') or it's an argument
2214 to an option */
2216 if (*arg == '-')
2218 if (strcmp (arg, "-readnow") == 0)
2219 flags |= OBJF_READNOW;
2220 else if (strcmp (arg, "-s") == 0)
2222 expecting_sec_name = 1;
2223 expecting_sec_addr = 1;
2226 else
2228 if (expecting_sec_name)
2230 sect_opts[section_index].name = arg;
2231 expecting_sec_name = 0;
2233 else
2234 if (expecting_sec_addr)
2236 sect_opts[section_index].value = arg;
2237 expecting_sec_addr = 0;
2238 if (++section_index >= num_sect_opts)
2240 num_sect_opts *= 2;
2241 sect_opts = ((struct sect_opt *)
2242 xrealloc (sect_opts,
2243 num_sect_opts
2244 * sizeof (struct sect_opt)));
2247 else
2248 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2253 /* This command takes at least two arguments. The first one is a
2254 filename, and the second is the address where this file has been
2255 loaded. Abort now if this address hasn't been provided by the
2256 user. */
2257 if (section_index < 1)
2258 error (_("The address where %s has been loaded is missing"), filename);
2260 /* Print the prompt for the query below. And save the arguments into
2261 a sect_addr_info structure to be passed around to other
2262 functions. We have to split this up into separate print
2263 statements because hex_string returns a local static
2264 string. */
2266 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2267 section_addrs = alloc_section_addr_info (section_index);
2268 make_cleanup (xfree, section_addrs);
2269 for (i = 0; i < section_index; i++)
2271 CORE_ADDR addr;
2272 char *val = sect_opts[i].value;
2273 char *sec = sect_opts[i].name;
2275 addr = parse_and_eval_address (val);
2277 /* Here we store the section offsets in the order they were
2278 entered on the command line. */
2279 section_addrs->other[sec_num].name = sec;
2280 section_addrs->other[sec_num].addr = addr;
2281 printf_unfiltered ("\t%s_addr = %s\n", sec,
2282 paddress (gdbarch, addr));
2283 sec_num++;
2285 /* The object's sections are initialized when a
2286 call is made to build_objfile_section_table (objfile).
2287 This happens in reread_symbols.
2288 At this point, we don't know what file type this is,
2289 so we can't determine what section names are valid. */
2292 if (from_tty && (!query ("%s", "")))
2293 error (_("Not confirmed."));
2295 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2296 section_addrs, flags);
2298 /* Getting new symbols may change our opinion about what is
2299 frameless. */
2300 reinit_frame_cache ();
2301 do_cleanups (my_cleanups);
2305 /* Re-read symbols if a symbol-file has changed. */
2306 void
2307 reread_symbols (void)
2309 struct objfile *objfile;
2310 long new_modtime;
2311 int reread_one = 0;
2312 struct stat new_statbuf;
2313 int res;
2315 /* With the addition of shared libraries, this should be modified,
2316 the load time should be saved in the partial symbol tables, since
2317 different tables may come from different source files. FIXME.
2318 This routine should then walk down each partial symbol table
2319 and see if the symbol table that it originates from has been changed */
2321 for (objfile = object_files; objfile; objfile = objfile->next)
2323 /* solib-sunos.c creates one objfile with obfd. */
2324 if (objfile->obfd == NULL)
2325 continue;
2327 /* Separate debug objfiles are handled in the main objfile. */
2328 if (objfile->separate_debug_objfile_backlink)
2329 continue;
2331 /* If this object is from an archive (what you usually create with
2332 `ar', often called a `static library' on most systems, though
2333 a `shared library' on AIX is also an archive), then you should
2334 stat on the archive name, not member name. */
2335 if (objfile->obfd->my_archive)
2336 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2337 else
2338 res = stat (objfile->name, &new_statbuf);
2339 if (res != 0)
2341 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2342 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2343 objfile->name);
2344 continue;
2346 new_modtime = new_statbuf.st_mtime;
2347 if (new_modtime != objfile->mtime)
2349 struct cleanup *old_cleanups;
2350 struct section_offsets *offsets;
2351 int num_offsets;
2352 char *obfd_filename;
2354 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2355 objfile->name);
2357 /* There are various functions like symbol_file_add,
2358 symfile_bfd_open, syms_from_objfile, etc., which might
2359 appear to do what we want. But they have various other
2360 effects which we *don't* want. So we just do stuff
2361 ourselves. We don't worry about mapped files (for one thing,
2362 any mapped file will be out of date). */
2364 /* If we get an error, blow away this objfile (not sure if
2365 that is the correct response for things like shared
2366 libraries). */
2367 old_cleanups = make_cleanup_free_objfile (objfile);
2368 /* We need to do this whenever any symbols go away. */
2369 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2371 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2372 bfd_get_filename (exec_bfd)) == 0)
2374 /* Reload EXEC_BFD without asking anything. */
2376 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2379 /* Clean up any state BFD has sitting around. We don't need
2380 to close the descriptor but BFD lacks a way of closing the
2381 BFD without closing the descriptor. */
2382 obfd_filename = bfd_get_filename (objfile->obfd);
2383 if (!bfd_close (objfile->obfd))
2384 error (_("Can't close BFD for %s: %s"), objfile->name,
2385 bfd_errmsg (bfd_get_error ()));
2386 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2387 if (objfile->obfd == NULL)
2388 error (_("Can't open %s to read symbols."), objfile->name);
2389 else
2390 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2391 /* bfd_openr sets cacheable to true, which is what we want. */
2392 if (!bfd_check_format (objfile->obfd, bfd_object))
2393 error (_("Can't read symbols from %s: %s."), objfile->name,
2394 bfd_errmsg (bfd_get_error ()));
2396 /* Save the offsets, we will nuke them with the rest of the
2397 objfile_obstack. */
2398 num_offsets = objfile->num_sections;
2399 offsets = ((struct section_offsets *)
2400 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2401 memcpy (offsets, objfile->section_offsets,
2402 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2404 /* Remove any references to this objfile in the global
2405 value lists. */
2406 preserve_values (objfile);
2408 /* Nuke all the state that we will re-read. Much of the following
2409 code which sets things to NULL really is necessary to tell
2410 other parts of GDB that there is nothing currently there.
2412 Try to keep the freeing order compatible with free_objfile. */
2414 if (objfile->sf != NULL)
2416 (*objfile->sf->sym_finish) (objfile);
2419 clear_objfile_data (objfile);
2421 /* Free the separate debug objfiles. It will be
2422 automatically recreated by sym_read. */
2423 free_objfile_separate_debug (objfile);
2425 /* FIXME: Do we have to free a whole linked list, or is this
2426 enough? */
2427 if (objfile->global_psymbols.list)
2428 xfree (objfile->global_psymbols.list);
2429 memset (&objfile->global_psymbols, 0,
2430 sizeof (objfile->global_psymbols));
2431 if (objfile->static_psymbols.list)
2432 xfree (objfile->static_psymbols.list);
2433 memset (&objfile->static_psymbols, 0,
2434 sizeof (objfile->static_psymbols));
2436 /* Free the obstacks for non-reusable objfiles */
2437 psymbol_bcache_free (objfile->psymbol_cache);
2438 objfile->psymbol_cache = psymbol_bcache_init ();
2439 bcache_xfree (objfile->macro_cache);
2440 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2441 bcache_xfree (objfile->filename_cache);
2442 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2443 if (objfile->demangled_names_hash != NULL)
2445 htab_delete (objfile->demangled_names_hash);
2446 objfile->demangled_names_hash = NULL;
2448 obstack_free (&objfile->objfile_obstack, 0);
2449 objfile->sections = NULL;
2450 objfile->symtabs = NULL;
2451 objfile->psymtabs = NULL;
2452 objfile->psymtabs_addrmap = NULL;
2453 objfile->free_psymtabs = NULL;
2454 objfile->cp_namespace_symtab = NULL;
2455 objfile->template_symbols = NULL;
2456 objfile->msymbols = NULL;
2457 objfile->deprecated_sym_private = NULL;
2458 objfile->minimal_symbol_count = 0;
2459 memset (&objfile->msymbol_hash, 0,
2460 sizeof (objfile->msymbol_hash));
2461 memset (&objfile->msymbol_demangled_hash, 0,
2462 sizeof (objfile->msymbol_demangled_hash));
2464 objfile->psymbol_cache = psymbol_bcache_init ();
2465 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2466 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
2467 /* obstack_init also initializes the obstack so it is
2468 empty. We could use obstack_specify_allocation but
2469 gdb_obstack.h specifies the alloc/dealloc
2470 functions. */
2471 obstack_init (&objfile->objfile_obstack);
2472 if (build_objfile_section_table (objfile))
2474 error (_("Can't find the file sections in `%s': %s"),
2475 objfile->name, bfd_errmsg (bfd_get_error ()));
2477 terminate_minimal_symbol_table (objfile);
2479 /* We use the same section offsets as from last time. I'm not
2480 sure whether that is always correct for shared libraries. */
2481 objfile->section_offsets = (struct section_offsets *)
2482 obstack_alloc (&objfile->objfile_obstack,
2483 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2484 memcpy (objfile->section_offsets, offsets,
2485 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2486 objfile->num_sections = num_offsets;
2488 /* What the hell is sym_new_init for, anyway? The concept of
2489 distinguishing between the main file and additional files
2490 in this way seems rather dubious. */
2491 if (objfile == symfile_objfile)
2493 (*objfile->sf->sym_new_init) (objfile);
2496 (*objfile->sf->sym_init) (objfile);
2497 clear_complaints (&symfile_complaints, 1, 1);
2498 /* Do not set flags as this is safe and we don't want to be
2499 verbose. */
2500 (*objfile->sf->sym_read) (objfile, 0);
2501 if (!objfile_has_symbols (objfile))
2503 wrap_here ("");
2504 printf_unfiltered (_("(no debugging symbols found)\n"));
2505 wrap_here ("");
2508 /* We're done reading the symbol file; finish off complaints. */
2509 clear_complaints (&symfile_complaints, 0, 1);
2511 /* Getting new symbols may change our opinion about what is
2512 frameless. */
2514 reinit_frame_cache ();
2516 /* Discard cleanups as symbol reading was successful. */
2517 discard_cleanups (old_cleanups);
2519 /* If the mtime has changed between the time we set new_modtime
2520 and now, we *want* this to be out of date, so don't call stat
2521 again now. */
2522 objfile->mtime = new_modtime;
2523 reread_one = 1;
2524 init_entry_point_info (objfile);
2528 if (reread_one)
2530 /* Notify objfiles that we've modified objfile sections. */
2531 objfiles_changed ();
2533 clear_symtab_users ();
2534 /* At least one objfile has changed, so we can consider that
2535 the executable we're debugging has changed too. */
2536 observer_notify_executable_changed ();
2542 typedef struct
2544 char *ext;
2545 enum language lang;
2547 filename_language;
2549 static filename_language *filename_language_table;
2550 static int fl_table_size, fl_table_next;
2552 static void
2553 add_filename_language (char *ext, enum language lang)
2555 if (fl_table_next >= fl_table_size)
2557 fl_table_size += 10;
2558 filename_language_table =
2559 xrealloc (filename_language_table,
2560 fl_table_size * sizeof (*filename_language_table));
2563 filename_language_table[fl_table_next].ext = xstrdup (ext);
2564 filename_language_table[fl_table_next].lang = lang;
2565 fl_table_next++;
2568 static char *ext_args;
2569 static void
2570 show_ext_args (struct ui_file *file, int from_tty,
2571 struct cmd_list_element *c, const char *value)
2573 fprintf_filtered (file, _("\
2574 Mapping between filename extension and source language is \"%s\".\n"),
2575 value);
2578 static void
2579 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2581 int i;
2582 char *cp = ext_args;
2583 enum language lang;
2585 /* First arg is filename extension, starting with '.' */
2586 if (*cp != '.')
2587 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2589 /* Find end of first arg. */
2590 while (*cp && !isspace (*cp))
2591 cp++;
2593 if (*cp == '\0')
2594 error (_("'%s': two arguments required -- filename extension and language"),
2595 ext_args);
2597 /* Null-terminate first arg */
2598 *cp++ = '\0';
2600 /* Find beginning of second arg, which should be a source language. */
2601 while (*cp && isspace (*cp))
2602 cp++;
2604 if (*cp == '\0')
2605 error (_("'%s': two arguments required -- filename extension and language"),
2606 ext_args);
2608 /* Lookup the language from among those we know. */
2609 lang = language_enum (cp);
2611 /* Now lookup the filename extension: do we already know it? */
2612 for (i = 0; i < fl_table_next; i++)
2613 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2614 break;
2616 if (i >= fl_table_next)
2618 /* new file extension */
2619 add_filename_language (ext_args, lang);
2621 else
2623 /* redefining a previously known filename extension */
2625 /* if (from_tty) */
2626 /* query ("Really make files of type %s '%s'?", */
2627 /* ext_args, language_str (lang)); */
2629 xfree (filename_language_table[i].ext);
2630 filename_language_table[i].ext = xstrdup (ext_args);
2631 filename_language_table[i].lang = lang;
2635 static void
2636 info_ext_lang_command (char *args, int from_tty)
2638 int i;
2640 printf_filtered (_("Filename extensions and the languages they represent:"));
2641 printf_filtered ("\n\n");
2642 for (i = 0; i < fl_table_next; i++)
2643 printf_filtered ("\t%s\t- %s\n",
2644 filename_language_table[i].ext,
2645 language_str (filename_language_table[i].lang));
2648 static void
2649 init_filename_language_table (void)
2651 if (fl_table_size == 0) /* protect against repetition */
2653 fl_table_size = 20;
2654 fl_table_next = 0;
2655 filename_language_table =
2656 xmalloc (fl_table_size * sizeof (*filename_language_table));
2657 add_filename_language (".c", language_c);
2658 add_filename_language (".d", language_d);
2659 add_filename_language (".C", language_cplus);
2660 add_filename_language (".cc", language_cplus);
2661 add_filename_language (".cp", language_cplus);
2662 add_filename_language (".cpp", language_cplus);
2663 add_filename_language (".cxx", language_cplus);
2664 add_filename_language (".c++", language_cplus);
2665 add_filename_language (".java", language_java);
2666 add_filename_language (".class", language_java);
2667 add_filename_language (".m", language_objc);
2668 add_filename_language (".f", language_fortran);
2669 add_filename_language (".F", language_fortran);
2670 add_filename_language (".for", language_fortran);
2671 add_filename_language (".FOR", language_fortran);
2672 add_filename_language (".ftn", language_fortran);
2673 add_filename_language (".FTN", language_fortran);
2674 add_filename_language (".fpp", language_fortran);
2675 add_filename_language (".FPP", language_fortran);
2676 add_filename_language (".f90", language_fortran);
2677 add_filename_language (".F90", language_fortran);
2678 add_filename_language (".f95", language_fortran);
2679 add_filename_language (".F95", language_fortran);
2680 add_filename_language (".f03", language_fortran);
2681 add_filename_language (".F03", language_fortran);
2682 add_filename_language (".f08", language_fortran);
2683 add_filename_language (".F08", language_fortran);
2684 add_filename_language (".s", language_asm);
2685 add_filename_language (".sx", language_asm);
2686 add_filename_language (".S", language_asm);
2687 add_filename_language (".pas", language_pascal);
2688 add_filename_language (".p", language_pascal);
2689 add_filename_language (".pp", language_pascal);
2690 add_filename_language (".adb", language_ada);
2691 add_filename_language (".ads", language_ada);
2692 add_filename_language (".a", language_ada);
2693 add_filename_language (".ada", language_ada);
2694 add_filename_language (".dg", language_ada);
2698 enum language
2699 deduce_language_from_filename (const char *filename)
2701 int i;
2702 char *cp;
2704 if (filename != NULL)
2705 if ((cp = strrchr (filename, '.')) != NULL)
2706 for (i = 0; i < fl_table_next; i++)
2707 if (strcmp (cp, filename_language_table[i].ext) == 0)
2708 return filename_language_table[i].lang;
2710 return language_unknown;
2713 /* allocate_symtab:
2715 Allocate and partly initialize a new symbol table. Return a pointer
2716 to it. error() if no space.
2718 Caller must set these fields:
2719 LINETABLE(symtab)
2720 symtab->blockvector
2721 symtab->dirname
2722 symtab->free_code
2723 symtab->free_ptr
2726 struct symtab *
2727 allocate_symtab (const char *filename, struct objfile *objfile)
2729 struct symtab *symtab;
2731 symtab = (struct symtab *)
2732 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2733 memset (symtab, 0, sizeof (*symtab));
2734 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2735 objfile->filename_cache);
2736 symtab->fullname = NULL;
2737 symtab->language = deduce_language_from_filename (filename);
2738 symtab->debugformat = "unknown";
2740 /* Hook it to the objfile it comes from */
2742 symtab->objfile = objfile;
2743 symtab->next = objfile->symtabs;
2744 objfile->symtabs = symtab;
2746 return (symtab);
2750 /* Reset all data structures in gdb which may contain references to symbol
2751 table data. */
2753 void
2754 clear_symtab_users (void)
2756 /* Someday, we should do better than this, by only blowing away
2757 the things that really need to be blown. */
2759 /* Clear the "current" symtab first, because it is no longer valid.
2760 breakpoint_re_set may try to access the current symtab. */
2761 clear_current_source_symtab_and_line ();
2763 clear_displays ();
2764 breakpoint_re_set ();
2765 set_default_breakpoint (0, NULL, 0, 0, 0);
2766 clear_pc_function_cache ();
2767 observer_notify_new_objfile (NULL);
2769 /* Clear globals which might have pointed into a removed objfile.
2770 FIXME: It's not clear which of these are supposed to persist
2771 between expressions and which ought to be reset each time. */
2772 expression_context_block = NULL;
2773 innermost_block = NULL;
2775 /* Varobj may refer to old symbols, perform a cleanup. */
2776 varobj_invalidate ();
2780 static void
2781 clear_symtab_users_cleanup (void *ignore)
2783 clear_symtab_users ();
2786 /* OVERLAYS:
2787 The following code implements an abstraction for debugging overlay sections.
2789 The target model is as follows:
2790 1) The gnu linker will permit multiple sections to be mapped into the
2791 same VMA, each with its own unique LMA (or load address).
2792 2) It is assumed that some runtime mechanism exists for mapping the
2793 sections, one by one, from the load address into the VMA address.
2794 3) This code provides a mechanism for gdb to keep track of which
2795 sections should be considered to be mapped from the VMA to the LMA.
2796 This information is used for symbol lookup, and memory read/write.
2797 For instance, if a section has been mapped then its contents
2798 should be read from the VMA, otherwise from the LMA.
2800 Two levels of debugger support for overlays are available. One is
2801 "manual", in which the debugger relies on the user to tell it which
2802 overlays are currently mapped. This level of support is
2803 implemented entirely in the core debugger, and the information about
2804 whether a section is mapped is kept in the objfile->obj_section table.
2806 The second level of support is "automatic", and is only available if
2807 the target-specific code provides functionality to read the target's
2808 overlay mapping table, and translate its contents for the debugger
2809 (by updating the mapped state information in the obj_section tables).
2811 The interface is as follows:
2812 User commands:
2813 overlay map <name> -- tell gdb to consider this section mapped
2814 overlay unmap <name> -- tell gdb to consider this section unmapped
2815 overlay list -- list the sections that GDB thinks are mapped
2816 overlay read-target -- get the target's state of what's mapped
2817 overlay off/manual/auto -- set overlay debugging state
2818 Functional interface:
2819 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2820 section, return that section.
2821 find_pc_overlay(pc): find any overlay section that contains
2822 the pc, either in its VMA or its LMA
2823 section_is_mapped(sect): true if overlay is marked as mapped
2824 section_is_overlay(sect): true if section's VMA != LMA
2825 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2826 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2827 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2828 overlay_mapped_address(...): map an address from section's LMA to VMA
2829 overlay_unmapped_address(...): map an address from section's VMA to LMA
2830 symbol_overlayed_address(...): Return a "current" address for symbol:
2831 either in VMA or LMA depending on whether
2832 the symbol's section is currently mapped
2835 /* Overlay debugging state: */
2837 enum overlay_debugging_state overlay_debugging = ovly_off;
2838 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2840 /* Function: section_is_overlay (SECTION)
2841 Returns true if SECTION has VMA not equal to LMA, ie.
2842 SECTION is loaded at an address different from where it will "run". */
2845 section_is_overlay (struct obj_section *section)
2847 if (overlay_debugging && section)
2849 bfd *abfd = section->objfile->obfd;
2850 asection *bfd_section = section->the_bfd_section;
2852 if (bfd_section_lma (abfd, bfd_section) != 0
2853 && bfd_section_lma (abfd, bfd_section)
2854 != bfd_section_vma (abfd, bfd_section))
2855 return 1;
2858 return 0;
2861 /* Function: overlay_invalidate_all (void)
2862 Invalidate the mapped state of all overlay sections (mark it as stale). */
2864 static void
2865 overlay_invalidate_all (void)
2867 struct objfile *objfile;
2868 struct obj_section *sect;
2870 ALL_OBJSECTIONS (objfile, sect)
2871 if (section_is_overlay (sect))
2872 sect->ovly_mapped = -1;
2875 /* Function: section_is_mapped (SECTION)
2876 Returns true if section is an overlay, and is currently mapped.
2878 Access to the ovly_mapped flag is restricted to this function, so
2879 that we can do automatic update. If the global flag
2880 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2881 overlay_invalidate_all. If the mapped state of the particular
2882 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2885 section_is_mapped (struct obj_section *osect)
2887 struct gdbarch *gdbarch;
2889 if (osect == 0 || !section_is_overlay (osect))
2890 return 0;
2892 switch (overlay_debugging)
2894 default:
2895 case ovly_off:
2896 return 0; /* overlay debugging off */
2897 case ovly_auto: /* overlay debugging automatic */
2898 /* Unles there is a gdbarch_overlay_update function,
2899 there's really nothing useful to do here (can't really go auto) */
2900 gdbarch = get_objfile_arch (osect->objfile);
2901 if (gdbarch_overlay_update_p (gdbarch))
2903 if (overlay_cache_invalid)
2905 overlay_invalidate_all ();
2906 overlay_cache_invalid = 0;
2908 if (osect->ovly_mapped == -1)
2909 gdbarch_overlay_update (gdbarch, osect);
2911 /* fall thru to manual case */
2912 case ovly_on: /* overlay debugging manual */
2913 return osect->ovly_mapped == 1;
2917 /* Function: pc_in_unmapped_range
2918 If PC falls into the lma range of SECTION, return true, else false. */
2920 CORE_ADDR
2921 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2923 if (section_is_overlay (section))
2925 bfd *abfd = section->objfile->obfd;
2926 asection *bfd_section = section->the_bfd_section;
2928 /* We assume the LMA is relocated by the same offset as the VMA. */
2929 bfd_vma size = bfd_get_section_size (bfd_section);
2930 CORE_ADDR offset = obj_section_offset (section);
2932 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2933 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2934 return 1;
2937 return 0;
2940 /* Function: pc_in_mapped_range
2941 If PC falls into the vma range of SECTION, return true, else false. */
2943 CORE_ADDR
2944 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2946 if (section_is_overlay (section))
2948 if (obj_section_addr (section) <= pc
2949 && pc < obj_section_endaddr (section))
2950 return 1;
2953 return 0;
2957 /* Return true if the mapped ranges of sections A and B overlap, false
2958 otherwise. */
2959 static int
2960 sections_overlap (struct obj_section *a, struct obj_section *b)
2962 CORE_ADDR a_start = obj_section_addr (a);
2963 CORE_ADDR a_end = obj_section_endaddr (a);
2964 CORE_ADDR b_start = obj_section_addr (b);
2965 CORE_ADDR b_end = obj_section_endaddr (b);
2967 return (a_start < b_end && b_start < a_end);
2970 /* Function: overlay_unmapped_address (PC, SECTION)
2971 Returns the address corresponding to PC in the unmapped (load) range.
2972 May be the same as PC. */
2974 CORE_ADDR
2975 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2977 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2979 bfd *abfd = section->objfile->obfd;
2980 asection *bfd_section = section->the_bfd_section;
2982 return pc + bfd_section_lma (abfd, bfd_section)
2983 - bfd_section_vma (abfd, bfd_section);
2986 return pc;
2989 /* Function: overlay_mapped_address (PC, SECTION)
2990 Returns the address corresponding to PC in the mapped (runtime) range.
2991 May be the same as PC. */
2993 CORE_ADDR
2994 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2996 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2998 bfd *abfd = section->objfile->obfd;
2999 asection *bfd_section = section->the_bfd_section;
3001 return pc + bfd_section_vma (abfd, bfd_section)
3002 - bfd_section_lma (abfd, bfd_section);
3005 return pc;
3009 /* Function: symbol_overlayed_address
3010 Return one of two addresses (relative to the VMA or to the LMA),
3011 depending on whether the section is mapped or not. */
3013 CORE_ADDR
3014 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3016 if (overlay_debugging)
3018 /* If the symbol has no section, just return its regular address. */
3019 if (section == 0)
3020 return address;
3021 /* If the symbol's section is not an overlay, just return its address */
3022 if (!section_is_overlay (section))
3023 return address;
3024 /* If the symbol's section is mapped, just return its address */
3025 if (section_is_mapped (section))
3026 return address;
3028 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3029 * then return its LOADED address rather than its vma address!!
3031 return overlay_unmapped_address (address, section);
3033 return address;
3036 /* Function: find_pc_overlay (PC)
3037 Return the best-match overlay section for PC:
3038 If PC matches a mapped overlay section's VMA, return that section.
3039 Else if PC matches an unmapped section's VMA, return that section.
3040 Else if PC matches an unmapped section's LMA, return that section. */
3042 struct obj_section *
3043 find_pc_overlay (CORE_ADDR pc)
3045 struct objfile *objfile;
3046 struct obj_section *osect, *best_match = NULL;
3048 if (overlay_debugging)
3049 ALL_OBJSECTIONS (objfile, osect)
3050 if (section_is_overlay (osect))
3052 if (pc_in_mapped_range (pc, osect))
3054 if (section_is_mapped (osect))
3055 return osect;
3056 else
3057 best_match = osect;
3059 else if (pc_in_unmapped_range (pc, osect))
3060 best_match = osect;
3062 return best_match;
3065 /* Function: find_pc_mapped_section (PC)
3066 If PC falls into the VMA address range of an overlay section that is
3067 currently marked as MAPPED, return that section. Else return NULL. */
3069 struct obj_section *
3070 find_pc_mapped_section (CORE_ADDR pc)
3072 struct objfile *objfile;
3073 struct obj_section *osect;
3075 if (overlay_debugging)
3076 ALL_OBJSECTIONS (objfile, osect)
3077 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3078 return osect;
3080 return NULL;
3083 /* Function: list_overlays_command
3084 Print a list of mapped sections and their PC ranges */
3086 void
3087 list_overlays_command (char *args, int from_tty)
3089 int nmapped = 0;
3090 struct objfile *objfile;
3091 struct obj_section *osect;
3093 if (overlay_debugging)
3094 ALL_OBJSECTIONS (objfile, osect)
3095 if (section_is_mapped (osect))
3097 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3098 const char *name;
3099 bfd_vma lma, vma;
3100 int size;
3102 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3103 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3104 size = bfd_get_section_size (osect->the_bfd_section);
3105 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3107 printf_filtered ("Section %s, loaded at ", name);
3108 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3109 puts_filtered (" - ");
3110 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3111 printf_filtered (", mapped at ");
3112 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3113 puts_filtered (" - ");
3114 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3115 puts_filtered ("\n");
3117 nmapped++;
3119 if (nmapped == 0)
3120 printf_filtered (_("No sections are mapped.\n"));
3123 /* Function: map_overlay_command
3124 Mark the named section as mapped (ie. residing at its VMA address). */
3126 void
3127 map_overlay_command (char *args, int from_tty)
3129 struct objfile *objfile, *objfile2;
3130 struct obj_section *sec, *sec2;
3132 if (!overlay_debugging)
3133 error (_("\
3134 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3135 the 'overlay manual' command."));
3137 if (args == 0 || *args == 0)
3138 error (_("Argument required: name of an overlay section"));
3140 /* First, find a section matching the user supplied argument */
3141 ALL_OBJSECTIONS (objfile, sec)
3142 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3144 /* Now, check to see if the section is an overlay. */
3145 if (!section_is_overlay (sec))
3146 continue; /* not an overlay section */
3148 /* Mark the overlay as "mapped" */
3149 sec->ovly_mapped = 1;
3151 /* Next, make a pass and unmap any sections that are
3152 overlapped by this new section: */
3153 ALL_OBJSECTIONS (objfile2, sec2)
3154 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3156 if (info_verbose)
3157 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3158 bfd_section_name (objfile->obfd,
3159 sec2->the_bfd_section));
3160 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3162 return;
3164 error (_("No overlay section called %s"), args);
3167 /* Function: unmap_overlay_command
3168 Mark the overlay section as unmapped
3169 (ie. resident in its LMA address range, rather than the VMA range). */
3171 void
3172 unmap_overlay_command (char *args, int from_tty)
3174 struct objfile *objfile;
3175 struct obj_section *sec;
3177 if (!overlay_debugging)
3178 error (_("\
3179 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3180 the 'overlay manual' command."));
3182 if (args == 0 || *args == 0)
3183 error (_("Argument required: name of an overlay section"));
3185 /* First, find a section matching the user supplied argument */
3186 ALL_OBJSECTIONS (objfile, sec)
3187 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3189 if (!sec->ovly_mapped)
3190 error (_("Section %s is not mapped"), args);
3191 sec->ovly_mapped = 0;
3192 return;
3194 error (_("No overlay section called %s"), args);
3197 /* Function: overlay_auto_command
3198 A utility command to turn on overlay debugging.
3199 Possibly this should be done via a set/show command. */
3201 static void
3202 overlay_auto_command (char *args, int from_tty)
3204 overlay_debugging = ovly_auto;
3205 enable_overlay_breakpoints ();
3206 if (info_verbose)
3207 printf_unfiltered (_("Automatic overlay debugging enabled."));
3210 /* Function: overlay_manual_command
3211 A utility command to turn on overlay debugging.
3212 Possibly this should be done via a set/show command. */
3214 static void
3215 overlay_manual_command (char *args, int from_tty)
3217 overlay_debugging = ovly_on;
3218 disable_overlay_breakpoints ();
3219 if (info_verbose)
3220 printf_unfiltered (_("Overlay debugging enabled."));
3223 /* Function: overlay_off_command
3224 A utility command to turn on overlay debugging.
3225 Possibly this should be done via a set/show command. */
3227 static void
3228 overlay_off_command (char *args, int from_tty)
3230 overlay_debugging = ovly_off;
3231 disable_overlay_breakpoints ();
3232 if (info_verbose)
3233 printf_unfiltered (_("Overlay debugging disabled."));
3236 static void
3237 overlay_load_command (char *args, int from_tty)
3239 struct gdbarch *gdbarch = get_current_arch ();
3241 if (gdbarch_overlay_update_p (gdbarch))
3242 gdbarch_overlay_update (gdbarch, NULL);
3243 else
3244 error (_("This target does not know how to read its overlay state."));
3247 /* Function: overlay_command
3248 A place-holder for a mis-typed command */
3250 /* Command list chain containing all defined "overlay" subcommands. */
3251 struct cmd_list_element *overlaylist;
3253 static void
3254 overlay_command (char *args, int from_tty)
3256 printf_unfiltered
3257 ("\"overlay\" must be followed by the name of an overlay command.\n");
3258 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3262 /* Target Overlays for the "Simplest" overlay manager:
3264 This is GDB's default target overlay layer. It works with the
3265 minimal overlay manager supplied as an example by Cygnus. The
3266 entry point is via a function pointer "gdbarch_overlay_update",
3267 so targets that use a different runtime overlay manager can
3268 substitute their own overlay_update function and take over the
3269 function pointer.
3271 The overlay_update function pokes around in the target's data structures
3272 to see what overlays are mapped, and updates GDB's overlay mapping with
3273 this information.
3275 In this simple implementation, the target data structures are as follows:
3276 unsigned _novlys; /# number of overlay sections #/
3277 unsigned _ovly_table[_novlys][4] = {
3278 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3279 {..., ..., ..., ...},
3281 unsigned _novly_regions; /# number of overlay regions #/
3282 unsigned _ovly_region_table[_novly_regions][3] = {
3283 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3284 {..., ..., ...},
3286 These functions will attempt to update GDB's mappedness state in the
3287 symbol section table, based on the target's mappedness state.
3289 To do this, we keep a cached copy of the target's _ovly_table, and
3290 attempt to detect when the cached copy is invalidated. The main
3291 entry point is "simple_overlay_update(SECT), which looks up SECT in
3292 the cached table and re-reads only the entry for that section from
3293 the target (whenever possible).
3296 /* Cached, dynamically allocated copies of the target data structures: */
3297 static unsigned (*cache_ovly_table)[4] = 0;
3298 #if 0
3299 static unsigned (*cache_ovly_region_table)[3] = 0;
3300 #endif
3301 static unsigned cache_novlys = 0;
3302 #if 0
3303 static unsigned cache_novly_regions = 0;
3304 #endif
3305 static CORE_ADDR cache_ovly_table_base = 0;
3306 #if 0
3307 static CORE_ADDR cache_ovly_region_table_base = 0;
3308 #endif
3309 enum ovly_index
3311 VMA, SIZE, LMA, MAPPED
3314 /* Throw away the cached copy of _ovly_table */
3315 static void
3316 simple_free_overlay_table (void)
3318 if (cache_ovly_table)
3319 xfree (cache_ovly_table);
3320 cache_novlys = 0;
3321 cache_ovly_table = NULL;
3322 cache_ovly_table_base = 0;
3325 #if 0
3326 /* Throw away the cached copy of _ovly_region_table */
3327 static void
3328 simple_free_overlay_region_table (void)
3330 if (cache_ovly_region_table)
3331 xfree (cache_ovly_region_table);
3332 cache_novly_regions = 0;
3333 cache_ovly_region_table = NULL;
3334 cache_ovly_region_table_base = 0;
3336 #endif
3338 /* Read an array of ints of size SIZE from the target into a local buffer.
3339 Convert to host order. int LEN is number of ints */
3340 static void
3341 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3342 int len, int size, enum bfd_endian byte_order)
3344 /* FIXME (alloca): Not safe if array is very large. */
3345 gdb_byte *buf = alloca (len * size);
3346 int i;
3348 read_memory (memaddr, buf, len * size);
3349 for (i = 0; i < len; i++)
3350 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3353 /* Find and grab a copy of the target _ovly_table
3354 (and _novlys, which is needed for the table's size) */
3355 static int
3356 simple_read_overlay_table (void)
3358 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3359 struct gdbarch *gdbarch;
3360 int word_size;
3361 enum bfd_endian byte_order;
3363 simple_free_overlay_table ();
3364 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3365 if (! novlys_msym)
3367 error (_("Error reading inferior's overlay table: "
3368 "couldn't find `_novlys' variable\n"
3369 "in inferior. Use `overlay manual' mode."));
3370 return 0;
3373 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3374 if (! ovly_table_msym)
3376 error (_("Error reading inferior's overlay table: couldn't find "
3377 "`_ovly_table' array\n"
3378 "in inferior. Use `overlay manual' mode."));
3379 return 0;
3382 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3383 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3384 byte_order = gdbarch_byte_order (gdbarch);
3386 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3387 4, byte_order);
3388 cache_ovly_table
3389 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3390 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3391 read_target_long_array (cache_ovly_table_base,
3392 (unsigned int *) cache_ovly_table,
3393 cache_novlys * 4, word_size, byte_order);
3395 return 1; /* SUCCESS */
3398 #if 0
3399 /* Find and grab a copy of the target _ovly_region_table
3400 (and _novly_regions, which is needed for the table's size) */
3401 static int
3402 simple_read_overlay_region_table (void)
3404 struct minimal_symbol *msym;
3405 struct gdbarch *gdbarch;
3406 int word_size;
3407 enum bfd_endian byte_order;
3409 simple_free_overlay_region_table ();
3410 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3411 if (msym == NULL)
3412 return 0; /* failure */
3414 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3415 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3416 byte_order = gdbarch_byte_order (gdbarch);
3418 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3419 4, byte_order);
3421 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3422 if (cache_ovly_region_table != NULL)
3424 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3425 if (msym != NULL)
3427 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3428 read_target_long_array (cache_ovly_region_table_base,
3429 (unsigned int *) cache_ovly_region_table,
3430 cache_novly_regions * 3,
3431 word_size, byte_order);
3433 else
3434 return 0; /* failure */
3436 else
3437 return 0; /* failure */
3438 return 1; /* SUCCESS */
3440 #endif
3442 /* Function: simple_overlay_update_1
3443 A helper function for simple_overlay_update. Assuming a cached copy
3444 of _ovly_table exists, look through it to find an entry whose vma,
3445 lma and size match those of OSECT. Re-read the entry and make sure
3446 it still matches OSECT (else the table may no longer be valid).
3447 Set OSECT's mapped state to match the entry. Return: 1 for
3448 success, 0 for failure. */
3450 static int
3451 simple_overlay_update_1 (struct obj_section *osect)
3453 int i, size;
3454 bfd *obfd = osect->objfile->obfd;
3455 asection *bsect = osect->the_bfd_section;
3456 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3457 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3458 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3460 size = bfd_get_section_size (osect->the_bfd_section);
3461 for (i = 0; i < cache_novlys; i++)
3462 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3463 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3464 /* && cache_ovly_table[i][SIZE] == size */ )
3466 read_target_long_array (cache_ovly_table_base + i * word_size,
3467 (unsigned int *) cache_ovly_table[i],
3468 4, word_size, byte_order);
3469 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3470 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3471 /* && cache_ovly_table[i][SIZE] == size */ )
3473 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3474 return 1;
3476 else /* Warning! Warning! Target's ovly table has changed! */
3477 return 0;
3479 return 0;
3482 /* Function: simple_overlay_update
3483 If OSECT is NULL, then update all sections' mapped state
3484 (after re-reading the entire target _ovly_table).
3485 If OSECT is non-NULL, then try to find a matching entry in the
3486 cached ovly_table and update only OSECT's mapped state.
3487 If a cached entry can't be found or the cache isn't valid, then
3488 re-read the entire cache, and go ahead and update all sections. */
3490 void
3491 simple_overlay_update (struct obj_section *osect)
3493 struct objfile *objfile;
3495 /* Were we given an osect to look up? NULL means do all of them. */
3496 if (osect)
3497 /* Have we got a cached copy of the target's overlay table? */
3498 if (cache_ovly_table != NULL)
3499 /* Does its cached location match what's currently in the symtab? */
3500 if (cache_ovly_table_base ==
3501 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3502 /* Then go ahead and try to look up this single section in the cache */
3503 if (simple_overlay_update_1 (osect))
3504 /* Found it! We're done. */
3505 return;
3507 /* Cached table no good: need to read the entire table anew.
3508 Or else we want all the sections, in which case it's actually
3509 more efficient to read the whole table in one block anyway. */
3511 if (! simple_read_overlay_table ())
3512 return;
3514 /* Now may as well update all sections, even if only one was requested. */
3515 ALL_OBJSECTIONS (objfile, osect)
3516 if (section_is_overlay (osect))
3518 int i, size;
3519 bfd *obfd = osect->objfile->obfd;
3520 asection *bsect = osect->the_bfd_section;
3522 size = bfd_get_section_size (bsect);
3523 for (i = 0; i < cache_novlys; i++)
3524 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3525 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3526 /* && cache_ovly_table[i][SIZE] == size */ )
3527 { /* obj_section matches i'th entry in ovly_table */
3528 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3529 break; /* finished with inner for loop: break out */
3534 /* Set the output sections and output offsets for section SECTP in
3535 ABFD. The relocation code in BFD will read these offsets, so we
3536 need to be sure they're initialized. We map each section to itself,
3537 with no offset; this means that SECTP->vma will be honored. */
3539 static void
3540 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3542 sectp->output_section = sectp;
3543 sectp->output_offset = 0;
3546 /* Default implementation for sym_relocate. */
3549 bfd_byte *
3550 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3551 bfd_byte *buf)
3553 bfd *abfd = objfile->obfd;
3555 /* We're only interested in sections with relocation
3556 information. */
3557 if ((sectp->flags & SEC_RELOC) == 0)
3558 return NULL;
3560 /* We will handle section offsets properly elsewhere, so relocate as if
3561 all sections begin at 0. */
3562 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3564 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3567 /* Relocate the contents of a debug section SECTP in ABFD. The
3568 contents are stored in BUF if it is non-NULL, or returned in a
3569 malloc'd buffer otherwise.
3571 For some platforms and debug info formats, shared libraries contain
3572 relocations against the debug sections (particularly for DWARF-2;
3573 one affected platform is PowerPC GNU/Linux, although it depends on
3574 the version of the linker in use). Also, ELF object files naturally
3575 have unresolved relocations for their debug sections. We need to apply
3576 the relocations in order to get the locations of symbols correct.
3577 Another example that may require relocation processing, is the
3578 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3579 debug section. */
3581 bfd_byte *
3582 symfile_relocate_debug_section (struct objfile *objfile,
3583 asection *sectp, bfd_byte *buf)
3585 gdb_assert (objfile->sf->sym_relocate);
3587 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3590 struct symfile_segment_data *
3591 get_symfile_segment_data (bfd *abfd)
3593 const struct sym_fns *sf = find_sym_fns (abfd);
3595 if (sf == NULL)
3596 return NULL;
3598 return sf->sym_segments (abfd);
3601 void
3602 free_symfile_segment_data (struct symfile_segment_data *data)
3604 xfree (data->segment_bases);
3605 xfree (data->segment_sizes);
3606 xfree (data->segment_info);
3607 xfree (data);
3611 /* Given:
3612 - DATA, containing segment addresses from the object file ABFD, and
3613 the mapping from ABFD's sections onto the segments that own them,
3615 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3616 segment addresses reported by the target,
3617 store the appropriate offsets for each section in OFFSETS.
3619 If there are fewer entries in SEGMENT_BASES than there are segments
3620 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3622 If there are more entries, then ignore the extra. The target may
3623 not be able to distinguish between an empty data segment and a
3624 missing data segment; a missing text segment is less plausible. */
3626 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3627 struct section_offsets *offsets,
3628 int num_segment_bases,
3629 const CORE_ADDR *segment_bases)
3631 int i;
3632 asection *sect;
3634 /* It doesn't make sense to call this function unless you have some
3635 segment base addresses. */
3636 gdb_assert (num_segment_bases > 0);
3638 /* If we do not have segment mappings for the object file, we
3639 can not relocate it by segments. */
3640 gdb_assert (data != NULL);
3641 gdb_assert (data->num_segments > 0);
3643 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3645 int which = data->segment_info[i];
3647 gdb_assert (0 <= which && which <= data->num_segments);
3649 /* Don't bother computing offsets for sections that aren't
3650 loaded as part of any segment. */
3651 if (! which)
3652 continue;
3654 /* Use the last SEGMENT_BASES entry as the address of any extra
3655 segments mentioned in DATA->segment_info. */
3656 if (which > num_segment_bases)
3657 which = num_segment_bases;
3659 offsets->offsets[i] = (segment_bases[which - 1]
3660 - data->segment_bases[which - 1]);
3663 return 1;
3666 static void
3667 symfile_find_segment_sections (struct objfile *objfile)
3669 bfd *abfd = objfile->obfd;
3670 int i;
3671 asection *sect;
3672 struct symfile_segment_data *data;
3674 data = get_symfile_segment_data (objfile->obfd);
3675 if (data == NULL)
3676 return;
3678 if (data->num_segments != 1 && data->num_segments != 2)
3680 free_symfile_segment_data (data);
3681 return;
3684 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3686 int which = data->segment_info[i];
3688 if (which == 1)
3690 if (objfile->sect_index_text == -1)
3691 objfile->sect_index_text = sect->index;
3693 if (objfile->sect_index_rodata == -1)
3694 objfile->sect_index_rodata = sect->index;
3696 else if (which == 2)
3698 if (objfile->sect_index_data == -1)
3699 objfile->sect_index_data = sect->index;
3701 if (objfile->sect_index_bss == -1)
3702 objfile->sect_index_bss = sect->index;
3706 free_symfile_segment_data (data);
3709 void
3710 _initialize_symfile (void)
3712 struct cmd_list_element *c;
3714 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3715 Load symbol table from executable file FILE.\n\
3716 The `file' command can also load symbol tables, as well as setting the file\n\
3717 to execute."), &cmdlist);
3718 set_cmd_completer (c, filename_completer);
3720 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3721 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3722 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3723 ADDR is the starting address of the file's text.\n\
3724 The optional arguments are section-name section-address pairs and\n\
3725 should be specified if the data and bss segments are not contiguous\n\
3726 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3727 &cmdlist);
3728 set_cmd_completer (c, filename_completer);
3730 c = add_cmd ("load", class_files, load_command, _("\
3731 Dynamically load FILE into the running program, and record its symbols\n\
3732 for access from GDB.\n\
3733 A load OFFSET may also be given."), &cmdlist);
3734 set_cmd_completer (c, filename_completer);
3736 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3737 &symbol_reloading, _("\
3738 Set dynamic symbol table reloading multiple times in one run."), _("\
3739 Show dynamic symbol table reloading multiple times in one run."), NULL,
3740 NULL,
3741 show_symbol_reloading,
3742 &setlist, &showlist);
3744 add_prefix_cmd ("overlay", class_support, overlay_command,
3745 _("Commands for debugging overlays."), &overlaylist,
3746 "overlay ", 0, &cmdlist);
3748 add_com_alias ("ovly", "overlay", class_alias, 1);
3749 add_com_alias ("ov", "overlay", class_alias, 1);
3751 add_cmd ("map-overlay", class_support, map_overlay_command,
3752 _("Assert that an overlay section is mapped."), &overlaylist);
3754 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3755 _("Assert that an overlay section is unmapped."), &overlaylist);
3757 add_cmd ("list-overlays", class_support, list_overlays_command,
3758 _("List mappings of overlay sections."), &overlaylist);
3760 add_cmd ("manual", class_support, overlay_manual_command,
3761 _("Enable overlay debugging."), &overlaylist);
3762 add_cmd ("off", class_support, overlay_off_command,
3763 _("Disable overlay debugging."), &overlaylist);
3764 add_cmd ("auto", class_support, overlay_auto_command,
3765 _("Enable automatic overlay debugging."), &overlaylist);
3766 add_cmd ("load-target", class_support, overlay_load_command,
3767 _("Read the overlay mapping state from the target."), &overlaylist);
3769 /* Filename extension to source language lookup table: */
3770 init_filename_language_table ();
3771 add_setshow_string_noescape_cmd ("extension-language", class_files,
3772 &ext_args, _("\
3773 Set mapping between filename extension and source language."), _("\
3774 Show mapping between filename extension and source language."), _("\
3775 Usage: set extension-language .foo bar"),
3776 set_ext_lang_command,
3777 show_ext_args,
3778 &setlist, &showlist);
3780 add_info ("extensions", info_ext_lang_command,
3781 _("All filename extensions associated with a source language."));
3783 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3784 &debug_file_directory, _("\
3785 Set the directories where separate debug symbols are searched for."), _("\
3786 Show the directories where separate debug symbols are searched for."), _("\
3787 Separate debug symbols are first searched for in the same\n\
3788 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3789 and lastly at the path of the directory of the binary with\n\
3790 each global debug-file-directory component prepended."),
3791 NULL,
3792 show_debug_file_directory,
3793 &setlist, &showlist);