Automatic date update in version.in
[binutils-gdb.git] / gdb / corelow.c
blobab2fa746de8e5f51d76bf48fa739215660b3901c
1 /* Core dump and executable file functions below target vector, for GDB.
3 Copyright (C) 1986-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "arch-utils.h"
21 #include <signal.h>
22 #include <fcntl.h>
23 #include "exceptions.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "symtab.h"
28 #include "command.h"
29 #include "bfd.h"
30 #include "target.h"
31 #include "process-stratum-target.h"
32 #include "gdbcore.h"
33 #include "gdbthread.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37 #include "exec.h"
38 #include "readline/tilde.h"
39 #include "solib.h"
40 #include "solist.h"
41 #include "filenames.h"
42 #include "progspace.h"
43 #include "objfiles.h"
44 #include "gdb_bfd.h"
45 #include "completer.h"
46 #include "gdbsupport/filestuff.h"
47 #include "build-id.h"
48 #include "gdbsupport/pathstuff.h"
49 #include "gdbsupport/scoped_fd.h"
50 #include "gdbsupport/x86-xstate.h"
51 #include <unordered_map>
52 #include <unordered_set>
53 #include "cli/cli-cmds.h"
54 #include "xml-tdesc.h"
55 #include "memtag.h"
56 #include "cli/cli-style.h"
58 #ifndef O_LARGEFILE
59 #define O_LARGEFILE 0
60 #endif
62 /* A mem_range and the build-id associated with the file mapped into the
63 given range. */
65 struct mem_range_and_build_id
67 mem_range_and_build_id (mem_range &&r, const bfd_build_id *id)
68 : range (r),
69 build_id (id)
70 { /* Nothing. */ }
72 /* A range of memory addresses. */
73 mem_range range;
75 /* The build-id of the file mapped into RANGE. */
76 const bfd_build_id *build_id;
79 /* An instance of this class is created within the core_target and is used
80 to hold all the information that relating to mapped files, their address
81 ranges, and their corresponding build-ids. */
83 struct mapped_file_info
85 /* See comment on function definition. */
87 void add (const char *soname, const char *expected_filename,
88 const char *actual_filename, std::vector<mem_range> &&ranges,
89 const bfd_build_id *build_id);
91 /* See comment on function definition. */
93 std::optional <core_target_mapped_file_info>
94 lookup (const char *filename, const std::optional<CORE_ADDR> &addr);
96 private:
98 /* Helper for ::lookup. BUILD_ID is a build-id that was found in
99 one of the data structures within this class. Lookup the
100 corresponding filename in m_build_id_to_filename_map and return a pair
101 containing the build-id and filename.
103 If no corresponding filename is found in m_build_id_to_filename_map
104 then the returned pair contains BUILD_ID and an empty string.
106 If BUILD_ID is nullptr then the returned pair contains nullptr and an
107 empty string. */
109 struct core_target_mapped_file_info
110 make_result (const bfd_build_id *build_id)
112 if (build_id != nullptr)
114 auto it = m_build_id_to_filename_map.find (build_id);
115 if (it != m_build_id_to_filename_map.end ())
116 return { build_id, it->second };
119 return { build_id, {} };
122 /* A type that maps a string to a build-id. */
123 using string_to_build_id_map
124 = std::unordered_map<std::string, const bfd_build_id *>;
126 /* A type that maps a build-id to a string. */
127 using build_id_to_string_map
128 = std::unordered_map<const bfd_build_id *, std::string>;
130 /* When loading a core file, the build-ids are extracted based on the
131 file backed mappings. This map associates the name of a file that was
132 mapped into the core file with the corresponding build-id. The
133 build-id pointers in this map will never be nullptr as we only record
134 files if they have a build-id. */
136 string_to_build_id_map m_filename_to_build_id_map;
138 /* Map a build-id pointer back to the name of the file that was mapped
139 into the inferior's address space. If we lookup a matching build-id
140 using either a soname or an address then this map allows us to also
141 provide a full path to a file with a matching build-id. */
143 build_id_to_string_map m_build_id_to_filename_map;
145 /* If the file that was mapped into the core file was a shared library
146 then it might have a DT_SONAME tag in its .dynamic section, this tag
147 contains the name of a shared object. When opening a shared library,
148 if it's basename appears in this map then we can use the corresponding
149 build-id.
151 In the rare case that two different files have the same DT_SONAME
152 value then the build-id pointer in this map will be nullptr, this
153 indicates that it's not possible to find a build-id based on the given
154 DT_SONAME value. */
156 string_to_build_id_map m_soname_to_build_id_map;
158 /* This vector maps memory ranges onto an associated build-id. The
159 ranges are those of the files mapped into the core file.
161 Entries in this vector must not overlap, and are sorted be increasing
162 memory address. Within each entry the build-id pointer will not be
163 nullptr.
165 While building this vector the entries are not sorted, they are
166 sorted once after the table has finished being built. */
168 std::vector<mem_range_and_build_id> m_address_to_build_id_list;
170 /* False if address_to_build_id_list is unsorted, otherwise true. */
172 bool m_address_to_build_id_list_sorted = false;
175 /* The core file target. */
177 static const target_info core_target_info = {
178 "core",
179 N_("Local core dump file"),
180 N_("Use a core file as a target.\n\
181 Specify the filename of the core file.")
184 class core_target final : public process_stratum_target
186 public:
187 core_target ();
189 const target_info &info () const override
190 { return core_target_info; }
192 void close () override;
193 void detach (inferior *, int) override;
194 void fetch_registers (struct regcache *, int) override;
196 enum target_xfer_status xfer_partial (enum target_object object,
197 const char *annex,
198 gdb_byte *readbuf,
199 const gdb_byte *writebuf,
200 ULONGEST offset, ULONGEST len,
201 ULONGEST *xfered_len) override;
202 void files_info () override;
204 bool thread_alive (ptid_t ptid) override;
205 const struct target_desc *read_description () override;
207 std::string pid_to_str (ptid_t) override;
209 const char *thread_name (struct thread_info *) override;
211 bool has_all_memory () override { return true; }
212 bool has_memory () override;
213 bool has_stack () override;
214 bool has_registers () override;
215 bool has_execution (inferior *inf) override { return false; }
217 bool info_proc (const char *, enum info_proc_what) override;
219 bool supports_memory_tagging () override;
221 /* Core file implementation of fetch_memtags. Fetch the memory tags from
222 core file notes. */
223 bool fetch_memtags (CORE_ADDR address, size_t len,
224 gdb::byte_vector &tags, int type) override;
226 /* If the architecture supports it, check if ADDRESS is within a memory range
227 mapped with tags. For example, MTE tags for AArch64. */
228 bool is_address_tagged (gdbarch *gdbarch, CORE_ADDR address) override;
230 x86_xsave_layout fetch_x86_xsave_layout () override;
232 /* A few helpers. */
234 /* Getter, see variable definition. */
235 struct gdbarch *core_gdbarch ()
237 return m_core_gdbarch;
240 /* See definition. */
241 void get_core_register_section (struct regcache *regcache,
242 const struct regset *regset,
243 const char *name,
244 int section_min_size,
245 const char *human_name,
246 bool required);
248 /* See definition. */
249 void info_proc_mappings (struct gdbarch *gdbarch);
251 std::optional <core_target_mapped_file_info>
252 lookup_mapped_file_info (const char *filename,
253 const std::optional<CORE_ADDR> &addr)
255 return m_mapped_file_info.lookup (filename, addr);
258 private: /* per-core data */
260 /* Get rid of the core inferior. */
261 void clear_core ();
263 /* The core's section table. Note that these target sections are
264 *not* mapped in the current address spaces' set of target
265 sections --- those should come only from pure executable or
266 shared library bfds. The core bfd sections are an implementation
267 detail of the core target, just like ptrace is for unix child
268 targets. */
269 std::vector<target_section> m_core_section_table;
271 /* File-backed address space mappings: some core files include
272 information about memory mapped files. */
273 std::vector<target_section> m_core_file_mappings;
275 /* Unavailable mappings. These correspond to pathnames which either
276 weren't found or could not be opened. Knowing these addresses can
277 still be useful. */
278 std::vector<mem_range> m_core_unavailable_mappings;
280 /* Data structure that holds information mapping filenames and address
281 ranges to the corresponding build-ids as well as the reverse build-id
282 to filename mapping. */
283 mapped_file_info m_mapped_file_info;
285 /* Build m_core_file_mappings and m_mapped_file_info. Called from the
286 constructor. */
287 void build_file_mappings ();
289 /* FIXME: kettenis/20031023: Eventually this field should
290 disappear. */
291 struct gdbarch *m_core_gdbarch = NULL;
294 core_target::core_target ()
296 /* Find a first arch based on the BFD. We need the initial gdbarch so
297 we can setup the hooks to find a target description. */
298 m_core_gdbarch = gdbarch_from_bfd (current_program_space->core_bfd ());
300 /* If the arch is able to read a target description from the core, it
301 could yield a more specific gdbarch. */
302 const struct target_desc *tdesc = read_description ();
304 if (tdesc != nullptr)
306 struct gdbarch_info info;
307 info.abfd = current_program_space->core_bfd ();
308 info.target_desc = tdesc;
309 m_core_gdbarch = gdbarch_find_by_info (info);
312 if (!m_core_gdbarch
313 || !gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
314 error (_("\"%s\": Core file format not supported"),
315 bfd_get_filename (current_program_space->core_bfd ()));
317 /* Find the data section */
318 m_core_section_table = build_section_table (current_program_space->core_bfd ());
320 build_file_mappings ();
323 /* Construct the table for file-backed mappings if they exist.
325 For each unique path in the note, we'll open a BFD with a bfd
326 target of "binary". This is an unstructured bfd target upon which
327 we'll impose a structure from the mappings in the architecture-specific
328 mappings note. A BFD section is allocated and initialized for each
329 file-backed mapping.
331 We take care to not share already open bfds with other parts of
332 GDB; in particular, we don't want to add new sections to existing
333 BFDs. We do, however, ensure that the BFDs that we allocate here
334 will go away (be deallocated) when the core target is detached. */
336 void
337 core_target::build_file_mappings ()
339 /* Type holding information about a single file mapped into the inferior
340 at the point when the core file was created. Associates a build-id
341 with the list of regions the file is mapped into. */
342 struct mapped_file
344 /* Type for a region of a file that was mapped into the inferior when
345 the core file was generated. */
346 struct region
348 /* Constructor. See member variables for argument descriptions. */
349 region (CORE_ADDR start_, CORE_ADDR end_, CORE_ADDR file_ofs_)
350 : start (start_),
351 end (end_),
352 file_ofs (file_ofs_)
353 { /* Nothing. */ }
355 /* The inferior address for the start of the mapped region. */
356 CORE_ADDR start;
358 /* The inferior address immediately after the mapped region. */
359 CORE_ADDR end;
361 /* The offset within the mapped file for this content. */
362 CORE_ADDR file_ofs;
365 /* If not nullptr, then this is the build-id associated with this
366 file. */
367 const bfd_build_id *build_id = nullptr;
369 /* If true then we have seen multiple different build-ids associated
370 with the same filename. The build_id field will have been set back
371 to nullptr, and we should not set build_id in future. */
372 bool ignore_build_id_p = false;
374 /* All the mapped regions of this file. */
375 std::vector<region> regions;
378 std::unordered_map<std::string, struct bfd *> bfd_map;
379 std::unordered_set<std::string> unavailable_paths;
381 /* All files mapped into the core file. The key is the filename. */
382 std::unordered_map<std::string, mapped_file> mapped_files;
384 /* See linux_read_core_file_mappings() in linux-tdep.c for an example
385 read_core_file_mappings method. */
386 gdbarch_read_core_file_mappings (m_core_gdbarch,
387 current_program_space->core_bfd (),
389 /* After determining the number of mappings, read_core_file_mappings
390 will invoke this lambda. */
391 [&] (ULONGEST)
395 /* read_core_file_mappings will invoke this lambda for each mapping
396 that it finds. */
397 [&] (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs,
398 const char *filename, const bfd_build_id *build_id)
400 /* Architecture-specific read_core_mapping methods are expected to
401 weed out non-file-backed mappings. */
402 gdb_assert (filename != nullptr);
404 /* Add this mapped region to the data for FILENAME. */
405 mapped_file &file_data = mapped_files[filename];
406 file_data.regions.emplace_back (start, end, file_ofs);
407 if (build_id != nullptr && !file_data.ignore_build_id_p)
409 if (file_data.build_id == nullptr)
410 file_data.build_id = build_id;
411 else if (!build_id_equal (build_id, file_data.build_id))
413 warning (_("Multiple build-ids found for %ps"),
414 styled_string (file_name_style.style (), filename));
415 file_data.build_id = nullptr;
416 file_data.ignore_build_id_p = true;
421 for (const auto &iter : mapped_files)
423 const std::string &filename = iter.first;
424 const mapped_file &file_data = iter.second;
426 /* Use exec_file_find() to do sysroot expansion. It'll
427 also strip the potential sysroot "target:" prefix. If
428 there is no sysroot, an equivalent (possibly more
429 canonical) pathname will be provided. */
430 gdb::unique_xmalloc_ptr<char> expanded_fname
431 = exec_file_find (filename.c_str (), nullptr);
433 bool build_id_mismatch = false;
434 if (expanded_fname != nullptr && file_data.build_id != nullptr)
436 /* We temporarily open the bfd as a structured target, this
437 allows us to read the build-id from the bfd if there is one.
438 For this task it's OK if we reuse an already open bfd object,
439 so we make this call through GDB's bfd cache. Once we've
440 checked the build-id (if there is one) we'll drop this
441 reference and re-open the bfd using the "binary" target. */
442 gdb_bfd_ref_ptr tmp_bfd
443 = gdb_bfd_open (expanded_fname.get (), gnutarget);
445 if (tmp_bfd != nullptr
446 && bfd_check_format (tmp_bfd.get (), bfd_object)
447 && build_id_bfd_get (tmp_bfd.get ()) != nullptr)
449 /* The newly opened TMP_BFD has a build-id, and this mapped
450 file has a build-id extracted from the core-file. Check
451 the build-id's match, and if not, reject TMP_BFD. */
452 const struct bfd_build_id *found
453 = build_id_bfd_get (tmp_bfd.get ());
454 if (!build_id_equal (found, file_data.build_id))
455 build_id_mismatch = true;
459 gdb_bfd_ref_ptr abfd;
460 if (expanded_fname != nullptr && !build_id_mismatch)
462 struct bfd *b = bfd_openr (expanded_fname.get (), "binary");
463 abfd = gdb_bfd_ref_ptr::new_reference (b);
466 if ((expanded_fname == nullptr
467 || abfd == nullptr
468 || !bfd_check_format (abfd.get (), bfd_object))
469 && file_data.build_id != nullptr)
471 abfd = find_objfile_by_build_id (file_data.build_id,
472 filename.c_str ());
474 if (abfd != nullptr)
476 /* The find_objfile_by_build_id will have opened ABFD using
477 the GNUTARGET global bfd type, however, we need the bfd
478 opened as the binary type (see the function's header
479 comment), so now we reopen ABFD with the desired binary
480 type. */
481 expanded_fname
482 = make_unique_xstrdup (bfd_get_filename (abfd.get ()));
483 struct bfd *b = bfd_openr (expanded_fname.get (), "binary");
484 gdb_assert (b != nullptr);
485 abfd = gdb_bfd_ref_ptr::new_reference (b);
489 std::vector<mem_range> ranges;
490 for (const mapped_file::region &region : file_data.regions)
491 ranges.emplace_back (region.start, region.end - region.start);
493 if (expanded_fname == nullptr
494 || abfd == nullptr
495 || !bfd_check_format (abfd.get (), bfd_object))
497 /* If ABFD was opened, but the wrong format, close it now. */
498 abfd = nullptr;
500 /* Record all regions for this file as unavailable. */
501 for (const mapped_file::region &region : file_data.regions)
502 m_core_unavailable_mappings.emplace_back (region.start,
503 region.end
504 - region.start);
506 /* And give the user an appropriate warning. */
507 if (build_id_mismatch)
509 if (expanded_fname == nullptr
510 || filename == expanded_fname.get ())
511 warning (_("File %ps doesn't match build-id from core-file "
512 "during file-backed mapping processing"),
513 styled_string (file_name_style.style (),
514 filename.c_str ()));
515 else
516 warning (_("File %ps which was expanded to %ps, doesn't match "
517 "build-id from core-file during file-backed "
518 "mapping processing"),
519 styled_string (file_name_style.style (),
520 filename.c_str ()),
521 styled_string (file_name_style.style (),
522 expanded_fname.get ()));
524 else
526 if (expanded_fname == nullptr
527 || filename == expanded_fname.get ())
528 warning (_("Can't open file %ps during file-backed mapping "
529 "note processing"),
530 styled_string (file_name_style.style (),
531 filename.c_str ()));
532 else
533 warning (_("Can't open file %ps which was expanded to %ps "
534 "during file-backed mapping note processing"),
535 styled_string (file_name_style.style (),
536 filename.c_str ()),
537 styled_string (file_name_style.style (),
538 expanded_fname.get ()));
541 else
543 /* Ensure that the bfd will be closed when core_bfd is closed.
544 This can be checked before/after a core file detach via "maint
545 info bfds". */
546 gdb_bfd_record_inclusion (current_program_space->core_bfd (),
547 abfd.get ());
549 /* Create sections for each mapped region. */
550 for (const mapped_file::region &region : file_data.regions)
552 /* Make new BFD section. All sections have the same name,
553 which is permitted by bfd_make_section_anyway(). */
554 asection *sec = bfd_make_section_anyway (abfd.get (), "load");
555 if (sec == nullptr)
556 error (_("Can't make section"));
557 sec->filepos = region.file_ofs;
558 bfd_set_section_flags (sec, SEC_READONLY | SEC_HAS_CONTENTS);
559 bfd_set_section_size (sec, region.end - region.start);
560 bfd_set_section_vma (sec, region.start);
561 bfd_set_section_lma (sec, region.start);
562 bfd_set_section_alignment (sec, 2);
564 /* Set target_section fields. */
565 m_core_file_mappings.emplace_back (region.start, region.end, sec);
569 /* If this is a bfd with a build-id then record the filename,
570 optional soname (DT_SONAME .dynamic attribute), and the range of
571 addresses at which this bfd is mapped. This information can be
572 used to perform build-id checking when loading the shared
573 libraries. */
574 if (file_data.build_id != nullptr)
576 normalize_mem_ranges (&ranges);
578 const char *actual_filename = nullptr;
579 gdb::unique_xmalloc_ptr<char> soname;
580 if (abfd != nullptr)
582 actual_filename = bfd_get_filename (abfd.get ());
583 soname = gdb_bfd_read_elf_soname (actual_filename);
586 m_mapped_file_info.add (soname.get (), filename.c_str (),
587 actual_filename, std::move (ranges),
588 file_data.build_id);
592 normalize_mem_ranges (&m_core_unavailable_mappings);
595 /* An arbitrary identifier for the core inferior. */
596 #define CORELOW_PID 1
598 void
599 core_target::clear_core ()
601 if (current_program_space->core_bfd () != nullptr)
603 switch_to_no_thread (); /* Avoid confusion from thread
604 stuff. */
605 exit_inferior (current_inferior ());
607 /* Clear out solib state while the bfd is still open. See
608 comments in clear_solib in solib.c. */
609 clear_solib (current_program_space);
611 current_program_space->cbfd.reset (nullptr);
615 /* Close the core target. */
617 void
618 core_target::close ()
620 clear_core ();
622 /* Core targets are heap-allocated (see core_target_open), so here
623 we delete ourselves. */
624 delete this;
627 /* Look for sections whose names start with `.reg/' so that we can
628 extract the list of threads in a core file. */
630 /* If ASECT is a section whose name begins with '.reg/' then extract the
631 lwpid after the '/' and create a new thread in INF.
633 If REG_SECT is not nullptr, and the both ASECT and REG_SECT point at the
634 same position in the parent bfd object then switch to the newly created
635 thread, otherwise, the selected thread is left unchanged. */
637 static void
638 add_to_thread_list (asection *asect, asection *reg_sect, inferior *inf)
640 if (!startswith (bfd_section_name (asect), ".reg/"))
641 return;
643 int lwpid = atoi (bfd_section_name (asect) + 5);
644 ptid_t ptid (inf->pid, lwpid);
645 thread_info *thr = add_thread (inf->process_target (), ptid);
647 /* Warning, Will Robinson, looking at BFD private data! */
649 if (reg_sect != NULL
650 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
651 switch_to_thread (thr); /* Yes, make it current. */
654 /* Issue a message saying we have no core to debug, if FROM_TTY. */
656 static void
657 maybe_say_no_core_file_now (int from_tty)
659 if (from_tty)
660 gdb_printf (_("No core file now.\n"));
663 /* Backward compatibility with old way of specifying core files. */
665 void
666 core_file_command (const char *filename, int from_tty)
668 dont_repeat (); /* Either way, seems bogus. */
670 if (filename == NULL)
672 if (current_program_space->core_bfd () != nullptr)
674 target_detach (current_inferior (), from_tty);
675 gdb_assert (current_program_space->core_bfd () == nullptr);
677 else
678 maybe_say_no_core_file_now (from_tty);
680 else
681 core_target_open (filename, from_tty);
684 /* A vmcore file is a core file created by the Linux kernel at the point of
685 a crash. Each thread in the core file represents a real CPU core, and
686 the lwpid for each thread is the pid of the process that was running on
687 that core at the moment of the crash.
689 However, not every CPU core will have been running a process, some cores
690 will be idle. For these idle cores the CPU writes an lwpid of 0. And
691 of course, multiple cores might be idle, so there could be multiple
692 threads with an lwpid of 0.
694 The problem is GDB doesn't really like threads with an lwpid of 0; GDB
695 presents such a thread as a process rather than a thread. And GDB
696 certainly doesn't like multiple threads having the same lwpid, each time
697 a new thread is seen with the same lwpid the earlier thread (with the
698 same lwpid) will be deleted.
700 This function addresses both of these problems by assigning a fake lwpid
701 to any thread with an lwpid of 0.
703 GDB finds the lwpid information by looking at the bfd section names
704 which include the lwpid, e.g. .reg/NN where NN is the lwpid. This
705 function looks though all the section names looking for sections named
706 .reg/NN. If any sections are found where NN == 0, then we assign a new
707 unique value of NN. Then, in a second pass, any sections ending /0 are
708 assigned their new number.
710 Remember, a core file may contain multiple register sections for
711 different register sets, but the sets are always grouped by thread, so
712 we can figure out which registers should be assigned the same new
713 lwpid. For example, consider a core file containing:
715 .reg/0, .reg2/0, .reg/0, .reg2/0
717 This represents two threads, each thread contains a .reg and .reg2
718 register set. The .reg represents the start of each thread. After
719 renaming the sections will now look like this:
721 .reg/1, .reg2/1, .reg/2, .reg2/2
723 After calling this function the rest of the core file handling code can
724 treat this core file just like any other core file. */
726 static void
727 rename_vmcore_idle_reg_sections (bfd *abfd, inferior *inf)
729 /* Map from the bfd section to its lwpid (the /NN number). */
730 std::vector<std::pair<asection *, int>> sections_and_lwpids;
732 /* The set of all /NN numbers found. Needed so we can easily find unused
733 numbers in the case that we need to rename some sections. */
734 std::unordered_set<int> all_lwpids;
736 /* A count of how many sections called .reg/0 we have found. */
737 unsigned zero_lwpid_count = 0;
739 /* Look for all the .reg sections. Record the section object and the
740 lwpid which is extracted from the section name. Spot if any have an
741 lwpid of zero. */
742 for (asection *sect : gdb_bfd_sections (current_program_space->core_bfd ()))
744 if (startswith (bfd_section_name (sect), ".reg/"))
746 int lwpid = atoi (bfd_section_name (sect) + 5);
747 sections_and_lwpids.emplace_back (sect, lwpid);
748 all_lwpids.insert (lwpid);
749 if (lwpid == 0)
750 zero_lwpid_count++;
754 /* If every ".reg/NN" section has a non-zero lwpid then we don't need to
755 do any renaming. */
756 if (zero_lwpid_count == 0)
757 return;
759 /* Assign a new number to any .reg sections with an lwpid of 0. */
760 int new_lwpid = 1;
761 for (auto &sect_and_lwpid : sections_and_lwpids)
762 if (sect_and_lwpid.second == 0)
764 while (all_lwpids.find (new_lwpid) != all_lwpids.end ())
765 new_lwpid++;
766 sect_and_lwpid.second = new_lwpid;
767 new_lwpid++;
770 /* Now update the names of any sections with an lwpid of 0. This is
771 more than just the .reg sections we originally found. */
772 std::string replacement_lwpid_str;
773 auto iter = sections_and_lwpids.begin ();
774 int replacement_lwpid = 0;
775 for (asection *sect : gdb_bfd_sections (current_program_space->core_bfd ()))
777 if (iter != sections_and_lwpids.end () && sect == iter->first)
779 gdb_assert (startswith (bfd_section_name (sect), ".reg/"));
781 int lwpid = atoi (bfd_section_name (sect) + 5);
782 if (lwpid == iter->second)
784 /* This section was not given a new number. */
785 gdb_assert (lwpid != 0);
786 replacement_lwpid = 0;
788 else
790 replacement_lwpid = iter->second;
791 ptid_t ptid (inf->pid, replacement_lwpid);
792 if (!replacement_lwpid_str.empty ())
793 replacement_lwpid_str += ", ";
794 replacement_lwpid_str += target_pid_to_str (ptid);
797 iter++;
800 if (replacement_lwpid != 0)
802 const char *name = bfd_section_name (sect);
803 size_t len = strlen (name);
805 if (strncmp (name + len - 2, "/0", 2) == 0)
807 /* This section needs a new name. */
808 std::string name_str
809 = string_printf ("%.*s/%d",
810 static_cast<int> (len - 2),
811 name, replacement_lwpid);
812 char *name_buf
813 = static_cast<char *> (bfd_alloc (abfd, name_str.size () + 1));
814 if (name_buf == nullptr)
815 error (_("failed to allocate space for section name '%s'"),
816 name_str.c_str ());
817 memcpy (name_buf, name_str.c_str(), name_str.size () + 1);
818 bfd_rename_section (sect, name_buf);
823 if (zero_lwpid_count == 1)
824 warning (_("found thread with pid 0, assigned replacement Target Id: %s"),
825 replacement_lwpid_str.c_str ());
826 else
827 warning (_("found threads with pid 0, assigned replacement Target Ids: %s"),
828 replacement_lwpid_str.c_str ());
831 /* Locate (and load) an executable file (and symbols) given the core file
832 BFD ABFD. */
834 static void
835 locate_exec_from_corefile_build_id (bfd *abfd, int from_tty)
837 const bfd_build_id *build_id = build_id_bfd_get (abfd);
838 if (build_id == nullptr)
839 return;
841 gdb_bfd_ref_ptr execbfd
842 = find_objfile_by_build_id (build_id, abfd->filename);
844 if (execbfd != nullptr)
846 exec_file_attach (bfd_get_filename (execbfd.get ()), from_tty);
847 symbol_file_add_main (bfd_get_filename (execbfd.get ()),
848 symfile_add_flag (from_tty ? SYMFILE_VERBOSE : 0));
852 /* See gdbcore.h. */
854 void
855 core_target_open (const char *arg, int from_tty)
857 const char *p;
858 int siggy;
859 int scratch_chan;
860 int flags;
862 target_preopen (from_tty);
864 std::string filename = extract_single_filename_arg (arg);
866 if (filename.empty ())
868 if (current_program_space->core_bfd ())
869 error (_("No core file specified. (Use `detach' "
870 "to stop debugging a core file.)"));
871 else
872 error (_("No core file specified."));
875 if (!IS_ABSOLUTE_PATH (filename.c_str ()))
876 filename = gdb_abspath (filename);
878 flags = O_BINARY | O_LARGEFILE;
879 if (write_files)
880 flags |= O_RDWR;
881 else
882 flags |= O_RDONLY;
883 scratch_chan = gdb_open_cloexec (filename.c_str (), flags, 0).release ();
884 if (scratch_chan < 0)
885 perror_with_name (filename.c_str ());
887 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.c_str (), gnutarget,
888 write_files ? FOPEN_RUB : FOPEN_RB,
889 scratch_chan));
890 if (temp_bfd == NULL)
891 perror_with_name (filename.c_str ());
893 if (!bfd_check_format (temp_bfd.get (), bfd_core))
895 /* Do it after the err msg */
896 /* FIXME: should be checking for errors from bfd_close (for one
897 thing, on error it does not free all the storage associated
898 with the bfd). */
899 error (_("\"%s\" is not a core dump: %s"),
900 filename.c_str (), bfd_errmsg (bfd_get_error ()));
903 current_program_space->cbfd = std::move (temp_bfd);
905 core_target *target = new core_target ();
907 /* Own the target until it is successfully pushed. */
908 target_ops_up target_holder (target);
910 validate_files ();
912 /* If we have no exec file, try to set the architecture from the
913 core file. We don't do this unconditionally since an exec file
914 typically contains more information that helps us determine the
915 architecture than a core file. */
916 if (!current_program_space->exec_bfd ())
917 set_gdbarch_from_file (current_program_space->core_bfd ());
919 current_inferior ()->push_target (std::move (target_holder));
921 switch_to_no_thread ();
923 /* Need to flush the register cache (and the frame cache) from a
924 previous debug session. If inferior_ptid ends up the same as the
925 last debug session --- e.g., b foo; run; gcore core1; step; gcore
926 core2; core core1; core core2 --- then there's potential for
927 get_current_regcache to return the cached regcache of the
928 previous session, and the frame cache being stale. */
929 registers_changed ();
931 /* Find (or fake) the pid for the process in this core file, and
932 initialise the current inferior with that pid. */
933 bool fake_pid_p = false;
934 int pid = bfd_core_file_pid (current_program_space->core_bfd ());
935 if (pid == 0)
937 fake_pid_p = true;
938 pid = CORELOW_PID;
941 inferior *inf = current_inferior ();
942 gdb_assert (inf->pid == 0);
943 inferior_appeared (inf, pid);
944 inf->fake_pid_p = fake_pid_p;
946 /* Rename any .reg/0 sections, giving them each a fake lwpid. */
947 rename_vmcore_idle_reg_sections (current_program_space->core_bfd (), inf);
949 /* Build up thread list from BFD sections, and possibly set the
950 current thread to the .reg/NN section matching the .reg
951 section. */
952 asection *reg_sect
953 = bfd_get_section_by_name (current_program_space->core_bfd (), ".reg");
954 for (asection *sect : gdb_bfd_sections (current_program_space->core_bfd ()))
955 add_to_thread_list (sect, reg_sect, inf);
957 if (inferior_ptid == null_ptid)
959 /* Either we found no .reg/NN section, and hence we have a
960 non-threaded core (single-threaded, from gdb's perspective),
961 or for some reason add_to_thread_list couldn't determine
962 which was the "main" thread. The latter case shouldn't
963 usually happen, but we're dealing with input here, which can
964 always be broken in different ways. */
965 thread_info *thread = first_thread_of_inferior (inf);
967 if (thread == NULL)
968 thread = add_thread_silent (target, ptid_t (CORELOW_PID));
970 switch_to_thread (thread);
973 if (current_program_space->exec_bfd () == nullptr)
974 locate_exec_from_corefile_build_id (current_program_space->core_bfd (),
975 from_tty);
977 post_create_inferior (from_tty);
979 /* Now go through the target stack looking for threads since there
980 may be a thread_stratum target loaded on top of target core by
981 now. The layer above should claim threads found in the BFD
982 sections. */
985 target_update_thread_list ();
988 catch (const gdb_exception_error &except)
990 exception_print (gdb_stderr, except);
993 p = bfd_core_file_failing_command (current_program_space->core_bfd ());
994 if (p)
995 gdb_printf (_("Core was generated by `%s'.\n"), p);
997 /* Clearing any previous state of convenience variables. */
998 clear_exit_convenience_vars ();
1000 siggy = bfd_core_file_failing_signal (current_program_space->core_bfd ());
1001 if (siggy > 0)
1003 gdbarch *core_gdbarch = target->core_gdbarch ();
1005 /* If we don't have a CORE_GDBARCH to work with, assume a native
1006 core (map gdb_signal from host signals). If we do have
1007 CORE_GDBARCH to work with, but no gdb_signal_from_target
1008 implementation for that gdbarch, as a fallback measure,
1009 assume the host signal mapping. It'll be correct for native
1010 cores, but most likely incorrect for cross-cores. */
1011 enum gdb_signal sig = (core_gdbarch != NULL
1012 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
1013 ? gdbarch_gdb_signal_from_target (core_gdbarch,
1014 siggy)
1015 : gdb_signal_from_host (siggy));
1017 gdb_printf (_("Program terminated with signal %s, %s"),
1018 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
1019 if (gdbarch_report_signal_info_p (core_gdbarch))
1020 gdbarch_report_signal_info (core_gdbarch, current_uiout, sig);
1021 gdb_printf (_(".\n"));
1023 /* Set the value of the internal variable $_exitsignal,
1024 which holds the signal uncaught by the inferior. */
1025 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
1026 siggy);
1029 /* Fetch all registers from core file. */
1030 target_fetch_registers (get_thread_regcache (inferior_thread ()), -1);
1032 /* Now, set up the frame cache, and print the top of stack. */
1033 reinit_frame_cache ();
1034 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1036 /* Current thread should be NUM 1 but the user does not know that.
1037 If a program is single threaded gdb in general does not mention
1038 anything about threads. That is why the test is >= 2. */
1039 if (thread_count (target) >= 2)
1043 thread_command (NULL, from_tty);
1045 catch (const gdb_exception_error &except)
1047 exception_print (gdb_stderr, except);
1052 void
1053 core_target::detach (inferior *inf, int from_tty)
1055 /* Get rid of the core. Don't rely on core_target::close doing it,
1056 because target_detach may be called with core_target's refcount > 1,
1057 meaning core_target::close may not be called yet by the
1058 unpush_target call below. */
1059 clear_core ();
1061 /* Note that 'this' may be dangling after this call. unpush_target
1062 closes the target if the refcount reaches 0, and our close
1063 implementation deletes 'this'. */
1064 inf->unpush_target (this);
1066 /* Clear the register cache and the frame cache. */
1067 registers_changed ();
1068 reinit_frame_cache ();
1069 maybe_say_no_core_file_now (from_tty);
1072 /* Try to retrieve registers from a section in core_bfd, and supply
1073 them to REGSET.
1075 If ptid's lwp member is zero, do the single-threaded
1076 thing: look for a section named NAME. If ptid's lwp
1077 member is non-zero, do the multi-threaded thing: look for a section
1078 named "NAME/LWP", where LWP is the shortest ASCII decimal
1079 representation of ptid's lwp member.
1081 HUMAN_NAME is a human-readable name for the kind of registers the
1082 NAME section contains, for use in error messages.
1084 If REQUIRED is true, print an error if the core file doesn't have a
1085 section by the appropriate name. Otherwise, just do nothing. */
1087 void
1088 core_target::get_core_register_section (struct regcache *regcache,
1089 const struct regset *regset,
1090 const char *name,
1091 int section_min_size,
1092 const char *human_name,
1093 bool required)
1095 gdb_assert (regset != nullptr);
1097 struct bfd_section *section;
1098 bfd_size_type size;
1099 bool variable_size_section = (regset->flags & REGSET_VARIABLE_SIZE);
1101 thread_section_name section_name (name, regcache->ptid ());
1103 section = bfd_get_section_by_name (current_program_space->core_bfd (),
1104 section_name.c_str ());
1105 if (! section)
1107 if (required)
1108 warning (_("Couldn't find %s registers in core file."),
1109 human_name);
1110 return;
1113 size = bfd_section_size (section);
1114 if (size < section_min_size)
1116 warning (_("Section `%s' in core file too small."),
1117 section_name.c_str ());
1118 return;
1120 if (size != section_min_size && !variable_size_section)
1122 warning (_("Unexpected size of section `%s' in core file."),
1123 section_name.c_str ());
1126 gdb::byte_vector contents (size);
1127 if (!bfd_get_section_contents (current_program_space->core_bfd (), section,
1128 contents.data (), (file_ptr) 0, size))
1130 warning (_("Couldn't read %s registers from `%s' section in core file."),
1131 human_name, section_name.c_str ());
1132 return;
1135 regset->supply_regset (regset, regcache, -1, contents.data (), size);
1138 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
1139 struct get_core_registers_cb_data
1141 core_target *target;
1142 struct regcache *regcache;
1145 /* Callback for get_core_registers that handles a single core file
1146 register note section. */
1148 static void
1149 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
1150 const struct regset *regset,
1151 const char *human_name, void *cb_data)
1153 gdb_assert (regset != nullptr);
1155 auto *data = (get_core_registers_cb_data *) cb_data;
1156 bool required = false;
1157 bool variable_size_section = (regset->flags & REGSET_VARIABLE_SIZE);
1159 if (!variable_size_section)
1160 gdb_assert (supply_size == collect_size);
1162 if (strcmp (sect_name, ".reg") == 0)
1164 required = true;
1165 if (human_name == NULL)
1166 human_name = "general-purpose";
1168 else if (strcmp (sect_name, ".reg2") == 0)
1170 if (human_name == NULL)
1171 human_name = "floating-point";
1174 data->target->get_core_register_section (data->regcache, regset, sect_name,
1175 supply_size, human_name, required);
1178 /* Get the registers out of a core file. This is the machine-
1179 independent part. Fetch_core_registers is the machine-dependent
1180 part, typically implemented in the xm-file for each
1181 architecture. */
1183 /* We just get all the registers, so we don't use regno. */
1185 void
1186 core_target::fetch_registers (struct regcache *regcache, int regno)
1188 if (!(m_core_gdbarch != nullptr
1189 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch)))
1191 gdb_printf (gdb_stderr,
1192 "Can't fetch registers from this type of core file\n");
1193 return;
1196 struct gdbarch *gdbarch = regcache->arch ();
1197 get_core_registers_cb_data data = { this, regcache };
1198 gdbarch_iterate_over_regset_sections (gdbarch,
1199 get_core_registers_cb,
1200 (void *) &data, NULL);
1202 /* Mark all registers not found in the core as unavailable. */
1203 for (int i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1204 if (regcache->get_register_status (i) == REG_UNKNOWN)
1205 regcache->raw_supply (i, NULL);
1208 void
1209 core_target::files_info ()
1211 print_section_info (&m_core_section_table, current_program_space->core_bfd ());
1215 enum target_xfer_status
1216 core_target::xfer_partial (enum target_object object, const char *annex,
1217 gdb_byte *readbuf, const gdb_byte *writebuf,
1218 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
1220 switch (object)
1222 case TARGET_OBJECT_MEMORY:
1224 enum target_xfer_status xfer_status;
1226 /* Try accessing memory contents from core file data,
1227 restricting consideration to those sections for which
1228 the BFD section flag SEC_HAS_CONTENTS is set. */
1229 auto has_contents_cb = [] (const struct target_section *s)
1231 return ((s->the_bfd_section->flags & SEC_HAS_CONTENTS) != 0);
1233 xfer_status = section_table_xfer_memory_partial
1234 (readbuf, writebuf,
1235 offset, len, xfered_len,
1236 m_core_section_table,
1237 has_contents_cb);
1238 if (xfer_status == TARGET_XFER_OK)
1239 return TARGET_XFER_OK;
1241 /* Check file backed mappings. If they're available, use core file
1242 provided mappings (e.g. from .note.linuxcore.file or the like)
1243 as this should provide a more accurate result. */
1244 if (!m_core_file_mappings.empty ())
1246 xfer_status = section_table_xfer_memory_partial
1247 (readbuf, writebuf, offset, len, xfered_len,
1248 m_core_file_mappings);
1249 if (xfer_status == TARGET_XFER_OK)
1250 return xfer_status;
1253 /* If the access is within an unavailable file mapping then we try
1254 to check in the stratum below (the executable stratum). The
1255 thinking here is that if the mapping was read/write then the
1256 contents would have been written into the core file and the
1257 access would have been satisfied by m_core_section_table.
1259 But if the access has not yet been resolved then we can assume
1260 the access is read-only. If the executable was not found
1261 during the mapped file check then we'll have an unavailable
1262 mapping entry, however, if the user has provided the executable
1263 (maybe in a different location) then we might be able to
1264 resolve the access from there.
1266 If that fails, but the access is within an unavailable region,
1267 then the access itself should fail. */
1268 for (const auto &mr : m_core_unavailable_mappings)
1270 if (mr.contains (offset))
1272 if (!mr.contains (offset + len))
1273 len = mr.start + mr.length - offset;
1275 xfer_status
1276 = this->beneath ()->xfer_partial (TARGET_OBJECT_MEMORY,
1277 nullptr, readbuf,
1278 writebuf, offset,
1279 len, xfered_len);
1280 if (xfer_status == TARGET_XFER_OK)
1281 return TARGET_XFER_OK;
1283 return TARGET_XFER_E_IO;
1287 /* The following is acting as a fallback in case we encounter a
1288 situation where the core file is lacking and mapped file
1289 information. Here we query the exec file stratum to see if it
1290 can resolve the access. Doing this when we are missing mapped
1291 file information might be the best we can do, but there are
1292 certainly cases this will get wrong, e.g. if an inferior created
1293 a zero initialised mapping over the top of some data that exists
1294 within the executable then this will return the executable data
1295 rather than the zero data. Maybe we should just drop this
1296 block? */
1297 if (m_core_file_mappings.empty ()
1298 && m_core_unavailable_mappings.empty ())
1300 xfer_status
1301 = this->beneath ()->xfer_partial (object, annex, readbuf,
1302 writebuf, offset, len,
1303 xfered_len);
1304 if (xfer_status == TARGET_XFER_OK)
1305 return TARGET_XFER_OK;
1308 /* Finally, attempt to access data in core file sections with
1309 no contents. These will typically read as all zero. */
1310 auto no_contents_cb = [&] (const struct target_section *s)
1312 return !has_contents_cb (s);
1314 xfer_status = section_table_xfer_memory_partial
1315 (readbuf, writebuf,
1316 offset, len, xfered_len,
1317 m_core_section_table,
1318 no_contents_cb);
1320 return xfer_status;
1322 case TARGET_OBJECT_AUXV:
1323 if (readbuf)
1325 /* When the aux vector is stored in core file, BFD
1326 represents this with a fake section called ".auxv". */
1328 struct bfd_section *section;
1329 bfd_size_type size;
1331 section = bfd_get_section_by_name (current_program_space->core_bfd (),
1332 ".auxv");
1333 if (section == NULL)
1334 return TARGET_XFER_E_IO;
1336 size = bfd_section_size (section);
1337 if (offset >= size)
1338 return TARGET_XFER_EOF;
1339 size -= offset;
1340 if (size > len)
1341 size = len;
1343 if (size == 0)
1344 return TARGET_XFER_EOF;
1345 if (!bfd_get_section_contents (current_program_space->core_bfd (),
1346 section, readbuf, (file_ptr) offset,
1347 size))
1349 warning (_("Couldn't read NT_AUXV note in core file."));
1350 return TARGET_XFER_E_IO;
1353 *xfered_len = (ULONGEST) size;
1354 return TARGET_XFER_OK;
1356 return TARGET_XFER_E_IO;
1358 case TARGET_OBJECT_WCOOKIE:
1359 if (readbuf)
1361 /* When the StackGhost cookie is stored in core file, BFD
1362 represents this with a fake section called
1363 ".wcookie". */
1365 struct bfd_section *section;
1366 bfd_size_type size;
1368 section = bfd_get_section_by_name (current_program_space->core_bfd (),
1369 ".wcookie");
1370 if (section == NULL)
1371 return TARGET_XFER_E_IO;
1373 size = bfd_section_size (section);
1374 if (offset >= size)
1375 return TARGET_XFER_EOF;
1376 size -= offset;
1377 if (size > len)
1378 size = len;
1380 if (size == 0)
1381 return TARGET_XFER_EOF;
1382 if (!bfd_get_section_contents (current_program_space->core_bfd (),
1383 section, readbuf, (file_ptr) offset,
1384 size))
1386 warning (_("Couldn't read StackGhost cookie in core file."));
1387 return TARGET_XFER_E_IO;
1390 *xfered_len = (ULONGEST) size;
1391 return TARGET_XFER_OK;
1394 return TARGET_XFER_E_IO;
1396 case TARGET_OBJECT_LIBRARIES:
1397 if (m_core_gdbarch != nullptr
1398 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
1400 if (writebuf)
1401 return TARGET_XFER_E_IO;
1402 else
1404 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
1405 readbuf,
1406 offset, len);
1408 if (*xfered_len == 0)
1409 return TARGET_XFER_EOF;
1410 else
1411 return TARGET_XFER_OK;
1414 return TARGET_XFER_E_IO;
1416 case TARGET_OBJECT_LIBRARIES_AIX:
1417 if (m_core_gdbarch != nullptr
1418 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
1420 if (writebuf)
1421 return TARGET_XFER_E_IO;
1422 else
1424 *xfered_len
1425 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
1426 readbuf, offset,
1427 len);
1429 if (*xfered_len == 0)
1430 return TARGET_XFER_EOF;
1431 else
1432 return TARGET_XFER_OK;
1435 return TARGET_XFER_E_IO;
1437 case TARGET_OBJECT_SIGNAL_INFO:
1438 if (readbuf)
1440 if (m_core_gdbarch != nullptr
1441 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
1443 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
1444 offset, len);
1446 if (l >= 0)
1448 *xfered_len = l;
1449 if (l == 0)
1450 return TARGET_XFER_EOF;
1451 else
1452 return TARGET_XFER_OK;
1456 return TARGET_XFER_E_IO;
1458 default:
1459 return this->beneath ()->xfer_partial (object, annex, readbuf,
1460 writebuf, offset, len,
1461 xfered_len);
1467 /* Okay, let's be honest: threads gleaned from a core file aren't
1468 exactly lively, are they? On the other hand, if we don't claim
1469 that each & every one is alive, then we don't get any of them
1470 to appear in an "info thread" command, which is quite a useful
1471 behaviour.
1473 bool
1474 core_target::thread_alive (ptid_t ptid)
1476 return true;
1479 /* Ask the current architecture what it knows about this core file.
1480 That will be used, in turn, to pick a better architecture. This
1481 wrapper could be avoided if targets got a chance to specialize
1482 core_target. */
1484 const struct target_desc *
1485 core_target::read_description ()
1487 /* First check whether the target wants us to use the corefile target
1488 description notes. */
1489 if (gdbarch_use_target_description_from_corefile_notes
1490 (m_core_gdbarch, current_program_space->core_bfd ()))
1492 /* If the core file contains a target description note then go ahead and
1493 use that. */
1494 bfd_size_type tdesc_note_size = 0;
1495 struct bfd_section *tdesc_note_section
1496 = bfd_get_section_by_name (current_program_space->core_bfd (), ".gdb-tdesc");
1497 if (tdesc_note_section != nullptr)
1498 tdesc_note_size = bfd_section_size (tdesc_note_section);
1499 if (tdesc_note_size > 0)
1501 gdb::char_vector contents (tdesc_note_size + 1);
1502 if (bfd_get_section_contents (current_program_space->core_bfd (),
1503 tdesc_note_section, contents.data (),
1504 (file_ptr) 0, tdesc_note_size))
1506 /* Ensure we have a null terminator. */
1507 contents[tdesc_note_size] = '\0';
1508 const struct target_desc *result
1509 = string_read_description_xml (contents.data ());
1510 if (result != nullptr)
1511 return result;
1516 /* If the architecture provides a corefile target description hook, use
1517 it now. Even if the core file contains a target description in a note
1518 section, it is not useful for targets that can potentially have distinct
1519 descriptions for each thread. One example is AArch64's SVE/SME
1520 extensions that allow per-thread vector length changes, resulting in
1521 registers with different sizes. */
1522 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
1524 const struct target_desc *result;
1526 result = gdbarch_core_read_description
1527 (m_core_gdbarch, this, current_program_space->core_bfd ());
1528 if (result != nullptr)
1529 return result;
1532 return this->beneath ()->read_description ();
1535 std::string
1536 core_target::pid_to_str (ptid_t ptid)
1538 struct inferior *inf;
1539 int pid;
1541 /* The preferred way is to have a gdbarch/OS specific
1542 implementation. */
1543 if (m_core_gdbarch != nullptr
1544 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
1545 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
1547 /* Otherwise, if we don't have one, we'll just fallback to
1548 "process", with normal_pid_to_str. */
1550 /* Try the LWPID field first. */
1551 pid = ptid.lwp ();
1552 if (pid != 0)
1553 return normal_pid_to_str (ptid_t (pid));
1555 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1556 only if it isn't a fake PID. */
1557 inf = find_inferior_ptid (this, ptid);
1558 if (inf != NULL && !inf->fake_pid_p)
1559 return normal_pid_to_str (ptid);
1561 /* No luck. We simply don't have a valid PID to print. */
1562 return "<main task>";
1565 const char *
1566 core_target::thread_name (struct thread_info *thr)
1568 if (m_core_gdbarch != nullptr
1569 && gdbarch_core_thread_name_p (m_core_gdbarch))
1570 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1571 return NULL;
1574 bool
1575 core_target::has_memory ()
1577 return current_program_space->core_bfd () != nullptr;
1580 bool
1581 core_target::has_stack ()
1583 return current_program_space->core_bfd () != nullptr;
1586 bool
1587 core_target::has_registers ()
1589 return current_program_space->core_bfd () != nullptr;
1592 /* Implement the to_info_proc method. */
1594 bool
1595 core_target::info_proc (const char *args, enum info_proc_what request)
1597 struct gdbarch *gdbarch = get_current_arch ();
1599 /* Since this is the core file target, call the 'core_info_proc'
1600 method on gdbarch, not 'info_proc'. */
1601 if (gdbarch_core_info_proc_p (gdbarch))
1602 gdbarch_core_info_proc (gdbarch, args, request);
1604 return true;
1607 /* Implementation of the "supports_memory_tagging" target_ops method. */
1609 bool
1610 core_target::supports_memory_tagging ()
1612 /* Look for memory tag sections. If they exist, that means this core file
1613 supports memory tagging. */
1615 return (bfd_get_section_by_name (current_program_space->core_bfd (), "memtag")
1616 != nullptr);
1619 /* Implementation of the "fetch_memtags" target_ops method. */
1621 bool
1622 core_target::fetch_memtags (CORE_ADDR address, size_t len,
1623 gdb::byte_vector &tags, int type)
1625 gdbarch *gdbarch = current_inferior ()->arch ();
1627 /* Make sure we have a way to decode the memory tag notes. */
1628 if (!gdbarch_decode_memtag_section_p (gdbarch))
1629 error (_("gdbarch_decode_memtag_section not implemented for this "
1630 "architecture."));
1632 memtag_section_info info;
1633 info.memtag_section = nullptr;
1635 while (get_next_core_memtag_section (current_program_space->core_bfd (),
1636 info.memtag_section, address, info))
1638 size_t adjusted_length
1639 = (address + len < info.end_address) ? len : (info.end_address - address);
1641 /* Decode the memory tag note and return the tags. */
1642 gdb::byte_vector tags_read
1643 = gdbarch_decode_memtag_section (gdbarch, info.memtag_section, type,
1644 address, adjusted_length);
1646 /* Transfer over the tags that have been read. */
1647 tags.insert (tags.end (), tags_read.begin (), tags_read.end ());
1649 /* ADDRESS + LEN may cross the boundaries of a particular memory tag
1650 segment. Check if we need to fetch tags from a different section. */
1651 if (!tags_read.empty () && (address + len) < info.end_address)
1652 return true;
1654 /* There are more tags to fetch. Update ADDRESS and LEN. */
1655 len -= (info.end_address - address);
1656 address = info.end_address;
1659 return false;
1662 bool
1663 core_target::is_address_tagged (gdbarch *gdbarch, CORE_ADDR address)
1665 return gdbarch_tagged_address_p (gdbarch, address);
1668 /* Implementation of the "fetch_x86_xsave_layout" target_ops method. */
1670 x86_xsave_layout
1671 core_target::fetch_x86_xsave_layout ()
1673 if (m_core_gdbarch != nullptr &&
1674 gdbarch_core_read_x86_xsave_layout_p (m_core_gdbarch))
1676 x86_xsave_layout layout;
1677 if (!gdbarch_core_read_x86_xsave_layout (m_core_gdbarch, layout))
1678 return {};
1680 return layout;
1683 return {};
1686 /* Get a pointer to the current core target. If not connected to a
1687 core target, return NULL. */
1689 static core_target *
1690 get_current_core_target ()
1692 target_ops *proc_target = current_inferior ()->process_target ();
1693 return dynamic_cast<core_target *> (proc_target);
1696 /* Display file backed mappings from core file. */
1698 void
1699 core_target::info_proc_mappings (struct gdbarch *gdbarch)
1701 if (!m_core_file_mappings.empty ())
1703 gdb_printf (_("Mapped address spaces:\n\n"));
1704 if (gdbarch_addr_bit (gdbarch) == 32)
1706 gdb_printf ("\t%10s %10s %10s %10s %s\n",
1707 "Start Addr",
1708 " End Addr",
1709 " Size", " Offset", "objfile");
1711 else
1713 gdb_printf (" %18s %18s %10s %10s %s\n",
1714 "Start Addr",
1715 " End Addr",
1716 " Size", " Offset", "objfile");
1720 for (const target_section &tsp : m_core_file_mappings)
1722 ULONGEST start = tsp.addr;
1723 ULONGEST end = tsp.endaddr;
1724 ULONGEST file_ofs = tsp.the_bfd_section->filepos;
1725 const char *filename = bfd_get_filename (tsp.the_bfd_section->owner);
1727 if (gdbarch_addr_bit (gdbarch) == 32)
1728 gdb_printf ("\t%10s %10s %10s %10s %s\n",
1729 paddress (gdbarch, start),
1730 paddress (gdbarch, end),
1731 hex_string (end - start),
1732 hex_string (file_ofs),
1733 filename);
1734 else
1735 gdb_printf (" %18s %18s %10s %10s %s\n",
1736 paddress (gdbarch, start),
1737 paddress (gdbarch, end),
1738 hex_string (end - start),
1739 hex_string (file_ofs),
1740 filename);
1744 /* Implement "maintenance print core-file-backed-mappings" command.
1746 If mappings are loaded, the results should be similar to the
1747 mappings shown by "info proc mappings". This command is mainly a
1748 debugging tool for GDB developers to make sure that the expected
1749 mappings are present after loading a core file. For Linux, the
1750 output provided by this command will be very similar (if not
1751 identical) to that provided by "info proc mappings". This is not
1752 necessarily the case for other OSes which might provide
1753 more/different information in the "info proc mappings" output. */
1755 static void
1756 maintenance_print_core_file_backed_mappings (const char *args, int from_tty)
1758 core_target *targ = get_current_core_target ();
1759 if (targ != nullptr)
1760 targ->info_proc_mappings (targ->core_gdbarch ());
1763 /* Add more details discovered while processing the core-file's mapped file
1764 information, we're building maps between filenames and the corresponding
1765 build-ids, between address ranges and the corresponding build-ids, and
1766 also a reverse map between build-id and the corresponding filename.
1768 SONAME is the DT_SONAME attribute extracted from the .dynamic section of
1769 a shared library that was mapped into the core file. This can be
1770 nullptr if the mapped files was not a shared library, or didn't have a
1771 DT_SONAME attribute.
1773 EXPECTED_FILENAME is the name of the file that was mapped into the
1774 inferior as extracted from the core file, this should never be nullptr.
1776 ACTUAL_FILENAME is the name of the actual file GDB found to provide the
1777 mapped file information, this can be nullptr if GDB failed to find a
1778 suitable file. This might be different to EXPECTED_FILENAME, e.g. GDB
1779 might have downloaded the file from debuginfod and so ACTUAL_FILENAME
1780 will be a file in the debuginfod client cache.
1782 RANGES is the list of memory ranges at which this file was mapped into
1783 the inferior.
1785 BUILD_ID is the build-id for this mapped file, this will never be
1786 nullptr. Not every mapped file will have a build-id, but there's no
1787 point calling this function if we failed to find a build-id; this
1788 structure only exists so we can lookup files based on their build-id. */
1790 void
1791 mapped_file_info::add (const char *soname,
1792 const char *expected_filename,
1793 const char *actual_filename,
1794 std::vector<mem_range> &&ranges,
1795 const bfd_build_id *build_id)
1797 gdb_assert (build_id != nullptr);
1798 gdb_assert (expected_filename != nullptr);
1800 if (soname != nullptr)
1802 /* If we already have an entry with this SONAME then this indicates
1803 that the inferior has two files mapped into memory with different
1804 file names (and most likely different build-ids), but with the
1805 same DT_SONAME attribute. In this case we can't use the
1806 DT_SONAME to figure out the expected build-id of a shared
1807 library, so poison the entry for this SONAME by setting the entry
1808 to nullptr. */
1809 auto it = m_soname_to_build_id_map.find (soname);
1810 if (it != m_soname_to_build_id_map.end ()
1811 && it->second != nullptr
1812 && !build_id_equal (it->second, build_id))
1813 m_soname_to_build_id_map[soname] = nullptr;
1814 else
1815 m_soname_to_build_id_map[soname] = build_id;
1818 /* When the core file is initially opened and the mapped files are
1819 parsed, we group the build-id information based on the file name. As
1820 a consequence, we should see each EXPECTED_FILENAME value exactly
1821 once. This means that each insertion should always succeed. */
1822 const auto inserted
1823 = m_filename_to_build_id_map.emplace (expected_filename, build_id).second;
1824 gdb_assert (inserted);
1826 /* Setup the reverse build-id to file name map. */
1827 if (actual_filename != nullptr)
1828 m_build_id_to_filename_map.emplace (build_id, actual_filename);
1830 /* Setup the list of memory range to build-id objects. */
1831 for (mem_range &r : ranges)
1832 m_address_to_build_id_list.emplace_back (std::move (r), build_id);
1834 /* At this point the m_address_to_build_id_list is unsorted (we just
1835 added some entries to the end of the list). All entries should be
1836 added before any look-ups are performed, and the list is only sorted
1837 when the first look-up is performed. */
1838 gdb_assert (!m_address_to_build_id_list_sorted);
1841 /* FILENAME is the name of a file GDB is trying to load, and ADDR is
1842 (optionally) an address within the file in the inferior's address space.
1844 Search through the information gathered from the core-file's mapped file
1845 information looking for a file named FILENAME, or for a file that covers
1846 ADDR. If a match is found then return the build-id for the file along
1847 with the location where GDB found the mapped file.
1849 The location of the mapped file might be the empty string if GDB was
1850 unable to find the mapped file.
1852 If no build-id can be found for FILENAME then GDB will return a pair
1853 containing nullptr (for the build-id) and an empty string for the file
1854 name. */
1856 std::optional <core_target_mapped_file_info>
1857 mapped_file_info::lookup (const char *filename,
1858 const std::optional<CORE_ADDR> &addr)
1860 if (filename != nullptr)
1862 /* If there's a matching entry in m_filename_to_build_id_map then the
1863 associated build-id will not be nullptr, and can be used to
1864 validate that FILENAME is correct. */
1865 auto it = m_filename_to_build_id_map.find (filename);
1866 if (it != m_filename_to_build_id_map.end ())
1867 return make_result (it->second);
1870 if (addr.has_value ())
1872 /* On the first lookup, sort the address_to_build_id_list. */
1873 if (!m_address_to_build_id_list_sorted)
1875 std::sort (m_address_to_build_id_list.begin (),
1876 m_address_to_build_id_list.end (),
1877 [] (const mem_range_and_build_id &a,
1878 const mem_range_and_build_id &b) {
1879 return a.range < b.range;
1881 m_address_to_build_id_list_sorted = true;
1884 /* Look for the first entry whose range's start address is not less
1885 than, or equal too, the address ADDR. If we find such an entry,
1886 then the previous entry's range might contain ADDR. If it does
1887 then that previous entry's build-id can be used. */
1888 auto it = std::lower_bound
1889 (m_address_to_build_id_list.begin (),
1890 m_address_to_build_id_list.end (),
1891 *addr,
1892 [] (const mem_range_and_build_id &a,
1893 const CORE_ADDR &b) {
1894 return a.range.start <= b;
1897 if (it != m_address_to_build_id_list.begin ())
1899 --it;
1901 if (it->range.contains (*addr))
1902 return make_result (it->build_id);
1906 if (filename != nullptr)
1908 /* If the basename of FILENAME appears in m_soname_to_build_id_map
1909 then when the mapped files were processed, we saw a file with a
1910 DT_SONAME attribute corresponding to FILENAME, use that build-id
1911 to validate FILENAME.
1913 However, the build-id in this map might be nullptr if we saw
1914 multiple mapped files with the same DT_SONAME attribute (though
1915 this should be pretty rare). */
1916 auto it
1917 = m_soname_to_build_id_map.find (lbasename (filename));
1918 if (it != m_soname_to_build_id_map.end ()
1919 && it->second != nullptr)
1920 return make_result (it->second);
1923 return {};
1926 /* See gdbcore.h. */
1928 std::optional <core_target_mapped_file_info>
1929 core_target_find_mapped_file (const char *filename,
1930 std::optional<CORE_ADDR> addr)
1932 core_target *targ = get_current_core_target ();
1933 if (targ == nullptr || current_program_space->cbfd.get () == nullptr)
1934 return {};
1936 return targ->lookup_mapped_file_info (filename, addr);
1939 void _initialize_corelow ();
1940 void
1941 _initialize_corelow ()
1943 add_target (core_target_info, core_target_open,
1944 filename_maybe_quoted_completer);
1945 add_cmd ("core-file-backed-mappings", class_maintenance,
1946 maintenance_print_core_file_backed_mappings,
1947 _("Print core file's file-backed mappings."),
1948 &maintenanceprintlist);