1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2024 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
21 /* Notes on implementation:
23 Thread Local Store (TLS)
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
95 elfNN_aarch64_check_relocs()
97 This function is invoked for each relocation.
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
107 elfNN_aarch64_allocate_dynrelocs ()
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
115 elfNN_aarch64_size_dynamic_sections ()
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
122 elfNN_aarch64_relocate_section ()
124 Calls elfNN_aarch64_final_link_relocate ()
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
134 elfNN_aarch64_final_link_relocate ()
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
140 #include "libiberty.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147 #include "cpu-aarch64.h"
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
260 #define ELIMINATE_COPY_RELOCS 1
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271 /* PLT sizes with BTI insn. */
272 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
273 /* PLT sizes with PAC insn. */
274 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
275 /* PLT sizes with BTI and PAC insn. */
276 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
278 /* Encoding of the nop instruction. */
279 #define INSN_NOP 0xd503201f
281 #define aarch64_compute_jump_table_size(htab) \
282 (((htab)->root.srelplt == NULL) ? 0 \
283 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
285 /* The first entry in a procedure linkage table looks like this
286 if the distance between the PLTGOT and the PLT is < 4GB use
287 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
288 in x16 and needs to work out PLTGOT[1] by using an address of
289 [x16,#-GOT_ENTRY_SIZE]. */
290 static const bfd_byte elfNN_aarch64_small_plt0_entry
[PLT_ENTRY_SIZE
] =
292 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
293 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
295 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
296 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
298 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
299 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
301 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 0x1f, 0x20, 0x03, 0xd5, /* nop */
307 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry
[PLT_ENTRY_SIZE
] =
309 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
310 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
311 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
313 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
314 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
316 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
317 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
319 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
324 /* Per function entry in a procedure linkage table looks like this
325 if the distance between the PLTGOT and the PLT is < 4GB use
326 these PLT entries. Use BTI versions of the PLTs when enabled. */
327 static const bfd_byte elfNN_aarch64_small_plt_entry
[PLT_SMALL_ENTRY_SIZE
] =
329 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
331 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
332 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
334 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
335 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
337 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
340 static const bfd_byte
341 elfNN_aarch64_small_plt_bti_entry
[PLT_BTI_SMALL_ENTRY_SIZE
] =
343 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
344 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
346 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
347 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
349 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
350 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
352 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
353 0x1f, 0x20, 0x03, 0xd5, /* nop */
356 static const bfd_byte
357 elfNN_aarch64_small_plt_pac_entry
[PLT_PAC_SMALL_ENTRY_SIZE
] =
359 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
361 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
362 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
364 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
365 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
367 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
368 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
369 0x1f, 0x20, 0x03, 0xd5, /* nop */
372 static const bfd_byte
373 elfNN_aarch64_small_plt_bti_pac_entry
[PLT_BTI_PAC_SMALL_ENTRY_SIZE
] =
375 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
376 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
378 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
379 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
381 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
382 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
384 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
385 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
388 static const bfd_byte
389 elfNN_aarch64_tlsdesc_small_plt_entry
[PLT_TLSDESC_ENTRY_SIZE
] =
391 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
392 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
393 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
395 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
396 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
398 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
399 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
401 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 0x1f, 0x20, 0x03, 0xd5, /* nop */
406 static const bfd_byte
407 elfNN_aarch64_tlsdesc_small_plt_bti_entry
[PLT_TLSDESC_ENTRY_SIZE
] =
409 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
410 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
411 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
412 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
414 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
415 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
417 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
418 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
420 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
421 0x1f, 0x20, 0x03, 0xd5, /* nop */
424 #define elf_info_to_howto elfNN_aarch64_info_to_howto
425 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
427 #define AARCH64_ELF_ABI_VERSION 0
429 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
430 #define ALL_ONES (~ (bfd_vma) 0)
432 /* Indexed by the bfd interal reloc enumerators.
433 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
436 static reloc_howto_type elfNN_aarch64_howto_table
[] =
440 /* Basic data relocations. */
442 /* Deprecated, but retained for backwards compatibility. */
443 HOWTO64 (R_AARCH64_NULL
, /* type */
447 false, /* pc_relative */
449 complain_overflow_dont
, /* complain_on_overflow */
450 bfd_elf_generic_reloc
, /* special_function */
451 "R_AARCH64_NULL", /* name */
452 false, /* partial_inplace */
455 false), /* pcrel_offset */
456 HOWTO (R_AARCH64_NONE
, /* type */
460 false, /* pc_relative */
462 complain_overflow_dont
, /* complain_on_overflow */
463 bfd_elf_generic_reloc
, /* special_function */
464 "R_AARCH64_NONE", /* name */
465 false, /* partial_inplace */
468 false), /* pcrel_offset */
471 HOWTO64 (AARCH64_R (ABS64
), /* type */
475 false, /* pc_relative */
477 complain_overflow_unsigned
, /* complain_on_overflow */
478 bfd_elf_generic_reloc
, /* special_function */
479 AARCH64_R_STR (ABS64
), /* name */
480 false, /* partial_inplace */
482 ALL_ONES
, /* dst_mask */
483 false), /* pcrel_offset */
486 HOWTO (AARCH64_R (ABS32
), /* type */
490 false, /* pc_relative */
492 complain_overflow_unsigned
, /* complain_on_overflow */
493 bfd_elf_generic_reloc
, /* special_function */
494 AARCH64_R_STR (ABS32
), /* name */
495 false, /* partial_inplace */
497 0xffffffff, /* dst_mask */
498 false), /* pcrel_offset */
501 HOWTO (AARCH64_R (ABS16
), /* type */
505 false, /* pc_relative */
507 complain_overflow_unsigned
, /* complain_on_overflow */
508 bfd_elf_generic_reloc
, /* special_function */
509 AARCH64_R_STR (ABS16
), /* name */
510 false, /* partial_inplace */
512 0xffff, /* dst_mask */
513 false), /* pcrel_offset */
515 /* .xword: (S+A-P) */
516 HOWTO64 (AARCH64_R (PREL64
), /* type */
520 true, /* pc_relative */
522 complain_overflow_signed
, /* complain_on_overflow */
523 bfd_elf_generic_reloc
, /* special_function */
524 AARCH64_R_STR (PREL64
), /* name */
525 false, /* partial_inplace */
527 ALL_ONES
, /* dst_mask */
528 true), /* pcrel_offset */
531 HOWTO (AARCH64_R (PREL32
), /* type */
535 true, /* pc_relative */
537 complain_overflow_signed
, /* complain_on_overflow */
538 bfd_elf_generic_reloc
, /* special_function */
539 AARCH64_R_STR (PREL32
), /* name */
540 false, /* partial_inplace */
542 0xffffffff, /* dst_mask */
543 true), /* pcrel_offset */
546 HOWTO (AARCH64_R (PREL16
), /* type */
550 true, /* pc_relative */
552 complain_overflow_signed
, /* complain_on_overflow */
553 bfd_elf_generic_reloc
, /* special_function */
554 AARCH64_R_STR (PREL16
), /* name */
555 false, /* partial_inplace */
557 0xffff, /* dst_mask */
558 true), /* pcrel_offset */
560 /* Group relocations to create a 16, 32, 48 or 64 bit
561 unsigned data or abs address inline. */
563 /* MOVZ: ((S+A) >> 0) & 0xffff */
564 HOWTO (AARCH64_R (MOVW_UABS_G0
), /* type */
568 false, /* pc_relative */
570 complain_overflow_unsigned
, /* complain_on_overflow */
571 bfd_elf_generic_reloc
, /* special_function */
572 AARCH64_R_STR (MOVW_UABS_G0
), /* name */
573 false, /* partial_inplace */
575 0xffff, /* dst_mask */
576 false), /* pcrel_offset */
578 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
579 HOWTO (AARCH64_R (MOVW_UABS_G0_NC
), /* type */
583 false, /* pc_relative */
585 complain_overflow_dont
, /* complain_on_overflow */
586 bfd_elf_generic_reloc
, /* special_function */
587 AARCH64_R_STR (MOVW_UABS_G0_NC
), /* name */
588 false, /* partial_inplace */
590 0xffff, /* dst_mask */
591 false), /* pcrel_offset */
593 /* MOVZ: ((S+A) >> 16) & 0xffff */
594 HOWTO (AARCH64_R (MOVW_UABS_G1
), /* type */
598 false, /* pc_relative */
600 complain_overflow_unsigned
, /* complain_on_overflow */
601 bfd_elf_generic_reloc
, /* special_function */
602 AARCH64_R_STR (MOVW_UABS_G1
), /* name */
603 false, /* partial_inplace */
605 0xffff, /* dst_mask */
606 false), /* pcrel_offset */
608 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
609 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC
), /* type */
613 false, /* pc_relative */
615 complain_overflow_dont
, /* complain_on_overflow */
616 bfd_elf_generic_reloc
, /* special_function */
617 AARCH64_R_STR (MOVW_UABS_G1_NC
), /* name */
618 false, /* partial_inplace */
620 0xffff, /* dst_mask */
621 false), /* pcrel_offset */
623 /* MOVZ: ((S+A) >> 32) & 0xffff */
624 HOWTO64 (AARCH64_R (MOVW_UABS_G2
), /* type */
628 false, /* pc_relative */
630 complain_overflow_unsigned
, /* complain_on_overflow */
631 bfd_elf_generic_reloc
, /* special_function */
632 AARCH64_R_STR (MOVW_UABS_G2
), /* name */
633 false, /* partial_inplace */
635 0xffff, /* dst_mask */
636 false), /* pcrel_offset */
638 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
639 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC
), /* type */
643 false, /* pc_relative */
645 complain_overflow_dont
, /* complain_on_overflow */
646 bfd_elf_generic_reloc
, /* special_function */
647 AARCH64_R_STR (MOVW_UABS_G2_NC
), /* name */
648 false, /* partial_inplace */
650 0xffff, /* dst_mask */
651 false), /* pcrel_offset */
653 /* MOVZ: ((S+A) >> 48) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_UABS_G3
), /* type */
658 false, /* pc_relative */
660 complain_overflow_unsigned
, /* complain_on_overflow */
661 bfd_elf_generic_reloc
, /* special_function */
662 AARCH64_R_STR (MOVW_UABS_G3
), /* name */
663 false, /* partial_inplace */
665 0xffff, /* dst_mask */
666 false), /* pcrel_offset */
668 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
669 signed data or abs address inline. Will change instruction
670 to MOVN or MOVZ depending on sign of calculated value. */
672 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
673 HOWTO (AARCH64_R (MOVW_SABS_G0
), /* type */
677 false, /* pc_relative */
679 complain_overflow_signed
, /* complain_on_overflow */
680 bfd_elf_generic_reloc
, /* special_function */
681 AARCH64_R_STR (MOVW_SABS_G0
), /* name */
682 false, /* partial_inplace */
684 0xffff, /* dst_mask */
685 false), /* pcrel_offset */
687 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
688 HOWTO64 (AARCH64_R (MOVW_SABS_G1
), /* type */
692 false, /* pc_relative */
694 complain_overflow_signed
, /* complain_on_overflow */
695 bfd_elf_generic_reloc
, /* special_function */
696 AARCH64_R_STR (MOVW_SABS_G1
), /* name */
697 false, /* partial_inplace */
699 0xffff, /* dst_mask */
700 false), /* pcrel_offset */
702 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
703 HOWTO64 (AARCH64_R (MOVW_SABS_G2
), /* type */
707 false, /* pc_relative */
709 complain_overflow_signed
, /* complain_on_overflow */
710 bfd_elf_generic_reloc
, /* special_function */
711 AARCH64_R_STR (MOVW_SABS_G2
), /* name */
712 false, /* partial_inplace */
714 0xffff, /* dst_mask */
715 false), /* pcrel_offset */
717 /* Group relocations to create a 16, 32, 48 or 64 bit
718 PC relative address inline. */
720 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
721 HOWTO (AARCH64_R (MOVW_PREL_G0
), /* type */
725 true, /* pc_relative */
727 complain_overflow_signed
, /* complain_on_overflow */
728 bfd_elf_generic_reloc
, /* special_function */
729 AARCH64_R_STR (MOVW_PREL_G0
), /* name */
730 false, /* partial_inplace */
732 0xffff, /* dst_mask */
733 true), /* pcrel_offset */
735 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
736 HOWTO (AARCH64_R (MOVW_PREL_G0_NC
), /* type */
740 true, /* pc_relative */
742 complain_overflow_dont
, /* complain_on_overflow */
743 bfd_elf_generic_reloc
, /* special_function */
744 AARCH64_R_STR (MOVW_PREL_G0_NC
), /* name */
745 false, /* partial_inplace */
747 0xffff, /* dst_mask */
748 true), /* pcrel_offset */
750 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
751 HOWTO (AARCH64_R (MOVW_PREL_G1
), /* type */
755 true, /* pc_relative */
757 complain_overflow_signed
, /* complain_on_overflow */
758 bfd_elf_generic_reloc
, /* special_function */
759 AARCH64_R_STR (MOVW_PREL_G1
), /* name */
760 false, /* partial_inplace */
762 0xffff, /* dst_mask */
763 true), /* pcrel_offset */
765 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
766 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC
), /* type */
770 true, /* pc_relative */
772 complain_overflow_dont
, /* complain_on_overflow */
773 bfd_elf_generic_reloc
, /* special_function */
774 AARCH64_R_STR (MOVW_PREL_G1_NC
), /* name */
775 false, /* partial_inplace */
777 0xffff, /* dst_mask */
778 true), /* pcrel_offset */
780 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
781 HOWTO64 (AARCH64_R (MOVW_PREL_G2
), /* type */
785 true, /* pc_relative */
787 complain_overflow_signed
, /* complain_on_overflow */
788 bfd_elf_generic_reloc
, /* special_function */
789 AARCH64_R_STR (MOVW_PREL_G2
), /* name */
790 false, /* partial_inplace */
792 0xffff, /* dst_mask */
793 true), /* pcrel_offset */
795 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
796 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC
), /* type */
800 true, /* pc_relative */
802 complain_overflow_dont
, /* complain_on_overflow */
803 bfd_elf_generic_reloc
, /* special_function */
804 AARCH64_R_STR (MOVW_PREL_G2_NC
), /* name */
805 false, /* partial_inplace */
807 0xffff, /* dst_mask */
808 true), /* pcrel_offset */
810 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
811 HOWTO64 (AARCH64_R (MOVW_PREL_G3
), /* type */
815 true, /* pc_relative */
817 complain_overflow_dont
, /* complain_on_overflow */
818 bfd_elf_generic_reloc
, /* special_function */
819 AARCH64_R_STR (MOVW_PREL_G3
), /* name */
820 false, /* partial_inplace */
822 0xffff, /* dst_mask */
823 true), /* pcrel_offset */
825 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
826 addresses: PG(x) is (x & ~0xfff). */
828 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
829 HOWTO (AARCH64_R (LD_PREL_LO19
), /* type */
833 true, /* pc_relative */
835 complain_overflow_signed
, /* complain_on_overflow */
836 bfd_elf_generic_reloc
, /* special_function */
837 AARCH64_R_STR (LD_PREL_LO19
), /* name */
838 false, /* partial_inplace */
840 0x7ffff, /* dst_mask */
841 true), /* pcrel_offset */
843 /* ADR: (S+A-P) & 0x1fffff */
844 HOWTO (AARCH64_R (ADR_PREL_LO21
), /* type */
848 true, /* pc_relative */
850 complain_overflow_signed
, /* complain_on_overflow */
851 bfd_elf_generic_reloc
, /* special_function */
852 AARCH64_R_STR (ADR_PREL_LO21
), /* name */
853 false, /* partial_inplace */
855 0x1fffff, /* dst_mask */
856 true), /* pcrel_offset */
858 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
859 HOWTO (AARCH64_R (ADR_PREL_PG_HI21
), /* type */
863 true, /* pc_relative */
865 complain_overflow_signed
, /* complain_on_overflow */
866 bfd_elf_generic_reloc
, /* special_function */
867 AARCH64_R_STR (ADR_PREL_PG_HI21
), /* name */
868 false, /* partial_inplace */
870 0x1fffff, /* dst_mask */
871 true), /* pcrel_offset */
873 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
874 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC
), /* type */
878 true, /* pc_relative */
880 complain_overflow_dont
, /* complain_on_overflow */
881 bfd_elf_generic_reloc
, /* special_function */
882 AARCH64_R_STR (ADR_PREL_PG_HI21_NC
), /* name */
883 false, /* partial_inplace */
885 0x1fffff, /* dst_mask */
886 true), /* pcrel_offset */
888 /* ADD: (S+A) & 0xfff [no overflow check] */
889 HOWTO (AARCH64_R (ADD_ABS_LO12_NC
), /* type */
893 false, /* pc_relative */
895 complain_overflow_dont
, /* complain_on_overflow */
896 bfd_elf_generic_reloc
, /* special_function */
897 AARCH64_R_STR (ADD_ABS_LO12_NC
), /* name */
898 false, /* partial_inplace */
900 0x3ffc00, /* dst_mask */
901 false), /* pcrel_offset */
903 /* LD/ST8: (S+A) & 0xfff */
904 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC
), /* type */
908 false, /* pc_relative */
910 complain_overflow_dont
, /* complain_on_overflow */
911 bfd_elf_generic_reloc
, /* special_function */
912 AARCH64_R_STR (LDST8_ABS_LO12_NC
), /* name */
913 false, /* partial_inplace */
915 0xfff, /* dst_mask */
916 false), /* pcrel_offset */
918 /* Relocations for control-flow instructions. */
920 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
921 HOWTO (AARCH64_R (TSTBR14
), /* type */
925 true, /* pc_relative */
927 complain_overflow_signed
, /* complain_on_overflow */
928 bfd_elf_generic_reloc
, /* special_function */
929 AARCH64_R_STR (TSTBR14
), /* name */
930 false, /* partial_inplace */
932 0x3fff, /* dst_mask */
933 true), /* pcrel_offset */
935 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
936 HOWTO (AARCH64_R (CONDBR19
), /* type */
940 true, /* pc_relative */
942 complain_overflow_signed
, /* complain_on_overflow */
943 bfd_elf_generic_reloc
, /* special_function */
944 AARCH64_R_STR (CONDBR19
), /* name */
945 false, /* partial_inplace */
947 0x7ffff, /* dst_mask */
948 true), /* pcrel_offset */
950 /* B: ((S+A-P) >> 2) & 0x3ffffff */
951 HOWTO (AARCH64_R (JUMP26
), /* type */
955 true, /* pc_relative */
957 complain_overflow_signed
, /* complain_on_overflow */
958 bfd_elf_generic_reloc
, /* special_function */
959 AARCH64_R_STR (JUMP26
), /* name */
960 false, /* partial_inplace */
962 0x3ffffff, /* dst_mask */
963 true), /* pcrel_offset */
965 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
966 HOWTO (AARCH64_R (CALL26
), /* type */
970 true, /* pc_relative */
972 complain_overflow_signed
, /* complain_on_overflow */
973 bfd_elf_generic_reloc
, /* special_function */
974 AARCH64_R_STR (CALL26
), /* name */
975 false, /* partial_inplace */
977 0x3ffffff, /* dst_mask */
978 true), /* pcrel_offset */
980 /* LD/ST16: (S+A) & 0xffe */
981 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC
), /* type */
985 false, /* pc_relative */
987 complain_overflow_dont
, /* complain_on_overflow */
988 bfd_elf_generic_reloc
, /* special_function */
989 AARCH64_R_STR (LDST16_ABS_LO12_NC
), /* name */
990 false, /* partial_inplace */
992 0xffe, /* dst_mask */
993 false), /* pcrel_offset */
995 /* LD/ST32: (S+A) & 0xffc */
996 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC
), /* type */
1000 false, /* pc_relative */
1002 complain_overflow_dont
, /* complain_on_overflow */
1003 bfd_elf_generic_reloc
, /* special_function */
1004 AARCH64_R_STR (LDST32_ABS_LO12_NC
), /* name */
1005 false, /* partial_inplace */
1007 0xffc, /* dst_mask */
1008 false), /* pcrel_offset */
1010 /* LD/ST64: (S+A) & 0xff8 */
1011 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC
), /* type */
1015 false, /* pc_relative */
1017 complain_overflow_dont
, /* complain_on_overflow */
1018 bfd_elf_generic_reloc
, /* special_function */
1019 AARCH64_R_STR (LDST64_ABS_LO12_NC
), /* name */
1020 false, /* partial_inplace */
1022 0xff8, /* dst_mask */
1023 false), /* pcrel_offset */
1025 /* LD/ST128: (S+A) & 0xff0 */
1026 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC
), /* type */
1030 false, /* pc_relative */
1032 complain_overflow_dont
, /* complain_on_overflow */
1033 bfd_elf_generic_reloc
, /* special_function */
1034 AARCH64_R_STR (LDST128_ABS_LO12_NC
), /* name */
1035 false, /* partial_inplace */
1037 0xff0, /* dst_mask */
1038 false), /* pcrel_offset */
1040 /* Set a load-literal immediate field to bits
1041 0x1FFFFC of G(S)-P */
1042 HOWTO (AARCH64_R (GOT_LD_PREL19
), /* type */
1046 true, /* pc_relative */
1048 complain_overflow_signed
, /* complain_on_overflow */
1049 bfd_elf_generic_reloc
, /* special_function */
1050 AARCH64_R_STR (GOT_LD_PREL19
), /* name */
1051 false, /* partial_inplace */
1053 0xffffe0, /* dst_mask */
1054 true), /* pcrel_offset */
1056 /* Get to the page for the GOT entry for the symbol
1057 (G(S) - P) using an ADRP instruction. */
1058 HOWTO (AARCH64_R (ADR_GOT_PAGE
), /* type */
1059 12, /* rightshift */
1062 true, /* pc_relative */
1064 complain_overflow_dont
, /* complain_on_overflow */
1065 bfd_elf_generic_reloc
, /* special_function */
1066 AARCH64_R_STR (ADR_GOT_PAGE
), /* name */
1067 false, /* partial_inplace */
1069 0x1fffff, /* dst_mask */
1070 true), /* pcrel_offset */
1072 /* LD64: GOT offset G(S) & 0xff8 */
1073 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC
), /* type */
1077 false, /* pc_relative */
1079 complain_overflow_dont
, /* complain_on_overflow */
1080 bfd_elf_generic_reloc
, /* special_function */
1081 AARCH64_R_STR (LD64_GOT_LO12_NC
), /* name */
1082 false, /* partial_inplace */
1084 0xff8, /* dst_mask */
1085 false), /* pcrel_offset */
1087 /* LD32: GOT offset G(S) & 0xffc */
1088 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC
), /* type */
1092 false, /* pc_relative */
1094 complain_overflow_dont
, /* complain_on_overflow */
1095 bfd_elf_generic_reloc
, /* special_function */
1096 AARCH64_R_STR (LD32_GOT_LO12_NC
), /* name */
1097 false, /* partial_inplace */
1099 0xffc, /* dst_mask */
1100 false), /* pcrel_offset */
1102 /* Lower 16 bits of GOT offset for the symbol. */
1103 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC
), /* type */
1107 false, /* pc_relative */
1109 complain_overflow_dont
, /* complain_on_overflow */
1110 bfd_elf_generic_reloc
, /* special_function */
1111 AARCH64_R_STR (MOVW_GOTOFF_G0_NC
), /* name */
1112 false, /* partial_inplace */
1114 0xffff, /* dst_mask */
1115 false), /* pcrel_offset */
1117 /* Higher 16 bits of GOT offset for the symbol. */
1118 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1
), /* type */
1119 16, /* rightshift */
1122 false, /* pc_relative */
1124 complain_overflow_unsigned
, /* complain_on_overflow */
1125 bfd_elf_generic_reloc
, /* special_function */
1126 AARCH64_R_STR (MOVW_GOTOFF_G1
), /* name */
1127 false, /* partial_inplace */
1129 0xffff, /* dst_mask */
1130 false), /* pcrel_offset */
1132 /* LD64: GOT offset for the symbol. */
1133 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15
), /* type */
1137 false, /* pc_relative */
1139 complain_overflow_unsigned
, /* complain_on_overflow */
1140 bfd_elf_generic_reloc
, /* special_function */
1141 AARCH64_R_STR (LD64_GOTOFF_LO15
), /* name */
1142 false, /* partial_inplace */
1144 0x7ff8, /* dst_mask */
1145 false), /* pcrel_offset */
1147 /* LD32: GOT offset to the page address of GOT table.
1148 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1149 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14
), /* type */
1153 false, /* pc_relative */
1155 complain_overflow_unsigned
, /* complain_on_overflow */
1156 bfd_elf_generic_reloc
, /* special_function */
1157 AARCH64_R_STR (LD32_GOTPAGE_LO14
), /* name */
1158 false, /* partial_inplace */
1160 0x5ffc, /* dst_mask */
1161 false), /* pcrel_offset */
1163 /* LD64: GOT offset to the page address of GOT table.
1164 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1165 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15
), /* type */
1169 false, /* pc_relative */
1171 complain_overflow_unsigned
, /* complain_on_overflow */
1172 bfd_elf_generic_reloc
, /* special_function */
1173 AARCH64_R_STR (LD64_GOTPAGE_LO15
), /* name */
1174 false, /* partial_inplace */
1176 0x7ff8, /* dst_mask */
1177 false), /* pcrel_offset */
1179 /* Get to the page for the GOT entry for the symbol
1180 (G(S) - P) using an ADRP instruction. */
1181 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21
), /* type */
1182 12, /* rightshift */
1185 true, /* pc_relative */
1187 complain_overflow_dont
, /* complain_on_overflow */
1188 bfd_elf_generic_reloc
, /* special_function */
1189 AARCH64_R_STR (TLSGD_ADR_PAGE21
), /* name */
1190 false, /* partial_inplace */
1192 0x1fffff, /* dst_mask */
1193 true), /* pcrel_offset */
1195 HOWTO (AARCH64_R (TLSGD_ADR_PREL21
), /* type */
1199 true, /* pc_relative */
1201 complain_overflow_dont
, /* complain_on_overflow */
1202 bfd_elf_generic_reloc
, /* special_function */
1203 AARCH64_R_STR (TLSGD_ADR_PREL21
), /* name */
1204 false, /* partial_inplace */
1206 0x1fffff, /* dst_mask */
1207 true), /* pcrel_offset */
1209 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1210 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC
), /* type */
1214 false, /* pc_relative */
1216 complain_overflow_dont
, /* complain_on_overflow */
1217 bfd_elf_generic_reloc
, /* special_function */
1218 AARCH64_R_STR (TLSGD_ADD_LO12_NC
), /* name */
1219 false, /* partial_inplace */
1221 0xfff, /* dst_mask */
1222 false), /* pcrel_offset */
1224 /* Lower 16 bits of GOT offset to tls_index. */
1225 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC
), /* type */
1229 false, /* pc_relative */
1231 complain_overflow_dont
, /* complain_on_overflow */
1232 bfd_elf_generic_reloc
, /* special_function */
1233 AARCH64_R_STR (TLSGD_MOVW_G0_NC
), /* name */
1234 false, /* partial_inplace */
1236 0xffff, /* dst_mask */
1237 false), /* pcrel_offset */
1239 /* Higher 16 bits of GOT offset to tls_index. */
1240 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1
), /* type */
1241 16, /* rightshift */
1244 false, /* pc_relative */
1246 complain_overflow_unsigned
, /* complain_on_overflow */
1247 bfd_elf_generic_reloc
, /* special_function */
1248 AARCH64_R_STR (TLSGD_MOVW_G1
), /* name */
1249 false, /* partial_inplace */
1251 0xffff, /* dst_mask */
1252 false), /* pcrel_offset */
1254 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21
), /* type */
1255 12, /* rightshift */
1258 false, /* pc_relative */
1260 complain_overflow_dont
, /* complain_on_overflow */
1261 bfd_elf_generic_reloc
, /* special_function */
1262 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21
), /* name */
1263 false, /* partial_inplace */
1265 0x1fffff, /* dst_mask */
1266 false), /* pcrel_offset */
1268 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC
), /* type */
1272 false, /* pc_relative */
1274 complain_overflow_dont
, /* complain_on_overflow */
1275 bfd_elf_generic_reloc
, /* special_function */
1276 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC
), /* name */
1277 false, /* partial_inplace */
1279 0xff8, /* dst_mask */
1280 false), /* pcrel_offset */
1282 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC
), /* type */
1286 false, /* pc_relative */
1288 complain_overflow_dont
, /* complain_on_overflow */
1289 bfd_elf_generic_reloc
, /* special_function */
1290 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC
), /* name */
1291 false, /* partial_inplace */
1293 0xffc, /* dst_mask */
1294 false), /* pcrel_offset */
1296 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19
), /* type */
1300 false, /* pc_relative */
1302 complain_overflow_dont
, /* complain_on_overflow */
1303 bfd_elf_generic_reloc
, /* special_function */
1304 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19
), /* name */
1305 false, /* partial_inplace */
1307 0x1ffffc, /* dst_mask */
1308 false), /* pcrel_offset */
1310 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC
), /* type */
1314 false, /* pc_relative */
1316 complain_overflow_dont
, /* complain_on_overflow */
1317 bfd_elf_generic_reloc
, /* special_function */
1318 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC
), /* name */
1319 false, /* partial_inplace */
1321 0xffff, /* dst_mask */
1322 false), /* pcrel_offset */
1324 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1
), /* type */
1325 16, /* rightshift */
1328 false, /* pc_relative */
1330 complain_overflow_unsigned
, /* complain_on_overflow */
1331 bfd_elf_generic_reloc
, /* special_function */
1332 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1
), /* name */
1333 false, /* partial_inplace */
1335 0xffff, /* dst_mask */
1336 false), /* pcrel_offset */
1338 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1339 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12
), /* type */
1340 12, /* rightshift */
1343 false, /* pc_relative */
1345 complain_overflow_unsigned
, /* complain_on_overflow */
1346 bfd_elf_generic_reloc
, /* special_function */
1347 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12
), /* name */
1348 false, /* partial_inplace */
1350 0xfff, /* dst_mask */
1351 false), /* pcrel_offset */
1353 /* Unsigned 12 bit byte offset to module TLS base address. */
1354 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12
), /* type */
1358 false, /* pc_relative */
1360 complain_overflow_unsigned
, /* complain_on_overflow */
1361 bfd_elf_generic_reloc
, /* special_function */
1362 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12
), /* name */
1363 false, /* partial_inplace */
1365 0xfff, /* dst_mask */
1366 false), /* pcrel_offset */
1368 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1369 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC
), /* type */
1373 false, /* pc_relative */
1375 complain_overflow_dont
, /* complain_on_overflow */
1376 bfd_elf_generic_reloc
, /* special_function */
1377 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC
), /* name */
1378 false, /* partial_inplace */
1380 0xfff, /* dst_mask */
1381 false), /* pcrel_offset */
1383 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1384 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC
), /* type */
1388 false, /* pc_relative */
1390 complain_overflow_dont
, /* complain_on_overflow */
1391 bfd_elf_generic_reloc
, /* special_function */
1392 AARCH64_R_STR (TLSLD_ADD_LO12_NC
), /* name */
1393 false, /* partial_inplace */
1395 0xfff, /* dst_mask */
1396 false), /* pcrel_offset */
1398 /* Get to the page for the GOT entry for the symbol
1399 (G(S) - P) using an ADRP instruction. */
1400 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21
), /* type */
1401 12, /* rightshift */
1404 true, /* pc_relative */
1406 complain_overflow_signed
, /* complain_on_overflow */
1407 bfd_elf_generic_reloc
, /* special_function */
1408 AARCH64_R_STR (TLSLD_ADR_PAGE21
), /* name */
1409 false, /* partial_inplace */
1411 0x1fffff, /* dst_mask */
1412 true), /* pcrel_offset */
1414 HOWTO (AARCH64_R (TLSLD_ADR_PREL21
), /* type */
1418 true, /* pc_relative */
1420 complain_overflow_signed
, /* complain_on_overflow */
1421 bfd_elf_generic_reloc
, /* special_function */
1422 AARCH64_R_STR (TLSLD_ADR_PREL21
), /* name */
1423 false, /* partial_inplace */
1425 0x1fffff, /* dst_mask */
1426 true), /* pcrel_offset */
1428 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1429 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12
), /* type */
1433 false, /* pc_relative */
1435 complain_overflow_unsigned
, /* complain_on_overflow */
1436 bfd_elf_generic_reloc
, /* special_function */
1437 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12
), /* name */
1438 false, /* partial_inplace */
1440 0x1ffc00, /* dst_mask */
1441 false), /* pcrel_offset */
1443 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1444 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC
), /* type */
1448 false, /* pc_relative */
1450 complain_overflow_dont
, /* complain_on_overflow */
1451 bfd_elf_generic_reloc
, /* special_function */
1452 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC
), /* name */
1453 false, /* partial_inplace */
1455 0x1ffc00, /* dst_mask */
1456 false), /* pcrel_offset */
1458 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1459 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12
), /* type */
1463 false, /* pc_relative */
1465 complain_overflow_unsigned
, /* complain_on_overflow */
1466 bfd_elf_generic_reloc
, /* special_function */
1467 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12
), /* name */
1468 false, /* partial_inplace */
1470 0x3ffc00, /* dst_mask */
1471 false), /* pcrel_offset */
1473 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1474 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC
), /* type */
1478 false, /* pc_relative */
1480 complain_overflow_dont
, /* complain_on_overflow */
1481 bfd_elf_generic_reloc
, /* special_function */
1482 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC
), /* name */
1483 false, /* partial_inplace */
1485 0xffc00, /* dst_mask */
1486 false), /* pcrel_offset */
1488 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1489 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12
), /* type */
1493 false, /* pc_relative */
1495 complain_overflow_unsigned
, /* complain_on_overflow */
1496 bfd_elf_generic_reloc
, /* special_function */
1497 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12
), /* name */
1498 false, /* partial_inplace */
1500 0x3ffc00, /* dst_mask */
1501 false), /* pcrel_offset */
1503 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1504 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC
), /* type */
1508 false, /* pc_relative */
1510 complain_overflow_dont
, /* complain_on_overflow */
1511 bfd_elf_generic_reloc
, /* special_function */
1512 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC
), /* name */
1513 false, /* partial_inplace */
1515 0x7fc00, /* dst_mask */
1516 false), /* pcrel_offset */
1518 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1519 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12
), /* type */
1523 false, /* pc_relative */
1525 complain_overflow_unsigned
, /* complain_on_overflow */
1526 bfd_elf_generic_reloc
, /* special_function */
1527 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12
), /* name */
1528 false, /* partial_inplace */
1530 0x3ffc00, /* dst_mask */
1531 false), /* pcrel_offset */
1533 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1534 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC
), /* type */
1538 false, /* pc_relative */
1540 complain_overflow_dont
, /* complain_on_overflow */
1541 bfd_elf_generic_reloc
, /* special_function */
1542 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC
), /* name */
1543 false, /* partial_inplace */
1545 0x3ffc00, /* dst_mask */
1546 false), /* pcrel_offset */
1548 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1549 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0
), /* type */
1553 false, /* pc_relative */
1555 complain_overflow_unsigned
, /* complain_on_overflow */
1556 bfd_elf_generic_reloc
, /* special_function */
1557 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0
), /* name */
1558 false, /* partial_inplace */
1560 0xffff, /* dst_mask */
1561 false), /* pcrel_offset */
1563 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1564 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC
), /* type */
1568 false, /* pc_relative */
1570 complain_overflow_dont
, /* complain_on_overflow */
1571 bfd_elf_generic_reloc
, /* special_function */
1572 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC
), /* name */
1573 false, /* partial_inplace */
1575 0xffff, /* dst_mask */
1576 false), /* pcrel_offset */
1578 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1579 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1
), /* type */
1580 16, /* rightshift */
1583 false, /* pc_relative */
1585 complain_overflow_unsigned
, /* complain_on_overflow */
1586 bfd_elf_generic_reloc
, /* special_function */
1587 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1
), /* name */
1588 false, /* partial_inplace */
1590 0xffff, /* dst_mask */
1591 false), /* pcrel_offset */
1593 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1594 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC
), /* type */
1595 16, /* rightshift */
1598 false, /* pc_relative */
1600 complain_overflow_dont
, /* complain_on_overflow */
1601 bfd_elf_generic_reloc
, /* special_function */
1602 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC
), /* name */
1603 false, /* partial_inplace */
1605 0xffff, /* dst_mask */
1606 false), /* pcrel_offset */
1608 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1609 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2
), /* type */
1610 32, /* rightshift */
1613 false, /* pc_relative */
1615 complain_overflow_unsigned
, /* complain_on_overflow */
1616 bfd_elf_generic_reloc
, /* special_function */
1617 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2
), /* name */
1618 false, /* partial_inplace */
1620 0xffff, /* dst_mask */
1621 false), /* pcrel_offset */
1623 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2
), /* type */
1624 32, /* rightshift */
1627 false, /* pc_relative */
1629 complain_overflow_unsigned
, /* complain_on_overflow */
1630 bfd_elf_generic_reloc
, /* special_function */
1631 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2
), /* name */
1632 false, /* partial_inplace */
1634 0xffff, /* dst_mask */
1635 false), /* pcrel_offset */
1637 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1
), /* type */
1638 16, /* rightshift */
1641 false, /* pc_relative */
1643 complain_overflow_dont
, /* complain_on_overflow */
1644 bfd_elf_generic_reloc
, /* special_function */
1645 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1
), /* name */
1646 false, /* partial_inplace */
1648 0xffff, /* dst_mask */
1649 false), /* pcrel_offset */
1651 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC
), /* type */
1652 16, /* rightshift */
1655 false, /* pc_relative */
1657 complain_overflow_dont
, /* complain_on_overflow */
1658 bfd_elf_generic_reloc
, /* special_function */
1659 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC
), /* name */
1660 false, /* partial_inplace */
1662 0xffff, /* dst_mask */
1663 false), /* pcrel_offset */
1665 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0
), /* type */
1669 false, /* pc_relative */
1671 complain_overflow_dont
, /* complain_on_overflow */
1672 bfd_elf_generic_reloc
, /* special_function */
1673 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0
), /* name */
1674 false, /* partial_inplace */
1676 0xffff, /* dst_mask */
1677 false), /* pcrel_offset */
1679 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC
), /* type */
1683 false, /* pc_relative */
1685 complain_overflow_dont
, /* complain_on_overflow */
1686 bfd_elf_generic_reloc
, /* special_function */
1687 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC
), /* name */
1688 false, /* partial_inplace */
1690 0xffff, /* dst_mask */
1691 false), /* pcrel_offset */
1693 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12
), /* type */
1694 12, /* rightshift */
1697 false, /* pc_relative */
1699 complain_overflow_unsigned
, /* complain_on_overflow */
1700 bfd_elf_generic_reloc
, /* special_function */
1701 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12
), /* name */
1702 false, /* partial_inplace */
1704 0xfff, /* dst_mask */
1705 false), /* pcrel_offset */
1707 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12
), /* type */
1711 false, /* pc_relative */
1713 complain_overflow_unsigned
, /* complain_on_overflow */
1714 bfd_elf_generic_reloc
, /* special_function */
1715 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12
), /* name */
1716 false, /* partial_inplace */
1718 0xfff, /* dst_mask */
1719 false), /* pcrel_offset */
1721 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC
), /* type */
1725 false, /* pc_relative */
1727 complain_overflow_dont
, /* complain_on_overflow */
1728 bfd_elf_generic_reloc
, /* special_function */
1729 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC
), /* name */
1730 false, /* partial_inplace */
1732 0xfff, /* dst_mask */
1733 false), /* pcrel_offset */
1735 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1736 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12
), /* type */
1740 false, /* pc_relative */
1742 complain_overflow_unsigned
, /* complain_on_overflow */
1743 bfd_elf_generic_reloc
, /* special_function */
1744 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12
), /* name */
1745 false, /* partial_inplace */
1747 0x1ffc00, /* dst_mask */
1748 false), /* pcrel_offset */
1750 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1751 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC
), /* type */
1755 false, /* pc_relative */
1757 complain_overflow_dont
, /* complain_on_overflow */
1758 bfd_elf_generic_reloc
, /* special_function */
1759 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC
), /* name */
1760 false, /* partial_inplace */
1762 0x1ffc00, /* dst_mask */
1763 false), /* pcrel_offset */
1765 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1766 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12
), /* type */
1770 false, /* pc_relative */
1772 complain_overflow_unsigned
, /* complain_on_overflow */
1773 bfd_elf_generic_reloc
, /* special_function */
1774 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12
), /* name */
1775 false, /* partial_inplace */
1777 0xffc00, /* dst_mask */
1778 false), /* pcrel_offset */
1780 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1781 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC
), /* type */
1785 false, /* pc_relative */
1787 complain_overflow_dont
, /* complain_on_overflow */
1788 bfd_elf_generic_reloc
, /* special_function */
1789 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC
), /* name */
1790 false, /* partial_inplace */
1792 0xffc00, /* dst_mask */
1793 false), /* pcrel_offset */
1795 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1796 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12
), /* type */
1800 false, /* pc_relative */
1802 complain_overflow_unsigned
, /* complain_on_overflow */
1803 bfd_elf_generic_reloc
, /* special_function */
1804 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12
), /* name */
1805 false, /* partial_inplace */
1807 0x7fc00, /* dst_mask */
1808 false), /* pcrel_offset */
1810 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1811 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC
), /* type */
1815 false, /* pc_relative */
1817 complain_overflow_dont
, /* complain_on_overflow */
1818 bfd_elf_generic_reloc
, /* special_function */
1819 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC
), /* name */
1820 false, /* partial_inplace */
1822 0x7fc00, /* dst_mask */
1823 false), /* pcrel_offset */
1825 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1826 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12
), /* type */
1830 false, /* pc_relative */
1832 complain_overflow_unsigned
, /* complain_on_overflow */
1833 bfd_elf_generic_reloc
, /* special_function */
1834 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12
), /* name */
1835 false, /* partial_inplace */
1837 0x3ffc00, /* dst_mask */
1838 false), /* pcrel_offset */
1840 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1841 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC
), /* type */
1845 false, /* pc_relative */
1847 complain_overflow_dont
, /* complain_on_overflow */
1848 bfd_elf_generic_reloc
, /* special_function */
1849 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC
), /* name */
1850 false, /* partial_inplace */
1852 0x3ffc00, /* dst_mask */
1853 false), /* pcrel_offset */
1855 HOWTO (AARCH64_R (TLSDESC_LD_PREL19
), /* type */
1859 true, /* pc_relative */
1861 complain_overflow_dont
, /* complain_on_overflow */
1862 bfd_elf_generic_reloc
, /* special_function */
1863 AARCH64_R_STR (TLSDESC_LD_PREL19
), /* name */
1864 false, /* partial_inplace */
1866 0x0ffffe0, /* dst_mask */
1867 true), /* pcrel_offset */
1869 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21
), /* type */
1873 true, /* pc_relative */
1875 complain_overflow_dont
, /* complain_on_overflow */
1876 bfd_elf_generic_reloc
, /* special_function */
1877 AARCH64_R_STR (TLSDESC_ADR_PREL21
), /* name */
1878 false, /* partial_inplace */
1880 0x1fffff, /* dst_mask */
1881 true), /* pcrel_offset */
1883 /* Get to the page for the GOT entry for the symbol
1884 (G(S) - P) using an ADRP instruction. */
1885 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21
), /* type */
1886 12, /* rightshift */
1889 true, /* pc_relative */
1891 complain_overflow_dont
, /* complain_on_overflow */
1892 bfd_elf_generic_reloc
, /* special_function */
1893 AARCH64_R_STR (TLSDESC_ADR_PAGE21
), /* name */
1894 false, /* partial_inplace */
1896 0x1fffff, /* dst_mask */
1897 true), /* pcrel_offset */
1899 /* LD64: GOT offset G(S) & 0xff8. */
1900 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12
), /* type */
1904 false, /* pc_relative */
1906 complain_overflow_dont
, /* complain_on_overflow */
1907 bfd_elf_generic_reloc
, /* special_function */
1908 AARCH64_R_STR (TLSDESC_LD64_LO12
), /* name */
1909 false, /* partial_inplace */
1911 0xff8, /* dst_mask */
1912 false), /* pcrel_offset */
1914 /* LD32: GOT offset G(S) & 0xffc. */
1915 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC
), /* type */
1919 false, /* pc_relative */
1921 complain_overflow_dont
, /* complain_on_overflow */
1922 bfd_elf_generic_reloc
, /* special_function */
1923 AARCH64_R_STR (TLSDESC_LD32_LO12_NC
), /* name */
1924 false, /* partial_inplace */
1926 0xffc, /* dst_mask */
1927 false), /* pcrel_offset */
1929 /* ADD: GOT offset G(S) & 0xfff. */
1930 HOWTO (AARCH64_R (TLSDESC_ADD_LO12
), /* type */
1934 false, /* pc_relative */
1936 complain_overflow_dont
,/* complain_on_overflow */
1937 bfd_elf_generic_reloc
, /* special_function */
1938 AARCH64_R_STR (TLSDESC_ADD_LO12
), /* name */
1939 false, /* partial_inplace */
1941 0xfff, /* dst_mask */
1942 false), /* pcrel_offset */
1944 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1
), /* type */
1945 16, /* rightshift */
1948 false, /* pc_relative */
1950 complain_overflow_unsigned
, /* complain_on_overflow */
1951 bfd_elf_generic_reloc
, /* special_function */
1952 AARCH64_R_STR (TLSDESC_OFF_G1
), /* name */
1953 false, /* partial_inplace */
1955 0xffff, /* dst_mask */
1956 false), /* pcrel_offset */
1958 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC
), /* type */
1962 false, /* pc_relative */
1964 complain_overflow_dont
, /* complain_on_overflow */
1965 bfd_elf_generic_reloc
, /* special_function */
1966 AARCH64_R_STR (TLSDESC_OFF_G0_NC
), /* name */
1967 false, /* partial_inplace */
1969 0xffff, /* dst_mask */
1970 false), /* pcrel_offset */
1972 HOWTO64 (AARCH64_R (TLSDESC_LDR
), /* type */
1976 false, /* pc_relative */
1978 complain_overflow_dont
, /* complain_on_overflow */
1979 bfd_elf_generic_reloc
, /* special_function */
1980 AARCH64_R_STR (TLSDESC_LDR
), /* name */
1981 false, /* partial_inplace */
1984 false), /* pcrel_offset */
1986 HOWTO64 (AARCH64_R (TLSDESC_ADD
), /* type */
1990 false, /* pc_relative */
1992 complain_overflow_dont
, /* complain_on_overflow */
1993 bfd_elf_generic_reloc
, /* special_function */
1994 AARCH64_R_STR (TLSDESC_ADD
), /* name */
1995 false, /* partial_inplace */
1998 false), /* pcrel_offset */
2000 HOWTO (AARCH64_R (TLSDESC_CALL
), /* type */
2004 false, /* pc_relative */
2006 complain_overflow_dont
, /* complain_on_overflow */
2007 bfd_elf_generic_reloc
, /* special_function */
2008 AARCH64_R_STR (TLSDESC_CALL
), /* name */
2009 false, /* partial_inplace */
2012 false), /* pcrel_offset */
2014 HOWTO (AARCH64_R (COPY
), /* type */
2018 false, /* pc_relative */
2020 complain_overflow_bitfield
, /* complain_on_overflow */
2021 bfd_elf_generic_reloc
, /* special_function */
2022 AARCH64_R_STR (COPY
), /* name */
2023 true, /* partial_inplace */
2025 0xffffffff, /* dst_mask */
2026 false), /* pcrel_offset */
2028 HOWTO (AARCH64_R (GLOB_DAT
), /* type */
2032 false, /* pc_relative */
2034 complain_overflow_bitfield
, /* complain_on_overflow */
2035 bfd_elf_generic_reloc
, /* special_function */
2036 AARCH64_R_STR (GLOB_DAT
), /* name */
2037 true, /* partial_inplace */
2039 0xffffffff, /* dst_mask */
2040 false), /* pcrel_offset */
2042 HOWTO (AARCH64_R (JUMP_SLOT
), /* type */
2046 false, /* pc_relative */
2048 complain_overflow_bitfield
, /* complain_on_overflow */
2049 bfd_elf_generic_reloc
, /* special_function */
2050 AARCH64_R_STR (JUMP_SLOT
), /* name */
2051 true, /* partial_inplace */
2053 0xffffffff, /* dst_mask */
2054 false), /* pcrel_offset */
2056 HOWTO (AARCH64_R (RELATIVE
), /* type */
2060 false, /* pc_relative */
2062 complain_overflow_bitfield
, /* complain_on_overflow */
2063 bfd_elf_generic_reloc
, /* special_function */
2064 AARCH64_R_STR (RELATIVE
), /* name */
2065 true, /* partial_inplace */
2067 ALL_ONES
, /* dst_mask */
2068 false), /* pcrel_offset */
2070 HOWTO (AARCH64_R (TLS_DTPMOD
), /* type */
2074 false, /* pc_relative */
2076 complain_overflow_dont
, /* complain_on_overflow */
2077 bfd_elf_generic_reloc
, /* special_function */
2079 AARCH64_R_STR (TLS_DTPMOD64
), /* name */
2081 AARCH64_R_STR (TLS_DTPMOD
), /* name */
2083 false, /* partial_inplace */
2085 ALL_ONES
, /* dst_mask */
2086 false), /* pc_reloffset */
2088 HOWTO (AARCH64_R (TLS_DTPREL
), /* type */
2092 false, /* pc_relative */
2094 complain_overflow_dont
, /* complain_on_overflow */
2095 bfd_elf_generic_reloc
, /* special_function */
2097 AARCH64_R_STR (TLS_DTPREL64
), /* name */
2099 AARCH64_R_STR (TLS_DTPREL
), /* name */
2101 false, /* partial_inplace */
2103 ALL_ONES
, /* dst_mask */
2104 false), /* pcrel_offset */
2106 HOWTO (AARCH64_R (TLS_TPREL
), /* type */
2110 false, /* pc_relative */
2112 complain_overflow_dont
, /* complain_on_overflow */
2113 bfd_elf_generic_reloc
, /* special_function */
2115 AARCH64_R_STR (TLS_TPREL64
), /* name */
2117 AARCH64_R_STR (TLS_TPREL
), /* name */
2119 false, /* partial_inplace */
2121 ALL_ONES
, /* dst_mask */
2122 false), /* pcrel_offset */
2124 HOWTO (AARCH64_R (TLSDESC
), /* type */
2128 false, /* pc_relative */
2130 complain_overflow_dont
, /* complain_on_overflow */
2131 bfd_elf_generic_reloc
, /* special_function */
2132 AARCH64_R_STR (TLSDESC
), /* name */
2133 false, /* partial_inplace */
2135 ALL_ONES
, /* dst_mask */
2136 false), /* pcrel_offset */
2138 HOWTO (AARCH64_R (IRELATIVE
), /* type */
2142 false, /* pc_relative */
2144 complain_overflow_bitfield
, /* complain_on_overflow */
2145 bfd_elf_generic_reloc
, /* special_function */
2146 AARCH64_R_STR (IRELATIVE
), /* name */
2147 false, /* partial_inplace */
2149 ALL_ONES
, /* dst_mask */
2150 false), /* pcrel_offset */
2155 static reloc_howto_type elfNN_aarch64_howto_none
=
2156 HOWTO (R_AARCH64_NONE
, /* type */
2160 false, /* pc_relative */
2162 complain_overflow_dont
,/* complain_on_overflow */
2163 bfd_elf_generic_reloc
, /* special_function */
2164 "R_AARCH64_NONE", /* name */
2165 false, /* partial_inplace */
2168 false); /* pcrel_offset */
2170 /* Given HOWTO, return the bfd internal relocation enumerator. */
2172 static bfd_reloc_code_real_type
2173 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type
*howto
)
2176 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table
);
2177 const ptrdiff_t offset
2178 = howto
- elfNN_aarch64_howto_table
;
2180 if (offset
> 0 && offset
< size
- 1)
2181 return BFD_RELOC_AARCH64_RELOC_START
+ offset
;
2183 if (howto
== &elfNN_aarch64_howto_none
)
2184 return BFD_RELOC_AARCH64_NONE
;
2186 return BFD_RELOC_AARCH64_RELOC_START
;
2189 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2191 static bfd_reloc_code_real_type
2192 elfNN_aarch64_bfd_reloc_from_type (bfd
*abfd
, unsigned int r_type
)
2194 static bool initialized_p
= false;
2195 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2196 static unsigned int offsets
[R_AARCH64_end
];
2202 for (i
= 1; i
< ARRAY_SIZE (elfNN_aarch64_howto_table
) - 1; ++i
)
2203 if (elfNN_aarch64_howto_table
[i
].type
!= 0)
2204 offsets
[elfNN_aarch64_howto_table
[i
].type
] = i
;
2206 initialized_p
= true;
2209 if (r_type
== R_AARCH64_NONE
|| r_type
== R_AARCH64_NULL
)
2210 return BFD_RELOC_AARCH64_NONE
;
2212 /* PR 17512: file: b371e70a. */
2213 if (r_type
>= R_AARCH64_end
)
2215 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2217 bfd_set_error (bfd_error_bad_value
);
2218 return BFD_RELOC_AARCH64_NONE
;
2221 return BFD_RELOC_AARCH64_RELOC_START
+ offsets
[r_type
];
2224 struct elf_aarch64_reloc_map
2226 bfd_reloc_code_real_type from
;
2227 bfd_reloc_code_real_type to
;
2230 /* Map bfd generic reloc to AArch64-specific reloc. */
2231 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map
[] =
2233 {BFD_RELOC_NONE
, BFD_RELOC_AARCH64_NONE
},
2235 /* Basic data relocations. */
2236 {BFD_RELOC_CTOR
, BFD_RELOC_AARCH64_NN
},
2237 {BFD_RELOC_64
, BFD_RELOC_AARCH64_64
},
2238 {BFD_RELOC_32
, BFD_RELOC_AARCH64_32
},
2239 {BFD_RELOC_16
, BFD_RELOC_AARCH64_16
},
2240 {BFD_RELOC_64_PCREL
, BFD_RELOC_AARCH64_64_PCREL
},
2241 {BFD_RELOC_32_PCREL
, BFD_RELOC_AARCH64_32_PCREL
},
2242 {BFD_RELOC_16_PCREL
, BFD_RELOC_AARCH64_16_PCREL
},
2245 /* Given the bfd internal relocation enumerator in CODE, return the
2246 corresponding howto entry. */
2248 static reloc_howto_type
*
2249 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code
)
2253 /* Convert bfd generic reloc to AArch64-specific reloc. */
2254 if (code
< BFD_RELOC_AARCH64_RELOC_START
2255 || code
> BFD_RELOC_AARCH64_RELOC_END
)
2256 for (i
= 0; i
< ARRAY_SIZE (elf_aarch64_reloc_map
); i
++)
2257 if (elf_aarch64_reloc_map
[i
].from
== code
)
2259 code
= elf_aarch64_reloc_map
[i
].to
;
2263 if (code
> BFD_RELOC_AARCH64_RELOC_START
2264 && code
< BFD_RELOC_AARCH64_RELOC_END
)
2265 if (elfNN_aarch64_howto_table
[code
- BFD_RELOC_AARCH64_RELOC_START
].type
)
2266 return &elfNN_aarch64_howto_table
[code
- BFD_RELOC_AARCH64_RELOC_START
];
2268 if (code
== BFD_RELOC_AARCH64_NONE
)
2269 return &elfNN_aarch64_howto_none
;
2274 static reloc_howto_type
*
2275 elfNN_aarch64_howto_from_type (bfd
*abfd
, unsigned int r_type
)
2277 bfd_reloc_code_real_type val
;
2278 reloc_howto_type
*howto
;
2283 bfd_set_error (bfd_error_bad_value
);
2288 if (r_type
== R_AARCH64_NONE
)
2289 return &elfNN_aarch64_howto_none
;
2291 val
= elfNN_aarch64_bfd_reloc_from_type (abfd
, r_type
);
2292 howto
= elfNN_aarch64_howto_from_bfd_reloc (val
);
2297 bfd_set_error (bfd_error_bad_value
);
2302 elfNN_aarch64_info_to_howto (bfd
*abfd
, arelent
*bfd_reloc
,
2303 Elf_Internal_Rela
*elf_reloc
)
2305 unsigned int r_type
;
2307 r_type
= ELFNN_R_TYPE (elf_reloc
->r_info
);
2308 bfd_reloc
->howto
= elfNN_aarch64_howto_from_type (abfd
, r_type
);
2310 if (bfd_reloc
->howto
== NULL
)
2312 /* xgettext:c-format */
2313 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd
, r_type
);
2319 static reloc_howto_type
*
2320 elfNN_aarch64_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
2321 bfd_reloc_code_real_type code
)
2323 reloc_howto_type
*howto
= elfNN_aarch64_howto_from_bfd_reloc (code
);
2328 bfd_set_error (bfd_error_bad_value
);
2332 static reloc_howto_type
*
2333 elfNN_aarch64_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
2338 for (i
= 1; i
< ARRAY_SIZE (elfNN_aarch64_howto_table
) - 1; ++i
)
2339 if (elfNN_aarch64_howto_table
[i
].name
!= NULL
2340 && strcasecmp (elfNN_aarch64_howto_table
[i
].name
, r_name
) == 0)
2341 return &elfNN_aarch64_howto_table
[i
];
2346 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2347 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2348 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2349 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2351 /* The linker script knows the section names for placement.
2352 The entry_names are used to do simple name mangling on the stubs.
2353 Given a function name, and its type, the stub can be found. The
2354 name can be changed. The only requirement is the %s be present. */
2355 #define STUB_ENTRY_NAME "__%s_veneer"
2357 /* Stub name for a BTI landing stub. */
2358 #define BTI_STUB_ENTRY_NAME "__%s_bti_veneer"
2360 /* The name of the dynamic interpreter. This is put in the .interp
2362 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2364 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2365 (((1 << 25) - 1) << 2)
2366 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2369 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2370 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2373 aarch64_valid_for_adrp_p (bfd_vma value
, bfd_vma place
)
2375 bfd_signed_vma offset
= (bfd_signed_vma
) (PG (value
) - PG (place
)) >> 12;
2376 return offset
<= AARCH64_MAX_ADRP_IMM
&& offset
>= AARCH64_MIN_ADRP_IMM
;
2380 aarch64_valid_branch_p (bfd_vma value
, bfd_vma place
)
2382 bfd_signed_vma offset
= (bfd_signed_vma
) (value
- place
);
2383 return (offset
<= AARCH64_MAX_FWD_BRANCH_OFFSET
2384 && offset
>= AARCH64_MAX_BWD_BRANCH_OFFSET
);
2387 static const uint32_t aarch64_adrp_branch_stub
[] =
2389 0x90000010, /* adrp ip0, X */
2390 /* R_AARCH64_ADR_HI21_PCREL(X) */
2391 0x91000210, /* add ip0, ip0, :lo12:X */
2392 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2393 0xd61f0200, /* br ip0 */
2396 static const uint32_t aarch64_long_branch_stub
[] =
2399 0x58000090, /* ldr ip0, 1f */
2401 0x18000090, /* ldr wip0, 1f */
2403 0x10000011, /* adr ip1, #0 */
2404 0x8b110210, /* add ip0, ip0, ip1 */
2405 0xd61f0200, /* br ip0 */
2406 0x00000000, /* 1: .xword or .word
2407 R_AARCH64_PRELNN(X) + 12
2412 static const uint32_t aarch64_bti_direct_branch_stub
[] =
2414 0xd503245f, /* bti c */
2415 0x14000000, /* b <label> */
2418 static const uint32_t aarch64_erratum_835769_stub
[] =
2420 0x00000000, /* Placeholder for multiply accumulate. */
2421 0x14000000, /* b <label> */
2424 static const uint32_t aarch64_erratum_843419_stub
[] =
2426 0x00000000, /* Placeholder for LDR instruction. */
2427 0x14000000, /* b <label> */
2430 /* Section name for stubs is the associated section name plus this
2432 #define STUB_SUFFIX ".stub"
2434 enum elf_aarch64_stub_type
2437 aarch64_stub_adrp_branch
,
2438 aarch64_stub_long_branch
,
2439 aarch64_stub_bti_direct_branch
,
2440 aarch64_stub_erratum_835769_veneer
,
2441 aarch64_stub_erratum_843419_veneer
,
2444 struct elf_aarch64_stub_hash_entry
2446 /* Base hash table entry structure. */
2447 struct bfd_hash_entry root
;
2449 /* The stub section. */
2452 /* Offset within stub_sec of the beginning of this stub. */
2453 bfd_vma stub_offset
;
2455 /* Given the symbol's value and its section we can determine its final
2456 value when building the stubs (so the stub knows where to jump). */
2457 bfd_vma target_value
;
2458 asection
*target_section
;
2460 enum elf_aarch64_stub_type stub_type
;
2462 /* The symbol table entry, if any, that this was derived from. */
2463 struct elf_aarch64_link_hash_entry
*h
;
2465 /* Destination symbol type */
2466 unsigned char st_type
;
2468 /* The target is also a stub. */
2471 /* Where this stub is being called from, or, in the case of combined
2472 stub sections, the first input section in the group. */
2475 /* The name for the local symbol at the start of this stub. The
2476 stub name in the hash table has to be unique; this does not, so
2477 it can be friendlier. */
2480 /* The instruction which caused this stub to be generated (only valid for
2481 erratum 835769 workaround stubs at present). */
2482 uint32_t veneered_insn
;
2484 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2485 bfd_vma adrp_offset
;
2488 /* Used to build a map of a section. This is required for mixed-endian
2491 typedef struct elf_elf_section_map
2496 elf_aarch64_section_map
;
2499 typedef struct _aarch64_elf_section_data
2501 struct bfd_elf_section_data elf
;
2502 unsigned int mapcount
;
2503 unsigned int mapsize
;
2504 elf_aarch64_section_map
*map
;
2506 _aarch64_elf_section_data
;
2508 #define elf_aarch64_section_data(sec) \
2509 ((_aarch64_elf_section_data *) elf_section_data (sec))
2511 /* The size of the thread control block which is defined to be two pointers. */
2512 #define TCB_SIZE (ARCH_SIZE/8)*2
2514 struct elf_aarch64_local_symbol
2516 unsigned int got_type
;
2517 bfd_signed_vma got_refcount
;
2520 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2521 offset is from the end of the jump table and reserved entries
2524 The magic value (bfd_vma) -1 indicates that an offset has not be
2526 bfd_vma tlsdesc_got_jump_table_offset
;
2529 struct elf_aarch64_obj_tdata
2531 struct elf_obj_tdata root
;
2533 /* local symbol descriptors */
2534 struct elf_aarch64_local_symbol
*locals
;
2536 /* Zero to warn when linking objects with incompatible enum sizes. */
2537 int no_enum_size_warning
;
2539 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2540 int no_wchar_size_warning
;
2542 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2543 uint32_t gnu_and_prop
;
2545 /* Zero to warn when linking objects with incompatible
2546 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2549 /* PLT type based on security. */
2550 aarch64_plt_type plt_type
;
2553 #define elf_aarch64_tdata(bfd) \
2554 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2556 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2558 #define is_aarch64_elf(bfd) \
2559 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2560 && elf_tdata (bfd) != NULL \
2561 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2564 elfNN_aarch64_mkobject (bfd
*abfd
)
2566 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_aarch64_obj_tdata
),
2570 #define elf_aarch64_hash_entry(ent) \
2571 ((struct elf_aarch64_link_hash_entry *)(ent))
2573 #define GOT_UNKNOWN 0
2574 #define GOT_NORMAL 1
2575 #define GOT_TLS_GD 2
2576 #define GOT_TLS_IE 4
2577 #define GOT_TLSDESC_GD 8
2579 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2581 /* AArch64 ELF linker hash entry. */
2582 struct elf_aarch64_link_hash_entry
2584 struct elf_link_hash_entry root
;
2586 /* Since PLT entries have variable size, we need to record the
2587 index into .got.plt instead of recomputing it from the PLT
2589 bfd_signed_vma plt_got_offset
;
2591 /* Bit mask representing the type of GOT entry(s) if any required by
2593 unsigned int got_type
;
2595 /* TRUE if symbol is defined as a protected symbol. */
2596 unsigned int def_protected
: 1;
2598 /* A pointer to the most recently used stub hash entry against this
2600 struct elf_aarch64_stub_hash_entry
*stub_cache
;
2602 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2603 is from the end of the jump table and reserved entries within the PLTGOT.
2605 The magic value (bfd_vma) -1 indicates that an offset has not
2607 bfd_vma tlsdesc_got_jump_table_offset
;
2611 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry
*h
,
2613 unsigned long r_symndx
)
2616 return elf_aarch64_hash_entry (h
)->got_type
;
2618 if (! elf_aarch64_locals (abfd
))
2621 return elf_aarch64_locals (abfd
)[r_symndx
].got_type
;
2624 /* Get the AArch64 elf linker hash table from a link_info structure. */
2625 #define elf_aarch64_hash_table(info) \
2626 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2628 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2629 ((struct elf_aarch64_stub_hash_entry *) \
2630 bfd_hash_lookup ((table), (string), (create), (copy)))
2632 /* AArch64 ELF linker hash table. */
2633 struct elf_aarch64_link_hash_table
2635 /* The main hash table. */
2636 struct elf_link_hash_table root
;
2638 /* Nonzero to force PIC branch veneers. */
2641 /* Fix erratum 835769. */
2642 int fix_erratum_835769
;
2644 /* Fix erratum 843419. */
2645 erratum_84319_opts fix_erratum_843419
;
2647 /* Don't apply link-time values for dynamic relocations. */
2648 int no_apply_dynamic_relocs
;
2650 /* The number of bytes in the initial entry in the PLT. */
2651 bfd_size_type plt_header_size
;
2653 /* The bytes of the initial PLT entry. */
2654 const bfd_byte
*plt0_entry
;
2656 /* The number of bytes in the subsequent PLT entries. */
2657 bfd_size_type plt_entry_size
;
2659 /* The bytes of the subsequent PLT entry. */
2660 const bfd_byte
*plt_entry
;
2662 /* For convenience in allocate_dynrelocs. */
2665 /* The amount of space used by the reserved portion of the sgotplt
2666 section, plus whatever space is used by the jump slots. */
2667 bfd_vma sgotplt_jump_table_size
;
2669 /* The stub hash table. */
2670 struct bfd_hash_table stub_hash_table
;
2672 /* Linker stub bfd. */
2675 /* Linker call-backs. */
2676 asection
*(*add_stub_section
) (const char *, asection
*);
2677 void (*layout_sections_again
) (void);
2679 /* Array to keep track of which stub sections have been created, and
2680 information on stub grouping. */
2683 /* This is the section to which stubs in the group will be
2686 /* The stub section. */
2690 /* Assorted information used by elfNN_aarch64_size_stubs. */
2691 unsigned int bfd_count
;
2692 unsigned int top_index
;
2693 asection
**input_list
;
2695 /* True when two stubs are added where one targets the other, happens
2696 when BTI stubs are inserted and then the stub layout must not change
2697 during elfNN_aarch64_build_stubs. */
2698 bool has_double_stub
;
2700 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2703 /* The number of bytes in the PLT enty for the TLS descriptor. */
2704 bfd_size_type tlsdesc_plt_entry_size
;
2706 /* Used by local STT_GNU_IFUNC symbols. */
2707 htab_t loc_hash_table
;
2708 void * loc_hash_memory
;
2711 /* Create an entry in an AArch64 ELF linker hash table. */
2713 static struct bfd_hash_entry
*
2714 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry
*entry
,
2715 struct bfd_hash_table
*table
,
2718 struct elf_aarch64_link_hash_entry
*ret
=
2719 (struct elf_aarch64_link_hash_entry
*) entry
;
2721 /* Allocate the structure if it has not already been allocated by a
2724 ret
= bfd_hash_allocate (table
,
2725 sizeof (struct elf_aarch64_link_hash_entry
));
2727 return (struct bfd_hash_entry
*) ret
;
2729 /* Call the allocation method of the superclass. */
2730 ret
= ((struct elf_aarch64_link_hash_entry
*)
2731 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2735 ret
->got_type
= GOT_UNKNOWN
;
2736 ret
->def_protected
= 0;
2737 ret
->plt_got_offset
= (bfd_vma
) - 1;
2738 ret
->stub_cache
= NULL
;
2739 ret
->tlsdesc_got_jump_table_offset
= (bfd_vma
) - 1;
2742 return (struct bfd_hash_entry
*) ret
;
2745 /* Initialize an entry in the stub hash table. */
2747 static struct bfd_hash_entry
*
2748 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
2749 struct bfd_hash_table
*table
, const char *string
)
2751 /* Allocate the structure if it has not already been allocated by a
2755 entry
= bfd_hash_allocate (table
,
2757 elf_aarch64_stub_hash_entry
));
2762 /* Call the allocation method of the superclass. */
2763 entry
= bfd_hash_newfunc (entry
, table
, string
);
2766 struct elf_aarch64_stub_hash_entry
*eh
;
2768 /* Initialize the local fields. */
2769 eh
= (struct elf_aarch64_stub_hash_entry
*) entry
;
2770 memset (&eh
->stub_sec
, 0,
2771 (sizeof (struct elf_aarch64_stub_hash_entry
)
2772 - offsetof (struct elf_aarch64_stub_hash_entry
, stub_sec
)));
2778 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2779 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2780 as global symbol. We reuse indx and dynstr_index for local symbol
2781 hash since they aren't used by global symbols in this backend. */
2784 elfNN_aarch64_local_htab_hash (const void *ptr
)
2786 struct elf_link_hash_entry
*h
2787 = (struct elf_link_hash_entry
*) ptr
;
2788 return ELF_LOCAL_SYMBOL_HASH (h
->indx
, h
->dynstr_index
);
2791 /* Compare local hash entries. */
2794 elfNN_aarch64_local_htab_eq (const void *ptr1
, const void *ptr2
)
2796 struct elf_link_hash_entry
*h1
2797 = (struct elf_link_hash_entry
*) ptr1
;
2798 struct elf_link_hash_entry
*h2
2799 = (struct elf_link_hash_entry
*) ptr2
;
2801 return h1
->indx
== h2
->indx
&& h1
->dynstr_index
== h2
->dynstr_index
;
2804 /* Find and/or create a hash entry for local symbol. */
2806 static struct elf_link_hash_entry
*
2807 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table
*htab
,
2808 bfd
*abfd
, const Elf_Internal_Rela
*rel
,
2811 struct elf_aarch64_link_hash_entry e
, *ret
;
2812 asection
*sec
= abfd
->sections
;
2813 hashval_t h
= ELF_LOCAL_SYMBOL_HASH (sec
->id
,
2814 ELFNN_R_SYM (rel
->r_info
));
2817 e
.root
.indx
= sec
->id
;
2818 e
.root
.dynstr_index
= ELFNN_R_SYM (rel
->r_info
);
2819 slot
= htab_find_slot_with_hash (htab
->loc_hash_table
, &e
, h
,
2820 create
? INSERT
: NO_INSERT
);
2827 ret
= (struct elf_aarch64_link_hash_entry
*) *slot
;
2831 ret
= (struct elf_aarch64_link_hash_entry
*)
2832 objalloc_alloc ((struct objalloc
*) htab
->loc_hash_memory
,
2833 sizeof (struct elf_aarch64_link_hash_entry
));
2836 memset (ret
, 0, sizeof (*ret
));
2837 ret
->root
.indx
= sec
->id
;
2838 ret
->root
.dynstr_index
= ELFNN_R_SYM (rel
->r_info
);
2839 ret
->root
.dynindx
= -1;
2845 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2848 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info
*info
,
2849 struct elf_link_hash_entry
*dir
,
2850 struct elf_link_hash_entry
*ind
)
2852 struct elf_aarch64_link_hash_entry
*edir
, *eind
;
2854 edir
= (struct elf_aarch64_link_hash_entry
*) dir
;
2855 eind
= (struct elf_aarch64_link_hash_entry
*) ind
;
2857 if (ind
->root
.type
== bfd_link_hash_indirect
)
2859 /* Copy over PLT info. */
2860 if (dir
->got
.refcount
<= 0)
2862 edir
->got_type
= eind
->got_type
;
2863 eind
->got_type
= GOT_UNKNOWN
;
2867 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
2870 /* Merge non-visibility st_other attributes. */
2873 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
2874 unsigned int st_other
,
2876 bool dynamic ATTRIBUTE_UNUSED
)
2880 struct elf_aarch64_link_hash_entry
*eh
2881 = (struct elf_aarch64_link_hash_entry
*)h
;
2882 eh
->def_protected
= ELF_ST_VISIBILITY (st_other
) == STV_PROTECTED
;
2885 unsigned int isym_sto
= st_other
& ~ELF_ST_VISIBILITY (-1);
2886 unsigned int h_sto
= h
->other
& ~ELF_ST_VISIBILITY (-1);
2888 if (isym_sto
== h_sto
)
2891 if (isym_sto
& ~STO_AARCH64_VARIANT_PCS
)
2892 /* Not fatal, this callback cannot fail. */
2893 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2894 h
->root
.root
.string
, isym_sto
);
2896 /* Note: Ideally we would warn about any attribute mismatch, but
2897 this api does not allow that without substantial changes. */
2898 if (isym_sto
& STO_AARCH64_VARIANT_PCS
)
2899 h
->other
|= STO_AARCH64_VARIANT_PCS
;
2902 /* Destroy an AArch64 elf linker hash table. */
2905 elfNN_aarch64_link_hash_table_free (bfd
*obfd
)
2907 struct elf_aarch64_link_hash_table
*ret
2908 = (struct elf_aarch64_link_hash_table
*) obfd
->link
.hash
;
2910 if (ret
->loc_hash_table
)
2911 htab_delete (ret
->loc_hash_table
);
2912 if (ret
->loc_hash_memory
)
2913 objalloc_free ((struct objalloc
*) ret
->loc_hash_memory
);
2915 bfd_hash_table_free (&ret
->stub_hash_table
);
2916 _bfd_elf_link_hash_table_free (obfd
);
2919 /* Create an AArch64 elf linker hash table. */
2921 static struct bfd_link_hash_table
*
2922 elfNN_aarch64_link_hash_table_create (bfd
*abfd
)
2924 struct elf_aarch64_link_hash_table
*ret
;
2925 size_t amt
= sizeof (struct elf_aarch64_link_hash_table
);
2927 ret
= bfd_zmalloc (amt
);
2931 if (!_bfd_elf_link_hash_table_init
2932 (&ret
->root
, abfd
, elfNN_aarch64_link_hash_newfunc
,
2933 sizeof (struct elf_aarch64_link_hash_entry
), AARCH64_ELF_DATA
))
2939 ret
->plt_header_size
= PLT_ENTRY_SIZE
;
2940 ret
->plt0_entry
= elfNN_aarch64_small_plt0_entry
;
2941 ret
->plt_entry_size
= PLT_SMALL_ENTRY_SIZE
;
2942 ret
->plt_entry
= elfNN_aarch64_small_plt_entry
;
2943 ret
->tlsdesc_plt_entry_size
= PLT_TLSDESC_ENTRY_SIZE
;
2945 ret
->root
.tlsdesc_got
= (bfd_vma
) - 1;
2947 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
2948 sizeof (struct elf_aarch64_stub_hash_entry
)))
2950 _bfd_elf_link_hash_table_free (abfd
);
2954 ret
->loc_hash_table
= htab_try_create (1024,
2955 elfNN_aarch64_local_htab_hash
,
2956 elfNN_aarch64_local_htab_eq
,
2958 ret
->loc_hash_memory
= objalloc_create ();
2959 if (!ret
->loc_hash_table
|| !ret
->loc_hash_memory
)
2961 elfNN_aarch64_link_hash_table_free (abfd
);
2964 ret
->root
.root
.hash_table_free
= elfNN_aarch64_link_hash_table_free
;
2966 return &ret
->root
.root
;
2969 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2972 aarch64_relocate (unsigned int r_type
, bfd
*input_bfd
, asection
*input_section
,
2973 bfd_vma offset
, bfd_vma value
)
2975 reloc_howto_type
*howto
;
2978 howto
= elfNN_aarch64_howto_from_type (input_bfd
, r_type
);
2979 place
= (input_section
->output_section
->vma
+ input_section
->output_offset
2982 r_type
= elfNN_aarch64_bfd_reloc_from_type (input_bfd
, r_type
);
2983 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, r_type
, place
,
2985 return _bfd_aarch64_elf_put_addend (input_bfd
,
2986 input_section
->contents
+ offset
, r_type
,
2987 howto
, value
) == bfd_reloc_ok
;
2990 /* Determine the type of stub needed, if any, for a call. */
2992 static enum elf_aarch64_stub_type
2993 aarch64_type_of_stub (asection
*input_sec
,
2994 const Elf_Internal_Rela
*rel
,
2996 unsigned char st_type
,
2997 bfd_vma destination
)
3000 bfd_signed_vma branch_offset
;
3001 unsigned int r_type
;
3002 enum elf_aarch64_stub_type stub_type
= aarch64_stub_none
;
3004 if (st_type
!= STT_FUNC
3005 && (sym_sec
== input_sec
))
3008 /* Determine where the call point is. */
3009 location
= (input_sec
->output_offset
3010 + input_sec
->output_section
->vma
+ rel
->r_offset
);
3012 branch_offset
= (bfd_signed_vma
) (destination
- location
);
3014 r_type
= ELFNN_R_TYPE (rel
->r_info
);
3016 /* We don't want to redirect any old unconditional jump in this way,
3017 only one which is being used for a sibcall, where it is
3018 acceptable for the IP0 and IP1 registers to be clobbered. */
3019 if ((r_type
== AARCH64_R (CALL26
) || r_type
== AARCH64_R (JUMP26
))
3020 && (branch_offset
> AARCH64_MAX_FWD_BRANCH_OFFSET
3021 || branch_offset
< AARCH64_MAX_BWD_BRANCH_OFFSET
))
3023 stub_type
= aarch64_stub_long_branch
;
3029 /* Build a name for an entry in the stub hash table. */
3032 elfNN_aarch64_stub_name (const asection
*input_section
,
3033 const asection
*sym_sec
,
3034 const struct elf_aarch64_link_hash_entry
*hash
,
3035 const Elf_Internal_Rela
*rel
)
3042 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 16 + 1;
3043 stub_name
= bfd_malloc (len
);
3044 if (stub_name
!= NULL
)
3045 snprintf (stub_name
, len
, "%08x_%s+%" PRIx64
,
3046 (unsigned int) input_section
->id
,
3047 hash
->root
.root
.root
.string
,
3048 (uint64_t) rel
->r_addend
);
3052 len
= 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3053 stub_name
= bfd_malloc (len
);
3054 if (stub_name
!= NULL
)
3055 snprintf (stub_name
, len
, "%08x_%x:%x+%" PRIx64
,
3056 (unsigned int) input_section
->id
,
3057 (unsigned int) sym_sec
->id
,
3058 (unsigned int) ELFNN_R_SYM (rel
->r_info
),
3059 (uint64_t) rel
->r_addend
);
3065 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3066 executable PLT slots where the executable never takes the address of those
3067 functions, the function symbols are not added to the hash table. */
3070 elf_aarch64_hash_symbol (struct elf_link_hash_entry
*h
)
3072 if (h
->plt
.offset
!= (bfd_vma
) -1
3074 && !h
->pointer_equality_needed
)
3077 return _bfd_elf_hash_symbol (h
);
3081 /* Look up an entry in the stub hash. Stub entries are cached because
3082 creating the stub name takes a bit of time. */
3084 static struct elf_aarch64_stub_hash_entry
*
3085 elfNN_aarch64_get_stub_entry (const asection
*input_section
,
3086 const asection
*sym_sec
,
3087 struct elf_link_hash_entry
*hash
,
3088 const Elf_Internal_Rela
*rel
,
3089 struct elf_aarch64_link_hash_table
*htab
)
3091 struct elf_aarch64_stub_hash_entry
*stub_entry
;
3092 struct elf_aarch64_link_hash_entry
*h
=
3093 (struct elf_aarch64_link_hash_entry
*) hash
;
3094 const asection
*id_sec
;
3096 if ((input_section
->flags
& SEC_CODE
) == 0)
3099 /* If this input section is part of a group of sections sharing one
3100 stub section, then use the id of the first section in the group.
3101 Stub names need to include a section id, as there may well be
3102 more than one stub used to reach say, printf, and we need to
3103 distinguish between them. */
3104 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
3106 if (h
!= NULL
&& h
->stub_cache
!= NULL
3107 && h
->stub_cache
->h
== h
&& h
->stub_cache
->id_sec
== id_sec
)
3109 stub_entry
= h
->stub_cache
;
3115 stub_name
= elfNN_aarch64_stub_name (id_sec
, sym_sec
, h
, rel
);
3116 if (stub_name
== NULL
)
3119 stub_entry
= aarch64_stub_hash_lookup (&htab
->stub_hash_table
,
3120 stub_name
, false, false);
3122 h
->stub_cache
= stub_entry
;
3131 /* Create a stub section. */
3134 _bfd_aarch64_create_stub_section (asection
*section
,
3135 struct elf_aarch64_link_hash_table
*htab
)
3141 namelen
= strlen (section
->name
);
3142 len
= namelen
+ sizeof (STUB_SUFFIX
);
3143 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
3147 memcpy (s_name
, section
->name
, namelen
);
3148 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3149 return (*htab
->add_stub_section
) (s_name
, section
);
3153 /* Find or create a stub section for a link section.
3155 Fix or create the stub section used to collect stubs attached to
3156 the specified link section. */
3159 _bfd_aarch64_get_stub_for_link_section (asection
*link_section
,
3160 struct elf_aarch64_link_hash_table
*htab
)
3162 if (htab
->stub_group
[link_section
->id
].stub_sec
== NULL
)
3163 htab
->stub_group
[link_section
->id
].stub_sec
3164 = _bfd_aarch64_create_stub_section (link_section
, htab
);
3165 return htab
->stub_group
[link_section
->id
].stub_sec
;
3169 /* Find or create a stub section in the stub group for an input
3173 _bfd_aarch64_create_or_find_stub_sec (asection
*section
,
3174 struct elf_aarch64_link_hash_table
*htab
)
3176 asection
*link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3177 return _bfd_aarch64_get_stub_for_link_section (link_sec
, htab
);
3181 /* Add a new stub entry in the stub group associated with an input
3182 section to the stub hash. Not all fields of the new stub entry are
3185 static struct elf_aarch64_stub_hash_entry
*
3186 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name
,
3188 struct elf_aarch64_link_hash_table
*htab
)
3192 struct elf_aarch64_stub_hash_entry
*stub_entry
;
3194 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3195 stub_sec
= _bfd_aarch64_create_or_find_stub_sec (section
, htab
);
3197 /* Enter this entry into the linker stub hash table. */
3198 stub_entry
= aarch64_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3200 if (stub_entry
== NULL
)
3202 /* xgettext:c-format */
3203 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3204 section
->owner
, stub_name
);
3208 stub_entry
->stub_sec
= stub_sec
;
3209 stub_entry
->stub_offset
= 0;
3210 stub_entry
->id_sec
= link_sec
;
3215 /* Add a new stub entry in the final stub section to the stub hash.
3216 Not all fields of the new stub entry are initialised. */
3218 static struct elf_aarch64_stub_hash_entry
*
3219 _bfd_aarch64_add_stub_entry_after (const char *stub_name
,
3220 asection
*link_section
,
3221 struct elf_aarch64_link_hash_table
*htab
)
3224 struct elf_aarch64_stub_hash_entry
*stub_entry
;
3227 /* Only create the actual stub if we will end up needing it. */
3228 if (htab
->fix_erratum_843419
& ERRAT_ADRP
)
3229 stub_sec
= _bfd_aarch64_get_stub_for_link_section (link_section
, htab
);
3230 stub_entry
= aarch64_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3232 if (stub_entry
== NULL
)
3234 _bfd_error_handler (_("cannot create stub entry %s"), stub_name
);
3238 stub_entry
->stub_sec
= stub_sec
;
3239 stub_entry
->stub_offset
= 0;
3240 stub_entry
->id_sec
= link_section
;
3247 aarch64_build_one_stub (struct bfd_hash_entry
*gen_entry
,
3250 struct elf_aarch64_stub_hash_entry
*stub_entry
;
3255 bfd_vma veneered_insn_loc
;
3256 bfd_vma veneer_entry_loc
;
3257 bfd_signed_vma branch_offset
= 0;
3258 unsigned int template_size
;
3259 unsigned int pad_size
= 0;
3260 const uint32_t *template;
3262 struct bfd_link_info
*info
;
3263 struct elf_aarch64_link_hash_table
*htab
;
3265 /* Massage our args to the form they really have. */
3266 stub_entry
= (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
3268 info
= (struct bfd_link_info
*) in_arg
;
3269 htab
= elf_aarch64_hash_table (info
);
3271 /* Fail if the target section could not be assigned to an output
3272 section. The user should fix his linker script. */
3273 if (stub_entry
->target_section
->output_section
== NULL
3274 && info
->non_contiguous_regions
)
3275 info
->callbacks
->einfo (_("%F%P: Could not assign `%pA' to an output section. "
3277 "--enable-non-contiguous-regions.\n"),
3278 stub_entry
->target_section
);
3280 stub_sec
= stub_entry
->stub_sec
;
3282 /* The layout must not change when a stub may be the target of another. */
3283 if (htab
->has_double_stub
)
3284 BFD_ASSERT (stub_entry
->stub_offset
== stub_sec
->size
);
3286 /* Make a note of the offset within the stubs for this entry. */
3287 stub_entry
->stub_offset
= stub_sec
->size
;
3288 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
3290 stub_bfd
= stub_sec
->owner
;
3292 /* This is the address of the stub destination. */
3293 sym_value
= (stub_entry
->target_value
3294 + stub_entry
->target_section
->output_offset
3295 + stub_entry
->target_section
->output_section
->vma
);
3297 if (stub_entry
->stub_type
== aarch64_stub_long_branch
)
3299 bfd_vma place
= (stub_entry
->stub_offset
+ stub_sec
->output_section
->vma
3300 + stub_sec
->output_offset
);
3302 /* See if we can relax the stub. */
3303 if (aarch64_valid_for_adrp_p (sym_value
, place
))
3305 stub_entry
->stub_type
= aarch64_stub_adrp_branch
;
3307 /* Avoid the relaxation changing the layout. */
3308 if (htab
->has_double_stub
)
3309 pad_size
= sizeof (aarch64_long_branch_stub
)
3310 - sizeof (aarch64_adrp_branch_stub
);
3314 switch (stub_entry
->stub_type
)
3316 case aarch64_stub_adrp_branch
:
3317 template = aarch64_adrp_branch_stub
;
3318 template_size
= sizeof (aarch64_adrp_branch_stub
);
3320 case aarch64_stub_long_branch
:
3321 template = aarch64_long_branch_stub
;
3322 template_size
= sizeof (aarch64_long_branch_stub
);
3324 case aarch64_stub_bti_direct_branch
:
3325 template = aarch64_bti_direct_branch_stub
;
3326 template_size
= sizeof (aarch64_bti_direct_branch_stub
);
3328 case aarch64_stub_erratum_835769_veneer
:
3329 template = aarch64_erratum_835769_stub
;
3330 template_size
= sizeof (aarch64_erratum_835769_stub
);
3332 case aarch64_stub_erratum_843419_veneer
:
3333 template = aarch64_erratum_843419_stub
;
3334 template_size
= sizeof (aarch64_erratum_843419_stub
);
3340 for (i
= 0; i
< (template_size
/ sizeof template[0]); i
++)
3342 bfd_putl32 (template[i
], loc
);
3346 template_size
+= pad_size
;
3347 template_size
= (template_size
+ 7) & ~7;
3348 stub_sec
->size
+= template_size
;
3350 switch (stub_entry
->stub_type
)
3352 case aarch64_stub_adrp_branch
:
3353 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21
), stub_bfd
, stub_sec
,
3354 stub_entry
->stub_offset
, sym_value
))
3355 /* The stub would not have been relaxed if the offset was out
3359 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC
), stub_bfd
, stub_sec
,
3360 stub_entry
->stub_offset
+ 4, sym_value
))
3364 case aarch64_stub_long_branch
:
3365 /* We want the value relative to the address 12 bytes back from the
3367 if (!aarch64_relocate (AARCH64_R (PRELNN
), stub_bfd
, stub_sec
,
3368 stub_entry
->stub_offset
+ 16, sym_value
+ 12))
3372 case aarch64_stub_bti_direct_branch
:
3373 if (!aarch64_relocate (AARCH64_R (JUMP26
), stub_bfd
, stub_sec
,
3374 stub_entry
->stub_offset
+ 4, sym_value
))
3378 case aarch64_stub_erratum_835769_veneer
:
3379 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
3380 + stub_entry
->target_section
->output_offset
3381 + stub_entry
->target_value
;
3382 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
3383 + stub_entry
->stub_sec
->output_offset
3384 + stub_entry
->stub_offset
;
3385 branch_offset
= veneered_insn_loc
- veneer_entry_loc
;
3386 branch_offset
>>= 2;
3387 branch_offset
&= 0x3ffffff;
3388 bfd_putl32 (stub_entry
->veneered_insn
,
3389 stub_sec
->contents
+ stub_entry
->stub_offset
);
3390 bfd_putl32 (template[1] | branch_offset
,
3391 stub_sec
->contents
+ stub_entry
->stub_offset
+ 4);
3394 case aarch64_stub_erratum_843419_veneer
:
3395 if (!aarch64_relocate (AARCH64_R (JUMP26
), stub_bfd
, stub_sec
,
3396 stub_entry
->stub_offset
+ 4, sym_value
+ 4))
3407 /* As above, but don't actually build the stub. Just bump offset so
3408 we know stub section sizes and record the offset for each stub so
3409 a stub can target another stub (needed for BTI direct branch stub). */
3412 aarch64_size_one_stub (struct bfd_hash_entry
*gen_entry
, void *in_arg
)
3414 struct elf_aarch64_stub_hash_entry
*stub_entry
;
3415 struct elf_aarch64_link_hash_table
*htab
;
3418 /* Massage our args to the form they really have. */
3419 stub_entry
= (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
3420 htab
= (struct elf_aarch64_link_hash_table
*) in_arg
;
3422 switch (stub_entry
->stub_type
)
3424 case aarch64_stub_adrp_branch
:
3425 size
= sizeof (aarch64_adrp_branch_stub
);
3427 case aarch64_stub_long_branch
:
3428 size
= sizeof (aarch64_long_branch_stub
);
3430 case aarch64_stub_bti_direct_branch
:
3431 size
= sizeof (aarch64_bti_direct_branch_stub
);
3433 case aarch64_stub_erratum_835769_veneer
:
3434 size
= sizeof (aarch64_erratum_835769_stub
);
3436 case aarch64_stub_erratum_843419_veneer
:
3438 if (htab
->fix_erratum_843419
== ERRAT_ADR
)
3440 size
= sizeof (aarch64_erratum_843419_stub
);
3447 size
= (size
+ 7) & ~7;
3448 stub_entry
->stub_offset
= stub_entry
->stub_sec
->size
;
3449 stub_entry
->stub_sec
->size
+= size
;
3453 /* Output is BTI compatible. */
3456 elf_aarch64_bti_p (bfd
*output_bfd
)
3458 uint32_t prop
= elf_aarch64_tdata (output_bfd
)->gnu_and_prop
;
3459 return prop
& GNU_PROPERTY_AARCH64_FEATURE_1_BTI
;
3462 /* External entry points for sizing and building linker stubs. */
3464 /* Set up various things so that we can make a list of input sections
3465 for each output section included in the link. Returns -1 on error,
3466 0 when no stubs will be needed, and 1 on success. */
3469 elfNN_aarch64_setup_section_lists (bfd
*output_bfd
,
3470 struct bfd_link_info
*info
)
3473 unsigned int bfd_count
;
3474 unsigned int top_id
, top_index
;
3476 asection
**input_list
, **list
;
3478 struct elf_aarch64_link_hash_table
*htab
=
3479 elf_aarch64_hash_table (info
);
3481 if (!is_elf_hash_table (&htab
->root
.root
))
3484 /* Count the number of input BFDs and find the top input section id. */
3485 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
3486 input_bfd
!= NULL
; input_bfd
= input_bfd
->link
.next
)
3489 for (section
= input_bfd
->sections
;
3490 section
!= NULL
; section
= section
->next
)
3492 if (top_id
< section
->id
)
3493 top_id
= section
->id
;
3496 htab
->bfd_count
= bfd_count
;
3498 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
3499 htab
->stub_group
= bfd_zmalloc (amt
);
3500 if (htab
->stub_group
== NULL
)
3503 /* We can't use output_bfd->section_count here to find the top output
3504 section index as some sections may have been removed, and
3505 _bfd_strip_section_from_output doesn't renumber the indices. */
3506 for (section
= output_bfd
->sections
, top_index
= 0;
3507 section
!= NULL
; section
= section
->next
)
3509 if (top_index
< section
->index
)
3510 top_index
= section
->index
;
3513 htab
->top_index
= top_index
;
3514 amt
= sizeof (asection
*) * (top_index
+ 1);
3515 input_list
= bfd_malloc (amt
);
3516 htab
->input_list
= input_list
;
3517 if (input_list
== NULL
)
3520 /* For sections we aren't interested in, mark their entries with a
3521 value we can check later. */
3522 list
= input_list
+ top_index
;
3524 *list
= bfd_abs_section_ptr
;
3525 while (list
-- != input_list
);
3527 for (section
= output_bfd
->sections
;
3528 section
!= NULL
; section
= section
->next
)
3530 if ((section
->flags
& SEC_CODE
) != 0)
3531 input_list
[section
->index
] = NULL
;
3537 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3538 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3540 /* The linker repeatedly calls this function for each input section,
3541 in the order that input sections are linked into output sections.
3542 Build lists of input sections to determine groupings between which
3543 we may insert linker stubs. */
3546 elfNN_aarch64_next_input_section (struct bfd_link_info
*info
, asection
*isec
)
3548 struct elf_aarch64_link_hash_table
*htab
=
3549 elf_aarch64_hash_table (info
);
3551 if (isec
->output_section
->index
<= htab
->top_index
)
3553 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
3555 if (*list
!= bfd_abs_section_ptr
&& (isec
->flags
& SEC_CODE
) != 0)
3557 /* Steal the link_sec pointer for our list. */
3558 /* This happens to make the list in reverse order,
3559 which is what we want. */
3560 PREV_SEC (isec
) = *list
;
3566 /* See whether we can group stub sections together. Grouping stub
3567 sections may result in fewer stubs. More importantly, we need to
3568 put all .init* and .fini* stubs at the beginning of the .init or
3569 .fini output sections respectively, because glibc splits the
3570 _init and _fini functions into multiple parts. Putting a stub in
3571 the middle of a function is not a good idea. */
3574 group_sections (struct elf_aarch64_link_hash_table
*htab
,
3575 bfd_size_type stub_group_size
,
3576 bool stubs_always_after_branch
)
3578 asection
**list
= htab
->input_list
;
3582 asection
*tail
= *list
;
3585 if (tail
== bfd_abs_section_ptr
)
3588 /* Reverse the list: we must avoid placing stubs at the
3589 beginning of the section because the beginning of the text
3590 section may be required for an interrupt vector in bare metal
3592 #define NEXT_SEC PREV_SEC
3594 while (tail
!= NULL
)
3596 /* Pop from tail. */
3597 asection
*item
= tail
;
3598 tail
= PREV_SEC (item
);
3601 NEXT_SEC (item
) = head
;
3605 while (head
!= NULL
)
3609 bfd_vma stub_group_start
= head
->output_offset
;
3610 bfd_vma end_of_next
;
3613 while (NEXT_SEC (curr
) != NULL
)
3615 next
= NEXT_SEC (curr
);
3616 end_of_next
= next
->output_offset
+ next
->size
;
3617 if (end_of_next
- stub_group_start
>= stub_group_size
)
3618 /* End of NEXT is too far from start, so stop. */
3620 /* Add NEXT to the group. */
3624 /* OK, the size from the start to the start of CURR is less
3625 than stub_group_size and thus can be handled by one stub
3626 section. (Or the head section is itself larger than
3627 stub_group_size, in which case we may be toast.)
3628 We should really be keeping track of the total size of
3629 stubs added here, as stubs contribute to the final output
3633 next
= NEXT_SEC (head
);
3634 /* Set up this stub group. */
3635 htab
->stub_group
[head
->id
].link_sec
= curr
;
3637 while (head
!= curr
&& (head
= next
) != NULL
);
3639 /* But wait, there's more! Input sections up to stub_group_size
3640 bytes after the stub section can be handled by it too. */
3641 if (!stubs_always_after_branch
)
3643 stub_group_start
= curr
->output_offset
+ curr
->size
;
3645 while (next
!= NULL
)
3647 end_of_next
= next
->output_offset
+ next
->size
;
3648 if (end_of_next
- stub_group_start
>= stub_group_size
)
3649 /* End of NEXT is too far from stubs, so stop. */
3651 /* Add NEXT to the stub group. */
3653 next
= NEXT_SEC (head
);
3654 htab
->stub_group
[head
->id
].link_sec
= curr
;
3660 while (list
++ != htab
->input_list
+ htab
->top_index
);
3662 free (htab
->input_list
);
3668 #define AARCH64_HINT(insn) (((insn) & 0xfffff01f) == 0xd503201f)
3669 #define AARCH64_PACIASP 0xd503233f
3670 #define AARCH64_PACIBSP 0xd503237f
3671 #define AARCH64_BTI_C 0xd503245f
3672 #define AARCH64_BTI_J 0xd503249f
3673 #define AARCH64_BTI_JC 0xd50324df
3675 /* True if the inserted stub does not break BTI compatibility. */
3678 aarch64_bti_stub_p (struct bfd_link_info
*info
,
3679 struct elf_aarch64_stub_hash_entry
*stub_entry
)
3681 /* Stubs without indirect branch are BTI compatible. */
3682 if (stub_entry
->stub_type
!= aarch64_stub_adrp_branch
3683 && stub_entry
->stub_type
!= aarch64_stub_long_branch
)
3686 /* Return true if the target instruction is compatible with BR x16. */
3688 struct elf_aarch64_link_hash_table
*globals
= elf_aarch64_hash_table (info
);
3689 asection
*section
= stub_entry
->target_section
;
3691 file_ptr off
= stub_entry
->target_value
;
3692 bfd_size_type count
= sizeof (loc
);
3694 /* PLT code is not generated yet, so treat it specially.
3695 Note: Checking elf_aarch64_obj_tdata.plt_type & PLT_BTI is not
3696 enough because it only implies BTI in the PLT0 and tlsdesc PLT
3697 entries. Normal PLT entries don't have BTI in a shared library
3698 (because such PLT is normally not called indirectly and adding
3699 the BTI when a stub targets a PLT would change the PLT layout
3700 and it's too late for that here). */
3701 if (section
== globals
->root
.splt
)
3702 memcpy (loc
, globals
->plt_entry
, count
);
3703 else if (!bfd_get_section_contents (section
->owner
, section
, loc
, off
, count
))
3706 uint32_t insn
= bfd_getl32 (loc
);
3707 if (!AARCH64_HINT (insn
))
3709 return insn
== AARCH64_BTI_C
3710 || insn
== AARCH64_PACIASP
3711 || insn
== AARCH64_BTI_JC
3712 || insn
== AARCH64_BTI_J
3713 || insn
== AARCH64_PACIBSP
;
3716 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3718 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3719 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3720 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3721 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3722 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3723 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3725 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3726 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3727 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3728 #define AARCH64_ZR 0x1f
3730 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3731 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3733 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3734 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3735 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3736 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3737 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3738 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3739 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3740 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3741 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3742 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3743 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3744 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3745 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3746 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3747 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3748 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3749 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3750 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3752 /* Classify an INSN if it is indeed a load/store.
3754 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3756 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3759 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3762 aarch64_mem_op_p (uint32_t insn
, unsigned int *rt
, unsigned int *rt2
,
3763 bool *pair
, bool *load
)
3771 /* Bail out quickly if INSN doesn't fall into the load-store
3773 if (!AARCH64_LDST (insn
))
3778 if (AARCH64_LDST_EX (insn
))
3780 *rt
= AARCH64_RT (insn
);
3782 if (AARCH64_BIT (insn
, 21) == 1)
3785 *rt2
= AARCH64_RT2 (insn
);
3787 *load
= AARCH64_LD (insn
);
3790 else if (AARCH64_LDST_NAP (insn
)
3791 || AARCH64_LDSTP_PI (insn
)
3792 || AARCH64_LDSTP_O (insn
)
3793 || AARCH64_LDSTP_PRE (insn
))
3796 *rt
= AARCH64_RT (insn
);
3797 *rt2
= AARCH64_RT2 (insn
);
3798 *load
= AARCH64_LD (insn
);
3801 else if (AARCH64_LDST_PCREL (insn
)
3802 || AARCH64_LDST_UI (insn
)
3803 || AARCH64_LDST_PIIMM (insn
)
3804 || AARCH64_LDST_U (insn
)
3805 || AARCH64_LDST_PREIMM (insn
)
3806 || AARCH64_LDST_RO (insn
)
3807 || AARCH64_LDST_UIMM (insn
))
3809 *rt
= AARCH64_RT (insn
);
3811 if (AARCH64_LDST_PCREL (insn
))
3813 opc
= AARCH64_BITS (insn
, 22, 2);
3814 v
= AARCH64_BIT (insn
, 26);
3815 opc_v
= opc
| (v
<< 2);
3816 *load
= (opc_v
== 1 || opc_v
== 2 || opc_v
== 3
3817 || opc_v
== 5 || opc_v
== 7);
3820 else if (AARCH64_LDST_SIMD_M (insn
)
3821 || AARCH64_LDST_SIMD_M_PI (insn
))
3823 *rt
= AARCH64_RT (insn
);
3824 *load
= AARCH64_BIT (insn
, 22);
3825 opcode
= (insn
>> 12) & 0xf;
3852 else if (AARCH64_LDST_SIMD_S (insn
)
3853 || AARCH64_LDST_SIMD_S_PI (insn
))
3855 *rt
= AARCH64_RT (insn
);
3856 r
= (insn
>> 21) & 1;
3857 *load
= AARCH64_BIT (insn
, 22);
3858 opcode
= (insn
>> 13) & 0x7;
3870 *rt2
= *rt
+ (r
== 0 ? 2 : 3);
3878 *rt2
= *rt
+ (r
== 0 ? 2 : 3);
3890 /* Return TRUE if INSN is multiply-accumulate. */
3893 aarch64_mlxl_p (uint32_t insn
)
3895 uint32_t op31
= AARCH64_OP31 (insn
);
3897 if (AARCH64_MAC (insn
)
3898 && (op31
== 0 || op31
== 1 || op31
== 5)
3899 /* Exclude MUL instructions which are encoded as a multiple accumulate
3901 && AARCH64_RA (insn
) != AARCH64_ZR
)
3907 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3908 it is possible for a 64-bit multiply-accumulate instruction to generate an
3909 incorrect result. The details are quite complex and hard to
3910 determine statically, since branches in the code may exist in some
3911 circumstances, but all cases end with a memory (load, store, or
3912 prefetch) instruction followed immediately by the multiply-accumulate
3913 operation. We employ a linker patching technique, by moving the potentially
3914 affected multiply-accumulate instruction into a patch region and replacing
3915 the original instruction with a branch to the patch. This function checks
3916 if INSN_1 is the memory operation followed by a multiply-accumulate
3917 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3918 if INSN_1 and INSN_2 are safe. */
3921 aarch64_erratum_sequence (uint32_t insn_1
, uint32_t insn_2
)
3931 if (aarch64_mlxl_p (insn_2
)
3932 && aarch64_mem_op_p (insn_1
, &rt
, &rt2
, &pair
, &load
))
3934 /* Any SIMD memory op is independent of the subsequent MLA
3935 by definition of the erratum. */
3936 if (AARCH64_BIT (insn_1
, 26))
3939 /* If not SIMD, check for integer memory ops and MLA relationship. */
3940 rn
= AARCH64_RN (insn_2
);
3941 ra
= AARCH64_RA (insn_2
);
3942 rm
= AARCH64_RM (insn_2
);
3944 /* If this is a load and there's a true(RAW) dependency, we are safe
3945 and this is not an erratum sequence. */
3947 (rt
== rn
|| rt
== rm
|| rt
== ra
3948 || (pair
&& (rt2
== rn
|| rt2
== rm
|| rt2
== ra
))))
3951 /* We conservatively put out stubs for all other cases (including
3959 /* Used to order a list of mapping symbols by address. */
3962 elf_aarch64_compare_mapping (const void *a
, const void *b
)
3964 const elf_aarch64_section_map
*amap
= (const elf_aarch64_section_map
*) a
;
3965 const elf_aarch64_section_map
*bmap
= (const elf_aarch64_section_map
*) b
;
3967 if (amap
->vma
> bmap
->vma
)
3969 else if (amap
->vma
< bmap
->vma
)
3971 else if (amap
->type
> bmap
->type
)
3972 /* Ensure results do not depend on the host qsort for objects with
3973 multiple mapping symbols at the same address by sorting on type
3976 else if (amap
->type
< bmap
->type
)
3984 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes
)
3986 char *stub_name
= (char *) bfd_malloc
3987 (strlen ("__erratum_835769_veneer_") + 16);
3988 if (stub_name
!= NULL
)
3989 sprintf (stub_name
,"__erratum_835769_veneer_%d", num_fixes
);
3993 /* Scan for Cortex-A53 erratum 835769 sequence.
3995 Return TRUE else FALSE on abnormal termination. */
3998 _bfd_aarch64_erratum_835769_scan (bfd
*input_bfd
,
3999 struct bfd_link_info
*info
,
4000 unsigned int *num_fixes_p
)
4003 struct elf_aarch64_link_hash_table
*htab
= elf_aarch64_hash_table (info
);
4004 unsigned int num_fixes
= *num_fixes_p
;
4009 for (section
= input_bfd
->sections
;
4011 section
= section
->next
)
4013 bfd_byte
*contents
= NULL
;
4014 struct _aarch64_elf_section_data
*sec_data
;
4017 if (elf_section_type (section
) != SHT_PROGBITS
4018 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
4019 || (section
->flags
& SEC_EXCLUDE
) != 0
4020 || (section
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
4021 || (section
->output_section
== bfd_abs_section_ptr
))
4024 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
4025 contents
= elf_section_data (section
)->this_hdr
.contents
;
4026 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
4029 sec_data
= elf_aarch64_section_data (section
);
4031 if (sec_data
->mapcount
)
4032 qsort (sec_data
->map
, sec_data
->mapcount
,
4033 sizeof (elf_aarch64_section_map
), elf_aarch64_compare_mapping
);
4035 for (span
= 0; span
< sec_data
->mapcount
; span
++)
4037 unsigned int span_start
= sec_data
->map
[span
].vma
;
4038 unsigned int span_end
= ((span
== sec_data
->mapcount
- 1)
4039 ? sec_data
->map
[0].vma
+ section
->size
4040 : sec_data
->map
[span
+ 1].vma
);
4042 char span_type
= sec_data
->map
[span
].type
;
4044 if (span_type
== 'd')
4047 for (i
= span_start
; i
+ 4 < span_end
; i
+= 4)
4049 uint32_t insn_1
= bfd_getl32 (contents
+ i
);
4050 uint32_t insn_2
= bfd_getl32 (contents
+ i
+ 4);
4052 if (aarch64_erratum_sequence (insn_1
, insn_2
))
4054 struct elf_aarch64_stub_hash_entry
*stub_entry
;
4055 char *stub_name
= _bfd_aarch64_erratum_835769_stub_name (num_fixes
);
4059 stub_entry
= _bfd_aarch64_add_stub_entry_in_group (stub_name
,
4065 stub_entry
->stub_type
= aarch64_stub_erratum_835769_veneer
;
4066 stub_entry
->target_section
= section
;
4067 stub_entry
->target_value
= i
+ 4;
4068 stub_entry
->veneered_insn
= insn_2
;
4069 stub_entry
->output_name
= stub_name
;
4074 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4078 *num_fixes_p
= num_fixes
;
4084 /* Test if instruction INSN is ADRP. */
4087 _bfd_aarch64_adrp_p (uint32_t insn
)
4089 return ((insn
& AARCH64_ADRP_OP_MASK
) == AARCH64_ADRP_OP
);
4093 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
4096 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1
, uint32_t insn_2
,
4104 return (aarch64_mem_op_p (insn_2
, &rt
, &rt2
, &pair
, &load
)
4107 && AARCH64_LDST_UIMM (insn_3
)
4108 && AARCH64_RN (insn_3
) == AARCH64_RD (insn_1
));
4112 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4114 Return TRUE if section CONTENTS at offset I contains one of the
4115 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4116 seen set P_VENEER_I to the offset of the final LOAD/STORE
4117 instruction in the sequence.
4121 _bfd_aarch64_erratum_843419_p (bfd_byte
*contents
, bfd_vma vma
,
4122 bfd_vma i
, bfd_vma span_end
,
4123 bfd_vma
*p_veneer_i
)
4125 uint32_t insn_1
= bfd_getl32 (contents
+ i
);
4127 if (!_bfd_aarch64_adrp_p (insn_1
))
4130 if (span_end
< i
+ 12)
4133 uint32_t insn_2
= bfd_getl32 (contents
+ i
+ 4);
4134 uint32_t insn_3
= bfd_getl32 (contents
+ i
+ 8);
4136 if ((vma
& 0xfff) != 0xff8 && (vma
& 0xfff) != 0xffc)
4139 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1
, insn_2
, insn_3
))
4141 *p_veneer_i
= i
+ 8;
4145 if (span_end
< i
+ 16)
4148 uint32_t insn_4
= bfd_getl32 (contents
+ i
+ 12);
4150 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1
, insn_2
, insn_4
))
4152 *p_veneer_i
= i
+ 12;
4160 /* Resize all stub sections. */
4163 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table
*htab
)
4167 /* OK, we've added some stubs. Find out the new size of the
4169 for (section
= htab
->stub_bfd
->sections
;
4170 section
!= NULL
; section
= section
->next
)
4172 /* Ignore non-stub sections. */
4173 if (!strstr (section
->name
, STUB_SUFFIX
))
4176 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4177 as long branch stubs contain a 64-bit address. */
4181 bfd_hash_traverse (&htab
->stub_hash_table
, aarch64_size_one_stub
, htab
);
4183 for (section
= htab
->stub_bfd
->sections
;
4184 section
!= NULL
; section
= section
->next
)
4186 if (!strstr (section
->name
, STUB_SUFFIX
))
4189 /* Empty stub section. */
4190 if (section
->size
== 8)
4193 /* Ensure all stub sections have a size which is a multiple of
4194 4096. This is important in order to ensure that the insertion
4195 of stub sections does not in itself move existing code around
4196 in such a way that new errata sequences are created. We only do this
4197 when the ADRP workaround is enabled. If only the ADR workaround is
4198 enabled then the stubs workaround won't ever be used. */
4199 if (htab
->fix_erratum_843419
& ERRAT_ADRP
)
4201 section
->size
= BFD_ALIGN (section
->size
, 0x1000);
4205 /* Construct an erratum 843419 workaround stub name. */
4208 _bfd_aarch64_erratum_843419_stub_name (asection
*input_section
,
4211 const bfd_size_type len
= 8 + 4 + 1 + 8 + 1 + 16 + 1;
4212 char *stub_name
= bfd_malloc (len
);
4214 if (stub_name
!= NULL
)
4215 snprintf (stub_name
, len
, "e843419@%04x_%08x_%" PRIx64
,
4216 input_section
->owner
->id
,
4222 /* Build a stub_entry structure describing an 843419 fixup.
4224 The stub_entry constructed is populated with the bit pattern INSN
4225 of the instruction located at OFFSET within input SECTION.
4227 Returns TRUE on success. */
4230 _bfd_aarch64_erratum_843419_fixup (uint32_t insn
,
4231 bfd_vma adrp_offset
,
4232 bfd_vma ldst_offset
,
4234 struct bfd_link_info
*info
)
4236 struct elf_aarch64_link_hash_table
*htab
= elf_aarch64_hash_table (info
);
4238 struct elf_aarch64_stub_hash_entry
*stub_entry
;
4240 stub_name
= _bfd_aarch64_erratum_843419_stub_name (section
, ldst_offset
);
4241 if (stub_name
== NULL
)
4243 stub_entry
= aarch64_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
4251 /* We always place an 843419 workaround veneer in the stub section
4252 attached to the input section in which an erratum sequence has
4253 been found. This ensures that later in the link process (in
4254 elfNN_aarch64_write_section) when we copy the veneered
4255 instruction from the input section into the stub section the
4256 copied instruction will have had any relocations applied to it.
4257 If we placed workaround veneers in any other stub section then we
4258 could not assume that all relocations have been processed on the
4259 corresponding input section at the point we output the stub
4262 stub_entry
= _bfd_aarch64_add_stub_entry_after (stub_name
, section
, htab
);
4263 if (stub_entry
== NULL
)
4269 stub_entry
->adrp_offset
= adrp_offset
;
4270 stub_entry
->target_value
= ldst_offset
;
4271 stub_entry
->target_section
= section
;
4272 stub_entry
->stub_type
= aarch64_stub_erratum_843419_veneer
;
4273 stub_entry
->veneered_insn
= insn
;
4274 stub_entry
->output_name
= stub_name
;
4280 /* Scan an input section looking for the signature of erratum 843419.
4282 Scans input SECTION in INPUT_BFD looking for erratum 843419
4283 signatures, for each signature found a stub_entry is created
4284 describing the location of the erratum for subsequent fixup.
4286 Return TRUE on successful scan, FALSE on failure to scan.
4290 _bfd_aarch64_erratum_843419_scan (bfd
*input_bfd
, asection
*section
,
4291 struct bfd_link_info
*info
)
4293 struct elf_aarch64_link_hash_table
*htab
= elf_aarch64_hash_table (info
);
4298 if (elf_section_type (section
) != SHT_PROGBITS
4299 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
4300 || (section
->flags
& SEC_EXCLUDE
) != 0
4301 || (section
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
4302 || (section
->output_section
== bfd_abs_section_ptr
))
4307 bfd_byte
*contents
= NULL
;
4308 struct _aarch64_elf_section_data
*sec_data
;
4311 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
4312 contents
= elf_section_data (section
)->this_hdr
.contents
;
4313 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
4316 sec_data
= elf_aarch64_section_data (section
);
4318 if (sec_data
->mapcount
)
4319 qsort (sec_data
->map
, sec_data
->mapcount
,
4320 sizeof (elf_aarch64_section_map
), elf_aarch64_compare_mapping
);
4322 for (span
= 0; span
< sec_data
->mapcount
; span
++)
4324 unsigned int span_start
= sec_data
->map
[span
].vma
;
4325 unsigned int span_end
= ((span
== sec_data
->mapcount
- 1)
4326 ? sec_data
->map
[0].vma
+ section
->size
4327 : sec_data
->map
[span
+ 1].vma
);
4329 char span_type
= sec_data
->map
[span
].type
;
4331 if (span_type
== 'd')
4334 for (i
= span_start
; i
+ 8 < span_end
; i
+= 4)
4336 bfd_vma vma
= (section
->output_section
->vma
4337 + section
->output_offset
4341 if (_bfd_aarch64_erratum_843419_p
4342 (contents
, vma
, i
, span_end
, &veneer_i
))
4344 uint32_t insn
= bfd_getl32 (contents
+ veneer_i
);
4346 if (!_bfd_aarch64_erratum_843419_fixup (insn
, i
, veneer_i
,
4353 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4362 /* Add stub entries for calls.
4364 The basic idea here is to examine all the relocations looking for
4365 PC-relative calls to a target that is unreachable with a "bl"
4369 _bfd_aarch64_add_call_stub_entries (bool *stub_changed
, bfd
*output_bfd
,
4370 struct bfd_link_info
*info
)
4372 struct elf_aarch64_link_hash_table
*htab
= elf_aarch64_hash_table (info
);
4373 bool need_bti
= elf_aarch64_bti_p (output_bfd
);
4376 for (input_bfd
= info
->input_bfds
; input_bfd
!= NULL
;
4377 input_bfd
= input_bfd
->link
.next
)
4379 Elf_Internal_Shdr
*symtab_hdr
;
4381 Elf_Internal_Sym
*local_syms
= NULL
;
4383 if (!is_aarch64_elf (input_bfd
)
4384 || (input_bfd
->flags
& BFD_LINKER_CREATED
) != 0)
4387 /* We'll need the symbol table in a second. */
4388 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4389 if (symtab_hdr
->sh_info
== 0)
4392 /* Walk over each section attached to the input bfd. */
4393 for (section
= input_bfd
->sections
;
4394 section
!= NULL
; section
= section
->next
)
4396 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
4398 /* If there aren't any relocs, then there's nothing more to do. */
4399 if ((section
->flags
& SEC_RELOC
) == 0
4400 || section
->reloc_count
== 0
4401 || (section
->flags
& SEC_CODE
) == 0)
4404 /* If this section is a link-once section that will be
4405 discarded, then don't create any stubs. */
4406 if (section
->output_section
== NULL
4407 || section
->output_section
->owner
!= output_bfd
)
4410 /* Get the relocs. */
4412 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
4413 NULL
, info
->keep_memory
);
4414 if (internal_relocs
== NULL
)
4415 goto error_ret_free_local
;
4417 /* Now examine each relocation. */
4418 irela
= internal_relocs
;
4419 irelaend
= irela
+ section
->reloc_count
;
4420 for (; irela
< irelaend
; irela
++)
4422 unsigned int r_type
, r_indx
;
4423 enum elf_aarch64_stub_type stub_type
;
4424 struct elf_aarch64_stub_hash_entry
*stub_entry
;
4425 struct elf_aarch64_stub_hash_entry
*stub_entry_bti
;
4428 bfd_vma destination
;
4429 struct elf_aarch64_link_hash_entry
*hash
;
4430 const char *sym_name
;
4432 char *stub_name_bti
;
4433 const asection
*id_sec
;
4434 const asection
*id_sec_bti
;
4435 unsigned char st_type
;
4438 r_type
= ELFNN_R_TYPE (irela
->r_info
);
4439 r_indx
= ELFNN_R_SYM (irela
->r_info
);
4441 if (r_type
>= (unsigned int) R_AARCH64_end
)
4443 bfd_set_error (bfd_error_bad_value
);
4444 error_ret_free_internal
:
4445 if (elf_section_data (section
)->relocs
== NULL
)
4446 free (internal_relocs
);
4447 goto error_ret_free_local
;
4450 /* Only look for stubs on unconditional branch and
4451 branch and link instructions. */
4452 if (r_type
!= (unsigned int) AARCH64_R (CALL26
)
4453 && r_type
!= (unsigned int) AARCH64_R (JUMP26
))
4456 /* Now determine the call target, its name, value,
4463 if (r_indx
< symtab_hdr
->sh_info
)
4465 /* It's a local symbol. */
4466 Elf_Internal_Sym
*sym
;
4467 Elf_Internal_Shdr
*hdr
;
4469 if (local_syms
== NULL
)
4472 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
4473 if (local_syms
== NULL
)
4475 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
4476 symtab_hdr
->sh_info
, 0,
4478 if (local_syms
== NULL
)
4479 goto error_ret_free_internal
;
4482 sym
= local_syms
+ r_indx
;
4483 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
4484 sym_sec
= hdr
->bfd_section
;
4486 /* This is an undefined symbol. It can never
4490 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
4491 sym_value
= sym
->st_value
;
4492 destination
= (sym_value
+ irela
->r_addend
4493 + sym_sec
->output_offset
4494 + sym_sec
->output_section
->vma
);
4495 st_type
= ELF_ST_TYPE (sym
->st_info
);
4497 = bfd_elf_string_from_elf_section (input_bfd
,
4498 symtab_hdr
->sh_link
,
4505 e_indx
= r_indx
- symtab_hdr
->sh_info
;
4506 hash
= ((struct elf_aarch64_link_hash_entry
*)
4507 elf_sym_hashes (input_bfd
)[e_indx
]);
4509 while (hash
->root
.root
.type
== bfd_link_hash_indirect
4510 || hash
->root
.root
.type
== bfd_link_hash_warning
)
4511 hash
= ((struct elf_aarch64_link_hash_entry
*)
4512 hash
->root
.root
.u
.i
.link
);
4514 if (hash
->root
.root
.type
== bfd_link_hash_defined
4515 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
4517 struct elf_aarch64_link_hash_table
*globals
=
4518 elf_aarch64_hash_table (info
);
4519 sym_sec
= hash
->root
.root
.u
.def
.section
;
4520 sym_value
= hash
->root
.root
.u
.def
.value
;
4521 /* For a destination in a shared library,
4522 use the PLT stub as target address to
4523 decide whether a branch stub is
4525 if (globals
->root
.splt
!= NULL
&& hash
!= NULL
4526 && hash
->root
.plt
.offset
!= (bfd_vma
) - 1)
4528 sym_sec
= globals
->root
.splt
;
4529 sym_value
= hash
->root
.plt
.offset
;
4530 if (sym_sec
->output_section
!= NULL
)
4531 destination
= (sym_value
4532 + sym_sec
->output_offset
4533 + sym_sec
->output_section
->vma
);
4535 else if (sym_sec
->output_section
!= NULL
)
4536 destination
= (sym_value
+ irela
->r_addend
4537 + sym_sec
->output_offset
4538 + sym_sec
->output_section
->vma
);
4540 else if (hash
->root
.root
.type
== bfd_link_hash_undefined
4541 || (hash
->root
.root
.type
4542 == bfd_link_hash_undefweak
))
4544 /* For a shared library, use the PLT stub as
4545 target address to decide whether a long
4546 branch stub is needed.
4547 For absolute code, they cannot be handled. */
4548 struct elf_aarch64_link_hash_table
*globals
=
4549 elf_aarch64_hash_table (info
);
4551 if (globals
->root
.splt
!= NULL
&& hash
!= NULL
4552 && hash
->root
.plt
.offset
!= (bfd_vma
) - 1)
4554 sym_sec
= globals
->root
.splt
;
4555 sym_value
= hash
->root
.plt
.offset
;
4556 if (sym_sec
->output_section
!= NULL
)
4557 destination
= (sym_value
4558 + sym_sec
->output_offset
4559 + sym_sec
->output_section
->vma
);
4566 bfd_set_error (bfd_error_bad_value
);
4567 goto error_ret_free_internal
;
4569 st_type
= ELF_ST_TYPE (hash
->root
.type
);
4570 sym_name
= hash
->root
.root
.root
.string
;
4573 /* Determine what (if any) linker stub is needed. */
4574 stub_type
= aarch64_type_of_stub (section
, irela
, sym_sec
,
4575 st_type
, destination
);
4576 if (stub_type
== aarch64_stub_none
)
4579 /* Support for grouping stub sections. */
4580 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
4582 /* Get the name of this stub. */
4583 stub_name
= elfNN_aarch64_stub_name (id_sec
, sym_sec
, hash
,
4586 goto error_ret_free_internal
;
4589 aarch64_stub_hash_lookup (&htab
->stub_hash_table
,
4590 stub_name
, false, false);
4591 if (stub_entry
!= NULL
)
4593 /* The proper stub has already been created. */
4596 /* Always update this stub's target since it may have
4597 changed after layout. */
4598 stub_entry
->target_value
= sym_value
+ irela
->r_addend
;
4600 if (stub_entry
->double_stub
)
4602 /* Update the target of both stubs. */
4604 id_sec_bti
= htab
->stub_group
[sym_sec
->id
].link_sec
;
4606 elfNN_aarch64_stub_name (id_sec_bti
, sym_sec
, hash
,
4609 goto error_ret_free_internal
;
4611 aarch64_stub_hash_lookup (&htab
->stub_hash_table
,
4612 stub_name_bti
, false, false);
4613 BFD_ASSERT (stub_entry_bti
!= NULL
);
4614 free (stub_name_bti
);
4615 stub_entry_bti
->target_value
= stub_entry
->target_value
;
4616 stub_entry
->target_value
= stub_entry_bti
->stub_offset
;
4621 stub_entry
= _bfd_aarch64_add_stub_entry_in_group
4622 (stub_name
, section
, htab
);
4623 if (stub_entry
== NULL
)
4626 goto error_ret_free_internal
;
4629 stub_entry
->target_value
= sym_value
+ irela
->r_addend
;
4630 stub_entry
->target_section
= sym_sec
;
4631 stub_entry
->stub_type
= stub_type
;
4632 stub_entry
->h
= hash
;
4633 stub_entry
->st_type
= st_type
;
4635 if (sym_name
== NULL
)
4636 sym_name
= "unnamed";
4637 len
= sizeof (STUB_ENTRY_NAME
) + strlen (sym_name
);
4638 stub_entry
->output_name
= bfd_alloc (htab
->stub_bfd
, len
);
4639 if (stub_entry
->output_name
== NULL
)
4642 goto error_ret_free_internal
;
4645 snprintf (stub_entry
->output_name
, len
, STUB_ENTRY_NAME
,
4648 /* A stub with indirect jump may break BTI compatibility, so
4649 insert another stub with direct jump near the target then. */
4650 if (need_bti
&& !aarch64_bti_stub_p (info
, stub_entry
))
4652 id_sec_bti
= htab
->stub_group
[sym_sec
->id
].link_sec
;
4654 /* If the stub with indirect jump and the BTI stub are in
4655 the same stub group: change the indirect jump stub into
4656 a BTI stub since a direct branch can reach the target.
4657 The BTI landing pad is still needed in case another
4658 stub indirectly jumps to it. */
4659 if (id_sec_bti
== id_sec
)
4661 stub_entry
->stub_type
= aarch64_stub_bti_direct_branch
;
4662 goto skip_double_stub
;
4665 stub_entry
->double_stub
= true;
4666 htab
->has_double_stub
= true;
4669 elfNN_aarch64_stub_name (id_sec_bti
, sym_sec
, hash
, irela
);
4673 goto error_ret_free_internal
;
4677 aarch64_stub_hash_lookup (&htab
->stub_hash_table
,
4678 stub_name_bti
, false, false);
4679 if (stub_entry_bti
!= NULL
)
4680 BFD_ASSERT (stub_entry_bti
->stub_type
4681 == aarch64_stub_bti_direct_branch
);
4685 _bfd_aarch64_add_stub_entry_in_group (stub_name_bti
,
4687 if (stub_entry_bti
== NULL
)
4690 free (stub_name_bti
);
4691 goto error_ret_free_internal
;
4694 stub_entry_bti
->target_value
=
4695 sym_value
+ irela
->r_addend
;
4696 stub_entry_bti
->target_section
= sym_sec
;
4697 stub_entry_bti
->stub_type
=
4698 aarch64_stub_bti_direct_branch
;
4699 stub_entry_bti
->h
= hash
;
4700 stub_entry_bti
->st_type
= st_type
;
4702 len
= sizeof (BTI_STUB_ENTRY_NAME
) + strlen (sym_name
);
4703 stub_entry_bti
->output_name
= bfd_alloc (htab
->stub_bfd
,
4705 if (stub_entry_bti
->output_name
== NULL
)
4708 free (stub_name_bti
);
4709 goto error_ret_free_internal
;
4711 snprintf (stub_entry_bti
->output_name
, len
,
4712 BTI_STUB_ENTRY_NAME
, sym_name
);
4715 /* Update the indirect call stub to target the BTI stub. */
4716 stub_entry
->target_value
= 0;
4717 stub_entry
->target_section
= stub_entry_bti
->stub_sec
;
4718 stub_entry
->stub_type
= stub_type
;
4719 stub_entry
->h
= NULL
;
4720 stub_entry
->st_type
= STT_FUNC
;
4723 *stub_changed
= true;
4726 /* We're done with the internal relocs, free them. */
4727 if (elf_section_data (section
)->relocs
== NULL
)
4728 free (internal_relocs
);
4732 error_ret_free_local
:
4737 /* Determine and set the size of the stub section for a final link. */
4740 elfNN_aarch64_size_stubs (bfd
*output_bfd
,
4742 struct bfd_link_info
*info
,
4743 bfd_signed_vma group_size
,
4744 asection
* (*add_stub_section
) (const char *,
4746 void (*layout_sections_again
) (void))
4748 bfd_size_type stub_group_size
;
4749 bool stubs_always_before_branch
;
4750 struct elf_aarch64_link_hash_table
*htab
= elf_aarch64_hash_table (info
);
4751 unsigned int num_erratum_835769_fixes
= 0;
4753 /* Propagate mach to stub bfd, because it may not have been
4754 finalized when we created stub_bfd. */
4755 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
4756 bfd_get_mach (output_bfd
));
4758 /* Stash our params away. */
4759 htab
->stub_bfd
= stub_bfd
;
4760 htab
->add_stub_section
= add_stub_section
;
4761 htab
->layout_sections_again
= layout_sections_again
;
4762 stubs_always_before_branch
= group_size
< 0;
4764 stub_group_size
= -group_size
;
4766 stub_group_size
= group_size
;
4768 if (stub_group_size
== 1)
4770 /* Default values. */
4771 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4772 stub_group_size
= 127 * 1024 * 1024;
4775 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
4777 (*htab
->layout_sections_again
) ();
4779 if (htab
->fix_erratum_835769
)
4783 for (input_bfd
= info
->input_bfds
;
4784 input_bfd
!= NULL
; input_bfd
= input_bfd
->link
.next
)
4786 if (!is_aarch64_elf (input_bfd
)
4787 || (input_bfd
->flags
& BFD_LINKER_CREATED
) != 0)
4790 if (!_bfd_aarch64_erratum_835769_scan (input_bfd
, info
,
4791 &num_erratum_835769_fixes
))
4795 _bfd_aarch64_resize_stubs (htab
);
4796 (*htab
->layout_sections_again
) ();
4799 if (htab
->fix_erratum_843419
!= ERRAT_NONE
)
4803 for (input_bfd
= info
->input_bfds
;
4805 input_bfd
= input_bfd
->link
.next
)
4809 if (!is_aarch64_elf (input_bfd
)
4810 || (input_bfd
->flags
& BFD_LINKER_CREATED
) != 0)
4813 for (section
= input_bfd
->sections
;
4815 section
= section
->next
)
4816 if (!_bfd_aarch64_erratum_843419_scan (input_bfd
, section
, info
))
4820 _bfd_aarch64_resize_stubs (htab
);
4821 (*htab
->layout_sections_again
) ();
4826 bool stub_changed
= false;
4828 if (!_bfd_aarch64_add_call_stub_entries (&stub_changed
, output_bfd
, info
))
4834 _bfd_aarch64_resize_stubs (htab
);
4835 (*htab
->layout_sections_again
) ();
4839 /* Build all the stubs associated with the current output file. The
4840 stubs are kept in a hash table attached to the main linker hash
4841 table. We also set up the .plt entries for statically linked PIC
4842 functions here. This function is called via aarch64_elf_finish in the
4846 elfNN_aarch64_build_stubs (struct bfd_link_info
*info
)
4849 struct bfd_hash_table
*table
;
4850 struct elf_aarch64_link_hash_table
*htab
;
4852 htab
= elf_aarch64_hash_table (info
);
4854 for (stub_sec
= htab
->stub_bfd
->sections
;
4855 stub_sec
!= NULL
; stub_sec
= stub_sec
->next
)
4859 /* Ignore non-stub sections. */
4860 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4863 /* Allocate memory to hold the linker stubs. */
4864 size
= stub_sec
->size
;
4865 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
4866 if (stub_sec
->contents
== NULL
&& size
!= 0)
4870 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4871 aligned, as long branch stubs contain a 64-bit address. */
4872 bfd_putl32 (0x14000000 | (size
>> 2), stub_sec
->contents
);
4873 bfd_putl32 (INSN_NOP
, stub_sec
->contents
+ 4);
4874 stub_sec
->size
+= 8;
4877 /* Build the stubs as directed by the stub hash table. */
4878 table
= &htab
->stub_hash_table
;
4879 bfd_hash_traverse (table
, aarch64_build_one_stub
, info
);
4885 /* Add an entry to the code/data map for section SEC. */
4888 elfNN_aarch64_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
4890 struct _aarch64_elf_section_data
*sec_data
=
4891 elf_aarch64_section_data (sec
);
4892 unsigned int newidx
;
4894 if (sec_data
->map
== NULL
)
4896 sec_data
->map
= bfd_malloc (sizeof (elf_aarch64_section_map
));
4897 sec_data
->mapcount
= 0;
4898 sec_data
->mapsize
= 1;
4901 newidx
= sec_data
->mapcount
++;
4903 if (sec_data
->mapcount
> sec_data
->mapsize
)
4905 sec_data
->mapsize
*= 2;
4906 sec_data
->map
= bfd_realloc_or_free
4907 (sec_data
->map
, sec_data
->mapsize
* sizeof (elf_aarch64_section_map
));
4912 sec_data
->map
[newidx
].vma
= vma
;
4913 sec_data
->map
[newidx
].type
= type
;
4918 /* Initialise maps of insn/data for input BFDs. */
4920 bfd_elfNN_aarch64_init_maps (bfd
*abfd
)
4922 Elf_Internal_Sym
*isymbuf
;
4923 Elf_Internal_Shdr
*hdr
;
4924 unsigned int i
, localsyms
;
4926 /* Make sure that we are dealing with an AArch64 elf binary. */
4927 if (!is_aarch64_elf (abfd
))
4930 if ((abfd
->flags
& DYNAMIC
) != 0)
4933 hdr
= &elf_symtab_hdr (abfd
);
4934 localsyms
= hdr
->sh_info
;
4936 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4937 should contain the number of local symbols, which should come before any
4938 global symbols. Mapping symbols are always local. */
4939 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
, NULL
);
4941 /* No internal symbols read? Skip this BFD. */
4942 if (isymbuf
== NULL
)
4945 for (i
= 0; i
< localsyms
; i
++)
4947 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
4948 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
4951 if (sec
!= NULL
&& ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
4953 name
= bfd_elf_string_from_elf_section (abfd
,
4957 if (bfd_is_aarch64_special_symbol_name
4958 (name
, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP
))
4959 elfNN_aarch64_section_map_add (sec
, name
[1], isym
->st_value
);
4965 setup_plt_values (struct bfd_link_info
*link_info
,
4966 aarch64_plt_type plt_type
)
4968 struct elf_aarch64_link_hash_table
*globals
;
4969 globals
= elf_aarch64_hash_table (link_info
);
4971 if (plt_type
== PLT_BTI_PAC
)
4973 globals
->plt0_entry
= elfNN_aarch64_small_plt0_bti_entry
;
4975 /* Only in ET_EXEC we need PLTn with BTI. */
4976 if (bfd_link_pde (link_info
))
4978 globals
->plt_entry_size
= PLT_BTI_PAC_SMALL_ENTRY_SIZE
;
4979 globals
->plt_entry
= elfNN_aarch64_small_plt_bti_pac_entry
;
4983 globals
->plt_entry_size
= PLT_PAC_SMALL_ENTRY_SIZE
;
4984 globals
->plt_entry
= elfNN_aarch64_small_plt_pac_entry
;
4987 else if (plt_type
== PLT_BTI
)
4989 globals
->plt0_entry
= elfNN_aarch64_small_plt0_bti_entry
;
4991 /* Only in ET_EXEC we need PLTn with BTI. */
4992 if (bfd_link_pde (link_info
))
4994 globals
->plt_entry_size
= PLT_BTI_SMALL_ENTRY_SIZE
;
4995 globals
->plt_entry
= elfNN_aarch64_small_plt_bti_entry
;
4998 else if (plt_type
== PLT_PAC
)
5000 globals
->plt_entry_size
= PLT_PAC_SMALL_ENTRY_SIZE
;
5001 globals
->plt_entry
= elfNN_aarch64_small_plt_pac_entry
;
5005 /* Set option values needed during linking. */
5007 bfd_elfNN_aarch64_set_options (struct bfd
*output_bfd
,
5008 struct bfd_link_info
*link_info
,
5010 int no_wchar_warn
, int pic_veneer
,
5011 int fix_erratum_835769
,
5012 erratum_84319_opts fix_erratum_843419
,
5013 int no_apply_dynamic_relocs
,
5014 aarch64_bti_pac_info bp_info
)
5016 struct elf_aarch64_link_hash_table
*globals
;
5018 globals
= elf_aarch64_hash_table (link_info
);
5019 globals
->pic_veneer
= pic_veneer
;
5020 globals
->fix_erratum_835769
= fix_erratum_835769
;
5021 /* If the default options are used, then ERRAT_ADR will be set by default
5022 which will enable the ADRP->ADR workaround for the erratum 843419
5024 globals
->fix_erratum_843419
= fix_erratum_843419
;
5025 globals
->no_apply_dynamic_relocs
= no_apply_dynamic_relocs
;
5027 BFD_ASSERT (is_aarch64_elf (output_bfd
));
5028 elf_aarch64_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
5029 elf_aarch64_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
5031 switch (bp_info
.bti_type
)
5034 elf_aarch64_tdata (output_bfd
)->no_bti_warn
= 0;
5035 elf_aarch64_tdata (output_bfd
)->gnu_and_prop
5036 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI
;
5042 elf_aarch64_tdata (output_bfd
)->plt_type
= bp_info
.plt_type
;
5043 setup_plt_values (link_info
, bp_info
.plt_type
);
5047 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry
*h
,
5048 struct elf_aarch64_link_hash_table
5049 *globals
, struct bfd_link_info
*info
,
5050 bfd_vma value
, bfd
*output_bfd
,
5051 bool *unresolved_reloc_p
)
5053 bfd_vma off
= (bfd_vma
) - 1;
5054 asection
*basegot
= globals
->root
.sgot
;
5055 bool dyn
= globals
->root
.dynamic_sections_created
;
5059 BFD_ASSERT (basegot
!= NULL
);
5060 off
= h
->got
.offset
;
5061 BFD_ASSERT (off
!= (bfd_vma
) - 1);
5062 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), h
)
5063 || (bfd_link_pic (info
)
5064 && SYMBOL_REFERENCES_LOCAL (info
, h
))
5065 || (ELF_ST_VISIBILITY (h
->other
)
5066 && h
->root
.type
== bfd_link_hash_undefweak
))
5068 /* This is actually a static link, or it is a -Bsymbolic link
5069 and the symbol is defined locally. We must initialize this
5070 entry in the global offset table. Since the offset must
5071 always be a multiple of 8 (4 in the case of ILP32), we use
5072 the least significant bit to record whether we have
5073 initialized it already.
5074 When doing a dynamic link, we create a .rel(a).got relocation
5075 entry to initialize the value. This is done in the
5076 finish_dynamic_symbol routine. */
5081 bfd_put_NN (output_bfd
, value
, basegot
->contents
+ off
);
5086 *unresolved_reloc_p
= false;
5088 off
= off
+ basegot
->output_section
->vma
+ basegot
->output_offset
;
5094 /* Change R_TYPE to a more efficient access model where possible,
5095 return the new reloc type. */
5097 static bfd_reloc_code_real_type
5098 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type
,
5099 struct elf_link_hash_entry
*h
,
5100 struct bfd_link_info
*info
)
5102 bool local_exec
= bfd_link_executable (info
)
5103 && SYMBOL_REFERENCES_LOCAL (info
, h
);
5107 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
5108 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
5110 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
5111 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
);
5113 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
:
5115 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
5118 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
:
5120 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
5121 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
);
5123 case BFD_RELOC_AARCH64_TLSDESC_LDR
:
5125 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
5126 : BFD_RELOC_AARCH64_NONE
);
5128 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
:
5130 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
5131 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
);
5133 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1
:
5135 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
5136 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
);
5138 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC
:
5139 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
5141 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
5142 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC
);
5144 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
5145 return local_exec
? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
: r_type
;
5147 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC
:
5148 return local_exec
? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
: r_type
;
5150 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
5153 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21
:
5155 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
5156 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
);
5158 case BFD_RELOC_AARCH64_TLSDESC_ADD
:
5159 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12
:
5160 case BFD_RELOC_AARCH64_TLSDESC_CALL
:
5161 /* Instructions with these relocations will become NOPs. */
5162 return BFD_RELOC_AARCH64_NONE
;
5164 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
:
5165 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
:
5166 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
:
5167 return local_exec
? BFD_RELOC_AARCH64_NONE
: r_type
;
5170 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC
:
5172 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
5173 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
;
5175 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1
:
5177 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
5178 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
;
5189 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type
)
5193 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
5194 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
5195 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
:
5196 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
5197 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
:
5198 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
:
5199 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
5200 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
:
5201 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1
:
5204 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
5205 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
5206 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21
:
5207 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC
:
5208 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1
:
5209 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
:
5210 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
:
5211 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
:
5214 case BFD_RELOC_AARCH64_TLSDESC_ADD
:
5215 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12
:
5216 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
5217 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
:
5218 case BFD_RELOC_AARCH64_TLSDESC_CALL
:
5219 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
:
5220 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
:
5221 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
:
5222 case BFD_RELOC_AARCH64_TLSDESC_LDR
:
5223 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
:
5224 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1
:
5225 return GOT_TLSDESC_GD
;
5227 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
5228 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
:
5229 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
5230 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
5231 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
:
5232 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
:
5242 aarch64_can_relax_tls (bfd
*input_bfd
,
5243 struct bfd_link_info
*info
,
5244 bfd_reloc_code_real_type r_type
,
5245 struct elf_link_hash_entry
*h
,
5246 unsigned long r_symndx
)
5248 unsigned int symbol_got_type
;
5249 unsigned int reloc_got_type
;
5251 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type
))
5254 symbol_got_type
= elfNN_aarch64_symbol_got_type (h
, input_bfd
, r_symndx
);
5255 reloc_got_type
= aarch64_reloc_got_type (r_type
);
5257 if (symbol_got_type
== GOT_TLS_IE
&& GOT_TLS_GD_ANY_P (reloc_got_type
))
5260 if (!bfd_link_executable (info
))
5263 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
)
5269 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5272 static bfd_reloc_code_real_type
5273 aarch64_tls_transition (bfd
*input_bfd
,
5274 struct bfd_link_info
*info
,
5275 unsigned int r_type
,
5276 struct elf_link_hash_entry
*h
,
5277 unsigned long r_symndx
)
5279 bfd_reloc_code_real_type bfd_r_type
5280 = elfNN_aarch64_bfd_reloc_from_type (input_bfd
, r_type
);
5282 if (! aarch64_can_relax_tls (input_bfd
, info
, bfd_r_type
, h
, r_symndx
))
5285 return aarch64_tls_transition_without_check (bfd_r_type
, h
, info
);
5288 /* Return the base VMA address which should be subtracted from real addresses
5289 when resolving R_AARCH64_TLS_DTPREL relocation. */
5292 dtpoff_base (struct bfd_link_info
*info
)
5294 /* If tls_sec is NULL, we should have signalled an error already. */
5295 BFD_ASSERT (elf_hash_table (info
)->tls_sec
!= NULL
);
5296 return elf_hash_table (info
)->tls_sec
->vma
;
5299 /* Return the base VMA address which should be subtracted from real addresses
5300 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5303 tpoff_base (struct bfd_link_info
*info
)
5305 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
5307 /* If tls_sec is NULL, we should have signalled an error already. */
5308 BFD_ASSERT (htab
->tls_sec
!= NULL
);
5310 bfd_vma base
= align_power ((bfd_vma
) TCB_SIZE
,
5311 htab
->tls_sec
->alignment_power
);
5312 return htab
->tls_sec
->vma
- base
;
5316 symbol_got_offset_ref (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
5317 unsigned long r_symndx
)
5319 /* Calculate the address of the GOT entry for symbol
5320 referred to in h. */
5322 return &h
->got
.offset
;
5326 struct elf_aarch64_local_symbol
*l
;
5328 l
= elf_aarch64_locals (input_bfd
);
5329 return &l
[r_symndx
].got_offset
;
5334 symbol_got_offset_mark (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
5335 unsigned long r_symndx
)
5338 p
= symbol_got_offset_ref (input_bfd
, h
, r_symndx
);
5343 symbol_got_offset_mark_p (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
5344 unsigned long r_symndx
)
5347 value
= * symbol_got_offset_ref (input_bfd
, h
, r_symndx
);
5352 symbol_got_offset (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
5353 unsigned long r_symndx
)
5356 value
= * symbol_got_offset_ref (input_bfd
, h
, r_symndx
);
5362 symbol_tlsdesc_got_offset_ref (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
5363 unsigned long r_symndx
)
5365 /* Calculate the address of the GOT entry for symbol
5366 referred to in h. */
5369 struct elf_aarch64_link_hash_entry
*eh
;
5370 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
5371 return &eh
->tlsdesc_got_jump_table_offset
;
5376 struct elf_aarch64_local_symbol
*l
;
5378 l
= elf_aarch64_locals (input_bfd
);
5379 return &l
[r_symndx
].tlsdesc_got_jump_table_offset
;
5384 symbol_tlsdesc_got_offset_mark (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
5385 unsigned long r_symndx
)
5388 p
= symbol_tlsdesc_got_offset_ref (input_bfd
, h
, r_symndx
);
5393 symbol_tlsdesc_got_offset_mark_p (bfd
*input_bfd
,
5394 struct elf_link_hash_entry
*h
,
5395 unsigned long r_symndx
)
5398 value
= * symbol_tlsdesc_got_offset_ref (input_bfd
, h
, r_symndx
);
5403 symbol_tlsdesc_got_offset (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
5404 unsigned long r_symndx
)
5407 value
= * symbol_tlsdesc_got_offset_ref (input_bfd
, h
, r_symndx
);
5412 /* Data for make_branch_to_erratum_835769_stub(). */
5414 struct erratum_835769_branch_to_stub_data
5416 struct bfd_link_info
*info
;
5417 asection
*output_section
;
5421 /* Helper to insert branches to erratum 835769 stubs in the right
5422 places for a particular section. */
5425 make_branch_to_erratum_835769_stub (struct bfd_hash_entry
*gen_entry
,
5428 struct elf_aarch64_stub_hash_entry
*stub_entry
;
5429 struct erratum_835769_branch_to_stub_data
*data
;
5431 unsigned long branch_insn
= 0;
5432 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
5433 bfd_signed_vma branch_offset
;
5434 unsigned int target
;
5437 stub_entry
= (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
5438 data
= (struct erratum_835769_branch_to_stub_data
*) in_arg
;
5440 if (stub_entry
->target_section
!= data
->output_section
5441 || stub_entry
->stub_type
!= aarch64_stub_erratum_835769_veneer
)
5444 contents
= data
->contents
;
5445 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
5446 + stub_entry
->target_section
->output_offset
5447 + stub_entry
->target_value
;
5448 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
5449 + stub_entry
->stub_sec
->output_offset
5450 + stub_entry
->stub_offset
;
5451 branch_offset
= veneer_entry_loc
- veneered_insn_loc
;
5453 abfd
= stub_entry
->target_section
->owner
;
5454 if (!aarch64_valid_branch_p (veneer_entry_loc
, veneered_insn_loc
))
5456 (_("%pB: error: erratum 835769 stub out "
5457 "of range (input file too large)"), abfd
);
5459 target
= stub_entry
->target_value
;
5460 branch_insn
= 0x14000000;
5461 branch_offset
>>= 2;
5462 branch_offset
&= 0x3ffffff;
5463 branch_insn
|= branch_offset
;
5464 bfd_putl32 (branch_insn
, &contents
[target
]);
5471 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry
*gen_entry
,
5474 struct elf_aarch64_stub_hash_entry
*stub_entry
5475 = (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
5476 struct erratum_835769_branch_to_stub_data
*data
5477 = (struct erratum_835769_branch_to_stub_data
*) in_arg
;
5478 struct bfd_link_info
*info
;
5479 struct elf_aarch64_link_hash_table
*htab
;
5487 contents
= data
->contents
;
5488 section
= data
->output_section
;
5490 htab
= elf_aarch64_hash_table (info
);
5492 if (stub_entry
->target_section
!= section
5493 || stub_entry
->stub_type
!= aarch64_stub_erratum_843419_veneer
)
5496 BFD_ASSERT (((htab
->fix_erratum_843419
& ERRAT_ADRP
) && stub_entry
->stub_sec
)
5497 || (htab
->fix_erratum_843419
& ERRAT_ADR
));
5499 /* Only update the stub section if we have one. We should always have one if
5500 we're allowed to use the ADRP errata workaround, otherwise it is not
5502 if (stub_entry
->stub_sec
)
5504 insn
= bfd_getl32 (contents
+ stub_entry
->target_value
);
5506 stub_entry
->stub_sec
->contents
+ stub_entry
->stub_offset
);
5509 place
= (section
->output_section
->vma
+ section
->output_offset
5510 + stub_entry
->adrp_offset
);
5511 insn
= bfd_getl32 (contents
+ stub_entry
->adrp_offset
);
5513 if (!_bfd_aarch64_adrp_p (insn
))
5516 bfd_signed_vma imm
=
5517 (_bfd_aarch64_sign_extend
5518 ((bfd_vma
) _bfd_aarch64_decode_adrp_imm (insn
) << 12, 33)
5521 if ((htab
->fix_erratum_843419
& ERRAT_ADR
)
5522 && (imm
>= AARCH64_MIN_ADRP_IMM
&& imm
<= AARCH64_MAX_ADRP_IMM
))
5524 insn
= (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP
, imm
)
5525 | AARCH64_RT (insn
));
5526 bfd_putl32 (insn
, contents
+ stub_entry
->adrp_offset
);
5527 /* Stub is not needed, don't map it out. */
5528 stub_entry
->stub_type
= aarch64_stub_none
;
5530 else if (htab
->fix_erratum_843419
& ERRAT_ADRP
)
5532 bfd_vma veneered_insn_loc
;
5533 bfd_vma veneer_entry_loc
;
5534 bfd_signed_vma branch_offset
;
5535 uint32_t branch_insn
;
5537 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
5538 + stub_entry
->target_section
->output_offset
5539 + stub_entry
->target_value
;
5540 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
5541 + stub_entry
->stub_sec
->output_offset
5542 + stub_entry
->stub_offset
;
5543 branch_offset
= veneer_entry_loc
- veneered_insn_loc
;
5545 abfd
= stub_entry
->target_section
->owner
;
5546 if (!aarch64_valid_branch_p (veneer_entry_loc
, veneered_insn_loc
))
5548 (_("%pB: error: erratum 843419 stub out "
5549 "of range (input file too large)"), abfd
);
5551 branch_insn
= 0x14000000;
5552 branch_offset
>>= 2;
5553 branch_offset
&= 0x3ffffff;
5554 branch_insn
|= branch_offset
;
5555 bfd_putl32 (branch_insn
, contents
+ stub_entry
->target_value
);
5559 abfd
= stub_entry
->target_section
->owner
;
5561 (_("%pB: error: erratum 843419 immediate 0x%" PRIx64
5562 " out of range for ADR (input file too large) and "
5563 "--fix-cortex-a53-843419=adr used. Run the linker with "
5564 "--fix-cortex-a53-843419=full instead"),
5565 abfd
, (uint64_t) (bfd_vma
) imm
);
5566 bfd_set_error (bfd_error_bad_value
);
5567 /* This function is called inside a hashtable traversal and the error
5568 handlers called above turn into non-fatal errors. Which means this
5569 case ld returns an exit code 0 and also produces a broken object file.
5570 To prevent this, issue a hard abort. */
5578 elfNN_aarch64_write_section (bfd
*output_bfd ATTRIBUTE_UNUSED
,
5579 struct bfd_link_info
*link_info
,
5584 struct elf_aarch64_link_hash_table
*globals
=
5585 elf_aarch64_hash_table (link_info
);
5587 if (globals
== NULL
)
5590 /* Fix code to point to erratum 835769 stubs. */
5591 if (globals
->fix_erratum_835769
)
5593 struct erratum_835769_branch_to_stub_data data
;
5595 data
.info
= link_info
;
5596 data
.output_section
= sec
;
5597 data
.contents
= contents
;
5598 bfd_hash_traverse (&globals
->stub_hash_table
,
5599 make_branch_to_erratum_835769_stub
, &data
);
5602 if (globals
->fix_erratum_843419
)
5604 struct erratum_835769_branch_to_stub_data data
;
5606 data
.info
= link_info
;
5607 data
.output_section
= sec
;
5608 data
.contents
= contents
;
5609 bfd_hash_traverse (&globals
->stub_hash_table
,
5610 _bfd_aarch64_erratum_843419_branch_to_stub
, &data
);
5616 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5619 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc
)
5621 return (reloc
== BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5622 || reloc
== BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5623 || reloc
== BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5624 || reloc
== BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5625 || reloc
== BFD_RELOC_AARCH64_MOVW_GOTOFF_G1
);
5628 /* Perform a relocation as part of a final link. The input relocation type
5629 should be TLS relaxed. */
5631 static bfd_reloc_status_type
5632 elfNN_aarch64_final_link_relocate (reloc_howto_type
*howto
,
5635 asection
*input_section
,
5637 Elf_Internal_Rela
*rel
,
5639 struct bfd_link_info
*info
,
5641 struct elf_link_hash_entry
*h
,
5642 bool *unresolved_reloc_p
,
5644 bfd_vma
*saved_addend
,
5645 Elf_Internal_Sym
*sym
)
5647 Elf_Internal_Shdr
*symtab_hdr
;
5648 unsigned int r_type
= howto
->type
;
5649 bfd_reloc_code_real_type bfd_r_type
5650 = elfNN_aarch64_bfd_reloc_from_howto (howto
);
5651 unsigned long r_symndx
;
5652 bfd_byte
*hit_data
= contents
+ rel
->r_offset
;
5653 bfd_vma place
, off
, got_entry_addr
= 0;
5654 bfd_signed_vma signed_addend
;
5655 struct elf_aarch64_link_hash_table
*globals
;
5657 bool relative_reloc
;
5659 bfd_vma orig_value
= value
;
5660 bool resolved_to_zero
;
5663 globals
= elf_aarch64_hash_table (info
);
5665 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
5667 BFD_ASSERT (is_aarch64_elf (input_bfd
));
5669 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
5671 place
= input_section
->output_section
->vma
5672 + input_section
->output_offset
+ rel
->r_offset
;
5674 /* Get addend, accumulating the addend for consecutive relocs
5675 which refer to the same offset. */
5676 signed_addend
= saved_addend
? *saved_addend
: 0;
5677 signed_addend
+= rel
->r_addend
;
5679 weak_undef_p
= (h
? h
->root
.type
== bfd_link_hash_undefweak
5680 : bfd_is_und_section (sym_sec
));
5681 abs_symbol_p
= h
!= NULL
&& bfd_is_abs_symbol (&h
->root
);
5684 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5685 it here if it is defined in a non-shared object. */
5687 && h
->type
== STT_GNU_IFUNC
5694 if ((input_section
->flags
& SEC_ALLOC
) == 0)
5696 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5697 STT_GNU_IFUNC symbol as STT_FUNC. */
5698 if (elf_section_type (input_section
) == SHT_NOTE
)
5701 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5702 sections because such sections are not SEC_ALLOC and
5703 thus ld.so will not process them. */
5704 if ((input_section
->flags
& SEC_DEBUGGING
) != 0)
5705 return bfd_reloc_ok
;
5707 if (h
->root
.root
.string
)
5708 name
= h
->root
.root
.string
;
5710 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
, sym
, NULL
);
5712 /* xgettext:c-format */
5713 (_("%pB(%pA+%#" PRIx64
"): "
5714 "unresolvable %s relocation against symbol `%s'"),
5715 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
5717 bfd_set_error (bfd_error_bad_value
);
5718 return bfd_reloc_notsupported
;
5720 else if (h
->plt
.offset
== (bfd_vma
) -1)
5721 goto bad_ifunc_reloc
;
5723 /* STT_GNU_IFUNC symbol must go through PLT. */
5724 plt
= globals
->root
.splt
? globals
->root
.splt
: globals
->root
.iplt
;
5725 value
= (plt
->output_section
->vma
+ plt
->output_offset
+ h
->plt
.offset
);
5731 if (h
->root
.root
.string
)
5732 name
= h
->root
.root
.string
;
5734 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
, sym
,
5737 /* xgettext:c-format */
5738 (_("%pB: relocation %s against STT_GNU_IFUNC "
5739 "symbol `%s' isn't handled by %s"), input_bfd
,
5740 howto
->name
, name
, __func__
);
5741 bfd_set_error (bfd_error_bad_value
);
5742 return bfd_reloc_notsupported
;
5744 case BFD_RELOC_AARCH64_NN
:
5745 if (rel
->r_addend
!= 0)
5747 if (h
->root
.root
.string
)
5748 name
= h
->root
.root
.string
;
5750 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
5753 /* xgettext:c-format */
5754 (_("%pB: relocation %s against STT_GNU_IFUNC "
5755 "symbol `%s' has non-zero addend: %" PRId64
),
5756 input_bfd
, howto
->name
, name
, (int64_t) rel
->r_addend
);
5757 bfd_set_error (bfd_error_bad_value
);
5758 return bfd_reloc_notsupported
;
5761 /* Generate dynamic relocation only when there is a
5762 non-GOT reference in a shared object. */
5763 if (bfd_link_pic (info
) && h
->non_got_ref
)
5765 Elf_Internal_Rela outrel
;
5768 /* Need a dynamic relocation to get the real function
5770 outrel
.r_offset
= _bfd_elf_section_offset (output_bfd
,
5774 if (outrel
.r_offset
== (bfd_vma
) -1
5775 || outrel
.r_offset
== (bfd_vma
) -2)
5778 outrel
.r_offset
+= (input_section
->output_section
->vma
5779 + input_section
->output_offset
);
5781 if (h
->dynindx
== -1
5783 || bfd_link_executable (info
))
5785 /* This symbol is resolved locally. */
5786 outrel
.r_info
= ELFNN_R_INFO (0, AARCH64_R (IRELATIVE
));
5787 outrel
.r_addend
= (h
->root
.u
.def
.value
5788 + h
->root
.u
.def
.section
->output_section
->vma
5789 + h
->root
.u
.def
.section
->output_offset
);
5793 outrel
.r_info
= ELFNN_R_INFO (h
->dynindx
, r_type
);
5794 outrel
.r_addend
= 0;
5797 sreloc
= globals
->root
.irelifunc
;
5798 elf_append_rela (output_bfd
, sreloc
, &outrel
);
5800 /* If this reloc is against an external symbol, we
5801 do not want to fiddle with the addend. Otherwise,
5802 we need to include the symbol value so that it
5803 becomes an addend for the dynamic reloc. For an
5804 internal symbol, we have updated addend. */
5805 return bfd_reloc_ok
;
5808 case BFD_RELOC_AARCH64_CALL26
:
5809 case BFD_RELOC_AARCH64_JUMP26
:
5810 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
5814 return _bfd_aarch64_elf_put_addend (input_bfd
, hit_data
, bfd_r_type
,
5816 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
5817 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
5818 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
:
5819 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
5820 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
:
5821 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
:
5822 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1
:
5823 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
:
5824 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
5825 base_got
= globals
->root
.sgot
;
5826 off
= h
->got
.offset
;
5828 if (base_got
== NULL
)
5831 if (off
== (bfd_vma
) -1)
5835 /* We can't use h->got.offset here to save state, or
5836 even just remember the offset, as finish_dynamic_symbol
5837 would use that as offset into .got. */
5839 if (globals
->root
.splt
!= NULL
)
5841 plt_index
= ((h
->plt
.offset
- globals
->plt_header_size
) /
5842 globals
->plt_entry_size
);
5843 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
5844 base_got
= globals
->root
.sgotplt
;
5848 plt_index
= h
->plt
.offset
/ globals
->plt_entry_size
;
5849 off
= plt_index
* GOT_ENTRY_SIZE
;
5850 base_got
= globals
->root
.igotplt
;
5853 if (h
->dynindx
== -1
5857 /* This references the local definition. We must
5858 initialize this entry in the global offset table.
5859 Since the offset must always be a multiple of 8,
5860 we use the least significant bit to record
5861 whether we have initialized it already.
5863 When doing a dynamic link, we create a .rela.got
5864 relocation entry to initialize the value. This
5865 is done in the finish_dynamic_symbol routine. */
5870 bfd_put_NN (output_bfd
, value
,
5871 base_got
->contents
+ off
);
5872 /* Note that this is harmless as -1 | 1 still is -1. */
5876 value
= (base_got
->output_section
->vma
5877 + base_got
->output_offset
+ off
);
5880 value
= aarch64_calculate_got_entry_vma (h
, globals
, info
,
5882 unresolved_reloc_p
);
5884 if (aarch64_relocation_aginst_gp_p (bfd_r_type
))
5885 addend
= (globals
->root
.sgot
->output_section
->vma
5886 + globals
->root
.sgot
->output_offset
);
5888 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
5890 addend
, weak_undef_p
);
5891 return _bfd_aarch64_elf_put_addend (input_bfd
, hit_data
, bfd_r_type
, howto
, value
);
5892 case BFD_RELOC_AARCH64_ADD_LO12
:
5893 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
5899 resolved_to_zero
= (h
!= NULL
5900 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
));
5904 case BFD_RELOC_AARCH64_NONE
:
5905 case BFD_RELOC_AARCH64_TLSDESC_ADD
:
5906 case BFD_RELOC_AARCH64_TLSDESC_CALL
:
5907 case BFD_RELOC_AARCH64_TLSDESC_LDR
:
5908 *unresolved_reloc_p
= false;
5909 return bfd_reloc_ok
;
5911 case BFD_RELOC_AARCH64_NN
:
5913 /* When generating a shared object or relocatable executable, these
5914 relocations are copied into the output file to be resolved at
5916 if (((bfd_link_pic (info
)
5917 || globals
->root
.is_relocatable_executable
)
5918 && (input_section
->flags
& SEC_ALLOC
)
5920 || (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
5921 && !resolved_to_zero
)
5922 || h
->root
.type
!= bfd_link_hash_undefweak
))
5923 /* Or we are creating an executable, we may need to keep relocations
5924 for symbols satisfied by a dynamic library if we manage to avoid
5925 copy relocs for the symbol. */
5926 || (ELIMINATE_COPY_RELOCS
5927 && !bfd_link_pic (info
)
5929 && (input_section
->flags
& SEC_ALLOC
)
5934 || h
->root
.type
== bfd_link_hash_undefweak
5935 || h
->root
.type
== bfd_link_hash_undefined
)))
5937 Elf_Internal_Rela outrel
;
5939 bool skip
, relocate
;
5942 *unresolved_reloc_p
= false;
5947 outrel
.r_addend
= signed_addend
;
5949 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
5951 if (outrel
.r_offset
== (bfd_vma
) - 1)
5953 else if (outrel
.r_offset
== (bfd_vma
) - 2)
5958 else if (abs_symbol_p
)
5960 /* Local absolute symbol. */
5961 skip
= (h
->forced_local
|| (h
->dynindx
== -1));
5965 outrel
.r_offset
+= (input_section
->output_section
->vma
5966 + input_section
->output_offset
);
5969 memset (&outrel
, 0, sizeof outrel
);
5972 && (!bfd_link_pic (info
)
5973 || !(bfd_link_pie (info
) || SYMBOLIC_BIND (info
, h
))
5974 || !h
->def_regular
))
5975 outrel
.r_info
= ELFNN_R_INFO (h
->dynindx
, r_type
);
5980 /* On SVR4-ish systems, the dynamic loader cannot
5981 relocate the text and data segments independently,
5982 so the symbol does not matter. */
5984 relocate
= !globals
->no_apply_dynamic_relocs
;
5985 outrel
.r_info
= ELFNN_R_INFO (symbol
, AARCH64_R (RELATIVE
));
5986 outrel
.r_addend
+= value
;
5989 sreloc
= elf_section_data (input_section
)->sreloc
;
5990 if (sreloc
== NULL
|| sreloc
->contents
== NULL
)
5991 return bfd_reloc_notsupported
;
5993 loc
= sreloc
->contents
+ sreloc
->reloc_count
++ * RELOC_SIZE (globals
);
5994 bfd_elfNN_swap_reloca_out (output_bfd
, &outrel
, loc
);
5996 if (sreloc
->reloc_count
* RELOC_SIZE (globals
) > sreloc
->size
)
5998 /* Sanity to check that we have previously allocated
5999 sufficient space in the relocation section for the
6000 number of relocations we actually want to emit. */
6004 /* If this reloc is against an external symbol, we do not want to
6005 fiddle with the addend. Otherwise, we need to include the symbol
6006 value so that it becomes an addend for the dynamic reloc. */
6008 return bfd_reloc_ok
;
6010 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6011 contents
, rel
->r_offset
, value
,
6015 value
+= signed_addend
;
6018 case BFD_RELOC_AARCH64_CALL26
:
6019 case BFD_RELOC_AARCH64_JUMP26
:
6021 asection
*splt
= globals
->root
.splt
;
6023 splt
!= NULL
&& h
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) - 1;
6025 /* A call to an undefined weak symbol is converted to a jump to
6026 the next instruction unless a PLT entry will be created.
6027 The jump to the next instruction is optimized as a NOP.
6028 Do the same for local undefined symbols. */
6029 if (weak_undef_p
&& ! via_plt_p
)
6031 bfd_putl32 (INSN_NOP
, hit_data
);
6032 return bfd_reloc_ok
;
6035 /* If the call goes through a PLT entry, make sure to
6036 check distance to the right destination address. */
6038 value
= (splt
->output_section
->vma
6039 + splt
->output_offset
+ h
->plt
.offset
);
6041 /* Check if a stub has to be inserted because the destination
6043 struct elf_aarch64_stub_hash_entry
*stub_entry
= NULL
;
6045 /* If the branch destination is directed to plt stub, "value" will be
6046 the final destination, otherwise we should plus signed_addend, it may
6047 contain non-zero value, for example call to local function symbol
6048 which are turned into "sec_sym + sec_off", and sec_off is kept in
6050 if (! aarch64_valid_branch_p (via_plt_p
? value
: value
+ signed_addend
,
6052 /* The target is out of reach, so redirect the branch to
6053 the local stub for this function. */
6054 stub_entry
= elfNN_aarch64_get_stub_entry (input_section
, sym_sec
, h
,
6056 if (stub_entry
!= NULL
)
6058 value
= (stub_entry
->stub_offset
6059 + stub_entry
->stub_sec
->output_offset
6060 + stub_entry
->stub_sec
->output_section
->vma
);
6062 /* We have redirected the destination to stub entry address,
6063 so ignore any addend record in the original rela entry. */
6067 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
6069 signed_addend
, weak_undef_p
);
6070 *unresolved_reloc_p
= false;
6073 case BFD_RELOC_AARCH64_16_PCREL
:
6074 case BFD_RELOC_AARCH64_32_PCREL
:
6075 case BFD_RELOC_AARCH64_64_PCREL
:
6076 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL
:
6077 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
6078 case BFD_RELOC_AARCH64_ADR_LO21_PCREL
:
6079 case BFD_RELOC_AARCH64_LD_LO19_PCREL
:
6080 case BFD_RELOC_AARCH64_MOVW_PREL_G0
:
6081 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC
:
6082 case BFD_RELOC_AARCH64_MOVW_PREL_G1
:
6083 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC
:
6084 case BFD_RELOC_AARCH64_MOVW_PREL_G2
:
6085 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC
:
6086 case BFD_RELOC_AARCH64_MOVW_PREL_G3
:
6087 if (bfd_link_pic (info
)
6088 && (input_section
->flags
& SEC_ALLOC
) != 0
6089 && (input_section
->flags
& SEC_READONLY
) != 0
6090 && !_bfd_elf_symbol_refs_local_p (h
, info
, 1))
6092 int howto_index
= bfd_r_type
- BFD_RELOC_AARCH64_RELOC_START
;
6095 /* xgettext:c-format */
6096 (_("%pB: relocation %s against symbol `%s' which may bind "
6097 "externally can not be used when making a shared object; "
6098 "recompile with -fPIC"),
6099 input_bfd
, elfNN_aarch64_howto_table
[howto_index
].name
,
6100 h
->root
.root
.string
);
6101 bfd_set_error (bfd_error_bad_value
);
6102 return bfd_reloc_notsupported
;
6104 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
6110 case BFD_RELOC_AARCH64_BRANCH19
:
6111 case BFD_RELOC_AARCH64_TSTBR14
:
6112 if (h
&& h
->root
.type
== bfd_link_hash_undefined
)
6115 /* xgettext:c-format */
6116 (_("%pB: conditional branch to undefined symbol `%s' "
6117 "not allowed"), input_bfd
, h
->root
.root
.string
);
6118 bfd_set_error (bfd_error_bad_value
);
6119 return bfd_reloc_notsupported
;
6123 case BFD_RELOC_AARCH64_16
:
6125 case BFD_RELOC_AARCH64_32
:
6127 case BFD_RELOC_AARCH64_ADD_LO12
:
6128 case BFD_RELOC_AARCH64_LDST128_LO12
:
6129 case BFD_RELOC_AARCH64_LDST16_LO12
:
6130 case BFD_RELOC_AARCH64_LDST32_LO12
:
6131 case BFD_RELOC_AARCH64_LDST64_LO12
:
6132 case BFD_RELOC_AARCH64_LDST8_LO12
:
6133 case BFD_RELOC_AARCH64_MOVW_G0
:
6134 case BFD_RELOC_AARCH64_MOVW_G0_NC
:
6135 case BFD_RELOC_AARCH64_MOVW_G0_S
:
6136 case BFD_RELOC_AARCH64_MOVW_G1
:
6137 case BFD_RELOC_AARCH64_MOVW_G1_NC
:
6138 case BFD_RELOC_AARCH64_MOVW_G1_S
:
6139 case BFD_RELOC_AARCH64_MOVW_G2
:
6140 case BFD_RELOC_AARCH64_MOVW_G2_NC
:
6141 case BFD_RELOC_AARCH64_MOVW_G2_S
:
6142 case BFD_RELOC_AARCH64_MOVW_G3
:
6143 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
6145 signed_addend
, weak_undef_p
);
6148 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
6149 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
6150 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
:
6151 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
6152 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
:
6153 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
6154 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
:
6155 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
:
6156 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1
:
6157 if (globals
->root
.sgot
== NULL
)
6158 BFD_ASSERT (h
!= NULL
);
6160 relative_reloc
= false;
6165 /* If a symbol is not dynamic and is not undefined weak, bind it
6166 locally and generate a RELATIVE relocation under PIC mode.
6168 NOTE: one symbol may be referenced by several relocations, we
6169 should only generate one RELATIVE relocation for that symbol.
6170 Therefore, check GOT offset mark first. */
6171 if (h
->dynindx
== -1
6173 && h
->root
.type
!= bfd_link_hash_undefweak
6174 && bfd_link_pic (info
)
6175 && !symbol_got_offset_mark_p (input_bfd
, h
, r_symndx
))
6176 relative_reloc
= true;
6178 value
= aarch64_calculate_got_entry_vma (h
, globals
, info
, value
,
6180 unresolved_reloc_p
);
6181 /* Record the GOT entry address which will be used when generating
6182 RELATIVE relocation. */
6184 got_entry_addr
= value
;
6186 if (aarch64_relocation_aginst_gp_p (bfd_r_type
))
6187 addend
= (globals
->root
.sgot
->output_section
->vma
6188 + globals
->root
.sgot
->output_offset
);
6189 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
6191 addend
, weak_undef_p
);
6196 struct elf_aarch64_local_symbol
*locals
6197 = elf_aarch64_locals (input_bfd
);
6201 int howto_index
= bfd_r_type
- BFD_RELOC_AARCH64_RELOC_START
;
6203 /* xgettext:c-format */
6204 (_("%pB: local symbol descriptor table be NULL when applying "
6205 "relocation %s against local symbol"),
6206 input_bfd
, elfNN_aarch64_howto_table
[howto_index
].name
);
6210 off
= symbol_got_offset (input_bfd
, h
, r_symndx
);
6211 base_got
= globals
->root
.sgot
;
6212 got_entry_addr
= (base_got
->output_section
->vma
6213 + base_got
->output_offset
+ off
);
6215 if (!symbol_got_offset_mark_p (input_bfd
, h
, r_symndx
))
6217 bfd_put_64 (output_bfd
, value
, base_got
->contents
+ off
);
6219 /* For local symbol, we have done absolute relocation in static
6220 linking stage. While for shared library, we need to update the
6221 content of GOT entry according to the shared object's runtime
6222 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
6223 for dynamic linker. */
6224 if (bfd_link_pic (info
))
6225 relative_reloc
= true;
6227 symbol_got_offset_mark (input_bfd
, h
, r_symndx
);
6230 /* Update the relocation value to GOT entry addr as we have transformed
6231 the direct data access into indirect data access through GOT. */
6232 value
= got_entry_addr
;
6234 if (aarch64_relocation_aginst_gp_p (bfd_r_type
))
6235 addend
= base_got
->output_section
->vma
+ base_got
->output_offset
;
6237 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
6239 addend
, weak_undef_p
);
6245 Elf_Internal_Rela outrel
;
6247 s
= globals
->root
.srelgot
;
6251 outrel
.r_offset
= got_entry_addr
;
6252 outrel
.r_info
= ELFNN_R_INFO (0, AARCH64_R (RELATIVE
));
6253 outrel
.r_addend
= orig_value
;
6254 elf_append_rela (output_bfd
, s
, &outrel
);
6258 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
6259 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
6260 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21
:
6261 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
6262 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
:
6263 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
6264 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
6265 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
:
6266 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
:
6267 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
:
6268 if (globals
->root
.sgot
== NULL
)
6269 return bfd_reloc_notsupported
;
6271 value
= (symbol_got_offset (input_bfd
, h
, r_symndx
)
6272 + globals
->root
.sgot
->output_section
->vma
6273 + globals
->root
.sgot
->output_offset
);
6275 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
6278 *unresolved_reloc_p
= false;
6281 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC
:
6282 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1
:
6283 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
:
6284 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
:
6285 if (globals
->root
.sgot
== NULL
)
6286 return bfd_reloc_notsupported
;
6288 value
= symbol_got_offset (input_bfd
, h
, r_symndx
);
6289 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
6292 *unresolved_reloc_p
= false;
6295 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12
:
6296 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12
:
6297 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
:
6298 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12
:
6299 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC
:
6300 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12
:
6301 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC
:
6302 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12
:
6303 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC
:
6304 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12
:
6305 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC
:
6306 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0
:
6307 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
6308 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1
:
6309 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC
:
6310 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2
:
6312 if (!(weak_undef_p
|| elf_hash_table (info
)->tls_sec
))
6314 int howto_index
= bfd_r_type
- BFD_RELOC_AARCH64_RELOC_START
;
6316 /* xgettext:c-format */
6317 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6318 input_bfd
, elfNN_aarch64_howto_table
[howto_index
].name
,
6319 h
->root
.root
.string
);
6320 bfd_set_error (bfd_error_bad_value
);
6321 return bfd_reloc_notsupported
;
6325 = weak_undef_p
? 0 : signed_addend
- dtpoff_base (info
);
6326 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
6328 def_value
, weak_undef_p
);
6332 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
:
6333 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12
:
6334 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
6335 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12
:
6336 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC
:
6337 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12
:
6338 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC
:
6339 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12
:
6340 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC
:
6341 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12
:
6342 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC
:
6343 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0
:
6344 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
6345 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
:
6346 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
6347 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
:
6349 if (!(weak_undef_p
|| elf_hash_table (info
)->tls_sec
))
6351 int howto_index
= bfd_r_type
- BFD_RELOC_AARCH64_RELOC_START
;
6353 /* xgettext:c-format */
6354 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6355 input_bfd
, elfNN_aarch64_howto_table
[howto_index
].name
,
6356 h
->root
.root
.string
);
6357 bfd_set_error (bfd_error_bad_value
);
6358 return bfd_reloc_notsupported
;
6362 = weak_undef_p
? 0 : signed_addend
- tpoff_base (info
);
6363 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
6365 def_value
, weak_undef_p
);
6366 *unresolved_reloc_p
= false;
6370 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12
:
6371 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
6372 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
:
6373 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
:
6374 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
:
6375 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
:
6376 if (globals
->root
.sgot
== NULL
)
6377 return bfd_reloc_notsupported
;
6378 value
= (symbol_tlsdesc_got_offset (input_bfd
, h
, r_symndx
)
6379 + globals
->root
.sgotplt
->output_section
->vma
6380 + globals
->root
.sgotplt
->output_offset
6381 + globals
->sgotplt_jump_table_size
);
6383 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
6386 *unresolved_reloc_p
= false;
6389 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
:
6390 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1
:
6391 if (globals
->root
.sgot
== NULL
)
6392 return bfd_reloc_notsupported
;
6394 value
= (symbol_tlsdesc_got_offset (input_bfd
, h
, r_symndx
)
6395 + globals
->root
.sgotplt
->output_section
->vma
6396 + globals
->root
.sgotplt
->output_offset
6397 + globals
->sgotplt_jump_table_size
);
6399 value
-= (globals
->root
.sgot
->output_section
->vma
6400 + globals
->root
.sgot
->output_offset
);
6402 value
= _bfd_aarch64_elf_resolve_relocation (input_bfd
, bfd_r_type
,
6405 *unresolved_reloc_p
= false;
6409 return bfd_reloc_notsupported
;
6413 *saved_addend
= value
;
6415 /* Only apply the final relocation in a sequence. */
6417 return bfd_reloc_continue
;
6419 return _bfd_aarch64_elf_put_addend (input_bfd
, hit_data
, bfd_r_type
,
6423 /* LP64 and ILP32 operates on x- and w-registers respectively.
6424 Next definitions take into account the difference between
6425 corresponding machine codes. R means x-register if the target
6426 arch is LP64, and w-register if the target is ILP32. */
6429 # define add_R0_R0 (0x91000000)
6430 # define add_R0_R0_R1 (0x8b000020)
6431 # define add_R0_R1 (0x91400020)
6432 # define ldr_R0 (0x58000000)
6433 # define ldr_R0_mask(i) (i & 0xffffffe0)
6434 # define ldr_R0_x0 (0xf9400000)
6435 # define ldr_hw_R0 (0xf2a00000)
6436 # define movk_R0 (0xf2800000)
6437 # define movz_R0 (0xd2a00000)
6438 # define movz_hw_R0 (0xd2c00000)
6439 #else /*ARCH_SIZE == 32 */
6440 # define add_R0_R0 (0x11000000)
6441 # define add_R0_R0_R1 (0x0b000020)
6442 # define add_R0_R1 (0x11400020)
6443 # define ldr_R0 (0x18000000)
6444 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6445 # define ldr_R0_x0 (0xb9400000)
6446 # define ldr_hw_R0 (0x72a00000)
6447 # define movk_R0 (0x72800000)
6448 # define movz_R0 (0x52a00000)
6449 # define movz_hw_R0 (0x52c00000)
6452 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6453 it is used to identify the stub information to reset. */
6455 struct erratum_843419_branch_to_stub_clear_data
6457 bfd_vma adrp_offset
;
6458 asection
*output_section
;
6461 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6462 section inside IN_ARG matches. The clearing is done by setting the
6463 stub_type to none. */
6466 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry
*gen_entry
,
6469 struct elf_aarch64_stub_hash_entry
*stub_entry
6470 = (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
6471 struct erratum_843419_branch_to_stub_clear_data
*data
6472 = (struct erratum_843419_branch_to_stub_clear_data
*) in_arg
;
6474 if (stub_entry
->target_section
!= data
->output_section
6475 || stub_entry
->stub_type
!= aarch64_stub_erratum_843419_veneer
6476 || stub_entry
->adrp_offset
!= data
->adrp_offset
)
6479 /* Change the stub type instead of removing the entry, removing from the hash
6480 table would be slower and we have already reserved the memory for the entry
6481 so there wouldn't be much gain. Changing the stub also keeps around a
6482 record of what was there before. */
6483 stub_entry
->stub_type
= aarch64_stub_none
;
6485 /* We're done and there could have been only one matching stub at that
6486 particular offset, so abort further traversal. */
6490 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6491 sequence. In this case the erratum no longer applies and we need to remove
6492 the entry from the pending stub generation. This clears matching adrp insn
6493 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6496 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table
*globals
,
6497 bfd_vma adrp_offset
, asection
*input_section
)
6499 if (globals
->fix_erratum_843419
& ERRAT_ADRP
)
6501 struct erratum_843419_branch_to_stub_clear_data data
;
6502 data
.adrp_offset
= adrp_offset
;
6503 data
.output_section
= input_section
;
6505 bfd_hash_traverse (&globals
->stub_hash_table
,
6506 _bfd_aarch64_erratum_843419_clear_stub
, &data
);
6510 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6511 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6514 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6515 is to then call final_link_relocate. Return other values in the
6518 static bfd_reloc_status_type
6519 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table
*globals
,
6520 bfd
*input_bfd
, asection
*input_section
,
6521 bfd_byte
*contents
, Elf_Internal_Rela
*rel
,
6522 struct elf_link_hash_entry
*h
,
6523 struct bfd_link_info
*info
)
6525 bool local_exec
= bfd_link_executable (info
)
6526 && SYMBOL_REFERENCES_LOCAL (info
, h
);
6527 unsigned int r_type
= ELFNN_R_TYPE (rel
->r_info
);
6530 BFD_ASSERT (globals
&& input_bfd
&& contents
&& rel
);
6532 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd
, r_type
))
6534 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
6535 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
6538 /* GD->LE relaxation:
6539 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6541 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6543 Where R is x for LP64, and w for ILP32. */
6544 bfd_putl32 (movz_R0
, contents
+ rel
->r_offset
);
6545 /* We have relaxed the adrp into a mov, we may have to clear any
6546 pending erratum fixes. */
6547 clear_erratum_843419_entry (globals
, rel
->r_offset
, input_section
);
6548 return bfd_reloc_continue
;
6552 /* GD->IE relaxation:
6553 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6555 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6557 return bfd_reloc_continue
;
6560 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
:
6564 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
:
6567 /* Tiny TLSDESC->LE relaxation:
6568 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6569 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6573 Where R is x for LP64, and w for ILP32. */
6574 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (TLSDESC_ADR_PREL21
));
6575 BFD_ASSERT (ELFNN_R_TYPE (rel
[2].r_info
) == AARCH64_R (TLSDESC_CALL
));
6577 rel
[1].r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
),
6578 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC
));
6579 rel
[2].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
6581 bfd_putl32 (movz_R0
, contents
+ rel
->r_offset
);
6582 bfd_putl32 (movk_R0
, contents
+ rel
->r_offset
+ 4);
6583 bfd_putl32 (INSN_NOP
, contents
+ rel
->r_offset
+ 8);
6584 return bfd_reloc_continue
;
6588 /* Tiny TLSDESC->IE relaxation:
6589 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6590 adr x0, :tlsdesc:var => nop
6594 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (TLSDESC_ADR_PREL21
));
6595 BFD_ASSERT (ELFNN_R_TYPE (rel
[2].r_info
) == AARCH64_R (TLSDESC_CALL
));
6597 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
6598 rel
[2].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
6600 bfd_putl32 (ldr_R0
, contents
+ rel
->r_offset
);
6601 bfd_putl32 (INSN_NOP
, contents
+ rel
->r_offset
+ 4);
6602 bfd_putl32 (INSN_NOP
, contents
+ rel
->r_offset
+ 8);
6603 return bfd_reloc_continue
;
6606 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21
:
6609 /* Tiny GD->LE relaxation:
6610 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6611 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6612 nop => add R0, R0, #:tprel_lo12_nc:x
6614 Where R is x for LP64, and x for Ilp32. */
6616 /* First kill the tls_get_addr reloc on the bl instruction. */
6617 BFD_ASSERT (rel
->r_offset
+ 4 == rel
[1].r_offset
);
6619 bfd_putl32 (0xd53bd041, contents
+ rel
->r_offset
+ 0);
6620 bfd_putl32 (add_R0_R1
, contents
+ rel
->r_offset
+ 4);
6621 bfd_putl32 (add_R0_R0
, contents
+ rel
->r_offset
+ 8);
6623 rel
[1].r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
),
6624 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC
));
6625 rel
[1].r_offset
= rel
->r_offset
+ 8;
6627 /* Move the current relocation to the second instruction in
6630 rel
->r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
),
6631 AARCH64_R (TLSLE_ADD_TPREL_HI12
));
6632 return bfd_reloc_continue
;
6636 /* Tiny GD->IE relaxation:
6637 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6638 bl __tls_get_addr => mrs x1, tpidr_el0
6639 nop => add R0, R0, R1
6641 Where R is x for LP64, and w for Ilp32. */
6643 /* First kill the tls_get_addr reloc on the bl instruction. */
6644 BFD_ASSERT (rel
->r_offset
+ 4 == rel
[1].r_offset
);
6645 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
6647 bfd_putl32 (ldr_R0
, contents
+ rel
->r_offset
);
6648 bfd_putl32 (0xd53bd041, contents
+ rel
->r_offset
+ 4);
6649 bfd_putl32 (add_R0_R0_R1
, contents
+ rel
->r_offset
+ 8);
6650 return bfd_reloc_continue
;
6654 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1
:
6655 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (TLSGD_MOVW_G0_NC
));
6656 BFD_ASSERT (rel
->r_offset
+ 12 == rel
[2].r_offset
);
6657 BFD_ASSERT (ELFNN_R_TYPE (rel
[2].r_info
) == AARCH64_R (CALL26
));
6661 /* Large GD->LE relaxation:
6662 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6663 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6664 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6665 bl __tls_get_addr => mrs x1, tpidr_el0
6666 nop => add x0, x0, x1
6668 rel
[2].r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
),
6669 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC
));
6670 rel
[2].r_offset
= rel
->r_offset
+ 8;
6672 bfd_putl32 (movz_hw_R0
, contents
+ rel
->r_offset
+ 0);
6673 bfd_putl32 (ldr_hw_R0
, contents
+ rel
->r_offset
+ 4);
6674 bfd_putl32 (movk_R0
, contents
+ rel
->r_offset
+ 8);
6675 bfd_putl32 (0xd53bd041, contents
+ rel
->r_offset
+ 12);
6676 bfd_putl32 (add_R0_R0_R1
, contents
+ rel
->r_offset
+ 16);
6680 /* Large GD->IE relaxation:
6681 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6682 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6683 add x0, gp, x0 => ldr x0, [gp, x0]
6684 bl __tls_get_addr => mrs x1, tpidr_el0
6685 nop => add x0, x0, x1
6687 rel
[2].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
6688 bfd_putl32 (0xd2a80000, contents
+ rel
->r_offset
+ 0);
6689 bfd_putl32 (ldr_R0
, contents
+ rel
->r_offset
+ 8);
6690 bfd_putl32 (0xd53bd041, contents
+ rel
->r_offset
+ 12);
6691 bfd_putl32 (add_R0_R0_R1
, contents
+ rel
->r_offset
+ 16);
6693 return bfd_reloc_continue
;
6695 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC
:
6696 return bfd_reloc_continue
;
6699 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
6700 return bfd_reloc_continue
;
6702 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC
:
6705 /* GD->LE relaxation:
6706 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6708 Where R is x for lp64 mode, and w for ILP32 mode. */
6709 bfd_putl32 (movk_R0
, contents
+ rel
->r_offset
);
6710 return bfd_reloc_continue
;
6714 /* GD->IE relaxation:
6715 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6717 Where R is x for lp64 mode, and w for ILP32 mode. */
6718 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
6719 bfd_putl32 (ldr_R0_mask (insn
), contents
+ rel
->r_offset
);
6720 return bfd_reloc_continue
;
6723 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
6726 /* GD->LE relaxation
6727 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6728 bl __tls_get_addr => mrs x1, tpidr_el0
6729 nop => add R0, R1, R0
6731 Where R is x for lp64 mode, and w for ILP32 mode. */
6733 /* First kill the tls_get_addr reloc on the bl instruction. */
6734 BFD_ASSERT (rel
->r_offset
+ 4 == rel
[1].r_offset
);
6735 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
6737 bfd_putl32 (movk_R0
, contents
+ rel
->r_offset
);
6738 bfd_putl32 (0xd53bd041, contents
+ rel
->r_offset
+ 4);
6739 bfd_putl32 (add_R0_R0_R1
, contents
+ rel
->r_offset
+ 8);
6740 return bfd_reloc_continue
;
6744 /* GD->IE relaxation
6745 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6746 BL __tls_get_addr => mrs x1, tpidr_el0
6748 NOP => add R0, R1, R0
6750 Where R is x for lp64 mode, and w for ilp32 mode. */
6752 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (CALL26
));
6754 /* Remove the relocation on the BL instruction. */
6755 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
6757 /* We choose to fixup the BL and NOP instructions using the
6758 offset from the second relocation to allow flexibility in
6759 scheduling instructions between the ADD and BL. */
6760 bfd_putl32 (ldr_R0_x0
, contents
+ rel
->r_offset
);
6761 bfd_putl32 (0xd53bd041, contents
+ rel
[1].r_offset
);
6762 bfd_putl32 (add_R0_R0_R1
, contents
+ rel
[1].r_offset
+ 4);
6763 return bfd_reloc_continue
;
6766 case BFD_RELOC_AARCH64_TLSDESC_ADD
:
6767 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12
:
6768 case BFD_RELOC_AARCH64_TLSDESC_CALL
:
6769 /* GD->IE/LE relaxation:
6770 add x0, x0, #:tlsdesc_lo12:var => nop
6773 bfd_putl32 (INSN_NOP
, contents
+ rel
->r_offset
);
6774 return bfd_reloc_ok
;
6776 case BFD_RELOC_AARCH64_TLSDESC_LDR
:
6779 /* GD->LE relaxation:
6780 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6782 Where R is x for lp64 mode, and w for ILP32 mode. */
6783 bfd_putl32 (movk_R0
, contents
+ rel
->r_offset
);
6784 return bfd_reloc_continue
;
6788 /* GD->IE relaxation:
6789 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6791 Where R is x for lp64 mode, and w for ILP32 mode. */
6792 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
6793 bfd_putl32 (ldr_R0_mask (insn
), contents
+ rel
->r_offset
);
6794 return bfd_reloc_ok
;
6797 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
:
6798 /* GD->LE relaxation:
6799 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6801 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6803 Where R is x for lp64 mode, and w for ILP32 mode. */
6805 bfd_putl32 (ldr_hw_R0
, contents
+ rel
->r_offset
);
6806 return bfd_reloc_continue
;
6808 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1
:
6811 /* GD->LE relaxation:
6812 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6814 Where R is x for lp64 mode, and w for ILP32 mode. */
6815 bfd_putl32 (movz_hw_R0
, contents
+ rel
->r_offset
);
6816 return bfd_reloc_continue
;
6820 /* GD->IE relaxation:
6821 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6823 Where R is x for lp64 mode, and w for ILP32 mode. */
6824 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
6825 bfd_putl32 (movz_R0
| (insn
& 0x1f), contents
+ rel
->r_offset
);
6826 return bfd_reloc_continue
;
6829 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
6830 /* IE->LE relaxation:
6831 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6833 Where R is x for lp64 mode, and w for ILP32 mode. */
6836 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
6837 bfd_putl32 (movz_R0
| (insn
& 0x1f), contents
+ rel
->r_offset
);
6838 /* We have relaxed the adrp into a mov, we may have to clear any
6839 pending erratum fixes. */
6840 clear_erratum_843419_entry (globals
, rel
->r_offset
, input_section
);
6842 return bfd_reloc_continue
;
6844 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC
:
6845 /* IE->LE relaxation:
6846 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6848 Where R is x for lp64 mode, and w for ILP32 mode. */
6851 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
6852 bfd_putl32 (movk_R0
| (insn
& 0x1f), contents
+ rel
->r_offset
);
6854 return bfd_reloc_continue
;
6856 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
:
6857 /* LD->LE relaxation (tiny):
6858 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6859 bl __tls_get_addr => add R0, R0, TCB_SIZE
6861 Where R is x for lp64 mode, and w for ilp32 mode. */
6864 BFD_ASSERT (rel
->r_offset
+ 4 == rel
[1].r_offset
);
6865 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (CALL26
));
6866 /* No need of CALL26 relocation for tls_get_addr. */
6867 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
6868 bfd_putl32 (0xd53bd040, contents
+ rel
->r_offset
+ 0);
6869 bfd_putl32 (add_R0_R0
| (TCB_SIZE
<< 10),
6870 contents
+ rel
->r_offset
+ 4);
6871 return bfd_reloc_ok
;
6873 return bfd_reloc_continue
;
6875 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
:
6876 /* LD->LE relaxation (small):
6877 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6881 bfd_putl32 (0xd53bd040, contents
+ rel
->r_offset
);
6882 return bfd_reloc_ok
;
6884 return bfd_reloc_continue
;
6886 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
:
6887 /* LD->LE relaxation (small):
6888 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6889 bl __tls_get_addr => nop
6891 Where R is x for lp64 mode, and w for ilp32 mode. */
6894 BFD_ASSERT (rel
->r_offset
+ 4 == rel
[1].r_offset
);
6895 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (CALL26
));
6896 /* No need of CALL26 relocation for tls_get_addr. */
6897 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
6898 bfd_putl32 (add_R0_R0
| (TCB_SIZE
<< 10),
6899 contents
+ rel
->r_offset
+ 0);
6900 bfd_putl32 (INSN_NOP
, contents
+ rel
->r_offset
+ 4);
6901 return bfd_reloc_ok
;
6903 return bfd_reloc_continue
;
6906 return bfd_reloc_continue
;
6909 return bfd_reloc_ok
;
6912 /* Relocate an AArch64 ELF section. */
6915 elfNN_aarch64_relocate_section (bfd
*output_bfd
,
6916 struct bfd_link_info
*info
,
6918 asection
*input_section
,
6920 Elf_Internal_Rela
*relocs
,
6921 Elf_Internal_Sym
*local_syms
,
6922 asection
**local_sections
)
6924 Elf_Internal_Shdr
*symtab_hdr
;
6925 struct elf_link_hash_entry
**sym_hashes
;
6926 Elf_Internal_Rela
*rel
;
6927 Elf_Internal_Rela
*relend
;
6929 struct elf_aarch64_link_hash_table
*globals
;
6930 bool save_addend
= false;
6933 globals
= elf_aarch64_hash_table (info
);
6935 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
6936 sym_hashes
= elf_sym_hashes (input_bfd
);
6939 relend
= relocs
+ input_section
->reloc_count
;
6940 for (; rel
< relend
; rel
++)
6942 unsigned int r_type
;
6943 bfd_reloc_code_real_type bfd_r_type
;
6944 bfd_reloc_code_real_type relaxed_bfd_r_type
;
6945 reloc_howto_type
*howto
;
6946 unsigned long r_symndx
;
6947 Elf_Internal_Sym
*sym
;
6949 struct elf_link_hash_entry
*h
;
6951 bfd_reloc_status_type r
;
6954 bool unresolved_reloc
= false;
6955 char *error_message
= NULL
;
6957 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
6958 r_type
= ELFNN_R_TYPE (rel
->r_info
);
6960 bfd_reloc
.howto
= elfNN_aarch64_howto_from_type (input_bfd
, r_type
);
6961 howto
= bfd_reloc
.howto
;
6964 return _bfd_unrecognized_reloc (input_bfd
, input_section
, r_type
);
6966 bfd_r_type
= elfNN_aarch64_bfd_reloc_from_howto (howto
);
6972 if (r_symndx
< symtab_hdr
->sh_info
)
6974 sym
= local_syms
+ r_symndx
;
6975 sym_type
= ELFNN_ST_TYPE (sym
->st_info
);
6976 sec
= local_sections
[r_symndx
];
6978 /* An object file might have a reference to a local
6979 undefined symbol. This is a daft object file, but we
6980 should at least do something about it. NONE and NULL
6981 relocations do not use the symbol and are explicitly
6982 allowed to use an undefined one, so allow those.
6983 Likewise for relocations against STN_UNDEF. */
6984 if (r_type
!= R_AARCH64_NONE
&& r_type
!= R_AARCH64_NULL
6985 && r_symndx
!= STN_UNDEF
6986 && bfd_is_und_section (sec
)
6987 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
6988 (*info
->callbacks
->undefined_symbol
)
6989 (info
, bfd_elf_string_from_elf_section
6990 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
6991 input_bfd
, input_section
, rel
->r_offset
, true);
6993 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
6995 /* Relocate against local STT_GNU_IFUNC symbol. */
6996 if (!bfd_link_relocatable (info
)
6997 && ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
6999 h
= elfNN_aarch64_get_local_sym_hash (globals
, input_bfd
,
7004 /* Set STT_GNU_IFUNC symbol value. */
7005 h
->root
.u
.def
.value
= sym
->st_value
;
7006 h
->root
.u
.def
.section
= sec
;
7011 bool warned
, ignored
;
7013 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
7014 r_symndx
, symtab_hdr
, sym_hashes
,
7016 unresolved_reloc
, warned
, ignored
);
7021 if (sec
!= NULL
&& discarded_section (sec
))
7022 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
7023 rel
, 1, relend
, howto
, 0, contents
);
7025 if (bfd_link_relocatable (info
))
7029 name
= h
->root
.root
.string
;
7032 name
= (bfd_elf_string_from_elf_section
7033 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
7034 if (name
== NULL
|| *name
== '\0')
7035 name
= bfd_section_name (sec
);
7039 && r_type
!= R_AARCH64_NONE
7040 && r_type
!= R_AARCH64_NULL
7042 || h
->root
.type
== bfd_link_hash_defined
7043 || h
->root
.type
== bfd_link_hash_defweak
)
7044 && IS_AARCH64_TLS_RELOC (bfd_r_type
) != (sym_type
== STT_TLS
))
7047 ((sym_type
== STT_TLS
7048 /* xgettext:c-format */
7049 ? _("%pB(%pA+%#" PRIx64
"): %s used with TLS symbol %s")
7050 /* xgettext:c-format */
7051 : _("%pB(%pA+%#" PRIx64
"): %s used with non-TLS symbol %s")),
7053 input_section
, (uint64_t) rel
->r_offset
, howto
->name
, name
);
7056 /* We relax only if we can see that there can be a valid transition
7057 from a reloc type to another.
7058 We call elfNN_aarch64_final_link_relocate unless we're completely
7059 done, i.e., the relaxation produced the final output we want. */
7061 relaxed_bfd_r_type
= aarch64_tls_transition (input_bfd
, info
, r_type
,
7063 if (relaxed_bfd_r_type
!= bfd_r_type
)
7065 bfd_r_type
= relaxed_bfd_r_type
;
7066 howto
= elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type
);
7067 BFD_ASSERT (howto
!= NULL
);
7068 r_type
= howto
->type
;
7069 r
= elfNN_aarch64_tls_relax (globals
, input_bfd
, input_section
,
7070 contents
, rel
, h
, info
);
7071 unresolved_reloc
= 0;
7074 r
= bfd_reloc_continue
;
7076 /* There may be multiple consecutive relocations for the
7077 same offset. In that case we are supposed to treat the
7078 output of each relocation as the addend for the next. */
7079 if (rel
+ 1 < relend
7080 && rel
->r_offset
== rel
[1].r_offset
7081 && ELFNN_R_TYPE (rel
[1].r_info
) != R_AARCH64_NONE
7082 && ELFNN_R_TYPE (rel
[1].r_info
) != R_AARCH64_NULL
)
7085 save_addend
= false;
7087 if (r
== bfd_reloc_continue
)
7088 r
= elfNN_aarch64_final_link_relocate (howto
, input_bfd
, output_bfd
,
7089 input_section
, contents
, rel
,
7090 relocation
, info
, sec
,
7091 h
, &unresolved_reloc
,
7092 save_addend
, &addend
, sym
);
7094 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd
, r_type
))
7096 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
7097 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
7098 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21
:
7099 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC
:
7100 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1
:
7101 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
:
7102 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
:
7103 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
:
7104 if (! symbol_got_offset_mark_p (input_bfd
, h
, r_symndx
))
7106 bool need_relocs
= false;
7111 off
= symbol_got_offset (input_bfd
, h
, r_symndx
);
7112 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
7115 (!bfd_link_executable (info
) || indx
!= 0) &&
7117 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
7118 || h
->root
.type
!= bfd_link_hash_undefweak
);
7120 BFD_ASSERT (globals
->root
.srelgot
!= NULL
);
7124 Elf_Internal_Rela rela
;
7125 rela
.r_info
= ELFNN_R_INFO (indx
, AARCH64_R (TLS_DTPMOD
));
7127 rela
.r_offset
= globals
->root
.sgot
->output_section
->vma
+
7128 globals
->root
.sgot
->output_offset
+ off
;
7131 loc
= globals
->root
.srelgot
->contents
;
7132 loc
+= globals
->root
.srelgot
->reloc_count
++
7133 * RELOC_SIZE (htab
);
7134 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
7136 bfd_reloc_code_real_type real_type
=
7137 elfNN_aarch64_bfd_reloc_from_type (input_bfd
, r_type
);
7139 if (real_type
== BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
7140 || real_type
== BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
7141 || real_type
== BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
)
7143 /* For local dynamic, don't generate DTPREL in any case.
7144 Initialize the DTPREL slot into zero, so we get module
7145 base address when invoke runtime TLS resolver. */
7146 bfd_put_NN (output_bfd
, 0,
7147 globals
->root
.sgot
->contents
+ off
7152 bfd_put_NN (output_bfd
,
7153 relocation
- dtpoff_base (info
),
7154 globals
->root
.sgot
->contents
+ off
7159 /* This TLS symbol is global. We emit a
7160 relocation to fixup the tls offset at load
7163 ELFNN_R_INFO (indx
, AARCH64_R (TLS_DTPREL
));
7166 (globals
->root
.sgot
->output_section
->vma
7167 + globals
->root
.sgot
->output_offset
+ off
7170 loc
= globals
->root
.srelgot
->contents
;
7171 loc
+= globals
->root
.srelgot
->reloc_count
++
7172 * RELOC_SIZE (globals
);
7173 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
7174 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
7175 globals
->root
.sgot
->contents
+ off
7181 bfd_put_NN (output_bfd
, (bfd_vma
) 1,
7182 globals
->root
.sgot
->contents
+ off
);
7183 bfd_put_NN (output_bfd
,
7184 relocation
- dtpoff_base (info
),
7185 globals
->root
.sgot
->contents
+ off
7189 symbol_got_offset_mark (input_bfd
, h
, r_symndx
);
7193 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
7194 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC
:
7195 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
7196 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
:
7197 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
:
7198 if (! symbol_got_offset_mark_p (input_bfd
, h
, r_symndx
))
7200 bool need_relocs
= false;
7205 off
= symbol_got_offset (input_bfd
, h
, r_symndx
);
7207 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
7210 (!bfd_link_executable (info
) || indx
!= 0) &&
7212 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
7213 || h
->root
.type
!= bfd_link_hash_undefweak
);
7215 BFD_ASSERT (globals
->root
.srelgot
!= NULL
);
7219 Elf_Internal_Rela rela
;
7222 rela
.r_addend
= relocation
- dtpoff_base (info
);
7226 rela
.r_info
= ELFNN_R_INFO (indx
, AARCH64_R (TLS_TPREL
));
7227 rela
.r_offset
= globals
->root
.sgot
->output_section
->vma
+
7228 globals
->root
.sgot
->output_offset
+ off
;
7230 loc
= globals
->root
.srelgot
->contents
;
7231 loc
+= globals
->root
.srelgot
->reloc_count
++
7232 * RELOC_SIZE (htab
);
7234 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
7236 bfd_put_NN (output_bfd
, rela
.r_addend
,
7237 globals
->root
.sgot
->contents
+ off
);
7240 bfd_put_NN (output_bfd
, relocation
- tpoff_base (info
),
7241 globals
->root
.sgot
->contents
+ off
);
7243 symbol_got_offset_mark (input_bfd
, h
, r_symndx
);
7247 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12
:
7248 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
7249 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
:
7250 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC
:
7251 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
:
7252 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
:
7253 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1
:
7254 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd
, h
, r_symndx
))
7256 bool need_relocs
= false;
7257 int indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
7258 bfd_vma off
= symbol_tlsdesc_got_offset (input_bfd
, h
, r_symndx
);
7260 need_relocs
= (h
== NULL
7261 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
7262 || h
->root
.type
!= bfd_link_hash_undefweak
);
7264 BFD_ASSERT (globals
->root
.srelgot
!= NULL
);
7265 BFD_ASSERT (globals
->root
.sgot
!= NULL
);
7270 Elf_Internal_Rela rela
;
7271 rela
.r_info
= ELFNN_R_INFO (indx
, AARCH64_R (TLSDESC
));
7274 rela
.r_offset
= (globals
->root
.sgotplt
->output_section
->vma
7275 + globals
->root
.sgotplt
->output_offset
7276 + off
+ globals
->sgotplt_jump_table_size
);
7279 rela
.r_addend
= relocation
- dtpoff_base (info
);
7281 /* Allocate the next available slot in the PLT reloc
7282 section to hold our R_AARCH64_TLSDESC, the next
7283 available slot is determined from reloc_count,
7284 which we step. But note, reloc_count was
7285 artifically moved down while allocating slots for
7286 real PLT relocs such that all of the PLT relocs
7287 will fit above the initial reloc_count and the
7288 extra stuff will fit below. */
7289 loc
= globals
->root
.srelplt
->contents
;
7290 loc
+= globals
->root
.srelplt
->reloc_count
++
7291 * RELOC_SIZE (globals
);
7293 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
7295 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
7296 globals
->root
.sgotplt
->contents
+ off
+
7297 globals
->sgotplt_jump_table_size
);
7298 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
7299 globals
->root
.sgotplt
->contents
+ off
+
7300 globals
->sgotplt_jump_table_size
+
7304 symbol_tlsdesc_got_offset_mark (input_bfd
, h
, r_symndx
);
7311 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7312 because such sections are not SEC_ALLOC and thus ld.so will
7313 not process them. */
7314 if (unresolved_reloc
7315 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
7317 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
7318 +rel
->r_offset
) != (bfd_vma
) - 1)
7321 /* xgettext:c-format */
7322 (_("%pB(%pA+%#" PRIx64
"): "
7323 "unresolvable %s relocation against symbol `%s'"),
7324 input_bfd
, input_section
, (uint64_t) rel
->r_offset
, howto
->name
,
7325 h
->root
.root
.string
);
7329 if (r
!= bfd_reloc_ok
&& r
!= bfd_reloc_continue
)
7331 bfd_reloc_code_real_type real_r_type
7332 = elfNN_aarch64_bfd_reloc_from_type (input_bfd
, r_type
);
7336 case bfd_reloc_overflow
:
7337 (*info
->callbacks
->reloc_overflow
)
7338 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
, (bfd_vma
) 0,
7339 input_bfd
, input_section
, rel
->r_offset
);
7340 if (real_r_type
== BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7341 || real_r_type
== BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
)
7343 (*info
->callbacks
->warning
)
7345 _("too many GOT entries for -fpic, "
7346 "please recompile with -fPIC"),
7347 name
, input_bfd
, input_section
, rel
->r_offset
);
7350 /* Overflow can occur when a variable is referenced with a type
7351 that has a larger alignment than the type with which it was
7353 file1.c: extern int foo; int a (void) { return foo; }
7354 file2.c: char bar, foo, baz;
7355 If the variable is placed into a data section at an offset
7356 that is incompatible with the larger alignment requirement
7357 overflow will occur. (Strictly speaking this is not overflow
7358 but rather an alignment problem, but the bfd_reloc_ error
7359 enum does not have a value to cover that situation).
7361 Try to catch this situation here and provide a more helpful
7362 error message to the user. */
7363 if (addend
& (((bfd_vma
) 1 << howto
->rightshift
) - 1)
7364 /* FIXME: Are we testing all of the appropriate reloc
7366 && (real_r_type
== BFD_RELOC_AARCH64_LD_LO19_PCREL
7367 || real_r_type
== BFD_RELOC_AARCH64_LDST16_LO12
7368 || real_r_type
== BFD_RELOC_AARCH64_LDST32_LO12
7369 || real_r_type
== BFD_RELOC_AARCH64_LDST64_LO12
7370 || real_r_type
== BFD_RELOC_AARCH64_LDST128_LO12
))
7372 info
->callbacks
->warning
7373 (info
, _("one possible cause of this error is that the \
7374 symbol is being referenced in the indicated code as if it had a larger \
7375 alignment than was declared where it was defined"),
7376 name
, input_bfd
, input_section
, rel
->r_offset
);
7380 case bfd_reloc_undefined
:
7381 (*info
->callbacks
->undefined_symbol
)
7382 (info
, name
, input_bfd
, input_section
, rel
->r_offset
, true);
7385 case bfd_reloc_outofrange
:
7386 error_message
= _("out of range");
7389 case bfd_reloc_notsupported
:
7390 error_message
= _("unsupported relocation");
7393 case bfd_reloc_dangerous
:
7394 /* error_message should already be set. */
7398 error_message
= _("unknown error");
7402 BFD_ASSERT (error_message
!= NULL
);
7403 (*info
->callbacks
->reloc_dangerous
)
7404 (info
, error_message
, input_bfd
, input_section
, rel
->r_offset
);
7416 /* Set the right machine number. */
7419 elfNN_aarch64_object_p (bfd
*abfd
)
7422 bfd_default_set_arch_mach (abfd
, bfd_arch_aarch64
, bfd_mach_aarch64_ilp32
);
7424 bfd_default_set_arch_mach (abfd
, bfd_arch_aarch64
, bfd_mach_aarch64
);
7429 /* Function to keep AArch64 specific flags in the ELF header. */
7432 elfNN_aarch64_set_private_flags (bfd
*abfd
, flagword flags
)
7434 if (elf_flags_init (abfd
) && elf_elfheader (abfd
)->e_flags
!= flags
)
7439 elf_elfheader (abfd
)->e_flags
= flags
;
7440 elf_flags_init (abfd
) = true;
7446 /* Merge backend specific data from an object file to the output
7447 object file when linking. */
7450 elfNN_aarch64_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
7452 bfd
*obfd
= info
->output_bfd
;
7455 bool flags_compatible
= true;
7458 /* Check if we have the same endianess. */
7459 if (!_bfd_generic_verify_endian_match (ibfd
, info
))
7462 if (!is_aarch64_elf (ibfd
) || !is_aarch64_elf (obfd
))
7465 /* The input BFD must have had its flags initialised. */
7466 /* The following seems bogus to me -- The flags are initialized in
7467 the assembler but I don't think an elf_flags_init field is
7468 written into the object. */
7469 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7471 in_flags
= elf_elfheader (ibfd
)->e_flags
;
7472 out_flags
= elf_elfheader (obfd
)->e_flags
;
7474 if (!elf_flags_init (obfd
))
7476 /* If the input is the default architecture and had the default
7477 flags then do not bother setting the flags for the output
7478 architecture, instead allow future merges to do this. If no
7479 future merges ever set these flags then they will retain their
7480 uninitialised values, which surprise surprise, correspond
7481 to the default values. */
7482 if (bfd_get_arch_info (ibfd
)->the_default
7483 && elf_elfheader (ibfd
)->e_flags
== 0)
7486 elf_flags_init (obfd
) = true;
7487 elf_elfheader (obfd
)->e_flags
= in_flags
;
7489 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
7490 && bfd_get_arch_info (obfd
)->the_default
)
7491 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
7492 bfd_get_mach (ibfd
));
7497 /* Identical flags must be compatible. */
7498 if (in_flags
== out_flags
)
7501 /* Check to see if the input BFD actually contains any sections. If
7502 not, its flags may not have been initialised either, but it
7503 cannot actually cause any incompatiblity. Do not short-circuit
7504 dynamic objects; their section list may be emptied by
7505 elf_link_add_object_symbols.
7507 Also check to see if there are no code sections in the input.
7508 In this case there is no need to check for code specific flags.
7509 XXX - do we need to worry about floating-point format compatability
7510 in data sections ? */
7511 if (!(ibfd
->flags
& DYNAMIC
))
7513 bool null_input_bfd
= true;
7514 bool only_data_sections
= true;
7516 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
7518 if ((bfd_section_flags (sec
)
7519 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
7520 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
7521 only_data_sections
= false;
7523 null_input_bfd
= false;
7527 if (null_input_bfd
|| only_data_sections
)
7531 return flags_compatible
;
7534 /* Display the flags field. */
7537 elfNN_aarch64_print_private_bfd_data (bfd
*abfd
, void *ptr
)
7539 FILE *file
= (FILE *) ptr
;
7540 unsigned long flags
;
7542 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
7544 /* Print normal ELF private data. */
7545 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
7547 flags
= elf_elfheader (abfd
)->e_flags
;
7548 /* Ignore init flag - it may not be set, despite the flags field
7549 containing valid data. */
7551 /* xgettext:c-format */
7552 fprintf (file
, _("private flags = 0x%lx:"), elf_elfheader (abfd
)->e_flags
);
7555 fprintf (file
, _(" <Unrecognised flag bits set>"));
7562 /* Return true if we need copy relocation against EH. */
7565 need_copy_relocation_p (struct elf_aarch64_link_hash_entry
*eh
)
7567 struct elf_dyn_relocs
*p
;
7570 for (p
= eh
->root
.dyn_relocs
; p
!= NULL
; p
= p
->next
)
7572 /* If there is any pc-relative reference, we need to keep copy relocation
7573 to avoid propagating the relocation into runtime that current glibc
7574 does not support. */
7578 s
= p
->sec
->output_section
;
7579 /* Need copy relocation if it's against read-only section. */
7580 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
7587 /* Adjust a symbol defined by a dynamic object and referenced by a
7588 regular object. The current definition is in some section of the
7589 dynamic object, but we're not including those sections. We have to
7590 change the definition to something the rest of the link can
7594 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info
*info
,
7595 struct elf_link_hash_entry
*h
)
7597 struct elf_aarch64_link_hash_table
*htab
;
7600 /* If this is a function, put it in the procedure linkage table. We
7601 will fill in the contents of the procedure linkage table later,
7602 when we know the address of the .got section. */
7603 if (h
->type
== STT_FUNC
|| h
->type
== STT_GNU_IFUNC
|| h
->needs_plt
)
7605 if (h
->plt
.refcount
<= 0
7606 || (h
->type
!= STT_GNU_IFUNC
7607 && (SYMBOL_CALLS_LOCAL (info
, h
)
7608 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
7609 && h
->root
.type
== bfd_link_hash_undefweak
))))
7611 /* This case can occur if we saw a CALL26 reloc in
7612 an input file, but the symbol wasn't referred to
7613 by a dynamic object or all references were
7614 garbage collected. In which case we can end up
7616 h
->plt
.offset
= (bfd_vma
) - 1;
7623 /* Otherwise, reset to -1. */
7624 h
->plt
.offset
= (bfd_vma
) - 1;
7627 /* If this is a weak symbol, and there is a real definition, the
7628 processor independent code will have arranged for us to see the
7629 real definition first, and we can just use the same value. */
7630 if (h
->is_weakalias
)
7632 struct elf_link_hash_entry
*def
= weakdef (h
);
7633 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
7634 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
7635 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
7636 if (ELIMINATE_COPY_RELOCS
|| info
->nocopyreloc
)
7637 h
->non_got_ref
= def
->non_got_ref
;
7641 /* If we are creating a shared library, we must presume that the
7642 only references to the symbol are via the global offset table.
7643 For such cases we need not do anything here; the relocations will
7644 be handled correctly by relocate_section. */
7645 if (bfd_link_pic (info
))
7648 /* If there are no references to this symbol that do not use the
7649 GOT, we don't need to generate a copy reloc. */
7650 if (!h
->non_got_ref
)
7653 /* If -z nocopyreloc was given, we won't generate them either. */
7654 if (info
->nocopyreloc
)
7660 if (ELIMINATE_COPY_RELOCS
)
7662 struct elf_aarch64_link_hash_entry
*eh
;
7663 /* If we don't find any dynamic relocs in read-only sections, then
7664 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7665 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
7666 if (!need_copy_relocation_p (eh
))
7673 /* We must allocate the symbol in our .dynbss section, which will
7674 become part of the .bss section of the executable. There will be
7675 an entry for this symbol in the .dynsym section. The dynamic
7676 object will contain position independent code, so all references
7677 from the dynamic object to this symbol will go through the global
7678 offset table. The dynamic linker will use the .dynsym entry to
7679 determine the address it must put in the global offset table, so
7680 both the dynamic object and the regular object will refer to the
7681 same memory location for the variable. */
7683 htab
= elf_aarch64_hash_table (info
);
7685 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7686 to copy the initial value out of the dynamic object and into the
7687 runtime process image. */
7688 if ((h
->root
.u
.def
.section
->flags
& SEC_READONLY
) != 0)
7690 s
= htab
->root
.sdynrelro
;
7691 srel
= htab
->root
.sreldynrelro
;
7695 s
= htab
->root
.sdynbss
;
7696 srel
= htab
->root
.srelbss
;
7698 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0 && h
->size
!= 0)
7700 srel
->size
+= RELOC_SIZE (htab
);
7704 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
7709 elfNN_aarch64_allocate_local_symbols (bfd
*abfd
, unsigned number
)
7711 struct elf_aarch64_local_symbol
*locals
;
7712 locals
= elf_aarch64_locals (abfd
);
7715 locals
= (struct elf_aarch64_local_symbol
*)
7716 bfd_zalloc (abfd
, number
* sizeof (struct elf_aarch64_local_symbol
));
7719 elf_aarch64_locals (abfd
) = locals
;
7724 /* Create the .got section to hold the global offset table. */
7727 aarch64_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
7729 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7732 struct elf_link_hash_entry
*h
;
7733 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
7735 /* This function may be called more than once. */
7736 if (htab
->sgot
!= NULL
)
7739 flags
= bed
->dynamic_sec_flags
;
7741 s
= bfd_make_section_anyway_with_flags (abfd
,
7742 (bed
->rela_plts_and_copies_p
7743 ? ".rela.got" : ".rel.got"),
7744 (bed
->dynamic_sec_flags
7747 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
7751 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
7753 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
7756 htab
->sgot
->size
+= GOT_ENTRY_SIZE
;
7758 if (bed
->want_got_sym
)
7760 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7761 (or .got.plt) section. We don't do this in the linker script
7762 because we don't want to define the symbol if we are not creating
7763 a global offset table. */
7764 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
7765 "_GLOBAL_OFFSET_TABLE_");
7766 elf_hash_table (info
)->hgot
= h
;
7771 if (bed
->want_got_plt
)
7773 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt", flags
);
7775 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
7780 /* The first bit of the global offset table is the header. */
7781 s
->size
+= bed
->got_header_size
;
7786 /* Look through the relocs for a section during the first phase. */
7789 elfNN_aarch64_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
7790 asection
*sec
, const Elf_Internal_Rela
*relocs
)
7792 Elf_Internal_Shdr
*symtab_hdr
;
7793 struct elf_link_hash_entry
**sym_hashes
;
7794 const Elf_Internal_Rela
*rel
;
7795 const Elf_Internal_Rela
*rel_end
;
7798 struct elf_aarch64_link_hash_table
*htab
;
7800 if (bfd_link_relocatable (info
))
7803 BFD_ASSERT (is_aarch64_elf (abfd
));
7805 htab
= elf_aarch64_hash_table (info
);
7808 symtab_hdr
= &elf_symtab_hdr (abfd
);
7809 sym_hashes
= elf_sym_hashes (abfd
);
7811 rel_end
= relocs
+ sec
->reloc_count
;
7812 for (rel
= relocs
; rel
< rel_end
; rel
++)
7814 struct elf_link_hash_entry
*h
;
7815 unsigned int r_symndx
;
7816 unsigned int r_type
;
7817 bfd_reloc_code_real_type bfd_r_type
;
7818 Elf_Internal_Sym
*isym
;
7820 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
7821 r_type
= ELFNN_R_TYPE (rel
->r_info
);
7823 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
7825 /* xgettext:c-format */
7826 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd
, r_symndx
);
7830 if (r_symndx
< symtab_hdr
->sh_info
)
7832 /* A local symbol. */
7833 isym
= bfd_sym_from_r_symndx (&htab
->root
.sym_cache
,
7838 /* Check relocation against local STT_GNU_IFUNC symbol. */
7839 if (ELF_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
7841 h
= elfNN_aarch64_get_local_sym_hash (htab
, abfd
, rel
,
7846 /* Fake a STT_GNU_IFUNC symbol. */
7847 h
->type
= STT_GNU_IFUNC
;
7850 h
->forced_local
= 1;
7851 h
->root
.type
= bfd_link_hash_defined
;
7858 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
7859 while (h
->root
.type
== bfd_link_hash_indirect
7860 || h
->root
.type
== bfd_link_hash_warning
)
7861 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7864 /* Could be done earlier, if h were already available. */
7865 bfd_r_type
= aarch64_tls_transition (abfd
, info
, r_type
, h
, r_symndx
);
7869 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7870 This shows up in particular in an R_AARCH64_PREL64 in large model
7871 when calculating the pc-relative address to .got section which is
7872 used to initialize the gp register. */
7873 if (h
->root
.root
.string
7874 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
7876 if (htab
->root
.dynobj
== NULL
)
7877 htab
->root
.dynobj
= abfd
;
7879 if (! aarch64_elf_create_got_section (htab
->root
.dynobj
, info
))
7882 BFD_ASSERT (h
== htab
->root
.hgot
);
7885 /* Create the ifunc sections for static executables. If we
7886 never see an indirect function symbol nor we are building
7887 a static executable, those sections will be empty and
7888 won't appear in output. */
7894 case BFD_RELOC_AARCH64_ADD_LO12
:
7895 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
7896 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
7897 case BFD_RELOC_AARCH64_CALL26
:
7898 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
7899 case BFD_RELOC_AARCH64_JUMP26
:
7900 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
:
7901 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
7902 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
:
7903 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
:
7904 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
7905 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
:
7906 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1
:
7907 case BFD_RELOC_AARCH64_NN
:
7908 if (htab
->root
.dynobj
== NULL
)
7909 htab
->root
.dynobj
= abfd
;
7910 if (!_bfd_elf_create_ifunc_sections (htab
->root
.dynobj
, info
))
7915 /* It is referenced by a non-shared object. */
7921 case BFD_RELOC_AARCH64_16
:
7923 case BFD_RELOC_AARCH64_32
:
7925 if (bfd_link_pic (info
) && (sec
->flags
& SEC_ALLOC
) != 0)
7928 /* This is an absolute symbol. It represents a value instead
7930 && (bfd_is_abs_symbol (&h
->root
)
7931 /* This is an undefined symbol. */
7932 || h
->root
.type
== bfd_link_hash_undefined
))
7935 /* For local symbols, defined global symbols in a non-ABS section,
7936 it is assumed that the value is an address. */
7937 int howto_index
= bfd_r_type
- BFD_RELOC_AARCH64_RELOC_START
;
7939 /* xgettext:c-format */
7940 (_("%pB: relocation %s against `%s' can not be used when making "
7942 abfd
, elfNN_aarch64_howto_table
[howto_index
].name
,
7943 (h
) ? h
->root
.root
.string
: "a local symbol");
7944 bfd_set_error (bfd_error_bad_value
);
7950 case BFD_RELOC_AARCH64_MOVW_G0_NC
:
7951 case BFD_RELOC_AARCH64_MOVW_G1_NC
:
7952 case BFD_RELOC_AARCH64_MOVW_G2_NC
:
7953 case BFD_RELOC_AARCH64_MOVW_G3
:
7954 if (bfd_link_pic (info
))
7956 int howto_index
= bfd_r_type
- BFD_RELOC_AARCH64_RELOC_START
;
7958 /* xgettext:c-format */
7959 (_("%pB: relocation %s against `%s' can not be used when making "
7960 "a shared object; recompile with -fPIC"),
7961 abfd
, elfNN_aarch64_howto_table
[howto_index
].name
,
7962 (h
) ? h
->root
.root
.string
: "a local symbol");
7963 bfd_set_error (bfd_error_bad_value
);
7968 case BFD_RELOC_AARCH64_16_PCREL
:
7969 case BFD_RELOC_AARCH64_32_PCREL
:
7970 case BFD_RELOC_AARCH64_64_PCREL
:
7971 case BFD_RELOC_AARCH64_ADD_LO12
:
7972 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL
:
7973 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
7974 case BFD_RELOC_AARCH64_ADR_LO21_PCREL
:
7975 case BFD_RELOC_AARCH64_LDST128_LO12
:
7976 case BFD_RELOC_AARCH64_LDST16_LO12
:
7977 case BFD_RELOC_AARCH64_LDST32_LO12
:
7978 case BFD_RELOC_AARCH64_LDST64_LO12
:
7979 case BFD_RELOC_AARCH64_LDST8_LO12
:
7980 case BFD_RELOC_AARCH64_LD_LO19_PCREL
:
7981 if (h
== NULL
|| bfd_link_pic (info
))
7985 case BFD_RELOC_AARCH64_NN
:
7987 /* We don't need to handle relocs into sections not going into
7988 the "real" output. */
7989 if ((sec
->flags
& SEC_ALLOC
) == 0)
7994 if (!bfd_link_pic (info
))
7997 h
->plt
.refcount
+= 1;
7998 h
->pointer_equality_needed
= 1;
8001 /* No need to do anything if we're not creating a shared
8003 if (!(bfd_link_pic (info
)
8004 /* If on the other hand, we are creating an executable, we
8005 may need to keep relocations for symbols satisfied by a
8006 dynamic library if we manage to avoid copy relocs for the
8009 NOTE: Currently, there is no support of copy relocs
8010 elimination on pc-relative relocation types, because there is
8011 no dynamic relocation support for them in glibc. We still
8012 record the dynamic symbol reference for them. This is
8013 because one symbol may be referenced by both absolute
8014 relocation (for example, BFD_RELOC_AARCH64_NN) and
8015 pc-relative relocation. We need full symbol reference
8016 information to make correct decision later in
8017 elfNN_aarch64_adjust_dynamic_symbol. */
8018 || (ELIMINATE_COPY_RELOCS
8019 && !bfd_link_pic (info
)
8021 && (h
->root
.type
== bfd_link_hash_defweak
8022 || !h
->def_regular
))))
8026 struct elf_dyn_relocs
*p
;
8027 struct elf_dyn_relocs
**head
;
8028 int howto_index
= bfd_r_type
- BFD_RELOC_AARCH64_RELOC_START
;
8030 /* We must copy these reloc types into the output file.
8031 Create a reloc section in dynobj and make room for
8035 if (htab
->root
.dynobj
== NULL
)
8036 htab
->root
.dynobj
= abfd
;
8038 sreloc
= _bfd_elf_make_dynamic_reloc_section
8039 (sec
, htab
->root
.dynobj
, LOG_FILE_ALIGN
, abfd
, /*rela? */ true);
8045 /* If this is a global symbol, we count the number of
8046 relocations we need for this symbol. */
8049 head
= &h
->dyn_relocs
;
8053 /* Track dynamic relocs needed for local syms too.
8054 We really need local syms available to do this
8060 isym
= bfd_sym_from_r_symndx (&htab
->root
.sym_cache
,
8065 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
8069 /* Beware of type punned pointers vs strict aliasing
8071 vpp
= &(elf_section_data (s
)->local_dynrel
);
8072 head
= (struct elf_dyn_relocs
**) vpp
;
8076 if (p
== NULL
|| p
->sec
!= sec
)
8078 size_t amt
= sizeof *p
;
8079 p
= ((struct elf_dyn_relocs
*)
8080 bfd_zalloc (htab
->root
.dynobj
, amt
));
8090 if (elfNN_aarch64_howto_table
[howto_index
].pc_relative
)
8095 /* RR: We probably want to keep a consistency check that
8096 there are no dangling GOT_PAGE relocs. */
8097 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
8098 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
8099 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
:
8100 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
8101 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
:
8102 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
:
8103 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
8104 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
:
8105 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1
:
8106 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12
:
8107 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
8108 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
:
8109 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
:
8110 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
:
8111 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
:
8112 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
:
8113 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1
:
8114 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
8115 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
8116 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21
:
8117 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC
:
8118 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1
:
8119 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
8120 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
:
8121 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
8122 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
8123 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
:
8124 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
:
8125 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC
:
8126 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
:
8127 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
:
8130 unsigned old_got_type
;
8132 got_type
= aarch64_reloc_got_type (bfd_r_type
);
8136 h
->got
.refcount
+= 1;
8137 old_got_type
= elf_aarch64_hash_entry (h
)->got_type
;
8141 struct elf_aarch64_local_symbol
*locals
;
8143 if (!elfNN_aarch64_allocate_local_symbols
8144 (abfd
, symtab_hdr
->sh_info
))
8147 locals
= elf_aarch64_locals (abfd
);
8148 BFD_ASSERT (r_symndx
< symtab_hdr
->sh_info
);
8149 locals
[r_symndx
].got_refcount
+= 1;
8150 old_got_type
= locals
[r_symndx
].got_type
;
8153 /* If a variable is accessed with both general dynamic TLS
8154 methods, two slots may be created. */
8155 if (GOT_TLS_GD_ANY_P (old_got_type
) && GOT_TLS_GD_ANY_P (got_type
))
8156 got_type
|= old_got_type
;
8158 /* We will already have issued an error message if there
8159 is a TLS/non-TLS mismatch, based on the symbol type.
8160 So just combine any TLS types needed. */
8161 if (old_got_type
!= GOT_UNKNOWN
&& old_got_type
!= GOT_NORMAL
8162 && got_type
!= GOT_NORMAL
)
8163 got_type
|= old_got_type
;
8165 /* If the symbol is accessed by both IE and GD methods, we
8166 are able to relax. Turn off the GD flag, without
8167 messing up with any other kind of TLS types that may be
8169 if ((got_type
& GOT_TLS_IE
) && GOT_TLS_GD_ANY_P (got_type
))
8170 got_type
&= ~ (GOT_TLSDESC_GD
| GOT_TLS_GD
);
8172 if (old_got_type
!= got_type
)
8175 elf_aarch64_hash_entry (h
)->got_type
= got_type
;
8178 struct elf_aarch64_local_symbol
*locals
;
8179 locals
= elf_aarch64_locals (abfd
);
8180 BFD_ASSERT (r_symndx
< symtab_hdr
->sh_info
);
8181 locals
[r_symndx
].got_type
= got_type
;
8185 if (htab
->root
.dynobj
== NULL
)
8186 htab
->root
.dynobj
= abfd
;
8187 if (! aarch64_elf_create_got_section (htab
->root
.dynobj
, info
))
8192 case BFD_RELOC_AARCH64_CALL26
:
8193 case BFD_RELOC_AARCH64_JUMP26
:
8194 /* If this is a local symbol then we resolve it
8195 directly without creating a PLT entry. */
8200 if (h
->plt
.refcount
<= 0)
8201 h
->plt
.refcount
= 1;
8203 h
->plt
.refcount
+= 1;
8214 /* Treat mapping symbols as special target symbols. */
8217 elfNN_aarch64_is_target_special_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
8220 return bfd_is_aarch64_special_symbol_name (sym
->name
,
8221 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY
);
8224 /* If the ELF symbol SYM might be a function in SEC, return the
8225 function size and set *CODE_OFF to the function's entry point,
8226 otherwise return zero. */
8228 static bfd_size_type
8229 elfNN_aarch64_maybe_function_sym (const asymbol
*sym
, asection
*sec
,
8233 elf_symbol_type
* elf_sym
= (elf_symbol_type
*) sym
;
8235 if ((sym
->flags
& (BSF_SECTION_SYM
| BSF_FILE
| BSF_OBJECT
8236 | BSF_THREAD_LOCAL
| BSF_RELC
| BSF_SRELC
)) != 0
8237 || sym
->section
!= sec
)
8240 size
= (sym
->flags
& BSF_SYNTHETIC
) ? 0 : elf_sym
->internal_elf_sym
.st_size
;
8242 if (!(sym
->flags
& BSF_SYNTHETIC
))
8243 switch (ELF_ST_TYPE (elf_sym
->internal_elf_sym
.st_info
))
8246 /* Ignore symbols created by the annobin plugin for gcc and clang.
8247 These symbols are hidden, local, notype and have a size of 0. */
8249 && sym
->flags
& BSF_LOCAL
8250 && ELF_ST_VISIBILITY (elf_sym
->internal_elf_sym
.st_other
) == STV_HIDDEN
)
8254 /* FIXME: Allow STT_GNU_IFUNC as well ? */
8260 if ((sym
->flags
& BSF_LOCAL
)
8261 && bfd_is_aarch64_special_symbol_name (sym
->name
,
8262 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY
))
8265 *code_off
= sym
->value
;
8267 /* Do not return 0 for the function's size. */
8268 return size
? size
: 1;
8272 elfNN_aarch64_find_inliner_info (bfd
*abfd
,
8273 const char **filename_ptr
,
8274 const char **functionname_ptr
,
8275 unsigned int *line_ptr
)
8278 found
= _bfd_dwarf2_find_inliner_info
8279 (abfd
, filename_ptr
,
8280 functionname_ptr
, line_ptr
, &elf_tdata (abfd
)->dwarf2_find_line_info
);
8286 elfNN_aarch64_init_file_header (bfd
*abfd
, struct bfd_link_info
*link_info
)
8288 Elf_Internal_Ehdr
*i_ehdrp
; /* ELF file header, internal form. */
8290 if (!_bfd_elf_init_file_header (abfd
, link_info
))
8293 i_ehdrp
= elf_elfheader (abfd
);
8294 i_ehdrp
->e_ident
[EI_ABIVERSION
] = AARCH64_ELF_ABI_VERSION
;
8298 static enum elf_reloc_type_class
8299 elfNN_aarch64_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
8300 const asection
*rel_sec ATTRIBUTE_UNUSED
,
8301 const Elf_Internal_Rela
*rela
)
8303 struct elf_aarch64_link_hash_table
*htab
= elf_aarch64_hash_table (info
);
8305 if (htab
->root
.dynsym
!= NULL
8306 && htab
->root
.dynsym
->contents
!= NULL
)
8308 /* Check relocation against STT_GNU_IFUNC symbol if there are
8310 bfd
*abfd
= info
->output_bfd
;
8311 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8312 unsigned long r_symndx
= ELFNN_R_SYM (rela
->r_info
);
8313 if (r_symndx
!= STN_UNDEF
)
8315 Elf_Internal_Sym sym
;
8316 if (!bed
->s
->swap_symbol_in (abfd
,
8317 (htab
->root
.dynsym
->contents
8318 + r_symndx
* bed
->s
->sizeof_sym
),
8321 /* xgettext:c-format */
8322 _bfd_error_handler (_("%pB symbol number %lu references"
8323 " nonexistent SHT_SYMTAB_SHNDX section"),
8325 /* Ideally an error class should be returned here. */
8327 else if (ELF_ST_TYPE (sym
.st_info
) == STT_GNU_IFUNC
)
8328 return reloc_class_ifunc
;
8332 switch ((int) ELFNN_R_TYPE (rela
->r_info
))
8334 case AARCH64_R (IRELATIVE
):
8335 return reloc_class_ifunc
;
8336 case AARCH64_R (RELATIVE
):
8337 return reloc_class_relative
;
8338 case AARCH64_R (JUMP_SLOT
):
8339 return reloc_class_plt
;
8340 case AARCH64_R (COPY
):
8341 return reloc_class_copy
;
8343 return reloc_class_normal
;
8347 /* Handle an AArch64 specific section when reading an object file. This is
8348 called when bfd_section_from_shdr finds a section with an unknown
8352 elfNN_aarch64_section_from_shdr (bfd
*abfd
,
8353 Elf_Internal_Shdr
*hdr
,
8354 const char *name
, int shindex
)
8356 /* There ought to be a place to keep ELF backend specific flags, but
8357 at the moment there isn't one. We just keep track of the
8358 sections by their name, instead. Fortunately, the ABI gives
8359 names for all the AArch64 specific sections, so we will probably get
8361 switch (hdr
->sh_type
)
8363 case SHT_AARCH64_ATTRIBUTES
:
8370 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
8376 /* Process any AArch64-specific program segment types. */
8379 elfNN_aarch64_section_from_phdr (bfd
*abfd ATTRIBUTE_UNUSED
,
8380 Elf_Internal_Phdr
*hdr
,
8381 int hdr_index ATTRIBUTE_UNUSED
,
8382 const char *name ATTRIBUTE_UNUSED
)
8384 /* Right now we only handle the PT_AARCH64_MEMTAG_MTE segment type. */
8385 if (hdr
== NULL
|| hdr
->p_type
!= PT_AARCH64_MEMTAG_MTE
)
8388 if (hdr
->p_filesz
> 0)
8390 /* Sections created from memory tag p_type's are always named
8391 "memtag". This makes it easier for tools (for example, GDB)
8393 asection
*newsect
= bfd_make_section_anyway (abfd
, "memtag");
8395 if (newsect
== NULL
)
8398 unsigned int opb
= bfd_octets_per_byte (abfd
, NULL
);
8400 /* p_vaddr holds the original start address of the tagged memory
8402 newsect
->vma
= hdr
->p_vaddr
/ opb
;
8404 /* p_filesz holds the storage size of the packed tags. */
8405 newsect
->size
= hdr
->p_filesz
;
8406 newsect
->filepos
= hdr
->p_offset
;
8408 /* p_memsz holds the size of the memory range that contains tags. The
8409 section's rawsize field is reused for this purpose. */
8410 newsect
->rawsize
= hdr
->p_memsz
;
8412 /* Make sure the section's flags has SEC_HAS_CONTENTS set, otherwise
8413 BFD will return all zeroes when attempting to get contents from this
8415 newsect
->flags
|= SEC_HAS_CONTENTS
;
8421 /* Implements the bfd_elf_modify_headers hook for aarch64. */
8424 elfNN_aarch64_modify_headers (bfd
*abfd
,
8425 struct bfd_link_info
*info
)
8427 struct elf_segment_map
*m
;
8428 unsigned int segment_count
= 0;
8429 Elf_Internal_Phdr
*p
;
8431 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
, segment_count
++)
8433 /* We are only interested in the memory tag segment that will be dumped
8434 to a core file. If we have no memory tags or this isn't a core file we
8435 are dealing with, just skip this segment. */
8436 if (m
->p_type
!= PT_AARCH64_MEMTAG_MTE
8437 || bfd_get_format (abfd
) != bfd_core
)
8440 /* For memory tag segments in core files, the size of the file contents
8441 is smaller than the size of the memory range. Adjust the memory size
8442 accordingly. The real memory size is held in the section's rawsize
8446 p
= elf_tdata (abfd
)->phdr
;
8448 p
->p_memsz
= m
->sections
[0]->rawsize
;
8455 /* Give the generic code a chance to handle the headers. */
8456 return _bfd_elf_modify_headers (abfd
, info
);
8459 /* A structure used to record a list of sections, independently
8460 of the next and prev fields in the asection structure. */
8461 typedef struct section_list
8464 struct section_list
*next
;
8465 struct section_list
*prev
;
8469 /* Unfortunately we need to keep a list of sections for which
8470 an _aarch64_elf_section_data structure has been allocated. This
8471 is because it is possible for functions like elfNN_aarch64_write_section
8472 to be called on a section which has had an elf_data_structure
8473 allocated for it (and so the used_by_bfd field is valid) but
8474 for which the AArch64 extended version of this structure - the
8475 _aarch64_elf_section_data structure - has not been allocated. */
8476 static section_list
*sections_with_aarch64_elf_section_data
= NULL
;
8479 record_section_with_aarch64_elf_section_data (asection
*sec
)
8481 struct section_list
*entry
;
8483 entry
= bfd_malloc (sizeof (*entry
));
8487 entry
->next
= sections_with_aarch64_elf_section_data
;
8489 if (entry
->next
!= NULL
)
8490 entry
->next
->prev
= entry
;
8491 sections_with_aarch64_elf_section_data
= entry
;
8494 static struct section_list
*
8495 find_aarch64_elf_section_entry (asection
*sec
)
8497 struct section_list
*entry
;
8498 static struct section_list
*last_entry
= NULL
;
8500 /* This is a short cut for the typical case where the sections are added
8501 to the sections_with_aarch64_elf_section_data list in forward order and
8502 then looked up here in backwards order. This makes a real difference
8503 to the ld-srec/sec64k.exp linker test. */
8504 entry
= sections_with_aarch64_elf_section_data
;
8505 if (last_entry
!= NULL
)
8507 if (last_entry
->sec
== sec
)
8509 else if (last_entry
->next
!= NULL
&& last_entry
->next
->sec
== sec
)
8510 entry
= last_entry
->next
;
8513 for (; entry
; entry
= entry
->next
)
8514 if (entry
->sec
== sec
)
8518 /* Record the entry prior to this one - it is the entry we are
8519 most likely to want to locate next time. Also this way if we
8520 have been called from
8521 unrecord_section_with_aarch64_elf_section_data () we will not
8522 be caching a pointer that is about to be freed. */
8523 last_entry
= entry
->prev
;
8529 unrecord_section_with_aarch64_elf_section_data (asection
*sec
)
8531 struct section_list
*entry
;
8533 entry
= find_aarch64_elf_section_entry (sec
);
8537 if (entry
->prev
!= NULL
)
8538 entry
->prev
->next
= entry
->next
;
8539 if (entry
->next
!= NULL
)
8540 entry
->next
->prev
= entry
->prev
;
8541 if (entry
== sections_with_aarch64_elf_section_data
)
8542 sections_with_aarch64_elf_section_data
= entry
->next
;
8551 struct bfd_link_info
*info
;
8554 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
8555 asection
*, struct elf_link_hash_entry
*);
8556 } output_arch_syminfo
;
8558 enum map_symbol_type
8565 /* Output a single mapping symbol. */
8568 elfNN_aarch64_output_map_sym (output_arch_syminfo
*osi
,
8569 enum map_symbol_type type
, bfd_vma offset
)
8571 static const char *names
[2] = { "$x", "$d" };
8572 Elf_Internal_Sym sym
;
8574 sym
.st_value
= (osi
->sec
->output_section
->vma
8575 + osi
->sec
->output_offset
+ offset
);
8578 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
8579 sym
.st_shndx
= osi
->sec_shndx
;
8580 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
8583 /* Output a single local symbol for a generated stub. */
8586 elfNN_aarch64_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
8587 bfd_vma offset
, bfd_vma size
)
8589 Elf_Internal_Sym sym
;
8591 sym
.st_value
= (osi
->sec
->output_section
->vma
8592 + osi
->sec
->output_offset
+ offset
);
8595 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
8596 sym
.st_shndx
= osi
->sec_shndx
;
8597 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
8601 aarch64_map_one_stub (struct bfd_hash_entry
*gen_entry
, void *in_arg
)
8603 struct elf_aarch64_stub_hash_entry
*stub_entry
;
8607 output_arch_syminfo
*osi
;
8609 /* Massage our args to the form they really have. */
8610 stub_entry
= (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
8611 osi
= (output_arch_syminfo
*) in_arg
;
8613 stub_sec
= stub_entry
->stub_sec
;
8615 /* Ensure this stub is attached to the current section being
8617 if (stub_sec
!= osi
->sec
)
8620 addr
= (bfd_vma
) stub_entry
->stub_offset
;
8622 stub_name
= stub_entry
->output_name
;
8624 switch (stub_entry
->stub_type
)
8626 case aarch64_stub_adrp_branch
:
8627 if (!elfNN_aarch64_output_stub_sym (osi
, stub_name
, addr
,
8628 sizeof (aarch64_adrp_branch_stub
)))
8630 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
8633 case aarch64_stub_long_branch
:
8634 if (!elfNN_aarch64_output_stub_sym
8635 (osi
, stub_name
, addr
, sizeof (aarch64_long_branch_stub
)))
8637 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
8639 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_DATA
, addr
+ 16))
8642 case aarch64_stub_bti_direct_branch
:
8643 if (!elfNN_aarch64_output_stub_sym (osi
, stub_name
, addr
,
8644 sizeof (aarch64_bti_direct_branch_stub
)))
8646 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
8649 case aarch64_stub_erratum_835769_veneer
:
8650 if (!elfNN_aarch64_output_stub_sym (osi
, stub_name
, addr
,
8651 sizeof (aarch64_erratum_835769_stub
)))
8653 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
8656 case aarch64_stub_erratum_843419_veneer
:
8657 if (!elfNN_aarch64_output_stub_sym (osi
, stub_name
, addr
,
8658 sizeof (aarch64_erratum_843419_stub
)))
8660 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
8663 case aarch64_stub_none
:
8673 /* Output mapping symbols for linker generated sections. */
8676 elfNN_aarch64_output_arch_local_syms (bfd
*output_bfd
,
8677 struct bfd_link_info
*info
,
8679 int (*func
) (void *, const char *,
8682 struct elf_link_hash_entry
8685 output_arch_syminfo osi
;
8686 struct elf_aarch64_link_hash_table
*htab
;
8688 if (info
->strip
== strip_all
8689 && !info
->emitrelocations
8690 && !bfd_link_relocatable (info
))
8693 htab
= elf_aarch64_hash_table (info
);
8699 /* Long calls stubs. */
8700 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
8704 for (stub_sec
= htab
->stub_bfd
->sections
;
8705 stub_sec
!= NULL
; stub_sec
= stub_sec
->next
)
8707 /* Ignore non-stub sections. */
8708 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
8713 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
8714 (output_bfd
, osi
.sec
->output_section
);
8716 /* The first instruction in a stub is always a branch. */
8717 if (!elfNN_aarch64_output_map_sym (&osi
, AARCH64_MAP_INSN
, 0))
8720 bfd_hash_traverse (&htab
->stub_hash_table
, aarch64_map_one_stub
,
8725 /* Finally, output mapping symbols for the PLT. */
8726 if (!htab
->root
.splt
|| htab
->root
.splt
->size
== 0)
8729 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
8730 (output_bfd
, htab
->root
.splt
->output_section
);
8731 osi
.sec
= htab
->root
.splt
;
8733 elfNN_aarch64_output_map_sym (&osi
, AARCH64_MAP_INSN
, 0);
8739 /* Allocate target specific section data. */
8742 elfNN_aarch64_new_section_hook (bfd
*abfd
, asection
*sec
)
8744 if (!sec
->used_by_bfd
)
8746 _aarch64_elf_section_data
*sdata
;
8747 size_t amt
= sizeof (*sdata
);
8749 sdata
= bfd_zalloc (abfd
, amt
);
8752 sec
->used_by_bfd
= sdata
;
8755 record_section_with_aarch64_elf_section_data (sec
);
8757 return _bfd_elf_new_section_hook (abfd
, sec
);
8762 unrecord_section_via_map_over_sections (bfd
*abfd ATTRIBUTE_UNUSED
,
8764 void *ignore ATTRIBUTE_UNUSED
)
8766 unrecord_section_with_aarch64_elf_section_data (sec
);
8770 elfNN_aarch64_bfd_free_cached_info (bfd
*abfd
)
8773 bfd_map_over_sections (abfd
,
8774 unrecord_section_via_map_over_sections
, NULL
);
8776 return _bfd_elf_free_cached_info (abfd
);
8779 /* Create dynamic sections. This is different from the ARM backend in that
8780 the got, plt, gotplt and their relocation sections are all created in the
8781 standard part of the bfd elf backend. */
8784 elfNN_aarch64_create_dynamic_sections (bfd
*dynobj
,
8785 struct bfd_link_info
*info
)
8787 /* We need to create .got section. */
8788 if (!aarch64_elf_create_got_section (dynobj
, info
))
8791 return _bfd_elf_create_dynamic_sections (dynobj
, info
);
8795 /* Allocate space in .plt, .got and associated reloc sections for
8799 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
8801 struct bfd_link_info
*info
;
8802 struct elf_aarch64_link_hash_table
*htab
;
8803 struct elf_aarch64_link_hash_entry
*eh
;
8804 struct elf_dyn_relocs
*p
;
8806 /* An example of a bfd_link_hash_indirect symbol is versioned
8807 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8808 -> __gxx_personality_v0(bfd_link_hash_defined)
8810 There is no need to process bfd_link_hash_indirect symbols here
8811 because we will also be presented with the concrete instance of
8812 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8813 called to copy all relevant data from the generic to the concrete
8815 if (h
->root
.type
== bfd_link_hash_indirect
)
8818 if (h
->root
.type
== bfd_link_hash_warning
)
8819 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8821 info
= (struct bfd_link_info
*) inf
;
8822 htab
= elf_aarch64_hash_table (info
);
8824 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8825 here if it is defined and referenced in a non-shared object. */
8826 if (h
->type
== STT_GNU_IFUNC
8829 else if (htab
->root
.dynamic_sections_created
&& h
->plt
.refcount
> 0)
8831 /* Make sure this symbol is output as a dynamic symbol.
8832 Undefined weak syms won't yet be marked as dynamic. */
8833 if (h
->dynindx
== -1 && !h
->forced_local
8834 && h
->root
.type
== bfd_link_hash_undefweak
)
8836 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
8840 if (bfd_link_pic (info
) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
8842 asection
*s
= htab
->root
.splt
;
8844 /* If this is the first .plt entry, make room for the special
8847 s
->size
+= htab
->plt_header_size
;
8849 h
->plt
.offset
= s
->size
;
8851 /* If this symbol is not defined in a regular file, and we are
8852 not generating a shared library, then set the symbol to this
8853 location in the .plt. This is required to make function
8854 pointers compare as equal between the normal executable and
8855 the shared library. */
8856 if (!bfd_link_pic (info
) && !h
->def_regular
)
8858 h
->root
.u
.def
.section
= s
;
8859 h
->root
.u
.def
.value
= h
->plt
.offset
;
8862 /* Make room for this entry. For now we only create the
8863 small model PLT entries. We later need to find a way
8864 of relaxing into these from the large model PLT entries. */
8865 s
->size
+= htab
->plt_entry_size
;
8867 /* We also need to make an entry in the .got.plt section, which
8868 will be placed in the .got section by the linker script. */
8869 htab
->root
.sgotplt
->size
+= GOT_ENTRY_SIZE
;
8871 /* We also need to make an entry in the .rela.plt section. */
8872 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
8874 /* We need to ensure that all GOT entries that serve the PLT
8875 are consecutive with the special GOT slots [0] [1] and
8876 [2]. Any addtional relocations, such as
8877 R_AARCH64_TLSDESC, must be placed after the PLT related
8878 entries. We abuse the reloc_count such that during
8879 sizing we adjust reloc_count to indicate the number of
8880 PLT related reserved entries. In subsequent phases when
8881 filling in the contents of the reloc entries, PLT related
8882 entries are placed by computing their PLT index (0
8883 .. reloc_count). While other none PLT relocs are placed
8884 at the slot indicated by reloc_count and reloc_count is
8887 htab
->root
.srelplt
->reloc_count
++;
8889 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8890 variant PCS symbols are present. */
8891 if (h
->other
& STO_AARCH64_VARIANT_PCS
)
8892 htab
->variant_pcs
= 1;
8897 h
->plt
.offset
= (bfd_vma
) - 1;
8903 h
->plt
.offset
= (bfd_vma
) - 1;
8907 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
8908 eh
->tlsdesc_got_jump_table_offset
= (bfd_vma
) - 1;
8910 if (h
->got
.refcount
> 0)
8913 unsigned got_type
= elf_aarch64_hash_entry (h
)->got_type
;
8915 h
->got
.offset
= (bfd_vma
) - 1;
8917 dyn
= htab
->root
.dynamic_sections_created
;
8919 /* Make sure this symbol is output as a dynamic symbol.
8920 Undefined weak syms won't yet be marked as dynamic. */
8921 if (dyn
&& h
->dynindx
== -1 && !h
->forced_local
8922 && h
->root
.type
== bfd_link_hash_undefweak
)
8924 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
8928 if (got_type
== GOT_UNKNOWN
)
8931 else if (got_type
== GOT_NORMAL
)
8933 h
->got
.offset
= htab
->root
.sgot
->size
;
8934 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
8935 if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8936 || h
->root
.type
!= bfd_link_hash_undefweak
)
8937 && (bfd_link_pic (info
)
8938 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
))
8939 /* Undefined weak symbol in static PIE resolves to 0 without
8940 any dynamic relocations. */
8941 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
8943 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
8949 if (got_type
& GOT_TLSDESC_GD
)
8951 eh
->tlsdesc_got_jump_table_offset
=
8952 (htab
->root
.sgotplt
->size
8953 - aarch64_compute_jump_table_size (htab
));
8954 htab
->root
.sgotplt
->size
+= GOT_ENTRY_SIZE
* 2;
8955 h
->got
.offset
= (bfd_vma
) - 2;
8958 if (got_type
& GOT_TLS_GD
)
8960 h
->got
.offset
= htab
->root
.sgot
->size
;
8961 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
* 2;
8964 if (got_type
& GOT_TLS_IE
)
8966 h
->got
.offset
= htab
->root
.sgot
->size
;
8967 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
8970 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
8971 if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8972 || h
->root
.type
!= bfd_link_hash_undefweak
)
8973 && (!bfd_link_executable (info
)
8975 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
8977 if (got_type
& GOT_TLSDESC_GD
)
8979 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
8980 /* Note reloc_count not incremented here! We have
8981 already adjusted reloc_count for this relocation
8984 /* TLSDESC PLT is now needed, but not yet determined. */
8985 htab
->root
.tlsdesc_plt
= (bfd_vma
) - 1;
8988 if (got_type
& GOT_TLS_GD
)
8989 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
) * 2;
8991 if (got_type
& GOT_TLS_IE
)
8992 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
8998 h
->got
.offset
= (bfd_vma
) - 1;
9001 if (h
->dyn_relocs
== NULL
)
9004 for (p
= h
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
9005 if (eh
->def_protected
)
9007 /* Disallow copy relocations against protected symbol. */
9008 asection
*s
= p
->sec
->output_section
;
9009 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
9011 info
->callbacks
->einfo
9012 /* xgettext:c-format */
9013 (_ ("%F%P: %pB: copy relocation against non-copyable "
9014 "protected symbol `%s'\n"),
9015 p
->sec
->owner
, h
->root
.root
.string
);
9020 /* In the shared -Bsymbolic case, discard space allocated for
9021 dynamic pc-relative relocs against symbols which turn out to be
9022 defined in regular objects. For the normal shared case, discard
9023 space for pc-relative relocs that have become local due to symbol
9024 visibility changes. */
9026 if (bfd_link_pic (info
))
9028 /* Relocs that use pc_count are those that appear on a call
9029 insn, or certain REL relocs that can generated via assembly.
9030 We want calls to protected symbols to resolve directly to the
9031 function rather than going via the plt. If people want
9032 function pointer comparisons to work as expected then they
9033 should avoid writing weird assembly. */
9034 if (SYMBOL_CALLS_LOCAL (info
, h
))
9036 struct elf_dyn_relocs
**pp
;
9038 for (pp
= &h
->dyn_relocs
; (p
= *pp
) != NULL
;)
9040 p
->count
-= p
->pc_count
;
9049 /* Also discard relocs on undefined weak syms with non-default
9051 if (h
->dyn_relocs
!= NULL
&& h
->root
.type
== bfd_link_hash_undefweak
)
9053 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
9054 || UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
9055 h
->dyn_relocs
= NULL
;
9057 /* Make sure undefined weak symbols are output as a dynamic
9059 else if (h
->dynindx
== -1
9061 && h
->root
.type
== bfd_link_hash_undefweak
9062 && !bfd_elf_link_record_dynamic_symbol (info
, h
))
9067 else if (ELIMINATE_COPY_RELOCS
)
9069 /* For the non-shared case, discard space for relocs against
9070 symbols which turn out to need copy relocs or are not
9076 || (htab
->root
.dynamic_sections_created
9077 && (h
->root
.type
== bfd_link_hash_undefweak
9078 || h
->root
.type
== bfd_link_hash_undefined
))))
9080 /* Make sure this symbol is output as a dynamic symbol.
9081 Undefined weak syms won't yet be marked as dynamic. */
9082 if (h
->dynindx
== -1
9084 && h
->root
.type
== bfd_link_hash_undefweak
9085 && !bfd_elf_link_record_dynamic_symbol (info
, h
))
9088 /* If that succeeded, we know we'll be keeping all the
9090 if (h
->dynindx
!= -1)
9094 h
->dyn_relocs
= NULL
;
9099 /* Finally, allocate space. */
9100 for (p
= h
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
9104 sreloc
= elf_section_data (p
->sec
)->sreloc
;
9106 BFD_ASSERT (sreloc
!= NULL
);
9108 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
9114 /* Allocate space in .plt, .got and associated reloc sections for
9115 ifunc dynamic relocs. */
9118 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry
*h
,
9121 struct bfd_link_info
*info
;
9122 struct elf_aarch64_link_hash_table
*htab
;
9124 /* An example of a bfd_link_hash_indirect symbol is versioned
9125 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
9126 -> __gxx_personality_v0(bfd_link_hash_defined)
9128 There is no need to process bfd_link_hash_indirect symbols here
9129 because we will also be presented with the concrete instance of
9130 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
9131 called to copy all relevant data from the generic to the concrete
9133 if (h
->root
.type
== bfd_link_hash_indirect
)
9136 if (h
->root
.type
== bfd_link_hash_warning
)
9137 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9139 info
= (struct bfd_link_info
*) inf
;
9140 htab
= elf_aarch64_hash_table (info
);
9142 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
9143 here if it is defined and referenced in a non-shared object. */
9144 if (h
->type
== STT_GNU_IFUNC
9146 return _bfd_elf_allocate_ifunc_dyn_relocs (info
, h
,
9148 htab
->plt_entry_size
,
9149 htab
->plt_header_size
,
9155 /* Allocate space in .plt, .got and associated reloc sections for
9156 local ifunc dynamic relocs. */
9159 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot
, void *inf
)
9161 struct elf_link_hash_entry
*h
9162 = (struct elf_link_hash_entry
*) *slot
;
9164 if (h
->type
!= STT_GNU_IFUNC
9168 || h
->root
.type
!= bfd_link_hash_defined
)
9171 return elfNN_aarch64_allocate_ifunc_dynrelocs (h
, inf
);
9174 /* This is the most important function of all . Innocuosly named
9178 elfNN_aarch64_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
9179 struct bfd_link_info
*info
)
9181 struct elf_aarch64_link_hash_table
*htab
;
9187 htab
= elf_aarch64_hash_table ((info
));
9188 dynobj
= htab
->root
.dynobj
;
9190 BFD_ASSERT (dynobj
!= NULL
);
9192 if (htab
->root
.dynamic_sections_created
)
9194 if (bfd_link_executable (info
) && !info
->nointerp
)
9196 s
= bfd_get_linker_section (dynobj
, ".interp");
9199 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
9200 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
9204 /* Set up .got offsets for local syms, and space for local dynamic
9206 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
9208 struct elf_aarch64_local_symbol
*locals
= NULL
;
9209 Elf_Internal_Shdr
*symtab_hdr
;
9213 if (!is_aarch64_elf (ibfd
))
9216 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
9218 struct elf_dyn_relocs
*p
;
9220 for (p
= (struct elf_dyn_relocs
*)
9221 (elf_section_data (s
)->local_dynrel
); p
!= NULL
; p
= p
->next
)
9223 if (!bfd_is_abs_section (p
->sec
)
9224 && bfd_is_abs_section (p
->sec
->output_section
))
9226 /* Input section has been discarded, either because
9227 it is a copy of a linkonce section or due to
9228 linker script /DISCARD/, so we'll be discarding
9231 else if (p
->count
!= 0)
9233 srel
= elf_section_data (p
->sec
)->sreloc
;
9234 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
9235 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
9236 info
->flags
|= DF_TEXTREL
;
9241 locals
= elf_aarch64_locals (ibfd
);
9245 symtab_hdr
= &elf_symtab_hdr (ibfd
);
9246 srel
= htab
->root
.srelgot
;
9247 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
9249 locals
[i
].got_offset
= (bfd_vma
) - 1;
9250 locals
[i
].tlsdesc_got_jump_table_offset
= (bfd_vma
) - 1;
9251 if (locals
[i
].got_refcount
> 0)
9253 unsigned got_type
= locals
[i
].got_type
;
9254 if (got_type
& GOT_TLSDESC_GD
)
9256 locals
[i
].tlsdesc_got_jump_table_offset
=
9257 (htab
->root
.sgotplt
->size
9258 - aarch64_compute_jump_table_size (htab
));
9259 htab
->root
.sgotplt
->size
+= GOT_ENTRY_SIZE
* 2;
9260 locals
[i
].got_offset
= (bfd_vma
) - 2;
9263 if (got_type
& GOT_TLS_GD
)
9265 locals
[i
].got_offset
= htab
->root
.sgot
->size
;
9266 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
* 2;
9269 if (got_type
& GOT_TLS_IE
9270 || got_type
& GOT_NORMAL
)
9272 locals
[i
].got_offset
= htab
->root
.sgot
->size
;
9273 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
9276 if (got_type
== GOT_UNKNOWN
)
9280 if (bfd_link_pic (info
))
9282 if (got_type
& GOT_TLSDESC_GD
)
9284 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
9285 /* Note RELOC_COUNT not incremented here! */
9286 htab
->root
.tlsdesc_plt
= (bfd_vma
) - 1;
9289 if (got_type
& GOT_TLS_GD
)
9290 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
) * 2;
9292 if (got_type
& GOT_TLS_IE
9293 || got_type
& GOT_NORMAL
)
9294 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
9299 locals
[i
].got_refcount
= (bfd_vma
) - 1;
9305 /* Allocate global sym .plt and .got entries, and space for global
9306 sym dynamic relocs. */
9307 elf_link_hash_traverse (&htab
->root
, elfNN_aarch64_allocate_dynrelocs
,
9310 /* Allocate global ifunc sym .plt and .got entries, and space for global
9311 ifunc sym dynamic relocs. */
9312 elf_link_hash_traverse (&htab
->root
, elfNN_aarch64_allocate_ifunc_dynrelocs
,
9315 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
9316 htab_traverse (htab
->loc_hash_table
,
9317 elfNN_aarch64_allocate_local_ifunc_dynrelocs
,
9320 /* For every jump slot reserved in the sgotplt, reloc_count is
9321 incremented. However, when we reserve space for TLS descriptors,
9322 it's not incremented, so in order to compute the space reserved
9323 for them, it suffices to multiply the reloc count by the jump
9326 if (htab
->root
.srelplt
)
9327 htab
->sgotplt_jump_table_size
= aarch64_compute_jump_table_size (htab
);
9329 if (htab
->root
.tlsdesc_plt
)
9331 if (htab
->root
.splt
->size
== 0)
9332 htab
->root
.splt
->size
+= htab
->plt_header_size
;
9334 /* If we're not using lazy TLS relocations, don't generate the
9335 GOT and PLT entry required. */
9336 if ((info
->flags
& DF_BIND_NOW
))
9337 htab
->root
.tlsdesc_plt
= 0;
9340 htab
->root
.tlsdesc_plt
= htab
->root
.splt
->size
;
9341 htab
->root
.splt
->size
+= htab
->tlsdesc_plt_entry_size
;
9343 htab
->root
.tlsdesc_got
= htab
->root
.sgot
->size
;
9344 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
9348 /* Init mapping symbols information to use later to distingush between
9349 code and data while scanning for errata. */
9350 if (htab
->fix_erratum_835769
|| htab
->fix_erratum_843419
)
9351 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
9353 if (!is_aarch64_elf (ibfd
))
9355 bfd_elfNN_aarch64_init_maps (ibfd
);
9358 /* We now have determined the sizes of the various dynamic sections.
9359 Allocate memory for them. */
9361 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
9363 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
9366 if (s
== htab
->root
.splt
9367 || s
== htab
->root
.sgot
9368 || s
== htab
->root
.sgotplt
9369 || s
== htab
->root
.iplt
9370 || s
== htab
->root
.igotplt
9371 || s
== htab
->root
.sdynbss
9372 || s
== htab
->root
.sdynrelro
)
9374 /* Strip this section if we don't need it; see the
9377 else if (startswith (bfd_section_name (s
), ".rela"))
9379 if (s
->size
!= 0 && s
!= htab
->root
.srelplt
)
9382 /* We use the reloc_count field as a counter if we need
9383 to copy relocs into the output file. */
9384 if (s
!= htab
->root
.srelplt
)
9389 /* It's not one of our sections, so don't allocate space. */
9395 /* If we don't need this section, strip it from the
9396 output file. This is mostly to handle .rela.bss and
9397 .rela.plt. We must create both sections in
9398 create_dynamic_sections, because they must be created
9399 before the linker maps input sections to output
9400 sections. The linker does that before
9401 adjust_dynamic_symbol is called, and it is that
9402 function which decides whether anything needs to go
9403 into these sections. */
9404 s
->flags
|= SEC_EXCLUDE
;
9408 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
9411 /* Allocate memory for the section contents. We use bfd_zalloc
9412 here in case unused entries are not reclaimed before the
9413 section's contents are written out. This should not happen,
9414 but this way if it does, we get a R_AARCH64_NONE reloc instead
9416 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
9417 if (s
->contents
== NULL
)
9421 if (htab
->root
.dynamic_sections_created
)
9423 /* Add some entries to the .dynamic section. We fill in the
9424 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9425 must add the entries now so that we get the correct size for
9426 the .dynamic section. The DT_DEBUG entry is filled in by the
9427 dynamic linker and used by the debugger. */
9428 #define add_dynamic_entry(TAG, VAL) \
9429 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9431 if (!_bfd_elf_add_dynamic_tags (output_bfd
, info
, relocs
))
9434 if (htab
->root
.splt
->size
!= 0)
9436 if (htab
->variant_pcs
9437 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS
, 0))
9440 if ((elf_aarch64_tdata (output_bfd
)->plt_type
== PLT_BTI_PAC
)
9441 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT
, 0)
9442 || !add_dynamic_entry (DT_AARCH64_PAC_PLT
, 0)))
9445 else if ((elf_aarch64_tdata (output_bfd
)->plt_type
== PLT_BTI
)
9446 && !add_dynamic_entry (DT_AARCH64_BTI_PLT
, 0))
9449 else if ((elf_aarch64_tdata (output_bfd
)->plt_type
== PLT_PAC
)
9450 && !add_dynamic_entry (DT_AARCH64_PAC_PLT
, 0))
9454 #undef add_dynamic_entry
9460 elf_aarch64_update_plt_entry (bfd
*output_bfd
,
9461 bfd_reloc_code_real_type r_type
,
9462 bfd_byte
*plt_entry
, bfd_vma value
)
9464 reloc_howto_type
*howto
= elfNN_aarch64_howto_from_bfd_reloc (r_type
);
9466 /* FIXME: We should check the return value from this function call. */
9467 (void) _bfd_aarch64_elf_put_addend (output_bfd
, plt_entry
, r_type
, howto
, value
);
9471 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry
*h
,
9472 struct elf_aarch64_link_hash_table
9473 *htab
, bfd
*output_bfd
,
9474 struct bfd_link_info
*info
)
9476 bfd_byte
*plt_entry
;
9479 bfd_vma gotplt_entry_address
;
9480 bfd_vma plt_entry_address
;
9481 Elf_Internal_Rela rela
;
9483 asection
*plt
, *gotplt
, *relplt
;
9485 /* When building a static executable, use .iplt, .igot.plt and
9486 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9487 if (htab
->root
.splt
!= NULL
)
9489 plt
= htab
->root
.splt
;
9490 gotplt
= htab
->root
.sgotplt
;
9491 relplt
= htab
->root
.srelplt
;
9495 plt
= htab
->root
.iplt
;
9496 gotplt
= htab
->root
.igotplt
;
9497 relplt
= htab
->root
.irelplt
;
9500 /* Get the index in the procedure linkage table which
9501 corresponds to this symbol. This is the index of this symbol
9502 in all the symbols for which we are making plt entries. The
9503 first entry in the procedure linkage table is reserved.
9505 Get the offset into the .got table of the entry that
9506 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9507 bytes. The first three are reserved for the dynamic linker.
9509 For static executables, we don't reserve anything. */
9511 if (plt
== htab
->root
.splt
)
9513 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
9514 got_offset
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
9518 plt_index
= h
->plt
.offset
/ htab
->plt_entry_size
;
9519 got_offset
= plt_index
* GOT_ENTRY_SIZE
;
9522 plt_entry
= plt
->contents
+ h
->plt
.offset
;
9523 plt_entry_address
= plt
->output_section
->vma
9524 + plt
->output_offset
+ h
->plt
.offset
;
9525 gotplt_entry_address
= gotplt
->output_section
->vma
+
9526 gotplt
->output_offset
+ got_offset
;
9528 /* Copy in the boiler-plate for the PLTn entry. */
9529 memcpy (plt_entry
, htab
->plt_entry
, htab
->plt_entry_size
);
9531 /* First instruction in BTI enabled PLT stub is a BTI
9532 instruction so skip it. */
9533 if (elf_aarch64_tdata (output_bfd
)->plt_type
& PLT_BTI
9534 && elf_elfheader (output_bfd
)->e_type
== ET_EXEC
)
9535 plt_entry
= plt_entry
+ 4;
9537 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9538 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9539 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_ADR_HI21_PCREL
,
9541 PG (gotplt_entry_address
) -
9542 PG (plt_entry_address
));
9544 /* Fill in the lo12 bits for the load from the pltgot. */
9545 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_LDSTNN_LO12
,
9547 PG_OFFSET (gotplt_entry_address
));
9549 /* Fill in the lo12 bits for the add from the pltgot entry. */
9550 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_ADD_LO12
,
9552 PG_OFFSET (gotplt_entry_address
));
9554 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9555 bfd_put_NN (output_bfd
,
9556 plt
->output_section
->vma
+ plt
->output_offset
,
9557 gotplt
->contents
+ got_offset
);
9559 rela
.r_offset
= gotplt_entry_address
;
9561 if (h
->dynindx
== -1
9562 || ((bfd_link_executable (info
)
9563 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
9565 && h
->type
== STT_GNU_IFUNC
))
9567 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9568 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9569 rela
.r_info
= ELFNN_R_INFO (0, AARCH64_R (IRELATIVE
));
9570 rela
.r_addend
= (h
->root
.u
.def
.value
9571 + h
->root
.u
.def
.section
->output_section
->vma
9572 + h
->root
.u
.def
.section
->output_offset
);
9576 /* Fill in the entry in the .rela.plt section. */
9577 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, AARCH64_R (JUMP_SLOT
));
9581 /* Compute the relocation entry to used based on PLT index and do
9582 not adjust reloc_count. The reloc_count has already been adjusted
9583 to account for this entry. */
9584 loc
= relplt
->contents
+ plt_index
* RELOC_SIZE (htab
);
9585 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
9588 /* Size sections even though they're not dynamic. We use it to setup
9589 _TLS_MODULE_BASE_, if needed. */
9592 elfNN_aarch64_always_size_sections (bfd
*output_bfd
,
9593 struct bfd_link_info
*info
)
9597 if (bfd_link_relocatable (info
))
9600 tls_sec
= elf_hash_table (info
)->tls_sec
;
9604 struct elf_link_hash_entry
*tlsbase
;
9606 tlsbase
= elf_link_hash_lookup (elf_hash_table (info
),
9607 "_TLS_MODULE_BASE_", true, true, false);
9611 struct bfd_link_hash_entry
*h
= NULL
;
9612 const struct elf_backend_data
*bed
=
9613 get_elf_backend_data (output_bfd
);
9615 if (!(_bfd_generic_link_add_one_symbol
9616 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
9617 tls_sec
, 0, NULL
, false, bed
->collect
, &h
)))
9620 tlsbase
->type
= STT_TLS
;
9621 tlsbase
= (struct elf_link_hash_entry
*) h
;
9622 tlsbase
->def_regular
= 1;
9623 tlsbase
->other
= STV_HIDDEN
;
9624 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, true);
9631 /* Finish up dynamic symbol handling. We set the contents of various
9632 dynamic sections here. */
9635 elfNN_aarch64_finish_dynamic_symbol (bfd
*output_bfd
,
9636 struct bfd_link_info
*info
,
9637 struct elf_link_hash_entry
*h
,
9638 Elf_Internal_Sym
*sym
)
9640 struct elf_aarch64_link_hash_table
*htab
;
9641 htab
= elf_aarch64_hash_table (info
);
9643 if (h
->plt
.offset
!= (bfd_vma
) - 1)
9645 asection
*plt
, *gotplt
, *relplt
;
9647 /* This symbol has an entry in the procedure linkage table. Set
9650 /* When building a static executable, use .iplt, .igot.plt and
9651 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9652 if (htab
->root
.splt
!= NULL
)
9654 plt
= htab
->root
.splt
;
9655 gotplt
= htab
->root
.sgotplt
;
9656 relplt
= htab
->root
.srelplt
;
9660 plt
= htab
->root
.iplt
;
9661 gotplt
= htab
->root
.igotplt
;
9662 relplt
= htab
->root
.irelplt
;
9665 /* This symbol has an entry in the procedure linkage table. Set
9667 if ((h
->dynindx
== -1
9668 && !((h
->forced_local
|| bfd_link_executable (info
))
9670 && h
->type
== STT_GNU_IFUNC
))
9676 elfNN_aarch64_create_small_pltn_entry (h
, htab
, output_bfd
, info
);
9677 if (!h
->def_regular
)
9679 /* Mark the symbol as undefined, rather than as defined in
9680 the .plt section. */
9681 sym
->st_shndx
= SHN_UNDEF
;
9682 /* If the symbol is weak we need to clear the value.
9683 Otherwise, the PLT entry would provide a definition for
9684 the symbol even if the symbol wasn't defined anywhere,
9685 and so the symbol would never be NULL. Leave the value if
9686 there were any relocations where pointer equality matters
9687 (this is a clue for the dynamic linker, to make function
9688 pointer comparisons work between an application and shared
9690 if (!h
->ref_regular_nonweak
|| !h
->pointer_equality_needed
)
9695 if (h
->got
.offset
!= (bfd_vma
) - 1
9696 && elf_aarch64_hash_entry (h
)->got_type
== GOT_NORMAL
9697 /* Undefined weak symbol in static PIE resolves to 0 without
9698 any dynamic relocations. */
9699 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
9701 Elf_Internal_Rela rela
;
9704 /* This symbol has an entry in the global offset table. Set it
9706 if (htab
->root
.sgot
== NULL
|| htab
->root
.srelgot
== NULL
)
9709 rela
.r_offset
= (htab
->root
.sgot
->output_section
->vma
9710 + htab
->root
.sgot
->output_offset
9711 + (h
->got
.offset
& ~(bfd_vma
) 1));
9714 && h
->type
== STT_GNU_IFUNC
)
9716 if (bfd_link_pic (info
))
9718 /* Generate R_AARCH64_GLOB_DAT. */
9725 if (!h
->pointer_equality_needed
)
9728 /* For non-shared object, we can't use .got.plt, which
9729 contains the real function address if we need pointer
9730 equality. We load the GOT entry with the PLT entry. */
9731 plt
= htab
->root
.splt
? htab
->root
.splt
: htab
->root
.iplt
;
9732 bfd_put_NN (output_bfd
, (plt
->output_section
->vma
9733 + plt
->output_offset
9735 htab
->root
.sgot
->contents
9736 + (h
->got
.offset
& ~(bfd_vma
) 1));
9740 else if (bfd_link_pic (info
) && SYMBOL_REFERENCES_LOCAL (info
, h
))
9742 if (!(h
->def_regular
|| ELF_COMMON_DEF_P (h
)))
9745 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
9746 rela
.r_info
= ELFNN_R_INFO (0, AARCH64_R (RELATIVE
));
9747 rela
.r_addend
= (h
->root
.u
.def
.value
9748 + h
->root
.u
.def
.section
->output_section
->vma
9749 + h
->root
.u
.def
.section
->output_offset
);
9754 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
9755 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
9756 htab
->root
.sgot
->contents
+ h
->got
.offset
);
9757 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, AARCH64_R (GLOB_DAT
));
9761 loc
= htab
->root
.srelgot
->contents
;
9762 loc
+= htab
->root
.srelgot
->reloc_count
++ * RELOC_SIZE (htab
);
9763 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
9768 Elf_Internal_Rela rela
;
9772 /* This symbol needs a copy reloc. Set it up. */
9773 if (h
->dynindx
== -1
9774 || (h
->root
.type
!= bfd_link_hash_defined
9775 && h
->root
.type
!= bfd_link_hash_defweak
)
9776 || htab
->root
.srelbss
== NULL
)
9779 rela
.r_offset
= (h
->root
.u
.def
.value
9780 + h
->root
.u
.def
.section
->output_section
->vma
9781 + h
->root
.u
.def
.section
->output_offset
);
9782 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, AARCH64_R (COPY
));
9784 if (h
->root
.u
.def
.section
== htab
->root
.sdynrelro
)
9785 s
= htab
->root
.sreldynrelro
;
9787 s
= htab
->root
.srelbss
;
9788 loc
= s
->contents
+ s
->reloc_count
++ * RELOC_SIZE (htab
);
9789 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
9792 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9793 be NULL for local symbols. */
9795 && (h
== elf_hash_table (info
)->hdynamic
9796 || h
== elf_hash_table (info
)->hgot
))
9797 sym
->st_shndx
= SHN_ABS
;
9802 /* Finish up local dynamic symbol handling. We set the contents of
9803 various dynamic sections here. */
9806 elfNN_aarch64_finish_local_dynamic_symbol (void **slot
, void *inf
)
9808 struct elf_link_hash_entry
*h
9809 = (struct elf_link_hash_entry
*) *slot
;
9810 struct bfd_link_info
*info
9811 = (struct bfd_link_info
*) inf
;
9813 return elfNN_aarch64_finish_dynamic_symbol (info
->output_bfd
,
9818 elfNN_aarch64_init_small_plt0_entry (bfd
*output_bfd ATTRIBUTE_UNUSED
,
9819 struct elf_aarch64_link_hash_table
9822 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9823 small and large plts and at the minute just generates
9826 /* PLT0 of the small PLT looks like this in ELF64 -
9827 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9828 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9829 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9831 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9832 // GOTPLT entry for this.
9834 PLT0 will be slightly different in ELF32 due to different got entry
9836 bfd_vma plt_got_2nd_ent
; /* Address of GOT[2]. */
9840 memcpy (htab
->root
.splt
->contents
, htab
->plt0_entry
,
9841 htab
->plt_header_size
);
9843 /* PR 26312: Explicitly set the sh_entsize to 0 so that
9844 consumers do not think that the section contains fixed
9846 elf_section_data (htab
->root
.splt
->output_section
)->this_hdr
.sh_entsize
= 0;
9848 plt_got_2nd_ent
= (htab
->root
.sgotplt
->output_section
->vma
9849 + htab
->root
.sgotplt
->output_offset
9850 + GOT_ENTRY_SIZE
* 2);
9852 plt_base
= htab
->root
.splt
->output_section
->vma
+
9853 htab
->root
.splt
->output_offset
;
9855 /* First instruction in BTI enabled PLT stub is a BTI
9856 instruction so skip it. */
9857 bfd_byte
*plt0_entry
= htab
->root
.splt
->contents
;
9858 if (elf_aarch64_tdata (output_bfd
)->plt_type
& PLT_BTI
)
9859 plt0_entry
= plt0_entry
+ 4;
9861 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9862 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9863 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_ADR_HI21_PCREL
,
9865 PG (plt_got_2nd_ent
) - PG (plt_base
+ 4));
9867 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_LDSTNN_LO12
,
9869 PG_OFFSET (plt_got_2nd_ent
));
9871 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_ADD_LO12
,
9873 PG_OFFSET (plt_got_2nd_ent
));
9877 elfNN_aarch64_finish_dynamic_sections (bfd
*output_bfd
,
9878 struct bfd_link_info
*info
)
9880 struct elf_aarch64_link_hash_table
*htab
;
9884 htab
= elf_aarch64_hash_table (info
);
9885 dynobj
= htab
->root
.dynobj
;
9886 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
9888 if (htab
->root
.dynamic_sections_created
)
9890 ElfNN_External_Dyn
*dyncon
, *dynconend
;
9892 if (sdyn
== NULL
|| htab
->root
.sgot
== NULL
)
9895 dyncon
= (ElfNN_External_Dyn
*) sdyn
->contents
;
9896 dynconend
= (ElfNN_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
9897 for (; dyncon
< dynconend
; dyncon
++)
9899 Elf_Internal_Dyn dyn
;
9902 bfd_elfNN_swap_dyn_in (dynobj
, dyncon
, &dyn
);
9910 s
= htab
->root
.sgotplt
;
9911 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
9915 s
= htab
->root
.srelplt
;
9916 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
9920 s
= htab
->root
.srelplt
;
9921 dyn
.d_un
.d_val
= s
->size
;
9924 case DT_TLSDESC_PLT
:
9925 s
= htab
->root
.splt
;
9926 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
9927 + htab
->root
.tlsdesc_plt
;
9930 case DT_TLSDESC_GOT
:
9931 s
= htab
->root
.sgot
;
9932 BFD_ASSERT (htab
->root
.tlsdesc_got
!= (bfd_vma
)-1);
9933 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
9934 + htab
->root
.tlsdesc_got
;
9938 bfd_elfNN_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
9943 /* Fill in the special first entry in the procedure linkage table. */
9944 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
9946 elfNN_aarch64_init_small_plt0_entry (output_bfd
, htab
);
9948 if (htab
->root
.tlsdesc_plt
&& !(info
->flags
& DF_BIND_NOW
))
9950 BFD_ASSERT (htab
->root
.tlsdesc_got
!= (bfd_vma
)-1);
9951 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
9952 htab
->root
.sgot
->contents
+ htab
->root
.tlsdesc_got
);
9954 const bfd_byte
*entry
= elfNN_aarch64_tlsdesc_small_plt_entry
;
9955 htab
->tlsdesc_plt_entry_size
= PLT_TLSDESC_ENTRY_SIZE
;
9957 aarch64_plt_type type
= elf_aarch64_tdata (output_bfd
)->plt_type
;
9958 if (type
== PLT_BTI
|| type
== PLT_BTI_PAC
)
9960 entry
= elfNN_aarch64_tlsdesc_small_plt_bti_entry
;
9963 memcpy (htab
->root
.splt
->contents
+ htab
->root
.tlsdesc_plt
,
9964 entry
, htab
->tlsdesc_plt_entry_size
);
9967 bfd_vma adrp1_addr
=
9968 htab
->root
.splt
->output_section
->vma
9969 + htab
->root
.splt
->output_offset
9970 + htab
->root
.tlsdesc_plt
+ 4;
9972 bfd_vma adrp2_addr
= adrp1_addr
+ 4;
9975 htab
->root
.sgot
->output_section
->vma
9976 + htab
->root
.sgot
->output_offset
;
9978 bfd_vma pltgot_addr
=
9979 htab
->root
.sgotplt
->output_section
->vma
9980 + htab
->root
.sgotplt
->output_offset
;
9982 bfd_vma dt_tlsdesc_got
= got_addr
+ htab
->root
.tlsdesc_got
;
9984 bfd_byte
*plt_entry
=
9985 htab
->root
.splt
->contents
+ htab
->root
.tlsdesc_plt
;
9987 /* First instruction in BTI enabled PLT stub is a BTI
9988 instruction so skip it. */
9991 plt_entry
= plt_entry
+ 4;
9992 adrp1_addr
= adrp1_addr
+ 4;
9993 adrp2_addr
= adrp2_addr
+ 4;
9996 /* adrp x2, DT_TLSDESC_GOT */
9997 elf_aarch64_update_plt_entry (output_bfd
,
9998 BFD_RELOC_AARCH64_ADR_HI21_PCREL
,
10000 (PG (dt_tlsdesc_got
)
10001 - PG (adrp1_addr
)));
10004 elf_aarch64_update_plt_entry (output_bfd
,
10005 BFD_RELOC_AARCH64_ADR_HI21_PCREL
,
10008 - PG (adrp2_addr
)));
10010 /* ldr x2, [x2, #0] */
10011 elf_aarch64_update_plt_entry (output_bfd
,
10012 BFD_RELOC_AARCH64_LDSTNN_LO12
,
10014 PG_OFFSET (dt_tlsdesc_got
));
10016 /* add x3, x3, 0 */
10017 elf_aarch64_update_plt_entry (output_bfd
,
10018 BFD_RELOC_AARCH64_ADD_LO12
,
10020 PG_OFFSET (pltgot_addr
));
10025 if (htab
->root
.sgotplt
)
10027 if (bfd_is_abs_section (htab
->root
.sgotplt
->output_section
))
10030 (_("discarded output section: `%pA'"), htab
->root
.sgotplt
);
10034 /* Fill in the first three entries in the global offset table. */
10035 if (htab
->root
.sgotplt
->size
> 0)
10037 bfd_put_NN (output_bfd
, (bfd_vma
) 0, htab
->root
.sgotplt
->contents
);
10039 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
10040 bfd_put_NN (output_bfd
,
10042 htab
->root
.sgotplt
->contents
+ GOT_ENTRY_SIZE
);
10043 bfd_put_NN (output_bfd
,
10045 htab
->root
.sgotplt
->contents
+ GOT_ENTRY_SIZE
* 2);
10048 if (htab
->root
.sgot
)
10050 if (htab
->root
.sgot
->size
> 0)
10053 sdyn
? sdyn
->output_section
->vma
+ sdyn
->output_offset
: 0;
10054 bfd_put_NN (output_bfd
, addr
, htab
->root
.sgot
->contents
);
10058 elf_section_data (htab
->root
.sgotplt
->output_section
)->
10059 this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
10062 if (htab
->root
.sgot
&& htab
->root
.sgot
->size
> 0)
10063 elf_section_data (htab
->root
.sgot
->output_section
)->this_hdr
.sh_entsize
10066 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
10067 htab_traverse (htab
->loc_hash_table
,
10068 elfNN_aarch64_finish_local_dynamic_symbol
,
10074 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
10075 static aarch64_plt_type
10076 get_plt_type (bfd
*abfd
)
10078 aarch64_plt_type ret
= PLT_NORMAL
;
10079 bfd_byte
*contents
, *extdyn
, *extdynend
;
10080 asection
*sec
= bfd_get_section_by_name (abfd
, ".dynamic");
10082 || (sec
->flags
& SEC_HAS_CONTENTS
) == 0
10083 || sec
->size
< sizeof (ElfNN_External_Dyn
)
10084 || !bfd_malloc_and_get_section (abfd
, sec
, &contents
))
10087 extdynend
= contents
+ sec
->size
- sizeof (ElfNN_External_Dyn
);
10088 for (; extdyn
<= extdynend
; extdyn
+= sizeof (ElfNN_External_Dyn
))
10090 Elf_Internal_Dyn dyn
;
10091 bfd_elfNN_swap_dyn_in (abfd
, extdyn
, &dyn
);
10093 /* Let's check the processor specific dynamic array tags. */
10094 bfd_vma tag
= dyn
.d_tag
;
10095 if (tag
< DT_LOPROC
|| tag
> DT_HIPROC
)
10100 case DT_AARCH64_BTI_PLT
:
10104 case DT_AARCH64_PAC_PLT
:
10116 elfNN_aarch64_get_synthetic_symtab (bfd
*abfd
,
10123 elf_aarch64_tdata (abfd
)->plt_type
= get_plt_type (abfd
);
10124 return _bfd_elf_get_synthetic_symtab (abfd
, symcount
, syms
,
10125 dynsymcount
, dynsyms
, ret
);
10128 /* Return address for Ith PLT stub in section PLT, for relocation REL
10129 or (bfd_vma) -1 if it should not be included. */
10132 elfNN_aarch64_plt_sym_val (bfd_vma i
, const asection
*plt
,
10133 const arelent
*rel ATTRIBUTE_UNUSED
)
10135 size_t plt0_size
= PLT_ENTRY_SIZE
;
10136 size_t pltn_size
= PLT_SMALL_ENTRY_SIZE
;
10138 if (elf_aarch64_tdata (plt
->owner
)->plt_type
== PLT_BTI_PAC
)
10140 if (elf_elfheader (plt
->owner
)->e_type
== ET_EXEC
)
10141 pltn_size
= PLT_BTI_PAC_SMALL_ENTRY_SIZE
;
10143 pltn_size
= PLT_PAC_SMALL_ENTRY_SIZE
;
10145 else if (elf_aarch64_tdata (plt
->owner
)->plt_type
== PLT_BTI
)
10147 if (elf_elfheader (plt
->owner
)->e_type
== ET_EXEC
)
10148 pltn_size
= PLT_BTI_SMALL_ENTRY_SIZE
;
10150 else if (elf_aarch64_tdata (plt
->owner
)->plt_type
== PLT_PAC
)
10152 pltn_size
= PLT_PAC_SMALL_ENTRY_SIZE
;
10155 return plt
->vma
+ plt0_size
+ i
* pltn_size
;
10158 /* Returns TRUE if NAME is an AArch64 mapping symbol.
10159 The ARM ELF standard defines $x (for A64 code) and $d (for data).
10160 It also allows a period initiated suffix to be added to the symbol, ie:
10161 "$[adtx]\.[:sym_char]+". */
10164 is_aarch64_mapping_symbol (const char * name
)
10166 return name
!= NULL
/* Paranoia. */
10167 && name
[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
10168 the mapping symbols could have acquired a prefix.
10169 We do not support this here, since such symbols no
10170 longer conform to the ARM ELF ABI. */
10171 && (name
[1] == 'd' || name
[1] == 'x')
10172 && (name
[2] == 0 || name
[2] == '.');
10173 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
10174 any characters that follow the period are legal characters for the body
10175 of a symbol's name. For now we just assume that this is the case. */
10178 /* Make sure that mapping symbols in object files are not removed via the
10179 "strip --strip-unneeded" tool. These symbols might needed in order to
10180 correctly generate linked files. Once an object file has been linked,
10181 it should be safe to remove them. */
10184 elfNN_aarch64_backend_symbol_processing (bfd
*abfd
, asymbol
*sym
)
10186 if (((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
10187 && sym
->section
!= bfd_abs_section_ptr
10188 && is_aarch64_mapping_symbol (sym
->name
))
10189 sym
->flags
|= BSF_KEEP
;
10192 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
10193 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
10194 for the effect of GNU properties of the output_bfd. */
10196 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info
*info
)
10198 uint32_t prop
= elf_aarch64_tdata (info
->output_bfd
)->gnu_and_prop
;
10199 bfd
*pbfd
= _bfd_aarch64_elf_link_setup_gnu_properties (info
, &prop
);
10200 elf_aarch64_tdata (info
->output_bfd
)->gnu_and_prop
= prop
;
10201 elf_aarch64_tdata (info
->output_bfd
)->plt_type
10202 |= (prop
& GNU_PROPERTY_AARCH64_FEATURE_1_BTI
) ? PLT_BTI
: 0;
10203 setup_plt_values (info
, elf_aarch64_tdata (info
->output_bfd
)->plt_type
);
10207 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
10208 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
10209 for the effect of GNU properties of the output_bfd. */
10211 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info
*info
,
10212 bfd
*abfd
, bfd
*bbfd
,
10213 elf_property
*aprop
,
10214 elf_property
*bprop
)
10217 = elf_aarch64_tdata (info
->output_bfd
)->gnu_and_prop
;
10219 /* If output has been marked with BTI using command line argument, give out
10220 warning if necessary. */
10221 /* Properties are merged per type, hence only check for warnings when merging
10222 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
10223 if (((aprop
&& aprop
->pr_type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
)
10224 || (bprop
&& bprop
->pr_type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
))
10225 && (prop
& GNU_PROPERTY_AARCH64_FEATURE_1_BTI
)
10226 && (!elf_aarch64_tdata (info
->output_bfd
)->no_bti_warn
))
10228 if ((aprop
&& !(aprop
->u
.number
& GNU_PROPERTY_AARCH64_FEATURE_1_BTI
))
10231 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
10232 "all inputs do not have BTI in NOTE section."),
10235 if ((bprop
&& !(bprop
->u
.number
& GNU_PROPERTY_AARCH64_FEATURE_1_BTI
))
10238 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
10239 "all inputs do not have BTI in NOTE section."),
10244 return _bfd_aarch64_elf_merge_gnu_properties (info
, abfd
, aprop
,
10248 /* We use this so we can override certain functions
10249 (though currently we don't). */
10251 const struct elf_size_info elfNN_aarch64_size_info
=
10253 sizeof (ElfNN_External_Ehdr
),
10254 sizeof (ElfNN_External_Phdr
),
10255 sizeof (ElfNN_External_Shdr
),
10256 sizeof (ElfNN_External_Rel
),
10257 sizeof (ElfNN_External_Rela
),
10258 sizeof (ElfNN_External_Sym
),
10259 sizeof (ElfNN_External_Dyn
),
10260 sizeof (Elf_External_Note
),
10261 4, /* Hash table entry size. */
10262 1, /* Internal relocs per external relocs. */
10263 ARCH_SIZE
, /* Arch size. */
10264 LOG_FILE_ALIGN
, /* Log_file_align. */
10265 ELFCLASSNN
, EV_CURRENT
,
10266 bfd_elfNN_write_out_phdrs
,
10267 bfd_elfNN_write_shdrs_and_ehdr
,
10268 bfd_elfNN_checksum_contents
,
10269 bfd_elfNN_write_relocs
,
10270 bfd_elfNN_swap_symbol_in
,
10271 bfd_elfNN_swap_symbol_out
,
10272 bfd_elfNN_slurp_reloc_table
,
10273 bfd_elfNN_slurp_symbol_table
,
10274 bfd_elfNN_swap_dyn_in
,
10275 bfd_elfNN_swap_dyn_out
,
10276 bfd_elfNN_swap_reloc_in
,
10277 bfd_elfNN_swap_reloc_out
,
10278 bfd_elfNN_swap_reloca_in
,
10279 bfd_elfNN_swap_reloca_out
10282 #define ELF_ARCH bfd_arch_aarch64
10283 #define ELF_MACHINE_CODE EM_AARCH64
10284 #define ELF_MAXPAGESIZE 0x10000
10285 #define ELF_COMMONPAGESIZE 0x1000
10287 #define bfd_elfNN_bfd_free_cached_info \
10288 elfNN_aarch64_bfd_free_cached_info
10290 #define bfd_elfNN_bfd_is_target_special_symbol \
10291 elfNN_aarch64_is_target_special_symbol
10293 #define bfd_elfNN_bfd_link_hash_table_create \
10294 elfNN_aarch64_link_hash_table_create
10296 #define bfd_elfNN_bfd_merge_private_bfd_data \
10297 elfNN_aarch64_merge_private_bfd_data
10299 #define bfd_elfNN_bfd_print_private_bfd_data \
10300 elfNN_aarch64_print_private_bfd_data
10302 #define bfd_elfNN_bfd_reloc_type_lookup \
10303 elfNN_aarch64_reloc_type_lookup
10305 #define bfd_elfNN_bfd_reloc_name_lookup \
10306 elfNN_aarch64_reloc_name_lookup
10308 #define bfd_elfNN_bfd_set_private_flags \
10309 elfNN_aarch64_set_private_flags
10311 #define bfd_elfNN_find_inliner_info \
10312 elfNN_aarch64_find_inliner_info
10314 #define bfd_elfNN_get_synthetic_symtab \
10315 elfNN_aarch64_get_synthetic_symtab
10317 #define bfd_elfNN_mkobject \
10318 elfNN_aarch64_mkobject
10320 #define bfd_elfNN_new_section_hook \
10321 elfNN_aarch64_new_section_hook
10323 #define elf_backend_adjust_dynamic_symbol \
10324 elfNN_aarch64_adjust_dynamic_symbol
10326 #define elf_backend_always_size_sections \
10327 elfNN_aarch64_always_size_sections
10329 #define elf_backend_check_relocs \
10330 elfNN_aarch64_check_relocs
10332 #define elf_backend_copy_indirect_symbol \
10333 elfNN_aarch64_copy_indirect_symbol
10335 #define elf_backend_merge_symbol_attribute \
10336 elfNN_aarch64_merge_symbol_attribute
10338 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10339 to them in our hash. */
10340 #define elf_backend_create_dynamic_sections \
10341 elfNN_aarch64_create_dynamic_sections
10343 #define elf_backend_init_index_section \
10344 _bfd_elf_init_2_index_sections
10346 #define elf_backend_finish_dynamic_sections \
10347 elfNN_aarch64_finish_dynamic_sections
10349 #define elf_backend_finish_dynamic_symbol \
10350 elfNN_aarch64_finish_dynamic_symbol
10352 #define elf_backend_object_p \
10353 elfNN_aarch64_object_p
10355 #define elf_backend_output_arch_local_syms \
10356 elfNN_aarch64_output_arch_local_syms
10358 #define elf_backend_maybe_function_sym \
10359 elfNN_aarch64_maybe_function_sym
10361 #define elf_backend_plt_sym_val \
10362 elfNN_aarch64_plt_sym_val
10364 #define elf_backend_init_file_header \
10365 elfNN_aarch64_init_file_header
10367 #define elf_backend_relocate_section \
10368 elfNN_aarch64_relocate_section
10370 #define elf_backend_reloc_type_class \
10371 elfNN_aarch64_reloc_type_class
10373 #define elf_backend_section_from_shdr \
10374 elfNN_aarch64_section_from_shdr
10376 #define elf_backend_section_from_phdr \
10377 elfNN_aarch64_section_from_phdr
10379 #define elf_backend_modify_headers \
10380 elfNN_aarch64_modify_headers
10382 #define elf_backend_size_dynamic_sections \
10383 elfNN_aarch64_size_dynamic_sections
10385 #define elf_backend_size_info \
10386 elfNN_aarch64_size_info
10388 #define elf_backend_write_section \
10389 elfNN_aarch64_write_section
10391 #define elf_backend_symbol_processing \
10392 elfNN_aarch64_backend_symbol_processing
10394 #define elf_backend_setup_gnu_properties \
10395 elfNN_aarch64_link_setup_gnu_properties
10397 #define elf_backend_merge_gnu_properties \
10398 elfNN_aarch64_merge_gnu_properties
10400 #define elf_backend_can_refcount 1
10401 #define elf_backend_can_gc_sections 1
10402 #define elf_backend_plt_readonly 1
10403 #define elf_backend_want_got_plt 1
10404 #define elf_backend_want_plt_sym 0
10405 #define elf_backend_want_dynrelro 1
10406 #define elf_backend_may_use_rel_p 0
10407 #define elf_backend_may_use_rela_p 1
10408 #define elf_backend_default_use_rela_p 1
10409 #define elf_backend_rela_normal 1
10410 #define elf_backend_dtrel_excludes_plt 1
10411 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10412 #define elf_backend_default_execstack 0
10413 #define elf_backend_extern_protected_data 0
10414 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10416 #undef elf_backend_obj_attrs_section
10417 #define elf_backend_obj_attrs_section ".ARM.attributes"
10419 #include "elfNN-target.h"
10421 /* CloudABI support. */
10423 #undef TARGET_LITTLE_SYM
10424 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10425 #undef TARGET_LITTLE_NAME
10426 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10427 #undef TARGET_BIG_SYM
10428 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10429 #undef TARGET_BIG_NAME
10430 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10433 #define ELF_OSABI ELFOSABI_CLOUDABI
10436 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10438 #include "elfNN-target.h"