* dwarf2-frame.c (dwarf2_build_frame_info): Discard --gc-section
[binutils-gdb.git] / gold / symtab.cc
blobaf272100b947166e6177ea4de3daffc3f7561422
1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "demangle.h" // needed for --dynamic-list-cpp-new
42 #include "plugin.h"
44 namespace gold
47 // Class Symbol.
49 // Initialize fields in Symbol. This initializes everything except u_
50 // and source_.
52 void
53 Symbol::init_fields(const char* name, const char* version,
54 elfcpp::STT type, elfcpp::STB binding,
55 elfcpp::STV visibility, unsigned char nonvis)
57 this->name_ = name;
58 this->version_ = version;
59 this->symtab_index_ = 0;
60 this->dynsym_index_ = 0;
61 this->got_offsets_.init();
62 this->plt_offset_ = 0;
63 this->type_ = type;
64 this->binding_ = binding;
65 this->visibility_ = visibility;
66 this->nonvis_ = nonvis;
67 this->is_target_special_ = false;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_plt_offset_ = false;
75 this->has_warning_ = false;
76 this->is_copied_from_dynobj_ = false;
77 this->is_forced_local_ = false;
78 this->is_ordinary_shndx_ = false;
79 this->in_real_elf_ = false;
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
85 static std::string
86 demangle(const char* name)
88 if (!parameters->options().do_demangle())
89 return name;
91 // cplus_demangle allocates memory for the result it returns,
92 // and returns NULL if the name is already demangled.
93 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
94 if (demangled_name == NULL)
95 return name;
97 std::string retval(demangled_name);
98 free(demangled_name);
99 return retval;
102 std::string
103 Symbol::demangled_name() const
105 return demangle(this->name());
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
110 template<int size, bool big_endian>
111 void
112 Symbol::init_base_object(const char* name, const char* version, Object* object,
113 const elfcpp::Sym<size, big_endian>& sym,
114 unsigned int st_shndx, bool is_ordinary)
116 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
117 sym.get_st_visibility(), sym.get_st_nonvis());
118 this->u_.from_object.object = object;
119 this->u_.from_object.shndx = st_shndx;
120 this->is_ordinary_shndx_ = is_ordinary;
121 this->source_ = FROM_OBJECT;
122 this->in_reg_ = !object->is_dynamic();
123 this->in_dyn_ = object->is_dynamic();
124 this->in_real_elf_ = object->pluginobj() == NULL;
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
130 void
131 Symbol::init_base_output_data(const char* name, const char* version,
132 Output_data* od, elfcpp::STT type,
133 elfcpp::STB binding, elfcpp::STV visibility,
134 unsigned char nonvis, bool offset_is_from_end)
136 this->init_fields(name, version, type, binding, visibility, nonvis);
137 this->u_.in_output_data.output_data = od;
138 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
139 this->source_ = IN_OUTPUT_DATA;
140 this->in_reg_ = true;
141 this->in_real_elf_ = true;
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
147 void
148 Symbol::init_base_output_segment(const char* name, const char* version,
149 Output_segment* os, elfcpp::STT type,
150 elfcpp::STB binding, elfcpp::STV visibility,
151 unsigned char nonvis,
152 Segment_offset_base offset_base)
154 this->init_fields(name, version, type, binding, visibility, nonvis);
155 this->u_.in_output_segment.output_segment = os;
156 this->u_.in_output_segment.offset_base = offset_base;
157 this->source_ = IN_OUTPUT_SEGMENT;
158 this->in_reg_ = true;
159 this->in_real_elf_ = true;
162 // Initialize the fields in the base class Symbol for a symbol defined
163 // as a constant.
165 void
166 Symbol::init_base_constant(const char* name, const char* version,
167 elfcpp::STT type, elfcpp::STB binding,
168 elfcpp::STV visibility, unsigned char nonvis)
170 this->init_fields(name, version, type, binding, visibility, nonvis);
171 this->source_ = IS_CONSTANT;
172 this->in_reg_ = true;
173 this->in_real_elf_ = true;
176 // Initialize the fields in the base class Symbol for an undefined
177 // symbol.
179 void
180 Symbol::init_base_undefined(const char* name, const char* version,
181 elfcpp::STT type, elfcpp::STB binding,
182 elfcpp::STV visibility, unsigned char nonvis)
184 this->init_fields(name, version, type, binding, visibility, nonvis);
185 this->dynsym_index_ = -1U;
186 this->source_ = IS_UNDEFINED;
187 this->in_reg_ = true;
188 this->in_real_elf_ = true;
191 // Allocate a common symbol in the base.
193 void
194 Symbol::allocate_base_common(Output_data* od)
196 gold_assert(this->is_common());
197 this->source_ = IN_OUTPUT_DATA;
198 this->u_.in_output_data.output_data = od;
199 this->u_.in_output_data.offset_is_from_end = false;
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
204 template<int size>
205 template<bool big_endian>
206 void
207 Sized_symbol<size>::init_object(const char* name, const char* version,
208 Object* object,
209 const elfcpp::Sym<size, big_endian>& sym,
210 unsigned int st_shndx, bool is_ordinary)
212 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
213 this->value_ = sym.get_st_value();
214 this->symsize_ = sym.get_st_size();
217 // Initialize the fields in Sized_symbol for a symbol defined in an
218 // Output_data.
220 template<int size>
221 void
222 Sized_symbol<size>::init_output_data(const char* name, const char* version,
223 Output_data* od, Value_type value,
224 Size_type symsize, elfcpp::STT type,
225 elfcpp::STB binding,
226 elfcpp::STV visibility,
227 unsigned char nonvis,
228 bool offset_is_from_end)
230 this->init_base_output_data(name, version, od, type, binding, visibility,
231 nonvis, offset_is_from_end);
232 this->value_ = value;
233 this->symsize_ = symsize;
236 // Initialize the fields in Sized_symbol for a symbol defined in an
237 // Output_segment.
239 template<int size>
240 void
241 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
242 Output_segment* os, Value_type value,
243 Size_type symsize, elfcpp::STT type,
244 elfcpp::STB binding,
245 elfcpp::STV visibility,
246 unsigned char nonvis,
247 Segment_offset_base offset_base)
249 this->init_base_output_segment(name, version, os, type, binding, visibility,
250 nonvis, offset_base);
251 this->value_ = value;
252 this->symsize_ = symsize;
255 // Initialize the fields in Sized_symbol for a symbol defined as a
256 // constant.
258 template<int size>
259 void
260 Sized_symbol<size>::init_constant(const char* name, const char* version,
261 Value_type value, Size_type symsize,
262 elfcpp::STT type, elfcpp::STB binding,
263 elfcpp::STV visibility, unsigned char nonvis)
265 this->init_base_constant(name, version, type, binding, visibility, nonvis);
266 this->value_ = value;
267 this->symsize_ = symsize;
270 // Initialize the fields in Sized_symbol for an undefined symbol.
272 template<int size>
273 void
274 Sized_symbol<size>::init_undefined(const char* name, const char* version,
275 elfcpp::STT type, elfcpp::STB binding,
276 elfcpp::STV visibility, unsigned char nonvis)
278 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
279 this->value_ = 0;
280 this->symsize_ = 0;
283 // Return true if SHNDX represents a common symbol.
285 bool
286 Symbol::is_common_shndx(unsigned int shndx)
288 return (shndx == elfcpp::SHN_COMMON
289 || shndx == parameters->target().small_common_shndx()
290 || shndx == parameters->target().large_common_shndx());
293 // Allocate a common symbol.
295 template<int size>
296 void
297 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
299 this->allocate_base_common(od);
300 this->value_ = value;
303 // The ""'s around str ensure str is a string literal, so sizeof works.
304 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
306 // Return true if this symbol should be added to the dynamic symbol
307 // table.
309 inline bool
310 Symbol::should_add_dynsym_entry() const
312 // If the symbol is used by a dynamic relocation, we need to add it.
313 if (this->needs_dynsym_entry())
314 return true;
316 // If this symbol's section is not added, the symbol need not be added.
317 // The section may have been GCed. Note that export_dynamic is being
318 // overridden here. This should not be done for shared objects.
319 if (parameters->options().gc_sections()
320 && !parameters->options().shared()
321 && this->source() == Symbol::FROM_OBJECT
322 && !this->object()->is_dynamic())
324 Relobj* relobj = static_cast<Relobj*>(this->object());
325 bool is_ordinary;
326 unsigned int shndx = this->shndx(&is_ordinary);
327 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
328 && !relobj->is_section_included(shndx))
329 return false;
332 // If the symbol was forced local in a version script, do not add it.
333 if (this->is_forced_local())
334 return false;
336 // If the symbol was forced dynamic in a --dynamic-list file, add it.
337 if (parameters->options().in_dynamic_list(this->name()))
338 return true;
340 // If dynamic-list-data was specified, add any STT_OBJECT.
341 if (parameters->options().dynamic_list_data()
342 && !this->is_from_dynobj()
343 && this->type() == elfcpp::STT_OBJECT)
344 return true;
346 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
347 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
348 if ((parameters->options().dynamic_list_cpp_new()
349 || parameters->options().dynamic_list_cpp_typeinfo())
350 && !this->is_from_dynobj())
352 // TODO(csilvers): We could probably figure out if we're an operator
353 // new/delete or typeinfo without the need to demangle.
354 char* demangled_name = cplus_demangle(this->name(),
355 DMGL_ANSI | DMGL_PARAMS);
356 if (demangled_name == NULL)
358 // Not a C++ symbol, so it can't satisfy these flags
360 else if (parameters->options().dynamic_list_cpp_new()
361 && (strprefix(demangled_name, "operator new")
362 || strprefix(demangled_name, "operator delete")))
364 free(demangled_name);
365 return true;
367 else if (parameters->options().dynamic_list_cpp_typeinfo()
368 && (strprefix(demangled_name, "typeinfo name for")
369 || strprefix(demangled_name, "typeinfo for")))
371 free(demangled_name);
372 return true;
374 else
375 free(demangled_name);
378 // If exporting all symbols or building a shared library,
379 // and the symbol is defined in a regular object and is
380 // externally visible, we need to add it.
381 if ((parameters->options().export_dynamic() || parameters->options().shared())
382 && !this->is_from_dynobj()
383 && this->is_externally_visible())
384 return true;
386 return false;
389 // Return true if the final value of this symbol is known at link
390 // time.
392 bool
393 Symbol::final_value_is_known() const
395 // If we are not generating an executable, then no final values are
396 // known, since they will change at runtime.
397 if (parameters->options().output_is_position_independent()
398 || parameters->options().relocatable())
399 return false;
401 // If the symbol is not from an object file, and is not undefined,
402 // then it is defined, and known.
403 if (this->source_ != FROM_OBJECT)
405 if (this->source_ != IS_UNDEFINED)
406 return true;
408 else
410 // If the symbol is from a dynamic object, then the final value
411 // is not known.
412 if (this->object()->is_dynamic())
413 return false;
415 // If the symbol is not undefined (it is defined or common),
416 // then the final value is known.
417 if (!this->is_undefined())
418 return true;
421 // If the symbol is undefined, then whether the final value is known
422 // depends on whether we are doing a static link. If we are doing a
423 // dynamic link, then the final value could be filled in at runtime.
424 // This could reasonably be the case for a weak undefined symbol.
425 return parameters->doing_static_link();
428 // Return the output section where this symbol is defined.
430 Output_section*
431 Symbol::output_section() const
433 switch (this->source_)
435 case FROM_OBJECT:
437 unsigned int shndx = this->u_.from_object.shndx;
438 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
440 gold_assert(!this->u_.from_object.object->is_dynamic());
441 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
442 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
443 return relobj->output_section(shndx);
445 return NULL;
448 case IN_OUTPUT_DATA:
449 return this->u_.in_output_data.output_data->output_section();
451 case IN_OUTPUT_SEGMENT:
452 case IS_CONSTANT:
453 case IS_UNDEFINED:
454 return NULL;
456 default:
457 gold_unreachable();
461 // Set the symbol's output section. This is used for symbols defined
462 // in scripts. This should only be called after the symbol table has
463 // been finalized.
465 void
466 Symbol::set_output_section(Output_section* os)
468 switch (this->source_)
470 case FROM_OBJECT:
471 case IN_OUTPUT_DATA:
472 gold_assert(this->output_section() == os);
473 break;
474 case IS_CONSTANT:
475 this->source_ = IN_OUTPUT_DATA;
476 this->u_.in_output_data.output_data = os;
477 this->u_.in_output_data.offset_is_from_end = false;
478 break;
479 case IN_OUTPUT_SEGMENT:
480 case IS_UNDEFINED:
481 default:
482 gold_unreachable();
486 // Class Symbol_table.
488 Symbol_table::Symbol_table(unsigned int count,
489 const Version_script_info& version_script)
490 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
491 forwarders_(), commons_(), tls_commons_(), small_commons_(),
492 large_commons_(), forced_locals_(), warnings_(),
493 version_script_(version_script), gc_(NULL), icf_(NULL)
495 namepool_.reserve(count);
498 Symbol_table::~Symbol_table()
502 // The hash function. The key values are Stringpool keys.
504 inline size_t
505 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
507 return key.first ^ key.second;
510 // The symbol table key equality function. This is called with
511 // Stringpool keys.
513 inline bool
514 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
515 const Symbol_table_key& k2) const
517 return k1.first == k2.first && k1.second == k2.second;
520 bool
521 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
523 return (parameters->options().icf_enabled()
524 && this->icf_->is_section_folded(obj, shndx));
527 // For symbols that have been listed with -u option, add them to the
528 // work list to avoid gc'ing them.
530 void
531 Symbol_table::gc_mark_undef_symbols()
533 for (options::String_set::const_iterator p =
534 parameters->options().undefined_begin();
535 p != parameters->options().undefined_end();
536 ++p)
538 const char* name = p->c_str();
539 Symbol* sym = this->lookup(name);
540 gold_assert (sym != NULL);
541 if (sym->source() == Symbol::FROM_OBJECT
542 && !sym->object()->is_dynamic())
544 Relobj* obj = static_cast<Relobj*>(sym->object());
545 bool is_ordinary;
546 unsigned int shndx = sym->shndx(&is_ordinary);
547 if (is_ordinary)
549 gold_assert(this->gc_ != NULL);
550 this->gc_->worklist().push(Section_id(obj, shndx));
556 void
557 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
559 if (!sym->is_from_dynobj()
560 && sym->is_externally_visible())
562 //Add the object and section to the work list.
563 Relobj* obj = static_cast<Relobj*>(sym->object());
564 bool is_ordinary;
565 unsigned int shndx = sym->shndx(&is_ordinary);
566 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
568 gold_assert(this->gc_!= NULL);
569 this->gc_->worklist().push(Section_id(obj, shndx));
574 // When doing garbage collection, keep symbols that have been seen in
575 // dynamic objects.
576 inline void
577 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
579 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
580 && !sym->object()->is_dynamic())
582 Relobj *obj = static_cast<Relobj*>(sym->object());
583 bool is_ordinary;
584 unsigned int shndx = sym->shndx(&is_ordinary);
585 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
587 gold_assert(this->gc_ != NULL);
588 this->gc_->worklist().push(Section_id(obj, shndx));
593 // Make TO a symbol which forwards to FROM.
595 void
596 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
598 gold_assert(from != to);
599 gold_assert(!from->is_forwarder() && !to->is_forwarder());
600 this->forwarders_[from] = to;
601 from->set_forwarder();
604 // Resolve the forwards from FROM, returning the real symbol.
606 Symbol*
607 Symbol_table::resolve_forwards(const Symbol* from) const
609 gold_assert(from->is_forwarder());
610 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
611 this->forwarders_.find(from);
612 gold_assert(p != this->forwarders_.end());
613 return p->second;
616 // Look up a symbol by name.
618 Symbol*
619 Symbol_table::lookup(const char* name, const char* version) const
621 Stringpool::Key name_key;
622 name = this->namepool_.find(name, &name_key);
623 if (name == NULL)
624 return NULL;
626 Stringpool::Key version_key = 0;
627 if (version != NULL)
629 version = this->namepool_.find(version, &version_key);
630 if (version == NULL)
631 return NULL;
634 Symbol_table_key key(name_key, version_key);
635 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
636 if (p == this->table_.end())
637 return NULL;
638 return p->second;
641 // Resolve a Symbol with another Symbol. This is only used in the
642 // unusual case where there are references to both an unversioned
643 // symbol and a symbol with a version, and we then discover that that
644 // version is the default version. Because this is unusual, we do
645 // this the slow way, by converting back to an ELF symbol.
647 template<int size, bool big_endian>
648 void
649 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
651 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
652 elfcpp::Sym_write<size, big_endian> esym(buf);
653 // We don't bother to set the st_name or the st_shndx field.
654 esym.put_st_value(from->value());
655 esym.put_st_size(from->symsize());
656 esym.put_st_info(from->binding(), from->type());
657 esym.put_st_other(from->visibility(), from->nonvis());
658 bool is_ordinary;
659 unsigned int shndx = from->shndx(&is_ordinary);
660 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
661 from->version());
662 if (from->in_reg())
663 to->set_in_reg();
664 if (from->in_dyn())
665 to->set_in_dyn();
666 if (parameters->options().gc_sections())
667 this->gc_mark_dyn_syms(to);
670 // Record that a symbol is forced to be local by a version script or
671 // by visibility.
673 void
674 Symbol_table::force_local(Symbol* sym)
676 if (!sym->is_defined() && !sym->is_common())
677 return;
678 if (sym->is_forced_local())
680 // We already got this one.
681 return;
683 sym->set_is_forced_local();
684 this->forced_locals_.push_back(sym);
687 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
688 // is only called for undefined symbols, when at least one --wrap
689 // option was used.
691 const char*
692 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
694 // For some targets, we need to ignore a specific character when
695 // wrapping, and add it back later.
696 char prefix = '\0';
697 if (name[0] == parameters->target().wrap_char())
699 prefix = name[0];
700 ++name;
703 if (parameters->options().is_wrap(name))
705 // Turn NAME into __wrap_NAME.
706 std::string s;
707 if (prefix != '\0')
708 s += prefix;
709 s += "__wrap_";
710 s += name;
712 // This will give us both the old and new name in NAMEPOOL_, but
713 // that is OK. Only the versions we need will wind up in the
714 // real string table in the output file.
715 return this->namepool_.add(s.c_str(), true, name_key);
718 const char* const real_prefix = "__real_";
719 const size_t real_prefix_length = strlen(real_prefix);
720 if (strncmp(name, real_prefix, real_prefix_length) == 0
721 && parameters->options().is_wrap(name + real_prefix_length))
723 // Turn __real_NAME into NAME.
724 std::string s;
725 if (prefix != '\0')
726 s += prefix;
727 s += name + real_prefix_length;
728 return this->namepool_.add(s.c_str(), true, name_key);
731 return name;
734 // This is called when we see a symbol NAME/VERSION, and the symbol
735 // already exists in the symbol table, and VERSION is marked as being
736 // the default version. SYM is the NAME/VERSION symbol we just added.
737 // DEFAULT_IS_NEW is true if this is the first time we have seen the
738 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
740 template<int size, bool big_endian>
741 void
742 Symbol_table::define_default_version(Sized_symbol<size>* sym,
743 bool default_is_new,
744 Symbol_table_type::iterator pdef)
746 if (default_is_new)
748 // This is the first time we have seen NAME/NULL. Make
749 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
750 // version.
751 pdef->second = sym;
752 sym->set_is_default();
754 else if (pdef->second == sym)
756 // NAME/NULL already points to NAME/VERSION. Don't mark the
757 // symbol as the default if it is not already the default.
759 else
761 // This is the unfortunate case where we already have entries
762 // for both NAME/VERSION and NAME/NULL. We now see a symbol
763 // NAME/VERSION where VERSION is the default version. We have
764 // already resolved this new symbol with the existing
765 // NAME/VERSION symbol.
767 // It's possible that NAME/NULL and NAME/VERSION are both
768 // defined in regular objects. This can only happen if one
769 // object file defines foo and another defines foo@@ver. This
770 // is somewhat obscure, but we call it a multiple definition
771 // error.
773 // It's possible that NAME/NULL actually has a version, in which
774 // case it won't be the same as VERSION. This happens with
775 // ver_test_7.so in the testsuite for the symbol t2_2. We see
776 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
777 // then see an unadorned t2_2 in an object file and give it
778 // version VER1 from the version script. This looks like a
779 // default definition for VER1, so it looks like we should merge
780 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
781 // not obvious that this is an error, either. So we just punt.
783 // If one of the symbols has non-default visibility, and the
784 // other is defined in a shared object, then they are different
785 // symbols.
787 // Otherwise, we just resolve the symbols as though they were
788 // the same.
790 if (pdef->second->version() != NULL)
791 gold_assert(pdef->second->version() != sym->version());
792 else if (sym->visibility() != elfcpp::STV_DEFAULT
793 && pdef->second->is_from_dynobj())
795 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
796 && sym->is_from_dynobj())
798 else
800 const Sized_symbol<size>* symdef;
801 symdef = this->get_sized_symbol<size>(pdef->second);
802 Symbol_table::resolve<size, big_endian>(sym, symdef);
803 this->make_forwarder(pdef->second, sym);
804 pdef->second = sym;
805 sym->set_is_default();
810 // Add one symbol from OBJECT to the symbol table. NAME is symbol
811 // name and VERSION is the version; both are canonicalized. DEF is
812 // whether this is the default version. ST_SHNDX is the symbol's
813 // section index; IS_ORDINARY is whether this is a normal section
814 // rather than a special code.
816 // If DEF is true, then this is the definition of a default version of
817 // a symbol. That means that any lookup of NAME/NULL and any lookup
818 // of NAME/VERSION should always return the same symbol. This is
819 // obvious for references, but in particular we want to do this for
820 // definitions: overriding NAME/NULL should also override
821 // NAME/VERSION. If we don't do that, it would be very hard to
822 // override functions in a shared library which uses versioning.
824 // We implement this by simply making both entries in the hash table
825 // point to the same Symbol structure. That is easy enough if this is
826 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
827 // that we have seen both already, in which case they will both have
828 // independent entries in the symbol table. We can't simply change
829 // the symbol table entry, because we have pointers to the entries
830 // attached to the object files. So we mark the entry attached to the
831 // object file as a forwarder, and record it in the forwarders_ map.
832 // Note that entries in the hash table will never be marked as
833 // forwarders.
835 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
836 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
837 // for a special section code. ST_SHNDX may be modified if the symbol
838 // is defined in a section being discarded.
840 template<int size, bool big_endian>
841 Sized_symbol<size>*
842 Symbol_table::add_from_object(Object* object,
843 const char *name,
844 Stringpool::Key name_key,
845 const char *version,
846 Stringpool::Key version_key,
847 bool def,
848 const elfcpp::Sym<size, big_endian>& sym,
849 unsigned int st_shndx,
850 bool is_ordinary,
851 unsigned int orig_st_shndx)
853 // Print a message if this symbol is being traced.
854 if (parameters->options().is_trace_symbol(name))
856 if (orig_st_shndx == elfcpp::SHN_UNDEF)
857 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
858 else
859 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
862 // For an undefined symbol, we may need to adjust the name using
863 // --wrap.
864 if (orig_st_shndx == elfcpp::SHN_UNDEF
865 && parameters->options().any_wrap())
867 const char* wrap_name = this->wrap_symbol(name, &name_key);
868 if (wrap_name != name)
870 // If we see a reference to malloc with version GLIBC_2.0,
871 // and we turn it into a reference to __wrap_malloc, then we
872 // discard the version number. Otherwise the user would be
873 // required to specify the correct version for
874 // __wrap_malloc.
875 version = NULL;
876 version_key = 0;
877 name = wrap_name;
881 Symbol* const snull = NULL;
882 std::pair<typename Symbol_table_type::iterator, bool> ins =
883 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
884 snull));
886 std::pair<typename Symbol_table_type::iterator, bool> insdef =
887 std::make_pair(this->table_.end(), false);
888 if (def)
890 const Stringpool::Key vnull_key = 0;
891 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
892 vnull_key),
893 snull));
896 // ins.first: an iterator, which is a pointer to a pair.
897 // ins.first->first: the key (a pair of name and version).
898 // ins.first->second: the value (Symbol*).
899 // ins.second: true if new entry was inserted, false if not.
901 Sized_symbol<size>* ret;
902 bool was_undefined;
903 bool was_common;
904 if (!ins.second)
906 // We already have an entry for NAME/VERSION.
907 ret = this->get_sized_symbol<size>(ins.first->second);
908 gold_assert(ret != NULL);
910 was_undefined = ret->is_undefined();
911 was_common = ret->is_common();
913 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
914 version);
915 if (parameters->options().gc_sections())
916 this->gc_mark_dyn_syms(ret);
918 if (def)
919 this->define_default_version<size, big_endian>(ret, insdef.second,
920 insdef.first);
922 else
924 // This is the first time we have seen NAME/VERSION.
925 gold_assert(ins.first->second == NULL);
927 if (def && !insdef.second)
929 // We already have an entry for NAME/NULL. If we override
930 // it, then change it to NAME/VERSION.
931 ret = this->get_sized_symbol<size>(insdef.first->second);
933 was_undefined = ret->is_undefined();
934 was_common = ret->is_common();
936 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
937 version);
938 if (parameters->options().gc_sections())
939 this->gc_mark_dyn_syms(ret);
940 ins.first->second = ret;
942 else
944 was_undefined = false;
945 was_common = false;
947 Sized_target<size, big_endian>* target =
948 parameters->sized_target<size, big_endian>();
949 if (!target->has_make_symbol())
950 ret = new Sized_symbol<size>();
951 else
953 ret = target->make_symbol();
954 if (ret == NULL)
956 // This means that we don't want a symbol table
957 // entry after all.
958 if (!def)
959 this->table_.erase(ins.first);
960 else
962 this->table_.erase(insdef.first);
963 // Inserting insdef invalidated ins.
964 this->table_.erase(std::make_pair(name_key,
965 version_key));
967 return NULL;
971 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
973 ins.first->second = ret;
974 if (def)
976 // This is the first time we have seen NAME/NULL. Point
977 // it at the new entry for NAME/VERSION.
978 gold_assert(insdef.second);
979 insdef.first->second = ret;
983 if (def)
984 ret->set_is_default();
987 // Record every time we see a new undefined symbol, to speed up
988 // archive groups.
989 if (!was_undefined && ret->is_undefined())
990 ++this->saw_undefined_;
992 // Keep track of common symbols, to speed up common symbol
993 // allocation.
994 if (!was_common && ret->is_common())
996 if (ret->type() == elfcpp::STT_TLS)
997 this->tls_commons_.push_back(ret);
998 else if (!is_ordinary
999 && st_shndx == parameters->target().small_common_shndx())
1000 this->small_commons_.push_back(ret);
1001 else if (!is_ordinary
1002 && st_shndx == parameters->target().large_common_shndx())
1003 this->large_commons_.push_back(ret);
1004 else
1005 this->commons_.push_back(ret);
1008 // If we're not doing a relocatable link, then any symbol with
1009 // hidden or internal visibility is local.
1010 if ((ret->visibility() == elfcpp::STV_HIDDEN
1011 || ret->visibility() == elfcpp::STV_INTERNAL)
1012 && (ret->binding() == elfcpp::STB_GLOBAL
1013 || ret->binding() == elfcpp::STB_WEAK)
1014 && !parameters->options().relocatable())
1015 this->force_local(ret);
1017 return ret;
1020 // Add all the symbols in a relocatable object to the hash table.
1022 template<int size, bool big_endian>
1023 void
1024 Symbol_table::add_from_relobj(
1025 Sized_relobj<size, big_endian>* relobj,
1026 const unsigned char* syms,
1027 size_t count,
1028 size_t symndx_offset,
1029 const char* sym_names,
1030 size_t sym_name_size,
1031 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1032 size_t *defined)
1034 *defined = 0;
1036 gold_assert(size == parameters->target().get_size());
1038 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1040 const bool just_symbols = relobj->just_symbols();
1042 const unsigned char* p = syms;
1043 for (size_t i = 0; i < count; ++i, p += sym_size)
1045 (*sympointers)[i] = NULL;
1047 elfcpp::Sym<size, big_endian> sym(p);
1049 unsigned int st_name = sym.get_st_name();
1050 if (st_name >= sym_name_size)
1052 relobj->error(_("bad global symbol name offset %u at %zu"),
1053 st_name, i);
1054 continue;
1057 const char* name = sym_names + st_name;
1059 bool is_ordinary;
1060 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1061 sym.get_st_shndx(),
1062 &is_ordinary);
1063 unsigned int orig_st_shndx = st_shndx;
1064 if (!is_ordinary)
1065 orig_st_shndx = elfcpp::SHN_UNDEF;
1067 if (st_shndx != elfcpp::SHN_UNDEF)
1068 ++*defined;
1070 // A symbol defined in a section which we are not including must
1071 // be treated as an undefined symbol.
1072 if (st_shndx != elfcpp::SHN_UNDEF
1073 && is_ordinary
1074 && !relobj->is_section_included(st_shndx))
1075 st_shndx = elfcpp::SHN_UNDEF;
1077 // In an object file, an '@' in the name separates the symbol
1078 // name from the version name. If there are two '@' characters,
1079 // this is the default version.
1080 const char* ver = strchr(name, '@');
1081 Stringpool::Key ver_key = 0;
1082 int namelen = 0;
1083 // DEF: is the version default? LOCAL: is the symbol forced local?
1084 bool def = false;
1085 bool local = false;
1087 if (ver != NULL)
1089 // The symbol name is of the form foo@VERSION or foo@@VERSION
1090 namelen = ver - name;
1091 ++ver;
1092 if (*ver == '@')
1094 def = true;
1095 ++ver;
1097 ver = this->namepool_.add(ver, true, &ver_key);
1099 // We don't want to assign a version to an undefined symbol,
1100 // even if it is listed in the version script. FIXME: What
1101 // about a common symbol?
1102 else
1104 namelen = strlen(name);
1105 if (!this->version_script_.empty()
1106 && st_shndx != elfcpp::SHN_UNDEF)
1108 // The symbol name did not have a version, but the
1109 // version script may assign a version anyway.
1110 std::string version;
1111 if (this->version_script_.get_symbol_version(name, &version))
1113 // The version can be empty if the version script is
1114 // only used to force some symbols to be local.
1115 if (!version.empty())
1117 ver = this->namepool_.add_with_length(version.c_str(),
1118 version.length(),
1119 true,
1120 &ver_key);
1121 def = true;
1124 else if (this->version_script_.symbol_is_local(name))
1125 local = true;
1129 elfcpp::Sym<size, big_endian>* psym = &sym;
1130 unsigned char symbuf[sym_size];
1131 elfcpp::Sym<size, big_endian> sym2(symbuf);
1132 if (just_symbols)
1134 memcpy(symbuf, p, sym_size);
1135 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1136 if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1138 // Symbol values in object files are section relative.
1139 // This is normally what we want, but since here we are
1140 // converting the symbol to absolute we need to add the
1141 // section address. The section address in an object
1142 // file is normally zero, but people can use a linker
1143 // script to change it.
1144 sw.put_st_value(sym.get_st_value()
1145 + relobj->section_address(orig_st_shndx));
1147 st_shndx = elfcpp::SHN_ABS;
1148 is_ordinary = false;
1149 psym = &sym2;
1152 // Fix up visibility if object has no-export set.
1153 if (relobj->no_export())
1155 // We may have copied symbol already above.
1156 if (psym != &sym2)
1158 memcpy(symbuf, p, sym_size);
1159 psym = &sym2;
1162 elfcpp::STV visibility = sym2.get_st_visibility();
1163 if (visibility == elfcpp::STV_DEFAULT
1164 || visibility == elfcpp::STV_PROTECTED)
1166 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1167 unsigned char nonvis = sym2.get_st_nonvis();
1168 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1172 Stringpool::Key name_key;
1173 name = this->namepool_.add_with_length(name, namelen, true,
1174 &name_key);
1176 Sized_symbol<size>* res;
1177 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1178 def, *psym, st_shndx, is_ordinary,
1179 orig_st_shndx);
1181 // If building a shared library using garbage collection, do not
1182 // treat externally visible symbols as garbage.
1183 if (parameters->options().gc_sections()
1184 && parameters->options().shared())
1185 this->gc_mark_symbol_for_shlib(res);
1187 if (local)
1188 this->force_local(res);
1190 (*sympointers)[i] = res;
1194 // Add a symbol from a plugin-claimed file.
1196 template<int size, bool big_endian>
1197 Symbol*
1198 Symbol_table::add_from_pluginobj(
1199 Sized_pluginobj<size, big_endian>* obj,
1200 const char* name,
1201 const char* ver,
1202 elfcpp::Sym<size, big_endian>* sym)
1204 unsigned int st_shndx = sym->get_st_shndx();
1205 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1207 Stringpool::Key ver_key = 0;
1208 bool def = false;
1209 bool local = false;
1211 if (ver != NULL)
1213 ver = this->namepool_.add(ver, true, &ver_key);
1215 // We don't want to assign a version to an undefined symbol,
1216 // even if it is listed in the version script. FIXME: What
1217 // about a common symbol?
1218 else
1220 if (!this->version_script_.empty()
1221 && st_shndx != elfcpp::SHN_UNDEF)
1223 // The symbol name did not have a version, but the
1224 // version script may assign a version anyway.
1225 std::string version;
1226 if (this->version_script_.get_symbol_version(name, &version))
1228 // The version can be empty if the version script is
1229 // only used to force some symbols to be local.
1230 if (!version.empty())
1232 ver = this->namepool_.add_with_length(version.c_str(),
1233 version.length(),
1234 true,
1235 &ver_key);
1236 def = true;
1239 else if (this->version_script_.symbol_is_local(name))
1240 local = true;
1244 Stringpool::Key name_key;
1245 name = this->namepool_.add(name, true, &name_key);
1247 Sized_symbol<size>* res;
1248 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1249 def, *sym, st_shndx, is_ordinary, st_shndx);
1251 if (local)
1252 this->force_local(res);
1254 return res;
1257 // Add all the symbols in a dynamic object to the hash table.
1259 template<int size, bool big_endian>
1260 void
1261 Symbol_table::add_from_dynobj(
1262 Sized_dynobj<size, big_endian>* dynobj,
1263 const unsigned char* syms,
1264 size_t count,
1265 const char* sym_names,
1266 size_t sym_name_size,
1267 const unsigned char* versym,
1268 size_t versym_size,
1269 const std::vector<const char*>* version_map,
1270 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1271 size_t* defined)
1273 *defined = 0;
1275 gold_assert(size == parameters->target().get_size());
1277 if (dynobj->just_symbols())
1279 gold_error(_("--just-symbols does not make sense with a shared object"));
1280 return;
1283 if (versym != NULL && versym_size / 2 < count)
1285 dynobj->error(_("too few symbol versions"));
1286 return;
1289 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1291 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1292 // weak aliases. This is necessary because if the dynamic object
1293 // provides the same variable under two names, one of which is a
1294 // weak definition, and the regular object refers to the weak
1295 // definition, we have to put both the weak definition and the
1296 // strong definition into the dynamic symbol table. Given a weak
1297 // definition, the only way that we can find the corresponding
1298 // strong definition, if any, is to search the symbol table.
1299 std::vector<Sized_symbol<size>*> object_symbols;
1301 const unsigned char* p = syms;
1302 const unsigned char* vs = versym;
1303 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1305 elfcpp::Sym<size, big_endian> sym(p);
1307 if (sympointers != NULL)
1308 (*sympointers)[i] = NULL;
1310 // Ignore symbols with local binding or that have
1311 // internal or hidden visibility.
1312 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1313 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1314 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1315 continue;
1317 // A protected symbol in a shared library must be treated as a
1318 // normal symbol when viewed from outside the shared library.
1319 // Implement this by overriding the visibility here.
1320 elfcpp::Sym<size, big_endian>* psym = &sym;
1321 unsigned char symbuf[sym_size];
1322 elfcpp::Sym<size, big_endian> sym2(symbuf);
1323 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1325 memcpy(symbuf, p, sym_size);
1326 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1327 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1328 psym = &sym2;
1331 unsigned int st_name = psym->get_st_name();
1332 if (st_name >= sym_name_size)
1334 dynobj->error(_("bad symbol name offset %u at %zu"),
1335 st_name, i);
1336 continue;
1339 const char* name = sym_names + st_name;
1341 bool is_ordinary;
1342 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1343 &is_ordinary);
1345 if (st_shndx != elfcpp::SHN_UNDEF)
1346 ++*defined;
1348 Sized_symbol<size>* res;
1350 if (versym == NULL)
1352 Stringpool::Key name_key;
1353 name = this->namepool_.add(name, true, &name_key);
1354 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1355 false, *psym, st_shndx, is_ordinary,
1356 st_shndx);
1358 else
1360 // Read the version information.
1362 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1364 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1365 v &= elfcpp::VERSYM_VERSION;
1367 // The Sun documentation says that V can be VER_NDX_LOCAL,
1368 // or VER_NDX_GLOBAL, or a version index. The meaning of
1369 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1370 // The old GNU linker will happily generate VER_NDX_LOCAL
1371 // for an undefined symbol. I don't know what the Sun
1372 // linker will generate.
1374 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1375 && st_shndx != elfcpp::SHN_UNDEF)
1377 // This symbol should not be visible outside the object.
1378 continue;
1381 // At this point we are definitely going to add this symbol.
1382 Stringpool::Key name_key;
1383 name = this->namepool_.add(name, true, &name_key);
1385 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1386 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1388 // This symbol does not have a version.
1389 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1390 false, *psym, st_shndx, is_ordinary,
1391 st_shndx);
1393 else
1395 if (v >= version_map->size())
1397 dynobj->error(_("versym for symbol %zu out of range: %u"),
1398 i, v);
1399 continue;
1402 const char* version = (*version_map)[v];
1403 if (version == NULL)
1405 dynobj->error(_("versym for symbol %zu has no name: %u"),
1406 i, v);
1407 continue;
1410 Stringpool::Key version_key;
1411 version = this->namepool_.add(version, true, &version_key);
1413 // If this is an absolute symbol, and the version name
1414 // and symbol name are the same, then this is the
1415 // version definition symbol. These symbols exist to
1416 // support using -u to pull in particular versions. We
1417 // do not want to record a version for them.
1418 if (st_shndx == elfcpp::SHN_ABS
1419 && !is_ordinary
1420 && name_key == version_key)
1421 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1422 false, *psym, st_shndx, is_ordinary,
1423 st_shndx);
1424 else
1426 const bool def = (!hidden
1427 && st_shndx != elfcpp::SHN_UNDEF);
1428 res = this->add_from_object(dynobj, name, name_key, version,
1429 version_key, def, *psym, st_shndx,
1430 is_ordinary, st_shndx);
1435 // Note that it is possible that RES was overridden by an
1436 // earlier object, in which case it can't be aliased here.
1437 if (st_shndx != elfcpp::SHN_UNDEF
1438 && is_ordinary
1439 && psym->get_st_type() == elfcpp::STT_OBJECT
1440 && res->source() == Symbol::FROM_OBJECT
1441 && res->object() == dynobj)
1442 object_symbols.push_back(res);
1444 if (sympointers != NULL)
1445 (*sympointers)[i] = res;
1448 this->record_weak_aliases(&object_symbols);
1451 // This is used to sort weak aliases. We sort them first by section
1452 // index, then by offset, then by weak ahead of strong.
1454 template<int size>
1455 class Weak_alias_sorter
1457 public:
1458 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1461 template<int size>
1462 bool
1463 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1464 const Sized_symbol<size>* s2) const
1466 bool is_ordinary;
1467 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1468 gold_assert(is_ordinary);
1469 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1470 gold_assert(is_ordinary);
1471 if (s1_shndx != s2_shndx)
1472 return s1_shndx < s2_shndx;
1474 if (s1->value() != s2->value())
1475 return s1->value() < s2->value();
1476 if (s1->binding() != s2->binding())
1478 if (s1->binding() == elfcpp::STB_WEAK)
1479 return true;
1480 if (s2->binding() == elfcpp::STB_WEAK)
1481 return false;
1483 return std::string(s1->name()) < std::string(s2->name());
1486 // SYMBOLS is a list of object symbols from a dynamic object. Look
1487 // for any weak aliases, and record them so that if we add the weak
1488 // alias to the dynamic symbol table, we also add the corresponding
1489 // strong symbol.
1491 template<int size>
1492 void
1493 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1495 // Sort the vector by section index, then by offset, then by weak
1496 // ahead of strong.
1497 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1499 // Walk through the vector. For each weak definition, record
1500 // aliases.
1501 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1502 symbols->begin();
1503 p != symbols->end();
1504 ++p)
1506 if ((*p)->binding() != elfcpp::STB_WEAK)
1507 continue;
1509 // Build a circular list of weak aliases. Each symbol points to
1510 // the next one in the circular list.
1512 Sized_symbol<size>* from_sym = *p;
1513 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1514 for (q = p + 1; q != symbols->end(); ++q)
1516 bool dummy;
1517 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1518 || (*q)->value() != from_sym->value())
1519 break;
1521 this->weak_aliases_[from_sym] = *q;
1522 from_sym->set_has_alias();
1523 from_sym = *q;
1526 if (from_sym != *p)
1528 this->weak_aliases_[from_sym] = *p;
1529 from_sym->set_has_alias();
1532 p = q - 1;
1536 // Create and return a specially defined symbol. If ONLY_IF_REF is
1537 // true, then only create the symbol if there is a reference to it.
1538 // If this does not return NULL, it sets *POLDSYM to the existing
1539 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1540 // resolve the newly created symbol to the old one. This
1541 // canonicalizes *PNAME and *PVERSION.
1543 template<int size, bool big_endian>
1544 Sized_symbol<size>*
1545 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1546 bool only_if_ref,
1547 Sized_symbol<size>** poldsym,
1548 bool *resolve_oldsym)
1550 *resolve_oldsym = false;
1552 // If the caller didn't give us a version, see if we get one from
1553 // the version script.
1554 std::string v;
1555 bool is_default_version = false;
1556 if (*pversion == NULL)
1558 if (this->version_script_.get_symbol_version(*pname, &v))
1560 if (!v.empty())
1561 *pversion = v.c_str();
1563 // If we get the version from a version script, then we are
1564 // also the default version.
1565 is_default_version = true;
1569 Symbol* oldsym;
1570 Sized_symbol<size>* sym;
1572 bool add_to_table = false;
1573 typename Symbol_table_type::iterator add_loc = this->table_.end();
1574 bool add_def_to_table = false;
1575 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1577 if (only_if_ref)
1579 oldsym = this->lookup(*pname, *pversion);
1580 if (oldsym == NULL && is_default_version)
1581 oldsym = this->lookup(*pname, NULL);
1582 if (oldsym == NULL || !oldsym->is_undefined())
1583 return NULL;
1585 *pname = oldsym->name();
1586 if (!is_default_version)
1587 *pversion = oldsym->version();
1589 else
1591 // Canonicalize NAME and VERSION.
1592 Stringpool::Key name_key;
1593 *pname = this->namepool_.add(*pname, true, &name_key);
1595 Stringpool::Key version_key = 0;
1596 if (*pversion != NULL)
1597 *pversion = this->namepool_.add(*pversion, true, &version_key);
1599 Symbol* const snull = NULL;
1600 std::pair<typename Symbol_table_type::iterator, bool> ins =
1601 this->table_.insert(std::make_pair(std::make_pair(name_key,
1602 version_key),
1603 snull));
1605 std::pair<typename Symbol_table_type::iterator, bool> insdef =
1606 std::make_pair(this->table_.end(), false);
1607 if (is_default_version)
1609 const Stringpool::Key vnull = 0;
1610 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
1611 vnull),
1612 snull));
1615 if (!ins.second)
1617 // We already have a symbol table entry for NAME/VERSION.
1618 oldsym = ins.first->second;
1619 gold_assert(oldsym != NULL);
1621 if (is_default_version)
1623 Sized_symbol<size>* soldsym =
1624 this->get_sized_symbol<size>(oldsym);
1625 this->define_default_version<size, big_endian>(soldsym,
1626 insdef.second,
1627 insdef.first);
1630 else
1632 // We haven't seen this symbol before.
1633 gold_assert(ins.first->second == NULL);
1635 add_to_table = true;
1636 add_loc = ins.first;
1638 if (is_default_version && !insdef.second)
1640 // We are adding NAME/VERSION, and it is the default
1641 // version. We already have an entry for NAME/NULL.
1642 oldsym = insdef.first->second;
1643 *resolve_oldsym = true;
1645 else
1647 oldsym = NULL;
1649 if (is_default_version)
1651 add_def_to_table = true;
1652 add_def_loc = insdef.first;
1658 const Target& target = parameters->target();
1659 if (!target.has_make_symbol())
1660 sym = new Sized_symbol<size>();
1661 else
1663 Sized_target<size, big_endian>* sized_target =
1664 parameters->sized_target<size, big_endian>();
1665 sym = sized_target->make_symbol();
1666 if (sym == NULL)
1667 return NULL;
1670 if (add_to_table)
1671 add_loc->second = sym;
1672 else
1673 gold_assert(oldsym != NULL);
1675 if (add_def_to_table)
1676 add_def_loc->second = sym;
1678 *poldsym = this->get_sized_symbol<size>(oldsym);
1680 return sym;
1683 // Define a symbol based on an Output_data.
1685 Symbol*
1686 Symbol_table::define_in_output_data(const char* name,
1687 const char* version,
1688 Output_data* od,
1689 uint64_t value,
1690 uint64_t symsize,
1691 elfcpp::STT type,
1692 elfcpp::STB binding,
1693 elfcpp::STV visibility,
1694 unsigned char nonvis,
1695 bool offset_is_from_end,
1696 bool only_if_ref)
1698 if (parameters->target().get_size() == 32)
1700 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1701 return this->do_define_in_output_data<32>(name, version, od,
1702 value, symsize, type, binding,
1703 visibility, nonvis,
1704 offset_is_from_end,
1705 only_if_ref);
1706 #else
1707 gold_unreachable();
1708 #endif
1710 else if (parameters->target().get_size() == 64)
1712 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1713 return this->do_define_in_output_data<64>(name, version, od,
1714 value, symsize, type, binding,
1715 visibility, nonvis,
1716 offset_is_from_end,
1717 only_if_ref);
1718 #else
1719 gold_unreachable();
1720 #endif
1722 else
1723 gold_unreachable();
1726 // Define a symbol in an Output_data, sized version.
1728 template<int size>
1729 Sized_symbol<size>*
1730 Symbol_table::do_define_in_output_data(
1731 const char* name,
1732 const char* version,
1733 Output_data* od,
1734 typename elfcpp::Elf_types<size>::Elf_Addr value,
1735 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1736 elfcpp::STT type,
1737 elfcpp::STB binding,
1738 elfcpp::STV visibility,
1739 unsigned char nonvis,
1740 bool offset_is_from_end,
1741 bool only_if_ref)
1743 Sized_symbol<size>* sym;
1744 Sized_symbol<size>* oldsym;
1745 bool resolve_oldsym;
1747 if (parameters->target().is_big_endian())
1749 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1750 sym = this->define_special_symbol<size, true>(&name, &version,
1751 only_if_ref, &oldsym,
1752 &resolve_oldsym);
1753 #else
1754 gold_unreachable();
1755 #endif
1757 else
1759 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1760 sym = this->define_special_symbol<size, false>(&name, &version,
1761 only_if_ref, &oldsym,
1762 &resolve_oldsym);
1763 #else
1764 gold_unreachable();
1765 #endif
1768 if (sym == NULL)
1769 return NULL;
1771 sym->init_output_data(name, version, od, value, symsize, type, binding,
1772 visibility, nonvis, offset_is_from_end);
1774 if (oldsym == NULL)
1776 if (binding == elfcpp::STB_LOCAL
1777 || this->version_script_.symbol_is_local(name))
1778 this->force_local(sym);
1779 else if (version != NULL)
1780 sym->set_is_default();
1781 return sym;
1784 if (Symbol_table::should_override_with_special(oldsym))
1785 this->override_with_special(oldsym, sym);
1787 if (resolve_oldsym)
1788 return sym;
1789 else
1791 delete sym;
1792 return oldsym;
1796 // Define a symbol based on an Output_segment.
1798 Symbol*
1799 Symbol_table::define_in_output_segment(const char* name,
1800 const char* version, Output_segment* os,
1801 uint64_t value,
1802 uint64_t symsize,
1803 elfcpp::STT type,
1804 elfcpp::STB binding,
1805 elfcpp::STV visibility,
1806 unsigned char nonvis,
1807 Symbol::Segment_offset_base offset_base,
1808 bool only_if_ref)
1810 if (parameters->target().get_size() == 32)
1812 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1813 return this->do_define_in_output_segment<32>(name, version, os,
1814 value, symsize, type,
1815 binding, visibility, nonvis,
1816 offset_base, only_if_ref);
1817 #else
1818 gold_unreachable();
1819 #endif
1821 else if (parameters->target().get_size() == 64)
1823 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1824 return this->do_define_in_output_segment<64>(name, version, os,
1825 value, symsize, type,
1826 binding, visibility, nonvis,
1827 offset_base, only_if_ref);
1828 #else
1829 gold_unreachable();
1830 #endif
1832 else
1833 gold_unreachable();
1836 // Define a symbol in an Output_segment, sized version.
1838 template<int size>
1839 Sized_symbol<size>*
1840 Symbol_table::do_define_in_output_segment(
1841 const char* name,
1842 const char* version,
1843 Output_segment* os,
1844 typename elfcpp::Elf_types<size>::Elf_Addr value,
1845 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1846 elfcpp::STT type,
1847 elfcpp::STB binding,
1848 elfcpp::STV visibility,
1849 unsigned char nonvis,
1850 Symbol::Segment_offset_base offset_base,
1851 bool only_if_ref)
1853 Sized_symbol<size>* sym;
1854 Sized_symbol<size>* oldsym;
1855 bool resolve_oldsym;
1857 if (parameters->target().is_big_endian())
1859 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1860 sym = this->define_special_symbol<size, true>(&name, &version,
1861 only_if_ref, &oldsym,
1862 &resolve_oldsym);
1863 #else
1864 gold_unreachable();
1865 #endif
1867 else
1869 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1870 sym = this->define_special_symbol<size, false>(&name, &version,
1871 only_if_ref, &oldsym,
1872 &resolve_oldsym);
1873 #else
1874 gold_unreachable();
1875 #endif
1878 if (sym == NULL)
1879 return NULL;
1881 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1882 visibility, nonvis, offset_base);
1884 if (oldsym == NULL)
1886 if (binding == elfcpp::STB_LOCAL
1887 || this->version_script_.symbol_is_local(name))
1888 this->force_local(sym);
1889 else if (version != NULL)
1890 sym->set_is_default();
1891 return sym;
1894 if (Symbol_table::should_override_with_special(oldsym))
1895 this->override_with_special(oldsym, sym);
1897 if (resolve_oldsym)
1898 return sym;
1899 else
1901 delete sym;
1902 return oldsym;
1906 // Define a special symbol with a constant value. It is a multiple
1907 // definition error if this symbol is already defined.
1909 Symbol*
1910 Symbol_table::define_as_constant(const char* name,
1911 const char* version,
1912 uint64_t value,
1913 uint64_t symsize,
1914 elfcpp::STT type,
1915 elfcpp::STB binding,
1916 elfcpp::STV visibility,
1917 unsigned char nonvis,
1918 bool only_if_ref,
1919 bool force_override)
1921 if (parameters->target().get_size() == 32)
1923 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1924 return this->do_define_as_constant<32>(name, version, value,
1925 symsize, type, binding,
1926 visibility, nonvis, only_if_ref,
1927 force_override);
1928 #else
1929 gold_unreachable();
1930 #endif
1932 else if (parameters->target().get_size() == 64)
1934 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1935 return this->do_define_as_constant<64>(name, version, value,
1936 symsize, type, binding,
1937 visibility, nonvis, only_if_ref,
1938 force_override);
1939 #else
1940 gold_unreachable();
1941 #endif
1943 else
1944 gold_unreachable();
1947 // Define a symbol as a constant, sized version.
1949 template<int size>
1950 Sized_symbol<size>*
1951 Symbol_table::do_define_as_constant(
1952 const char* name,
1953 const char* version,
1954 typename elfcpp::Elf_types<size>::Elf_Addr value,
1955 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1956 elfcpp::STT type,
1957 elfcpp::STB binding,
1958 elfcpp::STV visibility,
1959 unsigned char nonvis,
1960 bool only_if_ref,
1961 bool force_override)
1963 Sized_symbol<size>* sym;
1964 Sized_symbol<size>* oldsym;
1965 bool resolve_oldsym;
1967 if (parameters->target().is_big_endian())
1969 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1970 sym = this->define_special_symbol<size, true>(&name, &version,
1971 only_if_ref, &oldsym,
1972 &resolve_oldsym);
1973 #else
1974 gold_unreachable();
1975 #endif
1977 else
1979 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1980 sym = this->define_special_symbol<size, false>(&name, &version,
1981 only_if_ref, &oldsym,
1982 &resolve_oldsym);
1983 #else
1984 gold_unreachable();
1985 #endif
1988 if (sym == NULL)
1989 return NULL;
1991 sym->init_constant(name, version, value, symsize, type, binding, visibility,
1992 nonvis);
1994 if (oldsym == NULL)
1996 // Version symbols are absolute symbols with name == version.
1997 // We don't want to force them to be local.
1998 if ((version == NULL
1999 || name != version
2000 || value != 0)
2001 && (binding == elfcpp::STB_LOCAL
2002 || this->version_script_.symbol_is_local(name)))
2003 this->force_local(sym);
2004 else if (version != NULL
2005 && (name != version || value != 0))
2006 sym->set_is_default();
2007 return sym;
2010 if (force_override || Symbol_table::should_override_with_special(oldsym))
2011 this->override_with_special(oldsym, sym);
2013 if (resolve_oldsym)
2014 return sym;
2015 else
2017 delete sym;
2018 return oldsym;
2022 // Define a set of symbols in output sections.
2024 void
2025 Symbol_table::define_symbols(const Layout* layout, int count,
2026 const Define_symbol_in_section* p,
2027 bool only_if_ref)
2029 for (int i = 0; i < count; ++i, ++p)
2031 Output_section* os = layout->find_output_section(p->output_section);
2032 if (os != NULL)
2033 this->define_in_output_data(p->name, NULL, os, p->value,
2034 p->size, p->type, p->binding,
2035 p->visibility, p->nonvis,
2036 p->offset_is_from_end,
2037 only_if_ref || p->only_if_ref);
2038 else
2039 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2040 p->binding, p->visibility, p->nonvis,
2041 only_if_ref || p->only_if_ref,
2042 false);
2046 // Define a set of symbols in output segments.
2048 void
2049 Symbol_table::define_symbols(const Layout* layout, int count,
2050 const Define_symbol_in_segment* p,
2051 bool only_if_ref)
2053 for (int i = 0; i < count; ++i, ++p)
2055 Output_segment* os = layout->find_output_segment(p->segment_type,
2056 p->segment_flags_set,
2057 p->segment_flags_clear);
2058 if (os != NULL)
2059 this->define_in_output_segment(p->name, NULL, os, p->value,
2060 p->size, p->type, p->binding,
2061 p->visibility, p->nonvis,
2062 p->offset_base,
2063 only_if_ref || p->only_if_ref);
2064 else
2065 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2066 p->binding, p->visibility, p->nonvis,
2067 only_if_ref || p->only_if_ref,
2068 false);
2072 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2073 // symbol should be defined--typically a .dyn.bss section. VALUE is
2074 // the offset within POSD.
2076 template<int size>
2077 void
2078 Symbol_table::define_with_copy_reloc(
2079 Sized_symbol<size>* csym,
2080 Output_data* posd,
2081 typename elfcpp::Elf_types<size>::Elf_Addr value)
2083 gold_assert(csym->is_from_dynobj());
2084 gold_assert(!csym->is_copied_from_dynobj());
2085 Object* object = csym->object();
2086 gold_assert(object->is_dynamic());
2087 Dynobj* dynobj = static_cast<Dynobj*>(object);
2089 // Our copied variable has to override any variable in a shared
2090 // library.
2091 elfcpp::STB binding = csym->binding();
2092 if (binding == elfcpp::STB_WEAK)
2093 binding = elfcpp::STB_GLOBAL;
2095 this->define_in_output_data(csym->name(), csym->version(),
2096 posd, value, csym->symsize(),
2097 csym->type(), binding,
2098 csym->visibility(), csym->nonvis(),
2099 false, false);
2101 csym->set_is_copied_from_dynobj();
2102 csym->set_needs_dynsym_entry();
2104 this->copied_symbol_dynobjs_[csym] = dynobj;
2106 // We have now defined all aliases, but we have not entered them all
2107 // in the copied_symbol_dynobjs_ map.
2108 if (csym->has_alias())
2110 Symbol* sym = csym;
2111 while (true)
2113 sym = this->weak_aliases_[sym];
2114 if (sym == csym)
2115 break;
2116 gold_assert(sym->output_data() == posd);
2118 sym->set_is_copied_from_dynobj();
2119 this->copied_symbol_dynobjs_[sym] = dynobj;
2124 // SYM is defined using a COPY reloc. Return the dynamic object where
2125 // the original definition was found.
2127 Dynobj*
2128 Symbol_table::get_copy_source(const Symbol* sym) const
2130 gold_assert(sym->is_copied_from_dynobj());
2131 Copied_symbol_dynobjs::const_iterator p =
2132 this->copied_symbol_dynobjs_.find(sym);
2133 gold_assert(p != this->copied_symbol_dynobjs_.end());
2134 return p->second;
2137 // Add any undefined symbols named on the command line.
2139 void
2140 Symbol_table::add_undefined_symbols_from_command_line()
2142 if (parameters->options().any_undefined())
2144 if (parameters->target().get_size() == 32)
2146 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2147 this->do_add_undefined_symbols_from_command_line<32>();
2148 #else
2149 gold_unreachable();
2150 #endif
2152 else if (parameters->target().get_size() == 64)
2154 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2155 this->do_add_undefined_symbols_from_command_line<64>();
2156 #else
2157 gold_unreachable();
2158 #endif
2160 else
2161 gold_unreachable();
2165 template<int size>
2166 void
2167 Symbol_table::do_add_undefined_symbols_from_command_line()
2169 for (options::String_set::const_iterator p =
2170 parameters->options().undefined_begin();
2171 p != parameters->options().undefined_end();
2172 ++p)
2174 const char* name = p->c_str();
2176 if (this->lookup(name) != NULL)
2177 continue;
2179 const char* version = NULL;
2181 Sized_symbol<size>* sym;
2182 Sized_symbol<size>* oldsym;
2183 bool resolve_oldsym;
2184 if (parameters->target().is_big_endian())
2186 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2187 sym = this->define_special_symbol<size, true>(&name, &version,
2188 false, &oldsym,
2189 &resolve_oldsym);
2190 #else
2191 gold_unreachable();
2192 #endif
2194 else
2196 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2197 sym = this->define_special_symbol<size, false>(&name, &version,
2198 false, &oldsym,
2199 &resolve_oldsym);
2200 #else
2201 gold_unreachable();
2202 #endif
2205 gold_assert(oldsym == NULL);
2207 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2208 elfcpp::STV_DEFAULT, 0);
2209 ++this->saw_undefined_;
2213 // Set the dynamic symbol indexes. INDEX is the index of the first
2214 // global dynamic symbol. Pointers to the symbols are stored into the
2215 // vector SYMS. The names are added to DYNPOOL. This returns an
2216 // updated dynamic symbol index.
2218 unsigned int
2219 Symbol_table::set_dynsym_indexes(unsigned int index,
2220 std::vector<Symbol*>* syms,
2221 Stringpool* dynpool,
2222 Versions* versions)
2224 for (Symbol_table_type::iterator p = this->table_.begin();
2225 p != this->table_.end();
2226 ++p)
2228 Symbol* sym = p->second;
2230 // Note that SYM may already have a dynamic symbol index, since
2231 // some symbols appear more than once in the symbol table, with
2232 // and without a version.
2234 if (!sym->should_add_dynsym_entry())
2235 sym->set_dynsym_index(-1U);
2236 else if (!sym->has_dynsym_index())
2238 sym->set_dynsym_index(index);
2239 ++index;
2240 syms->push_back(sym);
2241 dynpool->add(sym->name(), false, NULL);
2243 // Record any version information.
2244 if (sym->version() != NULL)
2245 versions->record_version(this, dynpool, sym);
2249 // Finish up the versions. In some cases this may add new dynamic
2250 // symbols.
2251 index = versions->finalize(this, index, syms);
2253 return index;
2256 // Set the final values for all the symbols. The index of the first
2257 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2258 // file offset OFF. Add their names to POOL. Return the new file
2259 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2261 off_t
2262 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2263 size_t dyncount, Stringpool* pool,
2264 unsigned int *plocal_symcount)
2266 off_t ret;
2268 gold_assert(*plocal_symcount != 0);
2269 this->first_global_index_ = *plocal_symcount;
2271 this->dynamic_offset_ = dynoff;
2272 this->first_dynamic_global_index_ = dyn_global_index;
2273 this->dynamic_count_ = dyncount;
2275 if (parameters->target().get_size() == 32)
2277 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2278 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2279 #else
2280 gold_unreachable();
2281 #endif
2283 else if (parameters->target().get_size() == 64)
2285 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2286 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2287 #else
2288 gold_unreachable();
2289 #endif
2291 else
2292 gold_unreachable();
2294 // Now that we have the final symbol table, we can reliably note
2295 // which symbols should get warnings.
2296 this->warnings_.note_warnings(this);
2298 return ret;
2301 // SYM is going into the symbol table at *PINDEX. Add the name to
2302 // POOL, update *PINDEX and *POFF.
2304 template<int size>
2305 void
2306 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2307 unsigned int* pindex, off_t* poff)
2309 sym->set_symtab_index(*pindex);
2310 pool->add(sym->name(), false, NULL);
2311 ++*pindex;
2312 *poff += elfcpp::Elf_sizes<size>::sym_size;
2315 // Set the final value for all the symbols. This is called after
2316 // Layout::finalize, so all the output sections have their final
2317 // address.
2319 template<int size>
2320 off_t
2321 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2322 unsigned int* plocal_symcount)
2324 off = align_address(off, size >> 3);
2325 this->offset_ = off;
2327 unsigned int index = *plocal_symcount;
2328 const unsigned int orig_index = index;
2330 // First do all the symbols which have been forced to be local, as
2331 // they must appear before all global symbols.
2332 for (Forced_locals::iterator p = this->forced_locals_.begin();
2333 p != this->forced_locals_.end();
2334 ++p)
2336 Symbol* sym = *p;
2337 gold_assert(sym->is_forced_local());
2338 if (this->sized_finalize_symbol<size>(sym))
2340 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2341 ++*plocal_symcount;
2345 // Now do all the remaining symbols.
2346 for (Symbol_table_type::iterator p = this->table_.begin();
2347 p != this->table_.end();
2348 ++p)
2350 Symbol* sym = p->second;
2351 if (this->sized_finalize_symbol<size>(sym))
2352 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2355 this->output_count_ = index - orig_index;
2357 return off;
2360 // Compute the final value of SYM and store status in location PSTATUS.
2361 // During relaxation, this may be called multiple times for a symbol to
2362 // compute its would-be final value in each relaxation pass.
2364 template<int size>
2365 typename Sized_symbol<size>::Value_type
2366 Symbol_table::compute_final_value(
2367 const Sized_symbol<size>* sym,
2368 Compute_final_value_status* pstatus) const
2370 typedef typename Sized_symbol<size>::Value_type Value_type;
2371 Value_type value;
2373 switch (sym->source())
2375 case Symbol::FROM_OBJECT:
2377 bool is_ordinary;
2378 unsigned int shndx = sym->shndx(&is_ordinary);
2380 if (!is_ordinary
2381 && shndx != elfcpp::SHN_ABS
2382 && !Symbol::is_common_shndx(shndx))
2384 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2385 return 0;
2388 Object* symobj = sym->object();
2389 if (symobj->is_dynamic())
2391 value = 0;
2392 shndx = elfcpp::SHN_UNDEF;
2394 else if (symobj->pluginobj() != NULL)
2396 value = 0;
2397 shndx = elfcpp::SHN_UNDEF;
2399 else if (shndx == elfcpp::SHN_UNDEF)
2400 value = 0;
2401 else if (!is_ordinary
2402 && (shndx == elfcpp::SHN_ABS
2403 || Symbol::is_common_shndx(shndx)))
2404 value = sym->value();
2405 else
2407 Relobj* relobj = static_cast<Relobj*>(symobj);
2408 Output_section* os = relobj->output_section(shndx);
2409 uint64_t secoff64 = relobj->output_section_offset(shndx);
2411 if (this->is_section_folded(relobj, shndx))
2413 gold_assert(os == NULL);
2414 // Get the os of the section it is folded onto.
2415 Section_id folded = this->icf_->get_folded_section(relobj,
2416 shndx);
2417 gold_assert(folded.first != NULL);
2418 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2419 os = folded_obj->output_section(folded.second);
2420 gold_assert(os != NULL);
2421 secoff64 = folded_obj->output_section_offset(folded.second);
2424 if (os == NULL)
2426 bool static_or_reloc = (parameters->doing_static_link() ||
2427 parameters->options().relocatable());
2428 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2430 *pstatus = CFVS_NO_OUTPUT_SECTION;
2431 return 0;
2434 if (secoff64 == -1ULL)
2436 // The section needs special handling (e.g., a merge section).
2438 value = os->output_address(relobj, shndx, sym->value());
2440 else
2442 Value_type secoff =
2443 convert_types<Value_type, uint64_t>(secoff64);
2444 if (sym->type() == elfcpp::STT_TLS)
2445 value = sym->value() + os->tls_offset() + secoff;
2446 else
2447 value = sym->value() + os->address() + secoff;
2451 break;
2453 case Symbol::IN_OUTPUT_DATA:
2455 Output_data* od = sym->output_data();
2456 value = sym->value();
2457 if (sym->type() != elfcpp::STT_TLS)
2458 value += od->address();
2459 else
2461 Output_section* os = od->output_section();
2462 gold_assert(os != NULL);
2463 value += os->tls_offset() + (od->address() - os->address());
2465 if (sym->offset_is_from_end())
2466 value += od->data_size();
2468 break;
2470 case Symbol::IN_OUTPUT_SEGMENT:
2472 Output_segment* os = sym->output_segment();
2473 value = sym->value();
2474 if (sym->type() != elfcpp::STT_TLS)
2475 value += os->vaddr();
2476 switch (sym->offset_base())
2478 case Symbol::SEGMENT_START:
2479 break;
2480 case Symbol::SEGMENT_END:
2481 value += os->memsz();
2482 break;
2483 case Symbol::SEGMENT_BSS:
2484 value += os->filesz();
2485 break;
2486 default:
2487 gold_unreachable();
2490 break;
2492 case Symbol::IS_CONSTANT:
2493 value = sym->value();
2494 break;
2496 case Symbol::IS_UNDEFINED:
2497 value = 0;
2498 break;
2500 default:
2501 gold_unreachable();
2504 *pstatus = CFVS_OK;
2505 return value;
2508 // Finalize the symbol SYM. This returns true if the symbol should be
2509 // added to the symbol table, false otherwise.
2511 template<int size>
2512 bool
2513 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2515 typedef typename Sized_symbol<size>::Value_type Value_type;
2517 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2519 // The default version of a symbol may appear twice in the symbol
2520 // table. We only need to finalize it once.
2521 if (sym->has_symtab_index())
2522 return false;
2524 if (!sym->in_reg())
2526 gold_assert(!sym->has_symtab_index());
2527 sym->set_symtab_index(-1U);
2528 gold_assert(sym->dynsym_index() == -1U);
2529 return false;
2532 // Compute final symbol value.
2533 Compute_final_value_status status;
2534 Value_type value = this->compute_final_value(sym, &status);
2536 switch (status)
2538 case CFVS_OK:
2539 break;
2540 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2542 bool is_ordinary;
2543 unsigned int shndx = sym->shndx(&is_ordinary);
2544 gold_error(_("%s: unsupported symbol section 0x%x"),
2545 sym->demangled_name().c_str(), shndx);
2547 break;
2548 case CFVS_NO_OUTPUT_SECTION:
2549 sym->set_symtab_index(-1U);
2550 return false;
2551 default:
2552 gold_unreachable();
2555 sym->set_value(value);
2557 if (parameters->options().strip_all()
2558 || !parameters->options().should_retain_symbol(sym->name()))
2560 sym->set_symtab_index(-1U);
2561 return false;
2564 return true;
2567 // Write out the global symbols.
2569 void
2570 Symbol_table::write_globals(const Stringpool* sympool,
2571 const Stringpool* dynpool,
2572 Output_symtab_xindex* symtab_xindex,
2573 Output_symtab_xindex* dynsym_xindex,
2574 Output_file* of) const
2576 switch (parameters->size_and_endianness())
2578 #ifdef HAVE_TARGET_32_LITTLE
2579 case Parameters::TARGET_32_LITTLE:
2580 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2581 dynsym_xindex, of);
2582 break;
2583 #endif
2584 #ifdef HAVE_TARGET_32_BIG
2585 case Parameters::TARGET_32_BIG:
2586 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2587 dynsym_xindex, of);
2588 break;
2589 #endif
2590 #ifdef HAVE_TARGET_64_LITTLE
2591 case Parameters::TARGET_64_LITTLE:
2592 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2593 dynsym_xindex, of);
2594 break;
2595 #endif
2596 #ifdef HAVE_TARGET_64_BIG
2597 case Parameters::TARGET_64_BIG:
2598 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2599 dynsym_xindex, of);
2600 break;
2601 #endif
2602 default:
2603 gold_unreachable();
2607 // Write out the global symbols.
2609 template<int size, bool big_endian>
2610 void
2611 Symbol_table::sized_write_globals(const Stringpool* sympool,
2612 const Stringpool* dynpool,
2613 Output_symtab_xindex* symtab_xindex,
2614 Output_symtab_xindex* dynsym_xindex,
2615 Output_file* of) const
2617 const Target& target = parameters->target();
2619 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2621 const unsigned int output_count = this->output_count_;
2622 const section_size_type oview_size = output_count * sym_size;
2623 const unsigned int first_global_index = this->first_global_index_;
2624 unsigned char* psyms;
2625 if (this->offset_ == 0 || output_count == 0)
2626 psyms = NULL;
2627 else
2628 psyms = of->get_output_view(this->offset_, oview_size);
2630 const unsigned int dynamic_count = this->dynamic_count_;
2631 const section_size_type dynamic_size = dynamic_count * sym_size;
2632 const unsigned int first_dynamic_global_index =
2633 this->first_dynamic_global_index_;
2634 unsigned char* dynamic_view;
2635 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2636 dynamic_view = NULL;
2637 else
2638 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2640 for (Symbol_table_type::const_iterator p = this->table_.begin();
2641 p != this->table_.end();
2642 ++p)
2644 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2646 // Possibly warn about unresolved symbols in shared libraries.
2647 this->warn_about_undefined_dynobj_symbol(sym);
2649 unsigned int sym_index = sym->symtab_index();
2650 unsigned int dynsym_index;
2651 if (dynamic_view == NULL)
2652 dynsym_index = -1U;
2653 else
2654 dynsym_index = sym->dynsym_index();
2656 if (sym_index == -1U && dynsym_index == -1U)
2658 // This symbol is not included in the output file.
2659 continue;
2662 unsigned int shndx;
2663 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2664 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2665 switch (sym->source())
2667 case Symbol::FROM_OBJECT:
2669 bool is_ordinary;
2670 unsigned int in_shndx = sym->shndx(&is_ordinary);
2672 if (!is_ordinary
2673 && in_shndx != elfcpp::SHN_ABS
2674 && !Symbol::is_common_shndx(in_shndx))
2676 gold_error(_("%s: unsupported symbol section 0x%x"),
2677 sym->demangled_name().c_str(), in_shndx);
2678 shndx = in_shndx;
2680 else
2682 Object* symobj = sym->object();
2683 if (symobj->is_dynamic())
2685 if (sym->needs_dynsym_value())
2686 dynsym_value = target.dynsym_value(sym);
2687 shndx = elfcpp::SHN_UNDEF;
2689 else if (symobj->pluginobj() != NULL)
2690 shndx = elfcpp::SHN_UNDEF;
2691 else if (in_shndx == elfcpp::SHN_UNDEF
2692 || (!is_ordinary
2693 && (in_shndx == elfcpp::SHN_ABS
2694 || Symbol::is_common_shndx(in_shndx))))
2695 shndx = in_shndx;
2696 else
2698 Relobj* relobj = static_cast<Relobj*>(symobj);
2699 Output_section* os = relobj->output_section(in_shndx);
2700 if (this->is_section_folded(relobj, in_shndx))
2702 // This global symbol must be written out even though
2703 // it is folded.
2704 // Get the os of the section it is folded onto.
2705 Section_id folded =
2706 this->icf_->get_folded_section(relobj, in_shndx);
2707 gold_assert(folded.first !=NULL);
2708 Relobj* folded_obj =
2709 reinterpret_cast<Relobj*>(folded.first);
2710 os = folded_obj->output_section(folded.second);
2711 gold_assert(os != NULL);
2713 gold_assert(os != NULL);
2714 shndx = os->out_shndx();
2716 if (shndx >= elfcpp::SHN_LORESERVE)
2718 if (sym_index != -1U)
2719 symtab_xindex->add(sym_index, shndx);
2720 if (dynsym_index != -1U)
2721 dynsym_xindex->add(dynsym_index, shndx);
2722 shndx = elfcpp::SHN_XINDEX;
2725 // In object files symbol values are section
2726 // relative.
2727 if (parameters->options().relocatable())
2728 sym_value -= os->address();
2732 break;
2734 case Symbol::IN_OUTPUT_DATA:
2735 shndx = sym->output_data()->out_shndx();
2736 if (shndx >= elfcpp::SHN_LORESERVE)
2738 if (sym_index != -1U)
2739 symtab_xindex->add(sym_index, shndx);
2740 if (dynsym_index != -1U)
2741 dynsym_xindex->add(dynsym_index, shndx);
2742 shndx = elfcpp::SHN_XINDEX;
2744 break;
2746 case Symbol::IN_OUTPUT_SEGMENT:
2747 shndx = elfcpp::SHN_ABS;
2748 break;
2750 case Symbol::IS_CONSTANT:
2751 shndx = elfcpp::SHN_ABS;
2752 break;
2754 case Symbol::IS_UNDEFINED:
2755 shndx = elfcpp::SHN_UNDEF;
2756 break;
2758 default:
2759 gold_unreachable();
2762 if (sym_index != -1U)
2764 sym_index -= first_global_index;
2765 gold_assert(sym_index < output_count);
2766 unsigned char* ps = psyms + (sym_index * sym_size);
2767 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2768 sympool, ps);
2771 if (dynsym_index != -1U)
2773 dynsym_index -= first_dynamic_global_index;
2774 gold_assert(dynsym_index < dynamic_count);
2775 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2776 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2777 dynpool, pd);
2781 of->write_output_view(this->offset_, oview_size, psyms);
2782 if (dynamic_view != NULL)
2783 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2786 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2787 // strtab holding the name.
2789 template<int size, bool big_endian>
2790 void
2791 Symbol_table::sized_write_symbol(
2792 Sized_symbol<size>* sym,
2793 typename elfcpp::Elf_types<size>::Elf_Addr value,
2794 unsigned int shndx,
2795 const Stringpool* pool,
2796 unsigned char* p) const
2798 elfcpp::Sym_write<size, big_endian> osym(p);
2799 osym.put_st_name(pool->get_offset(sym->name()));
2800 osym.put_st_value(value);
2801 // Use a symbol size of zero for undefined symbols from shared libraries.
2802 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2803 osym.put_st_size(0);
2804 else
2805 osym.put_st_size(sym->symsize());
2806 // A version script may have overridden the default binding.
2807 if (sym->is_forced_local())
2808 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2809 else
2810 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2811 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2812 osym.put_st_shndx(shndx);
2815 // Check for unresolved symbols in shared libraries. This is
2816 // controlled by the --allow-shlib-undefined option.
2818 // We only warn about libraries for which we have seen all the
2819 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2820 // which were not seen in this link. If we didn't see a DT_NEEDED
2821 // entry, we aren't going to be able to reliably report whether the
2822 // symbol is undefined.
2824 // We also don't warn about libraries found in a system library
2825 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2826 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2827 // can have undefined references satisfied by ld-linux.so.
2829 inline void
2830 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2832 bool dummy;
2833 if (sym->source() == Symbol::FROM_OBJECT
2834 && sym->object()->is_dynamic()
2835 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2836 && sym->binding() != elfcpp::STB_WEAK
2837 && !parameters->options().allow_shlib_undefined()
2838 && !parameters->target().is_defined_by_abi(sym)
2839 && !sym->object()->is_in_system_directory())
2841 // A very ugly cast.
2842 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2843 if (!dynobj->has_unknown_needed_entries())
2844 gold_undefined_symbol(sym);
2848 // Write out a section symbol. Return the update offset.
2850 void
2851 Symbol_table::write_section_symbol(const Output_section *os,
2852 Output_symtab_xindex* symtab_xindex,
2853 Output_file* of,
2854 off_t offset) const
2856 switch (parameters->size_and_endianness())
2858 #ifdef HAVE_TARGET_32_LITTLE
2859 case Parameters::TARGET_32_LITTLE:
2860 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2861 offset);
2862 break;
2863 #endif
2864 #ifdef HAVE_TARGET_32_BIG
2865 case Parameters::TARGET_32_BIG:
2866 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2867 offset);
2868 break;
2869 #endif
2870 #ifdef HAVE_TARGET_64_LITTLE
2871 case Parameters::TARGET_64_LITTLE:
2872 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2873 offset);
2874 break;
2875 #endif
2876 #ifdef HAVE_TARGET_64_BIG
2877 case Parameters::TARGET_64_BIG:
2878 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2879 offset);
2880 break;
2881 #endif
2882 default:
2883 gold_unreachable();
2887 // Write out a section symbol, specialized for size and endianness.
2889 template<int size, bool big_endian>
2890 void
2891 Symbol_table::sized_write_section_symbol(const Output_section* os,
2892 Output_symtab_xindex* symtab_xindex,
2893 Output_file* of,
2894 off_t offset) const
2896 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2898 unsigned char* pov = of->get_output_view(offset, sym_size);
2900 elfcpp::Sym_write<size, big_endian> osym(pov);
2901 osym.put_st_name(0);
2902 if (parameters->options().relocatable())
2903 osym.put_st_value(0);
2904 else
2905 osym.put_st_value(os->address());
2906 osym.put_st_size(0);
2907 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2908 elfcpp::STT_SECTION));
2909 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2911 unsigned int shndx = os->out_shndx();
2912 if (shndx >= elfcpp::SHN_LORESERVE)
2914 symtab_xindex->add(os->symtab_index(), shndx);
2915 shndx = elfcpp::SHN_XINDEX;
2917 osym.put_st_shndx(shndx);
2919 of->write_output_view(offset, sym_size, pov);
2922 // Print statistical information to stderr. This is used for --stats.
2924 void
2925 Symbol_table::print_stats() const
2927 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2928 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2929 program_name, this->table_.size(), this->table_.bucket_count());
2930 #else
2931 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2932 program_name, this->table_.size());
2933 #endif
2934 this->namepool_.print_stats("symbol table stringpool");
2937 // We check for ODR violations by looking for symbols with the same
2938 // name for which the debugging information reports that they were
2939 // defined in different source locations. When comparing the source
2940 // location, we consider instances with the same base filename and
2941 // line number to be the same. This is because different object
2942 // files/shared libraries can include the same header file using
2943 // different paths, and we don't want to report an ODR violation in
2944 // that case.
2946 // This struct is used to compare line information, as returned by
2947 // Dwarf_line_info::one_addr2line. It implements a < comparison
2948 // operator used with std::set.
2950 struct Odr_violation_compare
2952 bool
2953 operator()(const std::string& s1, const std::string& s2) const
2955 std::string::size_type pos1 = s1.rfind('/');
2956 std::string::size_type pos2 = s2.rfind('/');
2957 if (pos1 == std::string::npos
2958 || pos2 == std::string::npos)
2959 return s1 < s2;
2960 return s1.compare(pos1, std::string::npos,
2961 s2, pos2, std::string::npos) < 0;
2965 // Check candidate_odr_violations_ to find symbols with the same name
2966 // but apparently different definitions (different source-file/line-no).
2968 void
2969 Symbol_table::detect_odr_violations(const Task* task,
2970 const char* output_file_name) const
2972 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2973 it != candidate_odr_violations_.end();
2974 ++it)
2976 const char* symbol_name = it->first;
2977 // We use a sorted set so the output is deterministic.
2978 std::set<std::string, Odr_violation_compare> line_nums;
2980 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2981 locs = it->second.begin();
2982 locs != it->second.end();
2983 ++locs)
2985 // We need to lock the object in order to read it. This
2986 // means that we have to run in a singleton Task. If we
2987 // want to run this in a general Task for better
2988 // performance, we will need one Task for object, plus
2989 // appropriate locking to ensure that we don't conflict with
2990 // other uses of the object. Also note, one_addr2line is not
2991 // currently thread-safe.
2992 Task_lock_obj<Object> tl(task, locs->object);
2993 // 16 is the size of the object-cache that one_addr2line should use.
2994 std::string lineno = Dwarf_line_info::one_addr2line(
2995 locs->object, locs->shndx, locs->offset, 16);
2996 if (!lineno.empty())
2997 line_nums.insert(lineno);
3000 if (line_nums.size() > 1)
3002 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
3003 "places (possible ODR violation):"),
3004 output_file_name, demangle(symbol_name).c_str());
3005 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
3006 it2 != line_nums.end();
3007 ++it2)
3008 fprintf(stderr, " %s\n", it2->c_str());
3011 // We only call one_addr2line() in this function, so we can clear its cache.
3012 Dwarf_line_info::clear_addr2line_cache();
3015 // Warnings functions.
3017 // Add a new warning.
3019 void
3020 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3021 const std::string& warning)
3023 name = symtab->canonicalize_name(name);
3024 this->warnings_[name].set(obj, warning);
3027 // Look through the warnings and mark the symbols for which we should
3028 // warn. This is called during Layout::finalize when we know the
3029 // sources for all the symbols.
3031 void
3032 Warnings::note_warnings(Symbol_table* symtab)
3034 for (Warning_table::iterator p = this->warnings_.begin();
3035 p != this->warnings_.end();
3036 ++p)
3038 Symbol* sym = symtab->lookup(p->first, NULL);
3039 if (sym != NULL
3040 && sym->source() == Symbol::FROM_OBJECT
3041 && sym->object() == p->second.object)
3042 sym->set_has_warning();
3046 // Issue a warning. This is called when we see a relocation against a
3047 // symbol for which has a warning.
3049 template<int size, bool big_endian>
3050 void
3051 Warnings::issue_warning(const Symbol* sym,
3052 const Relocate_info<size, big_endian>* relinfo,
3053 size_t relnum, off_t reloffset) const
3055 gold_assert(sym->has_warning());
3056 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3057 gold_assert(p != this->warnings_.end());
3058 gold_warning_at_location(relinfo, relnum, reloffset,
3059 "%s", p->second.text.c_str());
3062 // Instantiate the templates we need. We could use the configure
3063 // script to restrict this to only the ones needed for implemented
3064 // targets.
3066 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3067 template
3068 void
3069 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3070 #endif
3072 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3073 template
3074 void
3075 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3076 #endif
3078 #ifdef HAVE_TARGET_32_LITTLE
3079 template
3080 void
3081 Symbol_table::add_from_relobj<32, false>(
3082 Sized_relobj<32, false>* relobj,
3083 const unsigned char* syms,
3084 size_t count,
3085 size_t symndx_offset,
3086 const char* sym_names,
3087 size_t sym_name_size,
3088 Sized_relobj<32, false>::Symbols* sympointers,
3089 size_t* defined);
3090 #endif
3092 #ifdef HAVE_TARGET_32_BIG
3093 template
3094 void
3095 Symbol_table::add_from_relobj<32, true>(
3096 Sized_relobj<32, true>* relobj,
3097 const unsigned char* syms,
3098 size_t count,
3099 size_t symndx_offset,
3100 const char* sym_names,
3101 size_t sym_name_size,
3102 Sized_relobj<32, true>::Symbols* sympointers,
3103 size_t* defined);
3104 #endif
3106 #ifdef HAVE_TARGET_64_LITTLE
3107 template
3108 void
3109 Symbol_table::add_from_relobj<64, false>(
3110 Sized_relobj<64, false>* relobj,
3111 const unsigned char* syms,
3112 size_t count,
3113 size_t symndx_offset,
3114 const char* sym_names,
3115 size_t sym_name_size,
3116 Sized_relobj<64, false>::Symbols* sympointers,
3117 size_t* defined);
3118 #endif
3120 #ifdef HAVE_TARGET_64_BIG
3121 template
3122 void
3123 Symbol_table::add_from_relobj<64, true>(
3124 Sized_relobj<64, true>* relobj,
3125 const unsigned char* syms,
3126 size_t count,
3127 size_t symndx_offset,
3128 const char* sym_names,
3129 size_t sym_name_size,
3130 Sized_relobj<64, true>::Symbols* sympointers,
3131 size_t* defined);
3132 #endif
3134 #ifdef HAVE_TARGET_32_LITTLE
3135 template
3136 Symbol*
3137 Symbol_table::add_from_pluginobj<32, false>(
3138 Sized_pluginobj<32, false>* obj,
3139 const char* name,
3140 const char* ver,
3141 elfcpp::Sym<32, false>* sym);
3142 #endif
3144 #ifdef HAVE_TARGET_32_BIG
3145 template
3146 Symbol*
3147 Symbol_table::add_from_pluginobj<32, true>(
3148 Sized_pluginobj<32, true>* obj,
3149 const char* name,
3150 const char* ver,
3151 elfcpp::Sym<32, true>* sym);
3152 #endif
3154 #ifdef HAVE_TARGET_64_LITTLE
3155 template
3156 Symbol*
3157 Symbol_table::add_from_pluginobj<64, false>(
3158 Sized_pluginobj<64, false>* obj,
3159 const char* name,
3160 const char* ver,
3161 elfcpp::Sym<64, false>* sym);
3162 #endif
3164 #ifdef HAVE_TARGET_64_BIG
3165 template
3166 Symbol*
3167 Symbol_table::add_from_pluginobj<64, true>(
3168 Sized_pluginobj<64, true>* obj,
3169 const char* name,
3170 const char* ver,
3171 elfcpp::Sym<64, true>* sym);
3172 #endif
3174 #ifdef HAVE_TARGET_32_LITTLE
3175 template
3176 void
3177 Symbol_table::add_from_dynobj<32, false>(
3178 Sized_dynobj<32, false>* dynobj,
3179 const unsigned char* syms,
3180 size_t count,
3181 const char* sym_names,
3182 size_t sym_name_size,
3183 const unsigned char* versym,
3184 size_t versym_size,
3185 const std::vector<const char*>* version_map,
3186 Sized_relobj<32, false>::Symbols* sympointers,
3187 size_t* defined);
3188 #endif
3190 #ifdef HAVE_TARGET_32_BIG
3191 template
3192 void
3193 Symbol_table::add_from_dynobj<32, true>(
3194 Sized_dynobj<32, true>* dynobj,
3195 const unsigned char* syms,
3196 size_t count,
3197 const char* sym_names,
3198 size_t sym_name_size,
3199 const unsigned char* versym,
3200 size_t versym_size,
3201 const std::vector<const char*>* version_map,
3202 Sized_relobj<32, true>::Symbols* sympointers,
3203 size_t* defined);
3204 #endif
3206 #ifdef HAVE_TARGET_64_LITTLE
3207 template
3208 void
3209 Symbol_table::add_from_dynobj<64, false>(
3210 Sized_dynobj<64, false>* dynobj,
3211 const unsigned char* syms,
3212 size_t count,
3213 const char* sym_names,
3214 size_t sym_name_size,
3215 const unsigned char* versym,
3216 size_t versym_size,
3217 const std::vector<const char*>* version_map,
3218 Sized_relobj<64, false>::Symbols* sympointers,
3219 size_t* defined);
3220 #endif
3222 #ifdef HAVE_TARGET_64_BIG
3223 template
3224 void
3225 Symbol_table::add_from_dynobj<64, true>(
3226 Sized_dynobj<64, true>* dynobj,
3227 const unsigned char* syms,
3228 size_t count,
3229 const char* sym_names,
3230 size_t sym_name_size,
3231 const unsigned char* versym,
3232 size_t versym_size,
3233 const std::vector<const char*>* version_map,
3234 Sized_relobj<64, true>::Symbols* sympointers,
3235 size_t* defined);
3236 #endif
3238 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3239 template
3240 void
3241 Symbol_table::define_with_copy_reloc<32>(
3242 Sized_symbol<32>* sym,
3243 Output_data* posd,
3244 elfcpp::Elf_types<32>::Elf_Addr value);
3245 #endif
3247 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3248 template
3249 void
3250 Symbol_table::define_with_copy_reloc<64>(
3251 Sized_symbol<64>* sym,
3252 Output_data* posd,
3253 elfcpp::Elf_types<64>::Elf_Addr value);
3254 #endif
3256 #ifdef HAVE_TARGET_32_LITTLE
3257 template
3258 void
3259 Warnings::issue_warning<32, false>(const Symbol* sym,
3260 const Relocate_info<32, false>* relinfo,
3261 size_t relnum, off_t reloffset) const;
3262 #endif
3264 #ifdef HAVE_TARGET_32_BIG
3265 template
3266 void
3267 Warnings::issue_warning<32, true>(const Symbol* sym,
3268 const Relocate_info<32, true>* relinfo,
3269 size_t relnum, off_t reloffset) const;
3270 #endif
3272 #ifdef HAVE_TARGET_64_LITTLE
3273 template
3274 void
3275 Warnings::issue_warning<64, false>(const Symbol* sym,
3276 const Relocate_info<64, false>* relinfo,
3277 size_t relnum, off_t reloffset) const;
3278 #endif
3280 #ifdef HAVE_TARGET_64_BIG
3281 template
3282 void
3283 Warnings::issue_warning<64, true>(const Symbol* sym,
3284 const Relocate_info<64, true>* relinfo,
3285 size_t relnum, off_t reloffset) const;
3286 #endif
3288 } // End namespace gold.