1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
41 #include "demangle.h" // needed for --dynamic-list-cpp-new
49 // Initialize fields in Symbol. This initializes everything except u_
53 Symbol::init_fields(const char* name
, const char* version
,
54 elfcpp::STT type
, elfcpp::STB binding
,
55 elfcpp::STV visibility
, unsigned char nonvis
)
58 this->version_
= version
;
59 this->symtab_index_
= 0;
60 this->dynsym_index_
= 0;
61 this->got_offsets_
.init();
62 this->plt_offset_
= 0;
64 this->binding_
= binding
;
65 this->visibility_
= visibility
;
66 this->nonvis_
= nonvis
;
67 this->is_target_special_
= false;
68 this->is_def_
= false;
69 this->is_forwarder_
= false;
70 this->has_alias_
= false;
71 this->needs_dynsym_entry_
= false;
72 this->in_reg_
= false;
73 this->in_dyn_
= false;
74 this->has_plt_offset_
= false;
75 this->has_warning_
= false;
76 this->is_copied_from_dynobj_
= false;
77 this->is_forced_local_
= false;
78 this->is_ordinary_shndx_
= false;
79 this->in_real_elf_
= false;
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
86 demangle(const char* name
)
88 if (!parameters
->options().do_demangle())
91 // cplus_demangle allocates memory for the result it returns,
92 // and returns NULL if the name is already demangled.
93 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
94 if (demangled_name
== NULL
)
97 std::string
retval(demangled_name
);
103 Symbol::demangled_name() const
105 return demangle(this->name());
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
110 template<int size
, bool big_endian
>
112 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
113 const elfcpp::Sym
<size
, big_endian
>& sym
,
114 unsigned int st_shndx
, bool is_ordinary
)
116 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
117 sym
.get_st_visibility(), sym
.get_st_nonvis());
118 this->u_
.from_object
.object
= object
;
119 this->u_
.from_object
.shndx
= st_shndx
;
120 this->is_ordinary_shndx_
= is_ordinary
;
121 this->source_
= FROM_OBJECT
;
122 this->in_reg_
= !object
->is_dynamic();
123 this->in_dyn_
= object
->is_dynamic();
124 this->in_real_elf_
= object
->pluginobj() == NULL
;
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
131 Symbol::init_base_output_data(const char* name
, const char* version
,
132 Output_data
* od
, elfcpp::STT type
,
133 elfcpp::STB binding
, elfcpp::STV visibility
,
134 unsigned char nonvis
, bool offset_is_from_end
)
136 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
137 this->u_
.in_output_data
.output_data
= od
;
138 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
139 this->source_
= IN_OUTPUT_DATA
;
140 this->in_reg_
= true;
141 this->in_real_elf_
= true;
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
148 Symbol::init_base_output_segment(const char* name
, const char* version
,
149 Output_segment
* os
, elfcpp::STT type
,
150 elfcpp::STB binding
, elfcpp::STV visibility
,
151 unsigned char nonvis
,
152 Segment_offset_base offset_base
)
154 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
155 this->u_
.in_output_segment
.output_segment
= os
;
156 this->u_
.in_output_segment
.offset_base
= offset_base
;
157 this->source_
= IN_OUTPUT_SEGMENT
;
158 this->in_reg_
= true;
159 this->in_real_elf_
= true;
162 // Initialize the fields in the base class Symbol for a symbol defined
166 Symbol::init_base_constant(const char* name
, const char* version
,
167 elfcpp::STT type
, elfcpp::STB binding
,
168 elfcpp::STV visibility
, unsigned char nonvis
)
170 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
171 this->source_
= IS_CONSTANT
;
172 this->in_reg_
= true;
173 this->in_real_elf_
= true;
176 // Initialize the fields in the base class Symbol for an undefined
180 Symbol::init_base_undefined(const char* name
, const char* version
,
181 elfcpp::STT type
, elfcpp::STB binding
,
182 elfcpp::STV visibility
, unsigned char nonvis
)
184 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
185 this->dynsym_index_
= -1U;
186 this->source_
= IS_UNDEFINED
;
187 this->in_reg_
= true;
188 this->in_real_elf_
= true;
191 // Allocate a common symbol in the base.
194 Symbol::allocate_base_common(Output_data
* od
)
196 gold_assert(this->is_common());
197 this->source_
= IN_OUTPUT_DATA
;
198 this->u_
.in_output_data
.output_data
= od
;
199 this->u_
.in_output_data
.offset_is_from_end
= false;
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
205 template<bool big_endian
>
207 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
209 const elfcpp::Sym
<size
, big_endian
>& sym
,
210 unsigned int st_shndx
, bool is_ordinary
)
212 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
213 this->value_
= sym
.get_st_value();
214 this->symsize_
= sym
.get_st_size();
217 // Initialize the fields in Sized_symbol for a symbol defined in an
222 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
223 Output_data
* od
, Value_type value
,
224 Size_type symsize
, elfcpp::STT type
,
226 elfcpp::STV visibility
,
227 unsigned char nonvis
,
228 bool offset_is_from_end
)
230 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
231 nonvis
, offset_is_from_end
);
232 this->value_
= value
;
233 this->symsize_
= symsize
;
236 // Initialize the fields in Sized_symbol for a symbol defined in an
241 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
242 Output_segment
* os
, Value_type value
,
243 Size_type symsize
, elfcpp::STT type
,
245 elfcpp::STV visibility
,
246 unsigned char nonvis
,
247 Segment_offset_base offset_base
)
249 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
250 nonvis
, offset_base
);
251 this->value_
= value
;
252 this->symsize_
= symsize
;
255 // Initialize the fields in Sized_symbol for a symbol defined as a
260 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
261 Value_type value
, Size_type symsize
,
262 elfcpp::STT type
, elfcpp::STB binding
,
263 elfcpp::STV visibility
, unsigned char nonvis
)
265 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
);
266 this->value_
= value
;
267 this->symsize_
= symsize
;
270 // Initialize the fields in Sized_symbol for an undefined symbol.
274 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
275 elfcpp::STT type
, elfcpp::STB binding
,
276 elfcpp::STV visibility
, unsigned char nonvis
)
278 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
283 // Return true if SHNDX represents a common symbol.
286 Symbol::is_common_shndx(unsigned int shndx
)
288 return (shndx
== elfcpp::SHN_COMMON
289 || shndx
== parameters
->target().small_common_shndx()
290 || shndx
== parameters
->target().large_common_shndx());
293 // Allocate a common symbol.
297 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
299 this->allocate_base_common(od
);
300 this->value_
= value
;
303 // The ""'s around str ensure str is a string literal, so sizeof works.
304 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
306 // Return true if this symbol should be added to the dynamic symbol
310 Symbol::should_add_dynsym_entry() const
312 // If the symbol is used by a dynamic relocation, we need to add it.
313 if (this->needs_dynsym_entry())
316 // If this symbol's section is not added, the symbol need not be added.
317 // The section may have been GCed. Note that export_dynamic is being
318 // overridden here. This should not be done for shared objects.
319 if (parameters
->options().gc_sections()
320 && !parameters
->options().shared()
321 && this->source() == Symbol::FROM_OBJECT
322 && !this->object()->is_dynamic())
324 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
326 unsigned int shndx
= this->shndx(&is_ordinary
);
327 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
328 && !relobj
->is_section_included(shndx
))
332 // If the symbol was forced local in a version script, do not add it.
333 if (this->is_forced_local())
336 // If the symbol was forced dynamic in a --dynamic-list file, add it.
337 if (parameters
->options().in_dynamic_list(this->name()))
340 // If dynamic-list-data was specified, add any STT_OBJECT.
341 if (parameters
->options().dynamic_list_data()
342 && !this->is_from_dynobj()
343 && this->type() == elfcpp::STT_OBJECT
)
346 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
347 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
348 if ((parameters
->options().dynamic_list_cpp_new()
349 || parameters
->options().dynamic_list_cpp_typeinfo())
350 && !this->is_from_dynobj())
352 // TODO(csilvers): We could probably figure out if we're an operator
353 // new/delete or typeinfo without the need to demangle.
354 char* demangled_name
= cplus_demangle(this->name(),
355 DMGL_ANSI
| DMGL_PARAMS
);
356 if (demangled_name
== NULL
)
358 // Not a C++ symbol, so it can't satisfy these flags
360 else if (parameters
->options().dynamic_list_cpp_new()
361 && (strprefix(demangled_name
, "operator new")
362 || strprefix(demangled_name
, "operator delete")))
364 free(demangled_name
);
367 else if (parameters
->options().dynamic_list_cpp_typeinfo()
368 && (strprefix(demangled_name
, "typeinfo name for")
369 || strprefix(demangled_name
, "typeinfo for")))
371 free(demangled_name
);
375 free(demangled_name
);
378 // If exporting all symbols or building a shared library,
379 // and the symbol is defined in a regular object and is
380 // externally visible, we need to add it.
381 if ((parameters
->options().export_dynamic() || parameters
->options().shared())
382 && !this->is_from_dynobj()
383 && this->is_externally_visible())
389 // Return true if the final value of this symbol is known at link
393 Symbol::final_value_is_known() const
395 // If we are not generating an executable, then no final values are
396 // known, since they will change at runtime.
397 if (parameters
->options().output_is_position_independent()
398 || parameters
->options().relocatable())
401 // If the symbol is not from an object file, and is not undefined,
402 // then it is defined, and known.
403 if (this->source_
!= FROM_OBJECT
)
405 if (this->source_
!= IS_UNDEFINED
)
410 // If the symbol is from a dynamic object, then the final value
412 if (this->object()->is_dynamic())
415 // If the symbol is not undefined (it is defined or common),
416 // then the final value is known.
417 if (!this->is_undefined())
421 // If the symbol is undefined, then whether the final value is known
422 // depends on whether we are doing a static link. If we are doing a
423 // dynamic link, then the final value could be filled in at runtime.
424 // This could reasonably be the case for a weak undefined symbol.
425 return parameters
->doing_static_link();
428 // Return the output section where this symbol is defined.
431 Symbol::output_section() const
433 switch (this->source_
)
437 unsigned int shndx
= this->u_
.from_object
.shndx
;
438 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
440 gold_assert(!this->u_
.from_object
.object
->is_dynamic());
441 gold_assert(this->u_
.from_object
.object
->pluginobj() == NULL
);
442 Relobj
* relobj
= static_cast<Relobj
*>(this->u_
.from_object
.object
);
443 return relobj
->output_section(shndx
);
449 return this->u_
.in_output_data
.output_data
->output_section();
451 case IN_OUTPUT_SEGMENT
:
461 // Set the symbol's output section. This is used for symbols defined
462 // in scripts. This should only be called after the symbol table has
466 Symbol::set_output_section(Output_section
* os
)
468 switch (this->source_
)
472 gold_assert(this->output_section() == os
);
475 this->source_
= IN_OUTPUT_DATA
;
476 this->u_
.in_output_data
.output_data
= os
;
477 this->u_
.in_output_data
.offset_is_from_end
= false;
479 case IN_OUTPUT_SEGMENT
:
486 // Class Symbol_table.
488 Symbol_table::Symbol_table(unsigned int count
,
489 const Version_script_info
& version_script
)
490 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
491 forwarders_(), commons_(), tls_commons_(), small_commons_(),
492 large_commons_(), forced_locals_(), warnings_(),
493 version_script_(version_script
), gc_(NULL
), icf_(NULL
)
495 namepool_
.reserve(count
);
498 Symbol_table::~Symbol_table()
502 // The hash function. The key values are Stringpool keys.
505 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key
& key
) const
507 return key
.first
^ key
.second
;
510 // The symbol table key equality function. This is called with
514 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
515 const Symbol_table_key
& k2
) const
517 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
521 Symbol_table::is_section_folded(Object
* obj
, unsigned int shndx
) const
523 return (parameters
->options().icf_enabled()
524 && this->icf_
->is_section_folded(obj
, shndx
));
527 // For symbols that have been listed with -u option, add them to the
528 // work list to avoid gc'ing them.
531 Symbol_table::gc_mark_undef_symbols()
533 for (options::String_set::const_iterator p
=
534 parameters
->options().undefined_begin();
535 p
!= parameters
->options().undefined_end();
538 const char* name
= p
->c_str();
539 Symbol
* sym
= this->lookup(name
);
540 gold_assert (sym
!= NULL
);
541 if (sym
->source() == Symbol::FROM_OBJECT
542 && !sym
->object()->is_dynamic())
544 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
546 unsigned int shndx
= sym
->shndx(&is_ordinary
);
549 gold_assert(this->gc_
!= NULL
);
550 this->gc_
->worklist().push(Section_id(obj
, shndx
));
557 Symbol_table::gc_mark_symbol_for_shlib(Symbol
* sym
)
559 if (!sym
->is_from_dynobj()
560 && sym
->is_externally_visible())
562 //Add the object and section to the work list.
563 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
565 unsigned int shndx
= sym
->shndx(&is_ordinary
);
566 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
568 gold_assert(this->gc_
!= NULL
);
569 this->gc_
->worklist().push(Section_id(obj
, shndx
));
574 // When doing garbage collection, keep symbols that have been seen in
577 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
579 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
580 && !sym
->object()->is_dynamic())
582 Relobj
*obj
= static_cast<Relobj
*>(sym
->object());
584 unsigned int shndx
= sym
->shndx(&is_ordinary
);
585 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
587 gold_assert(this->gc_
!= NULL
);
588 this->gc_
->worklist().push(Section_id(obj
, shndx
));
593 // Make TO a symbol which forwards to FROM.
596 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
598 gold_assert(from
!= to
);
599 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
600 this->forwarders_
[from
] = to
;
601 from
->set_forwarder();
604 // Resolve the forwards from FROM, returning the real symbol.
607 Symbol_table::resolve_forwards(const Symbol
* from
) const
609 gold_assert(from
->is_forwarder());
610 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
611 this->forwarders_
.find(from
);
612 gold_assert(p
!= this->forwarders_
.end());
616 // Look up a symbol by name.
619 Symbol_table::lookup(const char* name
, const char* version
) const
621 Stringpool::Key name_key
;
622 name
= this->namepool_
.find(name
, &name_key
);
626 Stringpool::Key version_key
= 0;
629 version
= this->namepool_
.find(version
, &version_key
);
634 Symbol_table_key
key(name_key
, version_key
);
635 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
636 if (p
== this->table_
.end())
641 // Resolve a Symbol with another Symbol. This is only used in the
642 // unusual case where there are references to both an unversioned
643 // symbol and a symbol with a version, and we then discover that that
644 // version is the default version. Because this is unusual, we do
645 // this the slow way, by converting back to an ELF symbol.
647 template<int size
, bool big_endian
>
649 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
651 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
652 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
653 // We don't bother to set the st_name or the st_shndx field.
654 esym
.put_st_value(from
->value());
655 esym
.put_st_size(from
->symsize());
656 esym
.put_st_info(from
->binding(), from
->type());
657 esym
.put_st_other(from
->visibility(), from
->nonvis());
659 unsigned int shndx
= from
->shndx(&is_ordinary
);
660 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
666 if (parameters
->options().gc_sections())
667 this->gc_mark_dyn_syms(to
);
670 // Record that a symbol is forced to be local by a version script or
674 Symbol_table::force_local(Symbol
* sym
)
676 if (!sym
->is_defined() && !sym
->is_common())
678 if (sym
->is_forced_local())
680 // We already got this one.
683 sym
->set_is_forced_local();
684 this->forced_locals_
.push_back(sym
);
687 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
688 // is only called for undefined symbols, when at least one --wrap
692 Symbol_table::wrap_symbol(const char* name
, Stringpool::Key
* name_key
)
694 // For some targets, we need to ignore a specific character when
695 // wrapping, and add it back later.
697 if (name
[0] == parameters
->target().wrap_char())
703 if (parameters
->options().is_wrap(name
))
705 // Turn NAME into __wrap_NAME.
712 // This will give us both the old and new name in NAMEPOOL_, but
713 // that is OK. Only the versions we need will wind up in the
714 // real string table in the output file.
715 return this->namepool_
.add(s
.c_str(), true, name_key
);
718 const char* const real_prefix
= "__real_";
719 const size_t real_prefix_length
= strlen(real_prefix
);
720 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
721 && parameters
->options().is_wrap(name
+ real_prefix_length
))
723 // Turn __real_NAME into NAME.
727 s
+= name
+ real_prefix_length
;
728 return this->namepool_
.add(s
.c_str(), true, name_key
);
734 // This is called when we see a symbol NAME/VERSION, and the symbol
735 // already exists in the symbol table, and VERSION is marked as being
736 // the default version. SYM is the NAME/VERSION symbol we just added.
737 // DEFAULT_IS_NEW is true if this is the first time we have seen the
738 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
740 template<int size
, bool big_endian
>
742 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
744 Symbol_table_type::iterator pdef
)
748 // This is the first time we have seen NAME/NULL. Make
749 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
752 sym
->set_is_default();
754 else if (pdef
->second
== sym
)
756 // NAME/NULL already points to NAME/VERSION. Don't mark the
757 // symbol as the default if it is not already the default.
761 // This is the unfortunate case where we already have entries
762 // for both NAME/VERSION and NAME/NULL. We now see a symbol
763 // NAME/VERSION where VERSION is the default version. We have
764 // already resolved this new symbol with the existing
765 // NAME/VERSION symbol.
767 // It's possible that NAME/NULL and NAME/VERSION are both
768 // defined in regular objects. This can only happen if one
769 // object file defines foo and another defines foo@@ver. This
770 // is somewhat obscure, but we call it a multiple definition
773 // It's possible that NAME/NULL actually has a version, in which
774 // case it won't be the same as VERSION. This happens with
775 // ver_test_7.so in the testsuite for the symbol t2_2. We see
776 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
777 // then see an unadorned t2_2 in an object file and give it
778 // version VER1 from the version script. This looks like a
779 // default definition for VER1, so it looks like we should merge
780 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
781 // not obvious that this is an error, either. So we just punt.
783 // If one of the symbols has non-default visibility, and the
784 // other is defined in a shared object, then they are different
787 // Otherwise, we just resolve the symbols as though they were
790 if (pdef
->second
->version() != NULL
)
791 gold_assert(pdef
->second
->version() != sym
->version());
792 else if (sym
->visibility() != elfcpp::STV_DEFAULT
793 && pdef
->second
->is_from_dynobj())
795 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
796 && sym
->is_from_dynobj())
800 const Sized_symbol
<size
>* symdef
;
801 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
802 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
803 this->make_forwarder(pdef
->second
, sym
);
805 sym
->set_is_default();
810 // Add one symbol from OBJECT to the symbol table. NAME is symbol
811 // name and VERSION is the version; both are canonicalized. DEF is
812 // whether this is the default version. ST_SHNDX is the symbol's
813 // section index; IS_ORDINARY is whether this is a normal section
814 // rather than a special code.
816 // If DEF is true, then this is the definition of a default version of
817 // a symbol. That means that any lookup of NAME/NULL and any lookup
818 // of NAME/VERSION should always return the same symbol. This is
819 // obvious for references, but in particular we want to do this for
820 // definitions: overriding NAME/NULL should also override
821 // NAME/VERSION. If we don't do that, it would be very hard to
822 // override functions in a shared library which uses versioning.
824 // We implement this by simply making both entries in the hash table
825 // point to the same Symbol structure. That is easy enough if this is
826 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
827 // that we have seen both already, in which case they will both have
828 // independent entries in the symbol table. We can't simply change
829 // the symbol table entry, because we have pointers to the entries
830 // attached to the object files. So we mark the entry attached to the
831 // object file as a forwarder, and record it in the forwarders_ map.
832 // Note that entries in the hash table will never be marked as
835 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
836 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
837 // for a special section code. ST_SHNDX may be modified if the symbol
838 // is defined in a section being discarded.
840 template<int size
, bool big_endian
>
842 Symbol_table::add_from_object(Object
* object
,
844 Stringpool::Key name_key
,
846 Stringpool::Key version_key
,
848 const elfcpp::Sym
<size
, big_endian
>& sym
,
849 unsigned int st_shndx
,
851 unsigned int orig_st_shndx
)
853 // Print a message if this symbol is being traced.
854 if (parameters
->options().is_trace_symbol(name
))
856 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
857 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
859 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
862 // For an undefined symbol, we may need to adjust the name using
864 if (orig_st_shndx
== elfcpp::SHN_UNDEF
865 && parameters
->options().any_wrap())
867 const char* wrap_name
= this->wrap_symbol(name
, &name_key
);
868 if (wrap_name
!= name
)
870 // If we see a reference to malloc with version GLIBC_2.0,
871 // and we turn it into a reference to __wrap_malloc, then we
872 // discard the version number. Otherwise the user would be
873 // required to specify the correct version for
881 Symbol
* const snull
= NULL
;
882 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
883 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
886 std::pair
<typename
Symbol_table_type::iterator
, bool> insdef
=
887 std::make_pair(this->table_
.end(), false);
890 const Stringpool::Key vnull_key
= 0;
891 insdef
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
896 // ins.first: an iterator, which is a pointer to a pair.
897 // ins.first->first: the key (a pair of name and version).
898 // ins.first->second: the value (Symbol*).
899 // ins.second: true if new entry was inserted, false if not.
901 Sized_symbol
<size
>* ret
;
906 // We already have an entry for NAME/VERSION.
907 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
908 gold_assert(ret
!= NULL
);
910 was_undefined
= ret
->is_undefined();
911 was_common
= ret
->is_common();
913 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
915 if (parameters
->options().gc_sections())
916 this->gc_mark_dyn_syms(ret
);
919 this->define_default_version
<size
, big_endian
>(ret
, insdef
.second
,
924 // This is the first time we have seen NAME/VERSION.
925 gold_assert(ins
.first
->second
== NULL
);
927 if (def
&& !insdef
.second
)
929 // We already have an entry for NAME/NULL. If we override
930 // it, then change it to NAME/VERSION.
931 ret
= this->get_sized_symbol
<size
>(insdef
.first
->second
);
933 was_undefined
= ret
->is_undefined();
934 was_common
= ret
->is_common();
936 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
938 if (parameters
->options().gc_sections())
939 this->gc_mark_dyn_syms(ret
);
940 ins
.first
->second
= ret
;
944 was_undefined
= false;
947 Sized_target
<size
, big_endian
>* target
=
948 parameters
->sized_target
<size
, big_endian
>();
949 if (!target
->has_make_symbol())
950 ret
= new Sized_symbol
<size
>();
953 ret
= target
->make_symbol();
956 // This means that we don't want a symbol table
959 this->table_
.erase(ins
.first
);
962 this->table_
.erase(insdef
.first
);
963 // Inserting insdef invalidated ins.
964 this->table_
.erase(std::make_pair(name_key
,
971 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
973 ins
.first
->second
= ret
;
976 // This is the first time we have seen NAME/NULL. Point
977 // it at the new entry for NAME/VERSION.
978 gold_assert(insdef
.second
);
979 insdef
.first
->second
= ret
;
984 ret
->set_is_default();
987 // Record every time we see a new undefined symbol, to speed up
989 if (!was_undefined
&& ret
->is_undefined())
990 ++this->saw_undefined_
;
992 // Keep track of common symbols, to speed up common symbol
994 if (!was_common
&& ret
->is_common())
996 if (ret
->type() == elfcpp::STT_TLS
)
997 this->tls_commons_
.push_back(ret
);
998 else if (!is_ordinary
999 && st_shndx
== parameters
->target().small_common_shndx())
1000 this->small_commons_
.push_back(ret
);
1001 else if (!is_ordinary
1002 && st_shndx
== parameters
->target().large_common_shndx())
1003 this->large_commons_
.push_back(ret
);
1005 this->commons_
.push_back(ret
);
1008 // If we're not doing a relocatable link, then any symbol with
1009 // hidden or internal visibility is local.
1010 if ((ret
->visibility() == elfcpp::STV_HIDDEN
1011 || ret
->visibility() == elfcpp::STV_INTERNAL
)
1012 && (ret
->binding() == elfcpp::STB_GLOBAL
1013 || ret
->binding() == elfcpp::STB_WEAK
)
1014 && !parameters
->options().relocatable())
1015 this->force_local(ret
);
1020 // Add all the symbols in a relocatable object to the hash table.
1022 template<int size
, bool big_endian
>
1024 Symbol_table::add_from_relobj(
1025 Sized_relobj
<size
, big_endian
>* relobj
,
1026 const unsigned char* syms
,
1028 size_t symndx_offset
,
1029 const char* sym_names
,
1030 size_t sym_name_size
,
1031 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
,
1036 gold_assert(size
== parameters
->target().get_size());
1038 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1040 const bool just_symbols
= relobj
->just_symbols();
1042 const unsigned char* p
= syms
;
1043 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1045 (*sympointers
)[i
] = NULL
;
1047 elfcpp::Sym
<size
, big_endian
> sym(p
);
1049 unsigned int st_name
= sym
.get_st_name();
1050 if (st_name
>= sym_name_size
)
1052 relobj
->error(_("bad global symbol name offset %u at %zu"),
1057 const char* name
= sym_names
+ st_name
;
1060 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1063 unsigned int orig_st_shndx
= st_shndx
;
1065 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1067 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1070 // A symbol defined in a section which we are not including must
1071 // be treated as an undefined symbol.
1072 if (st_shndx
!= elfcpp::SHN_UNDEF
1074 && !relobj
->is_section_included(st_shndx
))
1075 st_shndx
= elfcpp::SHN_UNDEF
;
1077 // In an object file, an '@' in the name separates the symbol
1078 // name from the version name. If there are two '@' characters,
1079 // this is the default version.
1080 const char* ver
= strchr(name
, '@');
1081 Stringpool::Key ver_key
= 0;
1083 // DEF: is the version default? LOCAL: is the symbol forced local?
1089 // The symbol name is of the form foo@VERSION or foo@@VERSION
1090 namelen
= ver
- name
;
1097 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1099 // We don't want to assign a version to an undefined symbol,
1100 // even if it is listed in the version script. FIXME: What
1101 // about a common symbol?
1104 namelen
= strlen(name
);
1105 if (!this->version_script_
.empty()
1106 && st_shndx
!= elfcpp::SHN_UNDEF
)
1108 // The symbol name did not have a version, but the
1109 // version script may assign a version anyway.
1110 std::string version
;
1111 if (this->version_script_
.get_symbol_version(name
, &version
))
1113 // The version can be empty if the version script is
1114 // only used to force some symbols to be local.
1115 if (!version
.empty())
1117 ver
= this->namepool_
.add_with_length(version
.c_str(),
1124 else if (this->version_script_
.symbol_is_local(name
))
1129 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1130 unsigned char symbuf
[sym_size
];
1131 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1134 memcpy(symbuf
, p
, sym_size
);
1135 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1136 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
&& is_ordinary
)
1138 // Symbol values in object files are section relative.
1139 // This is normally what we want, but since here we are
1140 // converting the symbol to absolute we need to add the
1141 // section address. The section address in an object
1142 // file is normally zero, but people can use a linker
1143 // script to change it.
1144 sw
.put_st_value(sym
.get_st_value()
1145 + relobj
->section_address(orig_st_shndx
));
1147 st_shndx
= elfcpp::SHN_ABS
;
1148 is_ordinary
= false;
1152 // Fix up visibility if object has no-export set.
1153 if (relobj
->no_export())
1155 // We may have copied symbol already above.
1158 memcpy(symbuf
, p
, sym_size
);
1162 elfcpp::STV visibility
= sym2
.get_st_visibility();
1163 if (visibility
== elfcpp::STV_DEFAULT
1164 || visibility
== elfcpp::STV_PROTECTED
)
1166 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1167 unsigned char nonvis
= sym2
.get_st_nonvis();
1168 sw
.put_st_other(elfcpp::STV_HIDDEN
, nonvis
);
1172 Stringpool::Key name_key
;
1173 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1176 Sized_symbol
<size
>* res
;
1177 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1178 def
, *psym
, st_shndx
, is_ordinary
,
1181 // If building a shared library using garbage collection, do not
1182 // treat externally visible symbols as garbage.
1183 if (parameters
->options().gc_sections()
1184 && parameters
->options().shared())
1185 this->gc_mark_symbol_for_shlib(res
);
1188 this->force_local(res
);
1190 (*sympointers
)[i
] = res
;
1194 // Add a symbol from a plugin-claimed file.
1196 template<int size
, bool big_endian
>
1198 Symbol_table::add_from_pluginobj(
1199 Sized_pluginobj
<size
, big_endian
>* obj
,
1202 elfcpp::Sym
<size
, big_endian
>* sym
)
1204 unsigned int st_shndx
= sym
->get_st_shndx();
1205 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1207 Stringpool::Key ver_key
= 0;
1213 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1215 // We don't want to assign a version to an undefined symbol,
1216 // even if it is listed in the version script. FIXME: What
1217 // about a common symbol?
1220 if (!this->version_script_
.empty()
1221 && st_shndx
!= elfcpp::SHN_UNDEF
)
1223 // The symbol name did not have a version, but the
1224 // version script may assign a version anyway.
1225 std::string version
;
1226 if (this->version_script_
.get_symbol_version(name
, &version
))
1228 // The version can be empty if the version script is
1229 // only used to force some symbols to be local.
1230 if (!version
.empty())
1232 ver
= this->namepool_
.add_with_length(version
.c_str(),
1239 else if (this->version_script_
.symbol_is_local(name
))
1244 Stringpool::Key name_key
;
1245 name
= this->namepool_
.add(name
, true, &name_key
);
1247 Sized_symbol
<size
>* res
;
1248 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1249 def
, *sym
, st_shndx
, is_ordinary
, st_shndx
);
1252 this->force_local(res
);
1257 // Add all the symbols in a dynamic object to the hash table.
1259 template<int size
, bool big_endian
>
1261 Symbol_table::add_from_dynobj(
1262 Sized_dynobj
<size
, big_endian
>* dynobj
,
1263 const unsigned char* syms
,
1265 const char* sym_names
,
1266 size_t sym_name_size
,
1267 const unsigned char* versym
,
1269 const std::vector
<const char*>* version_map
,
1270 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
,
1275 gold_assert(size
== parameters
->target().get_size());
1277 if (dynobj
->just_symbols())
1279 gold_error(_("--just-symbols does not make sense with a shared object"));
1283 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1285 dynobj
->error(_("too few symbol versions"));
1289 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1291 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1292 // weak aliases. This is necessary because if the dynamic object
1293 // provides the same variable under two names, one of which is a
1294 // weak definition, and the regular object refers to the weak
1295 // definition, we have to put both the weak definition and the
1296 // strong definition into the dynamic symbol table. Given a weak
1297 // definition, the only way that we can find the corresponding
1298 // strong definition, if any, is to search the symbol table.
1299 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1301 const unsigned char* p
= syms
;
1302 const unsigned char* vs
= versym
;
1303 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1305 elfcpp::Sym
<size
, big_endian
> sym(p
);
1307 if (sympointers
!= NULL
)
1308 (*sympointers
)[i
] = NULL
;
1310 // Ignore symbols with local binding or that have
1311 // internal or hidden visibility.
1312 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1313 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1314 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1317 // A protected symbol in a shared library must be treated as a
1318 // normal symbol when viewed from outside the shared library.
1319 // Implement this by overriding the visibility here.
1320 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1321 unsigned char symbuf
[sym_size
];
1322 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1323 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1325 memcpy(symbuf
, p
, sym_size
);
1326 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1327 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1331 unsigned int st_name
= psym
->get_st_name();
1332 if (st_name
>= sym_name_size
)
1334 dynobj
->error(_("bad symbol name offset %u at %zu"),
1339 const char* name
= sym_names
+ st_name
;
1342 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1345 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1348 Sized_symbol
<size
>* res
;
1352 Stringpool::Key name_key
;
1353 name
= this->namepool_
.add(name
, true, &name_key
);
1354 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1355 false, *psym
, st_shndx
, is_ordinary
,
1360 // Read the version information.
1362 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1364 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1365 v
&= elfcpp::VERSYM_VERSION
;
1367 // The Sun documentation says that V can be VER_NDX_LOCAL,
1368 // or VER_NDX_GLOBAL, or a version index. The meaning of
1369 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1370 // The old GNU linker will happily generate VER_NDX_LOCAL
1371 // for an undefined symbol. I don't know what the Sun
1372 // linker will generate.
1374 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1375 && st_shndx
!= elfcpp::SHN_UNDEF
)
1377 // This symbol should not be visible outside the object.
1381 // At this point we are definitely going to add this symbol.
1382 Stringpool::Key name_key
;
1383 name
= this->namepool_
.add(name
, true, &name_key
);
1385 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1386 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1388 // This symbol does not have a version.
1389 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1390 false, *psym
, st_shndx
, is_ordinary
,
1395 if (v
>= version_map
->size())
1397 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1402 const char* version
= (*version_map
)[v
];
1403 if (version
== NULL
)
1405 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1410 Stringpool::Key version_key
;
1411 version
= this->namepool_
.add(version
, true, &version_key
);
1413 // If this is an absolute symbol, and the version name
1414 // and symbol name are the same, then this is the
1415 // version definition symbol. These symbols exist to
1416 // support using -u to pull in particular versions. We
1417 // do not want to record a version for them.
1418 if (st_shndx
== elfcpp::SHN_ABS
1420 && name_key
== version_key
)
1421 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1422 false, *psym
, st_shndx
, is_ordinary
,
1426 const bool def
= (!hidden
1427 && st_shndx
!= elfcpp::SHN_UNDEF
);
1428 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1429 version_key
, def
, *psym
, st_shndx
,
1430 is_ordinary
, st_shndx
);
1435 // Note that it is possible that RES was overridden by an
1436 // earlier object, in which case it can't be aliased here.
1437 if (st_shndx
!= elfcpp::SHN_UNDEF
1439 && psym
->get_st_type() == elfcpp::STT_OBJECT
1440 && res
->source() == Symbol::FROM_OBJECT
1441 && res
->object() == dynobj
)
1442 object_symbols
.push_back(res
);
1444 if (sympointers
!= NULL
)
1445 (*sympointers
)[i
] = res
;
1448 this->record_weak_aliases(&object_symbols
);
1451 // This is used to sort weak aliases. We sort them first by section
1452 // index, then by offset, then by weak ahead of strong.
1455 class Weak_alias_sorter
1458 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1463 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1464 const Sized_symbol
<size
>* s2
) const
1467 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1468 gold_assert(is_ordinary
);
1469 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1470 gold_assert(is_ordinary
);
1471 if (s1_shndx
!= s2_shndx
)
1472 return s1_shndx
< s2_shndx
;
1474 if (s1
->value() != s2
->value())
1475 return s1
->value() < s2
->value();
1476 if (s1
->binding() != s2
->binding())
1478 if (s1
->binding() == elfcpp::STB_WEAK
)
1480 if (s2
->binding() == elfcpp::STB_WEAK
)
1483 return std::string(s1
->name()) < std::string(s2
->name());
1486 // SYMBOLS is a list of object symbols from a dynamic object. Look
1487 // for any weak aliases, and record them so that if we add the weak
1488 // alias to the dynamic symbol table, we also add the corresponding
1493 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1495 // Sort the vector by section index, then by offset, then by weak
1497 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1499 // Walk through the vector. For each weak definition, record
1501 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1503 p
!= symbols
->end();
1506 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1509 // Build a circular list of weak aliases. Each symbol points to
1510 // the next one in the circular list.
1512 Sized_symbol
<size
>* from_sym
= *p
;
1513 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1514 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1517 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1518 || (*q
)->value() != from_sym
->value())
1521 this->weak_aliases_
[from_sym
] = *q
;
1522 from_sym
->set_has_alias();
1528 this->weak_aliases_
[from_sym
] = *p
;
1529 from_sym
->set_has_alias();
1536 // Create and return a specially defined symbol. If ONLY_IF_REF is
1537 // true, then only create the symbol if there is a reference to it.
1538 // If this does not return NULL, it sets *POLDSYM to the existing
1539 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1540 // resolve the newly created symbol to the old one. This
1541 // canonicalizes *PNAME and *PVERSION.
1543 template<int size
, bool big_endian
>
1545 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1547 Sized_symbol
<size
>** poldsym
,
1548 bool *resolve_oldsym
)
1550 *resolve_oldsym
= false;
1552 // If the caller didn't give us a version, see if we get one from
1553 // the version script.
1555 bool is_default_version
= false;
1556 if (*pversion
== NULL
)
1558 if (this->version_script_
.get_symbol_version(*pname
, &v
))
1561 *pversion
= v
.c_str();
1563 // If we get the version from a version script, then we are
1564 // also the default version.
1565 is_default_version
= true;
1570 Sized_symbol
<size
>* sym
;
1572 bool add_to_table
= false;
1573 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1574 bool add_def_to_table
= false;
1575 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1579 oldsym
= this->lookup(*pname
, *pversion
);
1580 if (oldsym
== NULL
&& is_default_version
)
1581 oldsym
= this->lookup(*pname
, NULL
);
1582 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1585 *pname
= oldsym
->name();
1586 if (!is_default_version
)
1587 *pversion
= oldsym
->version();
1591 // Canonicalize NAME and VERSION.
1592 Stringpool::Key name_key
;
1593 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1595 Stringpool::Key version_key
= 0;
1596 if (*pversion
!= NULL
)
1597 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1599 Symbol
* const snull
= NULL
;
1600 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1601 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1605 std::pair
<typename
Symbol_table_type::iterator
, bool> insdef
=
1606 std::make_pair(this->table_
.end(), false);
1607 if (is_default_version
)
1609 const Stringpool::Key vnull
= 0;
1610 insdef
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1617 // We already have a symbol table entry for NAME/VERSION.
1618 oldsym
= ins
.first
->second
;
1619 gold_assert(oldsym
!= NULL
);
1621 if (is_default_version
)
1623 Sized_symbol
<size
>* soldsym
=
1624 this->get_sized_symbol
<size
>(oldsym
);
1625 this->define_default_version
<size
, big_endian
>(soldsym
,
1632 // We haven't seen this symbol before.
1633 gold_assert(ins
.first
->second
== NULL
);
1635 add_to_table
= true;
1636 add_loc
= ins
.first
;
1638 if (is_default_version
&& !insdef
.second
)
1640 // We are adding NAME/VERSION, and it is the default
1641 // version. We already have an entry for NAME/NULL.
1642 oldsym
= insdef
.first
->second
;
1643 *resolve_oldsym
= true;
1649 if (is_default_version
)
1651 add_def_to_table
= true;
1652 add_def_loc
= insdef
.first
;
1658 const Target
& target
= parameters
->target();
1659 if (!target
.has_make_symbol())
1660 sym
= new Sized_symbol
<size
>();
1663 Sized_target
<size
, big_endian
>* sized_target
=
1664 parameters
->sized_target
<size
, big_endian
>();
1665 sym
= sized_target
->make_symbol();
1671 add_loc
->second
= sym
;
1673 gold_assert(oldsym
!= NULL
);
1675 if (add_def_to_table
)
1676 add_def_loc
->second
= sym
;
1678 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
1683 // Define a symbol based on an Output_data.
1686 Symbol_table::define_in_output_data(const char* name
,
1687 const char* version
,
1692 elfcpp::STB binding
,
1693 elfcpp::STV visibility
,
1694 unsigned char nonvis
,
1695 bool offset_is_from_end
,
1698 if (parameters
->target().get_size() == 32)
1700 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1701 return this->do_define_in_output_data
<32>(name
, version
, od
,
1702 value
, symsize
, type
, binding
,
1710 else if (parameters
->target().get_size() == 64)
1712 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1713 return this->do_define_in_output_data
<64>(name
, version
, od
,
1714 value
, symsize
, type
, binding
,
1726 // Define a symbol in an Output_data, sized version.
1730 Symbol_table::do_define_in_output_data(
1732 const char* version
,
1734 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1735 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1737 elfcpp::STB binding
,
1738 elfcpp::STV visibility
,
1739 unsigned char nonvis
,
1740 bool offset_is_from_end
,
1743 Sized_symbol
<size
>* sym
;
1744 Sized_symbol
<size
>* oldsym
;
1745 bool resolve_oldsym
;
1747 if (parameters
->target().is_big_endian())
1749 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1750 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1751 only_if_ref
, &oldsym
,
1759 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1760 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1761 only_if_ref
, &oldsym
,
1771 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
1772 visibility
, nonvis
, offset_is_from_end
);
1776 if (binding
== elfcpp::STB_LOCAL
1777 || this->version_script_
.symbol_is_local(name
))
1778 this->force_local(sym
);
1779 else if (version
!= NULL
)
1780 sym
->set_is_default();
1784 if (Symbol_table::should_override_with_special(oldsym
))
1785 this->override_with_special(oldsym
, sym
);
1796 // Define a symbol based on an Output_segment.
1799 Symbol_table::define_in_output_segment(const char* name
,
1800 const char* version
, Output_segment
* os
,
1804 elfcpp::STB binding
,
1805 elfcpp::STV visibility
,
1806 unsigned char nonvis
,
1807 Symbol::Segment_offset_base offset_base
,
1810 if (parameters
->target().get_size() == 32)
1812 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1813 return this->do_define_in_output_segment
<32>(name
, version
, os
,
1814 value
, symsize
, type
,
1815 binding
, visibility
, nonvis
,
1816 offset_base
, only_if_ref
);
1821 else if (parameters
->target().get_size() == 64)
1823 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1824 return this->do_define_in_output_segment
<64>(name
, version
, os
,
1825 value
, symsize
, type
,
1826 binding
, visibility
, nonvis
,
1827 offset_base
, only_if_ref
);
1836 // Define a symbol in an Output_segment, sized version.
1840 Symbol_table::do_define_in_output_segment(
1842 const char* version
,
1844 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1845 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1847 elfcpp::STB binding
,
1848 elfcpp::STV visibility
,
1849 unsigned char nonvis
,
1850 Symbol::Segment_offset_base offset_base
,
1853 Sized_symbol
<size
>* sym
;
1854 Sized_symbol
<size
>* oldsym
;
1855 bool resolve_oldsym
;
1857 if (parameters
->target().is_big_endian())
1859 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1860 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1861 only_if_ref
, &oldsym
,
1869 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1870 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1871 only_if_ref
, &oldsym
,
1881 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
1882 visibility
, nonvis
, offset_base
);
1886 if (binding
== elfcpp::STB_LOCAL
1887 || this->version_script_
.symbol_is_local(name
))
1888 this->force_local(sym
);
1889 else if (version
!= NULL
)
1890 sym
->set_is_default();
1894 if (Symbol_table::should_override_with_special(oldsym
))
1895 this->override_with_special(oldsym
, sym
);
1906 // Define a special symbol with a constant value. It is a multiple
1907 // definition error if this symbol is already defined.
1910 Symbol_table::define_as_constant(const char* name
,
1911 const char* version
,
1915 elfcpp::STB binding
,
1916 elfcpp::STV visibility
,
1917 unsigned char nonvis
,
1919 bool force_override
)
1921 if (parameters
->target().get_size() == 32)
1923 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1924 return this->do_define_as_constant
<32>(name
, version
, value
,
1925 symsize
, type
, binding
,
1926 visibility
, nonvis
, only_if_ref
,
1932 else if (parameters
->target().get_size() == 64)
1934 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1935 return this->do_define_as_constant
<64>(name
, version
, value
,
1936 symsize
, type
, binding
,
1937 visibility
, nonvis
, only_if_ref
,
1947 // Define a symbol as a constant, sized version.
1951 Symbol_table::do_define_as_constant(
1953 const char* version
,
1954 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1955 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1957 elfcpp::STB binding
,
1958 elfcpp::STV visibility
,
1959 unsigned char nonvis
,
1961 bool force_override
)
1963 Sized_symbol
<size
>* sym
;
1964 Sized_symbol
<size
>* oldsym
;
1965 bool resolve_oldsym
;
1967 if (parameters
->target().is_big_endian())
1969 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1970 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1971 only_if_ref
, &oldsym
,
1979 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1980 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1981 only_if_ref
, &oldsym
,
1991 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
1996 // Version symbols are absolute symbols with name == version.
1997 // We don't want to force them to be local.
1998 if ((version
== NULL
2001 && (binding
== elfcpp::STB_LOCAL
2002 || this->version_script_
.symbol_is_local(name
)))
2003 this->force_local(sym
);
2004 else if (version
!= NULL
2005 && (name
!= version
|| value
!= 0))
2006 sym
->set_is_default();
2010 if (force_override
|| Symbol_table::should_override_with_special(oldsym
))
2011 this->override_with_special(oldsym
, sym
);
2022 // Define a set of symbols in output sections.
2025 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2026 const Define_symbol_in_section
* p
,
2029 for (int i
= 0; i
< count
; ++i
, ++p
)
2031 Output_section
* os
= layout
->find_output_section(p
->output_section
);
2033 this->define_in_output_data(p
->name
, NULL
, os
, p
->value
,
2034 p
->size
, p
->type
, p
->binding
,
2035 p
->visibility
, p
->nonvis
,
2036 p
->offset_is_from_end
,
2037 only_if_ref
|| p
->only_if_ref
);
2039 this->define_as_constant(p
->name
, NULL
, 0, p
->size
, p
->type
,
2040 p
->binding
, p
->visibility
, p
->nonvis
,
2041 only_if_ref
|| p
->only_if_ref
,
2046 // Define a set of symbols in output segments.
2049 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2050 const Define_symbol_in_segment
* p
,
2053 for (int i
= 0; i
< count
; ++i
, ++p
)
2055 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2056 p
->segment_flags_set
,
2057 p
->segment_flags_clear
);
2059 this->define_in_output_segment(p
->name
, NULL
, os
, p
->value
,
2060 p
->size
, p
->type
, p
->binding
,
2061 p
->visibility
, p
->nonvis
,
2063 only_if_ref
|| p
->only_if_ref
);
2065 this->define_as_constant(p
->name
, NULL
, 0, p
->size
, p
->type
,
2066 p
->binding
, p
->visibility
, p
->nonvis
,
2067 only_if_ref
|| p
->only_if_ref
,
2072 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2073 // symbol should be defined--typically a .dyn.bss section. VALUE is
2074 // the offset within POSD.
2078 Symbol_table::define_with_copy_reloc(
2079 Sized_symbol
<size
>* csym
,
2081 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2083 gold_assert(csym
->is_from_dynobj());
2084 gold_assert(!csym
->is_copied_from_dynobj());
2085 Object
* object
= csym
->object();
2086 gold_assert(object
->is_dynamic());
2087 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2089 // Our copied variable has to override any variable in a shared
2091 elfcpp::STB binding
= csym
->binding();
2092 if (binding
== elfcpp::STB_WEAK
)
2093 binding
= elfcpp::STB_GLOBAL
;
2095 this->define_in_output_data(csym
->name(), csym
->version(),
2096 posd
, value
, csym
->symsize(),
2097 csym
->type(), binding
,
2098 csym
->visibility(), csym
->nonvis(),
2101 csym
->set_is_copied_from_dynobj();
2102 csym
->set_needs_dynsym_entry();
2104 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2106 // We have now defined all aliases, but we have not entered them all
2107 // in the copied_symbol_dynobjs_ map.
2108 if (csym
->has_alias())
2113 sym
= this->weak_aliases_
[sym
];
2116 gold_assert(sym
->output_data() == posd
);
2118 sym
->set_is_copied_from_dynobj();
2119 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2124 // SYM is defined using a COPY reloc. Return the dynamic object where
2125 // the original definition was found.
2128 Symbol_table::get_copy_source(const Symbol
* sym
) const
2130 gold_assert(sym
->is_copied_from_dynobj());
2131 Copied_symbol_dynobjs::const_iterator p
=
2132 this->copied_symbol_dynobjs_
.find(sym
);
2133 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2137 // Add any undefined symbols named on the command line.
2140 Symbol_table::add_undefined_symbols_from_command_line()
2142 if (parameters
->options().any_undefined())
2144 if (parameters
->target().get_size() == 32)
2146 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2147 this->do_add_undefined_symbols_from_command_line
<32>();
2152 else if (parameters
->target().get_size() == 64)
2154 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2155 this->do_add_undefined_symbols_from_command_line
<64>();
2167 Symbol_table::do_add_undefined_symbols_from_command_line()
2169 for (options::String_set::const_iterator p
=
2170 parameters
->options().undefined_begin();
2171 p
!= parameters
->options().undefined_end();
2174 const char* name
= p
->c_str();
2176 if (this->lookup(name
) != NULL
)
2179 const char* version
= NULL
;
2181 Sized_symbol
<size
>* sym
;
2182 Sized_symbol
<size
>* oldsym
;
2183 bool resolve_oldsym
;
2184 if (parameters
->target().is_big_endian())
2186 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2187 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2196 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2197 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2205 gold_assert(oldsym
== NULL
);
2207 sym
->init_undefined(name
, version
, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2208 elfcpp::STV_DEFAULT
, 0);
2209 ++this->saw_undefined_
;
2213 // Set the dynamic symbol indexes. INDEX is the index of the first
2214 // global dynamic symbol. Pointers to the symbols are stored into the
2215 // vector SYMS. The names are added to DYNPOOL. This returns an
2216 // updated dynamic symbol index.
2219 Symbol_table::set_dynsym_indexes(unsigned int index
,
2220 std::vector
<Symbol
*>* syms
,
2221 Stringpool
* dynpool
,
2224 for (Symbol_table_type::iterator p
= this->table_
.begin();
2225 p
!= this->table_
.end();
2228 Symbol
* sym
= p
->second
;
2230 // Note that SYM may already have a dynamic symbol index, since
2231 // some symbols appear more than once in the symbol table, with
2232 // and without a version.
2234 if (!sym
->should_add_dynsym_entry())
2235 sym
->set_dynsym_index(-1U);
2236 else if (!sym
->has_dynsym_index())
2238 sym
->set_dynsym_index(index
);
2240 syms
->push_back(sym
);
2241 dynpool
->add(sym
->name(), false, NULL
);
2243 // Record any version information.
2244 if (sym
->version() != NULL
)
2245 versions
->record_version(this, dynpool
, sym
);
2249 // Finish up the versions. In some cases this may add new dynamic
2251 index
= versions
->finalize(this, index
, syms
);
2256 // Set the final values for all the symbols. The index of the first
2257 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2258 // file offset OFF. Add their names to POOL. Return the new file
2259 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2262 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2263 size_t dyncount
, Stringpool
* pool
,
2264 unsigned int *plocal_symcount
)
2268 gold_assert(*plocal_symcount
!= 0);
2269 this->first_global_index_
= *plocal_symcount
;
2271 this->dynamic_offset_
= dynoff
;
2272 this->first_dynamic_global_index_
= dyn_global_index
;
2273 this->dynamic_count_
= dyncount
;
2275 if (parameters
->target().get_size() == 32)
2277 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2278 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2283 else if (parameters
->target().get_size() == 64)
2285 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2286 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2294 // Now that we have the final symbol table, we can reliably note
2295 // which symbols should get warnings.
2296 this->warnings_
.note_warnings(this);
2301 // SYM is going into the symbol table at *PINDEX. Add the name to
2302 // POOL, update *PINDEX and *POFF.
2306 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2307 unsigned int* pindex
, off_t
* poff
)
2309 sym
->set_symtab_index(*pindex
);
2310 pool
->add(sym
->name(), false, NULL
);
2312 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2315 // Set the final value for all the symbols. This is called after
2316 // Layout::finalize, so all the output sections have their final
2321 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2322 unsigned int* plocal_symcount
)
2324 off
= align_address(off
, size
>> 3);
2325 this->offset_
= off
;
2327 unsigned int index
= *plocal_symcount
;
2328 const unsigned int orig_index
= index
;
2330 // First do all the symbols which have been forced to be local, as
2331 // they must appear before all global symbols.
2332 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2333 p
!= this->forced_locals_
.end();
2337 gold_assert(sym
->is_forced_local());
2338 if (this->sized_finalize_symbol
<size
>(sym
))
2340 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2345 // Now do all the remaining symbols.
2346 for (Symbol_table_type::iterator p
= this->table_
.begin();
2347 p
!= this->table_
.end();
2350 Symbol
* sym
= p
->second
;
2351 if (this->sized_finalize_symbol
<size
>(sym
))
2352 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2355 this->output_count_
= index
- orig_index
;
2360 // Compute the final value of SYM and store status in location PSTATUS.
2361 // During relaxation, this may be called multiple times for a symbol to
2362 // compute its would-be final value in each relaxation pass.
2365 typename Sized_symbol
<size
>::Value_type
2366 Symbol_table::compute_final_value(
2367 const Sized_symbol
<size
>* sym
,
2368 Compute_final_value_status
* pstatus
) const
2370 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2373 switch (sym
->source())
2375 case Symbol::FROM_OBJECT
:
2378 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2381 && shndx
!= elfcpp::SHN_ABS
2382 && !Symbol::is_common_shndx(shndx
))
2384 *pstatus
= CFVS_UNSUPPORTED_SYMBOL_SECTION
;
2388 Object
* symobj
= sym
->object();
2389 if (symobj
->is_dynamic())
2392 shndx
= elfcpp::SHN_UNDEF
;
2394 else if (symobj
->pluginobj() != NULL
)
2397 shndx
= elfcpp::SHN_UNDEF
;
2399 else if (shndx
== elfcpp::SHN_UNDEF
)
2401 else if (!is_ordinary
2402 && (shndx
== elfcpp::SHN_ABS
2403 || Symbol::is_common_shndx(shndx
)))
2404 value
= sym
->value();
2407 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2408 Output_section
* os
= relobj
->output_section(shndx
);
2409 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2411 if (this->is_section_folded(relobj
, shndx
))
2413 gold_assert(os
== NULL
);
2414 // Get the os of the section it is folded onto.
2415 Section_id folded
= this->icf_
->get_folded_section(relobj
,
2417 gold_assert(folded
.first
!= NULL
);
2418 Relobj
* folded_obj
= reinterpret_cast<Relobj
*>(folded
.first
);
2419 os
= folded_obj
->output_section(folded
.second
);
2420 gold_assert(os
!= NULL
);
2421 secoff64
= folded_obj
->output_section_offset(folded
.second
);
2426 bool static_or_reloc
= (parameters
->doing_static_link() ||
2427 parameters
->options().relocatable());
2428 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2430 *pstatus
= CFVS_NO_OUTPUT_SECTION
;
2434 if (secoff64
== -1ULL)
2436 // The section needs special handling (e.g., a merge section).
2438 value
= os
->output_address(relobj
, shndx
, sym
->value());
2443 convert_types
<Value_type
, uint64_t>(secoff64
);
2444 if (sym
->type() == elfcpp::STT_TLS
)
2445 value
= sym
->value() + os
->tls_offset() + secoff
;
2447 value
= sym
->value() + os
->address() + secoff
;
2453 case Symbol::IN_OUTPUT_DATA
:
2455 Output_data
* od
= sym
->output_data();
2456 value
= sym
->value();
2457 if (sym
->type() != elfcpp::STT_TLS
)
2458 value
+= od
->address();
2461 Output_section
* os
= od
->output_section();
2462 gold_assert(os
!= NULL
);
2463 value
+= os
->tls_offset() + (od
->address() - os
->address());
2465 if (sym
->offset_is_from_end())
2466 value
+= od
->data_size();
2470 case Symbol::IN_OUTPUT_SEGMENT
:
2472 Output_segment
* os
= sym
->output_segment();
2473 value
= sym
->value();
2474 if (sym
->type() != elfcpp::STT_TLS
)
2475 value
+= os
->vaddr();
2476 switch (sym
->offset_base())
2478 case Symbol::SEGMENT_START
:
2480 case Symbol::SEGMENT_END
:
2481 value
+= os
->memsz();
2483 case Symbol::SEGMENT_BSS
:
2484 value
+= os
->filesz();
2492 case Symbol::IS_CONSTANT
:
2493 value
= sym
->value();
2496 case Symbol::IS_UNDEFINED
:
2508 // Finalize the symbol SYM. This returns true if the symbol should be
2509 // added to the symbol table, false otherwise.
2513 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
2515 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2517 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
2519 // The default version of a symbol may appear twice in the symbol
2520 // table. We only need to finalize it once.
2521 if (sym
->has_symtab_index())
2526 gold_assert(!sym
->has_symtab_index());
2527 sym
->set_symtab_index(-1U);
2528 gold_assert(sym
->dynsym_index() == -1U);
2532 // Compute final symbol value.
2533 Compute_final_value_status status
;
2534 Value_type value
= this->compute_final_value(sym
, &status
);
2540 case CFVS_UNSUPPORTED_SYMBOL_SECTION
:
2543 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2544 gold_error(_("%s: unsupported symbol section 0x%x"),
2545 sym
->demangled_name().c_str(), shndx
);
2548 case CFVS_NO_OUTPUT_SECTION
:
2549 sym
->set_symtab_index(-1U);
2555 sym
->set_value(value
);
2557 if (parameters
->options().strip_all()
2558 || !parameters
->options().should_retain_symbol(sym
->name()))
2560 sym
->set_symtab_index(-1U);
2567 // Write out the global symbols.
2570 Symbol_table::write_globals(const Stringpool
* sympool
,
2571 const Stringpool
* dynpool
,
2572 Output_symtab_xindex
* symtab_xindex
,
2573 Output_symtab_xindex
* dynsym_xindex
,
2574 Output_file
* of
) const
2576 switch (parameters
->size_and_endianness())
2578 #ifdef HAVE_TARGET_32_LITTLE
2579 case Parameters::TARGET_32_LITTLE
:
2580 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
2584 #ifdef HAVE_TARGET_32_BIG
2585 case Parameters::TARGET_32_BIG
:
2586 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
2590 #ifdef HAVE_TARGET_64_LITTLE
2591 case Parameters::TARGET_64_LITTLE
:
2592 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
2596 #ifdef HAVE_TARGET_64_BIG
2597 case Parameters::TARGET_64_BIG
:
2598 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
2607 // Write out the global symbols.
2609 template<int size
, bool big_endian
>
2611 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
2612 const Stringpool
* dynpool
,
2613 Output_symtab_xindex
* symtab_xindex
,
2614 Output_symtab_xindex
* dynsym_xindex
,
2615 Output_file
* of
) const
2617 const Target
& target
= parameters
->target();
2619 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2621 const unsigned int output_count
= this->output_count_
;
2622 const section_size_type oview_size
= output_count
* sym_size
;
2623 const unsigned int first_global_index
= this->first_global_index_
;
2624 unsigned char* psyms
;
2625 if (this->offset_
== 0 || output_count
== 0)
2628 psyms
= of
->get_output_view(this->offset_
, oview_size
);
2630 const unsigned int dynamic_count
= this->dynamic_count_
;
2631 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
2632 const unsigned int first_dynamic_global_index
=
2633 this->first_dynamic_global_index_
;
2634 unsigned char* dynamic_view
;
2635 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
2636 dynamic_view
= NULL
;
2638 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
2640 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
2641 p
!= this->table_
.end();
2644 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
2646 // Possibly warn about unresolved symbols in shared libraries.
2647 this->warn_about_undefined_dynobj_symbol(sym
);
2649 unsigned int sym_index
= sym
->symtab_index();
2650 unsigned int dynsym_index
;
2651 if (dynamic_view
== NULL
)
2654 dynsym_index
= sym
->dynsym_index();
2656 if (sym_index
== -1U && dynsym_index
== -1U)
2658 // This symbol is not included in the output file.
2663 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
2664 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
2665 switch (sym
->source())
2667 case Symbol::FROM_OBJECT
:
2670 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
2673 && in_shndx
!= elfcpp::SHN_ABS
2674 && !Symbol::is_common_shndx(in_shndx
))
2676 gold_error(_("%s: unsupported symbol section 0x%x"),
2677 sym
->demangled_name().c_str(), in_shndx
);
2682 Object
* symobj
= sym
->object();
2683 if (symobj
->is_dynamic())
2685 if (sym
->needs_dynsym_value())
2686 dynsym_value
= target
.dynsym_value(sym
);
2687 shndx
= elfcpp::SHN_UNDEF
;
2689 else if (symobj
->pluginobj() != NULL
)
2690 shndx
= elfcpp::SHN_UNDEF
;
2691 else if (in_shndx
== elfcpp::SHN_UNDEF
2693 && (in_shndx
== elfcpp::SHN_ABS
2694 || Symbol::is_common_shndx(in_shndx
))))
2698 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2699 Output_section
* os
= relobj
->output_section(in_shndx
);
2700 if (this->is_section_folded(relobj
, in_shndx
))
2702 // This global symbol must be written out even though
2704 // Get the os of the section it is folded onto.
2706 this->icf_
->get_folded_section(relobj
, in_shndx
);
2707 gold_assert(folded
.first
!=NULL
);
2708 Relobj
* folded_obj
=
2709 reinterpret_cast<Relobj
*>(folded
.first
);
2710 os
= folded_obj
->output_section(folded
.second
);
2711 gold_assert(os
!= NULL
);
2713 gold_assert(os
!= NULL
);
2714 shndx
= os
->out_shndx();
2716 if (shndx
>= elfcpp::SHN_LORESERVE
)
2718 if (sym_index
!= -1U)
2719 symtab_xindex
->add(sym_index
, shndx
);
2720 if (dynsym_index
!= -1U)
2721 dynsym_xindex
->add(dynsym_index
, shndx
);
2722 shndx
= elfcpp::SHN_XINDEX
;
2725 // In object files symbol values are section
2727 if (parameters
->options().relocatable())
2728 sym_value
-= os
->address();
2734 case Symbol::IN_OUTPUT_DATA
:
2735 shndx
= sym
->output_data()->out_shndx();
2736 if (shndx
>= elfcpp::SHN_LORESERVE
)
2738 if (sym_index
!= -1U)
2739 symtab_xindex
->add(sym_index
, shndx
);
2740 if (dynsym_index
!= -1U)
2741 dynsym_xindex
->add(dynsym_index
, shndx
);
2742 shndx
= elfcpp::SHN_XINDEX
;
2746 case Symbol::IN_OUTPUT_SEGMENT
:
2747 shndx
= elfcpp::SHN_ABS
;
2750 case Symbol::IS_CONSTANT
:
2751 shndx
= elfcpp::SHN_ABS
;
2754 case Symbol::IS_UNDEFINED
:
2755 shndx
= elfcpp::SHN_UNDEF
;
2762 if (sym_index
!= -1U)
2764 sym_index
-= first_global_index
;
2765 gold_assert(sym_index
< output_count
);
2766 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
2767 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
2771 if (dynsym_index
!= -1U)
2773 dynsym_index
-= first_dynamic_global_index
;
2774 gold_assert(dynsym_index
< dynamic_count
);
2775 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
2776 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
2781 of
->write_output_view(this->offset_
, oview_size
, psyms
);
2782 if (dynamic_view
!= NULL
)
2783 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
2786 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2787 // strtab holding the name.
2789 template<int size
, bool big_endian
>
2791 Symbol_table::sized_write_symbol(
2792 Sized_symbol
<size
>* sym
,
2793 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2795 const Stringpool
* pool
,
2796 unsigned char* p
) const
2798 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
2799 osym
.put_st_name(pool
->get_offset(sym
->name()));
2800 osym
.put_st_value(value
);
2801 // Use a symbol size of zero for undefined symbols from shared libraries.
2802 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
2803 osym
.put_st_size(0);
2805 osym
.put_st_size(sym
->symsize());
2806 // A version script may have overridden the default binding.
2807 if (sym
->is_forced_local())
2808 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, sym
->type()));
2810 osym
.put_st_info(elfcpp::elf_st_info(sym
->binding(), sym
->type()));
2811 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
2812 osym
.put_st_shndx(shndx
);
2815 // Check for unresolved symbols in shared libraries. This is
2816 // controlled by the --allow-shlib-undefined option.
2818 // We only warn about libraries for which we have seen all the
2819 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2820 // which were not seen in this link. If we didn't see a DT_NEEDED
2821 // entry, we aren't going to be able to reliably report whether the
2822 // symbol is undefined.
2824 // We also don't warn about libraries found in a system library
2825 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2826 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2827 // can have undefined references satisfied by ld-linux.so.
2830 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
2833 if (sym
->source() == Symbol::FROM_OBJECT
2834 && sym
->object()->is_dynamic()
2835 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
2836 && sym
->binding() != elfcpp::STB_WEAK
2837 && !parameters
->options().allow_shlib_undefined()
2838 && !parameters
->target().is_defined_by_abi(sym
)
2839 && !sym
->object()->is_in_system_directory())
2841 // A very ugly cast.
2842 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
2843 if (!dynobj
->has_unknown_needed_entries())
2844 gold_undefined_symbol(sym
);
2848 // Write out a section symbol. Return the update offset.
2851 Symbol_table::write_section_symbol(const Output_section
*os
,
2852 Output_symtab_xindex
* symtab_xindex
,
2856 switch (parameters
->size_and_endianness())
2858 #ifdef HAVE_TARGET_32_LITTLE
2859 case Parameters::TARGET_32_LITTLE
:
2860 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
2864 #ifdef HAVE_TARGET_32_BIG
2865 case Parameters::TARGET_32_BIG
:
2866 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
2870 #ifdef HAVE_TARGET_64_LITTLE
2871 case Parameters::TARGET_64_LITTLE
:
2872 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
2876 #ifdef HAVE_TARGET_64_BIG
2877 case Parameters::TARGET_64_BIG
:
2878 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
2887 // Write out a section symbol, specialized for size and endianness.
2889 template<int size
, bool big_endian
>
2891 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
2892 Output_symtab_xindex
* symtab_xindex
,
2896 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2898 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
2900 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
2901 osym
.put_st_name(0);
2902 if (parameters
->options().relocatable())
2903 osym
.put_st_value(0);
2905 osym
.put_st_value(os
->address());
2906 osym
.put_st_size(0);
2907 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
2908 elfcpp::STT_SECTION
));
2909 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
2911 unsigned int shndx
= os
->out_shndx();
2912 if (shndx
>= elfcpp::SHN_LORESERVE
)
2914 symtab_xindex
->add(os
->symtab_index(), shndx
);
2915 shndx
= elfcpp::SHN_XINDEX
;
2917 osym
.put_st_shndx(shndx
);
2919 of
->write_output_view(offset
, sym_size
, pov
);
2922 // Print statistical information to stderr. This is used for --stats.
2925 Symbol_table::print_stats() const
2927 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2928 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2929 program_name
, this->table_
.size(), this->table_
.bucket_count());
2931 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
2932 program_name
, this->table_
.size());
2934 this->namepool_
.print_stats("symbol table stringpool");
2937 // We check for ODR violations by looking for symbols with the same
2938 // name for which the debugging information reports that they were
2939 // defined in different source locations. When comparing the source
2940 // location, we consider instances with the same base filename and
2941 // line number to be the same. This is because different object
2942 // files/shared libraries can include the same header file using
2943 // different paths, and we don't want to report an ODR violation in
2946 // This struct is used to compare line information, as returned by
2947 // Dwarf_line_info::one_addr2line. It implements a < comparison
2948 // operator used with std::set.
2950 struct Odr_violation_compare
2953 operator()(const std::string
& s1
, const std::string
& s2
) const
2955 std::string::size_type pos1
= s1
.rfind('/');
2956 std::string::size_type pos2
= s2
.rfind('/');
2957 if (pos1
== std::string::npos
2958 || pos2
== std::string::npos
)
2960 return s1
.compare(pos1
, std::string::npos
,
2961 s2
, pos2
, std::string::npos
) < 0;
2965 // Check candidate_odr_violations_ to find symbols with the same name
2966 // but apparently different definitions (different source-file/line-no).
2969 Symbol_table::detect_odr_violations(const Task
* task
,
2970 const char* output_file_name
) const
2972 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
2973 it
!= candidate_odr_violations_
.end();
2976 const char* symbol_name
= it
->first
;
2977 // We use a sorted set so the output is deterministic.
2978 std::set
<std::string
, Odr_violation_compare
> line_nums
;
2980 for (Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
2981 locs
= it
->second
.begin();
2982 locs
!= it
->second
.end();
2985 // We need to lock the object in order to read it. This
2986 // means that we have to run in a singleton Task. If we
2987 // want to run this in a general Task for better
2988 // performance, we will need one Task for object, plus
2989 // appropriate locking to ensure that we don't conflict with
2990 // other uses of the object. Also note, one_addr2line is not
2991 // currently thread-safe.
2992 Task_lock_obj
<Object
> tl(task
, locs
->object
);
2993 // 16 is the size of the object-cache that one_addr2line should use.
2994 std::string lineno
= Dwarf_line_info::one_addr2line(
2995 locs
->object
, locs
->shndx
, locs
->offset
, 16);
2996 if (!lineno
.empty())
2997 line_nums
.insert(lineno
);
3000 if (line_nums
.size() > 1)
3002 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
3003 "places (possible ODR violation):"),
3004 output_file_name
, demangle(symbol_name
).c_str());
3005 for (std::set
<std::string
>::const_iterator it2
= line_nums
.begin();
3006 it2
!= line_nums
.end();
3008 fprintf(stderr
, " %s\n", it2
->c_str());
3011 // We only call one_addr2line() in this function, so we can clear its cache.
3012 Dwarf_line_info::clear_addr2line_cache();
3015 // Warnings functions.
3017 // Add a new warning.
3020 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
3021 const std::string
& warning
)
3023 name
= symtab
->canonicalize_name(name
);
3024 this->warnings_
[name
].set(obj
, warning
);
3027 // Look through the warnings and mark the symbols for which we should
3028 // warn. This is called during Layout::finalize when we know the
3029 // sources for all the symbols.
3032 Warnings::note_warnings(Symbol_table
* symtab
)
3034 for (Warning_table::iterator p
= this->warnings_
.begin();
3035 p
!= this->warnings_
.end();
3038 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
3040 && sym
->source() == Symbol::FROM_OBJECT
3041 && sym
->object() == p
->second
.object
)
3042 sym
->set_has_warning();
3046 // Issue a warning. This is called when we see a relocation against a
3047 // symbol for which has a warning.
3049 template<int size
, bool big_endian
>
3051 Warnings::issue_warning(const Symbol
* sym
,
3052 const Relocate_info
<size
, big_endian
>* relinfo
,
3053 size_t relnum
, off_t reloffset
) const
3055 gold_assert(sym
->has_warning());
3056 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
3057 gold_assert(p
!= this->warnings_
.end());
3058 gold_warning_at_location(relinfo
, relnum
, reloffset
,
3059 "%s", p
->second
.text
.c_str());
3062 // Instantiate the templates we need. We could use the configure
3063 // script to restrict this to only the ones needed for implemented
3066 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3069 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
3072 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3075 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
3078 #ifdef HAVE_TARGET_32_LITTLE
3081 Symbol_table::add_from_relobj
<32, false>(
3082 Sized_relobj
<32, false>* relobj
,
3083 const unsigned char* syms
,
3085 size_t symndx_offset
,
3086 const char* sym_names
,
3087 size_t sym_name_size
,
3088 Sized_relobj
<32, false>::Symbols
* sympointers
,
3092 #ifdef HAVE_TARGET_32_BIG
3095 Symbol_table::add_from_relobj
<32, true>(
3096 Sized_relobj
<32, true>* relobj
,
3097 const unsigned char* syms
,
3099 size_t symndx_offset
,
3100 const char* sym_names
,
3101 size_t sym_name_size
,
3102 Sized_relobj
<32, true>::Symbols
* sympointers
,
3106 #ifdef HAVE_TARGET_64_LITTLE
3109 Symbol_table::add_from_relobj
<64, false>(
3110 Sized_relobj
<64, false>* relobj
,
3111 const unsigned char* syms
,
3113 size_t symndx_offset
,
3114 const char* sym_names
,
3115 size_t sym_name_size
,
3116 Sized_relobj
<64, false>::Symbols
* sympointers
,
3120 #ifdef HAVE_TARGET_64_BIG
3123 Symbol_table::add_from_relobj
<64, true>(
3124 Sized_relobj
<64, true>* relobj
,
3125 const unsigned char* syms
,
3127 size_t symndx_offset
,
3128 const char* sym_names
,
3129 size_t sym_name_size
,
3130 Sized_relobj
<64, true>::Symbols
* sympointers
,
3134 #ifdef HAVE_TARGET_32_LITTLE
3137 Symbol_table::add_from_pluginobj
<32, false>(
3138 Sized_pluginobj
<32, false>* obj
,
3141 elfcpp::Sym
<32, false>* sym
);
3144 #ifdef HAVE_TARGET_32_BIG
3147 Symbol_table::add_from_pluginobj
<32, true>(
3148 Sized_pluginobj
<32, true>* obj
,
3151 elfcpp::Sym
<32, true>* sym
);
3154 #ifdef HAVE_TARGET_64_LITTLE
3157 Symbol_table::add_from_pluginobj
<64, false>(
3158 Sized_pluginobj
<64, false>* obj
,
3161 elfcpp::Sym
<64, false>* sym
);
3164 #ifdef HAVE_TARGET_64_BIG
3167 Symbol_table::add_from_pluginobj
<64, true>(
3168 Sized_pluginobj
<64, true>* obj
,
3171 elfcpp::Sym
<64, true>* sym
);
3174 #ifdef HAVE_TARGET_32_LITTLE
3177 Symbol_table::add_from_dynobj
<32, false>(
3178 Sized_dynobj
<32, false>* dynobj
,
3179 const unsigned char* syms
,
3181 const char* sym_names
,
3182 size_t sym_name_size
,
3183 const unsigned char* versym
,
3185 const std::vector
<const char*>* version_map
,
3186 Sized_relobj
<32, false>::Symbols
* sympointers
,
3190 #ifdef HAVE_TARGET_32_BIG
3193 Symbol_table::add_from_dynobj
<32, true>(
3194 Sized_dynobj
<32, true>* dynobj
,
3195 const unsigned char* syms
,
3197 const char* sym_names
,
3198 size_t sym_name_size
,
3199 const unsigned char* versym
,
3201 const std::vector
<const char*>* version_map
,
3202 Sized_relobj
<32, true>::Symbols
* sympointers
,
3206 #ifdef HAVE_TARGET_64_LITTLE
3209 Symbol_table::add_from_dynobj
<64, false>(
3210 Sized_dynobj
<64, false>* dynobj
,
3211 const unsigned char* syms
,
3213 const char* sym_names
,
3214 size_t sym_name_size
,
3215 const unsigned char* versym
,
3217 const std::vector
<const char*>* version_map
,
3218 Sized_relobj
<64, false>::Symbols
* sympointers
,
3222 #ifdef HAVE_TARGET_64_BIG
3225 Symbol_table::add_from_dynobj
<64, true>(
3226 Sized_dynobj
<64, true>* dynobj
,
3227 const unsigned char* syms
,
3229 const char* sym_names
,
3230 size_t sym_name_size
,
3231 const unsigned char* versym
,
3233 const std::vector
<const char*>* version_map
,
3234 Sized_relobj
<64, true>::Symbols
* sympointers
,
3238 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3241 Symbol_table::define_with_copy_reloc
<32>(
3242 Sized_symbol
<32>* sym
,
3244 elfcpp::Elf_types
<32>::Elf_Addr value
);
3247 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3250 Symbol_table::define_with_copy_reloc
<64>(
3251 Sized_symbol
<64>* sym
,
3253 elfcpp::Elf_types
<64>::Elf_Addr value
);
3256 #ifdef HAVE_TARGET_32_LITTLE
3259 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
3260 const Relocate_info
<32, false>* relinfo
,
3261 size_t relnum
, off_t reloffset
) const;
3264 #ifdef HAVE_TARGET_32_BIG
3267 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
3268 const Relocate_info
<32, true>* relinfo
,
3269 size_t relnum
, off_t reloffset
) const;
3272 #ifdef HAVE_TARGET_64_LITTLE
3275 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
3276 const Relocate_info
<64, false>* relinfo
,
3277 size_t relnum
, off_t reloffset
) const;
3280 #ifdef HAVE_TARGET_64_BIG
3283 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
3284 const Relocate_info
<64, true>* relinfo
,
3285 size_t relnum
, off_t reloffset
) const;
3288 } // End namespace gold.