Automatic date update in version.in
[binutils-gdb.git] / gdb / arc-tdep.c
blob11e0551266ea82e93fc24f0f9a0d44e9b482a5ef
1 /* Target dependent code for ARC architecture, for GDB.
3 Copyright 2005-2022 Free Software Foundation, Inc.
4 Contributed by Synopsys Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 /* GDB header files. */
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "elf-bfd.h"
25 #include "disasm.h"
26 #include "dwarf2/frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "reggroups.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "prologue-value.h"
35 #include "target-descriptions.h"
36 #include "trad-frame.h"
38 /* ARC header files. */
39 #include "opcode/arc.h"
40 #include "opcodes/arc-dis.h"
41 #include "arc-tdep.h"
42 #include "arch/arc.h"
44 /* Standard headers. */
45 #include <algorithm>
46 #include <sstream>
48 /* The frame unwind cache for ARC. */
50 struct arc_frame_cache
52 /* The stack pointer at the time this frame was created; i.e. the caller's
53 stack pointer when this function was called. It is used to identify this
54 frame. */
55 CORE_ADDR prev_sp;
57 /* Register that is a base for this frame - FP for normal frame, SP for
58 non-FP frames. */
59 int frame_base_reg;
61 /* Offset from the previous SP to the current frame base. If GCC uses
62 `SUB SP,SP,offset` to allocate space for local variables, then it will be
63 done after setting up a frame pointer, but it still will be considered
64 part of prologue, therefore SP will be lesser than FP at the end of the
65 prologue analysis. In this case that would be an offset from old SP to a
66 new FP. But in case of non-FP frames, frame base is an SP and thus that
67 would be an offset from old SP to new SP. What is important is that this
68 is an offset from old SP to a known register, so it can be used to find
69 old SP.
71 Using FP is preferable, when possible, because SP can change in function
72 body after prologue due to alloca, variadic arguments or other shenanigans.
73 If that is the case in the caller frame, then PREV_SP will point to SP at
74 the moment of function call, but it will be different from SP value at the
75 end of the caller prologue. As a result it will not be possible to
76 reconstruct caller's frame and go past it in the backtrace. Those things
77 are unlikely to happen to FP - FP value at the moment of function call (as
78 stored on stack in callee prologue) is also an FP value at the end of the
79 caller's prologue. */
81 LONGEST frame_base_offset;
83 /* Store addresses for registers saved in prologue. During prologue analysis
84 GDB stores offsets relatively to "old SP", then after old SP is evaluated,
85 offsets are replaced with absolute addresses. */
86 trad_frame_saved_reg *saved_regs;
89 /* Global debug flag. */
91 bool arc_debug;
93 /* List of "maintenance print arc" commands. */
95 static struct cmd_list_element *maintenance_print_arc_list = NULL;
97 /* A set of registers that we expect to find in a tdesc_feature. These
98 are used in ARC_TDESC_INIT when processing the target description. */
100 struct arc_register_feature
102 /* Information for a single register. */
103 struct register_info
105 /* The GDB register number for this register. */
106 int regnum;
108 /* List of names for this register. The first name in this list is the
109 preferred name, the name GDB will use when describing this register. */
110 std::vector<const char *> names;
112 /* When true, this register must be present in this feature set. */
113 bool required_p;
116 /* The name for this feature. This is the name used to find this feature
117 within the target description. */
118 const char *name;
120 /* List of all the registers that we expect to encounter in this register
121 set. */
122 std::vector<struct register_info> registers;
125 /* Obsolete feature names for backward compatibility. */
126 static const char *ARC_CORE_V1_OBSOLETE_FEATURE_NAME
127 = "org.gnu.gdb.arc.core.arcompact";
128 static const char *ARC_CORE_V2_OBSOLETE_FEATURE_NAME
129 = "org.gnu.gdb.arc.core.v2";
130 static const char *ARC_CORE_V2_REDUCED_OBSOLETE_FEATURE_NAME
131 = "org.gnu.gdb.arc.core-reduced.v2";
132 static const char *ARC_AUX_OBSOLETE_FEATURE_NAME
133 = "org.gnu.gdb.arc.aux-minimal";
134 /* Modern feature names. */
135 static const char *ARC_CORE_FEATURE_NAME = "org.gnu.gdb.arc.core";
136 static const char *ARC_AUX_FEATURE_NAME = "org.gnu.gdb.arc.aux";
138 /* ARCv1 (ARC600, ARC601, ARC700) general core registers feature set.
139 See also arc_update_acc_reg_names() for "accl/acch" names. */
141 static struct arc_register_feature arc_v1_core_reg_feature =
143 ARC_CORE_FEATURE_NAME,
145 { ARC_R0_REGNUM + 0, { "r0" }, true },
146 { ARC_R0_REGNUM + 1, { "r1" }, true },
147 { ARC_R0_REGNUM + 2, { "r2" }, true },
148 { ARC_R0_REGNUM + 3, { "r3" }, true },
149 { ARC_R0_REGNUM + 4, { "r4" }, false },
150 { ARC_R0_REGNUM + 5, { "r5" }, false },
151 { ARC_R0_REGNUM + 6, { "r6" }, false },
152 { ARC_R0_REGNUM + 7, { "r7" }, false },
153 { ARC_R0_REGNUM + 8, { "r8" }, false },
154 { ARC_R0_REGNUM + 9, { "r9" }, false },
155 { ARC_R0_REGNUM + 10, { "r10" }, true },
156 { ARC_R0_REGNUM + 11, { "r11" }, true },
157 { ARC_R0_REGNUM + 12, { "r12" }, true },
158 { ARC_R0_REGNUM + 13, { "r13" }, true },
159 { ARC_R0_REGNUM + 14, { "r14" }, true },
160 { ARC_R0_REGNUM + 15, { "r15" }, true },
161 { ARC_R0_REGNUM + 16, { "r16" }, false },
162 { ARC_R0_REGNUM + 17, { "r17" }, false },
163 { ARC_R0_REGNUM + 18, { "r18" }, false },
164 { ARC_R0_REGNUM + 19, { "r19" }, false },
165 { ARC_R0_REGNUM + 20, { "r20" }, false },
166 { ARC_R0_REGNUM + 21, { "r21" }, false },
167 { ARC_R0_REGNUM + 22, { "r22" }, false },
168 { ARC_R0_REGNUM + 23, { "r23" }, false },
169 { ARC_R0_REGNUM + 24, { "r24" }, false },
170 { ARC_R0_REGNUM + 25, { "r25" }, false },
171 { ARC_R0_REGNUM + 26, { "gp" }, true },
172 { ARC_R0_REGNUM + 27, { "fp" }, true },
173 { ARC_R0_REGNUM + 28, { "sp" }, true },
174 { ARC_R0_REGNUM + 29, { "ilink1" }, false },
175 { ARC_R0_REGNUM + 30, { "ilink2" }, false },
176 { ARC_R0_REGNUM + 31, { "blink" }, true },
177 { ARC_R0_REGNUM + 32, { "r32" }, false },
178 { ARC_R0_REGNUM + 33, { "r33" }, false },
179 { ARC_R0_REGNUM + 34, { "r34" }, false },
180 { ARC_R0_REGNUM + 35, { "r35" }, false },
181 { ARC_R0_REGNUM + 36, { "r36" }, false },
182 { ARC_R0_REGNUM + 37, { "r37" }, false },
183 { ARC_R0_REGNUM + 38, { "r38" }, false },
184 { ARC_R0_REGNUM + 39, { "r39" }, false },
185 { ARC_R0_REGNUM + 40, { "r40" }, false },
186 { ARC_R0_REGNUM + 41, { "r41" }, false },
187 { ARC_R0_REGNUM + 42, { "r42" }, false },
188 { ARC_R0_REGNUM + 43, { "r43" }, false },
189 { ARC_R0_REGNUM + 44, { "r44" }, false },
190 { ARC_R0_REGNUM + 45, { "r45" }, false },
191 { ARC_R0_REGNUM + 46, { "r46" }, false },
192 { ARC_R0_REGNUM + 47, { "r47" }, false },
193 { ARC_R0_REGNUM + 48, { "r48" }, false },
194 { ARC_R0_REGNUM + 49, { "r49" }, false },
195 { ARC_R0_REGNUM + 50, { "r50" }, false },
196 { ARC_R0_REGNUM + 51, { "r51" }, false },
197 { ARC_R0_REGNUM + 52, { "r52" }, false },
198 { ARC_R0_REGNUM + 53, { "r53" }, false },
199 { ARC_R0_REGNUM + 54, { "r54" }, false },
200 { ARC_R0_REGNUM + 55, { "r55" }, false },
201 { ARC_R0_REGNUM + 56, { "r56" }, false },
202 { ARC_R0_REGNUM + 57, { "r57" }, false },
203 { ARC_R0_REGNUM + 58, { "r58", "accl" }, false },
204 { ARC_R0_REGNUM + 59, { "r59", "acch" }, false },
205 { ARC_R0_REGNUM + 60, { "lp_count" }, false },
206 { ARC_R0_REGNUM + 61, { "reserved" }, false },
207 { ARC_R0_REGNUM + 62, { "limm" }, false },
208 { ARC_R0_REGNUM + 63, { "pcl" }, true }
212 /* ARCv2 (ARCHS) general core registers feature set. See also
213 arc_update_acc_reg_names() for "accl/acch" names. */
215 static struct arc_register_feature arc_v2_core_reg_feature =
217 ARC_CORE_FEATURE_NAME,
219 { ARC_R0_REGNUM + 0, { "r0" }, true },
220 { ARC_R0_REGNUM + 1, { "r1" }, true },
221 { ARC_R0_REGNUM + 2, { "r2" }, true },
222 { ARC_R0_REGNUM + 3, { "r3" }, true },
223 { ARC_R0_REGNUM + 4, { "r4" }, false },
224 { ARC_R0_REGNUM + 5, { "r5" }, false },
225 { ARC_R0_REGNUM + 6, { "r6" }, false },
226 { ARC_R0_REGNUM + 7, { "r7" }, false },
227 { ARC_R0_REGNUM + 8, { "r8" }, false },
228 { ARC_R0_REGNUM + 9, { "r9" }, false },
229 { ARC_R0_REGNUM + 10, { "r10" }, true },
230 { ARC_R0_REGNUM + 11, { "r11" }, true },
231 { ARC_R0_REGNUM + 12, { "r12" }, true },
232 { ARC_R0_REGNUM + 13, { "r13" }, true },
233 { ARC_R0_REGNUM + 14, { "r14" }, true },
234 { ARC_R0_REGNUM + 15, { "r15" }, true },
235 { ARC_R0_REGNUM + 16, { "r16" }, false },
236 { ARC_R0_REGNUM + 17, { "r17" }, false },
237 { ARC_R0_REGNUM + 18, { "r18" }, false },
238 { ARC_R0_REGNUM + 19, { "r19" }, false },
239 { ARC_R0_REGNUM + 20, { "r20" }, false },
240 { ARC_R0_REGNUM + 21, { "r21" }, false },
241 { ARC_R0_REGNUM + 22, { "r22" }, false },
242 { ARC_R0_REGNUM + 23, { "r23" }, false },
243 { ARC_R0_REGNUM + 24, { "r24" }, false },
244 { ARC_R0_REGNUM + 25, { "r25" }, false },
245 { ARC_R0_REGNUM + 26, { "gp" }, true },
246 { ARC_R0_REGNUM + 27, { "fp" }, true },
247 { ARC_R0_REGNUM + 28, { "sp" }, true },
248 { ARC_R0_REGNUM + 29, { "ilink" }, false },
249 { ARC_R0_REGNUM + 30, { "r30" }, true },
250 { ARC_R0_REGNUM + 31, { "blink" }, true },
251 { ARC_R0_REGNUM + 32, { "r32" }, false },
252 { ARC_R0_REGNUM + 33, { "r33" }, false },
253 { ARC_R0_REGNUM + 34, { "r34" }, false },
254 { ARC_R0_REGNUM + 35, { "r35" }, false },
255 { ARC_R0_REGNUM + 36, { "r36" }, false },
256 { ARC_R0_REGNUM + 37, { "r37" }, false },
257 { ARC_R0_REGNUM + 38, { "r38" }, false },
258 { ARC_R0_REGNUM + 39, { "r39" }, false },
259 { ARC_R0_REGNUM + 40, { "r40" }, false },
260 { ARC_R0_REGNUM + 41, { "r41" }, false },
261 { ARC_R0_REGNUM + 42, { "r42" }, false },
262 { ARC_R0_REGNUM + 43, { "r43" }, false },
263 { ARC_R0_REGNUM + 44, { "r44" }, false },
264 { ARC_R0_REGNUM + 45, { "r45" }, false },
265 { ARC_R0_REGNUM + 46, { "r46" }, false },
266 { ARC_R0_REGNUM + 47, { "r47" }, false },
267 { ARC_R0_REGNUM + 48, { "r48" }, false },
268 { ARC_R0_REGNUM + 49, { "r49" }, false },
269 { ARC_R0_REGNUM + 50, { "r50" }, false },
270 { ARC_R0_REGNUM + 51, { "r51" }, false },
271 { ARC_R0_REGNUM + 52, { "r52" }, false },
272 { ARC_R0_REGNUM + 53, { "r53" }, false },
273 { ARC_R0_REGNUM + 54, { "r54" }, false },
274 { ARC_R0_REGNUM + 55, { "r55" }, false },
275 { ARC_R0_REGNUM + 56, { "r56" }, false },
276 { ARC_R0_REGNUM + 57, { "r57" }, false },
277 { ARC_R0_REGNUM + 58, { "r58", "accl" }, false },
278 { ARC_R0_REGNUM + 59, { "r59", "acch" }, false },
279 { ARC_R0_REGNUM + 60, { "lp_count" }, false },
280 { ARC_R0_REGNUM + 61, { "reserved" }, false },
281 { ARC_R0_REGNUM + 62, { "limm" }, false },
282 { ARC_R0_REGNUM + 63, { "pcl" }, true }
286 /* The common auxiliary registers feature set. The REGNUM field
287 must match the ARC_REGNUM enum in arc-tdep.h. */
289 static const struct arc_register_feature arc_common_aux_reg_feature =
291 ARC_AUX_FEATURE_NAME,
293 { ARC_FIRST_AUX_REGNUM + 0, { "pc" }, true },
294 { ARC_FIRST_AUX_REGNUM + 1, { "status32" }, true },
295 { ARC_FIRST_AUX_REGNUM + 2, { "lp_start" }, false },
296 { ARC_FIRST_AUX_REGNUM + 3, { "lp_end" }, false },
297 { ARC_FIRST_AUX_REGNUM + 4, { "bta" }, false }
301 static char *arc_disassembler_options = NULL;
303 /* Functions are sorted in the order as they are used in the
304 _initialize_arc_tdep (), which uses the same order as gdbarch.h. Static
305 functions are defined before the first invocation. */
307 /* Returns an unsigned value of OPERAND_NUM in instruction INSN.
308 For relative branch instructions returned value is an offset, not an actual
309 branch target. */
311 static ULONGEST
312 arc_insn_get_operand_value (const struct arc_instruction &insn,
313 unsigned int operand_num)
315 switch (insn.operands[operand_num].kind)
317 case ARC_OPERAND_KIND_LIMM:
318 gdb_assert (insn.limm_p);
319 return insn.limm_value;
320 case ARC_OPERAND_KIND_SHIMM:
321 return insn.operands[operand_num].value;
322 default:
323 /* Value in instruction is a register number. */
324 struct regcache *regcache = get_current_regcache ();
325 ULONGEST value;
326 regcache_cooked_read_unsigned (regcache,
327 insn.operands[operand_num].value,
328 &value);
329 return value;
333 /* Like arc_insn_get_operand_value, but returns a signed value. */
335 static LONGEST
336 arc_insn_get_operand_value_signed (const struct arc_instruction &insn,
337 unsigned int operand_num)
339 switch (insn.operands[operand_num].kind)
341 case ARC_OPERAND_KIND_LIMM:
342 gdb_assert (insn.limm_p);
343 /* Convert unsigned raw value to signed one. This assumes 2's
344 complement arithmetic, but so is the LONG_MIN value from generic
345 defs.h and that assumption is true for ARC. */
346 gdb_static_assert (sizeof (insn.limm_value) == sizeof (int));
347 return (((LONGEST) insn.limm_value) ^ INT_MIN) - INT_MIN;
348 case ARC_OPERAND_KIND_SHIMM:
349 /* Sign conversion has been done by binutils. */
350 return insn.operands[operand_num].value;
351 default:
352 /* Value in instruction is a register number. */
353 struct regcache *regcache = get_current_regcache ();
354 LONGEST value;
355 regcache_cooked_read_signed (regcache,
356 insn.operands[operand_num].value,
357 &value);
358 return value;
362 /* Get register with base address of memory operation. */
364 static int
365 arc_insn_get_memory_base_reg (const struct arc_instruction &insn)
367 /* POP_S and PUSH_S have SP as an implicit argument in a disassembler. */
368 if (insn.insn_class == PUSH || insn.insn_class == POP)
369 return ARC_SP_REGNUM;
371 gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE);
373 /* Other instructions all have at least two operands: operand 0 is data,
374 operand 1 is address. Operand 2 is offset from address. However, see
375 comment to arc_instruction.operands - in some cases, third operand may be
376 missing, namely if it is 0. */
377 gdb_assert (insn.operands_count >= 2);
378 return insn.operands[1].value;
381 /* Get offset of a memory operation INSN. */
383 static CORE_ADDR
384 arc_insn_get_memory_offset (const struct arc_instruction &insn)
386 /* POP_S and PUSH_S have offset as an implicit argument in a
387 disassembler. */
388 if (insn.insn_class == POP)
389 return 4;
390 else if (insn.insn_class == PUSH)
391 return -4;
393 gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE);
395 /* Other instructions all have at least two operands: operand 0 is data,
396 operand 1 is address. Operand 2 is offset from address. However, see
397 comment to arc_instruction.operands - in some cases, third operand may be
398 missing, namely if it is 0. */
399 if (insn.operands_count < 3)
400 return 0;
402 CORE_ADDR value = arc_insn_get_operand_value (insn, 2);
403 /* Handle scaling. */
404 if (insn.writeback_mode == ARC_WRITEBACK_AS)
406 /* Byte data size is not valid for AS. Halfword means shift by 1 bit.
407 Word and double word means shift by 2 bits. */
408 gdb_assert (insn.data_size_mode != ARC_SCALING_B);
409 if (insn.data_size_mode == ARC_SCALING_H)
410 value <<= 1;
411 else
412 value <<= 2;
414 return value;
417 CORE_ADDR
418 arc_insn_get_branch_target (const struct arc_instruction &insn)
420 gdb_assert (insn.is_control_flow);
422 /* BI [c]: PC = nextPC + (c << 2). */
423 if (insn.insn_class == BI)
425 ULONGEST reg_value = arc_insn_get_operand_value (insn, 0);
426 return arc_insn_get_linear_next_pc (insn) + (reg_value << 2);
428 /* BIH [c]: PC = nextPC + (c << 1). */
429 else if (insn.insn_class == BIH)
431 ULONGEST reg_value = arc_insn_get_operand_value (insn, 0);
432 return arc_insn_get_linear_next_pc (insn) + (reg_value << 1);
434 /* JLI and EI. */
435 /* JLI and EI depend on optional AUX registers. Not supported right now. */
436 else if (insn.insn_class == JLI)
438 gdb_printf (gdb_stderr,
439 "JLI_S instruction is not supported by the GDB.");
440 return 0;
442 else if (insn.insn_class == EI)
444 gdb_printf (gdb_stderr,
445 "EI_S instruction is not supported by the GDB.");
446 return 0;
448 /* LEAVE_S: PC = BLINK. */
449 else if (insn.insn_class == LEAVE)
451 struct regcache *regcache = get_current_regcache ();
452 ULONGEST value;
453 regcache_cooked_read_unsigned (regcache, ARC_BLINK_REGNUM, &value);
454 return value;
456 /* BBIT0/1, BRcc: PC = currentPC + operand. */
457 else if (insn.insn_class == BBIT0 || insn.insn_class == BBIT1
458 || insn.insn_class == BRCC)
460 /* Most instructions has branch target as their sole argument. However
461 conditional brcc/bbit has it as a third operand. */
462 CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 2);
464 /* Offset is relative to the 4-byte aligned address of the current
465 instruction, hence last two bits should be truncated. */
466 return pcrel_addr + align_down (insn.address, 4);
468 /* B, Bcc, BL, BLcc, LP, LPcc: PC = currentPC + operand. */
469 else if (insn.insn_class == BRANCH || insn.insn_class == LOOP)
471 CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 0);
473 /* Offset is relative to the 4-byte aligned address of the current
474 instruction, hence last two bits should be truncated. */
475 return pcrel_addr + align_down (insn.address, 4);
477 /* J, Jcc, JL, JLcc: PC = operand. */
478 else if (insn.insn_class == JUMP)
480 /* All jumps are single-operand. */
481 return arc_insn_get_operand_value (insn, 0);
484 /* This is some new and unknown instruction. */
485 gdb_assert_not_reached ("Unknown branch instruction.");
488 /* Dump INSN into gdb_stdlog. */
490 static void
491 arc_insn_dump (const struct arc_instruction &insn)
493 struct gdbarch *gdbarch = target_gdbarch ();
495 arc_print ("Dumping arc_instruction at %s\n",
496 paddress (gdbarch, insn.address));
497 arc_print ("\tlength = %u\n", insn.length);
499 if (!insn.valid)
501 arc_print ("\tThis is not a valid ARC instruction.\n");
502 return;
505 arc_print ("\tlength_with_limm = %u\n", insn.length + (insn.limm_p ? 4 : 0));
506 arc_print ("\tcc = 0x%x\n", insn.condition_code);
507 arc_print ("\tinsn_class = %u\n", insn.insn_class);
508 arc_print ("\tis_control_flow = %i\n", insn.is_control_flow);
509 arc_print ("\thas_delay_slot = %i\n", insn.has_delay_slot);
511 CORE_ADDR next_pc = arc_insn_get_linear_next_pc (insn);
512 arc_print ("\tlinear_next_pc = %s\n", paddress (gdbarch, next_pc));
514 if (insn.is_control_flow)
516 CORE_ADDR t = arc_insn_get_branch_target (insn);
517 arc_print ("\tbranch_target = %s\n", paddress (gdbarch, t));
520 arc_print ("\tlimm_p = %i\n", insn.limm_p);
521 if (insn.limm_p)
522 arc_print ("\tlimm_value = 0x%08x\n", insn.limm_value);
524 if (insn.insn_class == STORE || insn.insn_class == LOAD
525 || insn.insn_class == PUSH || insn.insn_class == POP)
527 arc_print ("\twriteback_mode = %u\n", insn.writeback_mode);
528 arc_print ("\tdata_size_mode = %u\n", insn.data_size_mode);
529 arc_print ("\tmemory_base_register = %s\n",
530 gdbarch_register_name (gdbarch,
531 arc_insn_get_memory_base_reg (insn)));
532 /* get_memory_offset returns an unsigned CORE_ADDR, but treat it as a
533 LONGEST for a nicer representation. */
534 arc_print ("\taddr_offset = %s\n",
535 plongest (arc_insn_get_memory_offset (insn)));
538 arc_print ("\toperands_count = %u\n", insn.operands_count);
539 for (unsigned int i = 0; i < insn.operands_count; ++i)
541 int is_reg = (insn.operands[i].kind == ARC_OPERAND_KIND_REG);
543 arc_print ("\toperand[%u] = {\n", i);
544 arc_print ("\t\tis_reg = %i\n", is_reg);
545 if (is_reg)
546 arc_print ("\t\tregister = %s\n",
547 gdbarch_register_name (gdbarch, insn.operands[i].value));
548 /* Don't know if this value is signed or not, so print both
549 representations. This tends to look quite ugly, especially for big
550 numbers. */
551 arc_print ("\t\tunsigned value = %s\n",
552 pulongest (arc_insn_get_operand_value (insn, i)));
553 arc_print ("\t\tsigned value = %s\n",
554 plongest (arc_insn_get_operand_value_signed (insn, i)));
555 arc_print ("\t}\n");
559 CORE_ADDR
560 arc_insn_get_linear_next_pc (const struct arc_instruction &insn)
562 /* In ARC long immediate is always 4 bytes. */
563 return (insn.address + insn.length + (insn.limm_p ? 4 : 0));
566 /* Implement the "write_pc" gdbarch method.
568 In ARC PC register is a normal register so in most cases setting PC value
569 is a straightforward process: debugger just writes PC value. However it
570 gets trickier in case when current instruction is an instruction in delay
571 slot. In this case CPU will execute instruction at current PC value, then
572 will set PC to the current value of BTA register; also current instruction
573 cannot be branch/jump and some of the other instruction types. Thus if
574 debugger would try to just change PC value in this case, this instruction
575 will get executed, but then core will "jump" to the original branch target.
577 Whether current instruction is a delay-slot instruction or not is indicated
578 by DE bit in STATUS32 register indicates if current instruction is a delay
579 slot instruction. This bit is writable by debug host, which allows debug
580 host to prevent core from jumping after the delay slot instruction. It
581 also works in another direction: setting this bit will make core to treat
582 any current instructions as a delay slot instruction and to set PC to the
583 current value of BTA register.
585 To workaround issues with changing PC register while in delay slot
586 instruction, debugger should check for the STATUS32.DE bit and reset it if
587 it is set. No other change is required in this function. Most common
588 case, where this function might be required is calling inferior functions
589 from debugger. Generic GDB logic handles this pretty well: current values
590 of registers are stored, value of PC is changed (that is the job of this
591 function), and after inferior function is executed, GDB restores all
592 registers, include BTA and STATUS32, which also means that core is returned
593 to its original state of being halted on delay slot instructions.
595 This method is useless for ARC 600, because it doesn't have externally
596 exposed BTA register. In the case of ARC 600 it is impossible to restore
597 core to its state in all occasions thus core should never be halted (from
598 the perspective of debugger host) in the delay slot. */
600 static void
601 arc_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
603 struct gdbarch *gdbarch = regcache->arch ();
605 arc_debug_printf ("Writing PC, new value=%s",
606 paddress (gdbarch, new_pc));
608 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch),
609 new_pc);
611 ULONGEST status32;
612 regcache_cooked_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
613 &status32);
615 if ((status32 & ARC_STATUS32_DE_MASK) != 0)
617 arc_debug_printf ("Changing PC while in delay slot. Will "
618 "reset STATUS32.DE bit to zero. Value of STATUS32 "
619 "register is 0x%s",
620 phex (status32, ARC_REGISTER_SIZE));
622 /* Reset bit and write to the cache. */
623 status32 &= ~0x40;
624 regcache_cooked_write_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
625 status32);
629 /* Implement the "virtual_frame_pointer" gdbarch method.
631 According to ABI the FP (r27) is used to point to the middle of the current
632 stack frame, just below the saved FP and before local variables, register
633 spill area and outgoing args. However for optimization levels above O2 and
634 in any case in leaf functions, the frame pointer is usually not set at all.
635 The exception being when handling nested functions.
637 We use this function to return a "virtual" frame pointer, marking the start
638 of the current stack frame as a register-offset pair. If the FP is not
639 being used, then it should return SP, with an offset of the frame size.
641 The current implementation doesn't actually know the frame size, nor
642 whether the FP is actually being used, so for now we just return SP and an
643 offset of zero. This is no worse than other architectures, but is needed
644 to avoid assertion failures.
646 TODO: Can we determine the frame size to get a correct offset?
648 PC is a program counter where we need the virtual FP. REG_PTR is the base
649 register used for the virtual FP. OFFSET_PTR is the offset used for the
650 virtual FP. */
652 static void
653 arc_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
654 int *reg_ptr, LONGEST *offset_ptr)
656 *reg_ptr = gdbarch_sp_regnum (gdbarch);
657 *offset_ptr = 0;
660 /* Implement the "push_dummy_call" gdbarch method.
662 Stack Frame Layout
664 This shows the layout of the stack frame for the general case of a
665 function call; a given function might not have a variable number of
666 arguments or local variables, or might not save any registers, so it would
667 not have the corresponding frame areas. Additionally, a leaf function
668 (i.e. one which calls no other functions) does not need to save the
669 contents of the BLINK register (which holds its return address), and a
670 function might not have a frame pointer.
672 The stack grows downward, so SP points below FP in memory; SP always
673 points to the last used word on the stack, not the first one.
675 | | |
676 | arg word N | | caller's
677 | : | | frame
678 | arg word 10 | |
679 | arg word 9 | |
680 old SP ---> +-----------------------+ --+
681 | | |
682 | callee-saved | |
683 | registers | |
684 | including fp, blink | |
685 | | | callee's
686 new FP ---> +-----------------------+ | frame
687 | | |
688 | local | |
689 | variables | |
690 | | |
691 | register | |
692 | spill area | |
693 | | |
694 | outgoing args | |
695 | | |
696 new SP ---> +-----------------------+ --+
698 | unused |
703 downwards
705 The list of arguments to be passed to a function is considered to be a
706 sequence of _N_ words (as though all the parameters were stored in order in
707 memory with each parameter occupying an integral number of words). Words
708 1..8 are passed in registers 0..7; if the function has more than 8 words of
709 arguments then words 9..@em N are passed on the stack in the caller's frame.
711 If the function has a variable number of arguments, e.g. it has a form such
712 as `function (p1, p2, ...);' and _P_ words are required to hold the values
713 of the named parameters (which are passed in registers 0..@em P -1), then
714 the remaining 8 - _P_ words passed in registers _P_..7 are spilled into the
715 top of the frame so that the anonymous parameter words occupy a continuous
716 region.
718 Any arguments are already in target byte order. We just need to store
719 them!
721 BP_ADDR is the return address where breakpoint must be placed. NARGS is
722 the number of arguments to the function. ARGS is the arguments values (in
723 target byte order). SP is the Current value of SP register. STRUCT_RETURN
724 is TRUE if structures are returned by the function. STRUCT_ADDR is the
725 hidden address for returning a struct. Returns SP of a new frame. */
727 static CORE_ADDR
728 arc_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
729 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
730 struct value **args, CORE_ADDR sp,
731 function_call_return_method return_method,
732 CORE_ADDR struct_addr)
734 arc_debug_printf ("nargs = %d", nargs);
736 int arg_reg = ARC_FIRST_ARG_REGNUM;
738 /* Push the return address. */
739 regcache_cooked_write_unsigned (regcache, ARC_BLINK_REGNUM, bp_addr);
741 /* Are we returning a value using a structure return instead of a normal
742 value return? If so, struct_addr is the address of the reserved space for
743 the return structure to be written on the stack, and that address is
744 passed to that function as a hidden first argument. */
745 if (return_method == return_method_struct)
747 /* Pass the return address in the first argument register. */
748 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
750 arc_debug_printf ("struct return address %s passed in R%d",
751 print_core_address (gdbarch, struct_addr), arg_reg);
753 arg_reg++;
756 if (nargs > 0)
758 unsigned int total_space = 0;
760 /* How much space do the arguments occupy in total? Must round each
761 argument's size up to an integral number of words. */
762 for (int i = 0; i < nargs; i++)
764 unsigned int len = TYPE_LENGTH (value_type (args[i]));
765 unsigned int space = align_up (len, 4);
767 total_space += space;
769 arc_debug_printf ("arg %d: %u bytes -> %u", i, len, space);
772 /* Allocate a buffer to hold a memory image of the arguments. */
773 gdb_byte *memory_image = XCNEWVEC (gdb_byte, total_space);
775 /* Now copy all of the arguments into the buffer, correctly aligned. */
776 gdb_byte *data = memory_image;
777 for (int i = 0; i < nargs; i++)
779 unsigned int len = TYPE_LENGTH (value_type (args[i]));
780 unsigned int space = align_up (len, 4);
782 memcpy (data, value_contents (args[i]).data (), (size_t) len);
783 arc_debug_printf ("copying arg %d, val 0x%08x, len %d to mem",
784 i, *((int *) value_contents (args[i]).data ()),
785 len);
787 data += space;
790 /* Now load as much as possible of the memory image into registers. */
791 data = memory_image;
792 while (arg_reg <= ARC_LAST_ARG_REGNUM)
794 arc_debug_printf ("passing 0x%02x%02x%02x%02x in register R%d",
795 data[0], data[1], data[2], data[3], arg_reg);
797 /* Note we don't use write_unsigned here, since that would convert
798 the byte order, but we are already in the correct byte order. */
799 regcache->cooked_write (arg_reg, data);
801 data += ARC_REGISTER_SIZE;
802 total_space -= ARC_REGISTER_SIZE;
804 /* All the data is now in registers. */
805 if (total_space == 0)
806 break;
808 arg_reg++;
811 /* If there is any data left, push it onto the stack (in a single write
812 operation). */
813 if (total_space > 0)
815 arc_debug_printf ("passing %d bytes on stack\n", total_space);
817 sp -= total_space;
818 write_memory (sp, data, (int) total_space);
821 xfree (memory_image);
824 /* Finally, update the SP register. */
825 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
827 return sp;
830 /* Implement the "push_dummy_code" gdbarch method.
832 We don't actually push any code. We just identify where a breakpoint can
833 be inserted to which we are can return and the resume address where we
834 should be called.
836 ARC does not necessarily have an executable stack, so we can't put the
837 return breakpoint there. Instead we put it at the entry point of the
838 function. This means the SP is unchanged.
840 SP is a current stack pointer FUNADDR is an address of the function to be
841 called. ARGS is arguments to pass. NARGS is a number of args to pass.
842 VALUE_TYPE is a type of value returned. REAL_PC is a resume address when
843 the function is called. BP_ADDR is an address where breakpoint should be
844 set. Returns the updated stack pointer. */
846 static CORE_ADDR
847 arc_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
848 struct value **args, int nargs, struct type *value_type,
849 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
850 struct regcache *regcache)
852 *real_pc = funaddr;
853 *bp_addr = entry_point_address ();
854 return sp;
857 /* Implement the "cannot_fetch_register" gdbarch method. */
859 static int
860 arc_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
862 /* Assume that register is readable if it is unknown. LIMM and RESERVED are
863 not real registers, but specific register numbers. They are available as
864 regnums to align architectural register numbers with GDB internal regnums,
865 but they shouldn't appear in target descriptions generated by
866 GDB-servers. */
867 switch (regnum)
869 case ARC_RESERVED_REGNUM:
870 case ARC_LIMM_REGNUM:
871 return true;
872 default:
873 return false;
877 /* Implement the "cannot_store_register" gdbarch method. */
879 static int
880 arc_cannot_store_register (struct gdbarch *gdbarch, int regnum)
882 /* Assume that register is writable if it is unknown. See comment in
883 arc_cannot_fetch_register about LIMM and RESERVED. */
884 switch (regnum)
886 case ARC_RESERVED_REGNUM:
887 case ARC_LIMM_REGNUM:
888 case ARC_PCL_REGNUM:
889 return true;
890 default:
891 return false;
895 /* Get the return value of a function from the registers/memory used to
896 return it, according to the convention used by the ABI - 4-bytes values are
897 in the R0, while 8-byte values are in the R0-R1.
899 TODO: This implementation ignores the case of "complex double", where
900 according to ABI, value is returned in the R0-R3 registers.
902 TYPE is a returned value's type. VALBUF is a buffer for the returned
903 value. */
905 static void
906 arc_extract_return_value (struct gdbarch *gdbarch, struct type *type,
907 struct regcache *regcache, gdb_byte *valbuf)
909 unsigned int len = TYPE_LENGTH (type);
911 arc_debug_printf ("called");
913 if (len <= ARC_REGISTER_SIZE)
915 ULONGEST val;
917 /* Get the return value from one register. */
918 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &val);
919 store_unsigned_integer (valbuf, (int) len,
920 gdbarch_byte_order (gdbarch), val);
922 arc_debug_printf ("returning 0x%s", phex (val, ARC_REGISTER_SIZE));
924 else if (len <= ARC_REGISTER_SIZE * 2)
926 ULONGEST low, high;
928 /* Get the return value from two registers. */
929 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &low);
930 regcache_cooked_read_unsigned (regcache, ARC_R1_REGNUM, &high);
932 store_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
933 gdbarch_byte_order (gdbarch), low);
934 store_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
935 (int) len - ARC_REGISTER_SIZE,
936 gdbarch_byte_order (gdbarch), high);
938 arc_debug_printf ("returning 0x%s%s",
939 phex (high, ARC_REGISTER_SIZE),
940 phex (low, ARC_REGISTER_SIZE));
942 else
943 error (_("arc: extract_return_value: type length %u too large"), len);
947 /* Store the return value of a function into the registers/memory used to
948 return it, according to the convention used by the ABI.
950 TODO: This implementation ignores the case of "complex double", where
951 according to ABI, value is returned in the R0-R3 registers.
953 TYPE is a returned value's type. VALBUF is a buffer with the value to
954 return. */
956 static void
957 arc_store_return_value (struct gdbarch *gdbarch, struct type *type,
958 struct regcache *regcache, const gdb_byte *valbuf)
960 unsigned int len = TYPE_LENGTH (type);
962 arc_debug_printf ("called");
964 if (len <= ARC_REGISTER_SIZE)
966 ULONGEST val;
968 /* Put the return value into one register. */
969 val = extract_unsigned_integer (valbuf, (int) len,
970 gdbarch_byte_order (gdbarch));
971 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, val);
973 arc_debug_printf ("storing 0x%s", phex (val, ARC_REGISTER_SIZE));
975 else if (len <= ARC_REGISTER_SIZE * 2)
977 ULONGEST low, high;
979 /* Put the return value into two registers. */
980 low = extract_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
981 gdbarch_byte_order (gdbarch));
982 high = extract_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
983 (int) len - ARC_REGISTER_SIZE,
984 gdbarch_byte_order (gdbarch));
986 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, low);
987 regcache_cooked_write_unsigned (regcache, ARC_R1_REGNUM, high);
989 arc_debug_printf ("storing 0x%s%s",
990 phex (high, ARC_REGISTER_SIZE),
991 phex (low, ARC_REGISTER_SIZE));
993 else
994 error (_("arc_store_return_value: type length too large."));
997 /* Implement the "get_longjmp_target" gdbarch method. */
999 static int
1000 arc_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1002 arc_debug_printf ("called");
1004 struct gdbarch *gdbarch = get_frame_arch (frame);
1005 arc_gdbarch_tdep *tdep = gdbarch_tdep<arc_gdbarch_tdep> (gdbarch);
1006 int pc_offset = tdep->jb_pc * ARC_REGISTER_SIZE;
1007 gdb_byte buf[ARC_REGISTER_SIZE];
1008 CORE_ADDR jb_addr = get_frame_register_unsigned (frame, ARC_FIRST_ARG_REGNUM);
1010 if (target_read_memory (jb_addr + pc_offset, buf, ARC_REGISTER_SIZE))
1011 return 0; /* Failed to read from memory. */
1013 *pc = extract_unsigned_integer (buf, ARC_REGISTER_SIZE,
1014 gdbarch_byte_order (gdbarch));
1015 return 1;
1018 /* Implement the "return_value" gdbarch method. */
1020 static enum return_value_convention
1021 arc_return_value (struct gdbarch *gdbarch, struct value *function,
1022 struct type *valtype, struct regcache *regcache,
1023 gdb_byte *readbuf, const gdb_byte *writebuf)
1025 /* If the return type is a struct, or a union, or would occupy more than two
1026 registers, the ABI uses the "struct return convention": the calling
1027 function passes a hidden first parameter to the callee (in R0). That
1028 parameter is the address at which the value being returned should be
1029 stored. Otherwise, the result is returned in registers. */
1030 int is_struct_return = (valtype->code () == TYPE_CODE_STRUCT
1031 || valtype->code () == TYPE_CODE_UNION
1032 || TYPE_LENGTH (valtype) > 2 * ARC_REGISTER_SIZE);
1034 arc_debug_printf ("readbuf = %s, writebuf = %s",
1035 host_address_to_string (readbuf),
1036 host_address_to_string (writebuf));
1038 if (writebuf != NULL)
1040 /* Case 1. GDB should not ask us to set a struct return value: it
1041 should know the struct return location and write the value there
1042 itself. */
1043 gdb_assert (!is_struct_return);
1044 arc_store_return_value (gdbarch, valtype, regcache, writebuf);
1046 else if (readbuf != NULL)
1048 /* Case 2. GDB should not ask us to get a struct return value: it
1049 should know the struct return location and read the value from there
1050 itself. */
1051 gdb_assert (!is_struct_return);
1052 arc_extract_return_value (gdbarch, valtype, regcache, readbuf);
1055 return (is_struct_return
1056 ? RETURN_VALUE_STRUCT_CONVENTION
1057 : RETURN_VALUE_REGISTER_CONVENTION);
1060 /* Return the base address of the frame. For ARC, the base address is the
1061 frame pointer. */
1063 static CORE_ADDR
1064 arc_frame_base_address (struct frame_info *this_frame, void **prologue_cache)
1066 return (CORE_ADDR) get_frame_register_unsigned (this_frame, ARC_FP_REGNUM);
1069 /* Helper function that returns valid pv_t for an instruction operand:
1070 either a register or a constant. */
1072 static pv_t
1073 arc_pv_get_operand (pv_t *regs, const struct arc_instruction &insn, int operand)
1075 if (insn.operands[operand].kind == ARC_OPERAND_KIND_REG)
1076 return regs[insn.operands[operand].value];
1077 else
1078 return pv_constant (arc_insn_get_operand_value (insn, operand));
1081 /* Determine whether the given disassembled instruction may be part of a
1082 function prologue. If it is, the information in the frame unwind cache will
1083 be updated. */
1085 static bool
1086 arc_is_in_prologue (struct gdbarch *gdbarch, const struct arc_instruction &insn,
1087 pv_t *regs, struct pv_area *stack)
1089 /* It might be that currently analyzed address doesn't contain an
1090 instruction, hence INSN is not valid. It likely means that address points
1091 to a data, non-initialized memory, or middle of a 32-bit instruction. In
1092 practice this may happen if GDB connects to a remote target that has
1093 non-zeroed memory. GDB would read PC value and would try to analyze
1094 prologue, but there is no guarantee that memory contents at the address
1095 specified in PC is address is a valid instruction. There is not much that
1096 that can be done about that. */
1097 if (!insn.valid)
1098 return false;
1100 /* Branch/jump or a predicated instruction. */
1101 if (insn.is_control_flow || insn.condition_code != ARC_CC_AL)
1102 return false;
1104 /* Store of some register. May or may not update base address register. */
1105 if (insn.insn_class == STORE || insn.insn_class == PUSH)
1107 /* There is definitely at least one operand - register/value being
1108 stored. */
1109 gdb_assert (insn.operands_count > 0);
1111 /* Store at some constant address. */
1112 if (insn.operands_count > 1
1113 && insn.operands[1].kind != ARC_OPERAND_KIND_REG)
1114 return false;
1116 /* Writeback modes:
1117 Mode Address used Writeback value
1118 --------------------------------------------------
1119 No reg + offset no
1120 A/AW reg + offset reg + offset
1121 AB reg reg + offset
1122 AS reg + (offset << scaling) no
1124 "PUSH reg" is an alias to "ST.AW reg, [SP, -4]" encoding. However
1125 16-bit PUSH_S is a distinct instruction encoding, where offset and
1126 base register are implied through opcode. */
1128 /* Register with base memory address. */
1129 int base_reg = arc_insn_get_memory_base_reg (insn);
1131 /* Address where to write. arc_insn_get_memory_offset returns scaled
1132 value for ARC_WRITEBACK_AS. */
1133 pv_t addr;
1134 if (insn.writeback_mode == ARC_WRITEBACK_AB)
1135 addr = regs[base_reg];
1136 else
1137 addr = pv_add_constant (regs[base_reg],
1138 arc_insn_get_memory_offset (insn));
1140 if (stack->store_would_trash (addr))
1141 return false;
1143 if (insn.data_size_mode != ARC_SCALING_D)
1145 /* Find the value being stored. */
1146 pv_t store_value = arc_pv_get_operand (regs, insn, 0);
1148 /* What is the size of a the stored value? */
1149 CORE_ADDR size;
1150 if (insn.data_size_mode == ARC_SCALING_B)
1151 size = 1;
1152 else if (insn.data_size_mode == ARC_SCALING_H)
1153 size = 2;
1154 else
1155 size = ARC_REGISTER_SIZE;
1157 stack->store (addr, size, store_value);
1159 else
1161 if (insn.operands[0].kind == ARC_OPERAND_KIND_REG)
1163 /* If this is a double store, than write N+1 register as well. */
1164 pv_t store_value1 = regs[insn.operands[0].value];
1165 pv_t store_value2 = regs[insn.operands[0].value + 1];
1166 stack->store (addr, ARC_REGISTER_SIZE, store_value1);
1167 stack->store (pv_add_constant (addr, ARC_REGISTER_SIZE),
1168 ARC_REGISTER_SIZE, store_value2);
1170 else
1172 pv_t store_value
1173 = pv_constant (arc_insn_get_operand_value (insn, 0));
1174 stack->store (addr, ARC_REGISTER_SIZE * 2, store_value);
1178 /* Is base register updated? */
1179 if (insn.writeback_mode == ARC_WRITEBACK_A
1180 || insn.writeback_mode == ARC_WRITEBACK_AB)
1181 regs[base_reg] = pv_add_constant (regs[base_reg],
1182 arc_insn_get_memory_offset (insn));
1184 return true;
1186 else if (insn.insn_class == MOVE)
1188 gdb_assert (insn.operands_count == 2);
1190 /* Destination argument can be "0", so nothing will happen. */
1191 if (insn.operands[0].kind == ARC_OPERAND_KIND_REG)
1193 int dst_regnum = insn.operands[0].value;
1194 regs[dst_regnum] = arc_pv_get_operand (regs, insn, 1);
1196 return true;
1198 else if (insn.insn_class == SUB)
1200 gdb_assert (insn.operands_count == 3);
1202 /* SUB 0,b,c. */
1203 if (insn.operands[0].kind != ARC_OPERAND_KIND_REG)
1204 return true;
1206 int dst_regnum = insn.operands[0].value;
1207 regs[dst_regnum] = pv_subtract (arc_pv_get_operand (regs, insn, 1),
1208 arc_pv_get_operand (regs, insn, 2));
1209 return true;
1211 else if (insn.insn_class == ENTER)
1213 /* ENTER_S is a prologue-in-instruction - it saves all callee-saved
1214 registers according to given arguments thus greatly reducing code
1215 size. Which registers will be actually saved depends on arguments.
1217 ENTER_S {R13-...,FP,BLINK} stores registers in following order:
1219 new SP ->
1220 BLINK
1226 old SP ->
1228 There are up to three arguments for this opcode, as presented by ARC
1229 disassembler:
1230 1) amount of general-purpose registers to be saved - this argument is
1231 always present even when it is 0;
1232 2) FP register number (27) if FP has to be stored, otherwise argument
1233 is not present;
1234 3) BLINK register number (31) if BLINK has to be stored, otherwise
1235 argument is not present. If both FP and BLINK are stored, then FP
1236 is present before BLINK in argument list. */
1237 gdb_assert (insn.operands_count > 0);
1239 int regs_saved = arc_insn_get_operand_value (insn, 0);
1241 bool is_fp_saved;
1242 if (insn.operands_count > 1)
1243 is_fp_saved = (insn.operands[1].value == ARC_FP_REGNUM);
1244 else
1245 is_fp_saved = false;
1247 bool is_blink_saved;
1248 if (insn.operands_count > 1)
1249 is_blink_saved = (insn.operands[insn.operands_count - 1].value
1250 == ARC_BLINK_REGNUM);
1251 else
1252 is_blink_saved = false;
1254 /* Amount of bytes to be allocated to store specified registers. */
1255 CORE_ADDR st_size = ((regs_saved + is_fp_saved + is_blink_saved)
1256 * ARC_REGISTER_SIZE);
1257 pv_t new_sp = pv_add_constant (regs[ARC_SP_REGNUM], -st_size);
1259 /* Assume that if the last register (closest to new SP) can be written,
1260 then it is possible to write all of them. */
1261 if (stack->store_would_trash (new_sp))
1262 return false;
1264 /* Current store address. */
1265 pv_t addr = regs[ARC_SP_REGNUM];
1267 if (is_fp_saved)
1269 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
1270 stack->store (addr, ARC_REGISTER_SIZE, regs[ARC_FP_REGNUM]);
1273 /* Registers are stored in backward order: from GP (R26) to R13. */
1274 for (int i = ARC_R13_REGNUM + regs_saved - 1; i >= ARC_R13_REGNUM; i--)
1276 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
1277 stack->store (addr, ARC_REGISTER_SIZE, regs[i]);
1280 if (is_blink_saved)
1282 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
1283 stack->store (addr, ARC_REGISTER_SIZE,
1284 regs[ARC_BLINK_REGNUM]);
1287 gdb_assert (pv_is_identical (addr, new_sp));
1289 regs[ARC_SP_REGNUM] = new_sp;
1291 if (is_fp_saved)
1292 regs[ARC_FP_REGNUM] = regs[ARC_SP_REGNUM];
1294 return true;
1297 /* Some other architectures, like nds32 or arm, try to continue as far as
1298 possible when building a prologue cache (as opposed to when skipping
1299 prologue), so that cache will be as full as possible. However current
1300 code for ARC doesn't recognize some instructions that may modify SP, like
1301 ADD, AND, OR, etc, hence there is no way to guarantee that SP wasn't
1302 clobbered by the skipped instruction. Potential existence of extension
1303 instruction, which may do anything they want makes this even more complex,
1304 so it is just better to halt on a first unrecognized instruction. */
1306 return false;
1309 /* Analyze the prologue and update the corresponding frame cache for the frame
1310 unwinder for unwinding frames that doesn't have debug info. In such
1311 situation GDB attempts to parse instructions in the prologue to understand
1312 where each register is saved.
1314 If CACHE is not NULL, then it will be filled with information about saved
1315 registers.
1317 There are several variations of prologue which GDB may encounter. "Full"
1318 prologue looks like this:
1320 sub sp,sp,<imm> ; Space for variadic arguments.
1321 push blink ; Store return address.
1322 push r13 ; Store callee saved registers (up to R26/GP).
1323 push r14
1324 push fp ; Store frame pointer.
1325 mov fp,sp ; Update frame pointer.
1326 sub sp,sp,<imm> ; Create space for local vars on the stack.
1328 Depending on compiler options lots of things may change:
1330 1) BLINK is not saved in leaf functions.
1331 2) Frame pointer is not saved and updated if -fomit-frame-pointer is used.
1332 3) 16-bit versions of those instructions may be used.
1333 4) Instead of a sequence of several push'es, compiler may instead prefer to
1334 do one subtract on stack pointer and then store registers using normal
1335 store, that doesn't update SP. Like this:
1338 sub sp,sp,8 ; Create space for callee-saved registers.
1339 st r13,[sp,4] ; Store callee saved registers (up to R26/GP).
1340 st r14,[sp,0]
1342 5) ENTER_S instruction can encode most of prologue sequence in one
1343 instruction (except for those subtracts for variadic arguments and local
1344 variables).
1345 6) GCC may use "millicode" functions from libgcc to store callee-saved
1346 registers with minimal code-size requirements. This function currently
1347 doesn't support this.
1349 ENTRYPOINT is a function entry point where prologue starts.
1351 LIMIT_PC is a maximum possible end address of prologue (meaning address
1352 of first instruction after the prologue). It might also point to the middle
1353 of prologue if execution has been stopped by the breakpoint at this address
1354 - in this case debugger should analyze prologue only up to this address,
1355 because further instructions haven't been executed yet.
1357 Returns address of the first instruction after the prologue. */
1359 static CORE_ADDR
1360 arc_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR entrypoint,
1361 const CORE_ADDR limit_pc, struct arc_frame_cache *cache)
1363 arc_debug_printf ("entrypoint=%s, limit_pc=%s",
1364 paddress (gdbarch, entrypoint),
1365 paddress (gdbarch, limit_pc));
1367 /* Prologue values. Only core registers can be stored. */
1368 pv_t regs[ARC_LAST_CORE_REGNUM + 1];
1369 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1370 regs[i] = pv_register (i, 0);
1371 pv_area stack (ARC_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1373 CORE_ADDR current_prologue_end = entrypoint;
1375 /* Look at each instruction in the prologue. */
1376 while (current_prologue_end < limit_pc)
1378 struct arc_instruction insn;
1380 struct gdb_non_printing_memory_disassembler dis (gdbarch);
1381 arc_insn_decode (current_prologue_end, dis.disasm_info (),
1382 arc_delayed_print_insn, &insn);
1384 if (arc_debug)
1385 arc_insn_dump (insn);
1387 /* If this instruction is in the prologue, fields in the cache will be
1388 updated, and the saved registers mask may be updated. */
1389 if (!arc_is_in_prologue (gdbarch, insn, regs, &stack))
1391 /* Found an instruction that is not in the prologue. */
1392 arc_debug_printf ("End of prologue reached at address %s",
1393 paddress (gdbarch, insn.address));
1394 break;
1397 current_prologue_end = arc_insn_get_linear_next_pc (insn);
1400 if (cache != NULL)
1402 /* Figure out if it is a frame pointer or just a stack pointer. */
1403 if (pv_is_register (regs[ARC_FP_REGNUM], ARC_SP_REGNUM))
1405 cache->frame_base_reg = ARC_FP_REGNUM;
1406 cache->frame_base_offset = -regs[ARC_FP_REGNUM].k;
1408 else
1410 cache->frame_base_reg = ARC_SP_REGNUM;
1411 cache->frame_base_offset = -regs[ARC_SP_REGNUM].k;
1414 /* Assign offset from old SP to all saved registers. */
1415 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1417 CORE_ADDR offset;
1418 if (stack.find_reg (gdbarch, i, &offset))
1419 cache->saved_regs[i].set_addr (offset);
1423 return current_prologue_end;
1426 /* Estimated maximum prologue length in bytes. This should include:
1427 1) Store instruction for each callee-saved register (R25 - R13 + 1)
1428 2) Two instructions for FP
1429 3) One for BLINK
1430 4) Three substract instructions for SP (for variadic args, for
1431 callee saved regs and for local vars) and assuming that those SUB use
1432 long-immediate (hence double length).
1433 5) Stores of arguments registers are considered part of prologue too
1434 (R7 - R1 + 1).
1435 This is quite an extreme case, because even with -O0 GCC will collapse first
1436 two SUBs into one and long immediate values are quite unlikely to appear in
1437 this case, but still better to overshoot a bit - prologue analysis will
1438 anyway stop at the first instruction that doesn't fit prologue, so this
1439 limit will be rarely reached. */
1441 const static int MAX_PROLOGUE_LENGTH
1442 = 4 * (ARC_R25_REGNUM - ARC_R13_REGNUM + 1 + 2 + 1 + 6
1443 + ARC_LAST_ARG_REGNUM - ARC_FIRST_ARG_REGNUM + 1);
1445 /* Implement the "skip_prologue" gdbarch method.
1447 Skip the prologue for the function at PC. This is done by checking from
1448 the line information read from the DWARF, if possible; otherwise, we scan
1449 the function prologue to find its end. */
1451 static CORE_ADDR
1452 arc_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1454 arc_debug_printf ("pc = %s", paddress (gdbarch, pc));
1456 CORE_ADDR func_addr;
1457 const char *func_name;
1459 /* See what the symbol table says. */
1460 if (find_pc_partial_function (pc, &func_name, &func_addr, NULL))
1462 /* Found a function. */
1463 CORE_ADDR postprologue_pc
1464 = skip_prologue_using_sal (gdbarch, func_addr);
1466 if (postprologue_pc != 0)
1467 return std::max (pc, postprologue_pc);
1470 /* No prologue info in symbol table, have to analyze prologue. */
1472 /* Find an upper limit on the function prologue using the debug
1473 information. If there is no debug information about prologue end, then
1474 skip_prologue_using_sal will return 0. */
1475 CORE_ADDR limit_pc = skip_prologue_using_sal (gdbarch, pc);
1477 /* If there is no debug information at all, it is required to give some
1478 semi-arbitrary hard limit on amount of bytes to scan during prologue
1479 analysis. */
1480 if (limit_pc == 0)
1481 limit_pc = pc + MAX_PROLOGUE_LENGTH;
1483 /* Find the address of the first instruction after the prologue by scanning
1484 through it - no other information is needed, so pass NULL as a cache. */
1485 return arc_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1488 /* Implement the "print_insn" gdbarch method.
1490 arc_get_disassembler () may return different functions depending on bfd
1491 type, so it is not possible to pass print_insn directly to
1492 set_gdbarch_print_insn (). Instead this wrapper function is used. It also
1493 may be used by other functions to get disassemble_info for address. It is
1494 important to note, that those print_insn from opcodes always print
1495 instruction to the stream specified in the INFO. If this is not desired,
1496 then either `print_insn` function in INFO should be set to some function
1497 that will not print, or `stream` should be different from standard
1498 gdb_stdlog. */
1501 arc_delayed_print_insn (bfd_vma addr, struct disassemble_info *info)
1503 /* Standard BFD "machine number" field allows libopcodes disassembler to
1504 distinguish ARC 600, 700 and v2 cores, however v2 encompasses both ARC EM
1505 and HS, which have some difference between. There are two ways to specify
1506 what is the target core:
1507 1) via the disassemble_info->disassembler_options;
1508 2) otherwise libopcodes will use private (architecture-specific) ELF
1509 header.
1511 Using disassembler_options is preferable, because it comes directly from
1512 GDBserver which scanned an actual ARC core identification info. However,
1513 not all GDBservers report core architecture, so as a fallback GDB still
1514 should support analysis of ELF header. The libopcodes disassembly code
1515 uses the section to find the BFD and the BFD to find the ELF header,
1516 therefore this function should set disassemble_info->section properly.
1518 disassembler_options was already set by non-target specific code with
1519 proper options obtained via gdbarch_disassembler_options ().
1521 This function might be called multiple times in a sequence, reusing same
1522 disassemble_info. */
1523 if ((info->disassembler_options == NULL) && (info->section == NULL))
1525 struct obj_section *s = find_pc_section (addr);
1526 if (s != NULL)
1527 info->section = s->the_bfd_section;
1530 return default_print_insn (addr, info);
1533 /* Baremetal breakpoint instructions.
1535 ARC supports both big- and little-endian. However, instructions for
1536 little-endian processors are encoded in the middle-endian: half-words are
1537 in big-endian, while bytes inside the half-words are in little-endian; data
1538 is represented in the "normal" little-endian. Big-endian processors treat
1539 data and code identically.
1541 Assuming the number 0x01020304, it will be presented this way:
1543 Address : N N+1 N+2 N+3
1544 little-endian : 0x04 0x03 0x02 0x01
1545 big-endian : 0x01 0x02 0x03 0x04
1546 ARC middle-endian : 0x02 0x01 0x04 0x03
1549 static const gdb_byte arc_brk_s_be[] = { 0x7f, 0xff };
1550 static const gdb_byte arc_brk_s_le[] = { 0xff, 0x7f };
1551 static const gdb_byte arc_brk_be[] = { 0x25, 0x6f, 0x00, 0x3f };
1552 static const gdb_byte arc_brk_le[] = { 0x6f, 0x25, 0x3f, 0x00 };
1554 /* For ARC ELF, breakpoint uses the 16-bit BRK_S instruction, which is 0x7fff
1555 (little endian) or 0xff7f (big endian). We used to insert BRK_S even
1556 instead of 32-bit instructions, which works mostly ok, unless breakpoint is
1557 inserted into delay slot instruction. In this case if branch is taken
1558 BLINK value will be set to address of instruction after delay slot, however
1559 if we replaced 32-bit instruction in delay slot with 16-bit long BRK_S,
1560 then BLINK value will have an invalid value - it will point to the address
1561 after the BRK_S (which was there at the moment of branch execution) while
1562 it should point to the address after the 32-bit long instruction. To avoid
1563 such issues this function disassembles instruction at target location and
1564 evaluates it value.
1566 ARC 600 supports only 16-bit BRK_S.
1568 NB: Baremetal GDB uses BRK[_S], while user-space GDB uses TRAP_S. BRK[_S]
1569 is much better because it doesn't commit unlike TRAP_S, so it can be set in
1570 delay slots; however it cannot be used in user-mode, hence usage of TRAP_S
1571 in GDB for user-space. */
1573 /* Implement the "breakpoint_kind_from_pc" gdbarch method. */
1575 static int
1576 arc_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1578 size_t length_with_limm = gdb_insn_length (gdbarch, *pcptr);
1580 /* Replace 16-bit instruction with BRK_S, replace 32-bit instructions with
1581 BRK. LIMM is part of instruction length, so it can be either 4 or 8
1582 bytes for 32-bit instructions. */
1583 if ((length_with_limm == 4 || length_with_limm == 8)
1584 && !arc_mach_is_arc600 (gdbarch))
1585 return sizeof (arc_brk_le);
1586 else
1587 return sizeof (arc_brk_s_le);
1590 /* Implement the "sw_breakpoint_from_kind" gdbarch method. */
1592 static const gdb_byte *
1593 arc_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1595 gdb_assert (kind == 2 || kind == 4);
1596 *size = kind;
1598 if (kind == sizeof (arc_brk_le))
1600 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1601 ? arc_brk_be
1602 : arc_brk_le);
1604 else
1606 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1607 ? arc_brk_s_be
1608 : arc_brk_s_le);
1612 /* Implement the "frame_align" gdbarch method. */
1614 static CORE_ADDR
1615 arc_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1617 return align_down (sp, 4);
1620 /* Dump the frame info. Used for internal debugging only. */
1622 static void
1623 arc_print_frame_cache (struct gdbarch *gdbarch, const char *message,
1624 struct arc_frame_cache *cache, int addresses_known)
1626 arc_debug_printf ("frame_info %s", message);
1627 arc_debug_printf ("prev_sp = %s", paddress (gdbarch, cache->prev_sp));
1628 arc_debug_printf ("frame_base_reg = %i", cache->frame_base_reg);
1629 arc_debug_printf ("frame_base_offset = %s",
1630 plongest (cache->frame_base_offset));
1632 for (int i = 0; i <= ARC_BLINK_REGNUM; i++)
1634 if (cache->saved_regs[i].is_addr ())
1635 arc_debug_printf ("saved register %s at %s %s",
1636 gdbarch_register_name (gdbarch, i),
1637 (addresses_known) ? "address" : "offset",
1638 paddress (gdbarch, cache->saved_regs[i].addr ()));
1642 /* Frame unwinder for normal frames. */
1644 static struct arc_frame_cache *
1645 arc_make_frame_cache (struct frame_info *this_frame)
1647 arc_debug_printf ("called");
1649 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1651 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1652 CORE_ADDR entrypoint, prologue_end;
1653 if (find_pc_partial_function (block_addr, NULL, &entrypoint, &prologue_end))
1655 struct symtab_and_line sal = find_pc_line (entrypoint, 0);
1656 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1657 if (sal.line == 0)
1658 /* No line info so use current PC. */
1659 prologue_end = prev_pc;
1660 else if (sal.end < prologue_end)
1661 /* The next line begins after the function end. */
1662 prologue_end = sal.end;
1664 prologue_end = std::min (prologue_end, prev_pc);
1666 else
1668 /* If find_pc_partial_function returned nothing then there is no symbol
1669 information at all for this PC. Currently it is assumed in this case
1670 that current PC is entrypoint to function and try to construct the
1671 frame from that. This is, probably, suboptimal, for example ARM
1672 assumes in this case that program is inside the normal frame (with
1673 frame pointer). ARC, perhaps, should try to do the same. */
1674 entrypoint = get_frame_register_unsigned (this_frame,
1675 gdbarch_pc_regnum (gdbarch));
1676 prologue_end = entrypoint + MAX_PROLOGUE_LENGTH;
1679 /* Allocate new frame cache instance and space for saved register info.
1680 FRAME_OBSTACK_ZALLOC will initialize fields to zeroes. */
1681 struct arc_frame_cache *cache
1682 = FRAME_OBSTACK_ZALLOC (struct arc_frame_cache);
1683 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1685 arc_analyze_prologue (gdbarch, entrypoint, prologue_end, cache);
1687 if (arc_debug)
1688 arc_print_frame_cache (gdbarch, "after prologue", cache, false);
1690 CORE_ADDR unwound_fb = get_frame_register_unsigned (this_frame,
1691 cache->frame_base_reg);
1692 if (unwound_fb == 0)
1693 return cache;
1694 cache->prev_sp = unwound_fb + cache->frame_base_offset;
1696 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1698 if (cache->saved_regs[i].is_addr ())
1699 cache->saved_regs[i].set_addr (cache->saved_regs[i].addr ()
1700 + cache->prev_sp);
1703 if (arc_debug)
1704 arc_print_frame_cache (gdbarch, "after previous SP found", cache, true);
1706 return cache;
1709 /* Implement the "this_id" frame_unwind method. */
1711 static void
1712 arc_frame_this_id (struct frame_info *this_frame, void **this_cache,
1713 struct frame_id *this_id)
1715 arc_debug_printf ("called");
1717 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1719 if (*this_cache == NULL)
1720 *this_cache = arc_make_frame_cache (this_frame);
1721 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
1723 CORE_ADDR stack_addr = cache->prev_sp;
1725 /* There are 4 possible situation which decide how frame_id->code_addr is
1726 evaluated:
1728 1) Function is compiled with option -g. Then frame_id will be created
1729 in dwarf_* function and not in this function. NB: even if target
1730 binary is compiled with -g, some std functions like __start and _init
1731 are not, so they still will follow one of the following choices.
1733 2) Function is compiled without -g and binary hasn't been stripped in
1734 any way. In this case GDB still has enough information to evaluate
1735 frame code_addr properly. This case is covered by call to
1736 get_frame_func ().
1738 3) Binary has been striped with option -g (strip debug symbols). In
1739 this case there is still enough symbols for get_frame_func () to work
1740 properly, so this case is also covered by it.
1742 4) Binary has been striped with option -s (strip all symbols). In this
1743 case GDB cannot get function start address properly, so we return current
1744 PC value instead.
1746 CORE_ADDR code_addr = get_frame_func (this_frame);
1747 if (code_addr == 0)
1748 code_addr = get_frame_register_unsigned (this_frame,
1749 gdbarch_pc_regnum (gdbarch));
1751 *this_id = frame_id_build (stack_addr, code_addr);
1754 /* Implement the "prev_register" frame_unwind method. */
1756 static struct value *
1757 arc_frame_prev_register (struct frame_info *this_frame,
1758 void **this_cache, int regnum)
1760 if (*this_cache == NULL)
1761 *this_cache = arc_make_frame_cache (this_frame);
1762 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
1764 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1766 /* If we are asked to unwind the PC, then we need to return BLINK instead:
1767 the saved value of PC points into this frame's function's prologue, not
1768 the next frame's function's resume location. */
1769 if (regnum == gdbarch_pc_regnum (gdbarch))
1770 regnum = ARC_BLINK_REGNUM;
1772 /* SP is a special case - we should return prev_sp, because
1773 trad_frame_get_prev_register will return _current_ SP value.
1774 Alternatively we could have stored cache->prev_sp in the cache->saved
1775 regs, but here we follow the lead of AArch64, ARM and Xtensa and will
1776 leave that logic in this function, instead of prologue analyzers. That I
1777 think is a bit more clear as `saved_regs` should contain saved regs, not
1778 computable.
1780 Because value has been computed, "got_constant" should be used, so that
1781 returned value will be a "not_lval" - immutable. */
1783 if (regnum == gdbarch_sp_regnum (gdbarch))
1784 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1786 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
1789 /* Implement the "init_reg" dwarf2_frame method. */
1791 static void
1792 arc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1793 struct dwarf2_frame_state_reg *reg,
1794 struct frame_info *info)
1796 if (regnum == gdbarch_pc_regnum (gdbarch))
1797 /* The return address column. */
1798 reg->how = DWARF2_FRAME_REG_RA;
1799 else if (regnum == gdbarch_sp_regnum (gdbarch))
1800 /* The call frame address. */
1801 reg->how = DWARF2_FRAME_REG_CFA;
1804 /* Signal trampoline frame unwinder. Allows frame unwinding to happen
1805 from within signal handlers. */
1807 static struct arc_frame_cache *
1808 arc_make_sigtramp_frame_cache (struct frame_info *this_frame)
1810 arc_debug_printf ("called");
1812 gdbarch *arch = get_frame_arch (this_frame);
1813 arc_gdbarch_tdep *tdep = gdbarch_tdep<arc_gdbarch_tdep> (arch);
1815 /* Allocate new frame cache instance and space for saved register info. */
1816 struct arc_frame_cache *cache = FRAME_OBSTACK_ZALLOC (struct arc_frame_cache);
1817 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1819 /* Get the stack pointer and use it as the frame base. */
1820 cache->prev_sp = arc_frame_base_address (this_frame, NULL);
1822 /* If the ARC-private target-dependent info doesn't have a table of
1823 offsets of saved register contents within an OS signal context
1824 structure, then there is nothing to analyze. */
1825 if (tdep->sc_reg_offset == NULL)
1826 return cache;
1828 /* Find the address of the sigcontext structure. */
1829 CORE_ADDR addr = tdep->sigcontext_addr (this_frame);
1831 /* For each register, if its contents have been saved within the
1832 sigcontext structure, determine the address of those contents. */
1833 gdb_assert (tdep->sc_num_regs <= (ARC_LAST_REGNUM + 1));
1834 for (int i = 0; i < tdep->sc_num_regs; i++)
1836 if (tdep->sc_reg_offset[i] != ARC_OFFSET_NO_REGISTER)
1837 cache->saved_regs[i].set_addr (addr + tdep->sc_reg_offset[i]);
1840 return cache;
1843 /* Implement the "this_id" frame_unwind method for signal trampoline
1844 frames. */
1846 static void
1847 arc_sigtramp_frame_this_id (struct frame_info *this_frame,
1848 void **this_cache, struct frame_id *this_id)
1850 arc_debug_printf ("called");
1852 if (*this_cache == NULL)
1853 *this_cache = arc_make_sigtramp_frame_cache (this_frame);
1855 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1856 struct arc_frame_cache *cache = (struct arc_frame_cache *) *this_cache;
1857 CORE_ADDR stack_addr = cache->prev_sp;
1858 CORE_ADDR code_addr
1859 = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1860 *this_id = frame_id_build (stack_addr, code_addr);
1863 /* Get a register from a signal handler frame. */
1865 static struct value *
1866 arc_sigtramp_frame_prev_register (struct frame_info *this_frame,
1867 void **this_cache, int regnum)
1869 arc_debug_printf ("regnum = %d", regnum);
1871 /* Make sure we've initialized the cache. */
1872 if (*this_cache == NULL)
1873 *this_cache = arc_make_sigtramp_frame_cache (this_frame);
1875 struct arc_frame_cache *cache = (struct arc_frame_cache *) *this_cache;
1876 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
1879 /* Frame sniffer for signal handler frame. Only recognize a frame if we
1880 have a sigcontext_addr handler in the target dependency. */
1882 static int
1883 arc_sigtramp_frame_sniffer (const struct frame_unwind *self,
1884 struct frame_info *this_frame,
1885 void **this_cache)
1887 arc_debug_printf ("called");
1889 gdbarch *arch = get_frame_arch (this_frame);
1890 arc_gdbarch_tdep *tdep = gdbarch_tdep<arc_gdbarch_tdep> (arch);
1892 /* If we have a sigcontext_addr handler, then just return 1 (same as the
1893 "default_frame_sniffer ()"). */
1894 return (tdep->sigcontext_addr != NULL && tdep->is_sigtramp != NULL
1895 && tdep->is_sigtramp (this_frame));
1898 /* Structure defining the ARC ordinary frame unwind functions. Since we are
1899 the fallback unwinder, we use the default frame sniffer, which always
1900 accepts the frame. */
1902 static const struct frame_unwind arc_frame_unwind = {
1903 "arc prologue",
1904 NORMAL_FRAME,
1905 default_frame_unwind_stop_reason,
1906 arc_frame_this_id,
1907 arc_frame_prev_register,
1908 NULL,
1909 default_frame_sniffer,
1910 NULL,
1911 NULL
1914 /* Structure defining the ARC signal frame unwind functions. Custom
1915 sniffer is used, because this frame must be accepted only in the right
1916 context. */
1918 static const struct frame_unwind arc_sigtramp_frame_unwind = {
1919 "arc sigtramp",
1920 SIGTRAMP_FRAME,
1921 default_frame_unwind_stop_reason,
1922 arc_sigtramp_frame_this_id,
1923 arc_sigtramp_frame_prev_register,
1924 NULL,
1925 arc_sigtramp_frame_sniffer,
1926 NULL,
1927 NULL
1931 static const struct frame_base arc_normal_base = {
1932 &arc_frame_unwind,
1933 arc_frame_base_address,
1934 arc_frame_base_address,
1935 arc_frame_base_address
1938 static enum arc_isa
1939 mach_type_to_arc_isa (const unsigned long mach)
1941 switch (mach)
1943 case bfd_mach_arc_arc600:
1944 case bfd_mach_arc_arc601:
1945 case bfd_mach_arc_arc700:
1946 return ARC_ISA_ARCV1;
1947 case bfd_mach_arc_arcv2:
1948 return ARC_ISA_ARCV2;
1949 default:
1950 internal_error (__FILE__, __LINE__,
1951 _("unknown machine id %lu"), mach);
1955 /* See arc-tdep.h. */
1957 arc_arch_features
1958 arc_arch_features_create (const bfd *abfd, const unsigned long mach)
1960 /* Use 4 as a fallback value. */
1961 int reg_size = 4;
1963 /* Try to guess the features parameters by looking at the binary to be
1964 executed. If the user is providing a binary that does not match the
1965 target, then tough luck. This is the last effort to makes sense of
1966 what's going on. */
1967 if (abfd != nullptr && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
1969 unsigned char eclass = elf_elfheader (abfd)->e_ident[EI_CLASS];
1971 if (eclass == ELFCLASS32)
1972 reg_size = 4;
1973 else if (eclass == ELFCLASS64)
1974 reg_size = 8;
1975 else
1976 internal_error (__FILE__, __LINE__,
1977 _("unknown ELF header class %d"), eclass);
1980 /* MACH from a bfd_arch_info struct is used here. It should be a safe
1981 bet, as it looks like the struct is always initialized even when we
1982 don't pass any elf file to GDB at all (it uses default arch in that
1983 case). */
1984 arc_isa isa = mach_type_to_arc_isa (mach);
1986 return arc_arch_features (reg_size, isa);
1989 /* Look for obsolete core feature names in TDESC. */
1991 static const struct tdesc_feature *
1992 find_obsolete_core_names (const struct target_desc *tdesc)
1994 const struct tdesc_feature *feat = nullptr;
1996 feat = tdesc_find_feature (tdesc, ARC_CORE_V1_OBSOLETE_FEATURE_NAME);
1998 if (feat == nullptr)
1999 feat = tdesc_find_feature (tdesc, ARC_CORE_V2_OBSOLETE_FEATURE_NAME);
2001 if (feat == nullptr)
2002 feat = tdesc_find_feature
2003 (tdesc, ARC_CORE_V2_REDUCED_OBSOLETE_FEATURE_NAME);
2005 return feat;
2008 /* Look for obsolete aux feature names in TDESC. */
2010 static const struct tdesc_feature *
2011 find_obsolete_aux_names (const struct target_desc *tdesc)
2013 return tdesc_find_feature (tdesc, ARC_AUX_OBSOLETE_FEATURE_NAME);
2016 /* Based on the MACH value, determines which core register features set
2017 must be used. */
2019 static arc_register_feature *
2020 determine_core_reg_feature_set (const unsigned long mach)
2022 switch (mach_type_to_arc_isa (mach))
2024 case ARC_ISA_ARCV1:
2025 return &arc_v1_core_reg_feature;
2026 case ARC_ISA_ARCV2:
2027 return &arc_v2_core_reg_feature;
2028 default:
2029 gdb_assert_not_reached
2030 ("Unknown machine type to determine the core feature set.");
2034 /* At the moment, there is only 1 auxiliary register features set.
2035 This is a place holder for future extendability. */
2037 static const arc_register_feature *
2038 determine_aux_reg_feature_set ()
2040 return &arc_common_aux_reg_feature;
2043 /* Update accumulator register names (ACCH/ACCL) for r58 and r59 in the
2044 register sets. The endianness determines the assignment:
2046 ,------.------.
2047 | acch | accl |
2048 ,----|------+------|
2049 | LE | r59 | r58 |
2050 | BE | r58 | r59 |
2051 `----^------^------' */
2053 static void
2054 arc_update_acc_reg_names (const int byte_order)
2056 const char *r58_alias
2057 = byte_order == BFD_ENDIAN_LITTLE ? "accl" : "acch";
2058 const char *r59_alias
2059 = byte_order == BFD_ENDIAN_LITTLE ? "acch" : "accl";
2061 /* Subscript 1 must be OK because those registers have 2 names. */
2062 arc_v1_core_reg_feature.registers[ARC_R58_REGNUM].names[1] = r58_alias;
2063 arc_v1_core_reg_feature.registers[ARC_R59_REGNUM].names[1] = r59_alias;
2064 arc_v2_core_reg_feature.registers[ARC_R58_REGNUM].names[1] = r58_alias;
2065 arc_v2_core_reg_feature.registers[ARC_R59_REGNUM].names[1] = r59_alias;
2068 /* Go through all the registers in REG_SET and check if they exist
2069 in FEATURE. The TDESC_DATA is updated with the register number
2070 in REG_SET if it is found in the feature. If a required register
2071 is not found, this function returns false. */
2073 static bool
2074 arc_check_tdesc_feature (struct tdesc_arch_data *tdesc_data,
2075 const struct tdesc_feature *feature,
2076 const struct arc_register_feature *reg_set)
2078 for (const auto &reg : reg_set->registers)
2080 bool found = false;
2082 for (const char *name : reg.names)
2084 found
2085 = tdesc_numbered_register (feature, tdesc_data, reg.regnum, name);
2087 if (found)
2088 break;
2091 if (!found && reg.required_p)
2093 std::ostringstream reg_names;
2094 for (std::size_t i = 0; i < reg.names.size(); ++i)
2096 if (i == 0)
2097 reg_names << "'" << reg.names[0] << "'";
2098 else
2099 reg_names << " or '" << reg.names[0] << "'";
2101 arc_print (_("Error: Cannot find required register(s) %s "
2102 "in feature '%s'.\n"), reg_names.str ().c_str (),
2103 feature->name.c_str ());
2104 return false;
2108 return true;
2111 /* Check for the existance of "lp_start" and "lp_end" in target description.
2112 If both are present, assume there is hardware loop support in the target.
2113 This can be improved by looking into "lpc_size" field of "isa_config"
2114 auxiliary register. */
2116 static bool
2117 arc_check_for_hw_loops (const struct target_desc *tdesc,
2118 struct tdesc_arch_data *data)
2120 const auto feature_aux = tdesc_find_feature (tdesc, ARC_AUX_FEATURE_NAME);
2121 const auto aux_regset = determine_aux_reg_feature_set ();
2123 if (feature_aux == nullptr)
2124 return false;
2126 bool hw_loop_p = false;
2127 const auto lp_start_name =
2128 aux_regset->registers[ARC_LP_START_REGNUM - ARC_FIRST_AUX_REGNUM].names[0];
2129 const auto lp_end_name =
2130 aux_regset->registers[ARC_LP_END_REGNUM - ARC_FIRST_AUX_REGNUM].names[0];
2132 hw_loop_p = tdesc_numbered_register (feature_aux, data,
2133 ARC_LP_START_REGNUM, lp_start_name);
2134 hw_loop_p &= tdesc_numbered_register (feature_aux, data,
2135 ARC_LP_END_REGNUM, lp_end_name);
2137 return hw_loop_p;
2140 /* Initialize target description for the ARC.
2142 Returns true if input TDESC was valid and in this case it will assign TDESC
2143 and TDESC_DATA output parameters. */
2145 static bool
2146 arc_tdesc_init (struct gdbarch_info info, const struct target_desc **tdesc,
2147 tdesc_arch_data_up *tdesc_data)
2149 const struct target_desc *tdesc_loc = info.target_desc;
2150 arc_debug_printf ("Target description initialization.");
2152 /* If target doesn't provide a description, use the default ones. */
2153 if (!tdesc_has_registers (tdesc_loc))
2155 arc_arch_features features
2156 = arc_arch_features_create (info.abfd,
2157 info.bfd_arch_info->mach);
2158 tdesc_loc = arc_lookup_target_description (features);
2160 gdb_assert (tdesc_loc != nullptr);
2162 arc_debug_printf ("Have got a target description");
2164 const struct tdesc_feature *feature_core
2165 = tdesc_find_feature (tdesc_loc, ARC_CORE_FEATURE_NAME);
2166 const struct tdesc_feature *feature_aux
2167 = tdesc_find_feature (tdesc_loc, ARC_AUX_FEATURE_NAME);
2169 /* Maybe there still is a chance to salvage the input. */
2170 if (feature_core == nullptr)
2171 feature_core = find_obsolete_core_names (tdesc_loc);
2172 if (feature_aux == nullptr)
2173 feature_aux = find_obsolete_aux_names (tdesc_loc);
2175 if (feature_core == nullptr)
2177 arc_print (_("Error: Cannot find required feature '%s' in supplied "
2178 "target description.\n"), ARC_CORE_FEATURE_NAME);
2179 return false;
2182 if (feature_aux == nullptr)
2184 arc_print (_("Error: Cannot find required feature '%s' in supplied "
2185 "target description.\n"), ARC_AUX_FEATURE_NAME);
2186 return false;
2189 const arc_register_feature *arc_core_reg_feature
2190 = determine_core_reg_feature_set (info.bfd_arch_info->mach);
2191 const arc_register_feature *arc_aux_reg_feature
2192 = determine_aux_reg_feature_set ();
2194 tdesc_arch_data_up tdesc_data_loc = tdesc_data_alloc ();
2196 arc_update_acc_reg_names (info.byte_order);
2198 bool valid_p = arc_check_tdesc_feature (tdesc_data_loc.get (),
2199 feature_core,
2200 arc_core_reg_feature);
2202 valid_p &= arc_check_tdesc_feature (tdesc_data_loc.get (),
2203 feature_aux,
2204 arc_aux_reg_feature);
2206 if (!valid_p)
2208 arc_debug_printf ("Target description is not valid");
2209 return false;
2212 *tdesc = tdesc_loc;
2213 *tdesc_data = std::move (tdesc_data_loc);
2215 return true;
2218 /* Implement the type_align gdbarch function. */
2220 static ULONGEST
2221 arc_type_align (struct gdbarch *gdbarch, struct type *type)
2223 switch (type->code ())
2225 case TYPE_CODE_PTR:
2226 case TYPE_CODE_FUNC:
2227 case TYPE_CODE_FLAGS:
2228 case TYPE_CODE_INT:
2229 case TYPE_CODE_RANGE:
2230 case TYPE_CODE_FLT:
2231 case TYPE_CODE_ENUM:
2232 case TYPE_CODE_REF:
2233 case TYPE_CODE_RVALUE_REF:
2234 case TYPE_CODE_CHAR:
2235 case TYPE_CODE_BOOL:
2236 case TYPE_CODE_DECFLOAT:
2237 case TYPE_CODE_METHODPTR:
2238 case TYPE_CODE_MEMBERPTR:
2239 type = check_typedef (type);
2240 return std::min<ULONGEST> (4, TYPE_LENGTH (type));
2241 default:
2242 return 0;
2246 /* Implement the "init" gdbarch method. */
2248 static struct gdbarch *
2249 arc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2251 const struct target_desc *tdesc;
2252 tdesc_arch_data_up tdesc_data;
2254 arc_debug_printf ("Architecture initialization.");
2256 if (!arc_tdesc_init (info, &tdesc, &tdesc_data))
2257 return nullptr;
2259 /* Allocate the ARC-private target-dependent information structure, and the
2260 GDB target-independent information structure. */
2261 std::unique_ptr<arc_gdbarch_tdep> tdep_holder (new arc_gdbarch_tdep);
2262 arc_gdbarch_tdep *tdep = tdep_holder.get ();
2263 tdep->jb_pc = -1; /* No longjmp support by default. */
2264 tdep->has_hw_loops = arc_check_for_hw_loops (tdesc, tdesc_data.get ());
2265 struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep_holder.release ());
2267 /* Data types. */
2268 set_gdbarch_short_bit (gdbarch, 16);
2269 set_gdbarch_int_bit (gdbarch, 32);
2270 set_gdbarch_long_bit (gdbarch, 32);
2271 set_gdbarch_long_long_bit (gdbarch, 64);
2272 set_gdbarch_type_align (gdbarch, arc_type_align);
2273 set_gdbarch_float_bit (gdbarch, 32);
2274 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2275 set_gdbarch_double_bit (gdbarch, 64);
2276 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2277 set_gdbarch_ptr_bit (gdbarch, 32);
2278 set_gdbarch_addr_bit (gdbarch, 32);
2279 set_gdbarch_char_signed (gdbarch, 0);
2281 set_gdbarch_write_pc (gdbarch, arc_write_pc);
2283 set_gdbarch_virtual_frame_pointer (gdbarch, arc_virtual_frame_pointer);
2285 /* tdesc_use_registers expects gdbarch_num_regs to return number of registers
2286 parsed by gdbarch_init, and then it will add all of the remaining
2287 registers and will increase number of registers. */
2288 set_gdbarch_num_regs (gdbarch, ARC_LAST_REGNUM + 1);
2289 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2290 set_gdbarch_sp_regnum (gdbarch, ARC_SP_REGNUM);
2291 set_gdbarch_pc_regnum (gdbarch, ARC_PC_REGNUM);
2292 set_gdbarch_ps_regnum (gdbarch, ARC_STATUS32_REGNUM);
2293 set_gdbarch_fp0_regnum (gdbarch, -1); /* No FPU registers. */
2295 set_gdbarch_push_dummy_call (gdbarch, arc_push_dummy_call);
2296 set_gdbarch_push_dummy_code (gdbarch, arc_push_dummy_code);
2298 set_gdbarch_cannot_fetch_register (gdbarch, arc_cannot_fetch_register);
2299 set_gdbarch_cannot_store_register (gdbarch, arc_cannot_store_register);
2301 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2303 set_gdbarch_return_value (gdbarch, arc_return_value);
2305 set_gdbarch_skip_prologue (gdbarch, arc_skip_prologue);
2306 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2308 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arc_breakpoint_kind_from_pc);
2309 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arc_sw_breakpoint_from_kind);
2311 /* On ARC 600 BRK_S instruction advances PC, unlike other ARC cores. */
2312 if (!arc_mach_is_arc600 (gdbarch))
2313 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2314 else
2315 set_gdbarch_decr_pc_after_break (gdbarch, 2);
2317 set_gdbarch_frame_align (gdbarch, arc_frame_align);
2319 set_gdbarch_print_insn (gdbarch, arc_delayed_print_insn);
2321 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2323 /* "nonsteppable" watchpoint means that watchpoint triggers before
2324 instruction is committed, therefore it is required to remove watchpoint
2325 to step though instruction that triggers it. ARC watchpoints trigger
2326 only after instruction is committed, thus there is no need to remove
2327 them. In fact on ARC watchpoint for memory writes may trigger with more
2328 significant delay, like one or two instructions, depending on type of
2329 memory where write is performed (CCM or external) and next instruction
2330 after the memory write. */
2331 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 0);
2333 /* This doesn't include possible long-immediate value. */
2334 set_gdbarch_max_insn_length (gdbarch, 4);
2336 /* Frame unwinders and sniffers. */
2337 dwarf2_frame_set_init_reg (gdbarch, arc_dwarf2_frame_init_reg);
2338 dwarf2_append_unwinders (gdbarch);
2339 frame_unwind_append_unwinder (gdbarch, &arc_sigtramp_frame_unwind);
2340 frame_unwind_append_unwinder (gdbarch, &arc_frame_unwind);
2341 frame_base_set_default (gdbarch, &arc_normal_base);
2343 /* Setup stuff specific to a particular environment (baremetal or Linux).
2344 It can override functions set earlier. */
2345 gdbarch_init_osabi (info, gdbarch);
2347 if (tdep->jb_pc >= 0)
2348 set_gdbarch_get_longjmp_target (gdbarch, arc_get_longjmp_target);
2350 /* Disassembler options. Enforce CPU if it was specified in XML target
2351 description, otherwise use default method of determining CPU (ELF private
2352 header). */
2353 if (info.target_desc != NULL)
2355 const struct bfd_arch_info *tdesc_arch
2356 = tdesc_architecture (info.target_desc);
2357 if (tdesc_arch != NULL)
2359 xfree (arc_disassembler_options);
2360 /* FIXME: It is not really good to change disassembler options
2361 behind the scene, because that might override options
2362 specified by the user. However as of now ARC doesn't support
2363 `set disassembler-options' hence this code is the only place
2364 where options are changed. It also changes options for all
2365 existing gdbarches, which also can be problematic, if
2366 arc_gdbarch_init will start reusing existing gdbarch
2367 instances. */
2368 /* Target description specifies a BFD architecture, which is
2369 different from ARC cpu, as accepted by disassembler (and most
2370 other ARC tools), because cpu values are much more fine grained -
2371 there can be multiple cpu values per single BFD architecture. As
2372 a result this code should translate architecture to some cpu
2373 value. Since there is no info on exact cpu configuration, it is
2374 best to use the most feature-rich CPU, so that disassembler will
2375 recognize all instructions available to the specified
2376 architecture. */
2377 switch (tdesc_arch->mach)
2379 case bfd_mach_arc_arc601:
2380 arc_disassembler_options = xstrdup ("cpu=arc601");
2381 break;
2382 case bfd_mach_arc_arc600:
2383 arc_disassembler_options = xstrdup ("cpu=arc600");
2384 break;
2385 case bfd_mach_arc_arc700:
2386 arc_disassembler_options = xstrdup ("cpu=arc700");
2387 break;
2388 case bfd_mach_arc_arcv2:
2389 /* Machine arcv2 has three arches: ARCv2, EM and HS; where ARCv2
2390 is treated as EM. */
2391 if (arc_arch_is_hs (tdesc_arch))
2392 arc_disassembler_options = xstrdup ("cpu=hs38_linux");
2393 else
2394 arc_disassembler_options = xstrdup ("cpu=em4_fpuda");
2395 break;
2396 default:
2397 arc_disassembler_options = NULL;
2398 break;
2403 set_gdbarch_disassembler_options (gdbarch, &arc_disassembler_options);
2404 set_gdbarch_valid_disassembler_options (gdbarch,
2405 disassembler_options_arc ());
2407 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
2409 return gdbarch;
2412 /* Implement the "dump_tdep" gdbarch method. */
2414 static void
2415 arc_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2417 arc_gdbarch_tdep *tdep = gdbarch_tdep<arc_gdbarch_tdep> (gdbarch);
2419 gdb_printf (file, "arc_dump_tdep: jb_pc = %i\n", tdep->jb_pc);
2421 gdb_printf (file, "arc_dump_tdep: is_sigtramp = <%s>\n",
2422 host_address_to_string (tdep->is_sigtramp));
2423 gdb_printf (file, "arc_dump_tdep: sigcontext_addr = <%s>\n",
2424 host_address_to_string (tdep->sigcontext_addr));
2425 gdb_printf (file, "arc_dump_tdep: sc_reg_offset = <%s>\n",
2426 host_address_to_string (tdep->sc_reg_offset));
2427 gdb_printf (file, "arc_dump_tdep: sc_num_regs = %d\n",
2428 tdep->sc_num_regs);
2431 /* This command accepts single argument - address of instruction to
2432 disassemble. */
2434 static void
2435 dump_arc_instruction_command (const char *args, int from_tty)
2437 struct value *val;
2438 if (args != NULL && strlen (args) > 0)
2439 val = evaluate_expression (parse_expression (args).get ());
2440 else
2441 val = access_value_history (0);
2442 record_latest_value (val);
2444 CORE_ADDR address = value_as_address (val);
2445 struct arc_instruction insn;
2446 struct gdb_non_printing_memory_disassembler dis (target_gdbarch ());
2447 arc_insn_decode (address, dis.disasm_info (), arc_delayed_print_insn, &insn);
2448 arc_insn_dump (insn);
2451 void _initialize_arc_tdep ();
2452 void
2453 _initialize_arc_tdep ()
2455 gdbarch_register (bfd_arch_arc, arc_gdbarch_init, arc_dump_tdep);
2457 /* Register ARC-specific commands with gdb. */
2459 /* Add root prefix command for "maintenance print arc" commands. */
2460 add_basic_prefix_cmd ("arc", class_maintenance,
2461 _("ARC-specific maintenance commands for printing GDB "
2462 "internal state."),
2463 &maintenance_print_arc_list,
2464 0, &maintenanceprintlist);
2466 add_cmd ("arc-instruction", class_maintenance,
2467 dump_arc_instruction_command,
2468 _("Dump arc_instruction structure for specified address."),
2469 &maintenance_print_arc_list);
2471 /* Debug internals for ARC GDB. */
2472 add_setshow_boolean_cmd ("arc", class_maintenance,
2473 &arc_debug,
2474 _("Set ARC specific debugging."),
2475 _("Show ARC specific debugging."),
2476 _("When set, ARC specific debugging is enabled."),
2477 NULL, NULL, &setdebuglist, &showdebuglist);