[gdb/symtab] Workaround PR gas/31115
[binutils-gdb.git] / gold / mips.cc
blob465cfc66b87ce6da4c87d9413b65dab9a2918354
1 // mips.cc -- mips target support for gold.
3 // Copyright (C) 2011-2024 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
8 // This file is part of gold.
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
25 #include "gold.h"
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
50 namespace
52 using namespace gold;
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
60 template<int size, bool big_endian>
61 class Target_mips;
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
66 template<int size, bool big_endian>
67 class Mips_output_section_options;
69 template<int size, bool big_endian>
70 class Mips_output_data_la25_stub;
72 template<int size, bool big_endian>
73 class Mips_output_data_mips_stubs;
75 template<int size>
76 class Mips_symbol;
78 template<int size, bool big_endian>
79 class Mips_got_info;
81 template<int size, bool big_endian>
82 class Mips_relobj;
84 class Mips16_stub_section_base;
86 template<int size, bool big_endian>
87 class Mips16_stub_section;
89 // The ABI says that every symbol used by dynamic relocations must have
90 // a global GOT entry. Among other things, this provides the dynamic
91 // linker with a free, directly-indexed cache. The GOT can therefore
92 // contain symbols that are not referenced by GOT relocations themselves
93 // (in other words, it may have symbols that are not referenced by things
94 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
96 // GOT relocations are less likely to overflow if we put the associated
97 // GOT entries towards the beginning. We therefore divide the global
98 // GOT entries into two areas: "normal" and "reloc-only". Entries in
99 // the first area can be used for both dynamic relocations and GP-relative
100 // accesses, while those in the "reloc-only" area are for dynamic
101 // relocations only.
103 // These GGA_* ("Global GOT Area") values are organised so that lower
104 // values are more general than higher values. Also, non-GGA_NONE
105 // values are ordered by the position of the area in the GOT.
107 enum Global_got_area
109 GGA_NORMAL = 0,
110 GGA_RELOC_ONLY = 1,
111 GGA_NONE = 2
114 // The types of GOT entries needed for this platform.
115 // These values are exposed to the ABI in an incremental link.
116 // Do not renumber existing values without changing the version
117 // number of the .gnu_incremental_inputs section.
118 enum Got_type
120 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
121 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
122 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
124 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
125 GOT_TYPE_STANDARD_MULTIGOT = 3,
126 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
127 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
130 // TLS type of GOT entry.
131 enum Got_tls_type
133 GOT_TLS_NONE = 0,
134 GOT_TLS_GD = 1,
135 GOT_TLS_LDM = 2,
136 GOT_TLS_IE = 4
139 // Values found in the r_ssym field of a relocation entry.
140 enum Special_relocation_symbol
142 RSS_UNDEF = 0, // None - value is zero.
143 RSS_GP = 1, // Value of GP.
144 RSS_GP0 = 2, // Value of GP in object being relocated.
145 RSS_LOC = 3 // Address of location being relocated.
148 // Whether the section is readonly.
149 static inline bool
150 is_readonly_section(Output_section* output_section)
152 elfcpp::Elf_Xword section_flags = output_section->flags();
153 elfcpp::Elf_Word section_type = output_section->type();
155 if (section_type == elfcpp::SHT_NOBITS)
156 return false;
158 if (section_flags & elfcpp::SHF_WRITE)
159 return false;
161 return true;
164 // Return TRUE if a relocation of type R_TYPE from OBJECT might
165 // require an la25 stub. See also local_pic_function, which determines
166 // whether the destination function ever requires a stub.
167 template<int size, bool big_endian>
168 static inline bool
169 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
170 unsigned int r_type, bool target_is_16_bit_code)
172 // We specifically ignore branches and jumps from EF_PIC objects,
173 // where the onus is on the compiler or programmer to perform any
174 // necessary initialization of $25. Sometimes such initialization
175 // is unnecessary; for example, -mno-shared functions do not use
176 // the incoming value of $25, and may therefore be called directly.
177 if (object->is_pic())
178 return false;
180 switch (r_type)
182 case elfcpp::R_MIPS_26:
183 case elfcpp::R_MIPS_PC16:
184 case elfcpp::R_MIPS_PC21_S2:
185 case elfcpp::R_MIPS_PC26_S2:
186 case elfcpp::R_MICROMIPS_26_S1:
187 case elfcpp::R_MICROMIPS_PC7_S1:
188 case elfcpp::R_MICROMIPS_PC10_S1:
189 case elfcpp::R_MICROMIPS_PC16_S1:
190 case elfcpp::R_MICROMIPS_PC23_S2:
191 return true;
193 case elfcpp::R_MIPS16_26:
194 return !target_is_16_bit_code;
196 default:
197 return false;
201 // Return true if SYM is a locally-defined PIC function, in the sense
202 // that it or its fn_stub might need $25 to be valid on entry.
203 // Note that MIPS16 functions set up $gp using PC-relative instructions,
204 // so they themselves never need $25 to be valid. Only non-MIPS16
205 // entry points are of interest here.
206 template<int size, bool big_endian>
207 static inline bool
208 local_pic_function(Mips_symbol<size>* sym)
210 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
211 && !sym->object()->is_dynamic()
212 && !sym->is_undefined());
214 if (sym->is_defined() && def_regular)
216 Mips_relobj<size, big_endian>* object =
217 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
219 if ((object->is_pic() || sym->is_pic())
220 && (!sym->is_mips16()
221 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
222 return true;
224 return false;
227 static inline bool
228 hi16_reloc(int r_type)
230 return (r_type == elfcpp::R_MIPS_HI16
231 || r_type == elfcpp::R_MIPS16_HI16
232 || r_type == elfcpp::R_MICROMIPS_HI16
233 || r_type == elfcpp::R_MIPS_PCHI16);
236 static inline bool
237 lo16_reloc(int r_type)
239 return (r_type == elfcpp::R_MIPS_LO16
240 || r_type == elfcpp::R_MIPS16_LO16
241 || r_type == elfcpp::R_MICROMIPS_LO16
242 || r_type == elfcpp::R_MIPS_PCLO16);
245 static inline bool
246 got16_reloc(unsigned int r_type)
248 return (r_type == elfcpp::R_MIPS_GOT16
249 || r_type == elfcpp::R_MIPS16_GOT16
250 || r_type == elfcpp::R_MICROMIPS_GOT16);
253 static inline bool
254 call_lo16_reloc(unsigned int r_type)
256 return (r_type == elfcpp::R_MIPS_CALL_LO16
257 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
260 static inline bool
261 got_lo16_reloc(unsigned int r_type)
263 return (r_type == elfcpp::R_MIPS_GOT_LO16
264 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
267 static inline bool
268 eh_reloc(unsigned int r_type)
270 return (r_type == elfcpp::R_MIPS_EH);
273 static inline bool
274 got_disp_reloc(unsigned int r_type)
276 return (r_type == elfcpp::R_MIPS_GOT_DISP
277 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
280 static inline bool
281 got_page_reloc(unsigned int r_type)
283 return (r_type == elfcpp::R_MIPS_GOT_PAGE
284 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
287 static inline bool
288 tls_gd_reloc(unsigned int r_type)
290 return (r_type == elfcpp::R_MIPS_TLS_GD
291 || r_type == elfcpp::R_MIPS16_TLS_GD
292 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
295 static inline bool
296 tls_gottprel_reloc(unsigned int r_type)
298 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
299 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
300 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
303 static inline bool
304 tls_ldm_reloc(unsigned int r_type)
306 return (r_type == elfcpp::R_MIPS_TLS_LDM
307 || r_type == elfcpp::R_MIPS16_TLS_LDM
308 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
311 static inline bool
312 mips16_call_reloc(unsigned int r_type)
314 return (r_type == elfcpp::R_MIPS16_26
315 || r_type == elfcpp::R_MIPS16_CALL16);
318 static inline bool
319 jal_reloc(unsigned int r_type)
321 return (r_type == elfcpp::R_MIPS_26
322 || r_type == elfcpp::R_MIPS16_26
323 || r_type == elfcpp::R_MICROMIPS_26_S1);
326 static inline bool
327 micromips_branch_reloc(unsigned int r_type)
329 return (r_type == elfcpp::R_MICROMIPS_26_S1
330 || r_type == elfcpp::R_MICROMIPS_PC16_S1
331 || r_type == elfcpp::R_MICROMIPS_PC10_S1
332 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
335 // Check if R_TYPE is a MIPS16 reloc.
336 static inline bool
337 mips16_reloc(unsigned int r_type)
339 switch (r_type)
341 case elfcpp::R_MIPS16_26:
342 case elfcpp::R_MIPS16_GPREL:
343 case elfcpp::R_MIPS16_GOT16:
344 case elfcpp::R_MIPS16_CALL16:
345 case elfcpp::R_MIPS16_HI16:
346 case elfcpp::R_MIPS16_LO16:
347 case elfcpp::R_MIPS16_TLS_GD:
348 case elfcpp::R_MIPS16_TLS_LDM:
349 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
350 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
351 case elfcpp::R_MIPS16_TLS_GOTTPREL:
352 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
353 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
354 return true;
356 default:
357 return false;
361 // Check if R_TYPE is a microMIPS reloc.
362 static inline bool
363 micromips_reloc(unsigned int r_type)
365 switch (r_type)
367 case elfcpp::R_MICROMIPS_26_S1:
368 case elfcpp::R_MICROMIPS_HI16:
369 case elfcpp::R_MICROMIPS_LO16:
370 case elfcpp::R_MICROMIPS_GPREL16:
371 case elfcpp::R_MICROMIPS_LITERAL:
372 case elfcpp::R_MICROMIPS_GOT16:
373 case elfcpp::R_MICROMIPS_PC7_S1:
374 case elfcpp::R_MICROMIPS_PC10_S1:
375 case elfcpp::R_MICROMIPS_PC16_S1:
376 case elfcpp::R_MICROMIPS_CALL16:
377 case elfcpp::R_MICROMIPS_GOT_DISP:
378 case elfcpp::R_MICROMIPS_GOT_PAGE:
379 case elfcpp::R_MICROMIPS_GOT_OFST:
380 case elfcpp::R_MICROMIPS_GOT_HI16:
381 case elfcpp::R_MICROMIPS_GOT_LO16:
382 case elfcpp::R_MICROMIPS_SUB:
383 case elfcpp::R_MICROMIPS_HIGHER:
384 case elfcpp::R_MICROMIPS_HIGHEST:
385 case elfcpp::R_MICROMIPS_CALL_HI16:
386 case elfcpp::R_MICROMIPS_CALL_LO16:
387 case elfcpp::R_MICROMIPS_SCN_DISP:
388 case elfcpp::R_MICROMIPS_JALR:
389 case elfcpp::R_MICROMIPS_HI0_LO16:
390 case elfcpp::R_MICROMIPS_TLS_GD:
391 case elfcpp::R_MICROMIPS_TLS_LDM:
392 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
393 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
394 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
395 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
396 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
397 case elfcpp::R_MICROMIPS_GPREL7_S2:
398 case elfcpp::R_MICROMIPS_PC23_S2:
399 return true;
401 default:
402 return false;
406 static inline bool
407 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
409 switch (high_reloc)
411 case elfcpp::R_MIPS_HI16:
412 case elfcpp::R_MIPS_GOT16:
413 return lo16_reloc == elfcpp::R_MIPS_LO16;
414 case elfcpp::R_MIPS_PCHI16:
415 return lo16_reloc == elfcpp::R_MIPS_PCLO16;
416 case elfcpp::R_MIPS16_HI16:
417 case elfcpp::R_MIPS16_GOT16:
418 return lo16_reloc == elfcpp::R_MIPS16_LO16;
419 case elfcpp::R_MICROMIPS_HI16:
420 case elfcpp::R_MICROMIPS_GOT16:
421 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
422 default:
423 return false;
427 // This class is used to hold information about one GOT entry.
428 // There are three types of entry:
430 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
431 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
432 // (2) a SYMBOL address, where SYMBOL is not local to an input object
433 // (sym != NULL, symndx == -1)
434 // (3) a TLS LDM slot (there's only one of these per GOT.)
435 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
437 template<int size, bool big_endian>
438 class Mips_got_entry
440 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
442 public:
443 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
444 Mips_address addend, unsigned char tls_type,
445 unsigned int shndx, bool is_section_symbol)
446 : addend_(addend), symndx_(symndx), tls_type_(tls_type),
447 is_section_symbol_(is_section_symbol), shndx_(shndx)
448 { this->d.object = object; }
450 Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
451 : addend_(0), symndx_(-1U), tls_type_(tls_type),
452 is_section_symbol_(false), shndx_(-1U)
453 { this->d.sym = sym; }
455 // Return whether this entry is for a local symbol.
456 bool
457 is_for_local_symbol() const
458 { return this->symndx_ != -1U; }
460 // Return whether this entry is for a global symbol.
461 bool
462 is_for_global_symbol() const
463 { return this->symndx_ == -1U; }
465 // Return the hash of this entry.
466 size_t
467 hash() const
469 if (this->tls_type_ == GOT_TLS_LDM)
470 return this->symndx_ + (1 << 18);
472 size_t name_hash_value = gold::string_hash<char>(
473 (this->symndx_ != -1U)
474 ? this->d.object->name().c_str()
475 : this->d.sym->name());
476 size_t addend = this->addend_;
477 return name_hash_value ^ this->symndx_ ^ (addend << 16);
480 // Return whether this entry is equal to OTHER.
481 bool
482 equals(Mips_got_entry<size, big_endian>* other) const
484 if (this->symndx_ != other->symndx_
485 || this->tls_type_ != other->tls_type_)
486 return false;
488 if (this->tls_type_ == GOT_TLS_LDM)
489 return true;
491 return (((this->symndx_ != -1U)
492 ? (this->d.object == other->d.object)
493 : (this->d.sym == other->d.sym))
494 && (this->addend_ == other->addend_));
497 // Return input object that needs this GOT entry.
498 Mips_relobj<size, big_endian>*
499 object() const
501 gold_assert(this->symndx_ != -1U);
502 return this->d.object;
505 // Return local symbol index for local GOT entries.
506 unsigned int
507 symndx() const
509 gold_assert(this->symndx_ != -1U);
510 return this->symndx_;
513 // Return the relocation addend for local GOT entries.
514 Mips_address
515 addend() const
516 { return this->addend_; }
518 // Return global symbol for global GOT entries.
519 Mips_symbol<size>*
520 sym() const
522 gold_assert(this->symndx_ == -1U);
523 return this->d.sym;
526 // Return whether this is a TLS GOT entry.
527 bool
528 is_tls_entry() const
529 { return this->tls_type_ != GOT_TLS_NONE; }
531 // Return TLS type of this GOT entry.
532 unsigned char
533 tls_type() const
534 { return this->tls_type_; }
536 // Return section index of the local symbol for local GOT entries.
537 unsigned int
538 shndx() const
539 { return this->shndx_; }
541 // Return whether this is a STT_SECTION symbol.
542 bool
543 is_section_symbol() const
544 { return this->is_section_symbol_; }
546 private:
547 // The addend.
548 Mips_address addend_;
550 // The index of the symbol if we have a local symbol; -1 otherwise.
551 unsigned int symndx_;
553 union
555 // The input object for local symbols that needs the GOT entry.
556 Mips_relobj<size, big_endian>* object;
557 // If symndx == -1, the global symbol corresponding to this GOT entry. The
558 // symbol's entry is in the local area if mips_sym->global_got_area is
559 // GGA_NONE, otherwise it is in the global area.
560 Mips_symbol<size>* sym;
561 } d;
563 // The TLS type of this GOT entry. An LDM GOT entry will be a local
564 // symbol entry with r_symndx == 0.
565 unsigned char tls_type_;
567 // Whether this is a STT_SECTION symbol.
568 bool is_section_symbol_;
570 // For local GOT entries, section index of the local symbol.
571 unsigned int shndx_;
574 // Hash for Mips_got_entry.
576 template<int size, bool big_endian>
577 class Mips_got_entry_hash
579 public:
580 size_t
581 operator()(Mips_got_entry<size, big_endian>* entry) const
582 { return entry->hash(); }
585 // Equality for Mips_got_entry.
587 template<int size, bool big_endian>
588 class Mips_got_entry_eq
590 public:
591 bool
592 operator()(Mips_got_entry<size, big_endian>* e1,
593 Mips_got_entry<size, big_endian>* e2) const
594 { return e1->equals(e2); }
597 // Hash for Mips_symbol.
599 template<int size>
600 class Mips_symbol_hash
602 public:
603 size_t
604 operator()(Mips_symbol<size>* sym) const
605 { return sym->hash(); }
608 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
609 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
610 // increasing MIN_ADDEND.
612 struct Got_page_range
614 Got_page_range()
615 : next(NULL), min_addend(0), max_addend(0)
618 Got_page_range* next;
619 int min_addend;
620 int max_addend;
622 // Return the maximum number of GOT page entries required.
624 get_max_pages()
625 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
628 // Got_page_entry. This class describes the range of addends that are applied
629 // to page relocations against a given symbol.
631 struct Got_page_entry
633 Got_page_entry()
634 : object(NULL), symndx(-1U), ranges(NULL)
637 Got_page_entry(Object* object_, unsigned int symndx_)
638 : object(object_), symndx(symndx_), ranges(NULL)
641 // The input object that needs the GOT page entry.
642 Object* object;
643 // The index of the symbol, as stored in the relocation r_info.
644 unsigned int symndx;
645 // The ranges for this page entry.
646 Got_page_range* ranges;
649 // Hash for Got_page_entry.
651 struct Got_page_entry_hash
653 size_t
654 operator()(Got_page_entry* entry) const
655 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
658 // Equality for Got_page_entry.
660 struct Got_page_entry_eq
662 bool
663 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
665 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
669 // This class is used to hold .got information when linking.
671 template<int size, bool big_endian>
672 class Mips_got_info
674 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
675 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
676 Reloc_section;
677 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
679 // Unordered set of GOT entries.
680 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
681 Mips_got_entry_hash<size, big_endian>,
682 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
684 // Unordered set of GOT page entries.
685 typedef Unordered_set<Got_page_entry*,
686 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
688 // Unordered set of global GOT entries.
689 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
690 Global_got_entry_set;
692 public:
693 Mips_got_info()
694 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
695 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
696 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
697 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
698 offset_(0)
701 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
702 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
703 void
704 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
705 unsigned int symndx, Mips_address addend,
706 unsigned int r_type, unsigned int shndx,
707 bool is_section_symbol);
709 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
710 // in OBJECT. FOR_CALL is true if the caller is only interested in
711 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
712 // relocation.
713 void
714 record_global_got_symbol(Mips_symbol<size>* mips_sym,
715 Mips_relobj<size, big_endian>* object,
716 unsigned int r_type, bool dyn_reloc, bool for_call);
718 // Add ENTRY to master GOT and to OBJECT's GOT.
719 void
720 record_got_entry(Mips_got_entry<size, big_endian>* entry,
721 Mips_relobj<size, big_endian>* object);
723 // Record that OBJECT has a page relocation against symbol SYMNDX and
724 // that ADDEND is the addend for that relocation.
725 void
726 record_got_page_entry(Mips_relobj<size, big_endian>* object,
727 unsigned int symndx, int addend);
729 // Create all entries that should be in the local part of the GOT.
730 void
731 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
733 // Create GOT page entries.
734 void
735 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
737 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
738 void
739 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
740 unsigned int non_reloc_only_global_gotno);
742 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
743 void
744 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
746 // Create TLS GOT entries.
747 void
748 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
750 // Decide whether the symbol needs an entry in the global part of the primary
751 // GOT, setting global_got_area accordingly. Count the number of global
752 // symbols that are in the primary GOT only because they have dynamic
753 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
754 void
755 count_got_symbols(Symbol_table* symtab);
757 // Return the offset of GOT page entry for VALUE.
758 unsigned int
759 get_got_page_offset(Mips_address value,
760 Mips_output_data_got<size, big_endian>* got);
762 // Count the number of GOT entries required.
763 void
764 count_got_entries();
766 // Count the number of GOT entries required by ENTRY. Accumulate the result.
767 void
768 count_got_entry(Mips_got_entry<size, big_endian>* entry);
770 // Add FROM's GOT entries.
771 void
772 add_got_entries(Mips_got_info<size, big_endian>* from);
774 // Add FROM's GOT page entries.
775 void
776 add_got_page_count(Mips_got_info<size, big_endian>* from);
778 // Return GOT size.
779 unsigned int
780 got_size() const
781 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
782 + this->tls_gotno_) * size/8);
785 // Return the number of local GOT entries.
786 unsigned int
787 local_gotno() const
788 { return this->local_gotno_; }
790 // Return the maximum number of page GOT entries needed.
791 unsigned int
792 page_gotno() const
793 { return this->page_gotno_; }
795 // Return the number of global GOT entries.
796 unsigned int
797 global_gotno() const
798 { return this->global_gotno_; }
800 // Set the number of global GOT entries.
801 void
802 set_global_gotno(unsigned int global_gotno)
803 { this->global_gotno_ = global_gotno; }
805 // Return the number of GGA_RELOC_ONLY global GOT entries.
806 unsigned int
807 reloc_only_gotno() const
808 { return this->reloc_only_gotno_; }
810 // Return the number of TLS GOT entries.
811 unsigned int
812 tls_gotno() const
813 { return this->tls_gotno_; }
815 // Return the GOT type for this GOT. Used for multi-GOT links only.
816 unsigned int
817 multigot_got_type(unsigned int got_type) const
819 switch (got_type)
821 case GOT_TYPE_STANDARD:
822 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
823 case GOT_TYPE_TLS_OFFSET:
824 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
825 case GOT_TYPE_TLS_PAIR:
826 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
827 default:
828 gold_unreachable();
832 // Remove lazy-binding stubs for global symbols in this GOT.
833 void
834 remove_lazy_stubs(Target_mips<size, big_endian>* target);
836 // Return offset of this GOT from the start of .got section.
837 unsigned int
838 offset() const
839 { return this->offset_; }
841 // Set offset of this GOT from the start of .got section.
842 void
843 set_offset(unsigned int offset)
844 { this->offset_ = offset; }
846 // Set index of this GOT in multi-GOT links.
847 void
848 set_index(unsigned int index)
849 { this->index_ = index; }
851 // Return next GOT in multi-GOT links.
852 Mips_got_info<size, big_endian>*
853 next() const
854 { return this->next_; }
856 // Set next GOT in multi-GOT links.
857 void
858 set_next(Mips_got_info<size, big_endian>* next)
859 { this->next_ = next; }
861 // Return the offset of TLS LDM entry for this GOT.
862 unsigned int
863 tls_ldm_offset() const
864 { return this->tls_ldm_offset_; }
866 // Set the offset of TLS LDM entry for this GOT.
867 void
868 set_tls_ldm_offset(unsigned int tls_ldm_offset)
869 { this->tls_ldm_offset_ = tls_ldm_offset; }
871 Global_got_entry_set&
872 global_got_symbols()
873 { return this->global_got_symbols_; }
875 // Return the GOT_TLS_* type required by relocation type R_TYPE.
876 static int
877 mips_elf_reloc_tls_type(unsigned int r_type)
879 if (tls_gd_reloc(r_type))
880 return GOT_TLS_GD;
882 if (tls_ldm_reloc(r_type))
883 return GOT_TLS_LDM;
885 if (tls_gottprel_reloc(r_type))
886 return GOT_TLS_IE;
888 return GOT_TLS_NONE;
891 // Return the number of GOT slots needed for GOT TLS type TYPE.
892 static int
893 mips_tls_got_entries(unsigned int type)
895 switch (type)
897 case GOT_TLS_GD:
898 case GOT_TLS_LDM:
899 return 2;
901 case GOT_TLS_IE:
902 return 1;
904 case GOT_TLS_NONE:
905 return 0;
907 default:
908 gold_unreachable();
912 private:
913 // The number of local GOT entries.
914 unsigned int local_gotno_;
915 // The maximum number of page GOT entries needed.
916 unsigned int page_gotno_;
917 // The number of global GOT entries.
918 unsigned int global_gotno_;
919 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
920 unsigned int reloc_only_gotno_;
921 // The number of TLS GOT entries.
922 unsigned int tls_gotno_;
923 // The offset of TLS LDM entry for this GOT.
924 unsigned int tls_ldm_offset_;
925 // All symbols that have global GOT entry.
926 Global_got_entry_set global_got_symbols_;
927 // A hash table holding GOT entries.
928 Got_entry_set got_entries_;
929 // A hash table of GOT page entries (only used in master GOT).
930 Got_page_entry_set got_page_entries_;
931 // The offset of first GOT page entry for this GOT.
932 unsigned int got_page_offset_start_;
933 // The offset of next available GOT page entry for this GOT.
934 unsigned int got_page_offset_next_;
935 // A hash table that maps GOT page entry value to the GOT offset where
936 // the entry is located.
937 Got_page_offsets got_page_offsets_;
938 // In multi-GOT links, a pointer to the next GOT.
939 Mips_got_info<size, big_endian>* next_;
940 // Index of this GOT in multi-GOT links.
941 unsigned int index_;
942 // The offset of this GOT in multi-GOT links.
943 unsigned int offset_;
946 // This is a helper class used during relocation scan. It records GOT16 addend.
948 template<int size, bool big_endian>
949 struct got16_addend
951 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
953 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
954 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
955 Mips_address _addend)
956 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
957 addend(_addend)
960 const Sized_relobj_file<size, big_endian>* object;
961 unsigned int shndx;
962 unsigned int r_type;
963 unsigned int r_sym;
964 Mips_address addend;
967 // .MIPS.abiflags section content
969 template<bool big_endian>
970 struct Mips_abiflags
972 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
973 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
974 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
976 Mips_abiflags()
977 : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
978 cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
981 // Version of flags structure.
982 Valtype16 version;
983 // The level of the ISA: 1-5, 32, 64.
984 Valtype8 isa_level;
985 // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
986 Valtype8 isa_rev;
987 // The size of general purpose registers.
988 Valtype8 gpr_size;
989 // The size of co-processor 1 registers.
990 Valtype8 cpr1_size;
991 // The size of co-processor 2 registers.
992 Valtype8 cpr2_size;
993 // The floating-point ABI.
994 Valtype8 fp_abi;
995 // Processor-specific extension.
996 Valtype32 isa_ext;
997 // Mask of ASEs used.
998 Valtype32 ases;
999 // Mask of general flags.
1000 Valtype32 flags1;
1001 Valtype32 flags2;
1004 // Mips_symbol class. Holds additional symbol information needed for Mips.
1006 template<int size>
1007 class Mips_symbol : public Sized_symbol<size>
1009 public:
1010 Mips_symbol()
1011 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1012 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1013 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1014 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1015 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1016 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1017 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1020 // Return whether this is a MIPS16 symbol.
1021 bool
1022 is_mips16() const
1024 // (st_other & STO_MIPS16) == STO_MIPS16
1025 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1026 == elfcpp::STO_MIPS16 >> 2);
1029 // Return whether this is a microMIPS symbol.
1030 bool
1031 is_micromips() const
1033 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1034 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1035 == elfcpp::STO_MICROMIPS >> 2);
1038 // Return whether the symbol needs MIPS16 fn_stub.
1039 bool
1040 need_fn_stub() const
1041 { return this->need_fn_stub_; }
1043 // Set that the symbol needs MIPS16 fn_stub.
1044 void
1045 set_need_fn_stub()
1046 { this->need_fn_stub_ = true; }
1048 // Return whether this symbol is referenced by branch relocations from
1049 // any non-PIC input file.
1050 bool
1051 has_nonpic_branches() const
1052 { return this->has_nonpic_branches_; }
1054 // Set that this symbol is referenced by branch relocations from
1055 // any non-PIC input file.
1056 void
1057 set_has_nonpic_branches()
1058 { this->has_nonpic_branches_ = true; }
1060 // Return the offset of the la25 stub for this symbol from the start of the
1061 // la25 stub section.
1062 unsigned int
1063 la25_stub_offset() const
1064 { return this->la25_stub_offset_; }
1066 // Set the offset of the la25 stub for this symbol from the start of the
1067 // la25 stub section.
1068 void
1069 set_la25_stub_offset(unsigned int offset)
1070 { this->la25_stub_offset_ = offset; }
1072 // Return whether the symbol has la25 stub. This is true if this symbol is
1073 // for a PIC function, and there are non-PIC branches and jumps to it.
1074 bool
1075 has_la25_stub() const
1076 { return this->la25_stub_offset_ != -1U; }
1078 // Return whether there is a relocation against this symbol that must be
1079 // resolved by the static linker (that is, the relocation cannot possibly
1080 // be made dynamic).
1081 bool
1082 has_static_relocs() const
1083 { return this->has_static_relocs_; }
1085 // Set that there is a relocation against this symbol that must be resolved
1086 // by the static linker (that is, the relocation cannot possibly be made
1087 // dynamic).
1088 void
1089 set_has_static_relocs()
1090 { this->has_static_relocs_ = true; }
1092 // Return whether we must not create a lazy-binding stub for this symbol.
1093 bool
1094 no_lazy_stub() const
1095 { return this->no_lazy_stub_; }
1097 // Set that we must not create a lazy-binding stub for this symbol.
1098 void
1099 set_no_lazy_stub()
1100 { this->no_lazy_stub_ = true; }
1102 // Return the offset of the lazy-binding stub for this symbol from the start
1103 // of .MIPS.stubs section.
1104 unsigned int
1105 lazy_stub_offset() const
1106 { return this->lazy_stub_offset_; }
1108 // Set the offset of the lazy-binding stub for this symbol from the start
1109 // of .MIPS.stubs section.
1110 void
1111 set_lazy_stub_offset(unsigned int offset)
1112 { this->lazy_stub_offset_ = offset; }
1114 // Return whether there are any relocations for this symbol where
1115 // pointer equality matters.
1116 bool
1117 pointer_equality_needed() const
1118 { return this->pointer_equality_needed_; }
1120 // Set that there are relocations for this symbol where pointer equality
1121 // matters.
1122 void
1123 set_pointer_equality_needed()
1124 { this->pointer_equality_needed_ = true; }
1126 // Return global GOT area where this symbol in located.
1127 Global_got_area
1128 global_got_area() const
1129 { return this->global_got_area_; }
1131 // Set global GOT area where this symbol in located.
1132 void
1133 set_global_got_area(Global_got_area global_got_area)
1134 { this->global_got_area_ = global_got_area; }
1136 // Return the global GOT offset for this symbol. For multi-GOT links, this
1137 // returns the offset from the start of .got section to the first GOT entry
1138 // for the symbol. Note that in multi-GOT links the symbol can have entry
1139 // in more than one GOT.
1140 unsigned int
1141 global_gotoffset() const
1142 { return this->global_gotoffset_; }
1144 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1145 // the symbol can have entry in more than one GOT. This method will set
1146 // the offset only if it is less than current offset.
1147 void
1148 set_global_gotoffset(unsigned int offset)
1150 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1151 this->global_gotoffset_ = offset;
1154 // Return whether all GOT relocations for this symbol are for calls.
1155 bool
1156 got_only_for_calls() const
1157 { return this->got_only_for_calls_; }
1159 // Set that there is a GOT relocation for this symbol that is not for call.
1160 void
1161 set_got_not_only_for_calls()
1162 { this->got_only_for_calls_ = false; }
1164 // Return whether this is a PIC symbol.
1165 bool
1166 is_pic() const
1168 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1169 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1170 == (elfcpp::STO_MIPS_PIC >> 2));
1173 // Set the flag in st_other field that marks this symbol as PIC.
1174 void
1175 set_pic()
1177 if (this->is_mips16())
1178 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1179 this->set_nonvis((this->nonvis()
1180 & ~((elfcpp::STO_MIPS16 >> 2)
1181 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1182 | (elfcpp::STO_MIPS_PIC >> 2));
1183 else
1184 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1185 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1186 | (elfcpp::STO_MIPS_PIC >> 2));
1189 // Set the flag in st_other field that marks this symbol as PLT.
1190 void
1191 set_mips_plt()
1193 if (this->is_mips16())
1194 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1195 this->set_nonvis((this->nonvis()
1196 & ((elfcpp::STO_MIPS16 >> 2)
1197 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1198 | (elfcpp::STO_MIPS_PLT >> 2));
1200 else
1201 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1202 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1203 | (elfcpp::STO_MIPS_PLT >> 2));
1206 // Downcast a base pointer to a Mips_symbol pointer.
1207 static Mips_symbol<size>*
1208 as_mips_sym(Symbol* sym)
1209 { return static_cast<Mips_symbol<size>*>(sym); }
1211 // Downcast a base pointer to a Mips_symbol pointer.
1212 static const Mips_symbol<size>*
1213 as_mips_sym(const Symbol* sym)
1214 { return static_cast<const Mips_symbol<size>*>(sym); }
1216 // Return whether the symbol has lazy-binding stub.
1217 bool
1218 has_lazy_stub() const
1219 { return this->has_lazy_stub_; }
1221 // Set whether the symbol has lazy-binding stub.
1222 void
1223 set_has_lazy_stub(bool has_lazy_stub)
1224 { this->has_lazy_stub_ = has_lazy_stub; }
1226 // Return whether the symbol needs a standard PLT entry.
1227 bool
1228 needs_mips_plt() const
1229 { return this->needs_mips_plt_; }
1231 // Set whether the symbol needs a standard PLT entry.
1232 void
1233 set_needs_mips_plt(bool needs_mips_plt)
1234 { this->needs_mips_plt_ = needs_mips_plt; }
1236 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1237 // entry.
1238 bool
1239 needs_comp_plt() const
1240 { return this->needs_comp_plt_; }
1242 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1243 void
1244 set_needs_comp_plt(bool needs_comp_plt)
1245 { this->needs_comp_plt_ = needs_comp_plt; }
1247 // Return standard PLT entry offset, or -1 if none.
1248 unsigned int
1249 mips_plt_offset() const
1250 { return this->mips_plt_offset_; }
1252 // Set standard PLT entry offset.
1253 void
1254 set_mips_plt_offset(unsigned int mips_plt_offset)
1255 { this->mips_plt_offset_ = mips_plt_offset; }
1257 // Return whether the symbol has standard PLT entry.
1258 bool
1259 has_mips_plt_offset() const
1260 { return this->mips_plt_offset_ != -1U; }
1262 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1263 unsigned int
1264 comp_plt_offset() const
1265 { return this->comp_plt_offset_; }
1267 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1268 void
1269 set_comp_plt_offset(unsigned int comp_plt_offset)
1270 { this->comp_plt_offset_ = comp_plt_offset; }
1272 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1273 bool
1274 has_comp_plt_offset() const
1275 { return this->comp_plt_offset_ != -1U; }
1277 // Return MIPS16 fn stub for a symbol.
1278 template<bool big_endian>
1279 Mips16_stub_section<size, big_endian>*
1280 get_mips16_fn_stub() const
1282 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1285 // Set MIPS16 fn stub for a symbol.
1286 void
1287 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1288 { this->mips16_fn_stub_ = stub; }
1290 // Return whether symbol has MIPS16 fn stub.
1291 bool
1292 has_mips16_fn_stub() const
1293 { return this->mips16_fn_stub_ != NULL; }
1295 // Return MIPS16 call stub for a symbol.
1296 template<bool big_endian>
1297 Mips16_stub_section<size, big_endian>*
1298 get_mips16_call_stub() const
1300 return static_cast<Mips16_stub_section<size, big_endian>*>(
1301 mips16_call_stub_);
1304 // Set MIPS16 call stub for a symbol.
1305 void
1306 set_mips16_call_stub(Mips16_stub_section_base* stub)
1307 { this->mips16_call_stub_ = stub; }
1309 // Return whether symbol has MIPS16 call stub.
1310 bool
1311 has_mips16_call_stub() const
1312 { return this->mips16_call_stub_ != NULL; }
1314 // Return MIPS16 call_fp stub for a symbol.
1315 template<bool big_endian>
1316 Mips16_stub_section<size, big_endian>*
1317 get_mips16_call_fp_stub() const
1319 return static_cast<Mips16_stub_section<size, big_endian>*>(
1320 mips16_call_fp_stub_);
1323 // Set MIPS16 call_fp stub for a symbol.
1324 void
1325 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1326 { this->mips16_call_fp_stub_ = stub; }
1328 // Return whether symbol has MIPS16 call_fp stub.
1329 bool
1330 has_mips16_call_fp_stub() const
1331 { return this->mips16_call_fp_stub_ != NULL; }
1333 bool
1334 get_applied_secondary_got_fixup() const
1335 { return applied_secondary_got_fixup_; }
1337 void
1338 set_applied_secondary_got_fixup()
1339 { this->applied_secondary_got_fixup_ = true; }
1341 // Return the hash of this symbol.
1342 size_t
1343 hash() const
1345 return gold::string_hash<char>(this->name());
1348 private:
1349 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1350 // appears in any relocs other than a 16 bit call.
1351 bool need_fn_stub_;
1353 // True if this symbol is referenced by branch relocations from
1354 // any non-PIC input file. This is used to determine whether an
1355 // la25 stub is required.
1356 bool has_nonpic_branches_;
1358 // The offset of the la25 stub for this symbol from the start of the
1359 // la25 stub section.
1360 unsigned int la25_stub_offset_;
1362 // True if there is a relocation against this symbol that must be
1363 // resolved by the static linker (that is, the relocation cannot
1364 // possibly be made dynamic).
1365 bool has_static_relocs_;
1367 // Whether we must not create a lazy-binding stub for this symbol.
1368 // This is true if the symbol has relocations related to taking the
1369 // function's address.
1370 bool no_lazy_stub_;
1372 // The offset of the lazy-binding stub for this symbol from the start of
1373 // .MIPS.stubs section.
1374 unsigned int lazy_stub_offset_;
1376 // True if there are any relocations for this symbol where pointer equality
1377 // matters.
1378 bool pointer_equality_needed_;
1380 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1381 // in the global part of the GOT.
1382 Global_got_area global_got_area_;
1384 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1385 // from the start of .got section to the first GOT entry for the symbol.
1386 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1387 unsigned int global_gotoffset_;
1389 // Whether all GOT relocations for this symbol are for calls.
1390 bool got_only_for_calls_;
1391 // Whether the symbol has lazy-binding stub.
1392 bool has_lazy_stub_;
1393 // Whether the symbol needs a standard PLT entry.
1394 bool needs_mips_plt_;
1395 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1396 bool needs_comp_plt_;
1397 // Standard PLT entry offset, or -1 if none.
1398 unsigned int mips_plt_offset_;
1399 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1400 unsigned int comp_plt_offset_;
1401 // MIPS16 fn stub for a symbol.
1402 Mips16_stub_section_base* mips16_fn_stub_;
1403 // MIPS16 call stub for a symbol.
1404 Mips16_stub_section_base* mips16_call_stub_;
1405 // MIPS16 call_fp stub for a symbol.
1406 Mips16_stub_section_base* mips16_call_fp_stub_;
1408 bool applied_secondary_got_fixup_;
1411 // Mips16_stub_section class.
1413 // The mips16 compiler uses a couple of special sections to handle
1414 // floating point arguments.
1416 // Section names that look like .mips16.fn.FNNAME contain stubs that
1417 // copy floating point arguments from the fp regs to the gp regs and
1418 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1419 // call should be redirected to the stub instead. If no 32 bit
1420 // function calls FNNAME, the stub should be discarded. We need to
1421 // consider any reference to the function, not just a call, because
1422 // if the address of the function is taken we will need the stub,
1423 // since the address might be passed to a 32 bit function.
1425 // Section names that look like .mips16.call.FNNAME contain stubs
1426 // that copy floating point arguments from the gp regs to the fp
1427 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1428 // then any 16 bit function that calls FNNAME should be redirected
1429 // to the stub instead. If FNNAME is not a 32 bit function, the
1430 // stub should be discarded.
1432 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1433 // which call FNNAME and then copy the return value from the fp regs
1434 // to the gp regs. These stubs store the return address in $18 while
1435 // calling FNNAME; any function which might call one of these stubs
1436 // must arrange to save $18 around the call. (This case is not
1437 // needed for 32 bit functions that call 16 bit functions, because
1438 // 16 bit functions always return floating point values in both
1439 // $f0/$f1 and $2/$3.)
1441 // Note that in all cases FNNAME might be defined statically.
1442 // Therefore, FNNAME is not used literally. Instead, the relocation
1443 // information will indicate which symbol the section is for.
1445 // We record any stubs that we find in the symbol table.
1447 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1449 class Mips16_stub_section_base { };
1451 template<int size, bool big_endian>
1452 class Mips16_stub_section : public Mips16_stub_section_base
1454 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1456 public:
1457 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1458 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1459 found_r_mips_none_(false)
1461 gold_assert(object->is_mips16_fn_stub_section(shndx)
1462 || object->is_mips16_call_stub_section(shndx)
1463 || object->is_mips16_call_fp_stub_section(shndx));
1466 // Return the object of this stub section.
1467 Mips_relobj<size, big_endian>*
1468 object() const
1469 { return this->object_; }
1471 // Return the size of a section.
1472 uint64_t
1473 section_size() const
1474 { return this->object_->section_size(this->shndx_); }
1476 // Return section index of this stub section.
1477 unsigned int
1478 shndx() const
1479 { return this->shndx_; }
1481 // Return symbol index, if stub is for a local function.
1482 unsigned int
1483 r_sym() const
1484 { return this->r_sym_; }
1486 // Return symbol, if stub is for a global function.
1487 Mips_symbol<size>*
1488 gsym() const
1489 { return this->gsym_; }
1491 // Return whether stub is for a local function.
1492 bool
1493 is_for_local_function() const
1494 { return this->gsym_ == NULL; }
1496 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1497 // is found in the stub section. Try to find stub target.
1498 void
1499 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1501 // To find target symbol for this stub, trust the first R_MIPS_NONE
1502 // relocation, if any. Otherwise trust the first relocation, whatever
1503 // its kind.
1504 if (this->found_r_mips_none_)
1505 return;
1506 if (r_type == elfcpp::R_MIPS_NONE)
1508 this->r_sym_ = r_sym;
1509 this->gsym_ = NULL;
1510 this->found_r_mips_none_ = true;
1512 else if (!is_target_found())
1513 this->r_sym_ = r_sym;
1516 // This method is called when a new relocation R_TYPE for global symbol GSYM
1517 // is found in the stub section. Try to find stub target.
1518 void
1519 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1521 // To find target symbol for this stub, trust the first R_MIPS_NONE
1522 // relocation, if any. Otherwise trust the first relocation, whatever
1523 // its kind.
1524 if (this->found_r_mips_none_)
1525 return;
1526 if (r_type == elfcpp::R_MIPS_NONE)
1528 this->gsym_ = gsym;
1529 this->r_sym_ = 0;
1530 this->found_r_mips_none_ = true;
1532 else if (!is_target_found())
1533 this->gsym_ = gsym;
1536 // Return whether we found the stub target.
1537 bool
1538 is_target_found() const
1539 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1541 // Return whether this is a fn stub.
1542 bool
1543 is_fn_stub() const
1544 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1546 // Return whether this is a call stub.
1547 bool
1548 is_call_stub() const
1549 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1551 // Return whether this is a call_fp stub.
1552 bool
1553 is_call_fp_stub() const
1554 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1556 // Return the output address.
1557 Mips_address
1558 output_address() const
1560 return (this->object_->output_section(this->shndx_)->address()
1561 + this->object_->output_section_offset(this->shndx_));
1564 private:
1565 // The object of this stub section.
1566 Mips_relobj<size, big_endian>* object_;
1567 // The section index of this stub section.
1568 unsigned int shndx_;
1569 // The symbol index, if stub is for a local function.
1570 unsigned int r_sym_;
1571 // The symbol, if stub is for a global function.
1572 Mips_symbol<size>* gsym_;
1573 // True if we found R_MIPS_NONE relocation in this stub.
1574 bool found_r_mips_none_;
1577 // Mips_relobj class.
1579 template<int size, bool big_endian>
1580 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1582 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1583 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1584 Mips16_stubs_int_map;
1585 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1587 public:
1588 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1589 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1590 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1591 processor_specific_flags_(0), local_symbol_is_mips16_(),
1592 local_symbol_is_micromips_(), mips16_stub_sections_(),
1593 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1594 local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1595 merge_processor_specific_data_(true), got_info_(NULL),
1596 section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1597 section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U),
1598 attributes_section_data_(NULL), abiflags_(NULL), gprmask_(0),
1599 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1601 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1602 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1605 ~Mips_relobj()
1606 { delete this->attributes_section_data_; }
1608 // Downcast a base pointer to a Mips_relobj pointer. This is
1609 // not type-safe but we only use Mips_relobj not the base class.
1610 static Mips_relobj<size, big_endian>*
1611 as_mips_relobj(Relobj* relobj)
1612 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1614 // Downcast a base pointer to a Mips_relobj pointer. This is
1615 // not type-safe but we only use Mips_relobj not the base class.
1616 static const Mips_relobj<size, big_endian>*
1617 as_mips_relobj(const Relobj* relobj)
1618 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1620 // Processor-specific flags in ELF file header. This is valid only after
1621 // reading symbols.
1622 elfcpp::Elf_Word
1623 processor_specific_flags() const
1624 { return this->processor_specific_flags_; }
1626 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1627 // index. This is only valid after do_count_local_symbol is called.
1628 bool
1629 local_symbol_is_mips16(unsigned int r_sym) const
1631 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1632 return this->local_symbol_is_mips16_[r_sym];
1635 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1636 // index. This is only valid after do_count_local_symbol is called.
1637 bool
1638 local_symbol_is_micromips(unsigned int r_sym) const
1640 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1641 return this->local_symbol_is_micromips_[r_sym];
1644 // Get or create MIPS16 stub section.
1645 Mips16_stub_section<size, big_endian>*
1646 get_mips16_stub_section(unsigned int shndx)
1648 typename Mips16_stubs_int_map::const_iterator it =
1649 this->mips16_stub_sections_.find(shndx);
1650 if (it != this->mips16_stub_sections_.end())
1651 return (*it).second;
1653 Mips16_stub_section<size, big_endian>* stub_section =
1654 new Mips16_stub_section<size, big_endian>(this, shndx);
1655 this->mips16_stub_sections_.insert(
1656 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1657 stub_section->shndx(), stub_section));
1658 return stub_section;
1661 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1662 // object doesn't have fn stub for R_SYM.
1663 Mips16_stub_section<size, big_endian>*
1664 get_local_mips16_fn_stub(unsigned int r_sym) const
1666 typename Mips16_stubs_int_map::const_iterator it =
1667 this->local_mips16_fn_stubs_.find(r_sym);
1668 if (it != this->local_mips16_fn_stubs_.end())
1669 return (*it).second;
1670 return NULL;
1673 // Record that this object has MIPS16 fn stub for local symbol. This method
1674 // is only called if we decided not to discard the stub.
1675 void
1676 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1678 gold_assert(stub->is_for_local_function());
1679 unsigned int r_sym = stub->r_sym();
1680 this->local_mips16_fn_stubs_.insert(
1681 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1682 r_sym, stub));
1685 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1686 // object doesn't have call stub for R_SYM.
1687 Mips16_stub_section<size, big_endian>*
1688 get_local_mips16_call_stub(unsigned int r_sym) const
1690 typename Mips16_stubs_int_map::const_iterator it =
1691 this->local_mips16_call_stubs_.find(r_sym);
1692 if (it != this->local_mips16_call_stubs_.end())
1693 return (*it).second;
1694 return NULL;
1697 // Record that this object has MIPS16 call stub for local symbol. This method
1698 // is only called if we decided not to discard the stub.
1699 void
1700 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1702 gold_assert(stub->is_for_local_function());
1703 unsigned int r_sym = stub->r_sym();
1704 this->local_mips16_call_stubs_.insert(
1705 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1706 r_sym, stub));
1709 // Record that we found "non 16-bit" call relocation against local symbol
1710 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1711 // is one.
1712 void
1713 add_local_non_16bit_call(unsigned int symndx)
1714 { this->local_non_16bit_calls_.insert(symndx); }
1716 // Return true if there is any "non 16-bit" call relocation against local
1717 // symbol SYMNDX in this object.
1718 bool
1719 has_local_non_16bit_call_relocs(unsigned int symndx)
1721 return (this->local_non_16bit_calls_.find(symndx)
1722 != this->local_non_16bit_calls_.end());
1725 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1726 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1727 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1728 void
1729 add_local_16bit_call(unsigned int symndx)
1730 { this->local_16bit_calls_.insert(symndx); }
1732 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1733 // symbol SYMNDX in this object.
1734 bool
1735 has_local_16bit_call_relocs(unsigned int symndx)
1737 return (this->local_16bit_calls_.find(symndx)
1738 != this->local_16bit_calls_.end());
1741 // Get gp value that was used to create this object.
1742 Mips_address
1743 gp_value() const
1744 { return this->gp_; }
1746 // Return whether the object is a PIC object.
1747 bool
1748 is_pic() const
1749 { return this->is_pic_; }
1751 // Return whether the object uses N32 ABI.
1752 bool
1753 is_n32() const
1754 { return this->is_n32_; }
1756 // Return whether the object uses N64 ABI.
1757 bool
1758 is_n64() const
1759 { return size == 64; }
1761 // Return whether the object uses NewABI conventions.
1762 bool
1763 is_newabi() const
1764 { return this->is_n32() || this->is_n64(); }
1766 // Return Mips_got_info for this object.
1767 Mips_got_info<size, big_endian>*
1768 get_got_info() const
1769 { return this->got_info_; }
1771 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1772 Mips_got_info<size, big_endian>*
1773 get_or_create_got_info()
1775 if (!this->got_info_)
1776 this->got_info_ = new Mips_got_info<size, big_endian>();
1777 return this->got_info_;
1780 // Set Mips_got_info for this object.
1781 void
1782 set_got_info(Mips_got_info<size, big_endian>* got_info)
1783 { this->got_info_ = got_info; }
1785 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1786 // after do_read_symbols is called.
1787 bool
1788 is_mips16_stub_section(unsigned int shndx)
1790 return (is_mips16_fn_stub_section(shndx)
1791 || is_mips16_call_stub_section(shndx)
1792 || is_mips16_call_fp_stub_section(shndx));
1795 // Return TRUE if relocations in section SHNDX can refer directly to a
1796 // MIPS16 function rather than to a hard-float stub. This is only valid
1797 // after do_read_symbols is called.
1798 bool
1799 section_allows_mips16_refs(unsigned int shndx)
1801 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1804 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1805 // after do_read_symbols is called.
1806 bool
1807 is_mips16_fn_stub_section(unsigned int shndx)
1809 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1810 return this->section_is_mips16_fn_stub_[shndx];
1813 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1814 // after do_read_symbols is called.
1815 bool
1816 is_mips16_call_stub_section(unsigned int shndx)
1818 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1819 return this->section_is_mips16_call_stub_[shndx];
1822 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1823 // valid after do_read_symbols is called.
1824 bool
1825 is_mips16_call_fp_stub_section(unsigned int shndx)
1827 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1828 return this->section_is_mips16_call_fp_stub_[shndx];
1831 // Discard MIPS16 stub secions that are not needed.
1832 void
1833 discard_mips16_stub_sections(Symbol_table* symtab);
1835 // Return whether there is a .reginfo section.
1836 bool
1837 has_reginfo_section() const
1838 { return this->has_reginfo_section_; }
1840 // Return whether we want to merge processor-specific data.
1841 bool
1842 merge_processor_specific_data() const
1843 { return this->merge_processor_specific_data_; }
1845 // Return gprmask from the .reginfo section of this object.
1846 Valtype
1847 gprmask() const
1848 { return this->gprmask_; }
1850 // Return cprmask1 from the .reginfo section of this object.
1851 Valtype
1852 cprmask1() const
1853 { return this->cprmask1_; }
1855 // Return cprmask2 from the .reginfo section of this object.
1856 Valtype
1857 cprmask2() const
1858 { return this->cprmask2_; }
1860 // Return cprmask3 from the .reginfo section of this object.
1861 Valtype
1862 cprmask3() const
1863 { return this->cprmask3_; }
1865 // Return cprmask4 from the .reginfo section of this object.
1866 Valtype
1867 cprmask4() const
1868 { return this->cprmask4_; }
1870 // This is the contents of the .MIPS.abiflags section if there is one.
1871 Mips_abiflags<big_endian>*
1872 abiflags()
1873 { return this->abiflags_; }
1875 // This is the contents of the .gnu.attribute section if there is one.
1876 const Attributes_section_data*
1877 attributes_section_data() const
1878 { return this->attributes_section_data_; }
1880 protected:
1881 // Count the local symbols.
1882 void
1883 do_count_local_symbols(Stringpool_template<char>*,
1884 Stringpool_template<char>*);
1886 // Read the symbol information.
1887 void
1888 do_read_symbols(Read_symbols_data* sd);
1890 private:
1891 // The name of the options section.
1892 const char* mips_elf_options_section_name()
1893 { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1895 // processor-specific flags in ELF file header.
1896 elfcpp::Elf_Word processor_specific_flags_;
1898 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1899 // This is only valid after do_count_local_symbol is called.
1900 std::vector<bool> local_symbol_is_mips16_;
1902 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1903 // This is only valid after do_count_local_symbol is called.
1904 std::vector<bool> local_symbol_is_micromips_;
1906 // Map from section index to the MIPS16 stub for that section. This contains
1907 // all stubs found in this object.
1908 Mips16_stubs_int_map mips16_stub_sections_;
1910 // Local symbols that have "non 16-bit" call relocation. This relocation
1911 // would need to refer to a MIPS16 fn stub, if there is one.
1912 std::set<unsigned int> local_non_16bit_calls_;
1914 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1915 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1916 // relocation that refers to the stub symbol.
1917 std::set<unsigned int> local_16bit_calls_;
1919 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1920 // This contains only the stubs that we decided not to discard.
1921 Mips16_stubs_int_map local_mips16_fn_stubs_;
1923 // Map from local symbol index to the MIPS16 call stub for that symbol.
1924 // This contains only the stubs that we decided not to discard.
1925 Mips16_stubs_int_map local_mips16_call_stubs_;
1927 // gp value that was used to create this object.
1928 Mips_address gp_;
1929 // Whether the object is a PIC object.
1930 bool is_pic_ : 1;
1931 // Whether the object uses N32 ABI.
1932 bool is_n32_ : 1;
1933 // Whether the object contains a .reginfo section.
1934 bool has_reginfo_section_ : 1;
1935 // Whether we merge processor-specific data of this object to output.
1936 bool merge_processor_specific_data_ : 1;
1937 // The Mips_got_info for this object.
1938 Mips_got_info<size, big_endian>* got_info_;
1940 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1941 // This is only valid after do_read_symbols is called.
1942 std::vector<bool> section_is_mips16_fn_stub_;
1944 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1945 // This is only valid after do_read_symbols is called.
1946 std::vector<bool> section_is_mips16_call_stub_;
1948 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1949 // This is only valid after do_read_symbols is called.
1950 std::vector<bool> section_is_mips16_call_fp_stub_;
1952 // .pdr section index.
1953 unsigned int pdr_shndx_;
1955 // Object attributes if there is a .gnu.attributes section or NULL.
1956 Attributes_section_data* attributes_section_data_;
1958 // Object abiflags if there is a .MIPS.abiflags section or NULL.
1959 Mips_abiflags<big_endian>* abiflags_;
1961 // gprmask from the .reginfo section of this object.
1962 Valtype gprmask_;
1963 // cprmask1 from the .reginfo section of this object.
1964 Valtype cprmask1_;
1965 // cprmask2 from the .reginfo section of this object.
1966 Valtype cprmask2_;
1967 // cprmask3 from the .reginfo section of this object.
1968 Valtype cprmask3_;
1969 // cprmask4 from the .reginfo section of this object.
1970 Valtype cprmask4_;
1973 // Mips_output_data_got class.
1975 template<int size, bool big_endian>
1976 class Mips_output_data_got : public Output_data_got<size, big_endian>
1978 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1979 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1980 Reloc_section;
1981 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1983 public:
1984 Mips_output_data_got(Target_mips<size, big_endian>* target,
1985 Symbol_table* symtab, Layout* layout)
1986 : Output_data_got<size, big_endian>(), target_(target),
1987 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1988 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1989 secondary_got_relocs_()
1991 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1992 this->set_addralign(16);
1995 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1996 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1997 void
1998 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1999 unsigned int symndx, Mips_address addend,
2000 unsigned int r_type, unsigned int shndx,
2001 bool is_section_symbol)
2003 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
2004 r_type, shndx,
2005 is_section_symbol);
2008 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
2009 // in OBJECT. FOR_CALL is true if the caller is only interested in
2010 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
2011 // relocation.
2012 void
2013 record_global_got_symbol(Mips_symbol<size>* mips_sym,
2014 Mips_relobj<size, big_endian>* object,
2015 unsigned int r_type, bool dyn_reloc, bool for_call)
2017 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2018 dyn_reloc, for_call);
2021 // Record that OBJECT has a page relocation against symbol SYMNDX and
2022 // that ADDEND is the addend for that relocation.
2023 void
2024 record_got_page_entry(Mips_relobj<size, big_endian>* object,
2025 unsigned int symndx, int addend)
2026 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2028 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
2029 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2030 // applied in a static link.
2031 void
2032 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2033 Mips_symbol<size>* gsym)
2034 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2036 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
2037 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
2038 // relocation that needs to be applied in a static link.
2039 void
2040 add_static_reloc(unsigned int got_offset, unsigned int r_type,
2041 Sized_relobj_file<size, big_endian>* relobj,
2042 unsigned int index)
2044 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2045 index));
2048 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2049 // secondary GOT at OFFSET.
2050 void
2051 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2052 Mips_symbol<size>* gsym)
2054 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2055 r_type, gsym));
2058 // Update GOT entry at OFFSET with VALUE.
2059 void
2060 update_got_entry(unsigned int offset, Mips_address value)
2062 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2065 // Return the number of entries in local part of the GOT. This includes
2066 // local entries, page entries and 2 reserved entries.
2067 unsigned int
2068 get_local_gotno() const
2070 if (!this->multi_got())
2072 return (2 + this->master_got_info_->local_gotno()
2073 + this->master_got_info_->page_gotno());
2075 else
2076 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2079 // Return dynamic symbol table index of the first symbol with global GOT
2080 // entry.
2081 unsigned int
2082 first_global_got_dynsym_index() const
2083 { return this->first_global_got_dynsym_index_; }
2085 // Set dynamic symbol table index of the first symbol with global GOT entry.
2086 void
2087 set_first_global_got_dynsym_index(unsigned int index)
2088 { this->first_global_got_dynsym_index_ = index; }
2090 // Lay out the GOT. Add local, global and TLS entries. If GOT is
2091 // larger than 64K, create multi-GOT.
2092 void
2093 lay_out_got(Layout* layout, Symbol_table* symtab,
2094 const Input_objects* input_objects);
2096 // Create multi-GOT. For every GOT, add local, global and TLS entries.
2097 void
2098 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2100 // Attempt to merge GOTs of different input objects.
2101 void
2102 merge_gots(const Input_objects* input_objects);
2104 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
2105 // this would lead to overflow, true if they were merged successfully.
2106 bool
2107 merge_got_with(Mips_got_info<size, big_endian>* from,
2108 Mips_relobj<size, big_endian>* object,
2109 Mips_got_info<size, big_endian>* to);
2111 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
2112 // use OBJECT's GOT.
2113 unsigned int
2114 get_got_page_offset(Mips_address value,
2115 const Mips_relobj<size, big_endian>* object)
2117 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2118 ? this->master_got_info_
2119 : object->get_got_info());
2120 gold_assert(g != NULL);
2121 return g->get_got_page_offset(value, this);
2124 // Return the GOT offset of type GOT_TYPE of the global symbol
2125 // GSYM. For multi-GOT links, use OBJECT's GOT.
2126 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2127 Mips_relobj<size, big_endian>* object) const
2129 if (!this->multi_got())
2130 return gsym->got_offset(got_type);
2131 else
2133 Mips_got_info<size, big_endian>* g = object->get_got_info();
2134 gold_assert(g != NULL);
2135 return gsym->got_offset(g->multigot_got_type(got_type));
2139 // Return the GOT offset of type GOT_TYPE of the local symbol
2140 // SYMNDX.
2141 unsigned int
2142 got_offset(unsigned int symndx, unsigned int got_type,
2143 Sized_relobj_file<size, big_endian>* object,
2144 uint64_t addend) const
2145 { return object->local_got_offset(symndx, got_type, addend); }
2147 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2148 unsigned int
2149 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2151 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2152 ? this->master_got_info_
2153 : object->get_got_info());
2154 gold_assert(g != NULL);
2155 return g->tls_ldm_offset();
2158 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2159 void
2160 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2161 Mips_relobj<size, big_endian>* object)
2163 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2164 ? this->master_got_info_
2165 : object->get_got_info());
2166 gold_assert(g != NULL);
2167 g->set_tls_ldm_offset(tls_ldm_offset);
2170 // Return true for multi-GOT links.
2171 bool
2172 multi_got() const
2173 { return this->primary_got_ != NULL; }
2175 // Return the offset of OBJECT's GOT from the start of .got section.
2176 unsigned int
2177 get_got_offset(const Mips_relobj<size, big_endian>* object)
2179 if (!this->multi_got())
2180 return 0;
2181 else
2183 Mips_got_info<size, big_endian>* g = object->get_got_info();
2184 return g != NULL ? g->offset() : 0;
2188 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2189 void
2190 add_reloc_only_entries()
2191 { this->master_got_info_->add_reloc_only_entries(this); }
2193 // Return offset of the primary GOT's entry for global symbol.
2194 unsigned int
2195 get_primary_got_offset(const Mips_symbol<size>* sym) const
2197 gold_assert(sym->global_got_area() != GGA_NONE);
2198 return (this->get_local_gotno() + sym->dynsym_index()
2199 - this->first_global_got_dynsym_index()) * size/8;
2202 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2203 // Input argument GOT_OFFSET is always global offset from the start of
2204 // .got section, for both single and multi-GOT links.
2205 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2206 // links, the return value is object_got_offset - 0x7FF0, where
2207 // object_got_offset is offset in the OBJECT's GOT.
2209 gp_offset(unsigned int got_offset,
2210 const Mips_relobj<size, big_endian>* object) const
2212 return (this->address() + got_offset
2213 - this->target_->adjusted_gp_value(object));
2216 protected:
2217 // Write out the GOT table.
2218 void
2219 do_write(Output_file*);
2221 private:
2223 // This class represent dynamic relocations that need to be applied by
2224 // gold because we are using TLS relocations in a static link.
2225 class Static_reloc
2227 public:
2228 Static_reloc(unsigned int got_offset, unsigned int r_type,
2229 Mips_symbol<size>* gsym)
2230 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2231 { this->u_.global.symbol = gsym; }
2233 Static_reloc(unsigned int got_offset, unsigned int r_type,
2234 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2235 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2237 this->u_.local.relobj = relobj;
2238 this->u_.local.index = index;
2241 // Return the GOT offset.
2242 unsigned int
2243 got_offset() const
2244 { return this->got_offset_; }
2246 // Relocation type.
2247 unsigned int
2248 r_type() const
2249 { return this->r_type_; }
2251 // Whether the symbol is global or not.
2252 bool
2253 symbol_is_global() const
2254 { return this->symbol_is_global_; }
2256 // For a relocation against a global symbol, the global symbol.
2257 Mips_symbol<size>*
2258 symbol() const
2260 gold_assert(this->symbol_is_global_);
2261 return this->u_.global.symbol;
2264 // For a relocation against a local symbol, the defining object.
2265 Sized_relobj_file<size, big_endian>*
2266 relobj() const
2268 gold_assert(!this->symbol_is_global_);
2269 return this->u_.local.relobj;
2272 // For a relocation against a local symbol, the local symbol index.
2273 unsigned int
2274 index() const
2276 gold_assert(!this->symbol_is_global_);
2277 return this->u_.local.index;
2280 private:
2281 // GOT offset of the entry to which this relocation is applied.
2282 unsigned int got_offset_;
2283 // Type of relocation.
2284 unsigned int r_type_;
2285 // Whether this relocation is against a global symbol.
2286 bool symbol_is_global_;
2287 // A global or local symbol.
2288 union
2290 struct
2292 // For a global symbol, the symbol itself.
2293 Mips_symbol<size>* symbol;
2294 } global;
2295 struct
2297 // For a local symbol, the object defining object.
2298 Sized_relobj_file<size, big_endian>* relobj;
2299 // For a local symbol, the symbol index.
2300 unsigned int index;
2301 } local;
2302 } u_;
2305 // The target.
2306 Target_mips<size, big_endian>* target_;
2307 // The symbol table.
2308 Symbol_table* symbol_table_;
2309 // The layout.
2310 Layout* layout_;
2311 // Static relocs to be applied to the GOT.
2312 std::vector<Static_reloc> static_relocs_;
2313 // .got section view.
2314 unsigned char* got_view_;
2315 // The dynamic symbol table index of the first symbol with global GOT entry.
2316 unsigned int first_global_got_dynsym_index_;
2317 // The master GOT information.
2318 Mips_got_info<size, big_endian>* master_got_info_;
2319 // The primary GOT information.
2320 Mips_got_info<size, big_endian>* primary_got_;
2321 // Secondary GOT fixups.
2322 std::vector<Static_reloc> secondary_got_relocs_;
2325 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2326 // two ways of creating these interfaces. The first is to add:
2328 // lui $25,%hi(func)
2329 // j func
2330 // addiu $25,$25,%lo(func)
2332 // to a separate trampoline section. The second is to add:
2334 // lui $25,%hi(func)
2335 // addiu $25,$25,%lo(func)
2337 // immediately before a PIC function "func", but only if a function is at the
2338 // beginning of the section, and the section is not too heavily aligned (i.e we
2339 // would need to add no more than 2 nops before the stub.)
2341 // We only create stubs of the first type.
2343 template<int size, bool big_endian>
2344 class Mips_output_data_la25_stub : public Output_section_data
2346 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2348 public:
2349 Mips_output_data_la25_stub()
2350 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2353 // Create LA25 stub for a symbol.
2354 void
2355 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2356 Mips_symbol<size>* gsym);
2358 // Return output address of a stub.
2359 Mips_address
2360 stub_address(const Mips_symbol<size>* sym) const
2362 gold_assert(sym->has_la25_stub());
2363 return this->address() + sym->la25_stub_offset();
2366 protected:
2367 void
2368 do_adjust_output_section(Output_section* os)
2369 { os->set_entsize(0); }
2371 private:
2372 // Template for standard LA25 stub.
2373 static const uint32_t la25_stub_entry[];
2374 // Template for microMIPS LA25 stub.
2375 static const uint32_t la25_stub_micromips_entry[];
2377 // Set the final size.
2378 void
2379 set_final_data_size()
2380 { this->set_data_size(this->symbols_.size() * 16); }
2382 // Create a symbol for SYM stub's value and size, to help make the
2383 // disassembly easier to read.
2384 void
2385 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2386 Target_mips<size, big_endian>* target, uint64_t symsize);
2388 // Write to a map file.
2389 void
2390 do_print_to_mapfile(Mapfile* mapfile) const
2391 { mapfile->print_output_data(this, _(".LA25.stubs")); }
2393 // Write out the LA25 stub section.
2394 void
2395 do_write(Output_file*);
2397 // Symbols that have LA25 stubs.
2398 std::vector<Mips_symbol<size>*> symbols_;
2401 // MIPS-specific relocation writer.
2403 template<int sh_type, bool dynamic, int size, bool big_endian>
2404 struct Mips_output_reloc_writer;
2406 template<int sh_type, bool dynamic, bool big_endian>
2407 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2409 typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2410 typedef std::vector<Output_reloc_type> Relocs;
2412 static void
2413 write(typename Relocs::const_iterator p, unsigned char* pov)
2414 { p->write(pov); }
2417 template<int sh_type, bool dynamic, bool big_endian>
2418 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2420 typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2421 typedef std::vector<Output_reloc_type> Relocs;
2423 static void
2424 write(typename Relocs::const_iterator p, unsigned char* pov)
2426 elfcpp::Mips64_rel_write<big_endian> orel(pov);
2427 orel.put_r_offset(p->get_address());
2428 orel.put_r_sym(p->get_symbol_index());
2429 orel.put_r_ssym(RSS_UNDEF);
2430 orel.put_r_type(p->type());
2431 if (p->type() == elfcpp::R_MIPS_REL32)
2432 orel.put_r_type2(elfcpp::R_MIPS_64);
2433 else
2434 orel.put_r_type2(elfcpp::R_MIPS_NONE);
2435 orel.put_r_type3(elfcpp::R_MIPS_NONE);
2439 template<int sh_type, bool dynamic, int size, bool big_endian>
2440 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2441 size, big_endian>
2443 public:
2444 Mips_output_data_reloc(bool sort_relocs)
2445 : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2448 protected:
2449 // Write out the data.
2450 void
2451 do_write(Output_file* of)
2453 typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2454 big_endian> Writer;
2455 this->template do_write_generic<Writer>(of);
2460 // A class to handle the PLT data.
2462 template<int size, bool big_endian>
2463 class Mips_output_data_plt : public Output_section_data
2465 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2466 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2467 size, big_endian> Reloc_section;
2469 public:
2470 // Create the PLT section. The ordinary .got section is an argument,
2471 // since we need to refer to the start.
2472 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2473 Target_mips<size, big_endian>* target)
2474 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2475 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2476 target_(target)
2478 this->rel_ = new Reloc_section(false);
2479 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2480 elfcpp::SHF_ALLOC, this->rel_,
2481 ORDER_DYNAMIC_PLT_RELOCS, false);
2484 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2485 void
2486 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2488 // Return the .rel.plt section data.
2489 Reloc_section*
2490 rel_plt() const
2491 { return this->rel_; }
2493 // Return the number of PLT entries.
2494 unsigned int
2495 entry_count() const
2496 { return this->symbols_.size(); }
2498 // Return the offset of the first non-reserved PLT entry.
2499 unsigned int
2500 first_plt_entry_offset() const
2501 { return sizeof(plt0_entry_o32); }
2503 // Return the size of a PLT entry.
2504 unsigned int
2505 plt_entry_size() const
2506 { return sizeof(plt_entry); }
2508 // Set final PLT offsets. For each symbol, determine whether standard or
2509 // compressed (MIPS16 or microMIPS) PLT entry is used.
2510 void
2511 set_plt_offsets();
2513 // Return the offset of the first standard PLT entry.
2514 unsigned int
2515 first_mips_plt_offset() const
2516 { return this->plt_header_size_; }
2518 // Return the offset of the first compressed PLT entry.
2519 unsigned int
2520 first_comp_plt_offset() const
2521 { return this->plt_header_size_ + this->plt_mips_offset_; }
2523 // Return whether there are any standard PLT entries.
2524 bool
2525 has_standard_entries() const
2526 { return this->plt_mips_offset_ > 0; }
2528 // Return the output address of standard PLT entry.
2529 Mips_address
2530 mips_entry_address(const Mips_symbol<size>* sym) const
2532 gold_assert (sym->has_mips_plt_offset());
2533 return (this->address() + this->first_mips_plt_offset()
2534 + sym->mips_plt_offset());
2537 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2538 Mips_address
2539 comp_entry_address(const Mips_symbol<size>* sym) const
2541 gold_assert (sym->has_comp_plt_offset());
2542 return (this->address() + this->first_comp_plt_offset()
2543 + sym->comp_plt_offset());
2546 protected:
2547 void
2548 do_adjust_output_section(Output_section* os)
2549 { os->set_entsize(0); }
2551 // Write to a map file.
2552 void
2553 do_print_to_mapfile(Mapfile* mapfile) const
2554 { mapfile->print_output_data(this, _(".plt")); }
2556 private:
2557 // Template for the first PLT entry.
2558 static const uint32_t plt0_entry_o32[];
2559 static const uint32_t plt0_entry_n32[];
2560 static const uint32_t plt0_entry_n64[];
2561 static const uint32_t plt0_entry_micromips_o32[];
2562 static const uint32_t plt0_entry_micromips32_o32[];
2564 // Template for subsequent PLT entries.
2565 static const uint32_t plt_entry[];
2566 static const uint32_t plt_entry_r6[];
2567 static const uint32_t plt_entry_mips16_o32[];
2568 static const uint32_t plt_entry_micromips_o32[];
2569 static const uint32_t plt_entry_micromips32_o32[];
2571 // Set the final size.
2572 void
2573 set_final_data_size()
2575 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2576 + this->plt_comp_offset_);
2579 // Write out the PLT data.
2580 void
2581 do_write(Output_file*);
2583 // Return whether the plt header contains microMIPS code. For the sake of
2584 // cache alignment always use a standard header whenever any standard entries
2585 // are present even if microMIPS entries are present as well. This also lets
2586 // the microMIPS header rely on the value of $v0 only set by microMIPS
2587 // entries, for a small size reduction.
2588 bool
2589 is_plt_header_compressed() const
2591 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2592 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2595 // Return the size of the PLT header.
2596 unsigned int
2597 get_plt_header_size() const
2599 if (this->target_->is_output_n64())
2600 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2601 else if (this->target_->is_output_n32())
2602 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2603 else if (!this->is_plt_header_compressed())
2604 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2605 else if (this->target_->use_32bit_micromips_instructions())
2606 return (2 * sizeof(plt0_entry_micromips32_o32)
2607 / sizeof(plt0_entry_micromips32_o32[0]));
2608 else
2609 return (2 * sizeof(plt0_entry_micromips_o32)
2610 / sizeof(plt0_entry_micromips_o32[0]));
2613 // Return the PLT header entry.
2614 const uint32_t*
2615 get_plt_header_entry() const
2617 if (this->target_->is_output_n64())
2618 return plt0_entry_n64;
2619 else if (this->target_->is_output_n32())
2620 return plt0_entry_n32;
2621 else if (!this->is_plt_header_compressed())
2622 return plt0_entry_o32;
2623 else if (this->target_->use_32bit_micromips_instructions())
2624 return plt0_entry_micromips32_o32;
2625 else
2626 return plt0_entry_micromips_o32;
2629 // Return the size of the standard PLT entry.
2630 unsigned int
2631 standard_plt_entry_size() const
2632 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2634 // Return the size of the compressed PLT entry.
2635 unsigned int
2636 compressed_plt_entry_size() const
2638 gold_assert(!this->target_->is_output_newabi());
2640 if (!this->target_->is_output_micromips())
2641 return (2 * sizeof(plt_entry_mips16_o32)
2642 / sizeof(plt_entry_mips16_o32[0]));
2643 else if (this->target_->use_32bit_micromips_instructions())
2644 return (2 * sizeof(plt_entry_micromips32_o32)
2645 / sizeof(plt_entry_micromips32_o32[0]));
2646 else
2647 return (2 * sizeof(plt_entry_micromips_o32)
2648 / sizeof(plt_entry_micromips_o32[0]));
2651 // The reloc section.
2652 Reloc_section* rel_;
2653 // The .got.plt section.
2654 Output_data_space* got_plt_;
2655 // Symbols that have PLT entry.
2656 std::vector<Mips_symbol<size>*> symbols_;
2657 // The offset of the next standard PLT entry to create.
2658 unsigned int plt_mips_offset_;
2659 // The offset of the next compressed PLT entry to create.
2660 unsigned int plt_comp_offset_;
2661 // The size of the PLT header in bytes.
2662 unsigned int plt_header_size_;
2663 // The target.
2664 Target_mips<size, big_endian>* target_;
2667 // A class to handle the .MIPS.stubs data.
2669 template<int size, bool big_endian>
2670 class Mips_output_data_mips_stubs : public Output_section_data
2672 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2674 // Unordered set of .MIPS.stubs entries.
2675 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2676 Mips_stubs_entry_set;
2678 public:
2679 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2680 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2681 stub_offsets_are_set_(false), target_(target)
2684 // Create entry for a symbol.
2685 void
2686 make_entry(Mips_symbol<size>*);
2688 // Remove entry for a symbol.
2689 void
2690 remove_entry(Mips_symbol<size>* gsym);
2692 // Set stub offsets for symbols. This method expects that the number of
2693 // entries in dynamic symbol table is set.
2694 void
2695 set_lazy_stub_offsets();
2697 void
2698 set_needs_dynsym_value();
2700 // Set the number of entries in dynamic symbol table.
2701 void
2702 set_dynsym_count(unsigned int dynsym_count)
2703 { this->dynsym_count_ = dynsym_count; }
2705 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2706 // count is greater than 0x10000. If the dynamic symbol count is less than
2707 // 0x10000, the stub will be 4 bytes smaller.
2708 // There's no disadvantage from using microMIPS code here, so for the sake of
2709 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2710 // output produced at all. This has a benefit of stubs being shorter by
2711 // 4 bytes each too, unless in the insn32 mode.
2712 unsigned int
2713 stub_max_size() const
2715 if (!this->target_->is_output_micromips()
2716 || this->target_->use_32bit_micromips_instructions())
2717 return 20;
2718 else
2719 return 16;
2722 // Return the size of the stub. This method expects that the final dynsym
2723 // count is set.
2724 unsigned int
2725 stub_size() const
2727 gold_assert(this->dynsym_count_ != -1U);
2728 if (this->dynsym_count_ > 0x10000)
2729 return this->stub_max_size();
2730 else
2731 return this->stub_max_size() - 4;
2734 // Return output address of a stub.
2735 Mips_address
2736 stub_address(const Mips_symbol<size>* sym) const
2738 gold_assert(sym->has_lazy_stub());
2739 return this->address() + sym->lazy_stub_offset();
2742 protected:
2743 void
2744 do_adjust_output_section(Output_section* os)
2745 { os->set_entsize(0); }
2747 // Write to a map file.
2748 void
2749 do_print_to_mapfile(Mapfile* mapfile) const
2750 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2752 private:
2753 static const uint32_t lazy_stub_normal_1[];
2754 static const uint32_t lazy_stub_normal_1_n64[];
2755 static const uint32_t lazy_stub_normal_2[];
2756 static const uint32_t lazy_stub_normal_2_n64[];
2757 static const uint32_t lazy_stub_big[];
2758 static const uint32_t lazy_stub_big_n64[];
2760 static const uint32_t lazy_stub_micromips_normal_1[];
2761 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2762 static const uint32_t lazy_stub_micromips_normal_2[];
2763 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2764 static const uint32_t lazy_stub_micromips_big[];
2765 static const uint32_t lazy_stub_micromips_big_n64[];
2767 static const uint32_t lazy_stub_micromips32_normal_1[];
2768 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2769 static const uint32_t lazy_stub_micromips32_normal_2[];
2770 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2771 static const uint32_t lazy_stub_micromips32_big[];
2772 static const uint32_t lazy_stub_micromips32_big_n64[];
2774 // Set the final size.
2775 void
2776 set_final_data_size()
2777 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2779 // Write out the .MIPS.stubs data.
2780 void
2781 do_write(Output_file*);
2783 // .MIPS.stubs symbols
2784 Mips_stubs_entry_set symbols_;
2785 // Number of entries in dynamic symbol table.
2786 unsigned int dynsym_count_;
2787 // Whether the stub offsets are set.
2788 bool stub_offsets_are_set_;
2789 // The target.
2790 Target_mips<size, big_endian>* target_;
2793 // This class handles Mips .reginfo output section.
2795 template<int size, bool big_endian>
2796 class Mips_output_section_reginfo : public Output_section_data
2798 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2800 public:
2801 Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2802 Valtype gprmask, Valtype cprmask1,
2803 Valtype cprmask2, Valtype cprmask3,
2804 Valtype cprmask4)
2805 : Output_section_data(24, 4, true), target_(target),
2806 gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2807 cprmask3_(cprmask3), cprmask4_(cprmask4)
2810 protected:
2811 // Write to a map file.
2812 void
2813 do_print_to_mapfile(Mapfile* mapfile) const
2814 { mapfile->print_output_data(this, _(".reginfo")); }
2816 // Write out reginfo section.
2817 void
2818 do_write(Output_file* of);
2820 private:
2821 Target_mips<size, big_endian>* target_;
2823 // gprmask of the output .reginfo section.
2824 Valtype gprmask_;
2825 // cprmask1 of the output .reginfo section.
2826 Valtype cprmask1_;
2827 // cprmask2 of the output .reginfo section.
2828 Valtype cprmask2_;
2829 // cprmask3 of the output .reginfo section.
2830 Valtype cprmask3_;
2831 // cprmask4 of the output .reginfo section.
2832 Valtype cprmask4_;
2835 // This class handles .MIPS.options output section.
2837 template<int size, bool big_endian>
2838 class Mips_output_section_options : public Output_section
2840 public:
2841 Mips_output_section_options(const char* name, elfcpp::Elf_Word type,
2842 elfcpp::Elf_Xword flags,
2843 Target_mips<size, big_endian>* target)
2844 : Output_section(name, type, flags), target_(target)
2846 // After the input sections are written, we only need to update
2847 // ri_gp_value field of ODK_REGINFO entries.
2848 this->set_after_input_sections();
2851 protected:
2852 // Write out option section.
2853 void
2854 do_write(Output_file* of);
2856 private:
2857 Target_mips<size, big_endian>* target_;
2860 // This class handles .MIPS.abiflags output section.
2862 template<int size, bool big_endian>
2863 class Mips_output_section_abiflags : public Output_section_data
2865 public:
2866 Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2867 : Output_section_data(24, 8, true), abiflags_(abiflags)
2870 protected:
2871 // Write to a map file.
2872 void
2873 do_print_to_mapfile(Mapfile* mapfile) const
2874 { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2876 void
2877 do_write(Output_file* of);
2879 private:
2880 const Mips_abiflags<big_endian>& abiflags_;
2883 // The MIPS target has relocation types which default handling of relocatable
2884 // relocation cannot process. So we have to extend the default code.
2886 template<bool big_endian, typename Classify_reloc>
2887 class Mips_scan_relocatable_relocs :
2888 public Default_scan_relocatable_relocs<Classify_reloc>
2890 public:
2891 // Return the strategy to use for a local symbol which is a section
2892 // symbol, given the relocation type.
2893 inline Relocatable_relocs::Reloc_strategy
2894 local_section_strategy(unsigned int r_type, Relobj* object)
2896 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2897 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2898 else
2900 switch (r_type)
2902 case elfcpp::R_MIPS_26:
2903 return Relocatable_relocs::RELOC_SPECIAL;
2905 default:
2906 return Default_scan_relocatable_relocs<Classify_reloc>::
2907 local_section_strategy(r_type, object);
2913 // Mips_copy_relocs class. The only difference from the base class is the
2914 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2915 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2916 // cannot be made dynamic, a COPY reloc is emitted.
2918 template<int sh_type, int size, bool big_endian>
2919 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2921 public:
2922 Mips_copy_relocs()
2923 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2926 // Emit any saved relocations which turn out to be needed. This is
2927 // called after all the relocs have been scanned.
2928 void
2929 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2930 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2932 private:
2933 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2934 Copy_reloc_entry;
2936 // Emit this reloc if appropriate. This is called after we have
2937 // scanned all the relocations, so we know whether we emitted a
2938 // COPY relocation for SYM_.
2939 void
2940 emit_entry(Copy_reloc_entry& entry,
2941 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2942 Symbol_table* symtab, Layout* layout,
2943 Target_mips<size, big_endian>* target);
2947 // Return true if the symbol SYM should be considered to resolve local
2948 // to the current module, and false otherwise. The logic is taken from
2949 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2950 static bool
2951 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2952 bool local_protected)
2954 // If it's a local sym, of course we resolve locally.
2955 if (sym == NULL)
2956 return true;
2958 // STV_HIDDEN or STV_INTERNAL ones must be local.
2959 if (sym->visibility() == elfcpp::STV_HIDDEN
2960 || sym->visibility() == elfcpp::STV_INTERNAL)
2961 return true;
2963 // If we don't have a definition in a regular file, then we can't
2964 // resolve locally. The sym is either undefined or dynamic.
2965 if (sym->is_from_dynobj() || sym->is_undefined())
2966 return false;
2968 // Forced local symbols resolve locally.
2969 if (sym->is_forced_local())
2970 return true;
2972 // As do non-dynamic symbols.
2973 if (!has_dynsym_entry)
2974 return true;
2976 // At this point, we know the symbol is defined and dynamic. In an
2977 // executable it must resolve locally, likewise when building symbolic
2978 // shared libraries.
2979 if (parameters->options().output_is_executable()
2980 || parameters->options().Bsymbolic())
2981 return true;
2983 // Now deal with defined dynamic symbols in shared libraries. Ones
2984 // with default visibility might not resolve locally.
2985 if (sym->visibility() == elfcpp::STV_DEFAULT)
2986 return false;
2988 // STV_PROTECTED non-function symbols are local.
2989 if (sym->type() != elfcpp::STT_FUNC)
2990 return true;
2992 // Function pointer equality tests may require that STV_PROTECTED
2993 // symbols be treated as dynamic symbols. If the address of a
2994 // function not defined in an executable is set to that function's
2995 // plt entry in the executable, then the address of the function in
2996 // a shared library must also be the plt entry in the executable.
2997 return local_protected;
3000 // Return TRUE if references to this symbol always reference the symbol in this
3001 // object.
3002 static bool
3003 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
3005 return symbol_refs_local(sym, has_dynsym_entry, false);
3008 // Return TRUE if calls to this symbol always call the version in this object.
3009 static bool
3010 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
3012 return symbol_refs_local(sym, has_dynsym_entry, true);
3015 // Compare GOT offsets of two symbols.
3017 template<int size, bool big_endian>
3018 static bool
3019 got_offset_compare(Symbol* sym1, Symbol* sym2)
3021 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
3022 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
3023 unsigned int area1 = mips_sym1->global_got_area();
3024 unsigned int area2 = mips_sym2->global_got_area();
3025 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
3027 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
3028 if (area1 != area2)
3029 return area1 < area2;
3031 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
3034 // This method divides dynamic symbols into symbols that have GOT entry, and
3035 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
3036 // Mips ABI requires that symbols with the GOT entry must be at the end of
3037 // dynamic symbol table, and the order in dynamic symbol table must match the
3038 // order in GOT.
3040 template<int size, bool big_endian>
3041 static void
3042 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3043 std::vector<Symbol*>* non_got_symbols,
3044 std::vector<Symbol*>* got_symbols)
3046 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3047 p != dyn_symbols->end();
3048 ++p)
3050 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3051 if (mips_sym->global_got_area() == GGA_NORMAL
3052 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3053 got_symbols->push_back(mips_sym);
3054 else
3055 non_got_symbols->push_back(mips_sym);
3058 std::sort(got_symbols->begin(), got_symbols->end(),
3059 got_offset_compare<size, big_endian>);
3062 // Functor class for processing the global symbol table.
3064 template<int size, bool big_endian>
3065 class Symbol_visitor_check_symbols
3067 public:
3068 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3069 Layout* layout, Symbol_table* symtab)
3070 : target_(target), layout_(layout), symtab_(symtab)
3073 void
3074 operator()(Sized_symbol<size>* sym)
3076 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3077 if (local_pic_function<size, big_endian>(mips_sym))
3079 // SYM is a function that might need $25 to be valid on entry.
3080 // If we're creating a non-PIC relocatable object, mark SYM as
3081 // being PIC. If we're creating a non-relocatable object with
3082 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3083 // stub.
3084 if (parameters->options().relocatable())
3086 if (!parameters->options().output_is_position_independent())
3087 mips_sym->set_pic();
3089 else if (mips_sym->has_nonpic_branches())
3091 this->target_->la25_stub_section(layout_)
3092 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3097 private:
3098 Target_mips<size, big_endian>* target_;
3099 Layout* layout_;
3100 Symbol_table* symtab_;
3103 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3104 // and endianness. The relocation format for MIPS-64 is non-standard.
3106 template<int sh_type, int size, bool big_endian>
3107 struct Mips_reloc_types;
3109 template<bool big_endian>
3110 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3112 typedef typename elfcpp::Rel<32, big_endian> Reloc;
3113 typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3115 static typename elfcpp::Elf_types<32>::Elf_Swxword
3116 get_r_addend(const Reloc*)
3117 { return 0; }
3119 static inline void
3120 set_reloc_addend(Reloc_write*,
3121 typename elfcpp::Elf_types<32>::Elf_Swxword)
3122 { gold_unreachable(); }
3125 template<bool big_endian>
3126 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3128 typedef typename elfcpp::Rela<32, big_endian> Reloc;
3129 typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3131 static typename elfcpp::Elf_types<32>::Elf_Swxword
3132 get_r_addend(const Reloc* reloc)
3133 { return reloc->get_r_addend(); }
3135 static inline void
3136 set_reloc_addend(Reloc_write* p,
3137 typename elfcpp::Elf_types<32>::Elf_Swxword val)
3138 { p->put_r_addend(val); }
3141 template<bool big_endian>
3142 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3144 typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3145 typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3147 static typename elfcpp::Elf_types<64>::Elf_Swxword
3148 get_r_addend(const Reloc*)
3149 { return 0; }
3151 static inline void
3152 set_reloc_addend(Reloc_write*,
3153 typename elfcpp::Elf_types<64>::Elf_Swxword)
3154 { gold_unreachable(); }
3157 template<bool big_endian>
3158 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3160 typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3161 typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3163 static typename elfcpp::Elf_types<64>::Elf_Swxword
3164 get_r_addend(const Reloc* reloc)
3165 { return reloc->get_r_addend(); }
3167 static inline void
3168 set_reloc_addend(Reloc_write* p,
3169 typename elfcpp::Elf_types<64>::Elf_Swxword val)
3170 { p->put_r_addend(val); }
3173 // Forward declaration.
3174 static unsigned int
3175 mips_get_size_for_reloc(unsigned int, Relobj*);
3177 // A class for inquiring about properties of a relocation,
3178 // used while scanning relocs during a relocatable link and
3179 // garbage collection.
3181 template<int sh_type_, int size, bool big_endian>
3182 class Mips_classify_reloc;
3184 template<int sh_type_, bool big_endian>
3185 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3186 public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3188 public:
3189 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3190 Reltype;
3191 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3192 Reltype_write;
3194 // Return the symbol referred to by the relocation.
3195 static inline unsigned int
3196 get_r_sym(const Reltype* reloc)
3197 { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3199 // Return the type of the relocation.
3200 static inline unsigned int
3201 get_r_type(const Reltype* reloc)
3202 { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3204 static inline unsigned int
3205 get_r_type2(const Reltype*)
3206 { return 0; }
3208 static inline unsigned int
3209 get_r_type3(const Reltype*)
3210 { return 0; }
3212 static inline unsigned int
3213 get_r_ssym(const Reltype*)
3214 { return 0; }
3216 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3217 static inline unsigned int
3218 get_r_addend(const Reltype* reloc)
3220 if (sh_type_ == elfcpp::SHT_REL)
3221 return 0;
3222 return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3225 // Write the r_info field to a new reloc, using the r_info field from
3226 // the original reloc, replacing the r_sym field with R_SYM.
3227 static inline void
3228 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3230 unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3231 new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3234 // Write the r_addend field to a new reloc.
3235 static inline void
3236 put_r_addend(Reltype_write* to,
3237 typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3238 { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3240 // Return the size of the addend of the relocation (only used for SHT_REL).
3241 static unsigned int
3242 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3243 { return mips_get_size_for_reloc(r_type, obj); }
3246 template<int sh_type_, bool big_endian>
3247 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3248 public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3250 public:
3251 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3252 Reltype;
3253 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3254 Reltype_write;
3256 // Return the symbol referred to by the relocation.
3257 static inline unsigned int
3258 get_r_sym(const Reltype* reloc)
3259 { return reloc->get_r_sym(); }
3261 // Return the r_type of the relocation.
3262 static inline unsigned int
3263 get_r_type(const Reltype* reloc)
3264 { return reloc->get_r_type(); }
3266 // Return the r_type2 of the relocation.
3267 static inline unsigned int
3268 get_r_type2(const Reltype* reloc)
3269 { return reloc->get_r_type2(); }
3271 // Return the r_type3 of the relocation.
3272 static inline unsigned int
3273 get_r_type3(const Reltype* reloc)
3274 { return reloc->get_r_type3(); }
3276 // Return the special symbol of the relocation.
3277 static inline unsigned int
3278 get_r_ssym(const Reltype* reloc)
3279 { return reloc->get_r_ssym(); }
3281 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3282 static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3283 get_r_addend(const Reltype* reloc)
3285 if (sh_type_ == elfcpp::SHT_REL)
3286 return 0;
3287 return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3290 // Write the r_info field to a new reloc, using the r_info field from
3291 // the original reloc, replacing the r_sym field with R_SYM.
3292 static inline void
3293 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3295 new_reloc->put_r_sym(r_sym);
3296 new_reloc->put_r_ssym(reloc->get_r_ssym());
3297 new_reloc->put_r_type3(reloc->get_r_type3());
3298 new_reloc->put_r_type2(reloc->get_r_type2());
3299 new_reloc->put_r_type(reloc->get_r_type());
3302 // Write the r_addend field to a new reloc.
3303 static inline void
3304 put_r_addend(Reltype_write* to,
3305 typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3306 { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3308 // Return the size of the addend of the relocation (only used for SHT_REL).
3309 static unsigned int
3310 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3311 { return mips_get_size_for_reloc(r_type, obj); }
3314 template<int size, bool big_endian>
3315 class Target_mips : public Sized_target<size, big_endian>
3317 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3318 typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3319 Reloc_section;
3320 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3321 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3322 typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3323 Reltype;
3324 typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3325 Relatype;
3327 public:
3328 Target_mips(const Target::Target_info* info = &mips_info)
3329 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3330 got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3331 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3332 mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3333 mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3334 entry_symbol_is_compressed_(false), insn32_(false)
3336 this->add_machine_extensions();
3339 // The offset of $gp from the beginning of the .got section.
3340 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3342 // The maximum size of the GOT for it to be addressable using 16-bit
3343 // offsets from $gp.
3344 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3346 // Make a new symbol table entry for the Mips target.
3347 Sized_symbol<size>*
3348 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3349 { return new Mips_symbol<size>(); }
3351 // Process the relocations to determine unreferenced sections for
3352 // garbage collection.
3353 void
3354 gc_process_relocs(Symbol_table* symtab,
3355 Layout* layout,
3356 Sized_relobj_file<size, big_endian>* object,
3357 unsigned int data_shndx,
3358 unsigned int sh_type,
3359 const unsigned char* prelocs,
3360 size_t reloc_count,
3361 Output_section* output_section,
3362 bool needs_special_offset_handling,
3363 size_t local_symbol_count,
3364 const unsigned char* plocal_symbols);
3366 // Scan the relocations to look for symbol adjustments.
3367 void
3368 scan_relocs(Symbol_table* symtab,
3369 Layout* layout,
3370 Sized_relobj_file<size, big_endian>* object,
3371 unsigned int data_shndx,
3372 unsigned int sh_type,
3373 const unsigned char* prelocs,
3374 size_t reloc_count,
3375 Output_section* output_section,
3376 bool needs_special_offset_handling,
3377 size_t local_symbol_count,
3378 const unsigned char* plocal_symbols);
3380 // Finalize the sections.
3381 void
3382 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3384 // Relocate a section.
3385 void
3386 relocate_section(const Relocate_info<size, big_endian>*,
3387 unsigned int sh_type,
3388 const unsigned char* prelocs,
3389 size_t reloc_count,
3390 Output_section* output_section,
3391 bool needs_special_offset_handling,
3392 unsigned char* view,
3393 Mips_address view_address,
3394 section_size_type view_size,
3395 const Reloc_symbol_changes*);
3397 // Scan the relocs during a relocatable link.
3398 void
3399 scan_relocatable_relocs(Symbol_table* symtab,
3400 Layout* layout,
3401 Sized_relobj_file<size, big_endian>* object,
3402 unsigned int data_shndx,
3403 unsigned int sh_type,
3404 const unsigned char* prelocs,
3405 size_t reloc_count,
3406 Output_section* output_section,
3407 bool needs_special_offset_handling,
3408 size_t local_symbol_count,
3409 const unsigned char* plocal_symbols,
3410 Relocatable_relocs*);
3412 // Scan the relocs for --emit-relocs.
3413 void
3414 emit_relocs_scan(Symbol_table* symtab,
3415 Layout* layout,
3416 Sized_relobj_file<size, big_endian>* object,
3417 unsigned int data_shndx,
3418 unsigned int sh_type,
3419 const unsigned char* prelocs,
3420 size_t reloc_count,
3421 Output_section* output_section,
3422 bool needs_special_offset_handling,
3423 size_t local_symbol_count,
3424 const unsigned char* plocal_syms,
3425 Relocatable_relocs* rr);
3427 // Emit relocations for a section.
3428 void
3429 relocate_relocs(const Relocate_info<size, big_endian>*,
3430 unsigned int sh_type,
3431 const unsigned char* prelocs,
3432 size_t reloc_count,
3433 Output_section* output_section,
3434 typename elfcpp::Elf_types<size>::Elf_Off
3435 offset_in_output_section,
3436 unsigned char* view,
3437 Mips_address view_address,
3438 section_size_type view_size,
3439 unsigned char* reloc_view,
3440 section_size_type reloc_view_size);
3442 // Perform target-specific processing in a relocatable link. This is
3443 // only used if we use the relocation strategy RELOC_SPECIAL.
3444 void
3445 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3446 unsigned int sh_type,
3447 const unsigned char* preloc_in,
3448 size_t relnum,
3449 Output_section* output_section,
3450 typename elfcpp::Elf_types<size>::Elf_Off
3451 offset_in_output_section,
3452 unsigned char* view,
3453 Mips_address view_address,
3454 section_size_type view_size,
3455 unsigned char* preloc_out);
3457 // Return whether SYM is defined by the ABI.
3458 bool
3459 do_is_defined_by_abi(const Symbol* sym) const
3461 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3462 || (strcmp(sym->name(), "_gp_disp") == 0)
3463 || (strcmp(sym->name(), "___tls_get_addr") == 0));
3466 // Return the number of entries in the GOT.
3467 unsigned int
3468 got_entry_count() const
3470 if (!this->has_got_section())
3471 return 0;
3472 return this->got_size() / (size/8);
3475 // Return the number of entries in the PLT.
3476 unsigned int
3477 plt_entry_count() const
3479 if (this->plt_ == NULL)
3480 return 0;
3481 return this->plt_->entry_count();
3484 // Return the offset of the first non-reserved PLT entry.
3485 unsigned int
3486 first_plt_entry_offset() const
3487 { return this->plt_->first_plt_entry_offset(); }
3489 // Return the size of each PLT entry.
3490 unsigned int
3491 plt_entry_size() const
3492 { return this->plt_->plt_entry_size(); }
3494 // Get the GOT section, creating it if necessary.
3495 Mips_output_data_got<size, big_endian>*
3496 got_section(Symbol_table*, Layout*);
3498 // Get the GOT section.
3499 Mips_output_data_got<size, big_endian>*
3500 got_section() const
3502 gold_assert(this->got_ != NULL);
3503 return this->got_;
3506 // Get the .MIPS.stubs section, creating it if necessary.
3507 Mips_output_data_mips_stubs<size, big_endian>*
3508 mips_stubs_section(Layout* layout);
3510 // Get the .MIPS.stubs section.
3511 Mips_output_data_mips_stubs<size, big_endian>*
3512 mips_stubs_section() const
3514 gold_assert(this->mips_stubs_ != NULL);
3515 return this->mips_stubs_;
3518 // Get the LA25 stub section, creating it if necessary.
3519 Mips_output_data_la25_stub<size, big_endian>*
3520 la25_stub_section(Layout*);
3522 // Get the LA25 stub section.
3523 Mips_output_data_la25_stub<size, big_endian>*
3524 la25_stub_section()
3526 gold_assert(this->la25_stub_ != NULL);
3527 return this->la25_stub_;
3530 // Get gp value. It has the value of .got + 0x7FF0.
3531 Mips_address
3532 gp_value() const
3534 if (this->gp_ != NULL)
3535 return this->gp_->value();
3536 return 0;
3539 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3540 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3541 Mips_address
3542 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3544 if (this->gp_ == NULL)
3545 return 0;
3547 bool multi_got = false;
3548 if (this->has_got_section())
3549 multi_got = this->got_section()->multi_got();
3550 if (!multi_got)
3551 return this->gp_->value();
3552 else
3553 return this->gp_->value() + this->got_section()->get_got_offset(object);
3556 // Get the dynamic reloc section, creating it if necessary.
3557 Reloc_section*
3558 rel_dyn_section(Layout*);
3560 bool
3561 do_has_custom_set_dynsym_indexes() const
3562 { return true; }
3564 // Don't emit input .reginfo/.MIPS.abiflags sections to
3565 // output .reginfo/.MIPS.abiflags.
3566 bool
3567 do_should_include_section(elfcpp::Elf_Word sh_type) const
3569 return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3570 && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3573 // Set the dynamic symbol indexes. INDEX is the index of the first
3574 // global dynamic symbol. Pointers to the symbols are stored into the
3575 // vector SYMS. The names are added to DYNPOOL. This returns an
3576 // updated dynamic symbol index.
3577 unsigned int
3578 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3579 std::vector<Symbol*>* syms, Stringpool* dynpool,
3580 Versions* versions, Symbol_table* symtab) const;
3582 // Remove .MIPS.stubs entry for a symbol.
3583 void
3584 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3586 if (this->mips_stubs_ != NULL)
3587 this->mips_stubs_->remove_entry(sym);
3590 // The value to write into got[1] for SVR4 targets, to identify it is
3591 // a GNU object. The dynamic linker can then use got[1] to store the
3592 // module pointer.
3593 uint64_t
3594 mips_elf_gnu_got1_mask()
3596 if (this->is_output_n64())
3597 return (uint64_t)1 << 63;
3598 else
3599 return 1 << 31;
3602 // Whether the output has microMIPS code. This is valid only after
3603 // merge_obj_e_flags() is called.
3604 bool
3605 is_output_micromips() const
3607 gold_assert(this->are_processor_specific_flags_set());
3608 return elfcpp::is_micromips(this->processor_specific_flags());
3611 // Whether the output uses N32 ABI. This is valid only after
3612 // merge_obj_e_flags() is called.
3613 bool
3614 is_output_n32() const
3616 gold_assert(this->are_processor_specific_flags_set());
3617 return elfcpp::abi_n32(this->processor_specific_flags());
3620 // Whether the output uses R6 ISA. This is valid only after
3621 // merge_obj_e_flags() is called.
3622 bool
3623 is_output_r6() const
3625 gold_assert(this->are_processor_specific_flags_set());
3626 return elfcpp::r6_isa(this->processor_specific_flags());
3629 // Whether the output uses N64 ABI.
3630 bool
3631 is_output_n64() const
3632 { return size == 64; }
3634 // Whether the output uses NEWABI. This is valid only after
3635 // merge_obj_e_flags() is called.
3636 bool
3637 is_output_newabi() const
3638 { return this->is_output_n32() || this->is_output_n64(); }
3640 // Whether we can only use 32-bit microMIPS instructions.
3641 bool
3642 use_32bit_micromips_instructions() const
3643 { return this->insn32_; }
3645 // Return the r_sym field from a relocation.
3646 unsigned int
3647 get_r_sym(const unsigned char* preloc) const
3649 // Since REL and RELA relocs share the same structure through
3650 // the r_info field, we can just use REL here.
3651 Reltype rel(preloc);
3652 return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3653 get_r_sym(&rel);
3656 protected:
3657 // Return the value to use for a dynamic symbol which requires special
3658 // treatment. This is how we support equality comparisons of function
3659 // pointers across shared library boundaries, as described in the
3660 // processor specific ABI supplement.
3661 uint64_t
3662 do_dynsym_value(const Symbol* gsym) const;
3664 // Make an ELF object.
3665 Object*
3666 do_make_elf_object(const std::string&, Input_file*, off_t,
3667 const elfcpp::Ehdr<size, big_endian>& ehdr);
3669 Object*
3670 do_make_elf_object(const std::string&, Input_file*, off_t,
3671 const elfcpp::Ehdr<size, !big_endian>&)
3672 { gold_unreachable(); }
3674 // Make an output section.
3675 Output_section*
3676 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3677 elfcpp::Elf_Xword flags)
3679 if (type == elfcpp::SHT_MIPS_OPTIONS)
3680 return new Mips_output_section_options<size, big_endian>(name, type,
3681 flags, this);
3682 else
3683 return new Output_section(name, type, flags);
3686 // Adjust ELF file header.
3687 void
3688 do_adjust_elf_header(unsigned char* view, int len);
3690 // Get the custom dynamic tag value.
3691 unsigned int
3692 do_dynamic_tag_custom_value(elfcpp::DT) const;
3694 // Adjust the value written to the dynamic symbol table.
3695 virtual void
3696 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3698 elfcpp::Sym<size, big_endian> isym(view);
3699 elfcpp::Sym_write<size, big_endian> osym(view);
3700 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3702 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3703 // to treat compressed symbols like any other.
3704 Mips_address value = isym.get_st_value();
3705 if (mips_sym->is_mips16() && value != 0)
3707 if (!mips_sym->has_mips16_fn_stub())
3708 value |= 1;
3709 else
3711 // If we have a MIPS16 function with a stub, the dynamic symbol
3712 // must refer to the stub, since only the stub uses the standard
3713 // calling conventions. Stub contains MIPS32 code, so don't add +1
3714 // in this case.
3716 // There is a code which does this in the method
3717 // Target_mips::do_dynsym_value, but that code will only be
3718 // executed if the symbol is from dynobj.
3719 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3720 // table.
3722 Mips16_stub_section<size, big_endian>* fn_stub =
3723 mips_sym->template get_mips16_fn_stub<big_endian>();
3724 value = fn_stub->output_address();
3725 osym.put_st_size(fn_stub->section_size());
3728 osym.put_st_value(value);
3729 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3730 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3732 else if ((mips_sym->is_micromips()
3733 // Stubs are always microMIPS if there is any microMIPS code in
3734 // the output.
3735 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3736 && value != 0)
3738 osym.put_st_value(value | 1);
3739 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3740 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3744 private:
3745 // The class which scans relocations.
3746 class Scan
3748 public:
3749 Scan()
3752 static inline int
3753 get_reference_flags(unsigned int r_type);
3755 inline void
3756 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3757 Sized_relobj_file<size, big_endian>* object,
3758 unsigned int data_shndx,
3759 Output_section* output_section,
3760 const Reltype& reloc, unsigned int r_type,
3761 const elfcpp::Sym<size, big_endian>& lsym,
3762 bool is_discarded);
3764 inline void
3765 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3766 Sized_relobj_file<size, big_endian>* object,
3767 unsigned int data_shndx,
3768 Output_section* output_section,
3769 const Relatype& reloc, unsigned int r_type,
3770 const elfcpp::Sym<size, big_endian>& lsym,
3771 bool is_discarded);
3773 inline void
3774 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3775 Sized_relobj_file<size, big_endian>* object,
3776 unsigned int data_shndx,
3777 Output_section* output_section,
3778 const Relatype* rela,
3779 const Reltype* rel,
3780 unsigned int rel_type,
3781 unsigned int r_type,
3782 const elfcpp::Sym<size, big_endian>& lsym,
3783 bool is_discarded);
3785 inline void
3786 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3787 Sized_relobj_file<size, big_endian>* object,
3788 unsigned int data_shndx,
3789 Output_section* output_section,
3790 const Reltype& reloc, unsigned int r_type,
3791 Symbol* gsym);
3793 inline void
3794 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3795 Sized_relobj_file<size, big_endian>* object,
3796 unsigned int data_shndx,
3797 Output_section* output_section,
3798 const Relatype& reloc, unsigned int r_type,
3799 Symbol* gsym);
3801 inline void
3802 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3803 Sized_relobj_file<size, big_endian>* object,
3804 unsigned int data_shndx,
3805 Output_section* output_section,
3806 const Relatype* rela,
3807 const Reltype* rel,
3808 unsigned int rel_type,
3809 unsigned int r_type,
3810 Symbol* gsym);
3812 inline bool
3813 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3814 Target_mips*,
3815 Sized_relobj_file<size, big_endian>*,
3816 unsigned int,
3817 Output_section*,
3818 const Reltype&,
3819 unsigned int,
3820 const elfcpp::Sym<size, big_endian>&)
3821 { return false; }
3823 inline bool
3824 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3825 Target_mips*,
3826 Sized_relobj_file<size, big_endian>*,
3827 unsigned int,
3828 Output_section*,
3829 const Reltype&,
3830 unsigned int, Symbol*)
3831 { return false; }
3833 inline bool
3834 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3835 Target_mips*,
3836 Sized_relobj_file<size, big_endian>*,
3837 unsigned int,
3838 Output_section*,
3839 const Relatype&,
3840 unsigned int,
3841 const elfcpp::Sym<size, big_endian>&)
3842 { return false; }
3844 inline bool
3845 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3846 Target_mips*,
3847 Sized_relobj_file<size, big_endian>*,
3848 unsigned int,
3849 Output_section*,
3850 const Relatype&,
3851 unsigned int, Symbol*)
3852 { return false; }
3853 private:
3854 static void
3855 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3856 unsigned int r_type);
3858 static void
3859 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3860 unsigned int r_type, Symbol*);
3863 // The class which implements relocation.
3864 class Relocate
3866 public:
3867 Relocate()
3868 : calculated_value_(0), calculate_only_(false)
3871 ~Relocate()
3874 // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3875 inline bool
3876 should_apply_static_reloc(const Mips_symbol<size>* gsym,
3877 unsigned int r_type,
3878 Output_section* output_section,
3879 Target_mips* target);
3881 // Do a relocation. Return false if the caller should not issue
3882 // any warnings about this relocation.
3883 inline bool
3884 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3885 Target_mips*, Output_section*, size_t, const unsigned char*,
3886 const Sized_symbol<size>*, const Symbol_value<size>*,
3887 unsigned char*, Mips_address, section_size_type);
3889 private:
3890 // Result of the relocation.
3891 Valtype calculated_value_;
3892 // Whether we have to calculate relocation instead of applying it.
3893 bool calculate_only_;
3896 // This POD class holds the dynamic relocations that should be emitted instead
3897 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3898 // relocations if it turns out that the symbol does not have static
3899 // relocations.
3900 class Dyn_reloc
3902 public:
3903 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3904 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3905 Output_section* output_section, Mips_address r_offset)
3906 : sym_(sym), r_type_(r_type), relobj_(relobj),
3907 shndx_(shndx), output_section_(output_section),
3908 r_offset_(r_offset)
3911 // Emit this reloc if appropriate. This is called after we have
3912 // scanned all the relocations, so we know whether the symbol has
3913 // static relocations.
3914 void
3915 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3916 Symbol_table* symtab)
3918 if (!this->sym_->has_static_relocs())
3920 got->record_global_got_symbol(this->sym_, this->relobj_,
3921 this->r_type_, true, false);
3922 if (!symbol_references_local(this->sym_,
3923 this->sym_->should_add_dynsym_entry(symtab)))
3924 rel_dyn->add_global(this->sym_, this->r_type_,
3925 this->output_section_, this->relobj_,
3926 this->shndx_, this->r_offset_);
3927 else
3928 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3929 this->output_section_, this->relobj_,
3930 this->shndx_, this->r_offset_);
3934 private:
3935 Mips_symbol<size>* sym_;
3936 unsigned int r_type_;
3937 Mips_relobj<size, big_endian>* relobj_;
3938 unsigned int shndx_;
3939 Output_section* output_section_;
3940 Mips_address r_offset_;
3943 // Adjust TLS relocation type based on the options and whether this
3944 // is a local symbol.
3945 static tls::Tls_optimization
3946 optimize_tls_reloc(bool is_final, int r_type);
3948 // Return whether there is a GOT section.
3949 bool
3950 has_got_section() const
3951 { return this->got_ != NULL; }
3953 // Check whether the given ELF header flags describe a 32-bit binary.
3954 bool
3955 mips_32bit_flags(elfcpp::Elf_Word);
3957 enum Mips_mach {
3958 mach_mips3000 = 3000,
3959 mach_mips3900 = 3900,
3960 mach_mips4000 = 4000,
3961 mach_mips4010 = 4010,
3962 mach_mips4100 = 4100,
3963 mach_mips4111 = 4111,
3964 mach_mips4120 = 4120,
3965 mach_mips4300 = 4300,
3966 mach_mips4400 = 4400,
3967 mach_mips4600 = 4600,
3968 mach_mips4650 = 4650,
3969 mach_mips5000 = 5000,
3970 mach_mips5400 = 5400,
3971 mach_mips5500 = 5500,
3972 mach_mips5900 = 5900,
3973 mach_mips6000 = 6000,
3974 mach_mips7000 = 7000,
3975 mach_mips8000 = 8000,
3976 mach_mips9000 = 9000,
3977 mach_mips10000 = 10000,
3978 mach_mips12000 = 12000,
3979 mach_mips14000 = 14000,
3980 mach_mips16000 = 16000,
3981 mach_mips16 = 16,
3982 mach_mips5 = 5,
3983 mach_mips_loongson_2e = 3001,
3984 mach_mips_loongson_2f = 3002,
3985 mach_mips_gs464 = 3003,
3986 mach_mips_gs464e = 3004,
3987 mach_mips_gs264e = 3005,
3988 mach_mips_sb1 = 12310201, // octal 'SB', 01
3989 mach_mips_octeon = 6501,
3990 mach_mips_octeonp = 6601,
3991 mach_mips_octeon2 = 6502,
3992 mach_mips_octeon3 = 6503,
3993 mach_mips_xlr = 887682, // decimal 'XLR'
3994 mach_mipsisa32 = 32,
3995 mach_mipsisa32r2 = 33,
3996 mach_mipsisa32r3 = 34,
3997 mach_mipsisa32r5 = 36,
3998 mach_mipsisa32r6 = 37,
3999 mach_mipsisa64 = 64,
4000 mach_mipsisa64r2 = 65,
4001 mach_mipsisa64r3 = 66,
4002 mach_mipsisa64r5 = 68,
4003 mach_mipsisa64r6 = 69,
4004 mach_mips_micromips = 96
4007 // Return the MACH for a MIPS e_flags value.
4008 unsigned int
4009 elf_mips_mach(elfcpp::Elf_Word);
4011 // Return the MACH for each .MIPS.abiflags ISA Extension.
4012 unsigned int
4013 mips_isa_ext_mach(unsigned int);
4015 // Return the .MIPS.abiflags value representing each ISA Extension.
4016 unsigned int
4017 mips_isa_ext(unsigned int);
4019 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
4020 void
4021 update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
4022 Mips_abiflags<big_endian>*);
4024 // Infer the content of the ABI flags based on the elf header.
4025 void
4026 infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4028 // Create abiflags from elf header or from .MIPS.abiflags section.
4029 void
4030 create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
4032 // Return the meaning of fp_abi, or "unknown" if not known.
4033 const char*
4034 fp_abi_string(int);
4036 // Select fp_abi.
4038 select_fp_abi(const std::string&, int, int);
4040 // Merge attributes from input object.
4041 void
4042 merge_obj_attributes(const std::string&, const Attributes_section_data*);
4044 // Merge abiflags from input object.
4045 void
4046 merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
4048 // Check whether machine EXTENSION is an extension of machine BASE.
4049 bool
4050 mips_mach_extends(unsigned int, unsigned int);
4052 // Merge file header flags from input object.
4053 void
4054 merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
4056 // Encode ISA level and revision as a single value.
4058 level_rev(unsigned char isa_level, unsigned char isa_rev) const
4059 { return (isa_level << 3) | isa_rev; }
4061 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4062 static inline bool
4063 jal_to_bal()
4064 { return false; }
4066 // True if we are linking for CPUs that are faster if JALR is converted to
4067 // BAL. This should be safe for all architectures. We enable this predicate
4068 // for all CPUs.
4069 static inline bool
4070 jalr_to_bal()
4071 { return true; }
4073 // True if we are linking for CPUs that are faster if JR is converted to B.
4074 // This should be safe for all architectures. We enable this predicate for
4075 // all CPUs.
4076 static inline bool
4077 jr_to_b()
4078 { return true; }
4080 // Return the size of the GOT section.
4081 section_size_type
4082 got_size() const
4084 gold_assert(this->got_ != NULL);
4085 return this->got_->data_size();
4088 // Create a PLT entry for a global symbol referenced by r_type relocation.
4089 void
4090 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4091 unsigned int r_type);
4093 // Get the PLT section.
4094 Mips_output_data_plt<size, big_endian>*
4095 plt_section() const
4097 gold_assert(this->plt_ != NULL);
4098 return this->plt_;
4101 // Get the GOT PLT section.
4102 const Mips_output_data_plt<size, big_endian>*
4103 got_plt_section() const
4105 gold_assert(this->got_plt_ != NULL);
4106 return this->got_plt_;
4109 // Copy a relocation against a global symbol.
4110 void
4111 copy_reloc(Symbol_table* symtab, Layout* layout,
4112 Sized_relobj_file<size, big_endian>* object,
4113 unsigned int shndx, Output_section* output_section,
4114 Symbol* sym, unsigned int r_type, Mips_address r_offset)
4116 this->copy_relocs_.copy_reloc(symtab, layout,
4117 symtab->get_sized_symbol<size>(sym),
4118 object, shndx, output_section,
4119 r_type, r_offset, 0,
4120 this->rel_dyn_section(layout));
4123 void
4124 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4125 Mips_relobj<size, big_endian>* relobj,
4126 unsigned int shndx, Output_section* output_section,
4127 Mips_address r_offset)
4129 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4130 output_section, r_offset));
4133 // Calculate value of _gp symbol.
4134 void
4135 set_gp(Layout*, Symbol_table*);
4137 const char*
4138 elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4139 const char*
4140 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4142 // Adds entries that describe how machines relate to one another. The entries
4143 // are ordered topologically with MIPS I extensions listed last. First
4144 // element is extension, second element is base.
4145 void
4146 add_machine_extensions()
4148 // MIPS64r2 extensions.
4149 this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4150 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4151 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4152 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4153 this->add_extension(mach_mips_gs264e, mach_mips_gs464e);
4154 this->add_extension(mach_mips_gs464e, mach_mips_gs464);
4155 this->add_extension(mach_mips_gs464, mach_mipsisa64r2);
4157 // MIPS64 extensions.
4158 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4159 this->add_extension(mach_mips_sb1, mach_mipsisa64);
4160 this->add_extension(mach_mips_xlr, mach_mipsisa64);
4162 // MIPS V extensions.
4163 this->add_extension(mach_mipsisa64, mach_mips5);
4165 // R10000 extensions.
4166 this->add_extension(mach_mips12000, mach_mips10000);
4167 this->add_extension(mach_mips14000, mach_mips10000);
4168 this->add_extension(mach_mips16000, mach_mips10000);
4170 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
4171 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
4172 // better to allow vr5400 and vr5500 code to be merged anyway, since
4173 // many libraries will just use the core ISA. Perhaps we could add
4174 // some sort of ASE flag if this ever proves a problem.
4175 this->add_extension(mach_mips5500, mach_mips5400);
4176 this->add_extension(mach_mips5400, mach_mips5000);
4178 // MIPS IV extensions.
4179 this->add_extension(mach_mips5, mach_mips8000);
4180 this->add_extension(mach_mips10000, mach_mips8000);
4181 this->add_extension(mach_mips5000, mach_mips8000);
4182 this->add_extension(mach_mips7000, mach_mips8000);
4183 this->add_extension(mach_mips9000, mach_mips8000);
4185 // VR4100 extensions.
4186 this->add_extension(mach_mips4120, mach_mips4100);
4187 this->add_extension(mach_mips4111, mach_mips4100);
4189 // MIPS III extensions.
4190 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4191 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4192 this->add_extension(mach_mips8000, mach_mips4000);
4193 this->add_extension(mach_mips4650, mach_mips4000);
4194 this->add_extension(mach_mips4600, mach_mips4000);
4195 this->add_extension(mach_mips4400, mach_mips4000);
4196 this->add_extension(mach_mips4300, mach_mips4000);
4197 this->add_extension(mach_mips4100, mach_mips4000);
4198 this->add_extension(mach_mips4010, mach_mips4000);
4199 this->add_extension(mach_mips5900, mach_mips4000);
4201 // MIPS32 extensions.
4202 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4204 // MIPS II extensions.
4205 this->add_extension(mach_mips4000, mach_mips6000);
4206 this->add_extension(mach_mipsisa32, mach_mips6000);
4208 // MIPS I extensions.
4209 this->add_extension(mach_mips6000, mach_mips3000);
4210 this->add_extension(mach_mips3900, mach_mips3000);
4213 // Add value to MIPS extenstions.
4214 void
4215 add_extension(unsigned int base, unsigned int extension)
4217 std::pair<unsigned int, unsigned int> ext(base, extension);
4218 this->mips_mach_extensions_.push_back(ext);
4221 // Return the number of entries in the .dynsym section.
4222 unsigned int get_dt_mips_symtabno() const
4224 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4225 / elfcpp::Elf_sizes<size>::sym_size));
4226 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4229 // Information about this specific target which we pass to the
4230 // general Target structure.
4231 static const Target::Target_info mips_info;
4232 // The GOT section.
4233 Mips_output_data_got<size, big_endian>* got_;
4234 // gp symbol. It has the value of .got + 0x7FF0.
4235 Sized_symbol<size>* gp_;
4236 // The PLT section.
4237 Mips_output_data_plt<size, big_endian>* plt_;
4238 // The GOT PLT section.
4239 Output_data_space* got_plt_;
4240 // The dynamic reloc section.
4241 Reloc_section* rel_dyn_;
4242 // The .rld_map section.
4243 Output_data_zero_fill* rld_map_;
4244 // Relocs saved to avoid a COPY reloc.
4245 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4247 // A list of dyn relocs to be saved.
4248 std::vector<Dyn_reloc> dyn_relocs_;
4250 // The LA25 stub section.
4251 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4252 // Architecture extensions.
4253 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4254 // .MIPS.stubs
4255 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4257 // Attributes section data in output.
4258 Attributes_section_data* attributes_section_data_;
4259 // .MIPS.abiflags section data in output.
4260 Mips_abiflags<big_endian>* abiflags_;
4262 unsigned int mach_;
4263 Layout* layout_;
4265 typename std::list<got16_addend<size, big_endian> > got16_addends_;
4267 // Whether there is an input .MIPS.abiflags section.
4268 bool has_abiflags_section_;
4270 // Whether the entry symbol is mips16 or micromips.
4271 bool entry_symbol_is_compressed_;
4273 // Whether we can use only 32-bit microMIPS instructions.
4274 // TODO(sasa): This should be a linker option.
4275 bool insn32_;
4278 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4279 // It records high part of the relocation pair.
4281 template<int size, bool big_endian>
4282 struct reloc_high
4284 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4286 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4287 const Symbol_value<size>* _psymval, Mips_address _addend,
4288 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4289 Mips_address _address = 0, bool _gp_disp = false)
4290 : view(_view), object(_object), psymval(_psymval), addend(_addend),
4291 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4292 address(_address), gp_disp(_gp_disp)
4295 unsigned char* view;
4296 const Mips_relobj<size, big_endian>* object;
4297 const Symbol_value<size>* psymval;
4298 Mips_address addend;
4299 unsigned int r_type;
4300 unsigned int r_sym;
4301 bool extract_addend;
4302 Mips_address address;
4303 bool gp_disp;
4306 template<int size, bool big_endian>
4307 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4309 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4310 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4311 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4312 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4313 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4315 public:
4316 typedef enum
4318 STATUS_OKAY, // No error during relocation.
4319 STATUS_OVERFLOW, // Relocation overflow.
4320 STATUS_BAD_RELOC, // Relocation cannot be applied.
4321 STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation.
4322 } Status;
4324 private:
4325 typedef Relocate_functions<size, big_endian> Base;
4326 typedef Mips_relocate_functions<size, big_endian> This;
4328 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4329 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4330 static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4332 template<int valsize>
4333 static inline typename This::Status
4334 check_overflow(Valtype value)
4336 if (size == 32)
4337 return (Bits<valsize>::has_overflow32(value)
4338 ? This::STATUS_OVERFLOW
4339 : This::STATUS_OKAY);
4341 return (Bits<valsize>::has_overflow(value)
4342 ? This::STATUS_OVERFLOW
4343 : This::STATUS_OKAY);
4346 static inline bool
4347 should_shuffle_micromips_reloc(unsigned int r_type)
4349 return (micromips_reloc(r_type)
4350 && r_type != elfcpp::R_MICROMIPS_PC7_S1
4351 && r_type != elfcpp::R_MICROMIPS_PC10_S1
4352 && r_type != elfcpp::R_MICROMIPS_GPREL7_S2);
4355 public:
4356 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4357 // Most mips16 instructions are 16 bits, but these instructions
4358 // are 32 bits.
4360 // The format of these instructions is:
4362 // +--------------+--------------------------------+
4363 // | JALX | X| Imm 20:16 | Imm 25:21 |
4364 // +--------------+--------------------------------+
4365 // | Immediate 15:0 |
4366 // +-----------------------------------------------+
4368 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
4369 // Note that the immediate value in the first word is swapped.
4371 // When producing a relocatable object file, R_MIPS16_26 is
4372 // handled mostly like R_MIPS_26. In particular, the addend is
4373 // stored as a straight 26-bit value in a 32-bit instruction.
4374 // (gas makes life simpler for itself by never adjusting a
4375 // R_MIPS16_26 reloc to be against a section, so the addend is
4376 // always zero). However, the 32 bit instruction is stored as 2
4377 // 16-bit values, rather than a single 32-bit value. In a
4378 // big-endian file, the result is the same; in a little-endian
4379 // file, the two 16-bit halves of the 32 bit value are swapped.
4380 // This is so that a disassembler can recognize the jal
4381 // instruction.
4383 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4384 // instruction stored as two 16-bit values. The addend A is the
4385 // contents of the targ26 field. The calculation is the same as
4386 // R_MIPS_26. When storing the calculated value, reorder the
4387 // immediate value as shown above, and don't forget to store the
4388 // value as two 16-bit values.
4390 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4391 // defined as
4393 // big-endian:
4394 // +--------+----------------------+
4395 // | | |
4396 // | | targ26-16 |
4397 // |31 26|25 0|
4398 // +--------+----------------------+
4400 // little-endian:
4401 // +----------+------+-------------+
4402 // | | | |
4403 // | sub1 | | sub2 |
4404 // |0 9|10 15|16 31|
4405 // +----------+--------------------+
4406 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4407 // ((sub1 << 16) | sub2)).
4409 // When producing a relocatable object file, the calculation is
4410 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4411 // When producing a fully linked file, the calculation is
4412 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4413 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4415 // The table below lists the other MIPS16 instruction relocations.
4416 // Each one is calculated in the same way as the non-MIPS16 relocation
4417 // given on the right, but using the extended MIPS16 layout of 16-bit
4418 // immediate fields:
4420 // R_MIPS16_GPREL R_MIPS_GPREL16
4421 // R_MIPS16_GOT16 R_MIPS_GOT16
4422 // R_MIPS16_CALL16 R_MIPS_CALL16
4423 // R_MIPS16_HI16 R_MIPS_HI16
4424 // R_MIPS16_LO16 R_MIPS_LO16
4426 // A typical instruction will have a format like this:
4428 // +--------------+--------------------------------+
4429 // | EXTEND | Imm 10:5 | Imm 15:11 |
4430 // +--------------+--------------------------------+
4431 // | Major | rx | ry | Imm 4:0 |
4432 // +--------------+--------------------------------+
4434 // EXTEND is the five bit value 11110. Major is the instruction
4435 // opcode.
4437 // All we need to do here is shuffle the bits appropriately.
4438 // As above, the two 16-bit halves must be swapped on a
4439 // little-endian system.
4441 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4442 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1,
4443 // R_MICROMIPS_PC10_S1 and R_MICROMIPS_GPREL7_S2 relocs that apply
4444 // to 16-bit instructions.
4446 static void
4447 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4448 bool jal_shuffle)
4450 if (!mips16_reloc(r_type)
4451 && !should_shuffle_micromips_reloc(r_type))
4452 return;
4454 // Pick up the first and second halfwords of the instruction.
4455 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4456 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4457 Valtype32 val;
4459 if (micromips_reloc(r_type)
4460 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4461 val = first << 16 | second;
4462 else if (r_type != elfcpp::R_MIPS16_26)
4463 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4464 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4465 else
4466 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4467 | ((first & 0x1f) << 21) | second);
4469 elfcpp::Swap<32, big_endian>::writeval(view, val);
4472 static void
4473 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4475 if (!mips16_reloc(r_type)
4476 && !should_shuffle_micromips_reloc(r_type))
4477 return;
4479 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4480 Valtype16 first, second;
4482 if (micromips_reloc(r_type)
4483 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4485 second = val & 0xffff;
4486 first = val >> 16;
4488 else if (r_type != elfcpp::R_MIPS16_26)
4490 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4491 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4493 else
4495 second = val & 0xffff;
4496 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4497 | ((val >> 21) & 0x1f);
4500 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4501 elfcpp::Swap<16, big_endian>::writeval(view, first);
4504 // R_MIPS_16: S + sign-extend(A)
4505 static inline typename This::Status
4506 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4507 const Symbol_value<size>* psymval, Mips_address addend_a,
4508 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4510 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4511 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4513 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4514 : addend_a);
4516 Valtype x = psymval->value(object, addend);
4517 val = Bits<16>::bit_select32(val, x, 0xffffU);
4519 if (calculate_only)
4521 *calculated_value = x;
4522 return This::STATUS_OKAY;
4524 else
4525 elfcpp::Swap<16, big_endian>::writeval(wv, val);
4527 return check_overflow<16>(x);
4530 // R_MIPS_32: S + A
4531 static inline typename This::Status
4532 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4533 const Symbol_value<size>* psymval, Mips_address addend_a,
4534 bool extract_addend, bool calculate_only, Valtype* calculated_value)
4536 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4537 Valtype addend = (extract_addend
4538 ? elfcpp::Swap<32, big_endian>::readval(wv)
4539 : addend_a);
4540 Valtype x = psymval->value(object, addend);
4542 if (calculate_only)
4543 *calculated_value = x;
4544 else
4545 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4547 return This::STATUS_OKAY;
4550 // R_MIPS_JALR, R_MICROMIPS_JALR
4551 static inline typename This::Status
4552 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4553 const Symbol_value<size>* psymval, Mips_address address,
4554 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4555 unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4556 bool calculate_only, Valtype* calculated_value)
4558 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4559 Valtype addend = extract_addend ? 0 : addend_a;
4560 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4562 // Try converting J(AL)R to B(AL), if the target is in range.
4563 if (r_type == elfcpp::R_MIPS_JALR
4564 && !cross_mode_jump
4565 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4566 || (jr_to_b && val == 0x03200008))) // jr t9
4568 int offset = psymval->value(object, addend) - (address + 4);
4569 if (!Bits<18>::has_overflow32(offset))
4571 if (val == 0x03200008) // jr t9
4572 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4573 else
4574 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4578 if (calculate_only)
4579 *calculated_value = val;
4580 else
4581 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4583 return This::STATUS_OKAY;
4586 // R_MIPS_PC32: S + A - P
4587 static inline typename This::Status
4588 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4589 const Symbol_value<size>* psymval, Mips_address address,
4590 Mips_address addend_a, bool extract_addend, bool calculate_only,
4591 Valtype* calculated_value)
4593 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4594 Valtype addend = (extract_addend
4595 ? elfcpp::Swap<32, big_endian>::readval(wv)
4596 : addend_a);
4597 Valtype x = psymval->value(object, addend) - address;
4599 if (calculate_only)
4600 *calculated_value = x;
4601 else
4602 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4604 return This::STATUS_OKAY;
4607 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4608 static inline typename This::Status
4609 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4610 const Symbol_value<size>* psymval, Mips_address address,
4611 bool local, Mips_address addend_a, bool extract_addend,
4612 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4613 bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4615 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4616 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4618 Valtype addend;
4619 if (extract_addend)
4621 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4622 addend = (val & 0x03ffffff) << 1;
4623 else
4624 addend = (val & 0x03ffffff) << 2;
4626 else
4627 addend = addend_a;
4629 // Make sure the target of JALX is word-aligned. Bit 0 must be
4630 // the correct ISA mode selector and bit 1 must be 0.
4631 if (!calculate_only && cross_mode_jump
4632 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4634 gold_warning(_("JALX to a non-word-aligned address"));
4635 return This::STATUS_BAD_RELOC;
4638 // Shift is 2, unusually, for microMIPS JALX.
4639 unsigned int shift =
4640 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4642 Valtype x;
4643 if (local)
4644 x = addend | ((address + 4) & (0xfc000000 << shift));
4645 else
4647 if (shift == 1)
4648 x = Bits<27>::sign_extend32(addend);
4649 else
4650 x = Bits<28>::sign_extend32(addend);
4652 x = psymval->value(object, x) >> shift;
4654 if (!calculate_only && !local && !gsym->is_weak_undefined()
4655 && ((x >> 26) != ((address + 4) >> (26 + shift))))
4656 return This::STATUS_OVERFLOW;
4658 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4660 // If required, turn JAL into JALX.
4661 if (cross_mode_jump)
4663 bool ok;
4664 Valtype32 opcode = val >> 26;
4665 Valtype32 jalx_opcode;
4667 // Check to see if the opcode is already JAL or JALX.
4668 if (r_type == elfcpp::R_MIPS16_26)
4670 ok = (opcode == 0x6) || (opcode == 0x7);
4671 jalx_opcode = 0x7;
4673 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4675 ok = (opcode == 0x3d) || (opcode == 0x3c);
4676 jalx_opcode = 0x3c;
4678 else
4680 ok = (opcode == 0x3) || (opcode == 0x1d);
4681 jalx_opcode = 0x1d;
4684 // If the opcode is not JAL or JALX, there's a problem. We cannot
4685 // convert J or JALS to JALX.
4686 if (!calculate_only && !ok)
4688 gold_error(_("Unsupported jump between ISA modes; consider "
4689 "recompiling with interlinking enabled."));
4690 return This::STATUS_BAD_RELOC;
4693 // Make this the JALX opcode.
4694 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4697 // Try converting JAL to BAL, if the target is in range.
4698 if (!parameters->options().relocatable()
4699 && !cross_mode_jump
4700 && ((jal_to_bal
4701 && r_type == elfcpp::R_MIPS_26
4702 && (val >> 26) == 0x3))) // jal addr
4704 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4705 int offset = dest - (address + 4);
4706 if (!Bits<18>::has_overflow32(offset))
4708 if (val == 0x03200008) // jr t9
4709 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4710 else
4711 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4715 if (calculate_only)
4716 *calculated_value = val;
4717 else
4718 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4720 return This::STATUS_OKAY;
4723 // R_MIPS_PC16
4724 static inline typename This::Status
4725 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4726 const Symbol_value<size>* psymval, Mips_address address,
4727 Mips_address addend_a, bool extract_addend, bool calculate_only,
4728 Valtype* calculated_value)
4730 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4731 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4733 Valtype addend = (extract_addend
4734 ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4735 : addend_a);
4737 Valtype x = psymval->value(object, addend) - address;
4738 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4740 if (calculate_only)
4742 *calculated_value = x >> 2;
4743 return This::STATUS_OKAY;
4745 else
4746 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4748 if (psymval->value(object, addend) & 3)
4749 return This::STATUS_PCREL_UNALIGNED;
4751 return check_overflow<18>(x);
4754 // R_MIPS_PC21_S2
4755 static inline typename This::Status
4756 relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4757 const Symbol_value<size>* psymval, Mips_address address,
4758 Mips_address addend_a, bool extract_addend, bool calculate_only,
4759 Valtype* calculated_value)
4761 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4762 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4764 Valtype addend = (extract_addend
4765 ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4766 : addend_a);
4768 Valtype x = psymval->value(object, addend) - address;
4769 val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4771 if (calculate_only)
4773 *calculated_value = x >> 2;
4774 return This::STATUS_OKAY;
4776 else
4777 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4779 if (psymval->value(object, addend) & 3)
4780 return This::STATUS_PCREL_UNALIGNED;
4782 return check_overflow<23>(x);
4785 // R_MIPS_PC26_S2
4786 static inline typename This::Status
4787 relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4788 const Symbol_value<size>* psymval, Mips_address address,
4789 Mips_address addend_a, bool extract_addend, bool calculate_only,
4790 Valtype* calculated_value)
4792 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4793 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4795 Valtype addend = (extract_addend
4796 ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4797 : addend_a);
4799 Valtype x = psymval->value(object, addend) - address;
4800 val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4802 if (calculate_only)
4804 *calculated_value = x >> 2;
4805 return This::STATUS_OKAY;
4807 else
4808 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4810 if (psymval->value(object, addend) & 3)
4811 return This::STATUS_PCREL_UNALIGNED;
4813 return check_overflow<28>(x);
4816 // R_MIPS_PC18_S3
4817 static inline typename This::Status
4818 relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4819 const Symbol_value<size>* psymval, Mips_address address,
4820 Mips_address addend_a, bool extract_addend, bool calculate_only,
4821 Valtype* calculated_value)
4823 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4824 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4826 Valtype addend = (extract_addend
4827 ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4828 : addend_a);
4830 Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4831 val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4833 if (calculate_only)
4835 *calculated_value = x >> 3;
4836 return This::STATUS_OKAY;
4838 else
4839 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4841 if (psymval->value(object, addend) & 7)
4842 return This::STATUS_PCREL_UNALIGNED;
4844 return check_overflow<21>(x);
4847 // R_MIPS_PC19_S2
4848 static inline typename This::Status
4849 relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4850 const Symbol_value<size>* psymval, Mips_address address,
4851 Mips_address addend_a, bool extract_addend, bool calculate_only,
4852 Valtype* calculated_value)
4854 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4855 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4857 Valtype addend = (extract_addend
4858 ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4859 : addend_a);
4861 Valtype x = psymval->value(object, addend) - address;
4862 val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4864 if (calculate_only)
4866 *calculated_value = x >> 2;
4867 return This::STATUS_OKAY;
4869 else
4870 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4872 if (psymval->value(object, addend) & 3)
4873 return This::STATUS_PCREL_UNALIGNED;
4875 return check_overflow<21>(x);
4878 // R_MIPS_PCHI16
4879 static inline typename This::Status
4880 relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4881 const Symbol_value<size>* psymval, Mips_address addend,
4882 Mips_address address, unsigned int r_sym, bool extract_addend)
4884 // Record the relocation. It will be resolved when we find pclo16 part.
4885 pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4886 addend, 0, r_sym, extract_addend, address));
4887 return This::STATUS_OKAY;
4890 // R_MIPS_PCHI16
4891 static inline typename This::Status
4892 do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4893 const Symbol_value<size>* psymval, Mips_address addend_hi,
4894 Mips_address address, bool extract_addend, Valtype32 addend_lo,
4895 bool calculate_only, Valtype* calculated_value)
4897 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4898 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4900 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4901 : addend_hi);
4903 Valtype value = psymval->value(object, addend) - address;
4904 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4905 val = Bits<32>::bit_select32(val, x, 0xffff);
4907 if (calculate_only)
4908 *calculated_value = x;
4909 else
4910 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4912 return This::STATUS_OKAY;
4915 // R_MIPS_PCLO16
4916 static inline typename This::Status
4917 relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4918 const Symbol_value<size>* psymval, Mips_address addend_a,
4919 bool extract_addend, Mips_address address, unsigned int r_sym,
4920 unsigned int rel_type, bool calculate_only,
4921 Valtype* calculated_value)
4923 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4924 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4926 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4927 : addend_a);
4929 if (rel_type == elfcpp::SHT_REL)
4931 // Resolve pending R_MIPS_PCHI16 relocations.
4932 typename std::list<reloc_high<size, big_endian> >::iterator it =
4933 pchi16_relocs.begin();
4934 while (it != pchi16_relocs.end())
4936 reloc_high<size, big_endian> pchi16 = *it;
4937 if (pchi16.r_sym == r_sym)
4939 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4940 pchi16.addend, pchi16.address,
4941 pchi16.extract_addend, addend, calculate_only,
4942 calculated_value);
4943 it = pchi16_relocs.erase(it);
4945 else
4946 ++it;
4950 // Resolve R_MIPS_PCLO16 relocation.
4951 Valtype x = psymval->value(object, addend) - address;
4952 val = Bits<32>::bit_select32(val, x, 0xffff);
4954 if (calculate_only)
4955 *calculated_value = x;
4956 else
4957 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4959 return This::STATUS_OKAY;
4962 // R_MICROMIPS_PC7_S1
4963 static inline typename This::Status
4964 relmicromips_pc7_s1(unsigned char* view,
4965 const Mips_relobj<size, big_endian>* object,
4966 const Symbol_value<size>* psymval, Mips_address address,
4967 Mips_address addend_a, bool extract_addend,
4968 bool calculate_only, Valtype* calculated_value)
4970 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4971 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4973 Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4974 : addend_a;
4976 Valtype x = psymval->value(object, addend) - address;
4977 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4979 if (calculate_only)
4981 *calculated_value = x >> 1;
4982 return This::STATUS_OKAY;
4984 else
4985 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4987 return check_overflow<8>(x);
4990 // R_MICROMIPS_PC10_S1
4991 static inline typename This::Status
4992 relmicromips_pc10_s1(unsigned char* view,
4993 const Mips_relobj<size, big_endian>* object,
4994 const Symbol_value<size>* psymval, Mips_address address,
4995 Mips_address addend_a, bool extract_addend,
4996 bool calculate_only, Valtype* calculated_value)
4998 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4999 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5001 Valtype addend = (extract_addend
5002 ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
5003 : addend_a);
5005 Valtype x = psymval->value(object, addend) - address;
5006 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
5008 if (calculate_only)
5010 *calculated_value = x >> 1;
5011 return This::STATUS_OKAY;
5013 else
5014 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5016 return check_overflow<11>(x);
5019 // R_MICROMIPS_PC16_S1
5020 static inline typename This::Status
5021 relmicromips_pc16_s1(unsigned char* view,
5022 const Mips_relobj<size, big_endian>* object,
5023 const Symbol_value<size>* psymval, Mips_address address,
5024 Mips_address addend_a, bool extract_addend,
5025 bool calculate_only, Valtype* calculated_value)
5027 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5028 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5030 Valtype addend = (extract_addend
5031 ? Bits<17>::sign_extend32((val & 0xffff) << 1)
5032 : addend_a);
5034 Valtype x = psymval->value(object, addend) - address;
5035 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
5037 if (calculate_only)
5039 *calculated_value = x >> 1;
5040 return This::STATUS_OKAY;
5042 else
5043 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5045 return check_overflow<17>(x);
5048 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5049 static inline typename This::Status
5050 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5051 const Symbol_value<size>* psymval, Mips_address addend,
5052 Mips_address address, bool gp_disp, unsigned int r_type,
5053 unsigned int r_sym, bool extract_addend)
5055 // Record the relocation. It will be resolved when we find lo16 part.
5056 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5057 addend, r_type, r_sym, extract_addend, address,
5058 gp_disp));
5059 return This::STATUS_OKAY;
5062 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5063 static inline typename This::Status
5064 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5065 const Symbol_value<size>* psymval, Mips_address addend_hi,
5066 Mips_address address, bool is_gp_disp, unsigned int r_type,
5067 bool extract_addend, Valtype32 addend_lo,
5068 Target_mips<size, big_endian>* target, bool calculate_only,
5069 Valtype* calculated_value)
5071 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5072 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5074 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5075 : addend_hi);
5077 Valtype32 value;
5078 if (!is_gp_disp)
5079 value = psymval->value(object, addend);
5080 else
5082 // For MIPS16 ABI code we generate this sequence
5083 // 0: li $v0,%hi(_gp_disp)
5084 // 4: addiupc $v1,%lo(_gp_disp)
5085 // 8: sll $v0,16
5086 // 12: addu $v0,$v1
5087 // 14: move $gp,$v0
5088 // So the offsets of hi and lo relocs are the same, but the
5089 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5090 // ADDIUPC clears the low two bits of the instruction address,
5091 // so the base is ($t9 + 4) & ~3.
5092 Valtype32 gp_disp;
5093 if (r_type == elfcpp::R_MIPS16_HI16)
5094 gp_disp = (target->adjusted_gp_value(object)
5095 - ((address + 4) & ~0x3));
5096 // The microMIPS .cpload sequence uses the same assembly
5097 // instructions as the traditional psABI version, but the
5098 // incoming $t9 has the low bit set.
5099 else if (r_type == elfcpp::R_MICROMIPS_HI16)
5100 gp_disp = target->adjusted_gp_value(object) - address - 1;
5101 else
5102 gp_disp = target->adjusted_gp_value(object) - address;
5103 value = gp_disp + addend;
5105 Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5106 val = Bits<32>::bit_select32(val, x, 0xffff);
5108 if (calculate_only)
5110 *calculated_value = x;
5111 return This::STATUS_OKAY;
5113 else
5114 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5116 return (is_gp_disp ? check_overflow<16>(x)
5117 : This::STATUS_OKAY);
5120 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5121 static inline typename This::Status
5122 relgot16_local(unsigned char* view,
5123 const Mips_relobj<size, big_endian>* object,
5124 const Symbol_value<size>* psymval, Mips_address addend_a,
5125 bool extract_addend, unsigned int r_type, unsigned int r_sym)
5127 // Record the relocation. It will be resolved when we find lo16 part.
5128 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5129 addend_a, r_type, r_sym, extract_addend));
5130 return This::STATUS_OKAY;
5133 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5134 static inline typename This::Status
5135 do_relgot16_local(unsigned char* view,
5136 const Mips_relobj<size, big_endian>* object,
5137 const Symbol_value<size>* psymval, Mips_address addend_hi,
5138 bool extract_addend, Valtype32 addend_lo,
5139 Target_mips<size, big_endian>* target, bool calculate_only,
5140 Valtype* calculated_value)
5142 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5143 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5145 Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5146 : addend_hi);
5148 // Find GOT page entry.
5149 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5150 & 0xffff;
5151 value <<= 16;
5152 unsigned int got_offset =
5153 target->got_section()->get_got_page_offset(value, object);
5155 // Resolve the relocation.
5156 Valtype x = target->got_section()->gp_offset(got_offset, object);
5157 val = Bits<32>::bit_select32(val, x, 0xffff);
5159 if (calculate_only)
5161 *calculated_value = x;
5162 return This::STATUS_OKAY;
5164 else
5165 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5167 return check_overflow<16>(x);
5170 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5171 static inline typename This::Status
5172 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5173 const Mips_relobj<size, big_endian>* object,
5174 const Symbol_value<size>* psymval, Mips_address addend_a,
5175 bool extract_addend, Mips_address address, bool is_gp_disp,
5176 unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5177 bool calculate_only, Valtype* calculated_value)
5179 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5180 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5182 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5183 : addend_a);
5185 if (rel_type == elfcpp::SHT_REL)
5187 typename This::Status reloc_status = This::STATUS_OKAY;
5188 // Resolve pending R_MIPS_HI16 relocations.
5189 typename std::list<reloc_high<size, big_endian> >::iterator it =
5190 hi16_relocs.begin();
5191 while (it != hi16_relocs.end())
5193 reloc_high<size, big_endian> hi16 = *it;
5194 if (hi16.r_sym == r_sym
5195 && is_matching_lo16_reloc(hi16.r_type, r_type))
5197 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5198 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5199 hi16.addend, hi16.address, hi16.gp_disp,
5200 hi16.r_type, hi16.extract_addend, addend,
5201 target, calculate_only, calculated_value);
5202 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5203 if (reloc_status == This::STATUS_OVERFLOW)
5204 return This::STATUS_OVERFLOW;
5205 it = hi16_relocs.erase(it);
5207 else
5208 ++it;
5211 // Resolve pending local R_MIPS_GOT16 relocations.
5212 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5213 got16_relocs.begin();
5214 while (it2 != got16_relocs.end())
5216 reloc_high<size, big_endian> got16 = *it2;
5217 if (got16.r_sym == r_sym
5218 && is_matching_lo16_reloc(got16.r_type, r_type))
5220 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5222 reloc_status = do_relgot16_local(got16.view, got16.object,
5223 got16.psymval, got16.addend,
5224 got16.extract_addend, addend, target,
5225 calculate_only, calculated_value);
5227 mips_reloc_shuffle(got16.view, got16.r_type, false);
5228 if (reloc_status == This::STATUS_OVERFLOW)
5229 return This::STATUS_OVERFLOW;
5230 it2 = got16_relocs.erase(it2);
5232 else
5233 ++it2;
5237 // Resolve R_MIPS_LO16 relocation.
5238 Valtype x;
5239 if (!is_gp_disp)
5240 x = psymval->value(object, addend);
5241 else
5243 // See the comment for R_MIPS16_HI16 above for the reason
5244 // for this conditional.
5245 Valtype32 gp_disp;
5246 if (r_type == elfcpp::R_MIPS16_LO16)
5247 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5248 else if (r_type == elfcpp::R_MICROMIPS_LO16
5249 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5250 gp_disp = target->adjusted_gp_value(object) - address + 3;
5251 else
5252 gp_disp = target->adjusted_gp_value(object) - address + 4;
5253 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5254 // for overflow. Relocations against _gp_disp are normally
5255 // generated from the .cpload pseudo-op. It generates code
5256 // that normally looks like this:
5258 // lui $gp,%hi(_gp_disp)
5259 // addiu $gp,$gp,%lo(_gp_disp)
5260 // addu $gp,$gp,$t9
5262 // Here $t9 holds the address of the function being called,
5263 // as required by the MIPS ELF ABI. The R_MIPS_LO16
5264 // relocation can easily overflow in this situation, but the
5265 // R_MIPS_HI16 relocation will handle the overflow.
5266 // Therefore, we consider this a bug in the MIPS ABI, and do
5267 // not check for overflow here.
5268 x = gp_disp + addend;
5270 val = Bits<32>::bit_select32(val, x, 0xffff);
5272 if (calculate_only)
5273 *calculated_value = x;
5274 else
5275 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5277 return This::STATUS_OKAY;
5280 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5281 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5282 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5283 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5284 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5285 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5286 static inline typename This::Status
5287 relgot(unsigned char* view, int gp_offset, bool calculate_only,
5288 Valtype* calculated_value)
5290 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5291 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5292 Valtype x = gp_offset;
5293 val = Bits<32>::bit_select32(val, x, 0xffff);
5295 if (calculate_only)
5297 *calculated_value = x;
5298 return This::STATUS_OKAY;
5300 else
5301 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5303 return check_overflow<16>(x);
5306 // R_MIPS_EH
5307 static inline typename This::Status
5308 releh(unsigned char* view, int gp_offset, bool calculate_only,
5309 Valtype* calculated_value)
5311 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5312 Valtype x = gp_offset;
5314 if (calculate_only)
5316 *calculated_value = x;
5317 return This::STATUS_OKAY;
5319 else
5320 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5322 return check_overflow<32>(x);
5325 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5326 static inline typename This::Status
5327 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5328 const Mips_relobj<size, big_endian>* object,
5329 const Symbol_value<size>* psymval, Mips_address addend_a,
5330 bool extract_addend, bool calculate_only,
5331 Valtype* calculated_value)
5333 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5334 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5335 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5337 // Find a GOT page entry that points to within 32KB of symbol + addend.
5338 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5339 unsigned int got_offset =
5340 target->got_section()->get_got_page_offset(value, object);
5342 Valtype x = target->got_section()->gp_offset(got_offset, object);
5343 val = Bits<32>::bit_select32(val, x, 0xffff);
5345 if (calculate_only)
5347 *calculated_value = x;
5348 return This::STATUS_OKAY;
5350 else
5351 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5353 return check_overflow<16>(x);
5356 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5357 static inline typename This::Status
5358 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5359 const Mips_relobj<size, big_endian>* object,
5360 const Symbol_value<size>* psymval, Mips_address addend_a,
5361 bool extract_addend, bool local, bool calculate_only,
5362 Valtype* calculated_value)
5364 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5365 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5366 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5368 // For a local symbol, find a GOT page entry that points to within 32KB of
5369 // symbol + addend. Relocation value is the offset of the GOT page entry's
5370 // value from symbol + addend.
5371 // For a global symbol, relocation value is addend.
5372 Valtype x;
5373 if (local)
5375 // Find GOT page entry.
5376 Mips_address value = ((psymval->value(object, addend) + 0x8000)
5377 & ~0xffff);
5378 target->got_section()->get_got_page_offset(value, object);
5380 x = psymval->value(object, addend) - value;
5382 else
5383 x = addend;
5384 val = Bits<32>::bit_select32(val, x, 0xffff);
5386 if (calculate_only)
5388 *calculated_value = x;
5389 return This::STATUS_OKAY;
5391 else
5392 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5394 return check_overflow<16>(x);
5397 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5398 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5399 static inline typename This::Status
5400 relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5401 Valtype* calculated_value)
5403 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5404 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5405 Valtype x = gp_offset;
5406 x = ((x + 0x8000) >> 16) & 0xffff;
5407 val = Bits<32>::bit_select32(val, x, 0xffff);
5409 if (calculate_only)
5410 *calculated_value = x;
5411 else
5412 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5414 return This::STATUS_OKAY;
5417 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5418 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5419 static inline typename This::Status
5420 relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5421 Valtype* calculated_value)
5423 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5424 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5425 Valtype x = gp_offset;
5426 val = Bits<32>::bit_select32(val, x, 0xffff);
5428 if (calculate_only)
5429 *calculated_value = x;
5430 else
5431 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5433 return This::STATUS_OKAY;
5436 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5437 // R_MICROMIPS_GPREL16
5438 static inline typename This::Status
5439 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5440 const Symbol_value<size>* psymval, Mips_address gp,
5441 Mips_address addend_a, bool extract_addend, bool local,
5442 bool calculate_only, Valtype* calculated_value)
5444 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5445 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5447 Valtype addend;
5448 if (extract_addend)
5450 addend = val & 0xffff;
5451 // Only sign-extend the addend if it was extracted from the
5452 // instruction. If the addend was separate, leave it alone,
5453 // otherwise we may lose significant bits.
5454 addend = Bits<16>::sign_extend32(addend);
5456 else
5457 addend = addend_a;
5459 Valtype x = psymval->value(object, addend) - gp;
5461 // If the symbol was local, any earlier relocatable links will
5462 // have adjusted its addend with the gp offset, so compensate
5463 // for that now. Don't do it for symbols forced local in this
5464 // link, though, since they won't have had the gp offset applied
5465 // to them before.
5466 if (local)
5467 x += object->gp_value();
5469 val = Bits<32>::bit_select32(val, x, 0xffff);
5471 if (calculate_only)
5473 *calculated_value = x;
5474 return This::STATUS_OKAY;
5476 else
5477 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5479 if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5481 gold_error(_("small-data section too large;"
5482 " lower small-data size limit (see option -G)"));
5483 return This::STATUS_OVERFLOW;
5485 return This::STATUS_OKAY;
5488 // R_MICROMIPS_GPREL7_S2
5489 static inline typename This::Status
5490 relgprel7(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5491 const Symbol_value<size>* psymval, Mips_address gp,
5492 Mips_address addend_a, bool extract_addend, bool local,
5493 bool calculate_only, Valtype* calculated_value)
5495 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
5496 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
5498 Valtype addend;
5499 if (extract_addend)
5501 addend = (val & 0x7f) << 2;
5502 addend = Bits<9>::sign_extend32(addend);
5504 else
5505 addend = addend_a;
5507 Valtype x = psymval->value(object, addend) - gp;
5509 if (local)
5510 x += object->gp_value();
5512 val = Bits<16>::bit_select32(val, x >> 2, 0x7f);
5514 if (calculate_only)
5516 *calculated_value = x;
5517 return This::STATUS_OKAY;
5519 else
5520 elfcpp::Swap<16, big_endian>::writeval(wv, val);
5522 if (check_overflow<9>(x) == This::STATUS_OVERFLOW)
5524 gold_error(_("small-data section too large;"
5525 " lower small-data size limit (see option -G)"));
5526 return This::STATUS_OVERFLOW;
5528 return This::STATUS_OKAY;
5531 // R_MIPS_GPREL32
5532 static inline typename This::Status
5533 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5534 const Symbol_value<size>* psymval, Mips_address gp,
5535 Mips_address addend_a, bool extract_addend, bool calculate_only,
5536 Valtype* calculated_value)
5538 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5539 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5540 Valtype addend = extract_addend ? val : addend_a;
5542 // R_MIPS_GPREL32 relocations are defined for local symbols only.
5543 Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5545 if (calculate_only)
5546 *calculated_value = x;
5547 else
5548 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5550 return This::STATUS_OKAY;
5553 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5554 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5555 // R_MICROMIPS_TLS_DTPREL_HI16
5556 static inline typename This::Status
5557 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5558 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5559 Mips_address addend_a, bool extract_addend, bool calculate_only,
5560 Valtype* calculated_value)
5562 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5563 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5564 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5566 // tls symbol values are relative to tls_segment()->vaddr()
5567 Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5568 val = Bits<32>::bit_select32(val, x, 0xffff);
5570 if (calculate_only)
5571 *calculated_value = x;
5572 else
5573 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5575 return This::STATUS_OKAY;
5578 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5579 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5580 // R_MICROMIPS_TLS_DTPREL_LO16,
5581 static inline typename This::Status
5582 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5583 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5584 Mips_address addend_a, bool extract_addend, bool calculate_only,
5585 Valtype* calculated_value)
5587 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5588 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5589 Valtype addend = extract_addend ? val & 0xffff : addend_a;
5591 // tls symbol values are relative to tls_segment()->vaddr()
5592 Valtype x = psymval->value(object, addend) - tp_offset;
5593 val = Bits<32>::bit_select32(val, x, 0xffff);
5595 if (calculate_only)
5596 *calculated_value = x;
5597 else
5598 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5600 return This::STATUS_OKAY;
5603 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5604 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5605 static inline typename This::Status
5606 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5607 const Symbol_value<size>* psymval, Valtype32 tp_offset,
5608 Mips_address addend_a, bool extract_addend, bool calculate_only,
5609 Valtype* calculated_value)
5611 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5612 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5613 Valtype addend = extract_addend ? val : addend_a;
5615 // tls symbol values are relative to tls_segment()->vaddr()
5616 Valtype x = psymval->value(object, addend) - tp_offset;
5618 if (calculate_only)
5619 *calculated_value = x;
5620 else
5621 elfcpp::Swap<32, big_endian>::writeval(wv, x);
5623 return This::STATUS_OKAY;
5626 // R_MIPS_SUB, R_MICROMIPS_SUB
5627 static inline typename This::Status
5628 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5629 const Symbol_value<size>* psymval, Mips_address addend_a,
5630 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5632 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5633 Valtype64 addend = (extract_addend
5634 ? elfcpp::Swap<64, big_endian>::readval(wv)
5635 : addend_a);
5637 Valtype64 x = psymval->value(object, -addend);
5638 if (calculate_only)
5639 *calculated_value = x;
5640 else
5641 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5643 return This::STATUS_OKAY;
5646 // R_MIPS_64: S + A
5647 static inline typename This::Status
5648 rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5649 const Symbol_value<size>* psymval, Mips_address addend_a,
5650 bool extract_addend, bool calculate_only, Valtype* calculated_value,
5651 bool apply_addend_only)
5653 Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5654 Valtype64 addend = (extract_addend
5655 ? elfcpp::Swap<64, big_endian>::readval(wv)
5656 : addend_a);
5658 Valtype64 x = psymval->value(object, addend);
5659 if (calculate_only)
5660 *calculated_value = x;
5661 else
5663 if (apply_addend_only)
5664 x = addend;
5665 elfcpp::Swap<64, big_endian>::writeval(wv, x);
5668 return This::STATUS_OKAY;
5671 // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
5672 static inline typename This::Status
5673 relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5674 const Symbol_value<size>* psymval, Mips_address addend_a,
5675 bool extract_addend, bool calculate_only, Valtype* calculated_value)
5677 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5678 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5679 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5680 : addend_a);
5682 Valtype x = psymval->value(object, addend);
5683 x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
5684 val = Bits<32>::bit_select32(val, x, 0xffff);
5686 if (calculate_only)
5687 *calculated_value = x;
5688 else
5689 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5691 return This::STATUS_OKAY;
5694 // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
5695 static inline typename This::Status
5696 relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5697 const Symbol_value<size>* psymval, Mips_address addend_a,
5698 bool extract_addend, bool calculate_only,
5699 Valtype* calculated_value)
5701 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5702 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5703 Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5704 : addend_a);
5706 Valtype x = psymval->value(object, addend);
5707 x = ((x + (uint64_t) 0x800080008000llu) >> 48) & 0xffff;
5708 val = Bits<32>::bit_select32(val, x, 0xffff);
5710 if (calculate_only)
5711 *calculated_value = x;
5712 else
5713 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5715 return This::STATUS_OKAY;
5719 template<int size, bool big_endian>
5720 typename std::list<reloc_high<size, big_endian> >
5721 Mips_relocate_functions<size, big_endian>::hi16_relocs;
5723 template<int size, bool big_endian>
5724 typename std::list<reloc_high<size, big_endian> >
5725 Mips_relocate_functions<size, big_endian>::got16_relocs;
5727 template<int size, bool big_endian>
5728 typename std::list<reloc_high<size, big_endian> >
5729 Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5731 // Mips_got_info methods.
5733 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5734 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5736 template<int size, bool big_endian>
5737 void
5738 Mips_got_info<size, big_endian>::record_local_got_symbol(
5739 Mips_relobj<size, big_endian>* object, unsigned int symndx,
5740 Mips_address addend, unsigned int r_type, unsigned int shndx,
5741 bool is_section_symbol)
5743 Mips_got_entry<size, big_endian>* entry =
5744 new Mips_got_entry<size, big_endian>(object, symndx, addend,
5745 mips_elf_reloc_tls_type(r_type),
5746 shndx, is_section_symbol);
5747 this->record_got_entry(entry, object);
5750 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5751 // in OBJECT. FOR_CALL is true if the caller is only interested in
5752 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
5753 // relocation.
5755 template<int size, bool big_endian>
5756 void
5757 Mips_got_info<size, big_endian>::record_global_got_symbol(
5758 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5759 unsigned int r_type, bool dyn_reloc, bool for_call)
5761 if (!for_call)
5762 mips_sym->set_got_not_only_for_calls();
5764 // A global symbol in the GOT must also be in the dynamic symbol table.
5765 if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
5767 switch (mips_sym->visibility())
5769 case elfcpp::STV_INTERNAL:
5770 case elfcpp::STV_HIDDEN:
5771 mips_sym->set_is_forced_local();
5772 break;
5773 default:
5774 mips_sym->set_needs_dynsym_entry();
5775 break;
5779 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5780 if (tls_type == GOT_TLS_NONE)
5781 this->global_got_symbols_.insert(mips_sym);
5783 if (dyn_reloc)
5785 if (mips_sym->global_got_area() == GGA_NONE)
5786 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5787 return;
5790 Mips_got_entry<size, big_endian>* entry =
5791 new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5793 this->record_got_entry(entry, object);
5796 // Add ENTRY to master GOT and to OBJECT's GOT.
5798 template<int size, bool big_endian>
5799 void
5800 Mips_got_info<size, big_endian>::record_got_entry(
5801 Mips_got_entry<size, big_endian>* entry,
5802 Mips_relobj<size, big_endian>* object)
5804 this->got_entries_.insert(entry);
5806 // Create the GOT entry for the OBJECT's GOT.
5807 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5808 Mips_got_entry<size, big_endian>* entry2 =
5809 new Mips_got_entry<size, big_endian>(*entry);
5811 g->got_entries_.insert(entry2);
5814 // Record that OBJECT has a page relocation against symbol SYMNDX and
5815 // that ADDEND is the addend for that relocation.
5816 // This function creates an upper bound on the number of GOT slots
5817 // required; no attempt is made to combine references to non-overridable
5818 // global symbols across multiple input files.
5820 template<int size, bool big_endian>
5821 void
5822 Mips_got_info<size, big_endian>::record_got_page_entry(
5823 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5825 struct Got_page_range **range_ptr, *range;
5826 int old_pages, new_pages;
5828 // Find the Got_page_entry for this symbol.
5829 Got_page_entry* entry = new Got_page_entry(object, symndx);
5830 typename Got_page_entry_set::iterator it =
5831 this->got_page_entries_.find(entry);
5832 if (it != this->got_page_entries_.end())
5833 entry = *it;
5834 else
5835 this->got_page_entries_.insert(entry);
5837 // Get the object's GOT, but we don't need to insert an entry here.
5838 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5840 // Skip over ranges whose maximum extent cannot share a page entry
5841 // with ADDEND.
5842 range_ptr = &entry->ranges;
5843 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5844 range_ptr = &(*range_ptr)->next;
5846 // If we scanned to the end of the list, or found a range whose
5847 // minimum extent cannot share a page entry with ADDEND, create
5848 // a new singleton range.
5849 range = *range_ptr;
5850 if (!range || addend < range->min_addend - 0xffff)
5852 range = new Got_page_range();
5853 range->next = *range_ptr;
5854 range->min_addend = addend;
5855 range->max_addend = addend;
5857 *range_ptr = range;
5858 ++this->page_gotno_;
5859 ++g2->page_gotno_;
5860 return;
5863 // Remember how many pages the old range contributed.
5864 old_pages = range->get_max_pages();
5866 // Update the ranges.
5867 if (addend < range->min_addend)
5868 range->min_addend = addend;
5869 else if (addend > range->max_addend)
5871 if (range->next && addend >= range->next->min_addend - 0xffff)
5873 old_pages += range->next->get_max_pages();
5874 range->max_addend = range->next->max_addend;
5875 range->next = range->next->next;
5877 else
5878 range->max_addend = addend;
5881 // Record any change in the total estimate.
5882 new_pages = range->get_max_pages();
5883 if (old_pages != new_pages)
5885 this->page_gotno_ += new_pages - old_pages;
5886 g2->page_gotno_ += new_pages - old_pages;
5890 // Create all entries that should be in the local part of the GOT.
5892 template<int size, bool big_endian>
5893 void
5894 Mips_got_info<size, big_endian>::add_local_entries(
5895 Target_mips<size, big_endian>* target, Layout* layout)
5897 Mips_output_data_got<size, big_endian>* got = target->got_section();
5898 // First two GOT entries are reserved. The first entry will be filled at
5899 // runtime. The second entry will be used by some runtime loaders.
5900 got->add_constant(0);
5901 got->add_constant(target->mips_elf_gnu_got1_mask());
5903 for (typename Got_entry_set::iterator
5904 p = this->got_entries_.begin();
5905 p != this->got_entries_.end();
5906 ++p)
5908 Mips_got_entry<size, big_endian>* entry = *p;
5909 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5911 got->add_local(entry->object(), entry->symndx(),
5912 GOT_TYPE_STANDARD, entry->addend());
5913 unsigned int got_offset = entry->object()->local_got_offset(
5914 entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5915 if (got->multi_got() && this->index_ > 0
5916 && parameters->options().output_is_position_independent())
5918 if (!entry->is_section_symbol())
5919 target->rel_dyn_section(layout)->add_local(entry->object(),
5920 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5921 else
5922 target->rel_dyn_section(layout)->add_symbolless_local_addend(
5923 entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5924 got, got_offset);
5929 this->add_page_entries(target, layout);
5931 // Add global entries that should be in the local area.
5932 for (typename Got_entry_set::iterator
5933 p = this->got_entries_.begin();
5934 p != this->got_entries_.end();
5935 ++p)
5937 Mips_got_entry<size, big_endian>* entry = *p;
5938 if (!entry->is_for_global_symbol())
5939 continue;
5941 Mips_symbol<size>* mips_sym = entry->sym();
5942 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5944 unsigned int got_type;
5945 if (!got->multi_got())
5946 got_type = GOT_TYPE_STANDARD;
5947 else
5948 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5949 if (got->add_global(mips_sym, got_type))
5951 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5952 if (got->multi_got() && this->index_ > 0
5953 && parameters->options().output_is_position_independent())
5954 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5955 mips_sym, elfcpp::R_MIPS_REL32, got,
5956 mips_sym->got_offset(got_type));
5962 // Create GOT page entries.
5964 template<int size, bool big_endian>
5965 void
5966 Mips_got_info<size, big_endian>::add_page_entries(
5967 Target_mips<size, big_endian>* target, Layout* layout)
5969 if (this->page_gotno_ == 0)
5970 return;
5972 Mips_output_data_got<size, big_endian>* got = target->got_section();
5973 this->got_page_offset_start_ = got->add_constant(0);
5974 if (got->multi_got() && this->index_ > 0
5975 && parameters->options().output_is_position_independent())
5976 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5977 this->got_page_offset_start_);
5978 int num_entries = this->page_gotno_;
5979 unsigned int prev_offset = this->got_page_offset_start_;
5980 while (--num_entries > 0)
5982 unsigned int next_offset = got->add_constant(0);
5983 if (got->multi_got() && this->index_ > 0
5984 && parameters->options().output_is_position_independent())
5985 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5986 next_offset);
5987 gold_assert(next_offset == prev_offset + size/8);
5988 prev_offset = next_offset;
5990 this->got_page_offset_next_ = this->got_page_offset_start_;
5993 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5995 template<int size, bool big_endian>
5996 void
5997 Mips_got_info<size, big_endian>::add_global_entries(
5998 Target_mips<size, big_endian>* target, Layout* layout,
5999 unsigned int non_reloc_only_global_gotno)
6001 Mips_output_data_got<size, big_endian>* got = target->got_section();
6002 // Add GGA_NORMAL entries.
6003 unsigned int count = 0;
6004 for (typename Got_entry_set::iterator
6005 p = this->got_entries_.begin();
6006 p != this->got_entries_.end();
6007 ++p)
6009 Mips_got_entry<size, big_endian>* entry = *p;
6010 if (!entry->is_for_global_symbol())
6011 continue;
6013 Mips_symbol<size>* mips_sym = entry->sym();
6014 if (mips_sym->global_got_area() != GGA_NORMAL)
6015 continue;
6017 unsigned int got_type;
6018 if (!got->multi_got())
6019 got_type = GOT_TYPE_STANDARD;
6020 else
6021 // In multi-GOT links, global symbol can be in both primary and
6022 // secondary GOT(s). By creating custom GOT type
6023 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
6024 // is added to secondary GOT(s).
6025 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
6026 if (!got->add_global(mips_sym, got_type))
6027 continue;
6029 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6030 if (got->multi_got() && this->index_ == 0)
6031 count++;
6032 if (got->multi_got() && this->index_ > 0)
6034 if (parameters->options().output_is_position_independent()
6035 || (!parameters->doing_static_link()
6036 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
6038 target->rel_dyn_section(layout)->add_global(
6039 mips_sym, elfcpp::R_MIPS_REL32, got,
6040 mips_sym->got_offset(got_type));
6041 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
6042 elfcpp::R_MIPS_REL32, mips_sym);
6047 if (!got->multi_got() || this->index_ == 0)
6049 if (got->multi_got())
6051 // We need to allocate space in the primary GOT for GGA_NORMAL entries
6052 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
6053 // entries correspond to dynamic symbol indexes.
6054 while (count < non_reloc_only_global_gotno)
6056 got->add_constant(0);
6057 ++count;
6061 // Add GGA_RELOC_ONLY entries.
6062 got->add_reloc_only_entries();
6066 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
6068 template<int size, bool big_endian>
6069 void
6070 Mips_got_info<size, big_endian>::add_reloc_only_entries(
6071 Mips_output_data_got<size, big_endian>* got)
6073 for (typename Global_got_entry_set::iterator
6074 p = this->global_got_symbols_.begin();
6075 p != this->global_got_symbols_.end();
6076 ++p)
6078 Mips_symbol<size>* mips_sym = *p;
6079 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
6081 unsigned int got_type;
6082 if (!got->multi_got())
6083 got_type = GOT_TYPE_STANDARD;
6084 else
6085 got_type = GOT_TYPE_STANDARD_MULTIGOT;
6086 if (got->add_global(mips_sym, got_type))
6087 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
6092 // Create TLS GOT entries.
6094 template<int size, bool big_endian>
6095 void
6096 Mips_got_info<size, big_endian>::add_tls_entries(
6097 Target_mips<size, big_endian>* target, Layout* layout)
6099 Mips_output_data_got<size, big_endian>* got = target->got_section();
6100 // Add local tls entries.
6101 for (typename Got_entry_set::iterator
6102 p = this->got_entries_.begin();
6103 p != this->got_entries_.end();
6104 ++p)
6106 Mips_got_entry<size, big_endian>* entry = *p;
6107 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
6108 continue;
6110 if (entry->tls_type() == GOT_TLS_GD)
6112 unsigned int got_type = GOT_TYPE_TLS_PAIR;
6113 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6114 : elfcpp::R_MIPS_TLS_DTPMOD64);
6115 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6116 : elfcpp::R_MIPS_TLS_DTPREL64);
6118 if (!parameters->doing_static_link())
6120 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
6121 entry->shndx(), got_type,
6122 target->rel_dyn_section(layout),
6123 r_type1, entry->addend());
6124 unsigned int got_offset =
6125 entry->object()->local_got_offset(entry->symndx(), got_type,
6126 entry->addend());
6127 got->add_static_reloc(got_offset + size/8, r_type2,
6128 entry->object(), entry->symndx());
6130 else
6132 // We are doing a static link. Mark it as belong to module 1,
6133 // the executable.
6134 unsigned int got_offset = got->add_constant(1);
6135 entry->object()->set_local_got_offset(entry->symndx(), got_type,
6136 got_offset,
6137 entry->addend());
6138 got->add_constant(0);
6139 got->add_static_reloc(got_offset + size/8, r_type2,
6140 entry->object(), entry->symndx());
6143 else if (entry->tls_type() == GOT_TLS_IE)
6145 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6146 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6147 : elfcpp::R_MIPS_TLS_TPREL64);
6148 if (!parameters->doing_static_link())
6149 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6150 target->rel_dyn_section(layout), r_type,
6151 entry->addend());
6152 else
6154 got->add_local(entry->object(), entry->symndx(), got_type,
6155 entry->addend());
6156 unsigned int got_offset =
6157 entry->object()->local_got_offset(entry->symndx(), got_type,
6158 entry->addend());
6159 got->add_static_reloc(got_offset, r_type, entry->object(),
6160 entry->symndx());
6163 else if (entry->tls_type() == GOT_TLS_LDM)
6165 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6166 : elfcpp::R_MIPS_TLS_DTPMOD64);
6167 unsigned int got_offset;
6168 if (!parameters->doing_static_link())
6170 got_offset = got->add_constant(0);
6171 target->rel_dyn_section(layout)->add_local(
6172 entry->object(), 0, r_type, got, got_offset);
6174 else
6175 // We are doing a static link. Just mark it as belong to module 1,
6176 // the executable.
6177 got_offset = got->add_constant(1);
6179 got->add_constant(0);
6180 got->set_tls_ldm_offset(got_offset, entry->object());
6182 else
6183 gold_unreachable();
6186 // Add global tls entries.
6187 for (typename Got_entry_set::iterator
6188 p = this->got_entries_.begin();
6189 p != this->got_entries_.end();
6190 ++p)
6192 Mips_got_entry<size, big_endian>* entry = *p;
6193 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6194 continue;
6196 Mips_symbol<size>* mips_sym = entry->sym();
6197 if (entry->tls_type() == GOT_TLS_GD)
6199 unsigned int got_type;
6200 if (!got->multi_got())
6201 got_type = GOT_TYPE_TLS_PAIR;
6202 else
6203 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6204 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6205 : elfcpp::R_MIPS_TLS_DTPMOD64);
6206 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6207 : elfcpp::R_MIPS_TLS_DTPREL64);
6208 if (!parameters->doing_static_link())
6209 got->add_global_pair_with_rel(mips_sym, got_type,
6210 target->rel_dyn_section(layout), r_type1, r_type2);
6211 else
6213 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
6214 // GOT entries. The first one is initialized to be 1, which is the
6215 // module index for the main executable and the second one 0. A
6216 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6217 // the second GOT entry and will be applied by gold.
6218 unsigned int got_offset = got->add_constant(1);
6219 mips_sym->set_got_offset(got_type, got_offset);
6220 got->add_constant(0);
6221 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6224 else if (entry->tls_type() == GOT_TLS_IE)
6226 unsigned int got_type;
6227 if (!got->multi_got())
6228 got_type = GOT_TYPE_TLS_OFFSET;
6229 else
6230 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6231 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6232 : elfcpp::R_MIPS_TLS_TPREL64);
6233 if (!parameters->doing_static_link())
6234 got->add_global_with_rel(mips_sym, got_type,
6235 target->rel_dyn_section(layout), r_type);
6236 else
6238 got->add_global(mips_sym, got_type);
6239 unsigned int got_offset = mips_sym->got_offset(got_type);
6240 got->add_static_reloc(got_offset, r_type, mips_sym);
6243 else
6244 gold_unreachable();
6248 // Decide whether the symbol needs an entry in the global part of the primary
6249 // GOT, setting global_got_area accordingly. Count the number of global
6250 // symbols that are in the primary GOT only because they have dynamic
6251 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6253 template<int size, bool big_endian>
6254 void
6255 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6257 for (typename Global_got_entry_set::iterator
6258 p = this->global_got_symbols_.begin();
6259 p != this->global_got_symbols_.end();
6260 ++p)
6262 Mips_symbol<size>* sym = *p;
6263 // Make a final decision about whether the symbol belongs in the
6264 // local or global GOT. Symbols that bind locally can (and in the
6265 // case of forced-local symbols, must) live in the local GOT.
6266 // Those that are aren't in the dynamic symbol table must also
6267 // live in the local GOT.
6269 if (!sym->should_add_dynsym_entry(symtab)
6270 || (sym->got_only_for_calls()
6271 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6272 : symbol_references_local(sym,
6273 sym->should_add_dynsym_entry(symtab))))
6274 // The symbol belongs in the local GOT. We no longer need this
6275 // entry if it was only used for relocations; those relocations
6276 // will be against the null or section symbol instead.
6277 sym->set_global_got_area(GGA_NONE);
6278 else if (sym->global_got_area() == GGA_RELOC_ONLY)
6280 ++this->reloc_only_gotno_;
6281 ++this->global_gotno_ ;
6286 // Return the offset of GOT page entry for VALUE. Initialize the entry with
6287 // VALUE if it is not initialized.
6289 template<int size, bool big_endian>
6290 unsigned int
6291 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6292 Mips_output_data_got<size, big_endian>* got)
6294 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6295 if (it != this->got_page_offsets_.end())
6296 return it->second;
6298 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6299 + (size/8) * this->page_gotno_);
6301 unsigned int got_offset = this->got_page_offset_next_;
6302 this->got_page_offsets_[value] = got_offset;
6303 this->got_page_offset_next_ += size/8;
6304 got->update_got_entry(got_offset, value);
6305 return got_offset;
6308 // Remove lazy-binding stubs for global symbols in this GOT.
6310 template<int size, bool big_endian>
6311 void
6312 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6313 Target_mips<size, big_endian>* target)
6315 for (typename Got_entry_set::iterator
6316 p = this->got_entries_.begin();
6317 p != this->got_entries_.end();
6318 ++p)
6320 Mips_got_entry<size, big_endian>* entry = *p;
6321 if (entry->is_for_global_symbol())
6322 target->remove_lazy_stub_entry(entry->sym());
6326 // Count the number of GOT entries required.
6328 template<int size, bool big_endian>
6329 void
6330 Mips_got_info<size, big_endian>::count_got_entries()
6332 for (typename Got_entry_set::iterator
6333 p = this->got_entries_.begin();
6334 p != this->got_entries_.end();
6335 ++p)
6337 this->count_got_entry(*p);
6341 // Count the number of GOT entries required by ENTRY. Accumulate the result.
6343 template<int size, bool big_endian>
6344 void
6345 Mips_got_info<size, big_endian>::count_got_entry(
6346 Mips_got_entry<size, big_endian>* entry)
6348 if (entry->is_tls_entry())
6349 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6350 else if (entry->is_for_local_symbol()
6351 || entry->sym()->global_got_area() == GGA_NONE)
6352 ++this->local_gotno_;
6353 else
6354 ++this->global_gotno_;
6357 // Add FROM's GOT entries.
6359 template<int size, bool big_endian>
6360 void
6361 Mips_got_info<size, big_endian>::add_got_entries(
6362 Mips_got_info<size, big_endian>* from)
6364 for (typename Got_entry_set::iterator
6365 p = from->got_entries_.begin();
6366 p != from->got_entries_.end();
6367 ++p)
6369 Mips_got_entry<size, big_endian>* entry = *p;
6370 if (this->got_entries_.find(entry) == this->got_entries_.end())
6372 Mips_got_entry<size, big_endian>* entry2 =
6373 new Mips_got_entry<size, big_endian>(*entry);
6374 this->got_entries_.insert(entry2);
6375 this->count_got_entry(entry);
6380 // Add FROM's GOT page entries.
6382 template<int size, bool big_endian>
6383 void
6384 Mips_got_info<size, big_endian>::add_got_page_count(
6385 Mips_got_info<size, big_endian>* from)
6387 this->page_gotno_ += from->page_gotno_;
6390 // Mips_output_data_got methods.
6392 // Lay out the GOT. Add local, global and TLS entries. If GOT is
6393 // larger than 64K, create multi-GOT.
6395 template<int size, bool big_endian>
6396 void
6397 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6398 Symbol_table* symtab, const Input_objects* input_objects)
6400 // Decide which symbols need to go in the global part of the GOT and
6401 // count the number of reloc-only GOT symbols.
6402 this->master_got_info_->count_got_symbols(symtab);
6404 // Count the number of GOT entries.
6405 this->master_got_info_->count_got_entries();
6407 unsigned int got_size = this->master_got_info_->got_size();
6408 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6409 this->lay_out_multi_got(layout, input_objects);
6410 else
6412 // Record that all objects use single GOT.
6413 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6414 p != input_objects->relobj_end();
6415 ++p)
6417 Mips_relobj<size, big_endian>* object =
6418 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6419 if (object->get_got_info() != NULL)
6420 object->set_got_info(this->master_got_info_);
6423 this->master_got_info_->add_local_entries(this->target_, layout);
6424 this->master_got_info_->add_global_entries(this->target_, layout,
6425 /*not used*/-1U);
6426 this->master_got_info_->add_tls_entries(this->target_, layout);
6430 // Create multi-GOT. For every GOT, add local, global and TLS entries.
6432 template<int size, bool big_endian>
6433 void
6434 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6435 const Input_objects* input_objects)
6437 // Try to merge the GOTs of input objects together, as long as they
6438 // don't seem to exceed the maximum GOT size, choosing one of them
6439 // to be the primary GOT.
6440 this->merge_gots(input_objects);
6442 // Every symbol that is referenced in a dynamic relocation must be
6443 // present in the primary GOT.
6444 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6446 // Add GOT entries.
6447 unsigned int i = 0;
6448 unsigned int offset = 0;
6449 Mips_got_info<size, big_endian>* g = this->primary_got_;
6452 g->set_index(i);
6453 g->set_offset(offset);
6455 g->add_local_entries(this->target_, layout);
6456 if (i == 0)
6457 g->add_global_entries(this->target_, layout,
6458 (this->master_got_info_->global_gotno()
6459 - this->master_got_info_->reloc_only_gotno()));
6460 else
6461 g->add_global_entries(this->target_, layout, /*not used*/-1U);
6462 g->add_tls_entries(this->target_, layout);
6464 // Forbid global symbols in every non-primary GOT from having
6465 // lazy-binding stubs.
6466 if (i > 0)
6467 g->remove_lazy_stubs(this->target_);
6469 ++i;
6470 offset += g->got_size();
6471 g = g->next();
6473 while (g);
6476 // Attempt to merge GOTs of different input objects. Try to use as much as
6477 // possible of the primary GOT, since it doesn't require explicit dynamic
6478 // relocations, but don't use objects that would reference global symbols
6479 // out of the addressable range. Failing the primary GOT, attempt to merge
6480 // with the current GOT, or finish the current GOT and then make make the new
6481 // GOT current.
6483 template<int size, bool big_endian>
6484 void
6485 Mips_output_data_got<size, big_endian>::merge_gots(
6486 const Input_objects* input_objects)
6488 gold_assert(this->primary_got_ == NULL);
6489 Mips_got_info<size, big_endian>* current = NULL;
6491 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6492 p != input_objects->relobj_end();
6493 ++p)
6495 Mips_relobj<size, big_endian>* object =
6496 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6498 Mips_got_info<size, big_endian>* g = object->get_got_info();
6499 if (g == NULL)
6500 continue;
6502 g->count_got_entries();
6504 // Work out the number of page, local and TLS entries.
6505 unsigned int estimate = this->master_got_info_->page_gotno();
6506 if (estimate > g->page_gotno())
6507 estimate = g->page_gotno();
6508 estimate += g->local_gotno() + g->tls_gotno();
6510 // We place TLS GOT entries after both locals and globals. The globals
6511 // for the primary GOT may overflow the normal GOT size limit, so be
6512 // sure not to merge a GOT which requires TLS with the primary GOT in that
6513 // case. This doesn't affect non-primary GOTs.
6514 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6515 : g->global_gotno());
6517 unsigned int max_count =
6518 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6519 if (estimate <= max_count)
6521 // If we don't have a primary GOT, use it as
6522 // a starting point for the primary GOT.
6523 if (!this->primary_got_)
6525 this->primary_got_ = g;
6526 continue;
6529 // Try merging with the primary GOT.
6530 if (this->merge_got_with(g, object, this->primary_got_))
6531 continue;
6534 // If we can merge with the last-created GOT, do it.
6535 if (current && this->merge_got_with(g, object, current))
6536 continue;
6538 // Well, we couldn't merge, so create a new GOT. Don't check if it
6539 // fits; if it turns out that it doesn't, we'll get relocation
6540 // overflows anyway.
6541 g->set_next(current);
6542 current = g;
6545 // If we do not find any suitable primary GOT, create an empty one.
6546 if (this->primary_got_ == NULL)
6547 this->primary_got_ = new Mips_got_info<size, big_endian>();
6549 // Link primary GOT with secondary GOTs.
6550 this->primary_got_->set_next(current);
6553 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
6554 // this would lead to overflow, true if they were merged successfully.
6556 template<int size, bool big_endian>
6557 bool
6558 Mips_output_data_got<size, big_endian>::merge_got_with(
6559 Mips_got_info<size, big_endian>* from,
6560 Mips_relobj<size, big_endian>* object,
6561 Mips_got_info<size, big_endian>* to)
6563 // Work out how many page entries we would need for the combined GOT.
6564 unsigned int estimate = this->master_got_info_->page_gotno();
6565 if (estimate >= from->page_gotno() + to->page_gotno())
6566 estimate = from->page_gotno() + to->page_gotno();
6568 // Conservatively estimate how many local and TLS entries would be needed.
6569 estimate += from->local_gotno() + to->local_gotno();
6570 estimate += from->tls_gotno() + to->tls_gotno();
6572 // If we're merging with the primary got, any TLS relocations will
6573 // come after the full set of global entries. Otherwise estimate those
6574 // conservatively as well.
6575 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6576 estimate += this->master_got_info_->global_gotno();
6577 else
6578 estimate += from->global_gotno() + to->global_gotno();
6580 // Bail out if the combined GOT might be too big.
6581 unsigned int max_count =
6582 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6583 if (estimate > max_count)
6584 return false;
6586 // Transfer the object's GOT information from FROM to TO.
6587 to->add_got_entries(from);
6588 to->add_got_page_count(from);
6590 // Record that OBJECT should use output GOT TO.
6591 object->set_got_info(to);
6593 return true;
6596 // Write out the GOT.
6598 template<int size, bool big_endian>
6599 void
6600 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6602 typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6603 Mips_stubs_entry_set;
6605 // Call parent to write out GOT.
6606 Output_data_got<size, big_endian>::do_write(of);
6608 const off_t offset = this->offset();
6609 const section_size_type oview_size =
6610 convert_to_section_size_type(this->data_size());
6611 unsigned char* const oview = of->get_output_view(offset, oview_size);
6613 // Needed for fixing values of .got section.
6614 this->got_view_ = oview;
6616 // Write lazy stub addresses.
6617 for (typename Mips_stubs_entry_set::iterator
6618 p = this->master_got_info_->global_got_symbols().begin();
6619 p != this->master_got_info_->global_got_symbols().end();
6620 ++p)
6622 Mips_symbol<size>* mips_sym = *p;
6623 if (mips_sym->has_lazy_stub())
6625 Valtype* wv = reinterpret_cast<Valtype*>(
6626 oview + this->get_primary_got_offset(mips_sym));
6627 Valtype value =
6628 this->target_->mips_stubs_section()->stub_address(mips_sym);
6629 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6633 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6634 for (typename Mips_stubs_entry_set::iterator
6635 p = this->master_got_info_->global_got_symbols().begin();
6636 p != this->master_got_info_->global_got_symbols().end();
6637 ++p)
6639 Mips_symbol<size>* mips_sym = *p;
6640 if (!this->multi_got()
6641 && (mips_sym->is_mips16() || mips_sym->is_micromips())
6642 && mips_sym->global_got_area() == GGA_NONE
6643 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6645 Valtype* wv = reinterpret_cast<Valtype*>(
6646 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6647 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6648 if (value != 0)
6650 value |= 1;
6651 elfcpp::Swap<size, big_endian>::writeval(wv, value);
6656 if (!this->secondary_got_relocs_.empty())
6658 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
6659 // secondary GOT entries with non-zero initial value copy the value
6660 // to the corresponding primary GOT entry, and set the secondary GOT
6661 // entry to zero.
6662 // TODO(sasa): This is workaround. It needs to be investigated further.
6664 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6666 Static_reloc& reloc(this->secondary_got_relocs_[i]);
6667 if (reloc.symbol_is_global())
6669 Mips_symbol<size>* gsym = reloc.symbol();
6670 gold_assert(gsym != NULL);
6672 unsigned got_offset = reloc.got_offset();
6673 gold_assert(got_offset < oview_size);
6675 // Find primary GOT entry.
6676 Valtype* wv_prim = reinterpret_cast<Valtype*>(
6677 oview + this->get_primary_got_offset(gsym));
6679 // Find secondary GOT entry.
6680 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6682 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6683 if (value != 0)
6685 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6686 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6687 gsym->set_applied_secondary_got_fixup();
6692 of->write_output_view(offset, oview_size, oview);
6695 // We are done if there is no fix up.
6696 if (this->static_relocs_.empty())
6697 return;
6699 Output_segment* tls_segment = this->layout_->tls_segment();
6700 gold_assert(tls_segment != NULL);
6702 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6704 Static_reloc& reloc(this->static_relocs_[i]);
6706 Mips_address value;
6707 if (!reloc.symbol_is_global())
6709 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6710 const Symbol_value<size>* psymval =
6711 object->local_symbol(reloc.index());
6713 // We are doing static linking. Issue an error and skip this
6714 // relocation if the symbol is undefined or in a discarded_section.
6715 bool is_ordinary;
6716 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6717 if ((shndx == elfcpp::SHN_UNDEF)
6718 || (is_ordinary
6719 && shndx != elfcpp::SHN_UNDEF
6720 && !object->is_section_included(shndx)
6721 && !this->symbol_table_->is_section_folded(object, shndx)))
6723 gold_error(_("undefined or discarded local symbol %u from "
6724 " object %s in GOT"),
6725 reloc.index(), reloc.relobj()->name().c_str());
6726 continue;
6729 value = psymval->value(object, 0);
6731 else
6733 const Mips_symbol<size>* gsym = reloc.symbol();
6734 gold_assert(gsym != NULL);
6736 // We are doing static linking. Issue an error and skip this
6737 // relocation if the symbol is undefined or in a discarded_section
6738 // unless it is a weakly_undefined symbol.
6739 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6740 && !gsym->is_weak_undefined())
6742 gold_error(_("undefined or discarded symbol %s in GOT"),
6743 gsym->name());
6744 continue;
6747 if (!gsym->is_weak_undefined())
6748 value = gsym->value();
6749 else
6750 value = 0;
6753 unsigned got_offset = reloc.got_offset();
6754 gold_assert(got_offset < oview_size);
6756 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6757 Valtype x;
6759 switch (reloc.r_type())
6761 case elfcpp::R_MIPS_TLS_DTPMOD32:
6762 case elfcpp::R_MIPS_TLS_DTPMOD64:
6763 x = value;
6764 break;
6765 case elfcpp::R_MIPS_TLS_DTPREL32:
6766 case elfcpp::R_MIPS_TLS_DTPREL64:
6767 x = value - elfcpp::DTP_OFFSET;
6768 break;
6769 case elfcpp::R_MIPS_TLS_TPREL32:
6770 case elfcpp::R_MIPS_TLS_TPREL64:
6771 x = value - elfcpp::TP_OFFSET;
6772 break;
6773 default:
6774 gold_unreachable();
6775 break;
6778 elfcpp::Swap<size, big_endian>::writeval(wv, x);
6781 of->write_output_view(offset, oview_size, oview);
6784 // Mips_relobj methods.
6786 // Count the local symbols. The Mips backend needs to know if a symbol
6787 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
6788 // because the Symbol object keeps the ELF symbol type and st_other field.
6789 // For local symbol it is harder because we cannot access this information.
6790 // So we override the do_count_local_symbol in parent and scan local symbols to
6791 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
6792 // I do not want to slow down other ports by calling a per symbol target hook
6793 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6795 template<int size, bool big_endian>
6796 void
6797 Mips_relobj<size, big_endian>::do_count_local_symbols(
6798 Stringpool_template<char>* pool,
6799 Stringpool_template<char>* dynpool)
6801 // Ask parent to count the local symbols.
6802 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6803 const unsigned int loccount = this->local_symbol_count();
6804 if (loccount == 0)
6805 return;
6807 // Initialize the mips16 and micromips function bit-vector.
6808 this->local_symbol_is_mips16_.resize(loccount, false);
6809 this->local_symbol_is_micromips_.resize(loccount, false);
6811 // Read the symbol table section header.
6812 const unsigned int symtab_shndx = this->symtab_shndx();
6813 elfcpp::Shdr<size, big_endian>
6814 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6815 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6817 // Read the local symbols.
6818 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6819 gold_assert(loccount == symtabshdr.get_sh_info());
6820 off_t locsize = loccount * sym_size;
6821 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6822 locsize, true, true);
6824 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6826 // Skip the first dummy symbol.
6827 psyms += sym_size;
6828 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6830 elfcpp::Sym<size, big_endian> sym(psyms);
6831 unsigned char st_other = sym.get_st_other();
6832 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6833 this->local_symbol_is_micromips_[i] =
6834 elfcpp::elf_st_is_micromips(st_other);
6838 // Read the symbol information.
6840 template<int size, bool big_endian>
6841 void
6842 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6844 // Call parent class to read symbol information.
6845 this->base_read_symbols(sd);
6847 // If this input file is a binary file, it has no processor
6848 // specific data.
6849 Input_file::Format format = this->input_file()->format();
6850 if (format != Input_file::FORMAT_ELF)
6852 gold_assert(format == Input_file::FORMAT_BINARY);
6853 this->merge_processor_specific_data_ = false;
6854 return;
6857 // Read processor-specific flags in ELF file header.
6858 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6859 elfcpp::Elf_sizes<size>::ehdr_size,
6860 true, false);
6861 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6862 this->processor_specific_flags_ = ehdr.get_e_flags();
6864 // Get the section names.
6865 const unsigned char* pnamesu = sd->section_names->data();
6866 const char* pnames = reinterpret_cast<const char*>(pnamesu);
6868 // Initialize the mips16 stub section bit-vectors.
6869 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6870 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6871 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6873 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6874 const unsigned char* pshdrs = sd->section_headers->data();
6875 const unsigned char* ps = pshdrs + shdr_size;
6876 bool must_merge_processor_specific_data = false;
6877 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6879 elfcpp::Shdr<size, big_endian> shdr(ps);
6881 // Sometimes an object has no contents except the section name string
6882 // table and an empty symbol table with the undefined symbol. We
6883 // don't want to merge processor-specific data from such an object.
6884 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6886 // Symbol table is not empty.
6887 const typename elfcpp::Elf_types<size>::Elf_WXword sym_size =
6888 elfcpp::Elf_sizes<size>::sym_size;
6889 if (shdr.get_sh_size() > sym_size)
6890 must_merge_processor_specific_data = true;
6892 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6893 // If this is neither an empty symbol table nor a string table,
6894 // be conservative.
6895 must_merge_processor_specific_data = true;
6897 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6899 this->has_reginfo_section_ = true;
6900 // Read the gp value that was used to create this object. We need the
6901 // gp value while processing relocs. The .reginfo section is not used
6902 // in the 64-bit MIPS ELF ABI.
6903 section_offset_type section_offset = shdr.get_sh_offset();
6904 section_size_type section_size =
6905 convert_to_section_size_type(shdr.get_sh_size());
6906 const unsigned char* view =
6907 this->get_view(section_offset, section_size, true, false);
6909 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6911 // Read the rest of .reginfo.
6912 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6913 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6914 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6915 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6916 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6919 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6921 gold_assert(this->attributes_section_data_ == NULL);
6922 section_offset_type section_offset = shdr.get_sh_offset();
6923 section_size_type section_size =
6924 convert_to_section_size_type(shdr.get_sh_size());
6925 const unsigned char* view =
6926 this->get_view(section_offset, section_size, true, false);
6927 this->attributes_section_data_ =
6928 new Attributes_section_data(view, section_size);
6931 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6933 gold_assert(this->abiflags_ == NULL);
6934 section_offset_type section_offset = shdr.get_sh_offset();
6935 section_size_type section_size =
6936 convert_to_section_size_type(shdr.get_sh_size());
6937 const unsigned char* view =
6938 this->get_view(section_offset, section_size, true, false);
6939 this->abiflags_ = new Mips_abiflags<big_endian>();
6941 this->abiflags_->version =
6942 elfcpp::Swap<16, big_endian>::readval(view);
6943 if (this->abiflags_->version != 0)
6945 gold_error(_("%s: .MIPS.abiflags section has "
6946 "unsupported version %u"),
6947 this->name().c_str(),
6948 this->abiflags_->version);
6949 break;
6951 this->abiflags_->isa_level =
6952 elfcpp::Swap<8, big_endian>::readval(view + 2);
6953 this->abiflags_->isa_rev =
6954 elfcpp::Swap<8, big_endian>::readval(view + 3);
6955 this->abiflags_->gpr_size =
6956 elfcpp::Swap<8, big_endian>::readval(view + 4);
6957 this->abiflags_->cpr1_size =
6958 elfcpp::Swap<8, big_endian>::readval(view + 5);
6959 this->abiflags_->cpr2_size =
6960 elfcpp::Swap<8, big_endian>::readval(view + 6);
6961 this->abiflags_->fp_abi =
6962 elfcpp::Swap<8, big_endian>::readval(view + 7);
6963 this->abiflags_->isa_ext =
6964 elfcpp::Swap<32, big_endian>::readval(view + 8);
6965 this->abiflags_->ases =
6966 elfcpp::Swap<32, big_endian>::readval(view + 12);
6967 this->abiflags_->flags1 =
6968 elfcpp::Swap<32, big_endian>::readval(view + 16);
6969 this->abiflags_->flags2 =
6970 elfcpp::Swap<32, big_endian>::readval(view + 20);
6973 // In the 64-bit ABI, .MIPS.options section holds register information.
6974 // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6975 // starts with this header:
6977 // typedef struct
6978 // {
6979 // // Type of option.
6980 // unsigned char kind[1];
6981 // // Size of option descriptor, including header.
6982 // unsigned char size[1];
6983 // // Section index of affected section, or 0 for global option.
6984 // unsigned char section[2];
6985 // // Information specific to this kind of option.
6986 // unsigned char info[4];
6987 // };
6989 // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6990 // the gp value based on what we find. We may see both SHT_MIPS_REGINFO
6991 // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6993 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6995 section_offset_type section_offset = shdr.get_sh_offset();
6996 section_size_type section_size =
6997 convert_to_section_size_type(shdr.get_sh_size());
6998 const unsigned char* view =
6999 this->get_view(section_offset, section_size, true, false);
7000 const unsigned char* end = view + section_size;
7002 while (view + 8 <= end)
7004 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
7005 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
7006 if (sz < 8)
7008 gold_error(_("%s: Warning: bad `%s' option size %u smaller "
7009 "than its header"),
7010 this->name().c_str(),
7011 this->mips_elf_options_section_name(), sz);
7012 break;
7015 if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
7017 // In the 64 bit ABI, an ODK_REGINFO option is the following
7018 // structure. The info field of the options header is not
7019 // used.
7021 // typedef struct
7022 // {
7023 // // Mask of general purpose registers used.
7024 // unsigned char ri_gprmask[4];
7025 // // Padding.
7026 // unsigned char ri_pad[4];
7027 // // Mask of co-processor registers used.
7028 // unsigned char ri_cprmask[4][4];
7029 // // GP register value for this object file.
7030 // unsigned char ri_gp_value[8];
7031 // };
7033 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
7034 + 32);
7036 else if (kind == elfcpp::ODK_REGINFO)
7038 // In the 32 bit ABI, an ODK_REGINFO option is the following
7039 // structure. The info field of the options header is not
7040 // used. The same structure is used in .reginfo section.
7042 // typedef struct
7043 // {
7044 // unsigned char ri_gprmask[4];
7045 // unsigned char ri_cprmask[4][4];
7046 // unsigned char ri_gp_value[4];
7047 // };
7049 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
7050 + 28);
7052 view += sz;
7056 const char* name = pnames + shdr.get_sh_name();
7057 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
7058 this->section_is_mips16_call_stub_[i] =
7059 is_prefix_of(".mips16.call.", name);
7060 this->section_is_mips16_call_fp_stub_[i] =
7061 is_prefix_of(".mips16.call.fp.", name);
7063 if (strcmp(name, ".pdr") == 0)
7065 gold_assert(this->pdr_shndx_ == -1U);
7066 this->pdr_shndx_ = i;
7070 // This is rare.
7071 if (!must_merge_processor_specific_data)
7072 this->merge_processor_specific_data_ = false;
7075 // Discard MIPS16 stub secions that are not needed.
7077 template<int size, bool big_endian>
7078 void
7079 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
7081 for (typename Mips16_stubs_int_map::const_iterator
7082 it = this->mips16_stub_sections_.begin();
7083 it != this->mips16_stub_sections_.end(); ++it)
7085 Mips16_stub_section<size, big_endian>* stub_section = it->second;
7086 if (!stub_section->is_target_found())
7088 gold_error(_("no relocation found in mips16 stub section '%s'"),
7089 stub_section->object()
7090 ->section_name(stub_section->shndx()).c_str());
7093 bool discard = false;
7094 if (stub_section->is_for_local_function())
7096 if (stub_section->is_fn_stub())
7098 // This stub is for a local symbol. This stub will only
7099 // be needed if there is some relocation in this object,
7100 // other than a 16 bit function call, which refers to this
7101 // symbol.
7102 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
7103 discard = true;
7104 else
7105 this->add_local_mips16_fn_stub(stub_section);
7107 else
7109 // This stub is for a local symbol. This stub will only
7110 // be needed if there is some relocation (R_MIPS16_26) in
7111 // this object that refers to this symbol.
7112 gold_assert(stub_section->is_call_stub()
7113 || stub_section->is_call_fp_stub());
7114 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
7115 discard = true;
7116 else
7117 this->add_local_mips16_call_stub(stub_section);
7120 else
7122 Mips_symbol<size>* gsym = stub_section->gsym();
7123 if (stub_section->is_fn_stub())
7125 if (gsym->has_mips16_fn_stub())
7126 // We already have a stub for this function.
7127 discard = true;
7128 else
7130 gsym->set_mips16_fn_stub(stub_section);
7131 if (gsym->should_add_dynsym_entry(symtab))
7133 // If we have a MIPS16 function with a stub, the
7134 // dynamic symbol must refer to the stub, since only
7135 // the stub uses the standard calling conventions.
7136 gsym->set_need_fn_stub();
7137 if (gsym->is_from_dynobj())
7138 gsym->set_needs_dynsym_value();
7141 if (!gsym->need_fn_stub())
7142 discard = true;
7144 else if (stub_section->is_call_stub())
7146 if (gsym->is_mips16())
7147 // We don't need the call_stub; this is a 16 bit
7148 // function, so calls from other 16 bit functions are
7149 // OK.
7150 discard = true;
7151 else if (gsym->has_mips16_call_stub())
7152 // We already have a stub for this function.
7153 discard = true;
7154 else
7155 gsym->set_mips16_call_stub(stub_section);
7157 else
7159 gold_assert(stub_section->is_call_fp_stub());
7160 if (gsym->is_mips16())
7161 // We don't need the call_stub; this is a 16 bit
7162 // function, so calls from other 16 bit functions are
7163 // OK.
7164 discard = true;
7165 else if (gsym->has_mips16_call_fp_stub())
7166 // We already have a stub for this function.
7167 discard = true;
7168 else
7169 gsym->set_mips16_call_fp_stub(stub_section);
7172 if (discard)
7173 this->set_output_section(stub_section->shndx(), NULL);
7177 // Mips_output_data_la25_stub methods.
7179 // Template for standard LA25 stub.
7180 template<int size, bool big_endian>
7181 const uint32_t
7182 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7184 0x3c190000, // lui $25,%hi(func)
7185 0x08000000, // j func
7186 0x27390000, // add $25,$25,%lo(func)
7187 0x00000000 // nop
7190 // Template for microMIPS LA25 stub.
7191 template<int size, bool big_endian>
7192 const uint32_t
7193 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7195 0x41b9, 0x0000, // lui t9,%hi(func)
7196 0xd400, 0x0000, // j func
7197 0x3339, 0x0000, // addiu t9,t9,%lo(func)
7198 0x0000, 0x0000 // nop
7201 // Create la25 stub for a symbol.
7203 template<int size, bool big_endian>
7204 void
7205 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7206 Symbol_table* symtab, Target_mips<size, big_endian>* target,
7207 Mips_symbol<size>* gsym)
7209 if (!gsym->has_la25_stub())
7211 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7212 this->symbols_.push_back(gsym);
7213 this->create_stub_symbol(gsym, symtab, target, 16);
7217 // Create a symbol for SYM stub's value and size, to help make the disassembly
7218 // easier to read.
7220 template<int size, bool big_endian>
7221 void
7222 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7223 Mips_symbol<size>* sym, Symbol_table* symtab,
7224 Target_mips<size, big_endian>* target, uint64_t symsize)
7226 std::string name(".pic.");
7227 name += sym->name();
7229 unsigned int offset = sym->la25_stub_offset();
7230 if (sym->is_micromips())
7231 offset |= 1;
7233 // Make it a local function.
7234 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7235 Symbol_table::PREDEFINED,
7236 target->la25_stub_section(),
7237 offset, symsize, elfcpp::STT_FUNC,
7238 elfcpp::STB_LOCAL,
7239 elfcpp::STV_DEFAULT, 0,
7240 false, false);
7241 new_sym->set_is_forced_local();
7244 // Write out la25 stubs. This uses the hand-coded instructions above,
7245 // and adjusts them as needed.
7247 template<int size, bool big_endian>
7248 void
7249 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7251 const off_t offset = this->offset();
7252 const section_size_type oview_size =
7253 convert_to_section_size_type(this->data_size());
7254 unsigned char* const oview = of->get_output_view(offset, oview_size);
7256 for (typename std::vector<Mips_symbol<size>*>::iterator
7257 p = this->symbols_.begin();
7258 p != this->symbols_.end();
7259 ++p)
7261 Mips_symbol<size>* sym = *p;
7262 unsigned char* pov = oview + sym->la25_stub_offset();
7264 Mips_address target = sym->value();
7265 if (!sym->is_micromips())
7267 elfcpp::Swap<32, big_endian>::writeval(pov,
7268 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7269 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7270 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7271 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7272 la25_stub_entry[2] | (target & 0xffff));
7273 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7275 else
7277 target |= 1;
7278 // First stub instruction. Paste high 16-bits of the target.
7279 elfcpp::Swap<16, big_endian>::writeval(pov,
7280 la25_stub_micromips_entry[0]);
7281 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7282 ((target + 0x8000) >> 16) & 0xffff);
7283 // Second stub instruction. Paste low 26-bits of the target, shifted
7284 // right by 1.
7285 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7286 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7287 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7288 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7289 // Third stub instruction. Paste low 16-bits of the target.
7290 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7291 la25_stub_micromips_entry[4]);
7292 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7293 // Fourth stub instruction.
7294 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7295 la25_stub_micromips_entry[6]);
7296 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7297 la25_stub_micromips_entry[7]);
7301 of->write_output_view(offset, oview_size, oview);
7304 // Mips_output_data_plt methods.
7306 // The format of the first PLT entry in an O32 executable.
7307 template<int size, bool big_endian>
7308 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7310 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
7311 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
7312 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
7313 0x031cc023, // subu $24, $24, $28
7314 0x03e07825, // or $15, $31, zero
7315 0x0018c082, // srl $24, $24, 2
7316 0x0320f809, // jalr $25
7317 0x2718fffe // subu $24, $24, 2
7320 // The format of the first PLT entry in an N32 executable. Different
7321 // because gp ($28) is not available; we use t2 ($14) instead.
7322 template<int size, bool big_endian>
7323 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7325 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7326 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
7327 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7328 0x030ec023, // subu $24, $24, $14
7329 0x03e07825, // or $15, $31, zero
7330 0x0018c082, // srl $24, $24, 2
7331 0x0320f809, // jalr $25
7332 0x2718fffe // subu $24, $24, 2
7335 // The format of the first PLT entry in an N64 executable. Different
7336 // from N32 because of the increased size of GOT entries.
7337 template<int size, bool big_endian>
7338 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7340 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
7341 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
7342 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
7343 0x030ec023, // subu $24, $24, $14
7344 0x03e07825, // or $15, $31, zero
7345 0x0018c0c2, // srl $24, $24, 3
7346 0x0320f809, // jalr $25
7347 0x2718fffe // subu $24, $24, 2
7350 // The format of the microMIPS first PLT entry in an O32 executable.
7351 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7352 // of the GOTPLT entry handled, so this stub may only be used when
7353 // all the subsequent PLT entries are microMIPS code too.
7355 // The trailing NOP is for alignment and correct disassembly only.
7356 template<int size, bool big_endian>
7357 const uint32_t Mips_output_data_plt<size, big_endian>::
7358 plt0_entry_micromips_o32[] =
7360 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
7361 0xff23, 0x0000, // lw $25, 0($3)
7362 0x0535, // subu $2, $2, $3
7363 0x2525, // srl $2, $2, 2
7364 0x3302, 0xfffe, // subu $24, $2, 2
7365 0x0dff, // move $15, $31
7366 0x45f9, // jalrs $25
7367 0x0f83, // move $28, $3
7368 0x0c00 // nop
7371 // The format of the microMIPS first PLT entry in an O32 executable
7372 // in the insn32 mode.
7373 template<int size, bool big_endian>
7374 const uint32_t Mips_output_data_plt<size, big_endian>::
7375 plt0_entry_micromips32_o32[] =
7377 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
7378 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
7379 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
7380 0x0398, 0xc1d0, // subu $24, $24, $28
7381 0x001f, 0x7a90, // or $15, $31, zero
7382 0x0318, 0x1040, // srl $24, $24, 2
7383 0x03f9, 0x0f3c, // jalr $25
7384 0x3318, 0xfffe // subu $24, $24, 2
7387 // The format of subsequent standard entries in the PLT.
7388 template<int size, bool big_endian>
7389 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7391 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7392 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7393 0x03200008, // jr $25
7394 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7397 // The format of subsequent R6 PLT entries.
7398 template<int size, bool big_endian>
7399 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7401 0x3c0f0000, // lui $15, %hi(.got.plt entry)
7402 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
7403 0x03200009, // jr $25
7404 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
7407 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
7408 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7409 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7410 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7411 // target function address in register v0.
7412 template<int size, bool big_endian>
7413 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7415 0xb303, // lw $3, 12($pc)
7416 0x651b, // move $24, $3
7417 0x9b60, // lw $3, 0($3)
7418 0xeb00, // jr $3
7419 0x653b, // move $25, $3
7420 0x6500, // nop
7421 0x0000, 0x0000 // .word (.got.plt entry)
7424 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
7425 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7426 template<int size, bool big_endian>
7427 const uint32_t Mips_output_data_plt<size, big_endian>::
7428 plt_entry_micromips_o32[] =
7430 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
7431 0xff22, 0x0000, // lw $25, 0($2)
7432 0x4599, // jr $25
7433 0x0f02 // move $24, $2
7436 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7437 template<int size, bool big_endian>
7438 const uint32_t Mips_output_data_plt<size, big_endian>::
7439 plt_entry_micromips32_o32[] =
7441 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
7442 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
7443 0x0019, 0x0f3c, // jr $25
7444 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
7447 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7449 template<int size, bool big_endian>
7450 void
7451 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7452 unsigned int r_type)
7454 gold_assert(!gsym->has_plt_offset());
7456 // Final PLT offset for a symbol will be set in method set_plt_offsets().
7457 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7458 + sizeof(plt0_entry_o32));
7459 this->symbols_.push_back(gsym);
7461 // Record whether the relocation requires a standard MIPS
7462 // or a compressed code entry.
7463 if (jal_reloc(r_type))
7465 if (r_type == elfcpp::R_MIPS_26)
7466 gsym->set_needs_mips_plt(true);
7467 else
7468 gsym->set_needs_comp_plt(true);
7471 section_offset_type got_offset = this->got_plt_->current_data_size();
7473 // Every PLT entry needs a GOT entry which points back to the PLT
7474 // entry (this will be changed by the dynamic linker, normally
7475 // lazily when the function is called).
7476 this->got_plt_->set_current_data_size(got_offset + size/8);
7478 gsym->set_needs_dynsym_entry();
7479 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7480 got_offset);
7483 // Set final PLT offsets. For each symbol, determine whether standard or
7484 // compressed (MIPS16 or microMIPS) PLT entry is used.
7486 template<int size, bool big_endian>
7487 void
7488 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7490 // The sizes of individual PLT entries.
7491 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7492 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7493 ? this->compressed_plt_entry_size() : 0);
7495 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7496 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7498 Mips_symbol<size>* mips_sym = *p;
7500 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7501 // so always use a standard entry there.
7503 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7504 // all MIPS16 calls will go via that stub, and there is no benefit
7505 // to having a MIPS16 entry. And in the case of call_stub a
7506 // standard entry actually has to be used as the stub ends with a J
7507 // instruction.
7508 if (this->target_->is_output_newabi()
7509 || mips_sym->has_mips16_call_stub()
7510 || mips_sym->has_mips16_call_fp_stub())
7512 mips_sym->set_needs_mips_plt(true);
7513 mips_sym->set_needs_comp_plt(false);
7516 // Otherwise, if there are no direct calls to the function, we
7517 // have a free choice of whether to use standard or compressed
7518 // entries. Prefer microMIPS entries if the object is known to
7519 // contain microMIPS code, so that it becomes possible to create
7520 // pure microMIPS binaries. Prefer standard entries otherwise,
7521 // because MIPS16 ones are no smaller and are usually slower.
7522 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7524 if (this->target_->is_output_micromips())
7525 mips_sym->set_needs_comp_plt(true);
7526 else
7527 mips_sym->set_needs_mips_plt(true);
7530 if (mips_sym->needs_mips_plt())
7532 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7533 this->plt_mips_offset_ += plt_mips_entry_size;
7535 if (mips_sym->needs_comp_plt())
7537 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7538 this->plt_comp_offset_ += plt_comp_entry_size;
7542 // Figure out the size of the PLT header if we know that we are using it.
7543 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7544 this->plt_header_size_ = this->get_plt_header_size();
7547 // Write out the PLT. This uses the hand-coded instructions above,
7548 // and adjusts them as needed.
7550 template<int size, bool big_endian>
7551 void
7552 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7554 const off_t offset = this->offset();
7555 const section_size_type oview_size =
7556 convert_to_section_size_type(this->data_size());
7557 unsigned char* const oview = of->get_output_view(offset, oview_size);
7559 const off_t gotplt_file_offset = this->got_plt_->offset();
7560 const section_size_type gotplt_size =
7561 convert_to_section_size_type(this->got_plt_->data_size());
7562 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7563 gotplt_size);
7564 unsigned char* pov = oview;
7566 Mips_address plt_address = this->address();
7568 // Calculate the address of .got.plt.
7569 Mips_address gotplt_addr = this->got_plt_->address();
7570 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7571 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7573 // The PLT sequence is not safe for N64 if .got.plt's address can
7574 // not be loaded in two instructions.
7575 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7576 || ~(gotplt_addr | 0x7fffffff) == 0);
7578 // Write the PLT header.
7579 const uint32_t* plt0_entry = this->get_plt_header_entry();
7580 if (plt0_entry == plt0_entry_micromips_o32)
7582 // Write microMIPS PLT header.
7583 gold_assert(gotplt_addr % 4 == 0);
7585 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7587 // ADDIUPC has a span of +/-16MB, check we're in range.
7588 if (gotpc_offset + 0x1000000 >= 0x2000000)
7590 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7591 "ADDIUPC"), (long)gotpc_offset);
7592 return;
7595 elfcpp::Swap<16, big_endian>::writeval(pov,
7596 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7597 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7598 (gotpc_offset >> 2) & 0xffff);
7599 pov += 4;
7600 for (unsigned int i = 2;
7601 i < (sizeof(plt0_entry_micromips_o32)
7602 / sizeof(plt0_entry_micromips_o32[0]));
7603 i++)
7605 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7606 pov += 2;
7609 else if (plt0_entry == plt0_entry_micromips32_o32)
7611 // Write microMIPS PLT header in insn32 mode.
7612 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7613 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7614 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7615 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7616 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7617 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7618 pov += 12;
7619 for (unsigned int i = 6;
7620 i < (sizeof(plt0_entry_micromips32_o32)
7621 / sizeof(plt0_entry_micromips32_o32[0]));
7622 i++)
7624 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7625 pov += 2;
7628 else
7630 // Write standard PLT header.
7631 elfcpp::Swap<32, big_endian>::writeval(pov,
7632 plt0_entry[0] | gotplt_addr_high);
7633 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7634 plt0_entry[1] | gotplt_addr_low);
7635 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7636 plt0_entry[2] | gotplt_addr_low);
7637 pov += 12;
7638 for (int i = 3; i < 8; i++)
7640 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7641 pov += 4;
7646 unsigned char* gotplt_pov = gotplt_view;
7647 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7649 // The first two entries in .got.plt are reserved.
7650 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7651 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7653 unsigned int gotplt_offset = 2 * got_entry_size;
7654 gotplt_pov += 2 * got_entry_size;
7656 // Calculate the address of the PLT header.
7657 Mips_address header_address = (plt_address
7658 + (this->is_plt_header_compressed() ? 1 : 0));
7660 // Initialize compressed PLT area view.
7661 unsigned char* pov2 = pov + this->plt_mips_offset_;
7663 // Write the PLT entries.
7664 for (typename std::vector<Mips_symbol<size>*>::const_iterator
7665 p = this->symbols_.begin();
7666 p != this->symbols_.end();
7667 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7669 Mips_symbol<size>* mips_sym = *p;
7671 // Calculate the address of the .got.plt entry.
7672 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7673 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7674 & 0xffff);
7675 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7677 // Initially point the .got.plt entry at the PLT header.
7678 if (this->target_->is_output_n64())
7679 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7680 else
7681 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7683 // Now handle the PLT itself. First the standard entry.
7684 if (mips_sym->has_mips_plt_offset())
7686 // Pick the load opcode (LW or LD).
7687 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7688 : 0x8c000000;
7690 const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7691 : plt_entry;
7693 // Fill in the PLT entry itself.
7694 elfcpp::Swap<32, big_endian>::writeval(pov,
7695 entry[0] | gotplt_entry_addr_hi);
7696 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7697 entry[1] | gotplt_entry_addr_lo | load);
7698 elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7699 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7700 entry[3] | gotplt_entry_addr_lo);
7701 pov += 16;
7704 // Now the compressed entry. They come after any standard ones.
7705 if (mips_sym->has_comp_plt_offset())
7707 if (!this->target_->is_output_micromips())
7709 // Write MIPS16 PLT entry.
7710 const uint32_t* plt_entry = plt_entry_mips16_o32;
7712 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7713 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7714 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7715 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7716 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7717 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7718 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7719 gotplt_entry_addr);
7720 pov2 += 16;
7722 else if (this->target_->use_32bit_micromips_instructions())
7724 // Write microMIPS PLT entry in insn32 mode.
7725 const uint32_t* plt_entry = plt_entry_micromips32_o32;
7727 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7728 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7729 gotplt_entry_addr_hi);
7730 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7731 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7732 gotplt_entry_addr_lo);
7733 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7734 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7735 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7736 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7737 gotplt_entry_addr_lo);
7738 pov2 += 16;
7740 else
7742 // Write microMIPS PLT entry.
7743 const uint32_t* plt_entry = plt_entry_micromips_o32;
7745 gold_assert(gotplt_entry_addr % 4 == 0);
7747 Mips_address loc_address = plt_address + pov2 - oview;
7748 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7750 // ADDIUPC has a span of +/-16MB, check we're in range.
7751 if (gotpc_offset + 0x1000000 >= 0x2000000)
7753 gold_error(_(".got.plt offset of %ld from .plt beyond the "
7754 "range of ADDIUPC"), (long)gotpc_offset);
7755 return;
7758 elfcpp::Swap<16, big_endian>::writeval(pov2,
7759 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7760 elfcpp::Swap<16, big_endian>::writeval(
7761 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7762 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7763 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7764 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7765 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7766 pov2 += 12;
7771 // Check the number of bytes written for standard entries.
7772 gold_assert(static_cast<section_size_type>(
7773 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7774 // Check the number of bytes written for compressed entries.
7775 gold_assert((static_cast<section_size_type>(pov2 - pov)
7776 == this->plt_comp_offset_));
7777 // Check the total number of bytes written.
7778 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7780 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7781 == gotplt_size);
7783 of->write_output_view(offset, oview_size, oview);
7784 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7787 // Mips_output_data_mips_stubs methods.
7789 // The format of the lazy binding stub when dynamic symbol count is less than
7790 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7791 template<int size, bool big_endian>
7792 const uint32_t
7793 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7795 0x8f998010, // lw t9,0x8010(gp)
7796 0x03e07825, // or t7,ra,zero
7797 0x0320f809, // jalr t9,ra
7798 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
7801 // The format of the lazy binding stub when dynamic symbol count is less than
7802 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7803 template<int size, bool big_endian>
7804 const uint32_t
7805 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7807 0xdf998010, // ld t9,0x8010(gp)
7808 0x03e07825, // or t7,ra,zero
7809 0x0320f809, // jalr t9,ra
7810 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
7813 // The format of the lazy binding stub when dynamic symbol count is less than
7814 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7815 template<int size, bool big_endian>
7816 const uint32_t
7817 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7819 0x8f998010, // lw t9,0x8010(gp)
7820 0x03e07825, // or t7,ra,zero
7821 0x0320f809, // jalr t9,ra
7822 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7825 // The format of the lazy binding stub when dynamic symbol count is less than
7826 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7827 template<int size, bool big_endian>
7828 const uint32_t
7829 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7831 0xdf998010, // ld t9,0x8010(gp)
7832 0x03e07825, // or t7,ra,zero
7833 0x0320f809, // jalr t9,ra
7834 0x34180000 // ori t8,zero,DYN_INDEX unsigned
7837 // The format of the lazy binding stub when dynamic symbol count is greater than
7838 // 64K, and ABI is not N64.
7839 template<int size, bool big_endian>
7840 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7842 0x8f998010, // lw t9,0x8010(gp)
7843 0x03e07825, // or t7,ra,zero
7844 0x3c180000, // lui t8,DYN_INDEX
7845 0x0320f809, // jalr t9,ra
7846 0x37180000 // ori t8,t8,DYN_INDEX
7849 // The format of the lazy binding stub when dynamic symbol count is greater than
7850 // 64K, and ABI is N64.
7851 template<int size, bool big_endian>
7852 const uint32_t
7853 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7855 0xdf998010, // ld t9,0x8010(gp)
7856 0x03e07825, // or t7,ra,zero
7857 0x3c180000, // lui t8,DYN_INDEX
7858 0x0320f809, // jalr t9,ra
7859 0x37180000 // ori t8,t8,DYN_INDEX
7862 // microMIPS stubs.
7864 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7865 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7866 template<int size, bool big_endian>
7867 const uint32_t
7868 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7870 0xff3c, 0x8010, // lw t9,0x8010(gp)
7871 0x0dff, // move t7,ra
7872 0x45d9, // jalr t9
7873 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7876 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7877 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7878 template<int size, bool big_endian>
7879 const uint32_t
7880 Mips_output_data_mips_stubs<size, big_endian>::
7881 lazy_stub_micromips_normal_1_n64[] =
7883 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7884 0x0dff, // move t7,ra
7885 0x45d9, // jalr t9
7886 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7889 // The format of the microMIPS lazy binding stub when dynamic symbol
7890 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7891 // and ABI is not N64.
7892 template<int size, bool big_endian>
7893 const uint32_t
7894 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7896 0xff3c, 0x8010, // lw t9,0x8010(gp)
7897 0x0dff, // move t7,ra
7898 0x45d9, // jalr t9
7899 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7902 // The format of the microMIPS lazy binding stub when dynamic symbol
7903 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7904 // and ABI is N64.
7905 template<int size, bool big_endian>
7906 const uint32_t
7907 Mips_output_data_mips_stubs<size, big_endian>::
7908 lazy_stub_micromips_normal_2_n64[] =
7910 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7911 0x0dff, // move t7,ra
7912 0x45d9, // jalr t9
7913 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7916 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7917 // greater than 64K, and ABI is not N64.
7918 template<int size, bool big_endian>
7919 const uint32_t
7920 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7922 0xff3c, 0x8010, // lw t9,0x8010(gp)
7923 0x0dff, // move t7,ra
7924 0x41b8, 0x0000, // lui t8,DYN_INDEX
7925 0x45d9, // jalr t9
7926 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7929 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7930 // greater than 64K, and ABI is N64.
7931 template<int size, bool big_endian>
7932 const uint32_t
7933 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7935 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7936 0x0dff, // move t7,ra
7937 0x41b8, 0x0000, // lui t8,DYN_INDEX
7938 0x45d9, // jalr t9
7939 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7942 // 32-bit microMIPS stubs.
7944 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7945 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7946 // can use only 32-bit instructions.
7947 template<int size, bool big_endian>
7948 const uint32_t
7949 Mips_output_data_mips_stubs<size, big_endian>::
7950 lazy_stub_micromips32_normal_1[] =
7952 0xff3c, 0x8010, // lw t9,0x8010(gp)
7953 0x001f, 0x7a90, // or t7,ra,zero
7954 0x03f9, 0x0f3c, // jalr ra,t9
7955 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
7958 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7959 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7960 // use only 32-bit instructions.
7961 template<int size, bool big_endian>
7962 const uint32_t
7963 Mips_output_data_mips_stubs<size, big_endian>::
7964 lazy_stub_micromips32_normal_1_n64[] =
7966 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7967 0x001f, 0x7a90, // or t7,ra,zero
7968 0x03f9, 0x0f3c, // jalr ra,t9
7969 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
7972 // The format of the microMIPS lazy binding stub when dynamic symbol
7973 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7974 // ABI is not N64, and we can use only 32-bit instructions.
7975 template<int size, bool big_endian>
7976 const uint32_t
7977 Mips_output_data_mips_stubs<size, big_endian>::
7978 lazy_stub_micromips32_normal_2[] =
7980 0xff3c, 0x8010, // lw t9,0x8010(gp)
7981 0x001f, 0x7a90, // or t7,ra,zero
7982 0x03f9, 0x0f3c, // jalr ra,t9
7983 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7986 // The format of the microMIPS lazy binding stub when dynamic symbol
7987 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7988 // ABI is N64, and we can use only 32-bit instructions.
7989 template<int size, bool big_endian>
7990 const uint32_t
7991 Mips_output_data_mips_stubs<size, big_endian>::
7992 lazy_stub_micromips32_normal_2_n64[] =
7994 0xdf3c, 0x8010, // ld t9,0x8010(gp)
7995 0x001f, 0x7a90, // or t7,ra,zero
7996 0x03f9, 0x0f3c, // jalr ra,t9
7997 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
8000 // The format of the microMIPS lazy binding stub when dynamic symbol count is
8001 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
8002 template<int size, bool big_endian>
8003 const uint32_t
8004 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
8006 0xff3c, 0x8010, // lw t9,0x8010(gp)
8007 0x001f, 0x7a90, // or t7,ra,zero
8008 0x41b8, 0x0000, // lui t8,DYN_INDEX
8009 0x03f9, 0x0f3c, // jalr ra,t9
8010 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
8013 // The format of the microMIPS lazy binding stub when dynamic symbol count is
8014 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
8015 template<int size, bool big_endian>
8016 const uint32_t
8017 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
8019 0xdf3c, 0x8010, // ld t9,0x8010(gp)
8020 0x001f, 0x7a90, // or t7,ra,zero
8021 0x41b8, 0x0000, // lui t8,DYN_INDEX
8022 0x03f9, 0x0f3c, // jalr ra,t9
8023 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
8026 // Create entry for a symbol.
8028 template<int size, bool big_endian>
8029 void
8030 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
8031 Mips_symbol<size>* gsym)
8033 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
8035 this->symbols_.insert(gsym);
8036 gsym->set_has_lazy_stub(true);
8040 // Remove entry for a symbol.
8042 template<int size, bool big_endian>
8043 void
8044 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
8045 Mips_symbol<size>* gsym)
8047 if (gsym->has_lazy_stub())
8049 this->symbols_.erase(gsym);
8050 gsym->set_has_lazy_stub(false);
8054 // Set stub offsets for symbols. This method expects that the number of
8055 // entries in dynamic symbol table is set.
8057 template<int size, bool big_endian>
8058 void
8059 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
8061 gold_assert(this->dynsym_count_ != -1U);
8063 if (this->stub_offsets_are_set_)
8064 return;
8066 unsigned int stub_size = this->stub_size();
8067 unsigned int offset = 0;
8068 for (typename Mips_stubs_entry_set::const_iterator
8069 p = this->symbols_.begin();
8070 p != this->symbols_.end();
8071 ++p, offset += stub_size)
8073 Mips_symbol<size>* mips_sym = *p;
8074 mips_sym->set_lazy_stub_offset(offset);
8076 this->stub_offsets_are_set_ = true;
8079 template<int size, bool big_endian>
8080 void
8081 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
8083 for (typename Mips_stubs_entry_set::const_iterator
8084 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8086 Mips_symbol<size>* sym = *p;
8087 if (sym->is_from_dynobj())
8088 sym->set_needs_dynsym_value();
8092 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
8093 // adjusts them as needed.
8095 template<int size, bool big_endian>
8096 void
8097 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
8099 const off_t offset = this->offset();
8100 const section_size_type oview_size =
8101 convert_to_section_size_type(this->data_size());
8102 unsigned char* const oview = of->get_output_view(offset, oview_size);
8104 bool big_stub = this->dynsym_count_ > 0x10000;
8106 unsigned char* pov = oview;
8107 for (typename Mips_stubs_entry_set::const_iterator
8108 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
8110 Mips_symbol<size>* sym = *p;
8111 const uint32_t* lazy_stub;
8112 bool n64 = this->target_->is_output_n64();
8114 if (!this->target_->is_output_micromips())
8116 // Write standard (non-microMIPS) stub.
8117 if (!big_stub)
8119 if (sym->dynsym_index() & ~0x7fff)
8120 // Dynsym index is between 32K and 64K.
8121 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
8122 else
8123 // Dynsym index is less than 32K.
8124 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
8126 else
8127 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
8129 unsigned int i = 0;
8130 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8131 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
8132 pov += 8;
8134 i += 2;
8135 if (big_stub)
8137 // LUI instruction of the big stub. Paste high 16 bits of the
8138 // dynsym index.
8139 elfcpp::Swap<32, big_endian>::writeval(pov,
8140 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
8141 pov += 4;
8142 i += 1;
8144 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8145 // Last stub instruction. Paste low 16 bits of the dynsym index.
8146 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8147 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8148 pov += 8;
8150 else if (this->target_->use_32bit_micromips_instructions())
8152 // Write microMIPS stub in insn32 mode.
8153 if (!big_stub)
8155 if (sym->dynsym_index() & ~0x7fff)
8156 // Dynsym index is between 32K and 64K.
8157 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8158 : lazy_stub_micromips32_normal_2;
8159 else
8160 // Dynsym index is less than 32K.
8161 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8162 : lazy_stub_micromips32_normal_1;
8164 else
8165 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8166 : lazy_stub_micromips32_big;
8168 unsigned int i = 0;
8169 // First stub instruction. We emit 32-bit microMIPS instructions by
8170 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8171 // the instruction where the opcode is must always come first, for
8172 // both little and big endian.
8173 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8174 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8175 // Second stub instruction.
8176 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8177 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8178 pov += 8;
8179 i += 4;
8180 if (big_stub)
8182 // LUI instruction of the big stub. Paste high 16 bits of the
8183 // dynsym index.
8184 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8185 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8186 (sym->dynsym_index() >> 16) & 0x7fff);
8187 pov += 4;
8188 i += 2;
8190 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8191 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8192 // Last stub instruction. Paste low 16 bits of the dynsym index.
8193 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8194 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8195 sym->dynsym_index() & 0xffff);
8196 pov += 8;
8198 else
8200 // Write microMIPS stub.
8201 if (!big_stub)
8203 if (sym->dynsym_index() & ~0x7fff)
8204 // Dynsym index is between 32K and 64K.
8205 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8206 : lazy_stub_micromips_normal_2;
8207 else
8208 // Dynsym index is less than 32K.
8209 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8210 : lazy_stub_micromips_normal_1;
8212 else
8213 lazy_stub = n64 ? lazy_stub_micromips_big_n64
8214 : lazy_stub_micromips_big;
8216 unsigned int i = 0;
8217 // First stub instruction. We emit 32-bit microMIPS instructions by
8218 // emitting two 16-bit parts because on microMIPS the 16-bit part of
8219 // the instruction where the opcode is must always come first, for
8220 // both little and big endian.
8221 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8222 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8223 // Second stub instruction.
8224 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8225 pov += 6;
8226 i += 3;
8227 if (big_stub)
8229 // LUI instruction of the big stub. Paste high 16 bits of the
8230 // dynsym index.
8231 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8232 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8233 (sym->dynsym_index() >> 16) & 0x7fff);
8234 pov += 4;
8235 i += 2;
8237 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8238 // Last stub instruction. Paste low 16 bits of the dynsym index.
8239 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8240 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8241 sym->dynsym_index() & 0xffff);
8242 pov += 6;
8246 // We always allocate 20 bytes for every stub, because final dynsym count is
8247 // not known in method do_finalize_sections. There are 4 unused bytes per
8248 // stub if final dynsym count is less than 0x10000.
8249 unsigned int used = pov - oview;
8250 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8251 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8253 // Fill the unused space with zeroes.
8254 // TODO(sasa): Can we strip unused bytes during the relaxation?
8255 if (unused > 0)
8256 memset(pov, 0, unused);
8258 of->write_output_view(offset, oview_size, oview);
8261 // Mips_output_section_reginfo methods.
8263 template<int size, bool big_endian>
8264 void
8265 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8267 off_t offset = this->offset();
8268 off_t data_size = this->data_size();
8270 unsigned char* view = of->get_output_view(offset, data_size);
8271 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8272 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8273 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8274 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8275 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8276 // Write the gp value.
8277 elfcpp::Swap<size, big_endian>::writeval(view + 20,
8278 this->target_->gp_value());
8280 of->write_output_view(offset, data_size, view);
8283 // Mips_output_section_options methods.
8285 template<int size, bool big_endian>
8286 void
8287 Mips_output_section_options<size, big_endian>::do_write(Output_file* of)
8289 off_t offset = this->offset();
8290 const section_size_type oview_size =
8291 convert_to_section_size_type(this->data_size());
8292 unsigned char* view = of->get_output_view(offset, oview_size);
8293 const unsigned char* end = view + oview_size;
8295 while (view + 8 <= end)
8297 unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
8298 unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
8299 if (sz < 8)
8301 gold_error(_("Warning: bad `%s' option size %u smaller "
8302 "than its header in output section"),
8303 this->name(), sz);
8304 break;
8307 // Only update ri_gp_value (GP register value) field of ODK_REGINFO entry.
8308 if (this->target_->is_output_n64() && kind == elfcpp::ODK_REGINFO)
8309 elfcpp::Swap<size, big_endian>::writeval(view + 32,
8310 this->target_->gp_value());
8311 else if (kind == elfcpp::ODK_REGINFO)
8312 elfcpp::Swap<size, big_endian>::writeval(view + 28,
8313 this->target_->gp_value());
8315 view += sz;
8318 of->write_output_view(offset, oview_size, view);
8321 // Mips_output_section_abiflags methods.
8323 template<int size, bool big_endian>
8324 void
8325 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8327 off_t offset = this->offset();
8328 off_t data_size = this->data_size();
8330 unsigned char* view = of->get_output_view(offset, data_size);
8331 elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8332 elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8333 elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8334 elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8335 elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8336 elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8337 elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8338 elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8339 elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8340 elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8341 elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8343 of->write_output_view(offset, data_size, view);
8346 // Mips_copy_relocs methods.
8348 // Emit any saved relocs.
8350 template<int sh_type, int size, bool big_endian>
8351 void
8352 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8353 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8354 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8356 for (typename Copy_relocs<sh_type, size, big_endian>::
8357 Copy_reloc_entries::iterator p = this->entries_.begin();
8358 p != this->entries_.end();
8359 ++p)
8360 emit_entry(*p, reloc_section, symtab, layout, target);
8362 // We no longer need the saved information.
8363 this->entries_.clear();
8366 // Emit the reloc if appropriate.
8368 template<int sh_type, int size, bool big_endian>
8369 void
8370 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8371 Copy_reloc_entry& entry,
8372 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8373 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8375 // If the symbol is no longer defined in a dynamic object, then we
8376 // emitted a COPY relocation, and we do not want to emit this
8377 // dynamic relocation.
8378 if (!entry.sym_->is_from_dynobj())
8379 return;
8381 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8382 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8383 || entry.reloc_type_ == elfcpp::R_MIPS_64);
8385 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8386 if (can_make_dynamic && !sym->has_static_relocs())
8388 Mips_relobj<size, big_endian>* object =
8389 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8390 target->got_section(symtab, layout)->record_global_got_symbol(
8391 sym, object, entry.reloc_type_, true, false);
8392 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8393 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8394 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8395 else
8396 target->rel_dyn_section(layout)->add_symbolless_global_addend(
8397 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8398 entry.shndx_, entry.address_);
8400 else
8401 this->make_copy_reloc(symtab, layout,
8402 static_cast<Sized_symbol<size>*>(entry.sym_),
8403 entry.relobj_,
8404 reloc_section);
8407 // Target_mips methods.
8409 // Return the value to use for a dynamic symbol which requires special
8410 // treatment. This is how we support equality comparisons of function
8411 // pointers across shared library boundaries, as described in the
8412 // processor specific ABI supplement.
8414 template<int size, bool big_endian>
8415 uint64_t
8416 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8418 uint64_t value = 0;
8419 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8421 if (!mips_sym->has_lazy_stub())
8423 if (mips_sym->has_plt_offset())
8425 // We distinguish between PLT entries and lazy-binding stubs by
8426 // giving the former an st_other value of STO_MIPS_PLT. Set the
8427 // value to the stub address if there are any relocations in the
8428 // binary where pointer equality matters.
8429 if (mips_sym->pointer_equality_needed())
8431 // Prefer a standard MIPS PLT entry.
8432 if (mips_sym->has_mips_plt_offset())
8433 value = this->plt_section()->mips_entry_address(mips_sym);
8434 else
8435 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8437 else
8438 value = 0;
8441 else
8443 // First, set stub offsets for symbols. This method expects that the
8444 // number of entries in dynamic symbol table is set.
8445 this->mips_stubs_section()->set_lazy_stub_offsets();
8447 // The run-time linker uses the st_value field of the symbol
8448 // to reset the global offset table entry for this external
8449 // to its stub address when unlinking a shared object.
8450 value = this->mips_stubs_section()->stub_address(mips_sym);
8453 if (mips_sym->has_mips16_fn_stub())
8455 // If we have a MIPS16 function with a stub, the dynamic symbol must
8456 // refer to the stub, since only the stub uses the standard calling
8457 // conventions.
8458 value = mips_sym->template
8459 get_mips16_fn_stub<big_endian>()->output_address();
8462 return value;
8465 // Get the dynamic reloc section, creating it if necessary. It's always
8466 // .rel.dyn, even for MIPS64.
8468 template<int size, bool big_endian>
8469 typename Target_mips<size, big_endian>::Reloc_section*
8470 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8472 if (this->rel_dyn_ == NULL)
8474 gold_assert(layout != NULL);
8475 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8476 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8477 elfcpp::SHF_ALLOC, this->rel_dyn_,
8478 ORDER_DYNAMIC_RELOCS, false);
8480 // First entry in .rel.dyn has to be null.
8481 // This is hack - we define dummy output data and set its address to 0,
8482 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8483 // This ensures that the entry is null.
8484 Output_data* od = new Output_data_zero_fill(0, 0);
8485 od->set_address(0);
8486 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8488 return this->rel_dyn_;
8491 // Get the GOT section, creating it if necessary.
8493 template<int size, bool big_endian>
8494 Mips_output_data_got<size, big_endian>*
8495 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8496 Layout* layout)
8498 if (this->got_ == NULL)
8500 gold_assert(symtab != NULL && layout != NULL);
8502 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8503 layout);
8504 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8505 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8506 elfcpp::SHF_MIPS_GPREL),
8507 this->got_, ORDER_DATA, false);
8509 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8510 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8511 Symbol_table::PREDEFINED,
8512 this->got_,
8513 0, 0, elfcpp::STT_OBJECT,
8514 elfcpp::STB_GLOBAL,
8515 elfcpp::STV_HIDDEN, 0,
8516 false, false);
8519 return this->got_;
8522 // Calculate value of _gp symbol.
8524 template<int size, bool big_endian>
8525 void
8526 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8528 gold_assert(this->gp_ == NULL);
8530 Sized_symbol<size>* gp =
8531 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8533 // Set _gp symbol if the linker script hasn't created it.
8534 if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
8536 // If there is no .got section, gp should be based on .sdata.
8537 Output_data* gp_section = (this->got_ != NULL
8538 ? this->got_->output_section()
8539 : layout->find_output_section(".sdata"));
8541 if (gp_section != NULL)
8542 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8543 "_gp", NULL, Symbol_table::PREDEFINED,
8544 gp_section, MIPS_GP_OFFSET, 0,
8545 elfcpp::STT_NOTYPE,
8546 elfcpp::STB_LOCAL,
8547 elfcpp::STV_DEFAULT,
8548 0, false, false));
8551 this->gp_ = gp;
8554 // Set the dynamic symbol indexes. INDEX is the index of the first
8555 // global dynamic symbol. Pointers to the symbols are stored into the
8556 // vector SYMS. The names are added to DYNPOOL. This returns an
8557 // updated dynamic symbol index.
8559 template<int size, bool big_endian>
8560 unsigned int
8561 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8562 std::vector<Symbol*>* dyn_symbols, unsigned int index,
8563 std::vector<Symbol*>* syms, Stringpool* dynpool,
8564 Versions* versions, Symbol_table* symtab) const
8566 std::vector<Symbol*> non_got_symbols;
8567 std::vector<Symbol*> got_symbols;
8569 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8570 &got_symbols);
8572 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8573 p != non_got_symbols.end();
8574 ++p)
8576 Symbol* sym = *p;
8578 // Note that SYM may already have a dynamic symbol index, since
8579 // some symbols appear more than once in the symbol table, with
8580 // and without a version.
8582 if (!sym->has_dynsym_index())
8584 sym->set_dynsym_index(index);
8585 ++index;
8586 syms->push_back(sym);
8587 dynpool->add(sym->name(), false, NULL);
8589 // Record any version information.
8590 if (sym->version() != NULL)
8591 versions->record_version(symtab, dynpool, sym);
8593 // If the symbol is defined in a dynamic object and is
8594 // referenced in a regular object, then mark the dynamic
8595 // object as needed. This is used to implement --as-needed.
8596 if (sym->is_from_dynobj() && sym->in_reg())
8597 sym->object()->set_is_needed();
8601 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8602 p != got_symbols.end();
8603 ++p)
8605 Symbol* sym = *p;
8606 if (!sym->has_dynsym_index())
8608 // Record any version information.
8609 if (sym->version() != NULL)
8610 versions->record_version(symtab, dynpool, sym);
8614 index = versions->finalize(symtab, index, syms);
8616 int got_sym_count = 0;
8617 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8618 p != got_symbols.end();
8619 ++p)
8621 Symbol* sym = *p;
8623 if (!sym->has_dynsym_index())
8625 ++got_sym_count;
8626 sym->set_dynsym_index(index);
8627 ++index;
8628 syms->push_back(sym);
8629 dynpool->add(sym->name(), false, NULL);
8631 // If the symbol is defined in a dynamic object and is
8632 // referenced in a regular object, then mark the dynamic
8633 // object as needed. This is used to implement --as-needed.
8634 if (sym->is_from_dynobj() && sym->in_reg())
8635 sym->object()->set_is_needed();
8639 // Set index of the first symbol that has .got entry.
8640 this->got_->set_first_global_got_dynsym_index(
8641 got_sym_count > 0 ? index - got_sym_count : -1U);
8643 if (this->mips_stubs_ != NULL)
8644 this->mips_stubs_->set_dynsym_count(index);
8646 return index;
8649 // Create a PLT entry for a global symbol referenced by r_type relocation.
8651 template<int size, bool big_endian>
8652 void
8653 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8654 Layout* layout,
8655 Mips_symbol<size>* gsym,
8656 unsigned int r_type)
8658 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8659 return;
8661 if (this->plt_ == NULL)
8663 // Create the GOT section first.
8664 this->got_section(symtab, layout);
8666 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8667 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8668 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8669 this->got_plt_, ORDER_DATA, false);
8671 // The first two entries are reserved.
8672 this->got_plt_->set_current_data_size(2 * size/8);
8674 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8675 this->got_plt_,
8676 this);
8677 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8678 (elfcpp::SHF_ALLOC
8679 | elfcpp::SHF_EXECINSTR),
8680 this->plt_, ORDER_PLT, false);
8682 // Make the sh_info field of .rel.plt point to .plt.
8683 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
8684 rel_plt_os->set_info_section(this->plt_->output_section());
8687 this->plt_->add_entry(gsym, r_type);
8691 // Get the .MIPS.stubs section, creating it if necessary.
8693 template<int size, bool big_endian>
8694 Mips_output_data_mips_stubs<size, big_endian>*
8695 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8697 if (this->mips_stubs_ == NULL)
8699 this->mips_stubs_ =
8700 new Mips_output_data_mips_stubs<size, big_endian>(this);
8701 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8702 (elfcpp::SHF_ALLOC
8703 | elfcpp::SHF_EXECINSTR),
8704 this->mips_stubs_, ORDER_PLT, false);
8706 return this->mips_stubs_;
8709 // Get the LA25 stub section, creating it if necessary.
8711 template<int size, bool big_endian>
8712 Mips_output_data_la25_stub<size, big_endian>*
8713 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8715 if (this->la25_stub_ == NULL)
8717 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8718 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8719 (elfcpp::SHF_ALLOC
8720 | elfcpp::SHF_EXECINSTR),
8721 this->la25_stub_, ORDER_TEXT, false);
8723 return this->la25_stub_;
8726 // Process the relocations to determine unreferenced sections for
8727 // garbage collection.
8729 template<int size, bool big_endian>
8730 void
8731 Target_mips<size, big_endian>::gc_process_relocs(
8732 Symbol_table* symtab,
8733 Layout* layout,
8734 Sized_relobj_file<size, big_endian>* object,
8735 unsigned int data_shndx,
8736 unsigned int sh_type,
8737 const unsigned char* prelocs,
8738 size_t reloc_count,
8739 Output_section* output_section,
8740 bool needs_special_offset_handling,
8741 size_t local_symbol_count,
8742 const unsigned char* plocal_symbols)
8744 typedef Target_mips<size, big_endian> Mips;
8746 if (sh_type == elfcpp::SHT_REL)
8748 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8749 Classify_reloc;
8751 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8752 symtab,
8753 layout,
8754 this,
8755 object,
8756 data_shndx,
8757 prelocs,
8758 reloc_count,
8759 output_section,
8760 needs_special_offset_handling,
8761 local_symbol_count,
8762 plocal_symbols);
8764 else if (sh_type == elfcpp::SHT_RELA)
8766 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8767 Classify_reloc;
8769 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8770 symtab,
8771 layout,
8772 this,
8773 object,
8774 data_shndx,
8775 prelocs,
8776 reloc_count,
8777 output_section,
8778 needs_special_offset_handling,
8779 local_symbol_count,
8780 plocal_symbols);
8782 else
8783 gold_unreachable();
8786 // Scan relocations for a section.
8788 template<int size, bool big_endian>
8789 void
8790 Target_mips<size, big_endian>::scan_relocs(
8791 Symbol_table* symtab,
8792 Layout* layout,
8793 Sized_relobj_file<size, big_endian>* object,
8794 unsigned int data_shndx,
8795 unsigned int sh_type,
8796 const unsigned char* prelocs,
8797 size_t reloc_count,
8798 Output_section* output_section,
8799 bool needs_special_offset_handling,
8800 size_t local_symbol_count,
8801 const unsigned char* plocal_symbols)
8803 typedef Target_mips<size, big_endian> Mips;
8805 if (sh_type == elfcpp::SHT_REL)
8807 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8808 Classify_reloc;
8810 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8811 symtab,
8812 layout,
8813 this,
8814 object,
8815 data_shndx,
8816 prelocs,
8817 reloc_count,
8818 output_section,
8819 needs_special_offset_handling,
8820 local_symbol_count,
8821 plocal_symbols);
8823 else if (sh_type == elfcpp::SHT_RELA)
8825 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8826 Classify_reloc;
8828 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8829 symtab,
8830 layout,
8831 this,
8832 object,
8833 data_shndx,
8834 prelocs,
8835 reloc_count,
8836 output_section,
8837 needs_special_offset_handling,
8838 local_symbol_count,
8839 plocal_symbols);
8843 template<int size, bool big_endian>
8844 bool
8845 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8847 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8848 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::EF_MIPS_ABI_O32
8849 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::EF_MIPS_ABI_EABI32
8850 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::EF_MIPS_ARCH_1
8851 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::EF_MIPS_ARCH_2
8852 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::EF_MIPS_ARCH_32
8853 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::EF_MIPS_ARCH_32R2
8854 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::EF_MIPS_ARCH_32R6);
8857 // Return the MACH for a MIPS e_flags value.
8858 template<int size, bool big_endian>
8859 unsigned int
8860 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8862 switch (flags & elfcpp::EF_MIPS_MACH)
8864 case elfcpp::EF_MIPS_MACH_3900:
8865 return mach_mips3900;
8867 case elfcpp::EF_MIPS_MACH_4010:
8868 return mach_mips4010;
8870 case elfcpp::EF_MIPS_MACH_4100:
8871 return mach_mips4100;
8873 case elfcpp::EF_MIPS_MACH_4111:
8874 return mach_mips4111;
8876 case elfcpp::EF_MIPS_MACH_4120:
8877 return mach_mips4120;
8879 case elfcpp::EF_MIPS_MACH_4650:
8880 return mach_mips4650;
8882 case elfcpp::EF_MIPS_MACH_5400:
8883 return mach_mips5400;
8885 case elfcpp::EF_MIPS_MACH_5500:
8886 return mach_mips5500;
8888 case elfcpp::EF_MIPS_MACH_5900:
8889 return mach_mips5900;
8891 case elfcpp::EF_MIPS_MACH_9000:
8892 return mach_mips9000;
8894 case elfcpp::EF_MIPS_MACH_SB1:
8895 return mach_mips_sb1;
8897 case elfcpp::EF_MIPS_MACH_LS2E:
8898 return mach_mips_loongson_2e;
8900 case elfcpp::EF_MIPS_MACH_LS2F:
8901 return mach_mips_loongson_2f;
8903 case elfcpp::EF_MIPS_MACH_GS464:
8904 return mach_mips_gs464;
8906 case elfcpp::EF_MIPS_MACH_GS464E:
8907 return mach_mips_gs464e;
8909 case elfcpp::EF_MIPS_MACH_GS264E:
8910 return mach_mips_gs264e;
8912 case elfcpp::EF_MIPS_MACH_OCTEON3:
8913 return mach_mips_octeon3;
8915 case elfcpp::EF_MIPS_MACH_OCTEON2:
8916 return mach_mips_octeon2;
8918 case elfcpp::EF_MIPS_MACH_OCTEON:
8919 return mach_mips_octeon;
8921 case elfcpp::EF_MIPS_MACH_XLR:
8922 return mach_mips_xlr;
8924 default:
8925 switch (flags & elfcpp::EF_MIPS_ARCH)
8927 default:
8928 case elfcpp::EF_MIPS_ARCH_1:
8929 return mach_mips3000;
8931 case elfcpp::EF_MIPS_ARCH_2:
8932 return mach_mips6000;
8934 case elfcpp::EF_MIPS_ARCH_3:
8935 return mach_mips4000;
8937 case elfcpp::EF_MIPS_ARCH_4:
8938 return mach_mips8000;
8940 case elfcpp::EF_MIPS_ARCH_5:
8941 return mach_mips5;
8943 case elfcpp::EF_MIPS_ARCH_32:
8944 return mach_mipsisa32;
8946 case elfcpp::EF_MIPS_ARCH_64:
8947 return mach_mipsisa64;
8949 case elfcpp::EF_MIPS_ARCH_32R2:
8950 return mach_mipsisa32r2;
8952 case elfcpp::EF_MIPS_ARCH_32R6:
8953 return mach_mipsisa32r6;
8955 case elfcpp::EF_MIPS_ARCH_64R2:
8956 return mach_mipsisa64r2;
8958 case elfcpp::EF_MIPS_ARCH_64R6:
8959 return mach_mipsisa64r6;
8963 return 0;
8966 // Return the MACH for each .MIPS.abiflags ISA Extension.
8968 template<int size, bool big_endian>
8969 unsigned int
8970 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8972 switch (isa_ext)
8974 case elfcpp::AFL_EXT_3900:
8975 return mach_mips3900;
8977 case elfcpp::AFL_EXT_4010:
8978 return mach_mips4010;
8980 case elfcpp::AFL_EXT_4100:
8981 return mach_mips4100;
8983 case elfcpp::AFL_EXT_4111:
8984 return mach_mips4111;
8986 case elfcpp::AFL_EXT_4120:
8987 return mach_mips4120;
8989 case elfcpp::AFL_EXT_4650:
8990 return mach_mips4650;
8992 case elfcpp::AFL_EXT_5400:
8993 return mach_mips5400;
8995 case elfcpp::AFL_EXT_5500:
8996 return mach_mips5500;
8998 case elfcpp::AFL_EXT_5900:
8999 return mach_mips5900;
9001 case elfcpp::AFL_EXT_10000:
9002 return mach_mips10000;
9004 case elfcpp::AFL_EXT_LOONGSON_2E:
9005 return mach_mips_loongson_2e;
9007 case elfcpp::AFL_EXT_LOONGSON_2F:
9008 return mach_mips_loongson_2f;
9010 case elfcpp::AFL_EXT_SB1:
9011 return mach_mips_sb1;
9013 case elfcpp::AFL_EXT_OCTEON:
9014 return mach_mips_octeon;
9016 case elfcpp::AFL_EXT_OCTEONP:
9017 return mach_mips_octeonp;
9019 case elfcpp::AFL_EXT_OCTEON2:
9020 return mach_mips_octeon2;
9022 case elfcpp::AFL_EXT_XLR:
9023 return mach_mips_xlr;
9025 default:
9026 return mach_mips3000;
9030 // Return the .MIPS.abiflags value representing each ISA Extension.
9032 template<int size, bool big_endian>
9033 unsigned int
9034 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
9036 switch (mips_mach)
9038 case mach_mips3900:
9039 return elfcpp::AFL_EXT_3900;
9041 case mach_mips4010:
9042 return elfcpp::AFL_EXT_4010;
9044 case mach_mips4100:
9045 return elfcpp::AFL_EXT_4100;
9047 case mach_mips4111:
9048 return elfcpp::AFL_EXT_4111;
9050 case mach_mips4120:
9051 return elfcpp::AFL_EXT_4120;
9053 case mach_mips4650:
9054 return elfcpp::AFL_EXT_4650;
9056 case mach_mips5400:
9057 return elfcpp::AFL_EXT_5400;
9059 case mach_mips5500:
9060 return elfcpp::AFL_EXT_5500;
9062 case mach_mips5900:
9063 return elfcpp::AFL_EXT_5900;
9065 case mach_mips10000:
9066 return elfcpp::AFL_EXT_10000;
9068 case mach_mips_loongson_2e:
9069 return elfcpp::AFL_EXT_LOONGSON_2E;
9071 case mach_mips_loongson_2f:
9072 return elfcpp::AFL_EXT_LOONGSON_2F;
9074 case mach_mips_sb1:
9075 return elfcpp::AFL_EXT_SB1;
9077 case mach_mips_octeon:
9078 return elfcpp::AFL_EXT_OCTEON;
9080 case mach_mips_octeonp:
9081 return elfcpp::AFL_EXT_OCTEONP;
9083 case mach_mips_octeon3:
9084 return elfcpp::AFL_EXT_OCTEON3;
9086 case mach_mips_octeon2:
9087 return elfcpp::AFL_EXT_OCTEON2;
9089 case mach_mips_xlr:
9090 return elfcpp::AFL_EXT_XLR;
9092 default:
9093 return 0;
9097 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
9099 template<int size, bool big_endian>
9100 void
9101 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
9102 elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
9104 int new_isa = 0;
9105 switch (e_flags & elfcpp::EF_MIPS_ARCH)
9107 case elfcpp::EF_MIPS_ARCH_1:
9108 new_isa = this->level_rev(1, 0);
9109 break;
9110 case elfcpp::EF_MIPS_ARCH_2:
9111 new_isa = this->level_rev(2, 0);
9112 break;
9113 case elfcpp::EF_MIPS_ARCH_3:
9114 new_isa = this->level_rev(3, 0);
9115 break;
9116 case elfcpp::EF_MIPS_ARCH_4:
9117 new_isa = this->level_rev(4, 0);
9118 break;
9119 case elfcpp::EF_MIPS_ARCH_5:
9120 new_isa = this->level_rev(5, 0);
9121 break;
9122 case elfcpp::EF_MIPS_ARCH_32:
9123 new_isa = this->level_rev(32, 1);
9124 break;
9125 case elfcpp::EF_MIPS_ARCH_32R2:
9126 new_isa = this->level_rev(32, 2);
9127 break;
9128 case elfcpp::EF_MIPS_ARCH_32R6:
9129 new_isa = this->level_rev(32, 6);
9130 break;
9131 case elfcpp::EF_MIPS_ARCH_64:
9132 new_isa = this->level_rev(64, 1);
9133 break;
9134 case elfcpp::EF_MIPS_ARCH_64R2:
9135 new_isa = this->level_rev(64, 2);
9136 break;
9137 case elfcpp::EF_MIPS_ARCH_64R6:
9138 new_isa = this->level_rev(64, 6);
9139 break;
9140 default:
9141 gold_error(_("%s: Unknown architecture %s"), name.c_str(),
9142 this->elf_mips_mach_name(e_flags));
9145 if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
9147 // Decode a single value into level and revision.
9148 abiflags->isa_level = new_isa >> 3;
9149 abiflags->isa_rev = new_isa & 0x7;
9152 // Update the isa_ext if needed.
9153 if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
9154 this->elf_mips_mach(e_flags)))
9155 abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
9158 // Infer the content of the ABI flags based on the elf header.
9160 template<int size, bool big_endian>
9161 void
9162 Target_mips<size, big_endian>::infer_abiflags(
9163 Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9165 const Attributes_section_data* pasd = relobj->attributes_section_data();
9166 int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9167 elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9169 this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9170 if (pasd != NULL)
9172 // Read fp_abi from the .gnu.attribute section.
9173 const Object_attribute* attr =
9174 pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9175 attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9178 abiflags->fp_abi = attr_fp_abi;
9179 abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9180 abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9181 abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9182 : elfcpp::AFL_REG_64;
9184 if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9185 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9186 || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9187 && abiflags->gpr_size == elfcpp::AFL_REG_32))
9188 abiflags->cpr1_size = elfcpp::AFL_REG_32;
9189 else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9190 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9191 || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9192 abiflags->cpr1_size = elfcpp::AFL_REG_64;
9194 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9195 abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9196 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9197 abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9198 if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9199 abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9201 if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9202 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9203 && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9204 && abiflags->isa_level >= 32
9205 && abiflags->ases != elfcpp::AFL_ASE_LOONGSON_EXT)
9206 abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9209 // Create abiflags from elf header or from .MIPS.abiflags section.
9211 template<int size, bool big_endian>
9212 void
9213 Target_mips<size, big_endian>::create_abiflags(
9214 Mips_relobj<size, big_endian>* relobj,
9215 Mips_abiflags<big_endian>* abiflags)
9217 Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9218 Mips_abiflags<big_endian> header_abiflags;
9220 this->infer_abiflags(relobj, &header_abiflags);
9222 if (sec_abiflags == NULL)
9224 // If there is no input .MIPS.abiflags section, use abiflags created
9225 // from elf header.
9226 *abiflags = header_abiflags;
9227 return;
9230 this->has_abiflags_section_ = true;
9232 // It is not possible to infer the correct ISA revision for R3 or R5
9233 // so drop down to R2 for the checks.
9234 unsigned char isa_rev = sec_abiflags->isa_rev;
9235 if (isa_rev == 3 || isa_rev == 5)
9236 isa_rev = 2;
9238 // Check compatibility between abiflags created from elf header
9239 // and abiflags from .MIPS.abiflags section in this object file.
9240 if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9241 < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9242 gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9243 relobj->name().c_str());
9244 if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9245 && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9246 gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9247 ".MIPS.abiflags"), relobj->name().c_str());
9248 if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9249 gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9250 relobj->name().c_str());
9251 // The isa_ext is allowed to be an extension of what can be inferred
9252 // from e_flags.
9253 if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9254 this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9255 gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9256 ".MIPS.abiflags"), relobj->name().c_str());
9257 if (sec_abiflags->flags2 != 0)
9258 gold_warning(_("%s: Unexpected flag in the flags2 field of "
9259 ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9260 sec_abiflags->flags2);
9261 // Use abiflags from .MIPS.abiflags section.
9262 *abiflags = *sec_abiflags;
9265 // Return the meaning of fp_abi, or "unknown" if not known.
9267 template<int size, bool big_endian>
9268 const char*
9269 Target_mips<size, big_endian>::fp_abi_string(int fp)
9271 switch (fp)
9273 case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9274 return "-mdouble-float";
9275 case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9276 return "-msingle-float";
9277 case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9278 return "-msoft-float";
9279 case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9280 return _("-mips32r2 -mfp64 (12 callee-saved)");
9281 case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9282 return "-mfpxx";
9283 case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9284 return "-mgp32 -mfp64";
9285 case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9286 return "-mgp32 -mfp64 -mno-odd-spreg";
9287 default:
9288 return "unknown";
9292 // Select fp_abi.
9294 template<int size, bool big_endian>
9296 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9297 int out_fp)
9299 if (in_fp == out_fp)
9300 return out_fp;
9302 if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9303 return in_fp;
9304 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9305 && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9306 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9307 || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9308 return in_fp;
9309 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9310 && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9311 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9312 || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9313 return out_fp; // Keep the current setting.
9314 else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9315 && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9316 return in_fp;
9317 else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9318 && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9319 return out_fp; // Keep the current setting.
9320 else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9321 gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9322 fp_abi_string(in_fp), fp_abi_string(out_fp));
9323 return out_fp;
9326 // Merge attributes from input object.
9328 template<int size, bool big_endian>
9329 void
9330 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9331 const Attributes_section_data* pasd)
9333 // Return if there is no attributes section data.
9334 if (pasd == NULL)
9335 return;
9337 // If output has no object attributes, just copy.
9338 if (this->attributes_section_data_ == NULL)
9340 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9341 return;
9344 Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9345 Object_attribute::OBJ_ATTR_GNU);
9347 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9348 out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9350 // Merge Tag_compatibility attributes and any common GNU ones.
9351 this->attributes_section_data_->merge(name.c_str(), pasd);
9354 // Merge abiflags from input object.
9356 template<int size, bool big_endian>
9357 void
9358 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9359 Mips_abiflags<big_endian>* in_abiflags)
9361 // If output has no abiflags, just copy.
9362 if (this->abiflags_ == NULL)
9364 this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9365 return;
9368 this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9369 this->abiflags_->fp_abi);
9371 // Merge abiflags.
9372 this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9373 in_abiflags->isa_level);
9374 this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9375 in_abiflags->isa_rev);
9376 this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9377 in_abiflags->gpr_size);
9378 this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9379 in_abiflags->cpr1_size);
9380 this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9381 in_abiflags->cpr2_size);
9382 this->abiflags_->ases |= in_abiflags->ases;
9383 this->abiflags_->flags1 |= in_abiflags->flags1;
9386 // Check whether machine EXTENSION is an extension of machine BASE.
9387 template<int size, bool big_endian>
9388 bool
9389 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9390 unsigned int extension)
9392 if (extension == base)
9393 return true;
9395 if ((base == mach_mipsisa32)
9396 && this->mips_mach_extends(mach_mipsisa64, extension))
9397 return true;
9399 if ((base == mach_mipsisa32r2)
9400 && this->mips_mach_extends(mach_mipsisa64r2, extension))
9401 return true;
9403 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9404 if (extension == this->mips_mach_extensions_[i].first)
9406 extension = this->mips_mach_extensions_[i].second;
9407 if (extension == base)
9408 return true;
9411 return false;
9414 // Merge file header flags from input object.
9416 template<int size, bool big_endian>
9417 void
9418 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9419 elfcpp::Elf_Word in_flags)
9421 // If flags are not set yet, just copy them.
9422 if (!this->are_processor_specific_flags_set())
9424 this->set_processor_specific_flags(in_flags);
9425 this->mach_ = this->elf_mips_mach(in_flags);
9426 return;
9429 elfcpp::Elf_Word new_flags = in_flags;
9430 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9431 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9432 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9434 // Check flag compatibility.
9435 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9436 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9438 // Some IRIX 6 BSD-compatibility objects have this bit set. It
9439 // doesn't seem to matter.
9440 new_flags &= ~elfcpp::EF_MIPS_XGOT;
9441 old_flags &= ~elfcpp::EF_MIPS_XGOT;
9443 // MIPSpro generates ucode info in n64 objects. Again, we should
9444 // just be able to ignore this.
9445 new_flags &= ~elfcpp::EF_MIPS_UCODE;
9446 old_flags &= ~elfcpp::EF_MIPS_UCODE;
9448 if (new_flags == old_flags)
9450 this->set_processor_specific_flags(merged_flags);
9451 return;
9454 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9455 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9456 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9457 name.c_str());
9459 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9460 merged_flags |= elfcpp::EF_MIPS_CPIC;
9461 if (!(new_flags & elfcpp::EF_MIPS_PIC))
9462 merged_flags &= ~elfcpp::EF_MIPS_PIC;
9464 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9465 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9467 // Compare the ISAs.
9468 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9469 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9470 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9472 // Output ISA isn't the same as, or an extension of, input ISA.
9473 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9475 // Copy the architecture info from input object to output. Also copy
9476 // the 32-bit flag (if set) so that we continue to recognise
9477 // output as a 32-bit binary.
9478 this->mach_ = this->elf_mips_mach(in_flags);
9479 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9480 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9481 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9483 // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9484 this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9486 // Copy across the ABI flags if output doesn't use them
9487 // and if that was what caused us to treat input object as 32-bit.
9488 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9489 && this->mips_32bit_flags(new_flags)
9490 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9491 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9493 else
9494 // The ISAs aren't compatible.
9495 gold_error(_("%s: linking %s module with previous %s modules"),
9496 name.c_str(), this->elf_mips_mach_name(in_flags),
9497 this->elf_mips_mach_name(merged_flags));
9500 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9501 | elfcpp::EF_MIPS_32BITMODE));
9502 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9503 | elfcpp::EF_MIPS_32BITMODE));
9505 // Compare ABIs.
9506 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9508 // Only error if both are set (to different values).
9509 if ((new_flags & elfcpp::EF_MIPS_ABI)
9510 && (old_flags & elfcpp::EF_MIPS_ABI))
9511 gold_error(_("%s: ABI mismatch: linking %s module with "
9512 "previous %s modules"), name.c_str(),
9513 this->elf_mips_abi_name(in_flags),
9514 this->elf_mips_abi_name(merged_flags));
9516 new_flags &= ~elfcpp::EF_MIPS_ABI;
9517 old_flags &= ~elfcpp::EF_MIPS_ABI;
9520 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
9521 // and allow arbitrary mixing of the remaining ASEs (retain the union).
9522 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9523 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9525 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9526 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9527 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9528 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9529 int micro_mis = old_m16 && new_micro;
9530 int m16_mis = old_micro && new_m16;
9532 if (m16_mis || micro_mis)
9533 gold_error(_("%s: ASE mismatch: linking %s module with "
9534 "previous %s modules"), name.c_str(),
9535 m16_mis ? "MIPS16" : "microMIPS",
9536 m16_mis ? "microMIPS" : "MIPS16");
9538 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9540 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9541 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9544 // Compare NaN encodings.
9545 if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9547 gold_error(_("%s: linking %s module with previous %s modules"),
9548 name.c_str(),
9549 (new_flags & elfcpp::EF_MIPS_NAN2008
9550 ? "-mnan=2008" : "-mnan=legacy"),
9551 (old_flags & elfcpp::EF_MIPS_NAN2008
9552 ? "-mnan=2008" : "-mnan=legacy"));
9554 new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9555 old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9558 // Compare FP64 state.
9559 if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9561 gold_error(_("%s: linking %s module with previous %s modules"),
9562 name.c_str(),
9563 (new_flags & elfcpp::EF_MIPS_FP64
9564 ? "-mfp64" : "-mfp32"),
9565 (old_flags & elfcpp::EF_MIPS_FP64
9566 ? "-mfp64" : "-mfp32"));
9568 new_flags &= ~elfcpp::EF_MIPS_FP64;
9569 old_flags &= ~elfcpp::EF_MIPS_FP64;
9572 // Warn about any other mismatches.
9573 if (new_flags != old_flags)
9574 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9575 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9577 this->set_processor_specific_flags(merged_flags);
9580 // Adjust ELF file header.
9582 template<int size, bool big_endian>
9583 void
9584 Target_mips<size, big_endian>::do_adjust_elf_header(
9585 unsigned char* view,
9586 int len)
9588 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9590 elfcpp::Ehdr<size, big_endian> ehdr(view);
9591 unsigned char e_ident[elfcpp::EI_NIDENT];
9592 elfcpp::Elf_Word flags = this->processor_specific_flags();
9593 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9595 unsigned char ei_abiversion = 0;
9596 elfcpp::Elf_Half type = ehdr.get_e_type();
9597 if (type == elfcpp::ET_EXEC
9598 && parameters->options().copyreloc()
9599 && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9600 == elfcpp::EF_MIPS_CPIC)
9601 ei_abiversion = 1;
9603 if (this->abiflags_ != NULL
9604 && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9605 || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9606 ei_abiversion = 3;
9608 e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9609 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9610 oehdr.put_e_ident(e_ident);
9612 if (this->entry_symbol_is_compressed_)
9613 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9616 // do_make_elf_object to override the same function in the base class.
9617 // We need to use a target-specific sub-class of
9618 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9619 // Hence we need to have our own ELF object creation.
9621 template<int size, bool big_endian>
9622 Object*
9623 Target_mips<size, big_endian>::do_make_elf_object(
9624 const std::string& name,
9625 Input_file* input_file,
9626 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9628 int et = ehdr.get_e_type();
9629 // ET_EXEC files are valid input for --just-symbols/-R,
9630 // and we treat them as relocatable objects.
9631 if (et == elfcpp::ET_REL
9632 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9634 Mips_relobj<size, big_endian>* obj =
9635 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9636 obj->setup();
9637 return obj;
9639 else if (et == elfcpp::ET_DYN)
9641 // TODO(sasa): Should we create Mips_dynobj?
9642 return Target::do_make_elf_object(name, input_file, offset, ehdr);
9644 else
9646 gold_error(_("%s: unsupported ELF file type %d"),
9647 name.c_str(), et);
9648 return NULL;
9652 // Finalize the sections.
9654 template <int size, bool big_endian>
9655 void
9656 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9657 const Input_objects* input_objects,
9658 Symbol_table* symtab)
9660 const bool relocatable = parameters->options().relocatable();
9662 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9663 // DT_FINI have correct values.
9664 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9665 symtab->lookup(parameters->options().init()));
9666 if (init != NULL && (init->is_mips16() || init->is_micromips()))
9667 init->set_value(init->value() | 1);
9668 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9669 symtab->lookup(parameters->options().fini()));
9670 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9671 fini->set_value(fini->value() | 1);
9673 // Check whether the entry symbol is mips16 or micromips. This is needed to
9674 // adjust entry address in ELF header.
9675 Mips_symbol<size>* entry =
9676 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9677 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9678 || entry->is_micromips()));
9680 if (!parameters->doing_static_link()
9681 && (strcmp(parameters->options().hash_style(), "gnu") == 0
9682 || strcmp(parameters->options().hash_style(), "both") == 0))
9684 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9685 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
9686 // MIPS ABI requires a mapping between the GOT and the symbol table.
9687 gold_error(".gnu.hash is incompatible with the MIPS ABI");
9690 // Check whether the final section that was scanned has HI16 or GOT16
9691 // relocations without the corresponding LO16 part.
9692 if (this->got16_addends_.size() > 0)
9693 gold_error("Can't find matching LO16 reloc");
9695 Valtype gprmask = 0;
9696 Valtype cprmask1 = 0;
9697 Valtype cprmask2 = 0;
9698 Valtype cprmask3 = 0;
9699 Valtype cprmask4 = 0;
9700 bool has_reginfo_section = false;
9702 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9703 p != input_objects->relobj_end();
9704 ++p)
9706 Mips_relobj<size, big_endian>* relobj =
9707 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9709 // Check for any mips16 stub sections that we can discard.
9710 if (!relocatable)
9711 relobj->discard_mips16_stub_sections(symtab);
9713 if (!relobj->merge_processor_specific_data())
9714 continue;
9716 // Merge .reginfo contents of input objects.
9717 if (relobj->has_reginfo_section())
9719 has_reginfo_section = true;
9720 gprmask |= relobj->gprmask();
9721 cprmask1 |= relobj->cprmask1();
9722 cprmask2 |= relobj->cprmask2();
9723 cprmask3 |= relobj->cprmask3();
9724 cprmask4 |= relobj->cprmask4();
9727 // Merge processor specific flags.
9728 Mips_abiflags<big_endian> in_abiflags;
9730 this->create_abiflags(relobj, &in_abiflags);
9731 this->merge_obj_e_flags(relobj->name(),
9732 relobj->processor_specific_flags());
9733 this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9734 this->merge_obj_attributes(relobj->name(),
9735 relobj->attributes_section_data());
9738 // Create a .gnu.attributes section if we have merged any attributes
9739 // from inputs.
9740 if (this->attributes_section_data_ != NULL)
9742 Output_attributes_section_data* attributes_section =
9743 new Output_attributes_section_data(*this->attributes_section_data_);
9744 layout->add_output_section_data(".gnu.attributes",
9745 elfcpp::SHT_GNU_ATTRIBUTES, 0,
9746 attributes_section, ORDER_INVALID, false);
9749 // Create .MIPS.abiflags output section if there is an input section.
9750 if (this->has_abiflags_section_)
9752 Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9753 new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9755 Output_section* os =
9756 layout->add_output_section_data(".MIPS.abiflags",
9757 elfcpp::SHT_MIPS_ABIFLAGS,
9758 elfcpp::SHF_ALLOC,
9759 abiflags_section, ORDER_INVALID, false);
9761 if (!relocatable && os != NULL)
9763 Output_segment* abiflags_segment =
9764 layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9765 abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9769 if (has_reginfo_section && !parameters->options().gc_sections())
9771 // Create .reginfo output section.
9772 Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9773 new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9774 cprmask1, cprmask2,
9775 cprmask3, cprmask4);
9777 Output_section* os =
9778 layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9779 elfcpp::SHF_ALLOC, reginfo_section,
9780 ORDER_INVALID, false);
9782 if (!relocatable && os != NULL)
9784 Output_segment* reginfo_segment =
9785 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9786 elfcpp::PF_R);
9787 reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9791 if (this->plt_ != NULL)
9793 // Set final PLT offsets for symbols.
9794 this->plt_section()->set_plt_offsets();
9796 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9797 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9798 // there are no standard PLT entries present.
9799 unsigned char nonvis = 0;
9800 if (this->is_output_micromips()
9801 && !this->plt_section()->has_standard_entries())
9802 nonvis = elfcpp::STO_MICROMIPS >> 2;
9803 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9804 Symbol_table::PREDEFINED,
9805 this->plt_,
9806 0, 0, elfcpp::STT_FUNC,
9807 elfcpp::STB_LOCAL,
9808 elfcpp::STV_DEFAULT, nonvis,
9809 false, false);
9812 if (this->mips_stubs_ != NULL)
9814 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9815 unsigned char nonvis = 0;
9816 if (this->is_output_micromips())
9817 nonvis = elfcpp::STO_MICROMIPS >> 2;
9818 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9819 Symbol_table::PREDEFINED,
9820 this->mips_stubs_,
9821 0, 0, elfcpp::STT_FUNC,
9822 elfcpp::STB_LOCAL,
9823 elfcpp::STV_DEFAULT, nonvis,
9824 false, false);
9827 if (!relocatable && !parameters->doing_static_link())
9828 // In case there is no .got section, create one.
9829 this->got_section(symtab, layout);
9831 // Emit any relocs we saved in an attempt to avoid generating COPY
9832 // relocs.
9833 if (this->copy_relocs_.any_saved_relocs())
9834 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9835 this);
9837 // Set _gp value.
9838 this->set_gp(layout, symtab);
9840 // Emit dynamic relocs.
9841 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9842 p != this->dyn_relocs_.end();
9843 ++p)
9844 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9846 if (this->has_got_section())
9847 this->got_section()->lay_out_got(layout, symtab, input_objects);
9849 if (this->mips_stubs_ != NULL)
9850 this->mips_stubs_->set_needs_dynsym_value();
9852 // Check for functions that might need $25 to be valid on entry.
9853 // TODO(sasa): Can we do this without iterating over all symbols?
9854 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9855 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9856 symtab));
9858 // Add NULL segment.
9859 if (!relocatable)
9860 layout->make_output_segment(elfcpp::PT_NULL, 0);
9862 // Fill in some more dynamic tags.
9863 // TODO(sasa): Add more dynamic tags.
9864 const Reloc_section* rel_plt = (this->plt_ == NULL
9865 ? NULL : this->plt_->rel_plt());
9866 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9867 this->rel_dyn_, true, false, false);
9869 Output_data_dynamic* const odyn = layout->dynamic_data();
9870 if (odyn != NULL
9871 && !relocatable
9872 && !parameters->doing_static_link())
9874 unsigned int d_val;
9875 // This element holds a 32-bit version id for the Runtime
9876 // Linker Interface. This will start at integer value 1.
9877 d_val = 0x01;
9878 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9880 // Dynamic flags
9881 d_val = elfcpp::RHF_NOTPOT;
9882 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9884 // Save layout for using when emitting custom dynamic tags.
9885 this->layout_ = layout;
9887 // This member holds the base address of the segment.
9888 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9890 // This member holds the number of entries in the .dynsym section.
9891 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9893 // This member holds the index of the first dynamic symbol
9894 // table entry that corresponds to an entry in the global offset table.
9895 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9897 // This member holds the number of local GOT entries.
9898 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9899 this->got_->get_local_gotno());
9901 if (this->plt_ != NULL)
9902 // DT_MIPS_PLTGOT dynamic tag
9903 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9905 if (!parameters->options().shared())
9907 this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9909 layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9910 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9911 this->rld_map_, ORDER_INVALID, false);
9913 // __RLD_MAP will be filled in by the runtime loader to contain
9914 // a pointer to the _r_debug structure.
9915 Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9916 Symbol_table::PREDEFINED,
9917 this->rld_map_,
9918 0, 0, elfcpp::STT_OBJECT,
9919 elfcpp::STB_GLOBAL,
9920 elfcpp::STV_DEFAULT, 0,
9921 false, false);
9923 if (!rld_map->is_forced_local())
9924 rld_map->set_needs_dynsym_entry();
9926 if (!parameters->options().pie())
9927 // This member holds the absolute address of the debug pointer.
9928 odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9929 else
9930 // This member holds the offset to the debug pointer,
9931 // relative to the address of the tag.
9932 odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9937 // Get the custom dynamic tag value.
9938 template<int size, bool big_endian>
9939 unsigned int
9940 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9942 switch (tag)
9944 case elfcpp::DT_MIPS_BASE_ADDRESS:
9946 // The base address of the segment.
9947 // At this point, the segment list has been sorted into final order,
9948 // so just return vaddr of the first readable PT_LOAD segment.
9949 Output_segment* seg =
9950 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9951 gold_assert(seg != NULL);
9952 return seg->vaddr();
9955 case elfcpp::DT_MIPS_SYMTABNO:
9956 // The number of entries in the .dynsym section.
9957 return this->get_dt_mips_symtabno();
9959 case elfcpp::DT_MIPS_GOTSYM:
9961 // The index of the first dynamic symbol table entry that corresponds
9962 // to an entry in the GOT.
9963 if (this->got_->first_global_got_dynsym_index() != -1U)
9964 return this->got_->first_global_got_dynsym_index();
9965 else
9966 // In case if we don't have global GOT symbols we default to setting
9967 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9968 return this->get_dt_mips_symtabno();
9971 case elfcpp::DT_MIPS_RLD_MAP_REL:
9973 // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9974 // relative to the address of the tag.
9975 Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9976 unsigned int entry_offset =
9977 odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9978 gold_assert(entry_offset != -1U);
9979 return this->rld_map_->address() - (odyn->address() + entry_offset);
9981 default:
9982 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9985 return (unsigned int)-1;
9988 // Relocate section data.
9990 template<int size, bool big_endian>
9991 void
9992 Target_mips<size, big_endian>::relocate_section(
9993 const Relocate_info<size, big_endian>* relinfo,
9994 unsigned int sh_type,
9995 const unsigned char* prelocs,
9996 size_t reloc_count,
9997 Output_section* output_section,
9998 bool needs_special_offset_handling,
9999 unsigned char* view,
10000 Mips_address address,
10001 section_size_type view_size,
10002 const Reloc_symbol_changes* reloc_symbol_changes)
10004 typedef Target_mips<size, big_endian> Mips;
10005 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
10007 if (sh_type == elfcpp::SHT_REL)
10009 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10010 Classify_reloc;
10012 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
10013 gold::Default_comdat_behavior, Classify_reloc>(
10014 relinfo,
10015 this,
10016 prelocs,
10017 reloc_count,
10018 output_section,
10019 needs_special_offset_handling,
10020 view,
10021 address,
10022 view_size,
10023 reloc_symbol_changes);
10025 else if (sh_type == elfcpp::SHT_RELA)
10027 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10028 Classify_reloc;
10030 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
10031 gold::Default_comdat_behavior, Classify_reloc>(
10032 relinfo,
10033 this,
10034 prelocs,
10035 reloc_count,
10036 output_section,
10037 needs_special_offset_handling,
10038 view,
10039 address,
10040 view_size,
10041 reloc_symbol_changes);
10045 // Return the size of a relocation while scanning during a relocatable
10046 // link.
10048 unsigned int
10049 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
10051 switch (r_type)
10053 case elfcpp::R_MIPS_NONE:
10054 case elfcpp::R_MIPS_TLS_DTPMOD64:
10055 case elfcpp::R_MIPS_TLS_DTPREL64:
10056 case elfcpp::R_MIPS_TLS_TPREL64:
10057 return 0;
10059 case elfcpp::R_MIPS_32:
10060 case elfcpp::R_MIPS_TLS_DTPMOD32:
10061 case elfcpp::R_MIPS_TLS_DTPREL32:
10062 case elfcpp::R_MIPS_TLS_TPREL32:
10063 case elfcpp::R_MIPS_REL32:
10064 case elfcpp::R_MIPS_PC32:
10065 case elfcpp::R_MIPS_GPREL32:
10066 case elfcpp::R_MIPS_JALR:
10067 case elfcpp::R_MIPS_EH:
10068 return 4;
10070 case elfcpp::R_MIPS_16:
10071 case elfcpp::R_MIPS_HI16:
10072 case elfcpp::R_MIPS_LO16:
10073 case elfcpp::R_MIPS_HIGHER:
10074 case elfcpp::R_MIPS_HIGHEST:
10075 case elfcpp::R_MIPS_GPREL16:
10076 case elfcpp::R_MIPS16_HI16:
10077 case elfcpp::R_MIPS16_LO16:
10078 case elfcpp::R_MIPS_PC16:
10079 case elfcpp::R_MIPS_PCHI16:
10080 case elfcpp::R_MIPS_PCLO16:
10081 case elfcpp::R_MIPS_GOT16:
10082 case elfcpp::R_MIPS16_GOT16:
10083 case elfcpp::R_MIPS_CALL16:
10084 case elfcpp::R_MIPS16_CALL16:
10085 case elfcpp::R_MIPS_GOT_HI16:
10086 case elfcpp::R_MIPS_CALL_HI16:
10087 case elfcpp::R_MIPS_GOT_LO16:
10088 case elfcpp::R_MIPS_CALL_LO16:
10089 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10090 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10091 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10092 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10093 case elfcpp::R_MIPS16_GPREL:
10094 case elfcpp::R_MIPS_GOT_DISP:
10095 case elfcpp::R_MIPS_LITERAL:
10096 case elfcpp::R_MIPS_GOT_PAGE:
10097 case elfcpp::R_MIPS_GOT_OFST:
10098 case elfcpp::R_MIPS_TLS_GD:
10099 case elfcpp::R_MIPS_TLS_LDM:
10100 case elfcpp::R_MIPS_TLS_GOTTPREL:
10101 return 2;
10103 // These relocations are not byte sized
10104 case elfcpp::R_MIPS_26:
10105 case elfcpp::R_MIPS16_26:
10106 case elfcpp::R_MIPS_PC21_S2:
10107 case elfcpp::R_MIPS_PC26_S2:
10108 case elfcpp::R_MIPS_PC18_S3:
10109 case elfcpp::R_MIPS_PC19_S2:
10110 return 4;
10112 case elfcpp::R_MIPS_COPY:
10113 case elfcpp::R_MIPS_JUMP_SLOT:
10114 object->error(_("unexpected reloc %u in object file"), r_type);
10115 return 0;
10117 default:
10118 object->error(_("unsupported reloc %u in object file"), r_type);
10119 return 0;
10123 // Scan the relocs during a relocatable link.
10125 template<int size, bool big_endian>
10126 void
10127 Target_mips<size, big_endian>::scan_relocatable_relocs(
10128 Symbol_table* symtab,
10129 Layout* layout,
10130 Sized_relobj_file<size, big_endian>* object,
10131 unsigned int data_shndx,
10132 unsigned int sh_type,
10133 const unsigned char* prelocs,
10134 size_t reloc_count,
10135 Output_section* output_section,
10136 bool needs_special_offset_handling,
10137 size_t local_symbol_count,
10138 const unsigned char* plocal_symbols,
10139 Relocatable_relocs* rr)
10141 if (sh_type == elfcpp::SHT_REL)
10143 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10144 Classify_reloc;
10145 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10146 Scan_relocatable_relocs;
10148 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10149 symtab,
10150 layout,
10151 object,
10152 data_shndx,
10153 prelocs,
10154 reloc_count,
10155 output_section,
10156 needs_special_offset_handling,
10157 local_symbol_count,
10158 plocal_symbols,
10159 rr);
10161 else if (sh_type == elfcpp::SHT_RELA)
10163 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10164 Classify_reloc;
10165 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10166 Scan_relocatable_relocs;
10168 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10169 symtab,
10170 layout,
10171 object,
10172 data_shndx,
10173 prelocs,
10174 reloc_count,
10175 output_section,
10176 needs_special_offset_handling,
10177 local_symbol_count,
10178 plocal_symbols,
10179 rr);
10181 else
10182 gold_unreachable();
10185 // Scan the relocs for --emit-relocs.
10187 template<int size, bool big_endian>
10188 void
10189 Target_mips<size, big_endian>::emit_relocs_scan(
10190 Symbol_table* symtab,
10191 Layout* layout,
10192 Sized_relobj_file<size, big_endian>* object,
10193 unsigned int data_shndx,
10194 unsigned int sh_type,
10195 const unsigned char* prelocs,
10196 size_t reloc_count,
10197 Output_section* output_section,
10198 bool needs_special_offset_handling,
10199 size_t local_symbol_count,
10200 const unsigned char* plocal_syms,
10201 Relocatable_relocs* rr)
10203 if (sh_type == elfcpp::SHT_REL)
10205 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10206 Classify_reloc;
10207 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10208 Emit_relocs_strategy;
10210 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10211 symtab,
10212 layout,
10213 object,
10214 data_shndx,
10215 prelocs,
10216 reloc_count,
10217 output_section,
10218 needs_special_offset_handling,
10219 local_symbol_count,
10220 plocal_syms,
10221 rr);
10223 else if (sh_type == elfcpp::SHT_RELA)
10225 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10226 Classify_reloc;
10227 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10228 Emit_relocs_strategy;
10230 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10231 symtab,
10232 layout,
10233 object,
10234 data_shndx,
10235 prelocs,
10236 reloc_count,
10237 output_section,
10238 needs_special_offset_handling,
10239 local_symbol_count,
10240 plocal_syms,
10241 rr);
10243 else
10244 gold_unreachable();
10247 // Emit relocations for a section.
10249 template<int size, bool big_endian>
10250 void
10251 Target_mips<size, big_endian>::relocate_relocs(
10252 const Relocate_info<size, big_endian>* relinfo,
10253 unsigned int sh_type,
10254 const unsigned char* prelocs,
10255 size_t reloc_count,
10256 Output_section* output_section,
10257 typename elfcpp::Elf_types<size>::Elf_Off
10258 offset_in_output_section,
10259 unsigned char* view,
10260 Mips_address view_address,
10261 section_size_type view_size,
10262 unsigned char* reloc_view,
10263 section_size_type reloc_view_size)
10265 if (sh_type == elfcpp::SHT_REL)
10267 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10268 Classify_reloc;
10270 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10271 relinfo,
10272 prelocs,
10273 reloc_count,
10274 output_section,
10275 offset_in_output_section,
10276 view,
10277 view_address,
10278 view_size,
10279 reloc_view,
10280 reloc_view_size);
10282 else if (sh_type == elfcpp::SHT_RELA)
10284 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10285 Classify_reloc;
10287 gold::relocate_relocs<size, big_endian, Classify_reloc>(
10288 relinfo,
10289 prelocs,
10290 reloc_count,
10291 output_section,
10292 offset_in_output_section,
10293 view,
10294 view_address,
10295 view_size,
10296 reloc_view,
10297 reloc_view_size);
10299 else
10300 gold_unreachable();
10303 // Perform target-specific processing in a relocatable link. This is
10304 // only used if we use the relocation strategy RELOC_SPECIAL.
10306 template<int size, bool big_endian>
10307 void
10308 Target_mips<size, big_endian>::relocate_special_relocatable(
10309 const Relocate_info<size, big_endian>* relinfo,
10310 unsigned int sh_type,
10311 const unsigned char* preloc_in,
10312 size_t relnum,
10313 Output_section* output_section,
10314 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10315 unsigned char* view,
10316 Mips_address view_address,
10317 section_size_type,
10318 unsigned char* preloc_out)
10320 // We can only handle REL type relocation sections.
10321 gold_assert(sh_type == elfcpp::SHT_REL);
10323 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10324 Reltype;
10325 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10326 Reltype_write;
10328 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10330 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10332 Mips_relobj<size, big_endian>* object =
10333 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10334 const unsigned int local_count = object->local_symbol_count();
10336 Reltype reloc(preloc_in);
10337 Reltype_write reloc_write(preloc_out);
10339 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10340 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10341 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10343 // Get the new symbol index.
10344 // We only use RELOC_SPECIAL strategy in local relocations.
10345 gold_assert(r_sym < local_count);
10347 // We are adjusting a section symbol. We need to find
10348 // the symbol table index of the section symbol for
10349 // the output section corresponding to input section
10350 // in which this symbol is defined.
10351 bool is_ordinary;
10352 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10353 gold_assert(is_ordinary);
10354 Output_section* os = object->output_section(shndx);
10355 gold_assert(os != NULL);
10356 gold_assert(os->needs_symtab_index());
10357 unsigned int new_symndx = os->symtab_index();
10359 // Get the new offset--the location in the output section where
10360 // this relocation should be applied.
10362 Mips_address offset = reloc.get_r_offset();
10363 Mips_address new_offset;
10364 if (offset_in_output_section != invalid_address)
10365 new_offset = offset + offset_in_output_section;
10366 else
10368 section_offset_type sot_offset =
10369 convert_types<section_offset_type, Mips_address>(offset);
10370 section_offset_type new_sot_offset =
10371 output_section->output_offset(object, relinfo->data_shndx,
10372 sot_offset);
10373 gold_assert(new_sot_offset != -1);
10374 new_offset = new_sot_offset;
10377 // In an object file, r_offset is an offset within the section.
10378 // In an executable or dynamic object, generated by
10379 // --emit-relocs, r_offset is an absolute address.
10380 if (!parameters->options().relocatable())
10382 new_offset += view_address;
10383 if (offset_in_output_section != invalid_address)
10384 new_offset -= offset_in_output_section;
10387 reloc_write.put_r_offset(new_offset);
10388 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10390 // Handle the reloc addend.
10391 // The relocation uses a section symbol in the input file.
10392 // We are adjusting it to use a section symbol in the output
10393 // file. The input section symbol refers to some address in
10394 // the input section. We need the relocation in the output
10395 // file to refer to that same address. This adjustment to
10396 // the addend is the same calculation we use for a simple
10397 // absolute relocation for the input section symbol.
10398 Valtype calculated_value = 0;
10399 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10401 unsigned char* paddend = view + offset;
10402 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10403 switch (r_type)
10405 case elfcpp::R_MIPS_26:
10406 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10407 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10408 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10409 false, &calculated_value);
10410 break;
10412 default:
10413 gold_unreachable();
10416 // Report any errors.
10417 switch (reloc_status)
10419 case Reloc_funcs::STATUS_OKAY:
10420 break;
10421 case Reloc_funcs::STATUS_OVERFLOW:
10422 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10423 _("relocation overflow: "
10424 "%u against local symbol %u in %s"),
10425 r_type, r_sym, object->name().c_str());
10426 break;
10427 case Reloc_funcs::STATUS_BAD_RELOC:
10428 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10429 _("unexpected opcode while processing relocation"));
10430 break;
10431 default:
10432 gold_unreachable();
10436 // Optimize the TLS relocation type based on what we know about the
10437 // symbol. IS_FINAL is true if the final address of this symbol is
10438 // known at link time.
10440 template<int size, bool big_endian>
10441 tls::Tls_optimization
10442 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10444 // FIXME: Currently we do not do any TLS optimization.
10445 return tls::TLSOPT_NONE;
10448 // Scan a relocation for a local symbol.
10450 template<int size, bool big_endian>
10451 inline void
10452 Target_mips<size, big_endian>::Scan::local(
10453 Symbol_table* symtab,
10454 Layout* layout,
10455 Target_mips<size, big_endian>* target,
10456 Sized_relobj_file<size, big_endian>* object,
10457 unsigned int data_shndx,
10458 Output_section* output_section,
10459 const Relatype* rela,
10460 const Reltype* rel,
10461 unsigned int rel_type,
10462 unsigned int r_type,
10463 const elfcpp::Sym<size, big_endian>& lsym,
10464 bool is_discarded)
10466 if (is_discarded)
10467 return;
10469 Mips_address r_offset;
10470 unsigned int r_sym;
10471 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10473 if (rel_type == elfcpp::SHT_RELA)
10475 r_offset = rela->get_r_offset();
10476 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10477 get_r_sym(rela);
10478 r_addend = rela->get_r_addend();
10480 else
10482 r_offset = rel->get_r_offset();
10483 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10484 get_r_sym(rel);
10485 r_addend = 0;
10488 Mips_relobj<size, big_endian>* mips_obj =
10489 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10491 if (mips_obj->is_mips16_stub_section(data_shndx))
10493 mips_obj->get_mips16_stub_section(data_shndx)
10494 ->new_local_reloc_found(r_type, r_sym);
10497 if (r_type == elfcpp::R_MIPS_NONE)
10498 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10499 // mips16 stub.
10500 return;
10502 if (!mips16_call_reloc(r_type)
10503 && !mips_obj->section_allows_mips16_refs(data_shndx))
10504 // This reloc would need to refer to a MIPS16 hard-float stub, if
10505 // there is one. We ignore MIPS16 stub sections and .pdr section when
10506 // looking for relocs that would need to refer to MIPS16 stubs.
10507 mips_obj->add_local_non_16bit_call(r_sym);
10509 if (r_type == elfcpp::R_MIPS16_26
10510 && !mips_obj->section_allows_mips16_refs(data_shndx))
10511 mips_obj->add_local_16bit_call(r_sym);
10513 switch (r_type)
10515 case elfcpp::R_MIPS_GOT16:
10516 case elfcpp::R_MIPS_CALL16:
10517 case elfcpp::R_MIPS_CALL_HI16:
10518 case elfcpp::R_MIPS_CALL_LO16:
10519 case elfcpp::R_MIPS_GOT_HI16:
10520 case elfcpp::R_MIPS_GOT_LO16:
10521 case elfcpp::R_MIPS_GOT_PAGE:
10522 case elfcpp::R_MIPS_GOT_OFST:
10523 case elfcpp::R_MIPS_GOT_DISP:
10524 case elfcpp::R_MIPS_TLS_GOTTPREL:
10525 case elfcpp::R_MIPS_TLS_GD:
10526 case elfcpp::R_MIPS_TLS_LDM:
10527 case elfcpp::R_MIPS16_GOT16:
10528 case elfcpp::R_MIPS16_CALL16:
10529 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10530 case elfcpp::R_MIPS16_TLS_GD:
10531 case elfcpp::R_MIPS16_TLS_LDM:
10532 case elfcpp::R_MICROMIPS_GOT16:
10533 case elfcpp::R_MICROMIPS_CALL16:
10534 case elfcpp::R_MICROMIPS_CALL_HI16:
10535 case elfcpp::R_MICROMIPS_CALL_LO16:
10536 case elfcpp::R_MICROMIPS_GOT_HI16:
10537 case elfcpp::R_MICROMIPS_GOT_LO16:
10538 case elfcpp::R_MICROMIPS_GOT_PAGE:
10539 case elfcpp::R_MICROMIPS_GOT_OFST:
10540 case elfcpp::R_MICROMIPS_GOT_DISP:
10541 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10542 case elfcpp::R_MICROMIPS_TLS_GD:
10543 case elfcpp::R_MICROMIPS_TLS_LDM:
10544 case elfcpp::R_MIPS_EH:
10545 // We need a GOT section.
10546 target->got_section(symtab, layout);
10547 break;
10549 default:
10550 break;
10553 if (call_lo16_reloc(r_type)
10554 || got_lo16_reloc(r_type)
10555 || got_disp_reloc(r_type)
10556 || eh_reloc(r_type))
10558 // We may need a local GOT entry for this relocation. We
10559 // don't count R_MIPS_GOT_PAGE because we can estimate the
10560 // maximum number of pages needed by looking at the size of
10561 // the segment. Similar comments apply to R_MIPS*_GOT16 and
10562 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
10563 // R_MIPS_CALL_HI16 because these are always followed by an
10564 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10565 Mips_output_data_got<size, big_endian>* got =
10566 target->got_section(symtab, layout);
10567 bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10568 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10569 is_section_symbol);
10572 switch (r_type)
10574 case elfcpp::R_MIPS_CALL16:
10575 case elfcpp::R_MIPS16_CALL16:
10576 case elfcpp::R_MICROMIPS_CALL16:
10577 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10578 (unsigned long)r_offset);
10579 return;
10581 case elfcpp::R_MIPS_GOT_PAGE:
10582 case elfcpp::R_MICROMIPS_GOT_PAGE:
10583 case elfcpp::R_MIPS16_GOT16:
10584 case elfcpp::R_MIPS_GOT16:
10585 case elfcpp::R_MIPS_GOT_HI16:
10586 case elfcpp::R_MIPS_GOT_LO16:
10587 case elfcpp::R_MICROMIPS_GOT16:
10588 case elfcpp::R_MICROMIPS_GOT_HI16:
10589 case elfcpp::R_MICROMIPS_GOT_LO16:
10591 // This relocation needs a page entry in the GOT.
10592 // Get the section contents.
10593 section_size_type view_size = 0;
10594 const unsigned char* view = object->section_contents(data_shndx,
10595 &view_size, false);
10596 view += r_offset;
10598 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10599 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10600 : r_addend);
10602 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10603 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10604 object, data_shndx, r_type, r_sym, addend));
10605 else
10606 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10607 break;
10610 case elfcpp::R_MIPS_HI16:
10611 case elfcpp::R_MIPS_PCHI16:
10612 case elfcpp::R_MIPS16_HI16:
10613 case elfcpp::R_MICROMIPS_HI16:
10614 // Record the reloc so that we can check whether the corresponding LO16
10615 // part exists.
10616 if (rel_type == elfcpp::SHT_REL)
10617 target->got16_addends_.push_back(got16_addend<size, big_endian>(
10618 object, data_shndx, r_type, r_sym, 0));
10619 break;
10621 case elfcpp::R_MIPS_LO16:
10622 case elfcpp::R_MIPS_PCLO16:
10623 case elfcpp::R_MIPS16_LO16:
10624 case elfcpp::R_MICROMIPS_LO16:
10626 if (rel_type != elfcpp::SHT_REL)
10627 break;
10629 // Find corresponding GOT16/HI16 relocation.
10631 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10632 // be immediately following. However, for the IRIX6 ABI, the next
10633 // relocation may be a composed relocation consisting of several
10634 // relocations for the same address. In that case, the R_MIPS_LO16
10635 // relocation may occur as one of these. We permit a similar
10636 // extension in general, as that is useful for GCC.
10638 // In some cases GCC dead code elimination removes the LO16 but
10639 // keeps the corresponding HI16. This is strictly speaking a
10640 // violation of the ABI but not immediately harmful.
10642 typename std::list<got16_addend<size, big_endian> >::iterator it =
10643 target->got16_addends_.begin();
10644 while (it != target->got16_addends_.end())
10646 got16_addend<size, big_endian> _got16_addend = *it;
10648 // TODO(sasa): Split got16_addends_ list into two lists - one for
10649 // GOT16 relocs and the other for HI16 relocs.
10651 // Report an error if we find HI16 or GOT16 reloc from the
10652 // previous section without the matching LO16 part.
10653 if (_got16_addend.object != object
10654 || _got16_addend.shndx != data_shndx)
10656 gold_error("Can't find matching LO16 reloc");
10657 break;
10660 if (_got16_addend.r_sym != r_sym
10661 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10663 ++it;
10664 continue;
10667 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10668 // For GOT16, we need to calculate combined addend and record GOT page
10669 // entry.
10670 if (got16_reloc(_got16_addend.r_type))
10673 section_size_type view_size = 0;
10674 const unsigned char* view = object->section_contents(data_shndx,
10675 &view_size,
10676 false);
10677 view += r_offset;
10679 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10680 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10682 addend = (_got16_addend.addend << 16) + addend;
10683 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10684 addend);
10687 it = target->got16_addends_.erase(it);
10689 break;
10693 switch (r_type)
10695 case elfcpp::R_MIPS_32:
10696 case elfcpp::R_MIPS_REL32:
10697 case elfcpp::R_MIPS_64:
10699 if (parameters->options().output_is_position_independent())
10701 // If building a shared library (or a position-independent
10702 // executable), we need to create a dynamic relocation for
10703 // this location.
10704 if (is_readonly_section(output_section))
10705 break;
10706 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10707 rel_dyn->add_symbolless_local_addend(object, r_sym,
10708 elfcpp::R_MIPS_REL32,
10709 output_section, data_shndx,
10710 r_offset);
10712 break;
10715 case elfcpp::R_MIPS_TLS_GOTTPREL:
10716 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10717 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10718 case elfcpp::R_MIPS_TLS_LDM:
10719 case elfcpp::R_MIPS16_TLS_LDM:
10720 case elfcpp::R_MICROMIPS_TLS_LDM:
10721 case elfcpp::R_MIPS_TLS_GD:
10722 case elfcpp::R_MIPS16_TLS_GD:
10723 case elfcpp::R_MICROMIPS_TLS_GD:
10725 bool output_is_shared = parameters->options().shared();
10726 const tls::Tls_optimization optimized_type
10727 = Target_mips<size, big_endian>::optimize_tls_reloc(
10728 !output_is_shared, r_type);
10729 switch (r_type)
10731 case elfcpp::R_MIPS_TLS_GD:
10732 case elfcpp::R_MIPS16_TLS_GD:
10733 case elfcpp::R_MICROMIPS_TLS_GD:
10734 if (optimized_type == tls::TLSOPT_NONE)
10736 // Create a pair of GOT entries for the module index and
10737 // dtv-relative offset.
10738 Mips_output_data_got<size, big_endian>* got =
10739 target->got_section(symtab, layout);
10740 unsigned int shndx = lsym.get_st_shndx();
10741 bool is_ordinary;
10742 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10743 if (!is_ordinary)
10745 object->error(_("local symbol %u has bad shndx %u"),
10746 r_sym, shndx);
10747 break;
10749 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10750 shndx, false);
10752 else
10754 // FIXME: TLS optimization not supported yet.
10755 gold_unreachable();
10757 break;
10759 case elfcpp::R_MIPS_TLS_LDM:
10760 case elfcpp::R_MIPS16_TLS_LDM:
10761 case elfcpp::R_MICROMIPS_TLS_LDM:
10762 if (optimized_type == tls::TLSOPT_NONE)
10764 // We always record LDM symbols as local with index 0.
10765 target->got_section()->record_local_got_symbol(mips_obj, 0,
10766 r_addend, r_type,
10767 -1U, false);
10769 else
10771 // FIXME: TLS optimization not supported yet.
10772 gold_unreachable();
10774 break;
10775 case elfcpp::R_MIPS_TLS_GOTTPREL:
10776 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10777 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10778 layout->set_has_static_tls();
10779 if (optimized_type == tls::TLSOPT_NONE)
10781 // Create a GOT entry for the tp-relative offset.
10782 Mips_output_data_got<size, big_endian>* got =
10783 target->got_section(symtab, layout);
10784 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10785 -1U, false);
10787 else
10789 // FIXME: TLS optimization not supported yet.
10790 gold_unreachable();
10792 break;
10794 default:
10795 gold_unreachable();
10798 break;
10800 default:
10801 break;
10804 // Refuse some position-dependent relocations when creating a
10805 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
10806 // not PIC, but we can create dynamic relocations and the result
10807 // will be fine. Also do not refuse R_MIPS_LO16, which can be
10808 // combined with R_MIPS_GOT16.
10809 if (parameters->options().shared())
10811 switch (r_type)
10813 case elfcpp::R_MIPS16_HI16:
10814 case elfcpp::R_MIPS_HI16:
10815 case elfcpp::R_MIPS_HIGHER:
10816 case elfcpp::R_MIPS_HIGHEST:
10817 case elfcpp::R_MICROMIPS_HI16:
10818 case elfcpp::R_MICROMIPS_HIGHER:
10819 case elfcpp::R_MICROMIPS_HIGHEST:
10820 // Don't refuse a high part relocation if it's against
10821 // no symbol (e.g. part of a compound relocation).
10822 if (r_sym == 0)
10823 break;
10824 // Fall through.
10826 case elfcpp::R_MIPS16_26:
10827 case elfcpp::R_MIPS_26:
10828 case elfcpp::R_MICROMIPS_26_S1:
10829 gold_error(_("%s: relocation %u against `%s' can not be used when "
10830 "making a shared object; recompile with -fPIC"),
10831 object->name().c_str(), r_type, "a local symbol");
10832 default:
10833 break;
10838 template<int size, bool big_endian>
10839 inline void
10840 Target_mips<size, big_endian>::Scan::local(
10841 Symbol_table* symtab,
10842 Layout* layout,
10843 Target_mips<size, big_endian>* target,
10844 Sized_relobj_file<size, big_endian>* object,
10845 unsigned int data_shndx,
10846 Output_section* output_section,
10847 const Reltype& reloc,
10848 unsigned int r_type,
10849 const elfcpp::Sym<size, big_endian>& lsym,
10850 bool is_discarded)
10852 if (is_discarded)
10853 return;
10855 local(
10856 symtab,
10857 layout,
10858 target,
10859 object,
10860 data_shndx,
10861 output_section,
10862 (const Relatype*) NULL,
10863 &reloc,
10864 elfcpp::SHT_REL,
10865 r_type,
10866 lsym, is_discarded);
10870 template<int size, bool big_endian>
10871 inline void
10872 Target_mips<size, big_endian>::Scan::local(
10873 Symbol_table* symtab,
10874 Layout* layout,
10875 Target_mips<size, big_endian>* target,
10876 Sized_relobj_file<size, big_endian>* object,
10877 unsigned int data_shndx,
10878 Output_section* output_section,
10879 const Relatype& reloc,
10880 unsigned int r_type,
10881 const elfcpp::Sym<size, big_endian>& lsym,
10882 bool is_discarded)
10884 if (is_discarded)
10885 return;
10887 local(
10888 symtab,
10889 layout,
10890 target,
10891 object,
10892 data_shndx,
10893 output_section,
10894 &reloc,
10895 (const Reltype*) NULL,
10896 elfcpp::SHT_RELA,
10897 r_type,
10898 lsym, is_discarded);
10901 // Scan a relocation for a global symbol.
10903 template<int size, bool big_endian>
10904 inline void
10905 Target_mips<size, big_endian>::Scan::global(
10906 Symbol_table* symtab,
10907 Layout* layout,
10908 Target_mips<size, big_endian>* target,
10909 Sized_relobj_file<size, big_endian>* object,
10910 unsigned int data_shndx,
10911 Output_section* output_section,
10912 const Relatype* rela,
10913 const Reltype* rel,
10914 unsigned int rel_type,
10915 unsigned int r_type,
10916 Symbol* gsym)
10918 Mips_address r_offset;
10919 unsigned int r_sym;
10920 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10922 if (rel_type == elfcpp::SHT_RELA)
10924 r_offset = rela->get_r_offset();
10925 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10926 get_r_sym(rela);
10927 r_addend = rela->get_r_addend();
10929 else
10931 r_offset = rel->get_r_offset();
10932 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10933 get_r_sym(rel);
10934 r_addend = 0;
10937 Mips_relobj<size, big_endian>* mips_obj =
10938 Mips_relobj<size, big_endian>::as_mips_relobj(object);
10939 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10941 if (mips_obj->is_mips16_stub_section(data_shndx))
10943 mips_obj->get_mips16_stub_section(data_shndx)
10944 ->new_global_reloc_found(r_type, mips_sym);
10947 if (r_type == elfcpp::R_MIPS_NONE)
10948 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10949 // mips16 stub.
10950 return;
10952 if (!mips16_call_reloc(r_type)
10953 && !mips_obj->section_allows_mips16_refs(data_shndx))
10954 // This reloc would need to refer to a MIPS16 hard-float stub, if
10955 // there is one. We ignore MIPS16 stub sections and .pdr section when
10956 // looking for relocs that would need to refer to MIPS16 stubs.
10957 mips_sym->set_need_fn_stub();
10959 // We need PLT entries if there are static-only relocations against
10960 // an externally-defined function. This can technically occur for
10961 // shared libraries if there are branches to the symbol, although it
10962 // is unlikely that this will be used in practice due to the short
10963 // ranges involved. It can occur for any relative or absolute relocation
10964 // in executables; in that case, the PLT entry becomes the function's
10965 // canonical address.
10966 bool static_reloc = false;
10968 // Set CAN_MAKE_DYNAMIC to true if we can convert this
10969 // relocation into a dynamic one.
10970 bool can_make_dynamic = false;
10971 switch (r_type)
10973 case elfcpp::R_MIPS_GOT16:
10974 case elfcpp::R_MIPS_CALL16:
10975 case elfcpp::R_MIPS_CALL_HI16:
10976 case elfcpp::R_MIPS_CALL_LO16:
10977 case elfcpp::R_MIPS_GOT_HI16:
10978 case elfcpp::R_MIPS_GOT_LO16:
10979 case elfcpp::R_MIPS_GOT_PAGE:
10980 case elfcpp::R_MIPS_GOT_OFST:
10981 case elfcpp::R_MIPS_GOT_DISP:
10982 case elfcpp::R_MIPS_TLS_GOTTPREL:
10983 case elfcpp::R_MIPS_TLS_GD:
10984 case elfcpp::R_MIPS_TLS_LDM:
10985 case elfcpp::R_MIPS16_GOT16:
10986 case elfcpp::R_MIPS16_CALL16:
10987 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10988 case elfcpp::R_MIPS16_TLS_GD:
10989 case elfcpp::R_MIPS16_TLS_LDM:
10990 case elfcpp::R_MICROMIPS_GOT16:
10991 case elfcpp::R_MICROMIPS_CALL16:
10992 case elfcpp::R_MICROMIPS_CALL_HI16:
10993 case elfcpp::R_MICROMIPS_CALL_LO16:
10994 case elfcpp::R_MICROMIPS_GOT_HI16:
10995 case elfcpp::R_MICROMIPS_GOT_LO16:
10996 case elfcpp::R_MICROMIPS_GOT_PAGE:
10997 case elfcpp::R_MICROMIPS_GOT_OFST:
10998 case elfcpp::R_MICROMIPS_GOT_DISP:
10999 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11000 case elfcpp::R_MICROMIPS_TLS_GD:
11001 case elfcpp::R_MICROMIPS_TLS_LDM:
11002 case elfcpp::R_MIPS_EH:
11003 // We need a GOT section.
11004 target->got_section(symtab, layout);
11005 break;
11007 // This is just a hint; it can safely be ignored. Don't set
11008 // has_static_relocs for the corresponding symbol.
11009 case elfcpp::R_MIPS_JALR:
11010 case elfcpp::R_MICROMIPS_JALR:
11011 break;
11013 case elfcpp::R_MIPS_GPREL16:
11014 case elfcpp::R_MIPS_GPREL32:
11015 case elfcpp::R_MIPS16_GPREL:
11016 case elfcpp::R_MICROMIPS_GPREL16:
11017 // TODO(sasa)
11018 // GP-relative relocations always resolve to a definition in a
11019 // regular input file, ignoring the one-definition rule. This is
11020 // important for the GP setup sequence in NewABI code, which
11021 // always resolves to a local function even if other relocations
11022 // against the symbol wouldn't.
11023 //constrain_symbol_p = FALSE;
11024 break;
11026 case elfcpp::R_MIPS_32:
11027 case elfcpp::R_MIPS_REL32:
11028 case elfcpp::R_MIPS_64:
11029 if ((parameters->options().shared()
11030 || (strcmp(gsym->name(), "__gnu_local_gp") != 0
11031 && (!is_readonly_section(output_section)
11032 || mips_obj->is_pic())))
11033 && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
11035 if (r_type != elfcpp::R_MIPS_REL32)
11036 mips_sym->set_pointer_equality_needed();
11037 can_make_dynamic = true;
11038 break;
11040 // Fall through.
11042 default:
11043 // Most static relocations require pointer equality, except
11044 // for branches.
11045 mips_sym->set_pointer_equality_needed();
11046 // Fall through.
11048 case elfcpp::R_MIPS_26:
11049 case elfcpp::R_MIPS_PC16:
11050 case elfcpp::R_MIPS_PC21_S2:
11051 case elfcpp::R_MIPS_PC26_S2:
11052 case elfcpp::R_MIPS16_26:
11053 case elfcpp::R_MICROMIPS_26_S1:
11054 case elfcpp::R_MICROMIPS_PC7_S1:
11055 case elfcpp::R_MICROMIPS_PC10_S1:
11056 case elfcpp::R_MICROMIPS_PC16_S1:
11057 case elfcpp::R_MICROMIPS_PC23_S2:
11058 static_reloc = true;
11059 mips_sym->set_has_static_relocs();
11060 break;
11063 // If there are call relocations against an externally-defined symbol,
11064 // see whether we can create a MIPS lazy-binding stub for it. We can
11065 // only do this if all references to the function are through call
11066 // relocations, and in that case, the traditional lazy-binding stubs
11067 // are much more efficient than PLT entries.
11068 switch (r_type)
11070 case elfcpp::R_MIPS16_CALL16:
11071 case elfcpp::R_MIPS_CALL16:
11072 case elfcpp::R_MIPS_CALL_HI16:
11073 case elfcpp::R_MIPS_CALL_LO16:
11074 case elfcpp::R_MIPS_JALR:
11075 case elfcpp::R_MICROMIPS_CALL16:
11076 case elfcpp::R_MICROMIPS_CALL_HI16:
11077 case elfcpp::R_MICROMIPS_CALL_LO16:
11078 case elfcpp::R_MICROMIPS_JALR:
11079 if (!mips_sym->no_lazy_stub())
11081 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
11082 // Calls from shared objects to undefined symbols of type
11083 // STT_NOTYPE need lazy-binding stub.
11084 || (mips_sym->is_undefined() && parameters->options().shared()))
11085 target->mips_stubs_section(layout)->make_entry(mips_sym);
11087 break;
11088 default:
11090 // We must not create a stub for a symbol that has relocations
11091 // related to taking the function's address.
11092 mips_sym->set_no_lazy_stub();
11093 target->remove_lazy_stub_entry(mips_sym);
11094 break;
11098 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
11099 mips_sym->is_mips16()))
11100 mips_sym->set_has_nonpic_branches();
11102 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11103 // and has a special meaning.
11104 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
11105 && strcmp(gsym->name(), "_gp_disp") == 0
11106 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
11107 if (static_reloc && gsym->needs_plt_entry())
11109 target->make_plt_entry(symtab, layout, mips_sym, r_type);
11111 // Since this is not a PC-relative relocation, we may be
11112 // taking the address of a function. In that case we need to
11113 // set the entry in the dynamic symbol table to the address of
11114 // the PLT entry.
11115 if (gsym->is_from_dynobj() && !parameters->options().shared())
11117 gsym->set_needs_dynsym_value();
11118 // We distinguish between PLT entries and lazy-binding stubs by
11119 // giving the former an st_other value of STO_MIPS_PLT. Set the
11120 // flag if there are any relocations in the binary where pointer
11121 // equality matters.
11122 if (mips_sym->pointer_equality_needed())
11123 mips_sym->set_mips_plt();
11126 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
11128 // Absolute addressing relocations.
11129 // Make a dynamic relocation if necessary.
11130 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
11132 if (gsym->may_need_copy_reloc())
11134 target->copy_reloc(symtab, layout, object, data_shndx,
11135 output_section, gsym, r_type, r_offset);
11137 else if (can_make_dynamic)
11139 // Create .rel.dyn section.
11140 target->rel_dyn_section(layout);
11141 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11142 data_shndx, output_section, r_offset);
11144 else
11145 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11146 gsym->name());
11150 bool for_call = false;
11151 switch (r_type)
11153 case elfcpp::R_MIPS_CALL16:
11154 case elfcpp::R_MIPS16_CALL16:
11155 case elfcpp::R_MICROMIPS_CALL16:
11156 case elfcpp::R_MIPS_CALL_HI16:
11157 case elfcpp::R_MIPS_CALL_LO16:
11158 case elfcpp::R_MICROMIPS_CALL_HI16:
11159 case elfcpp::R_MICROMIPS_CALL_LO16:
11160 for_call = true;
11161 // Fall through.
11163 case elfcpp::R_MIPS16_GOT16:
11164 case elfcpp::R_MIPS_GOT16:
11165 case elfcpp::R_MIPS_GOT_HI16:
11166 case elfcpp::R_MIPS_GOT_LO16:
11167 case elfcpp::R_MICROMIPS_GOT16:
11168 case elfcpp::R_MICROMIPS_GOT_HI16:
11169 case elfcpp::R_MICROMIPS_GOT_LO16:
11170 case elfcpp::R_MIPS_GOT_DISP:
11171 case elfcpp::R_MICROMIPS_GOT_DISP:
11172 case elfcpp::R_MIPS_EH:
11174 // The symbol requires a GOT entry.
11175 Mips_output_data_got<size, big_endian>* got =
11176 target->got_section(symtab, layout);
11177 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11178 for_call);
11179 mips_sym->set_global_got_area(GGA_NORMAL);
11181 break;
11183 case elfcpp::R_MIPS_GOT_PAGE:
11184 case elfcpp::R_MICROMIPS_GOT_PAGE:
11186 // This relocation needs a page entry in the GOT.
11187 // Get the section contents.
11188 section_size_type view_size = 0;
11189 const unsigned char* view =
11190 object->section_contents(data_shndx, &view_size, false);
11191 view += r_offset;
11193 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11194 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11195 : r_addend);
11196 Mips_output_data_got<size, big_endian>* got =
11197 target->got_section(symtab, layout);
11198 got->record_got_page_entry(mips_obj, r_sym, addend);
11200 // If this is a global, overridable symbol, GOT_PAGE will
11201 // decay to GOT_DISP, so we'll need a GOT entry for it.
11202 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11203 && !mips_sym->object()->is_dynamic()
11204 && !mips_sym->is_undefined());
11205 if (!def_regular
11206 || (parameters->options().output_is_position_independent()
11207 && !parameters->options().Bsymbolic()
11208 && !mips_sym->is_forced_local()))
11210 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11211 for_call);
11212 mips_sym->set_global_got_area(GGA_NORMAL);
11215 break;
11217 case elfcpp::R_MIPS_TLS_GOTTPREL:
11218 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11219 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11220 case elfcpp::R_MIPS_TLS_LDM:
11221 case elfcpp::R_MIPS16_TLS_LDM:
11222 case elfcpp::R_MICROMIPS_TLS_LDM:
11223 case elfcpp::R_MIPS_TLS_GD:
11224 case elfcpp::R_MIPS16_TLS_GD:
11225 case elfcpp::R_MICROMIPS_TLS_GD:
11227 const bool is_final = gsym->final_value_is_known();
11228 const tls::Tls_optimization optimized_type =
11229 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11231 switch (r_type)
11233 case elfcpp::R_MIPS_TLS_GD:
11234 case elfcpp::R_MIPS16_TLS_GD:
11235 case elfcpp::R_MICROMIPS_TLS_GD:
11236 if (optimized_type == tls::TLSOPT_NONE)
11238 // Create a pair of GOT entries for the module index and
11239 // dtv-relative offset.
11240 Mips_output_data_got<size, big_endian>* got =
11241 target->got_section(symtab, layout);
11242 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11243 false);
11245 else
11247 // FIXME: TLS optimization not supported yet.
11248 gold_unreachable();
11250 break;
11252 case elfcpp::R_MIPS_TLS_LDM:
11253 case elfcpp::R_MIPS16_TLS_LDM:
11254 case elfcpp::R_MICROMIPS_TLS_LDM:
11255 if (optimized_type == tls::TLSOPT_NONE)
11257 // We always record LDM symbols as local with index 0.
11258 target->got_section()->record_local_got_symbol(mips_obj, 0,
11259 r_addend, r_type,
11260 -1U, false);
11262 else
11264 // FIXME: TLS optimization not supported yet.
11265 gold_unreachable();
11267 break;
11268 case elfcpp::R_MIPS_TLS_GOTTPREL:
11269 case elfcpp::R_MIPS16_TLS_GOTTPREL:
11270 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11271 layout->set_has_static_tls();
11272 if (optimized_type == tls::TLSOPT_NONE)
11274 // Create a GOT entry for the tp-relative offset.
11275 Mips_output_data_got<size, big_endian>* got =
11276 target->got_section(symtab, layout);
11277 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11278 false);
11280 else
11282 // FIXME: TLS optimization not supported yet.
11283 gold_unreachable();
11285 break;
11287 default:
11288 gold_unreachable();
11291 break;
11292 case elfcpp::R_MIPS_COPY:
11293 case elfcpp::R_MIPS_JUMP_SLOT:
11294 // These are relocations which should only be seen by the
11295 // dynamic linker, and should never be seen here.
11296 gold_error(_("%s: unexpected reloc %u in object file"),
11297 object->name().c_str(), r_type);
11298 break;
11300 default:
11301 break;
11304 // Refuse some position-dependent relocations when creating a
11305 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
11306 // not PIC, but we can create dynamic relocations and the result
11307 // will be fine. Also do not refuse R_MIPS_LO16, which can be
11308 // combined with R_MIPS_GOT16.
11309 if (parameters->options().shared())
11311 switch (r_type)
11313 case elfcpp::R_MIPS16_HI16:
11314 case elfcpp::R_MIPS_HI16:
11315 case elfcpp::R_MIPS_HIGHER:
11316 case elfcpp::R_MIPS_HIGHEST:
11317 case elfcpp::R_MICROMIPS_HI16:
11318 case elfcpp::R_MICROMIPS_HIGHER:
11319 case elfcpp::R_MICROMIPS_HIGHEST:
11320 // Don't refuse a high part relocation if it's against
11321 // no symbol (e.g. part of a compound relocation).
11322 if (r_sym == 0)
11323 break;
11325 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11326 // and has a special meaning.
11327 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11328 break;
11329 // Fall through.
11331 case elfcpp::R_MIPS16_26:
11332 case elfcpp::R_MIPS_26:
11333 case elfcpp::R_MICROMIPS_26_S1:
11334 gold_error(_("%s: relocation %u against `%s' can not be used when "
11335 "making a shared object; recompile with -fPIC"),
11336 object->name().c_str(), r_type, gsym->name());
11337 default:
11338 break;
11343 template<int size, bool big_endian>
11344 inline void
11345 Target_mips<size, big_endian>::Scan::global(
11346 Symbol_table* symtab,
11347 Layout* layout,
11348 Target_mips<size, big_endian>* target,
11349 Sized_relobj_file<size, big_endian>* object,
11350 unsigned int data_shndx,
11351 Output_section* output_section,
11352 const Relatype& reloc,
11353 unsigned int r_type,
11354 Symbol* gsym)
11356 global(
11357 symtab,
11358 layout,
11359 target,
11360 object,
11361 data_shndx,
11362 output_section,
11363 &reloc,
11364 (const Reltype*) NULL,
11365 elfcpp::SHT_RELA,
11366 r_type,
11367 gsym);
11370 template<int size, bool big_endian>
11371 inline void
11372 Target_mips<size, big_endian>::Scan::global(
11373 Symbol_table* symtab,
11374 Layout* layout,
11375 Target_mips<size, big_endian>* target,
11376 Sized_relobj_file<size, big_endian>* object,
11377 unsigned int data_shndx,
11378 Output_section* output_section,
11379 const Reltype& reloc,
11380 unsigned int r_type,
11381 Symbol* gsym)
11383 global(
11384 symtab,
11385 layout,
11386 target,
11387 object,
11388 data_shndx,
11389 output_section,
11390 (const Relatype*) NULL,
11391 &reloc,
11392 elfcpp::SHT_REL,
11393 r_type,
11394 gsym);
11397 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11398 // In cases where Scan::local() or Scan::global() has created
11399 // a dynamic relocation, the addend of the relocation is carried
11400 // in the data, and we must not apply the static relocation.
11402 template<int size, bool big_endian>
11403 inline bool
11404 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11405 const Mips_symbol<size>* gsym,
11406 unsigned int r_type,
11407 Output_section* output_section,
11408 Target_mips* target)
11410 // If the output section is not allocated, then we didn't call
11411 // scan_relocs, we didn't create a dynamic reloc, and we must apply
11412 // the reloc here.
11413 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11414 return true;
11416 if (gsym == NULL)
11417 return true;
11418 else
11420 // For global symbols, we use the same helper routines used in the
11421 // scan pass.
11422 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11423 && !gsym->may_need_copy_reloc())
11425 // We have generated dynamic reloc (R_MIPS_REL32).
11427 bool multi_got = false;
11428 if (target->has_got_section())
11429 multi_got = target->got_section()->multi_got();
11430 bool has_got_offset;
11431 if (!multi_got)
11432 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11433 else
11434 has_got_offset = gsym->global_gotoffset() != -1U;
11435 if (!has_got_offset)
11436 return true;
11437 else
11438 // Apply the relocation only if the symbol is in the local got.
11439 // Do not apply the relocation if the symbol is in the global
11440 // got.
11441 return symbol_references_local(gsym, gsym->has_dynsym_index());
11443 else
11444 // We have not generated dynamic reloc.
11445 return true;
11449 // Perform a relocation.
11451 template<int size, bool big_endian>
11452 inline bool
11453 Target_mips<size, big_endian>::Relocate::relocate(
11454 const Relocate_info<size, big_endian>* relinfo,
11455 unsigned int rel_type,
11456 Target_mips* target,
11457 Output_section* output_section,
11458 size_t relnum,
11459 const unsigned char* preloc,
11460 const Sized_symbol<size>* gsym,
11461 const Symbol_value<size>* psymval,
11462 unsigned char* view,
11463 Mips_address address,
11464 section_size_type)
11466 Mips_address r_offset;
11467 unsigned int r_sym;
11468 unsigned int r_type;
11469 unsigned int r_type2;
11470 unsigned int r_type3;
11471 unsigned char r_ssym;
11472 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11473 // r_offset and r_type of the next relocation is needed for resolving multiple
11474 // consecutive relocations with the same offset.
11475 Mips_address next_r_offset = static_cast<Mips_address>(0) - 1;
11476 unsigned int next_r_type = elfcpp::R_MIPS_NONE;
11478 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
11479 size_t reloc_count = shdr.get_sh_size() / shdr.get_sh_entsize();
11481 if (rel_type == elfcpp::SHT_RELA)
11483 const Relatype rela(preloc);
11484 r_offset = rela.get_r_offset();
11485 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11486 get_r_sym(&rela);
11487 r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11488 get_r_type(&rela);
11489 r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11490 get_r_type2(&rela);
11491 r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11492 get_r_type3(&rela);
11493 r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11494 get_r_ssym(&rela);
11495 r_addend = rela.get_r_addend();
11496 // If this is not last relocation, get r_offset and r_type of the next
11497 // relocation.
11498 if (relnum + 1 < reloc_count)
11500 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
11501 const Relatype next_rela(preloc + reloc_size);
11502 next_r_offset = next_rela.get_r_offset();
11503 next_r_type =
11504 Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11505 get_r_type(&next_rela);
11508 else
11510 const Reltype rel(preloc);
11511 r_offset = rel.get_r_offset();
11512 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11513 get_r_sym(&rel);
11514 r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11515 get_r_type(&rel);
11516 r_ssym = 0;
11517 r_type2 = elfcpp::R_MIPS_NONE;
11518 r_type3 = elfcpp::R_MIPS_NONE;
11519 r_addend = 0;
11520 // If this is not last relocation, get r_offset and r_type of the next
11521 // relocation.
11522 if (relnum + 1 < reloc_count)
11524 const int reloc_size = elfcpp::Elf_sizes<size>::rel_size;
11525 const Reltype next_rel(preloc + reloc_size);
11526 next_r_offset = next_rel.get_r_offset();
11527 next_r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11528 get_r_type(&next_rel);
11532 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11533 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11535 Mips_relobj<size, big_endian>* object =
11536 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11538 bool target_is_16_bit_code = false;
11539 bool target_is_micromips_code = false;
11540 bool cross_mode_jump;
11542 Symbol_value<size> symval;
11544 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11546 bool changed_symbol_value = false;
11547 if (gsym == NULL)
11549 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11550 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11551 if (target_is_16_bit_code || target_is_micromips_code)
11553 // MIPS16/microMIPS text labels should be treated as odd.
11554 symval.set_output_value(psymval->value(object, 1));
11555 psymval = &symval;
11556 changed_symbol_value = true;
11559 else
11561 target_is_16_bit_code = mips_sym->is_mips16();
11562 target_is_micromips_code = mips_sym->is_micromips();
11564 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11565 // it odd. This will cause something like .word SYM to come up with
11566 // the right value when it is loaded into the PC.
11568 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11569 && psymval->value(object, 0) != 0)
11571 symval.set_output_value(psymval->value(object, 0) | 1);
11572 psymval = &symval;
11573 changed_symbol_value = true;
11576 // Pick the value to use for symbols defined in shared objects.
11577 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11578 || mips_sym->has_lazy_stub())
11580 Mips_address value;
11581 if (!mips_sym->has_lazy_stub())
11583 // Prefer a standard MIPS PLT entry.
11584 if (mips_sym->has_mips_plt_offset())
11586 value = target->plt_section()->mips_entry_address(mips_sym);
11587 target_is_micromips_code = false;
11588 target_is_16_bit_code = false;
11590 else
11592 value = (target->plt_section()->comp_entry_address(mips_sym)
11593 + 1);
11594 if (target->is_output_micromips())
11595 target_is_micromips_code = true;
11596 else
11597 target_is_16_bit_code = true;
11600 else
11601 value = target->mips_stubs_section()->stub_address(mips_sym);
11603 symval.set_output_value(value);
11604 psymval = &symval;
11608 // TRUE if the symbol referred to by this relocation is "_gp_disp".
11609 // Note that such a symbol must always be a global symbol.
11610 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11611 && !object->is_newabi());
11613 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11614 // Note that such a symbol must always be a global symbol.
11615 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11618 if (gp_disp)
11620 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11621 gold_error_at_location(relinfo, relnum, r_offset,
11622 _("relocations against _gp_disp are permitted only"
11623 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11625 else if (gnu_local_gp)
11627 // __gnu_local_gp is _gp symbol.
11628 symval.set_output_value(target->adjusted_gp_value(object));
11629 psymval = &symval;
11632 // If this is a reference to a 16-bit function with a stub, we need
11633 // to redirect the relocation to the stub unless:
11635 // (a) the relocation is for a MIPS16 JAL;
11637 // (b) the relocation is for a MIPS16 PIC call, and there are no
11638 // non-MIPS16 uses of the GOT slot; or
11640 // (c) the section allows direct references to MIPS16 functions.
11641 if (r_type != elfcpp::R_MIPS16_26
11642 && ((mips_sym != NULL
11643 && mips_sym->has_mips16_fn_stub()
11644 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11645 || (mips_sym == NULL
11646 && object->get_local_mips16_fn_stub(r_sym) != NULL))
11647 && !object->section_allows_mips16_refs(relinfo->data_shndx))
11649 // This is a 32- or 64-bit call to a 16-bit function. We should
11650 // have already noticed that we were going to need the
11651 // stub.
11652 Mips_address value;
11653 if (mips_sym == NULL)
11654 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11655 else
11657 gold_assert(mips_sym->need_fn_stub());
11658 if (mips_sym->has_la25_stub())
11659 value = target->la25_stub_section()->stub_address(mips_sym);
11660 else
11662 value = mips_sym->template
11663 get_mips16_fn_stub<big_endian>()->output_address();
11666 symval.set_output_value(value);
11667 psymval = &symval;
11668 changed_symbol_value = true;
11670 // The target is 16-bit, but the stub isn't.
11671 target_is_16_bit_code = false;
11673 // If this is a MIPS16 call with a stub, that is made through the PLT or
11674 // to a standard MIPS function, we need to redirect the call to the stub.
11675 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11676 // indirect calls should use an indirect stub instead.
11677 else if (r_type == elfcpp::R_MIPS16_26
11678 && ((mips_sym != NULL
11679 && (mips_sym->has_mips16_call_stub()
11680 || mips_sym->has_mips16_call_fp_stub()))
11681 || (mips_sym == NULL
11682 && object->get_local_mips16_call_stub(r_sym) != NULL))
11683 && ((mips_sym != NULL && mips_sym->has_plt_offset())
11684 || !target_is_16_bit_code))
11686 Mips16_stub_section<size, big_endian>* call_stub;
11687 if (mips_sym == NULL)
11688 call_stub = object->get_local_mips16_call_stub(r_sym);
11689 else
11691 // If both call_stub and call_fp_stub are defined, we can figure
11692 // out which one to use by checking which one appears in the input
11693 // file.
11694 if (mips_sym->has_mips16_call_stub()
11695 && mips_sym->has_mips16_call_fp_stub())
11697 call_stub = NULL;
11698 for (unsigned int i = 1; i < object->shnum(); ++i)
11700 if (object->is_mips16_call_fp_stub_section(i))
11702 call_stub = mips_sym->template
11703 get_mips16_call_fp_stub<big_endian>();
11704 break;
11708 if (call_stub == NULL)
11709 call_stub =
11710 mips_sym->template get_mips16_call_stub<big_endian>();
11712 else if (mips_sym->has_mips16_call_stub())
11713 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11714 else
11715 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11718 symval.set_output_value(call_stub->output_address());
11719 psymval = &symval;
11720 changed_symbol_value = true;
11722 // If this is a direct call to a PIC function, redirect to the
11723 // non-PIC stub.
11724 else if (mips_sym != NULL
11725 && mips_sym->has_la25_stub()
11726 && relocation_needs_la25_stub<size, big_endian>(
11727 object, r_type, target_is_16_bit_code))
11729 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11730 if (mips_sym->is_micromips())
11731 value += 1;
11732 symval.set_output_value(value);
11733 psymval = &symval;
11735 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11736 // entry is used if a standard PLT entry has also been made.
11737 else if ((r_type == elfcpp::R_MIPS16_26
11738 || r_type == elfcpp::R_MICROMIPS_26_S1)
11739 && mips_sym != NULL
11740 && mips_sym->has_plt_offset()
11741 && mips_sym->has_comp_plt_offset()
11742 && mips_sym->has_mips_plt_offset())
11744 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11745 + 1);
11746 symval.set_output_value(value);
11747 psymval = &symval;
11749 target_is_16_bit_code = !target->is_output_micromips();
11750 target_is_micromips_code = target->is_output_micromips();
11753 // Make sure MIPS16 and microMIPS are not used together.
11754 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11755 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11757 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11760 // Calls from 16-bit code to 32-bit code and vice versa require the
11761 // mode change. However, we can ignore calls to undefined weak symbols,
11762 // which should never be executed at runtime. This exception is important
11763 // because the assembly writer may have "known" that any definition of the
11764 // symbol would be 16-bit code, and that direct jumps were therefore
11765 // acceptable.
11766 cross_mode_jump =
11767 (!(gsym != NULL && gsym->is_weak_undefined())
11768 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11769 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11770 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11771 && (target_is_16_bit_code || target_is_micromips_code))));
11773 bool local = (mips_sym == NULL
11774 || (mips_sym->got_only_for_calls()
11775 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11776 : symbol_references_local(mips_sym,
11777 mips_sym->has_dynsym_index())));
11779 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11780 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
11781 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11782 if (got_page_reloc(r_type) && !local)
11783 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11784 : elfcpp::R_MIPS_GOT_DISP);
11786 unsigned int got_offset = 0;
11787 int gp_offset = 0;
11789 // Whether we have to extract addend from instruction.
11790 bool extract_addend = rel_type == elfcpp::SHT_REL;
11791 unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11793 Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11795 // For Mips64 N64 ABI, there may be up to three operations specified per
11796 // record, by the fields r_type, r_type2, and r_type3. The first operation
11797 // takes its addend from the relocation record. Each subsequent operation
11798 // takes as its addend the result of the previous operation.
11799 // The first operation in a record which references a symbol uses the symbol
11800 // implied by r_sym. The next operation in a record which references a symbol
11801 // uses the special symbol value given by the r_ssym field. A third operation
11802 // in a record which references a symbol will assume a NULL symbol,
11803 // i.e. value zero.
11805 // TODO(Vladimir)
11806 // Check if a record references to a symbol.
11807 for (unsigned int i = 0; i < 3; ++i)
11809 if (r_types[i] == elfcpp::R_MIPS_NONE)
11810 break;
11812 // If we didn't apply previous relocation, use its result as addend
11813 // for current.
11814 if (this->calculate_only_)
11816 r_addend = this->calculated_value_;
11817 extract_addend = false;
11820 // In the N32 and 64-bit ABIs there may be multiple consecutive
11821 // relocations for the same offset. In that case we are
11822 // supposed to treat the output of each relocation as the addend
11823 // for the next. For N64 ABI, we are checking offsets only in a
11824 // third operation in a record (r_type3).
11825 this->calculate_only_ =
11826 (object->is_n64() && i < 2
11827 ? r_types[i+1] != elfcpp::R_MIPS_NONE
11828 : (r_offset == next_r_offset) && (next_r_type != elfcpp::R_MIPS_NONE));
11830 if (object->is_n64())
11832 if (i == 1)
11834 // Handle special symbol for r_type2 relocation type.
11835 switch (r_ssym)
11837 case RSS_UNDEF:
11838 symval.set_output_value(0);
11839 break;
11840 case RSS_GP:
11841 symval.set_output_value(target->gp_value());
11842 break;
11843 case RSS_GP0:
11844 symval.set_output_value(object->gp_value());
11845 break;
11846 case RSS_LOC:
11847 symval.set_output_value(address);
11848 break;
11849 default:
11850 gold_unreachable();
11852 psymval = &symval;
11854 else if (i == 2)
11856 // For r_type3 symbol value is 0.
11857 symval.set_output_value(0);
11861 bool update_got_entry = false;
11862 switch (r_types[i])
11864 case elfcpp::R_MIPS_NONE:
11865 break;
11866 case elfcpp::R_MIPS_16:
11867 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11868 extract_addend,
11869 this->calculate_only_,
11870 &this->calculated_value_);
11871 break;
11873 case elfcpp::R_MIPS_32:
11874 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11875 target))
11876 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11877 extract_addend,
11878 this->calculate_only_,
11879 &this->calculated_value_);
11880 if (mips_sym != NULL
11881 && (mips_sym->is_mips16() || mips_sym->is_micromips())
11882 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11884 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11885 // already updated by adding +1.
11886 if (mips_sym->has_mips16_fn_stub())
11888 gold_assert(mips_sym->need_fn_stub());
11889 Mips16_stub_section<size, big_endian>* fn_stub =
11890 mips_sym->template get_mips16_fn_stub<big_endian>();
11892 symval.set_output_value(fn_stub->output_address());
11893 psymval = &symval;
11895 got_offset = mips_sym->global_gotoffset();
11896 update_got_entry = true;
11898 break;
11900 case elfcpp::R_MIPS_64:
11901 if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11902 target))
11903 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11904 extract_addend,
11905 this->calculate_only_,
11906 &this->calculated_value_, false);
11907 else if (target->is_output_n64() && r_addend != 0)
11908 // Only apply the addend. The static relocation was RELA, but the
11909 // dynamic relocation is REL, so we need to apply the addend.
11910 reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11911 extract_addend,
11912 this->calculate_only_,
11913 &this->calculated_value_, true);
11914 break;
11915 case elfcpp::R_MIPS_REL32:
11916 gold_unreachable();
11918 case elfcpp::R_MIPS_PC32:
11919 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11920 r_addend, extract_addend,
11921 this->calculate_only_,
11922 &this->calculated_value_);
11923 break;
11925 case elfcpp::R_MIPS16_26:
11926 // The calculation for R_MIPS16_26 is just the same as for an
11927 // R_MIPS_26. It's only the storage of the relocated field into
11928 // the output file that's different. So, we just fall through to the
11929 // R_MIPS_26 case here.
11930 case elfcpp::R_MIPS_26:
11931 case elfcpp::R_MICROMIPS_26_S1:
11932 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11933 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11934 r_types[i], target->jal_to_bal(), this->calculate_only_,
11935 &this->calculated_value_);
11936 break;
11938 case elfcpp::R_MIPS_HI16:
11939 case elfcpp::R_MIPS16_HI16:
11940 case elfcpp::R_MICROMIPS_HI16:
11941 if (rel_type == elfcpp::SHT_RELA)
11942 reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11943 r_addend, address,
11944 gp_disp, r_types[i],
11945 extract_addend, 0,
11946 target,
11947 this->calculate_only_,
11948 &this->calculated_value_);
11949 else if (rel_type == elfcpp::SHT_REL)
11950 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11951 address, gp_disp, r_types[i],
11952 r_sym, extract_addend);
11953 else
11954 gold_unreachable();
11955 break;
11957 case elfcpp::R_MIPS_LO16:
11958 case elfcpp::R_MIPS16_LO16:
11959 case elfcpp::R_MICROMIPS_LO16:
11960 case elfcpp::R_MICROMIPS_HI0_LO16:
11961 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11962 r_addend, extract_addend, address,
11963 gp_disp, r_types[i], r_sym,
11964 rel_type, this->calculate_only_,
11965 &this->calculated_value_);
11966 break;
11968 case elfcpp::R_MIPS_LITERAL:
11969 case elfcpp::R_MICROMIPS_LITERAL:
11970 // Because we don't merge literal sections, we can handle this
11971 // just like R_MIPS_GPREL16. In the long run, we should merge
11972 // shared literals, and then we will need to additional work
11973 // here.
11975 // Fall through.
11977 case elfcpp::R_MIPS_GPREL16:
11978 case elfcpp::R_MIPS16_GPREL:
11979 case elfcpp::R_MICROMIPS_GPREL16:
11980 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11981 target->adjusted_gp_value(object),
11982 r_addend, extract_addend,
11983 gsym == NULL,
11984 this->calculate_only_,
11985 &this->calculated_value_);
11986 break;
11988 case elfcpp::R_MICROMIPS_GPREL7_S2:
11989 reloc_status = Reloc_funcs::relgprel7(view, object, psymval,
11990 target->adjusted_gp_value(object),
11991 r_addend, extract_addend,
11992 gsym == NULL,
11993 this->calculate_only_,
11994 &this->calculated_value_);
11995 break;
11997 case elfcpp::R_MIPS_PC16:
11998 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11999 r_addend, extract_addend,
12000 this->calculate_only_,
12001 &this->calculated_value_);
12002 break;
12004 case elfcpp::R_MIPS_PC21_S2:
12005 reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
12006 r_addend, extract_addend,
12007 this->calculate_only_,
12008 &this->calculated_value_);
12009 break;
12011 case elfcpp::R_MIPS_PC26_S2:
12012 reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
12013 r_addend, extract_addend,
12014 this->calculate_only_,
12015 &this->calculated_value_);
12016 break;
12018 case elfcpp::R_MIPS_PC18_S3:
12019 reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
12020 r_addend, extract_addend,
12021 this->calculate_only_,
12022 &this->calculated_value_);
12023 break;
12025 case elfcpp::R_MIPS_PC19_S2:
12026 reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
12027 r_addend, extract_addend,
12028 this->calculate_only_,
12029 &this->calculated_value_);
12030 break;
12032 case elfcpp::R_MIPS_PCHI16:
12033 if (rel_type == elfcpp::SHT_RELA)
12034 reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
12035 r_addend, address,
12036 extract_addend, 0,
12037 this->calculate_only_,
12038 &this->calculated_value_);
12039 else if (rel_type == elfcpp::SHT_REL)
12040 reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
12041 r_addend, address, r_sym,
12042 extract_addend);
12043 else
12044 gold_unreachable();
12045 break;
12047 case elfcpp::R_MIPS_PCLO16:
12048 reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
12049 extract_addend, address, r_sym,
12050 rel_type, this->calculate_only_,
12051 &this->calculated_value_);
12052 break;
12053 case elfcpp::R_MICROMIPS_PC7_S1:
12054 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
12055 address, r_addend,
12056 extract_addend,
12057 this->calculate_only_,
12058 &this->calculated_value_);
12059 break;
12060 case elfcpp::R_MICROMIPS_PC10_S1:
12061 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
12062 psymval, address,
12063 r_addend, extract_addend,
12064 this->calculate_only_,
12065 &this->calculated_value_);
12066 break;
12067 case elfcpp::R_MICROMIPS_PC16_S1:
12068 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
12069 psymval, address,
12070 r_addend, extract_addend,
12071 this->calculate_only_,
12072 &this->calculated_value_);
12073 break;
12074 case elfcpp::R_MIPS_GPREL32:
12075 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
12076 target->adjusted_gp_value(object),
12077 r_addend, extract_addend,
12078 this->calculate_only_,
12079 &this->calculated_value_);
12080 break;
12081 case elfcpp::R_MIPS_GOT_HI16:
12082 case elfcpp::R_MIPS_CALL_HI16:
12083 case elfcpp::R_MICROMIPS_GOT_HI16:
12084 case elfcpp::R_MICROMIPS_CALL_HI16:
12085 if (gsym != NULL)
12086 got_offset = target->got_section()->got_offset(gsym,
12087 GOT_TYPE_STANDARD,
12088 object);
12089 else
12090 got_offset = target->got_section()->got_offset(r_sym,
12091 GOT_TYPE_STANDARD,
12092 object, r_addend);
12093 gp_offset = target->got_section()->gp_offset(got_offset, object);
12094 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
12095 this->calculate_only_,
12096 &this->calculated_value_);
12097 update_got_entry = changed_symbol_value;
12098 break;
12100 case elfcpp::R_MIPS_GOT_LO16:
12101 case elfcpp::R_MIPS_CALL_LO16:
12102 case elfcpp::R_MICROMIPS_GOT_LO16:
12103 case elfcpp::R_MICROMIPS_CALL_LO16:
12104 if (gsym != NULL)
12105 got_offset = target->got_section()->got_offset(gsym,
12106 GOT_TYPE_STANDARD,
12107 object);
12108 else
12109 got_offset = target->got_section()->got_offset(r_sym,
12110 GOT_TYPE_STANDARD,
12111 object, r_addend);
12112 gp_offset = target->got_section()->gp_offset(got_offset, object);
12113 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
12114 this->calculate_only_,
12115 &this->calculated_value_);
12116 update_got_entry = changed_symbol_value;
12117 break;
12119 case elfcpp::R_MIPS_GOT_DISP:
12120 case elfcpp::R_MICROMIPS_GOT_DISP:
12121 case elfcpp::R_MIPS_EH:
12122 if (gsym != NULL)
12123 got_offset = target->got_section()->got_offset(gsym,
12124 GOT_TYPE_STANDARD,
12125 object);
12126 else
12127 got_offset = target->got_section()->got_offset(r_sym,
12128 GOT_TYPE_STANDARD,
12129 object, r_addend);
12130 gp_offset = target->got_section()->gp_offset(got_offset, object);
12131 if (eh_reloc(r_types[i]))
12132 reloc_status = Reloc_funcs::releh(view, gp_offset,
12133 this->calculate_only_,
12134 &this->calculated_value_);
12135 else
12136 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12137 this->calculate_only_,
12138 &this->calculated_value_);
12139 break;
12140 case elfcpp::R_MIPS_CALL16:
12141 case elfcpp::R_MIPS16_CALL16:
12142 case elfcpp::R_MICROMIPS_CALL16:
12143 gold_assert(gsym != NULL);
12144 got_offset = target->got_section()->got_offset(gsym,
12145 GOT_TYPE_STANDARD,
12146 object);
12147 gp_offset = target->got_section()->gp_offset(got_offset, object);
12148 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12149 this->calculate_only_,
12150 &this->calculated_value_);
12151 // TODO(sasa): We should also initialize update_got_entry
12152 // in other place swhere relgot is called.
12153 update_got_entry = changed_symbol_value;
12154 break;
12156 case elfcpp::R_MIPS_GOT16:
12157 case elfcpp::R_MIPS16_GOT16:
12158 case elfcpp::R_MICROMIPS_GOT16:
12159 if (gsym != NULL)
12161 got_offset = target->got_section()->got_offset(gsym,
12162 GOT_TYPE_STANDARD,
12163 object);
12164 gp_offset = target->got_section()->gp_offset(got_offset, object);
12165 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12166 this->calculate_only_,
12167 &this->calculated_value_);
12169 else
12171 if (rel_type == elfcpp::SHT_RELA)
12172 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
12173 psymval, r_addend,
12174 extract_addend, 0,
12175 target,
12176 this->calculate_only_,
12177 &this->calculated_value_);
12178 else if (rel_type == elfcpp::SHT_REL)
12179 reloc_status = Reloc_funcs::relgot16_local(view, object,
12180 psymval, r_addend,
12181 extract_addend,
12182 r_types[i], r_sym);
12183 else
12184 gold_unreachable();
12186 update_got_entry = changed_symbol_value;
12187 break;
12189 case elfcpp::R_MIPS_TLS_GD:
12190 case elfcpp::R_MIPS16_TLS_GD:
12191 case elfcpp::R_MICROMIPS_TLS_GD:
12192 if (gsym != NULL)
12193 got_offset = target->got_section()->got_offset(gsym,
12194 GOT_TYPE_TLS_PAIR,
12195 object);
12196 else
12197 got_offset = target->got_section()->got_offset(r_sym,
12198 GOT_TYPE_TLS_PAIR,
12199 object, r_addend);
12200 gp_offset = target->got_section()->gp_offset(got_offset, object);
12201 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12202 this->calculate_only_,
12203 &this->calculated_value_);
12204 break;
12206 case elfcpp::R_MIPS_TLS_GOTTPREL:
12207 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12208 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12209 if (gsym != NULL)
12210 got_offset = target->got_section()->got_offset(gsym,
12211 GOT_TYPE_TLS_OFFSET,
12212 object);
12213 else
12214 got_offset = target->got_section()->got_offset(r_sym,
12215 GOT_TYPE_TLS_OFFSET,
12216 object, r_addend);
12217 gp_offset = target->got_section()->gp_offset(got_offset, object);
12218 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12219 this->calculate_only_,
12220 &this->calculated_value_);
12221 break;
12223 case elfcpp::R_MIPS_TLS_LDM:
12224 case elfcpp::R_MIPS16_TLS_LDM:
12225 case elfcpp::R_MICROMIPS_TLS_LDM:
12226 // Relocate the field with the offset of the GOT entry for
12227 // the module index.
12228 got_offset = target->got_section()->tls_ldm_offset(object);
12229 gp_offset = target->got_section()->gp_offset(got_offset, object);
12230 reloc_status = Reloc_funcs::relgot(view, gp_offset,
12231 this->calculate_only_,
12232 &this->calculated_value_);
12233 break;
12235 case elfcpp::R_MIPS_GOT_PAGE:
12236 case elfcpp::R_MICROMIPS_GOT_PAGE:
12237 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12238 r_addend, extract_addend,
12239 this->calculate_only_,
12240 &this->calculated_value_);
12241 break;
12243 case elfcpp::R_MIPS_GOT_OFST:
12244 case elfcpp::R_MICROMIPS_GOT_OFST:
12245 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12246 r_addend, extract_addend,
12247 local, this->calculate_only_,
12248 &this->calculated_value_);
12249 break;
12251 case elfcpp::R_MIPS_JALR:
12252 case elfcpp::R_MICROMIPS_JALR:
12253 // This relocation is only a hint. In some cases, we optimize
12254 // it into a bal instruction. But we don't try to optimize
12255 // when the symbol does not resolve locally.
12256 if (gsym == NULL
12257 || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12258 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12259 r_addend, extract_addend,
12260 cross_mode_jump, r_types[i],
12261 target->jalr_to_bal(),
12262 target->jr_to_b(),
12263 this->calculate_only_,
12264 &this->calculated_value_);
12265 break;
12267 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12268 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12269 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12270 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12271 elfcpp::DTP_OFFSET, r_addend,
12272 extract_addend,
12273 this->calculate_only_,
12274 &this->calculated_value_);
12275 break;
12276 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12277 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12278 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12279 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12280 elfcpp::DTP_OFFSET, r_addend,
12281 extract_addend,
12282 this->calculate_only_,
12283 &this->calculated_value_);
12284 break;
12285 case elfcpp::R_MIPS_TLS_DTPREL32:
12286 case elfcpp::R_MIPS_TLS_DTPREL64:
12287 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12288 elfcpp::DTP_OFFSET, r_addend,
12289 extract_addend,
12290 this->calculate_only_,
12291 &this->calculated_value_);
12292 break;
12293 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12294 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12295 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12296 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12297 elfcpp::TP_OFFSET, r_addend,
12298 extract_addend,
12299 this->calculate_only_,
12300 &this->calculated_value_);
12301 break;
12302 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12303 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12304 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12305 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12306 elfcpp::TP_OFFSET, r_addend,
12307 extract_addend,
12308 this->calculate_only_,
12309 &this->calculated_value_);
12310 break;
12311 case elfcpp::R_MIPS_TLS_TPREL32:
12312 case elfcpp::R_MIPS_TLS_TPREL64:
12313 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12314 elfcpp::TP_OFFSET, r_addend,
12315 extract_addend,
12316 this->calculate_only_,
12317 &this->calculated_value_);
12318 break;
12319 case elfcpp::R_MIPS_SUB:
12320 case elfcpp::R_MICROMIPS_SUB:
12321 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12322 extract_addend,
12323 this->calculate_only_,
12324 &this->calculated_value_);
12325 break;
12326 case elfcpp::R_MIPS_HIGHER:
12327 case elfcpp::R_MICROMIPS_HIGHER:
12328 reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
12329 extract_addend,
12330 this->calculate_only_,
12331 &this->calculated_value_);
12332 break;
12333 case elfcpp::R_MIPS_HIGHEST:
12334 case elfcpp::R_MICROMIPS_HIGHEST:
12335 reloc_status = Reloc_funcs::relhighest(view, object, psymval,
12336 r_addend, extract_addend,
12337 this->calculate_only_,
12338 &this->calculated_value_);
12339 break;
12340 default:
12341 gold_error_at_location(relinfo, relnum, r_offset,
12342 _("unsupported reloc %u"), r_types[i]);
12343 break;
12346 if (update_got_entry)
12348 Mips_output_data_got<size, big_endian>* got = target->got_section();
12349 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12350 got->update_got_entry(got->get_primary_got_offset(mips_sym),
12351 psymval->value(object, 0));
12352 else
12353 got->update_got_entry(got_offset, psymval->value(object, 0));
12357 bool jal_shuffle = jal_reloc(r_type);
12358 Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12360 // Report any errors.
12361 switch (reloc_status)
12363 case Reloc_funcs::STATUS_OKAY:
12364 break;
12365 case Reloc_funcs::STATUS_OVERFLOW:
12366 if (gsym == NULL)
12367 gold_error_at_location(relinfo, relnum, r_offset,
12368 _("relocation overflow: "
12369 "%u against local symbol %u in %s"),
12370 r_type, r_sym, object->name().c_str());
12371 else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
12372 gold_error_at_location(relinfo, relnum, r_offset,
12373 _("relocation overflow: "
12374 "%u against '%s' defined in %s"),
12375 r_type, gsym->demangled_name().c_str(),
12376 gsym->object()->name().c_str());
12377 else
12378 gold_error_at_location(relinfo, relnum, r_offset,
12379 _("relocation overflow: %u against '%s'"),
12380 r_type, gsym->demangled_name().c_str());
12381 break;
12382 case Reloc_funcs::STATUS_BAD_RELOC:
12383 gold_error_at_location(relinfo, relnum, r_offset,
12384 _("unexpected opcode while processing relocation"));
12385 break;
12386 case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12387 gold_error_at_location(relinfo, relnum, r_offset,
12388 _("unaligned PC-relative relocation"));
12389 break;
12390 default:
12391 gold_unreachable();
12394 return true;
12397 // Get the Reference_flags for a particular relocation.
12399 template<int size, bool big_endian>
12401 Target_mips<size, big_endian>::Scan::get_reference_flags(
12402 unsigned int r_type)
12404 switch (r_type)
12406 case elfcpp::R_MIPS_NONE:
12407 // No symbol reference.
12408 return 0;
12410 case elfcpp::R_MIPS_16:
12411 case elfcpp::R_MIPS_32:
12412 case elfcpp::R_MIPS_64:
12413 case elfcpp::R_MIPS_HI16:
12414 case elfcpp::R_MIPS_LO16:
12415 case elfcpp::R_MIPS_HIGHER:
12416 case elfcpp::R_MIPS_HIGHEST:
12417 case elfcpp::R_MIPS16_HI16:
12418 case elfcpp::R_MIPS16_LO16:
12419 case elfcpp::R_MICROMIPS_HI16:
12420 case elfcpp::R_MICROMIPS_LO16:
12421 case elfcpp::R_MICROMIPS_HIGHER:
12422 case elfcpp::R_MICROMIPS_HIGHEST:
12423 return Symbol::ABSOLUTE_REF;
12425 case elfcpp::R_MIPS_26:
12426 case elfcpp::R_MIPS16_26:
12427 case elfcpp::R_MICROMIPS_26_S1:
12428 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12430 case elfcpp::R_MIPS_PC18_S3:
12431 case elfcpp::R_MIPS_PC19_S2:
12432 case elfcpp::R_MIPS_PCHI16:
12433 case elfcpp::R_MIPS_PCLO16:
12434 case elfcpp::R_MIPS_GPREL32:
12435 case elfcpp::R_MIPS_GPREL16:
12436 case elfcpp::R_MIPS_REL32:
12437 case elfcpp::R_MIPS16_GPREL:
12438 return Symbol::RELATIVE_REF;
12440 case elfcpp::R_MIPS_PC16:
12441 case elfcpp::R_MIPS_PC32:
12442 case elfcpp::R_MIPS_PC21_S2:
12443 case elfcpp::R_MIPS_PC26_S2:
12444 case elfcpp::R_MIPS_JALR:
12445 case elfcpp::R_MICROMIPS_JALR:
12446 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12448 case elfcpp::R_MIPS_GOT16:
12449 case elfcpp::R_MIPS_CALL16:
12450 case elfcpp::R_MIPS_GOT_DISP:
12451 case elfcpp::R_MIPS_GOT_HI16:
12452 case elfcpp::R_MIPS_GOT_LO16:
12453 case elfcpp::R_MIPS_CALL_HI16:
12454 case elfcpp::R_MIPS_CALL_LO16:
12455 case elfcpp::R_MIPS_LITERAL:
12456 case elfcpp::R_MIPS_GOT_PAGE:
12457 case elfcpp::R_MIPS_GOT_OFST:
12458 case elfcpp::R_MIPS16_GOT16:
12459 case elfcpp::R_MIPS16_CALL16:
12460 case elfcpp::R_MICROMIPS_GOT16:
12461 case elfcpp::R_MICROMIPS_CALL16:
12462 case elfcpp::R_MICROMIPS_GOT_HI16:
12463 case elfcpp::R_MICROMIPS_GOT_LO16:
12464 case elfcpp::R_MICROMIPS_CALL_HI16:
12465 case elfcpp::R_MICROMIPS_CALL_LO16:
12466 case elfcpp::R_MIPS_EH:
12467 // Absolute in GOT.
12468 return Symbol::RELATIVE_REF;
12470 case elfcpp::R_MIPS_TLS_DTPMOD32:
12471 case elfcpp::R_MIPS_TLS_DTPREL32:
12472 case elfcpp::R_MIPS_TLS_DTPMOD64:
12473 case elfcpp::R_MIPS_TLS_DTPREL64:
12474 case elfcpp::R_MIPS_TLS_GD:
12475 case elfcpp::R_MIPS_TLS_LDM:
12476 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12477 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12478 case elfcpp::R_MIPS_TLS_GOTTPREL:
12479 case elfcpp::R_MIPS_TLS_TPREL32:
12480 case elfcpp::R_MIPS_TLS_TPREL64:
12481 case elfcpp::R_MIPS_TLS_TPREL_HI16:
12482 case elfcpp::R_MIPS_TLS_TPREL_LO16:
12483 case elfcpp::R_MIPS16_TLS_GD:
12484 case elfcpp::R_MIPS16_TLS_GOTTPREL:
12485 case elfcpp::R_MICROMIPS_TLS_GD:
12486 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12487 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12488 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12489 return Symbol::TLS_REF;
12491 case elfcpp::R_MIPS_COPY:
12492 case elfcpp::R_MIPS_JUMP_SLOT:
12493 default:
12494 // Not expected. We will give an error later.
12495 return 0;
12499 // Report an unsupported relocation against a local symbol.
12501 template<int size, bool big_endian>
12502 void
12503 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12504 Sized_relobj_file<size, big_endian>* object,
12505 unsigned int r_type)
12507 gold_error(_("%s: unsupported reloc %u against local symbol"),
12508 object->name().c_str(), r_type);
12511 // Report an unsupported relocation against a global symbol.
12513 template<int size, bool big_endian>
12514 void
12515 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12516 Sized_relobj_file<size, big_endian>* object,
12517 unsigned int r_type,
12518 Symbol* gsym)
12520 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12521 object->name().c_str(), r_type, gsym->demangled_name().c_str());
12524 // Return printable name for ABI.
12525 template<int size, bool big_endian>
12526 const char*
12527 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12529 switch (e_flags & elfcpp::EF_MIPS_ABI)
12531 case 0:
12532 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12533 return "N32";
12534 else if (size == 64)
12535 return "64";
12536 else
12537 return "none";
12538 case elfcpp::EF_MIPS_ABI_O32:
12539 return "O32";
12540 case elfcpp::EF_MIPS_ABI_O64:
12541 return "O64";
12542 case elfcpp::EF_MIPS_ABI_EABI32:
12543 return "EABI32";
12544 case elfcpp::EF_MIPS_ABI_EABI64:
12545 return "EABI64";
12546 default:
12547 return "unknown abi";
12551 template<int size, bool big_endian>
12552 const char*
12553 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12555 switch (e_flags & elfcpp::EF_MIPS_MACH)
12557 case elfcpp::EF_MIPS_MACH_3900:
12558 return "mips:3900";
12559 case elfcpp::EF_MIPS_MACH_4010:
12560 return "mips:4010";
12561 case elfcpp::EF_MIPS_MACH_4100:
12562 return "mips:4100";
12563 case elfcpp::EF_MIPS_MACH_4111:
12564 return "mips:4111";
12565 case elfcpp::EF_MIPS_MACH_4120:
12566 return "mips:4120";
12567 case elfcpp::EF_MIPS_MACH_4650:
12568 return "mips:4650";
12569 case elfcpp::EF_MIPS_MACH_5400:
12570 return "mips:5400";
12571 case elfcpp::EF_MIPS_MACH_5500:
12572 return "mips:5500";
12573 case elfcpp::EF_MIPS_MACH_5900:
12574 return "mips:5900";
12575 case elfcpp::EF_MIPS_MACH_SB1:
12576 return "mips:sb1";
12577 case elfcpp::EF_MIPS_MACH_9000:
12578 return "mips:9000";
12579 case elfcpp::EF_MIPS_MACH_LS2E:
12580 return "mips:loongson_2e";
12581 case elfcpp::EF_MIPS_MACH_LS2F:
12582 return "mips:loongson_2f";
12583 case elfcpp::EF_MIPS_MACH_GS464:
12584 return "mips:gs464";
12585 case elfcpp::EF_MIPS_MACH_GS464E:
12586 return "mips:gs464e";
12587 case elfcpp::EF_MIPS_MACH_GS264E:
12588 return "mips:gs264e";
12589 case elfcpp::EF_MIPS_MACH_OCTEON:
12590 return "mips:octeon";
12591 case elfcpp::EF_MIPS_MACH_OCTEON2:
12592 return "mips:octeon2";
12593 case elfcpp::EF_MIPS_MACH_OCTEON3:
12594 return "mips:octeon3";
12595 case elfcpp::EF_MIPS_MACH_XLR:
12596 return "mips:xlr";
12597 default:
12598 switch (e_flags & elfcpp::EF_MIPS_ARCH)
12600 default:
12601 case elfcpp::EF_MIPS_ARCH_1:
12602 return "mips:3000";
12604 case elfcpp::EF_MIPS_ARCH_2:
12605 return "mips:6000";
12607 case elfcpp::EF_MIPS_ARCH_3:
12608 return "mips:4000";
12610 case elfcpp::EF_MIPS_ARCH_4:
12611 return "mips:8000";
12613 case elfcpp::EF_MIPS_ARCH_5:
12614 return "mips:mips5";
12616 case elfcpp::EF_MIPS_ARCH_32:
12617 return "mips:isa32";
12619 case elfcpp::EF_MIPS_ARCH_64:
12620 return "mips:isa64";
12622 case elfcpp::EF_MIPS_ARCH_32R2:
12623 return "mips:isa32r2";
12625 case elfcpp::EF_MIPS_ARCH_32R6:
12626 return "mips:isa32r6";
12628 case elfcpp::EF_MIPS_ARCH_64R2:
12629 return "mips:isa64r2";
12631 case elfcpp::EF_MIPS_ARCH_64R6:
12632 return "mips:isa64r6";
12635 return "unknown CPU";
12638 template<int size, bool big_endian>
12639 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12641 size, // size
12642 big_endian, // is_big_endian
12643 elfcpp::EM_MIPS, // machine_code
12644 true, // has_make_symbol
12645 false, // has_resolve
12646 false, // has_code_fill
12647 true, // is_default_stack_executable
12648 false, // can_icf_inline_merge_sections
12649 '\0', // wrap_char
12650 size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
12651 0x400000, // default_text_segment_address
12652 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
12653 4 * 1024, // common_pagesize (overridable by -z common-page-size)
12654 false, // isolate_execinstr
12655 0, // rosegment_gap
12656 elfcpp::SHN_UNDEF, // small_common_shndx
12657 elfcpp::SHN_UNDEF, // large_common_shndx
12658 0, // small_common_section_flags
12659 0, // large_common_section_flags
12660 NULL, // attributes_section
12661 NULL, // attributes_vendor
12662 "__start", // entry_symbol_name
12663 32, // hash_entry_size
12664 elfcpp::SHT_PROGBITS, // unwind_section_type
12667 template<int size, bool big_endian>
12668 class Target_mips_nacl : public Target_mips<size, big_endian>
12670 public:
12671 Target_mips_nacl()
12672 : Target_mips<size, big_endian>(&mips_nacl_info)
12675 private:
12676 static const Target::Target_info mips_nacl_info;
12679 template<int size, bool big_endian>
12680 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12682 size, // size
12683 big_endian, // is_big_endian
12684 elfcpp::EM_MIPS, // machine_code
12685 true, // has_make_symbol
12686 false, // has_resolve
12687 false, // has_code_fill
12688 true, // is_default_stack_executable
12689 false, // can_icf_inline_merge_sections
12690 '\0', // wrap_char
12691 "/lib/ld.so.1", // dynamic_linker
12692 0x20000, // default_text_segment_address
12693 0x10000, // abi_pagesize (overridable by -z max-page-size)
12694 0x10000, // common_pagesize (overridable by -z common-page-size)
12695 true, // isolate_execinstr
12696 0x10000000, // rosegment_gap
12697 elfcpp::SHN_UNDEF, // small_common_shndx
12698 elfcpp::SHN_UNDEF, // large_common_shndx
12699 0, // small_common_section_flags
12700 0, // large_common_section_flags
12701 NULL, // attributes_section
12702 NULL, // attributes_vendor
12703 "_start", // entry_symbol_name
12704 32, // hash_entry_size
12705 elfcpp::SHT_PROGBITS, // unwind_section_type
12708 // Target selector for Mips. Note this is never instantiated directly.
12709 // It's only used in Target_selector_mips_nacl, below.
12711 template<int size, bool big_endian>
12712 class Target_selector_mips : public Target_selector
12714 public:
12715 Target_selector_mips()
12716 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12717 (size == 64 ?
12718 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12719 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12720 (size == 64 ?
12721 (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12722 (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12725 Target* do_instantiate_target()
12726 { return new Target_mips<size, big_endian>(); }
12729 template<int size, bool big_endian>
12730 class Target_selector_mips_nacl
12731 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12732 Target_mips_nacl<size, big_endian> >
12734 public:
12735 Target_selector_mips_nacl()
12736 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12737 Target_mips_nacl<size, big_endian> >(
12738 // NaCl currently supports only MIPS32 little-endian.
12739 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12743 Target_selector_mips_nacl<32, true> target_selector_mips32;
12744 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12745 Target_selector_mips_nacl<64, true> target_selector_mips64;
12746 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12748 } // End anonymous namespace.