Automatic date update in version.in
[binutils-gdb.git] / gdb / target.h
blob486a0a687b0c889791274054d93f2b99faa69606
1 /* Interface between GDB and target environments, including files and processes
3 Copyright (C) 1990-2024 Free Software Foundation, Inc.
5 Contributed by Cygnus Support. Written by John Gilmore.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #if !defined (TARGET_H)
23 #define TARGET_H
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct trace_state_variable;
33 struct trace_status;
34 struct uploaded_tsv;
35 struct uploaded_tp;
36 struct static_tracepoint_marker;
37 struct traceframe_info;
38 struct expression;
39 struct dcache_struct;
40 struct inferior;
42 /* Define const gdb_byte using one identifier, to make it easy for
43 make-target-delegates.py to parse. */
44 typedef const gdb_byte const_gdb_byte;
46 #include "infrun.h"
47 #include "breakpoint.h"
48 #include "gdbsupport/scoped_restore.h"
49 #include "gdbsupport/refcounted-object.h"
50 #include "target-section.h"
52 /* This include file defines the interface between the main part
53 of the debugger, and the part which is target-specific, or
54 specific to the communications interface between us and the
55 target.
57 A TARGET is an interface between the debugger and a particular
58 kind of file or process. Targets can be STACKED in STRATA,
59 so that more than one target can potentially respond to a request.
60 In particular, memory accesses will walk down the stack of targets
61 until they find a target that is interested in handling that particular
62 address. STRATA are artificial boundaries on the stack, within
63 which particular kinds of targets live. Strata exist so that
64 people don't get confused by pushing e.g. a process target and then
65 a file target, and wondering why they can't see the current values
66 of variables any more (the file target is handling them and they
67 never get to the process target). So when you push a file target,
68 it goes into the file stratum, which is always below the process
69 stratum.
71 Note that rather than allow an empty stack, we always have the
72 dummy target at the bottom stratum, so we can call the target
73 methods without checking them. */
75 #include "target/target.h"
76 #include "target/resume.h"
77 #include "target/wait.h"
78 #include "target/waitstatus.h"
79 #include "bfd.h"
80 #include "symtab.h"
81 #include "memattr.h"
82 #include "gdbsupport/gdb_signals.h"
83 #include "btrace.h"
84 #include "record.h"
85 #include "command.h"
86 #include "disasm-flags.h"
87 #include "tracepoint.h"
88 #include "gdbsupport/fileio.h"
89 #include "gdbsupport/x86-xstate.h"
91 #include "gdbsupport/break-common.h"
93 enum strata
95 dummy_stratum, /* The lowest of the low */
96 file_stratum, /* Executable files, etc */
97 process_stratum, /* Executing processes or core dump files */
98 thread_stratum, /* Executing threads */
99 record_stratum, /* Support record debugging */
100 arch_stratum, /* Architecture overrides */
101 debug_stratum /* Target debug. Must be last. */
104 enum thread_control_capabilities
106 tc_none = 0, /* Default: can't control thread execution. */
107 tc_schedlock = 1, /* Can lock the thread scheduler. */
110 /* The structure below stores information about a system call.
111 It is basically used in the "catch syscall" command, and in
112 every function that gives information about a system call.
114 It's also good to mention that its fields represent everything
115 that we currently know about a syscall in GDB. */
116 struct syscall
118 /* The syscall number. */
119 int number;
121 /* The syscall name. */
122 const char *name;
125 /* Return a pretty printed form of TARGET_OPTIONS. */
126 extern std::string target_options_to_string (target_wait_flags target_options);
128 /* Possible types of events that the inferior handler will have to
129 deal with. */
130 enum inferior_event_type
132 /* Process a normal inferior event which will result in target_wait
133 being called. */
134 INF_REG_EVENT,
135 /* We are called to do stuff after the inferior stops. */
136 INF_EXEC_COMPLETE,
139 /* Target objects which can be transfered using target_read,
140 target_write, et cetera. */
142 enum target_object
144 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
145 TARGET_OBJECT_AVR,
146 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
147 TARGET_OBJECT_MEMORY,
148 /* Memory, avoiding GDB's data cache and trusting the executable.
149 Target implementations of to_xfer_partial never need to handle
150 this object, and most callers should not use it. */
151 TARGET_OBJECT_RAW_MEMORY,
152 /* Memory known to be part of the target's stack. This is cached even
153 if it is not in a region marked as such, since it is known to be
154 "normal" RAM. */
155 TARGET_OBJECT_STACK_MEMORY,
156 /* Memory known to be part of the target code. This is cached even
157 if it is not in a region marked as such. */
158 TARGET_OBJECT_CODE_MEMORY,
159 /* Kernel Unwind Table. See "ia64-tdep.c". */
160 TARGET_OBJECT_UNWIND_TABLE,
161 /* Transfer auxilliary vector. */
162 TARGET_OBJECT_AUXV,
163 /* StackGhost cookie. See "sparc-tdep.c". */
164 TARGET_OBJECT_WCOOKIE,
165 /* Target memory map in XML format. */
166 TARGET_OBJECT_MEMORY_MAP,
167 /* Flash memory. This object can be used to write contents to
168 a previously erased flash memory. Using it without erasing
169 flash can have unexpected results. Addresses are physical
170 address on target, and not relative to flash start. */
171 TARGET_OBJECT_FLASH,
172 /* Available target-specific features, e.g. registers and coprocessors.
173 See "target-descriptions.c". ANNEX should never be empty. */
174 TARGET_OBJECT_AVAILABLE_FEATURES,
175 /* Currently loaded libraries, in XML format. */
176 TARGET_OBJECT_LIBRARIES,
177 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
178 TARGET_OBJECT_LIBRARIES_SVR4,
179 /* Currently loaded libraries specific to AIX systems, in XML format. */
180 TARGET_OBJECT_LIBRARIES_AIX,
181 /* Get OS specific data. The ANNEX specifies the type (running
182 processes, etc.). The data being transfered is expected to follow
183 the DTD specified in features/osdata.dtd. */
184 TARGET_OBJECT_OSDATA,
185 /* Extra signal info. Usually the contents of `siginfo_t' on unix
186 platforms. */
187 TARGET_OBJECT_SIGNAL_INFO,
188 /* The list of threads that are being debugged. */
189 TARGET_OBJECT_THREADS,
190 /* Collected static trace data. */
191 TARGET_OBJECT_STATIC_TRACE_DATA,
192 /* Traceframe info, in XML format. */
193 TARGET_OBJECT_TRACEFRAME_INFO,
194 /* Load maps for FDPIC systems. */
195 TARGET_OBJECT_FDPIC,
196 /* Darwin dynamic linker info data. */
197 TARGET_OBJECT_DARWIN_DYLD_INFO,
198 /* OpenVMS Unwind Information Block. */
199 TARGET_OBJECT_OPENVMS_UIB,
200 /* Branch trace data, in XML format. */
201 TARGET_OBJECT_BTRACE,
202 /* Branch trace configuration, in XML format. */
203 TARGET_OBJECT_BTRACE_CONF,
204 /* The pathname of the executable file that was run to create
205 a specified process. ANNEX should be a string representation
206 of the process ID of the process in question, in hexadecimal
207 format. */
208 TARGET_OBJECT_EXEC_FILE,
209 /* FreeBSD virtual memory mappings. */
210 TARGET_OBJECT_FREEBSD_VMMAP,
211 /* FreeBSD process strings. */
212 TARGET_OBJECT_FREEBSD_PS_STRINGS,
213 /* Possible future objects: TARGET_OBJECT_FILE, ... */
216 /* Possible values returned by target_xfer_partial, etc. */
218 enum target_xfer_status
220 /* Some bytes are transferred. */
221 TARGET_XFER_OK = 1,
223 /* No further transfer is possible. */
224 TARGET_XFER_EOF = 0,
226 /* The piece of the object requested is unavailable. */
227 TARGET_XFER_UNAVAILABLE = 2,
229 /* Generic I/O error. Note that it's important that this is '-1',
230 as we still have target_xfer-related code returning hardcoded
231 '-1' on error. */
232 TARGET_XFER_E_IO = -1,
234 /* Keep list in sync with target_xfer_status_to_string. */
237 /* Return the string form of STATUS. */
239 extern const char *
240 target_xfer_status_to_string (enum target_xfer_status status);
242 typedef enum target_xfer_status
243 target_xfer_partial_ftype (struct target_ops *ops,
244 enum target_object object,
245 const char *annex,
246 gdb_byte *readbuf,
247 const gdb_byte *writebuf,
248 ULONGEST offset,
249 ULONGEST len,
250 ULONGEST *xfered_len);
252 enum target_xfer_status
253 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
254 const gdb_byte *writebuf, ULONGEST memaddr,
255 LONGEST len, ULONGEST *xfered_len);
257 /* Request that OPS transfer up to LEN addressable units of the target's
258 OBJECT. When reading from a memory object, the size of an addressable unit
259 is architecture dependent and can be found using
260 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
261 byte long. BUF should point to a buffer large enough to hold the read data,
262 taking into account the addressable unit size. The OFFSET, for a seekable
263 object, specifies the starting point. The ANNEX can be used to provide
264 additional data-specific information to the target.
266 Return the number of addressable units actually transferred, or a negative
267 error code (an 'enum target_xfer_error' value) if the transfer is not
268 supported or otherwise fails. Return of a positive value less than
269 LEN indicates that no further transfer is possible. Unlike the raw
270 to_xfer_partial interface, callers of these functions do not need
271 to retry partial transfers. */
273 extern LONGEST target_read (struct target_ops *ops,
274 enum target_object object,
275 const char *annex, gdb_byte *buf,
276 ULONGEST offset, LONGEST len);
278 struct memory_read_result
280 memory_read_result (ULONGEST begin_, ULONGEST end_,
281 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
282 : begin (begin_),
283 end (end_),
284 data (std::move (data_))
288 ~memory_read_result () = default;
290 memory_read_result (memory_read_result &&other) = default;
292 DISABLE_COPY_AND_ASSIGN (memory_read_result);
294 /* First address that was read. */
295 ULONGEST begin;
296 /* Past-the-end address. */
297 ULONGEST end;
298 /* The data. */
299 gdb::unique_xmalloc_ptr<gdb_byte> data;
302 extern std::vector<memory_read_result> read_memory_robust
303 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
305 /* Request that OPS transfer up to LEN addressable units from BUF to the
306 target's OBJECT. When writing to a memory object, the addressable unit
307 size is architecture dependent and can be found using
308 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
309 byte long. The OFFSET, for a seekable object, specifies the starting point.
310 The ANNEX can be used to provide additional data-specific information to
311 the target.
313 Return the number of addressable units actually transferred, or a negative
314 error code (an 'enum target_xfer_status' value) if the transfer is not
315 supported or otherwise fails. Return of a positive value less than
316 LEN indicates that no further transfer is possible. Unlike the raw
317 to_xfer_partial interface, callers of these functions do not need to
318 retry partial transfers. */
320 extern LONGEST target_write (struct target_ops *ops,
321 enum target_object object,
322 const char *annex, const gdb_byte *buf,
323 ULONGEST offset, LONGEST len);
325 /* Similar to target_write, except that it also calls PROGRESS with
326 the number of bytes written and the opaque BATON after every
327 successful partial write (and before the first write). This is
328 useful for progress reporting and user interaction while writing
329 data. To abort the transfer, the progress callback can throw an
330 exception. */
332 LONGEST target_write_with_progress (struct target_ops *ops,
333 enum target_object object,
334 const char *annex, const gdb_byte *buf,
335 ULONGEST offset, LONGEST len,
336 void (*progress) (ULONGEST, void *),
337 void *baton);
339 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
340 using OPS. The return value will be uninstantiated if the transfer fails or
341 is not supported.
343 This method should be used for objects sufficiently small to store
344 in a single xmalloc'd buffer, when no fixed bound on the object's
345 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
346 through this function. */
348 extern std::optional<gdb::byte_vector> target_read_alloc
349 (struct target_ops *ops, enum target_object object, const char *annex);
351 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
352 (therefore usable as a NUL-terminated string). If an error occurs or the
353 transfer is unsupported, the return value will be uninstantiated. Empty
354 objects are returned as allocated but empty strings. Therefore, on success,
355 the returned vector is guaranteed to have at least one element. A warning is
356 issued if the result contains any embedded NUL bytes. */
358 extern std::optional<gdb::char_vector> target_read_stralloc
359 (struct target_ops *ops, enum target_object object, const char *annex);
361 /* See target_ops->to_xfer_partial. */
362 extern target_xfer_partial_ftype target_xfer_partial;
364 /* Wrappers to target read/write that perform memory transfers. They
365 throw an error if the memory transfer fails.
367 NOTE: cagney/2003-10-23: The naming schema is lifted from
368 "frame.h". The parameter order is lifted from get_frame_memory,
369 which in turn lifted it from read_memory. */
371 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
372 gdb_byte *buf, LONGEST len);
373 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
374 CORE_ADDR addr, int len,
375 enum bfd_endian byte_order);
377 struct thread_info; /* fwd decl for parameter list below: */
379 /* The type of the callback to the to_async method. */
381 typedef void async_callback_ftype (enum inferior_event_type event_type,
382 void *context);
384 /* Normally target debug printing is purely type-based. However,
385 sometimes it is necessary to override the debug printing on a
386 per-argument basis. This macro can be used, attribute-style, to
387 name the target debug printing function for a particular method
388 argument. FUNC is the name of the function. The macro's
389 definition is empty because it is only used by the
390 make-target-delegates script. */
392 #define TARGET_DEBUG_PRINTER(FUNC)
394 /* These defines are used to mark target_ops methods. The script
395 make-target-delegates scans these and auto-generates the base
396 method implementations. There are four macros that can be used:
398 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
399 does nothing. This is only valid if the method return type is
400 'void'.
402 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
403 'tcomplain ()'. The base method simply makes this call, which is
404 assumed not to return.
406 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
407 base method returns this expression's value.
409 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
410 make-target-delegates does not generate a base method in this case,
411 but instead uses the argument function as the base method. */
413 #define TARGET_DEFAULT_IGNORE()
414 #define TARGET_DEFAULT_NORETURN(ARG)
415 #define TARGET_DEFAULT_RETURN(ARG)
416 #define TARGET_DEFAULT_FUNC(ARG)
418 /* Each target that can be activated with "target TARGET_NAME" passes
419 the address of one of these objects to add_target, which uses the
420 object's address as unique identifier, and registers the "target
421 TARGET_NAME" command using SHORTNAME as target name. */
423 struct target_info
425 /* Name of this target. */
426 const char *shortname;
428 /* Name for printing. */
429 const char *longname;
431 /* Documentation. Does not include trailing newline, and starts
432 with a one-line description (probably similar to longname). */
433 const char *doc;
436 struct target_ops
437 : public refcounted_object
439 /* Return this target's stratum. */
440 virtual strata stratum () const = 0;
442 /* To the target under this one. */
443 target_ops *beneath () const;
445 /* Free resources associated with the target. Note that singleton
446 targets, like e.g., native targets, are global objects, not
447 heap allocated, and are thus only deleted on GDB exit. The
448 main teardown entry point is the "close" method, below. */
449 virtual ~target_ops () {}
451 /* Return a reference to this target's unique target_info
452 object. */
453 virtual const target_info &info () const = 0;
455 /* Name this target type. */
456 const char *shortname () const
457 { return info ().shortname; }
459 const char *longname () const
460 { return info ().longname; }
462 /* Close the target. This is where the target can handle
463 teardown. Heap-allocated targets should delete themselves
464 before returning. */
465 virtual void close ();
467 /* Attaches to a process on the target side. Arguments are as
468 passed to the `attach' command by the user. This routine can
469 be called when the target is not on the target-stack, if the
470 target_ops::can_run method returns 1; in that case, it must push
471 itself onto the stack. Upon exit, the target should be ready
472 for normal operations, and should be ready to deliver the
473 status of the process immediately (without waiting) to an
474 upcoming target_wait call. */
475 virtual bool can_attach ();
476 virtual void attach (const char *, int);
477 virtual void post_attach (int)
478 TARGET_DEFAULT_IGNORE ();
480 /* Detaches from the inferior. Note that on targets that support
481 async execution (i.e., targets where it is possible to detach
482 from programs with threads running), the target is responsible
483 for removing breakpoints from the program before the actual
484 detach, otherwise the program dies when it hits one. */
485 virtual void detach (inferior *, int)
486 TARGET_DEFAULT_IGNORE ();
488 virtual void disconnect (const char *, int)
489 TARGET_DEFAULT_NORETURN (tcomplain ());
490 virtual void resume (ptid_t,
491 int TARGET_DEBUG_PRINTER (target_debug_print_step),
492 enum gdb_signal)
493 TARGET_DEFAULT_NORETURN (noprocess ());
495 /* Ensure that all resumed threads are committed to the target.
497 See the description of
498 process_stratum_target::commit_resumed_state for more
499 details. */
500 virtual void commit_resumed ()
501 TARGET_DEFAULT_IGNORE ();
503 /* See target_wait's description. Note that implementations of
504 this method must not assume that inferior_ptid on entry is
505 pointing at the thread or inferior that ends up reporting an
506 event. The reported event could be for some other thread in
507 the current inferior or even for a different process of the
508 current target. inferior_ptid may also be null_ptid on
509 entry. */
510 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
511 target_wait_flags options)
512 TARGET_DEFAULT_FUNC (default_target_wait);
513 virtual void fetch_registers (struct regcache *, int)
514 TARGET_DEFAULT_IGNORE ();
515 virtual void store_registers (struct regcache *, int)
516 TARGET_DEFAULT_NORETURN (noprocess ());
517 virtual void prepare_to_store (struct regcache *)
518 TARGET_DEFAULT_NORETURN (noprocess ());
520 virtual void files_info ()
521 TARGET_DEFAULT_IGNORE ();
522 virtual int insert_breakpoint (struct gdbarch *,
523 struct bp_target_info *)
524 TARGET_DEFAULT_NORETURN (noprocess ());
525 virtual int remove_breakpoint (struct gdbarch *,
526 struct bp_target_info *,
527 enum remove_bp_reason)
528 TARGET_DEFAULT_NORETURN (noprocess ());
530 /* Returns true if the target stopped because it executed a
531 software breakpoint. This is necessary for correct background
532 execution / non-stop mode operation, and for correct PC
533 adjustment on targets where the PC needs to be adjusted when a
534 software breakpoint triggers. In these modes, by the time GDB
535 processes a breakpoint event, the breakpoint may already be
536 done from the target, so GDB needs to be able to tell whether
537 it should ignore the event and whether it should adjust the PC.
538 See adjust_pc_after_break. */
539 virtual bool stopped_by_sw_breakpoint ()
540 TARGET_DEFAULT_RETURN (false);
541 /* Returns true if the above method is supported. */
542 virtual bool supports_stopped_by_sw_breakpoint ()
543 TARGET_DEFAULT_RETURN (false);
545 /* Returns true if the target stopped for a hardware breakpoint.
546 Likewise, if the target supports hardware breakpoints, this
547 method is necessary for correct background execution / non-stop
548 mode operation. Even though hardware breakpoints do not
549 require PC adjustment, GDB needs to be able to tell whether the
550 hardware breakpoint event is a delayed event for a breakpoint
551 that is already gone and should thus be ignored. */
552 virtual bool stopped_by_hw_breakpoint ()
553 TARGET_DEFAULT_RETURN (false);
554 /* Returns true if the above method is supported. */
555 virtual bool supports_stopped_by_hw_breakpoint ()
556 TARGET_DEFAULT_RETURN (false);
558 virtual int can_use_hw_breakpoint (enum bptype, int, int)
559 TARGET_DEFAULT_RETURN (0);
560 virtual int ranged_break_num_registers ()
561 TARGET_DEFAULT_RETURN (-1);
562 virtual int insert_hw_breakpoint (struct gdbarch *,
563 struct bp_target_info *)
564 TARGET_DEFAULT_RETURN (-1);
565 virtual int remove_hw_breakpoint (struct gdbarch *,
566 struct bp_target_info *)
567 TARGET_DEFAULT_RETURN (-1);
569 /* Documentation of what the two routines below are expected to do is
570 provided with the corresponding target_* macros. */
571 virtual int remove_watchpoint (CORE_ADDR, int,
572 enum target_hw_bp_type, struct expression *)
573 TARGET_DEFAULT_RETURN (-1);
574 virtual int insert_watchpoint (CORE_ADDR, int,
575 enum target_hw_bp_type, struct expression *)
576 TARGET_DEFAULT_RETURN (-1);
578 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
579 enum target_hw_bp_type)
580 TARGET_DEFAULT_RETURN (1);
581 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
582 enum target_hw_bp_type)
583 TARGET_DEFAULT_RETURN (1);
584 virtual bool stopped_by_watchpoint ()
585 TARGET_DEFAULT_RETURN (false);
586 virtual bool have_steppable_watchpoint ()
587 TARGET_DEFAULT_RETURN (false);
588 virtual bool stopped_data_address (CORE_ADDR *)
589 TARGET_DEFAULT_RETURN (false);
590 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
591 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
593 /* Documentation of this routine is provided with the corresponding
594 target_* macro. */
595 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
596 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
598 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
599 struct expression *)
600 TARGET_DEFAULT_RETURN (false);
601 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
602 TARGET_DEFAULT_RETURN (-1);
604 /* Return 1 for sure target can do single step. Return -1 for
605 unknown. Return 0 for target can't do. */
606 virtual int can_do_single_step ()
607 TARGET_DEFAULT_RETURN (-1);
609 virtual bool supports_terminal_ours ()
610 TARGET_DEFAULT_RETURN (false);
611 virtual void terminal_init ()
612 TARGET_DEFAULT_IGNORE ();
613 virtual void terminal_inferior ()
614 TARGET_DEFAULT_IGNORE ();
615 virtual void terminal_save_inferior ()
616 TARGET_DEFAULT_IGNORE ();
617 virtual void terminal_ours_for_output ()
618 TARGET_DEFAULT_IGNORE ();
619 virtual void terminal_ours ()
620 TARGET_DEFAULT_IGNORE ();
621 virtual void terminal_info (const char *, int)
622 TARGET_DEFAULT_FUNC (default_terminal_info);
623 virtual void kill ()
624 TARGET_DEFAULT_NORETURN (noprocess ());
625 virtual void load (const char *, int)
626 TARGET_DEFAULT_NORETURN (tcomplain ());
627 /* Start an inferior process and set inferior_ptid to its pid.
628 EXEC_FILE is the file to run.
629 ALLARGS is a string containing the arguments to the program.
630 ENV is the environment vector to pass. Errors reported with error().
631 On VxWorks and various standalone systems, we ignore exec_file. */
632 virtual bool can_create_inferior ();
633 virtual void create_inferior (const char *, const std::string &,
634 char **, int);
635 virtual int insert_fork_catchpoint (int)
636 TARGET_DEFAULT_RETURN (1);
637 virtual int remove_fork_catchpoint (int)
638 TARGET_DEFAULT_RETURN (1);
639 virtual int insert_vfork_catchpoint (int)
640 TARGET_DEFAULT_RETURN (1);
641 virtual int remove_vfork_catchpoint (int)
642 TARGET_DEFAULT_RETURN (1);
643 virtual void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool)
644 TARGET_DEFAULT_FUNC (default_follow_fork);
646 /* Add CHILD_PTID to the thread list, after handling a
647 TARGET_WAITKIND_THREAD_CLONE event for the clone parent. The
648 parent is inferior_ptid. */
649 virtual void follow_clone (ptid_t child_ptid)
650 TARGET_DEFAULT_FUNC (default_follow_clone);
652 virtual int insert_exec_catchpoint (int)
653 TARGET_DEFAULT_RETURN (1);
654 virtual int remove_exec_catchpoint (int)
655 TARGET_DEFAULT_RETURN (1);
656 virtual void follow_exec (inferior *, ptid_t, const char *)
657 TARGET_DEFAULT_IGNORE ();
658 virtual int set_syscall_catchpoint (int, bool, int,
659 gdb::array_view<const int>)
660 TARGET_DEFAULT_RETURN (1);
661 virtual void mourn_inferior ()
662 TARGET_DEFAULT_FUNC (default_mourn_inferior);
664 /* Note that can_run is special and can be invoked on an unpushed
665 target. Targets defining this method must also define
666 to_can_async_p and to_supports_non_stop. */
667 virtual bool can_run ();
669 /* Documentation of this routine is provided with the corresponding
670 target_* macro. */
671 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
672 TARGET_DEFAULT_IGNORE ();
674 /* Documentation of this routine is provided with the
675 corresponding target_* function. */
676 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
677 TARGET_DEFAULT_IGNORE ();
679 virtual bool thread_alive (ptid_t ptid)
680 TARGET_DEFAULT_RETURN (false);
681 virtual void update_thread_list ()
682 TARGET_DEFAULT_IGNORE ();
683 virtual std::string pid_to_str (ptid_t)
684 TARGET_DEFAULT_FUNC (default_pid_to_str);
685 virtual const char *extra_thread_info (thread_info *)
686 TARGET_DEFAULT_RETURN (NULL);
687 virtual const char *thread_name (thread_info *)
688 TARGET_DEFAULT_RETURN (NULL);
689 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
690 int,
691 inferior *inf)
692 TARGET_DEFAULT_RETURN (NULL);
693 /* See target_thread_info_to_thread_handle. */
694 virtual gdb::array_view<const_gdb_byte> thread_info_to_thread_handle (struct thread_info *)
695 TARGET_DEFAULT_RETURN (gdb::array_view<const gdb_byte> ());
696 virtual void stop (ptid_t)
697 TARGET_DEFAULT_IGNORE ();
698 virtual void interrupt ()
699 TARGET_DEFAULT_IGNORE ();
700 virtual void pass_ctrlc ()
701 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
702 virtual void rcmd (const char *command, struct ui_file *output)
703 TARGET_DEFAULT_FUNC (default_rcmd);
704 virtual const char *pid_to_exec_file (int pid)
705 TARGET_DEFAULT_RETURN (NULL);
706 virtual void log_command (const char *)
707 TARGET_DEFAULT_IGNORE ();
708 virtual const std::vector<target_section> *get_section_table ()
709 TARGET_DEFAULT_RETURN (default_get_section_table ());
711 /* Provide default values for all "must have" methods. */
712 virtual bool has_all_memory () { return false; }
713 virtual bool has_memory () { return false; }
714 virtual bool has_stack () { return false; }
715 virtual bool has_registers () { return false; }
716 virtual bool has_execution (inferior *inf) { return false; }
718 /* Control thread execution. */
719 virtual thread_control_capabilities get_thread_control_capabilities ()
720 TARGET_DEFAULT_RETURN (tc_none);
721 virtual bool attach_no_wait ()
722 TARGET_DEFAULT_RETURN (0);
723 /* This method must be implemented in some situations. See the
724 comment on 'can_run'. */
725 virtual bool can_async_p ()
726 TARGET_DEFAULT_RETURN (false);
727 virtual bool is_async_p ()
728 TARGET_DEFAULT_RETURN (false);
729 virtual void async (bool)
730 TARGET_DEFAULT_NORETURN (tcomplain ());
731 virtual int async_wait_fd ()
732 TARGET_DEFAULT_NORETURN (noprocess ());
733 /* Return true if the target has pending events to report to the
734 core. If true, then GDB avoids resuming the target until all
735 pending events are consumed, so that multiple resumptions can
736 be coalesced as an optimization. Most targets can't tell
737 whether they have pending events without calling target_wait,
738 so we default to returning false. The only downside is that a
739 potential optimization is missed. */
740 virtual bool has_pending_events ()
741 TARGET_DEFAULT_RETURN (false);
742 virtual void thread_events (int)
743 TARGET_DEFAULT_IGNORE ();
744 /* Returns true if the target supports setting thread options
745 OPTIONS, false otherwise. */
746 virtual bool supports_set_thread_options (gdb_thread_options options)
747 TARGET_DEFAULT_RETURN (false);
748 /* This method must be implemented in some situations. See the
749 comment on 'can_run'. */
750 virtual bool supports_non_stop ()
751 TARGET_DEFAULT_RETURN (false);
752 /* Return true if the target operates in non-stop mode even with
753 "set non-stop off". */
754 virtual bool always_non_stop_p ()
755 TARGET_DEFAULT_RETURN (false);
756 /* find_memory_regions support method for gcore */
757 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
758 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
759 /* make_corefile_notes support method for gcore */
760 virtual gdb::unique_xmalloc_ptr<char> make_corefile_notes (bfd *, int *)
761 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
762 /* get_bookmark support method for bookmarks */
763 virtual gdb_byte *get_bookmark (const char *, int)
764 TARGET_DEFAULT_NORETURN (tcomplain ());
765 /* goto_bookmark support method for bookmarks */
766 virtual void goto_bookmark (const gdb_byte *, int)
767 TARGET_DEFAULT_NORETURN (tcomplain ());
768 /* Return the thread-local address at OFFSET in the
769 thread-local storage for the thread PTID and the shared library
770 or executable file given by LOAD_MODULE_ADDR. If that block of
771 thread-local storage hasn't been allocated yet, this function
772 may throw an error. LOAD_MODULE_ADDR may be zero for statically
773 linked multithreaded inferiors. */
774 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
775 CORE_ADDR load_module_addr,
776 CORE_ADDR offset)
777 TARGET_DEFAULT_NORETURN (generic_tls_error ());
779 /* Request that OPS transfer up to LEN addressable units of the target's
780 OBJECT. When reading from a memory object, the size of an addressable
781 unit is architecture dependent and can be found using
782 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
783 1 byte long. The OFFSET, for a seekable object, specifies the
784 starting point. The ANNEX can be used to provide additional
785 data-specific information to the target.
787 Return the transferred status, error or OK (an
788 'enum target_xfer_status' value). Save the number of addressable units
789 actually transferred in *XFERED_LEN if transfer is successful
790 (TARGET_XFER_OK) or the number unavailable units if the requested
791 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
792 smaller than LEN does not indicate the end of the object, only
793 the end of the transfer; higher level code should continue
794 transferring if desired. This is handled in target.c.
796 The interface does not support a "retry" mechanism. Instead it
797 assumes that at least one addressable unit will be transfered on each
798 successful call.
800 NOTE: cagney/2003-10-17: The current interface can lead to
801 fragmented transfers. Lower target levels should not implement
802 hacks, such as enlarging the transfer, in an attempt to
803 compensate for this. Instead, the target stack should be
804 extended so that it implements supply/collect methods and a
805 look-aside object cache. With that available, the lowest
806 target can safely and freely "push" data up the stack.
808 See target_read and target_write for more information. One,
809 and only one, of readbuf or writebuf must be non-NULL. */
811 virtual enum target_xfer_status xfer_partial (enum target_object object,
812 const char *annex,
813 gdb_byte *readbuf,
814 const gdb_byte *writebuf,
815 ULONGEST offset, ULONGEST len,
816 ULONGEST *xfered_len)
817 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
819 /* Return the limit on the size of any single memory transfer
820 for the target. */
822 virtual ULONGEST get_memory_xfer_limit ()
823 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
825 /* Returns the memory map for the target. A return value of NULL
826 means that no memory map is available. If a memory address
827 does not fall within any returned regions, it's assumed to be
828 RAM. The returned memory regions should not overlap.
830 The order of regions does not matter; target_memory_map will
831 sort regions by starting address. For that reason, this
832 function should not be called directly except via
833 target_memory_map.
835 This method should not cache data; if the memory map could
836 change unexpectedly, it should be invalidated, and higher
837 layers will re-fetch it. */
838 virtual std::vector<mem_region> memory_map ()
839 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
841 /* Erases the region of flash memory starting at ADDRESS, of
842 length LENGTH.
844 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
845 on flash block boundaries, as reported by 'to_memory_map'. */
846 virtual void flash_erase (ULONGEST address, LONGEST length)
847 TARGET_DEFAULT_NORETURN (tcomplain ());
849 /* Finishes a flash memory write sequence. After this operation
850 all flash memory should be available for writing and the result
851 of reading from areas written by 'to_flash_write' should be
852 equal to what was written. */
853 virtual void flash_done ()
854 TARGET_DEFAULT_NORETURN (tcomplain ());
856 /* Describe the architecture-specific features of the current
857 inferior.
859 Returns the description found, or nullptr if no description was
860 available.
862 If some target features differ between threads, the description
863 returned by read_description (and the resulting gdbarch) won't
864 accurately describe all threads. In this case, the
865 thread_architecture method can be used to obtain gdbarches that
866 accurately describe each thread. */
867 virtual const struct target_desc *read_description ()
868 TARGET_DEFAULT_RETURN (NULL);
870 /* Build the PTID of the thread on which a given task is running,
871 based on LWP and THREAD. These values are extracted from the
872 task Private_Data section of the Ada Task Control Block, and
873 their interpretation depends on the target. */
874 virtual ptid_t get_ada_task_ptid (long lwp, ULONGEST thread)
875 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
877 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
878 Return 0 if *READPTR is already at the end of the buffer.
879 Return -1 if there is insufficient buffer for a whole entry.
880 Return 1 if an entry was read into *TYPEP and *VALP. */
881 virtual int auxv_parse (const gdb_byte **readptr,
882 const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
883 TARGET_DEFAULT_FUNC (default_auxv_parse);
885 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
886 sequence of bytes in PATTERN with length PATTERN_LEN.
888 The result is 1 if found, 0 if not found, and -1 if there was an error
889 requiring halting of the search (e.g. memory read error).
890 If the pattern is found the address is recorded in FOUND_ADDRP. */
891 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
892 const gdb_byte *pattern, ULONGEST pattern_len,
893 CORE_ADDR *found_addrp)
894 TARGET_DEFAULT_FUNC (default_search_memory);
896 /* Can target execute in reverse? */
897 virtual bool can_execute_reverse ()
898 TARGET_DEFAULT_RETURN (false);
900 /* The direction the target is currently executing. Must be
901 implemented on targets that support reverse execution and async
902 mode. The default simply returns forward execution. */
903 virtual enum exec_direction_kind execution_direction ()
904 TARGET_DEFAULT_FUNC (default_execution_direction);
906 /* Does this target support debugging multiple processes
907 simultaneously? */
908 virtual bool supports_multi_process ()
909 TARGET_DEFAULT_RETURN (false);
911 /* Does this target support enabling and disabling tracepoints while a trace
912 experiment is running? */
913 virtual bool supports_enable_disable_tracepoint ()
914 TARGET_DEFAULT_RETURN (false);
916 /* Does this target support disabling address space randomization? */
917 virtual bool supports_disable_randomization ()
918 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
920 /* Does this target support the tracenz bytecode for string collection? */
921 virtual bool supports_string_tracing ()
922 TARGET_DEFAULT_RETURN (false);
924 /* Does this target support evaluation of breakpoint conditions on its
925 end? */
926 virtual bool supports_evaluation_of_breakpoint_conditions ()
927 TARGET_DEFAULT_RETURN (false);
929 /* Does this target support native dumpcore API? */
930 virtual bool supports_dumpcore ()
931 TARGET_DEFAULT_RETURN (false);
933 /* Generate the core file with native target API. */
934 virtual void dumpcore (const char *filename)
935 TARGET_DEFAULT_IGNORE ();
937 /* Does this target support evaluation of breakpoint commands on its
938 end? */
939 virtual bool can_run_breakpoint_commands ()
940 TARGET_DEFAULT_RETURN (false);
942 /* Determine current architecture of thread PTID.
944 The target is supposed to determine the architecture of the code where
945 the target is currently stopped at. The architecture information is
946 used to perform decr_pc_after_break adjustment, and also to determine
947 the frame architecture of the innermost frame. ptrace operations need to
948 operate according to the current inferior's gdbarch. */
949 virtual struct gdbarch *thread_architecture (ptid_t)
950 TARGET_DEFAULT_RETURN (NULL);
952 /* Target file operations. */
954 /* Return true if the filesystem seen by the current inferior
955 is the local filesystem, false otherwise. */
956 virtual bool filesystem_is_local ()
957 TARGET_DEFAULT_RETURN (true);
959 /* Open FILENAME on the target, in the filesystem as seen by INF,
960 using FLAGS and MODE. If INF is NULL, use the filesystem seen
961 by the debugger (GDB or, for remote targets, the remote stub).
962 If WARN_IF_SLOW is nonzero, print a warning message if the file
963 is being accessed over a link that may be slow. Return a
964 target file descriptor, or -1 if an error occurs (and set
965 *TARGET_ERRNO). */
966 virtual int fileio_open (struct inferior *inf, const char *filename,
967 int flags, int mode, int warn_if_slow,
968 fileio_error *target_errno);
970 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
971 Return the number of bytes written, or -1 if an error occurs
972 (and set *TARGET_ERRNO). */
973 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
974 ULONGEST offset, fileio_error *target_errno);
976 /* Read up to LEN bytes FD on the target into READ_BUF.
977 Return the number of bytes read, or -1 if an error occurs
978 (and set *TARGET_ERRNO). */
979 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
980 ULONGEST offset, fileio_error *target_errno);
982 /* Get information about the file opened as FD and put it in
983 SB. Return 0 on success, or -1 if an error occurs (and set
984 *TARGET_ERRNO). */
985 virtual int fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno);
987 /* Close FD on the target. Return 0, or -1 if an error occurs
988 (and set *TARGET_ERRNO). */
989 virtual int fileio_close (int fd, fileio_error *target_errno);
991 /* Unlink FILENAME on the target, in the filesystem as seen by
992 INF. If INF is NULL, use the filesystem seen by the debugger
993 (GDB or, for remote targets, the remote stub). Return 0, or
994 -1 if an error occurs (and set *TARGET_ERRNO). */
995 virtual int fileio_unlink (struct inferior *inf,
996 const char *filename,
997 fileio_error *target_errno);
999 /* Read value of symbolic link FILENAME on the target, in the
1000 filesystem as seen by INF. If INF is NULL, use the filesystem
1001 seen by the debugger (GDB or, for remote targets, the remote
1002 stub). Return a string, or an empty optional if an error
1003 occurs (and set *TARGET_ERRNO). */
1004 virtual std::optional<std::string> fileio_readlink (struct inferior *inf,
1005 const char *filename,
1006 fileio_error *target_errno);
1008 /* Implement the "info proc" command. Returns true if the target
1009 actually implemented the command, false otherwise. */
1010 virtual bool info_proc (const char *, enum info_proc_what);
1012 /* Tracepoint-related operations. */
1014 /* Prepare the target for a tracing run. */
1015 virtual void trace_init ()
1016 TARGET_DEFAULT_NORETURN (tcomplain ());
1018 /* Send full details of a tracepoint location to the target. */
1019 virtual void download_tracepoint (struct bp_location *location)
1020 TARGET_DEFAULT_NORETURN (tcomplain ());
1022 /* Is the target able to download tracepoint locations in current
1023 state? */
1024 virtual bool can_download_tracepoint ()
1025 TARGET_DEFAULT_RETURN (false);
1027 /* Send full details of a trace state variable to the target. */
1028 virtual void download_trace_state_variable (const trace_state_variable &tsv)
1029 TARGET_DEFAULT_NORETURN (tcomplain ());
1031 /* Enable a tracepoint on the target. */
1032 virtual void enable_tracepoint (struct bp_location *location)
1033 TARGET_DEFAULT_NORETURN (tcomplain ());
1035 /* Disable a tracepoint on the target. */
1036 virtual void disable_tracepoint (struct bp_location *location)
1037 TARGET_DEFAULT_NORETURN (tcomplain ());
1039 /* Inform the target info of memory regions that are readonly
1040 (such as text sections), and so it should return data from
1041 those rather than look in the trace buffer. */
1042 virtual void trace_set_readonly_regions ()
1043 TARGET_DEFAULT_NORETURN (tcomplain ());
1045 /* Start a trace run. */
1046 virtual void trace_start ()
1047 TARGET_DEFAULT_NORETURN (tcomplain ());
1049 /* Get the current status of a tracing run. */
1050 virtual int get_trace_status (struct trace_status *ts)
1051 TARGET_DEFAULT_RETURN (-1);
1053 virtual void get_tracepoint_status (tracepoint *tp,
1054 struct uploaded_tp *utp)
1055 TARGET_DEFAULT_NORETURN (tcomplain ());
1057 /* Stop a trace run. */
1058 virtual void trace_stop ()
1059 TARGET_DEFAULT_NORETURN (tcomplain ());
1061 /* Ask the target to find a trace frame of the given type TYPE,
1062 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1063 number of the trace frame, and also the tracepoint number at
1064 TPP. If no trace frame matches, return -1. May throw if the
1065 operation fails. */
1066 virtual int trace_find (enum trace_find_type type, int num,
1067 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1068 TARGET_DEFAULT_RETURN (-1);
1070 /* Get the value of the trace state variable number TSV, returning
1071 1 if the value is known and writing the value itself into the
1072 location pointed to by VAL, else returning 0. */
1073 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1074 TARGET_DEFAULT_RETURN (false);
1076 virtual int save_trace_data (const char *filename)
1077 TARGET_DEFAULT_NORETURN (tcomplain ());
1079 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1080 TARGET_DEFAULT_RETURN (0);
1082 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1083 TARGET_DEFAULT_RETURN (0);
1085 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1086 ULONGEST offset, LONGEST len)
1087 TARGET_DEFAULT_NORETURN (tcomplain ());
1089 /* Get the minimum length of instruction on which a fast tracepoint
1090 may be set on the target. If this operation is unsupported,
1091 return -1. If for some reason the minimum length cannot be
1092 determined, return 0. */
1093 virtual int get_min_fast_tracepoint_insn_len ()
1094 TARGET_DEFAULT_RETURN (-1);
1096 /* Set the target's tracing behavior in response to unexpected
1097 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1098 virtual void set_disconnected_tracing (int val)
1099 TARGET_DEFAULT_IGNORE ();
1100 virtual void set_circular_trace_buffer (int val)
1101 TARGET_DEFAULT_IGNORE ();
1102 /* Set the size of trace buffer in the target. */
1103 virtual void set_trace_buffer_size (LONGEST val)
1104 TARGET_DEFAULT_IGNORE ();
1106 /* Add/change textual notes about the trace run, returning true if
1107 successful, false otherwise. */
1108 virtual bool set_trace_notes (const char *user, const char *notes,
1109 const char *stopnotes)
1110 TARGET_DEFAULT_RETURN (false);
1112 /* Return the processor core that thread PTID was last seen on.
1113 This information is updated only when:
1114 - update_thread_list is called
1115 - thread stops
1116 If the core cannot be determined -- either for the specified
1117 thread, or right now, or in this debug session, or for this
1118 target -- return -1. */
1119 virtual int core_of_thread (ptid_t ptid)
1120 TARGET_DEFAULT_RETURN (-1);
1122 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1123 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1124 a match, 0 if there's a mismatch, and -1 if an error is
1125 encountered while reading memory. */
1126 virtual int verify_memory (const gdb_byte *data,
1127 CORE_ADDR memaddr, ULONGEST size)
1128 TARGET_DEFAULT_FUNC (default_verify_memory);
1130 /* Return the address of the start of the Thread Information Block
1131 a Windows OS specific feature. */
1132 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1133 TARGET_DEFAULT_NORETURN (tcomplain ());
1135 /* Send the new settings of write permission variables. */
1136 virtual void set_permissions ()
1137 TARGET_DEFAULT_IGNORE ();
1139 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1140 with its details. Return true on success, false on failure. */
1141 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1142 static_tracepoint_marker *marker)
1143 TARGET_DEFAULT_RETURN (false);
1145 /* Return a vector of all tracepoints markers string id ID, or all
1146 markers if ID is NULL. */
1147 virtual std::vector<static_tracepoint_marker>
1148 static_tracepoint_markers_by_strid (const char *id)
1149 TARGET_DEFAULT_NORETURN (tcomplain ());
1151 /* Return a traceframe info object describing the current
1152 traceframe's contents. This method should not cache data;
1153 higher layers take care of caching, invalidating, and
1154 re-fetching when necessary. */
1155 virtual traceframe_info_up traceframe_info ()
1156 TARGET_DEFAULT_NORETURN (tcomplain ());
1158 /* Ask the target to use or not to use agent according to USE.
1159 Return true if successful, false otherwise. */
1160 virtual bool use_agent (bool use)
1161 TARGET_DEFAULT_NORETURN (tcomplain ());
1163 /* Is the target able to use agent in current state? */
1164 virtual bool can_use_agent ()
1165 TARGET_DEFAULT_RETURN (false);
1167 /* Enable branch tracing for TP using CONF configuration.
1168 Return a branch trace target information struct for reading and for
1169 disabling branch trace. */
1170 virtual struct btrace_target_info *enable_btrace (thread_info *tp,
1171 const struct btrace_config *conf)
1172 TARGET_DEFAULT_NORETURN (tcomplain ());
1174 /* Disable branch tracing and deallocate TINFO. */
1175 virtual void disable_btrace (struct btrace_target_info *tinfo)
1176 TARGET_DEFAULT_NORETURN (tcomplain ());
1178 /* Disable branch tracing and deallocate TINFO. This function is similar
1179 to to_disable_btrace, except that it is called during teardown and is
1180 only allowed to perform actions that are safe. A counter-example would
1181 be attempting to talk to a remote target. */
1182 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1183 TARGET_DEFAULT_NORETURN (tcomplain ());
1185 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1186 DATA is cleared before new trace is added. */
1187 virtual enum btrace_error read_btrace (struct btrace_data *data,
1188 struct btrace_target_info *btinfo,
1189 enum btrace_read_type type)
1190 TARGET_DEFAULT_NORETURN (tcomplain ());
1192 /* Get the branch trace configuration. */
1193 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1194 TARGET_DEFAULT_RETURN (NULL);
1196 /* Current recording method. */
1197 virtual enum record_method record_method (ptid_t ptid)
1198 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1200 /* Stop trace recording. */
1201 virtual void stop_recording ()
1202 TARGET_DEFAULT_IGNORE ();
1204 /* Print information about the recording. */
1205 virtual void info_record ()
1206 TARGET_DEFAULT_IGNORE ();
1208 /* Save the recorded execution trace into a file. */
1209 virtual void save_record (const char *filename)
1210 TARGET_DEFAULT_NORETURN (tcomplain ());
1212 /* Delete the recorded execution trace from the current position
1213 onwards. */
1214 virtual bool supports_delete_record ()
1215 TARGET_DEFAULT_RETURN (false);
1216 virtual void delete_record ()
1217 TARGET_DEFAULT_NORETURN (tcomplain ());
1219 /* Query if the record target is currently replaying PTID. */
1220 virtual bool record_is_replaying (ptid_t ptid)
1221 TARGET_DEFAULT_RETURN (false);
1223 /* Query if the record target will replay PTID if it were resumed in
1224 execution direction DIR. */
1225 virtual bool record_will_replay (ptid_t ptid, int dir)
1226 TARGET_DEFAULT_RETURN (false);
1228 /* Stop replaying. */
1229 virtual void record_stop_replaying ()
1230 TARGET_DEFAULT_IGNORE ();
1232 /* Go to the begin of the execution trace. */
1233 virtual void goto_record_begin ()
1234 TARGET_DEFAULT_NORETURN (tcomplain ());
1236 /* Go to the end of the execution trace. */
1237 virtual void goto_record_end ()
1238 TARGET_DEFAULT_NORETURN (tcomplain ());
1240 /* Go to a specific location in the recorded execution trace. */
1241 virtual void goto_record (ULONGEST insn)
1242 TARGET_DEFAULT_NORETURN (tcomplain ());
1244 /* Disassemble SIZE instructions in the recorded execution trace from
1245 the current position.
1246 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1247 disassemble SIZE succeeding instructions. */
1248 virtual void insn_history (int size, gdb_disassembly_flags flags)
1249 TARGET_DEFAULT_NORETURN (tcomplain ());
1251 /* Disassemble SIZE instructions in the recorded execution trace around
1252 FROM.
1253 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1254 disassemble SIZE instructions after FROM. */
1255 virtual void insn_history_from (ULONGEST from, int size,
1256 gdb_disassembly_flags flags)
1257 TARGET_DEFAULT_NORETURN (tcomplain ());
1259 /* Disassemble a section of the recorded execution trace from instruction
1260 BEGIN (inclusive) to instruction END (inclusive). */
1261 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1262 gdb_disassembly_flags flags)
1263 TARGET_DEFAULT_NORETURN (tcomplain ());
1265 /* Print a function trace of the recorded execution trace.
1266 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1267 succeeding functions. */
1268 virtual void call_history (int size, record_print_flags flags)
1269 TARGET_DEFAULT_NORETURN (tcomplain ());
1271 /* Print a function trace of the recorded execution trace starting
1272 at function FROM.
1273 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1274 SIZE functions after FROM. */
1275 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1276 TARGET_DEFAULT_NORETURN (tcomplain ());
1278 /* Print a function trace of an execution trace section from function BEGIN
1279 (inclusive) to function END (inclusive). */
1280 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1281 TARGET_DEFAULT_NORETURN (tcomplain ());
1283 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1284 non-empty annex. */
1285 virtual bool augmented_libraries_svr4_read ()
1286 TARGET_DEFAULT_RETURN (false);
1288 /* Those unwinders are tried before any other arch unwinders. If
1289 SELF doesn't have unwinders, it should delegate to the
1290 "beneath" target. */
1291 virtual const struct frame_unwind *get_unwinder ()
1292 TARGET_DEFAULT_RETURN (NULL);
1294 virtual const struct frame_unwind *get_tailcall_unwinder ()
1295 TARGET_DEFAULT_RETURN (NULL);
1297 /* Prepare to generate a core file. */
1298 virtual void prepare_to_generate_core ()
1299 TARGET_DEFAULT_IGNORE ();
1301 /* Cleanup after generating a core file. */
1302 virtual void done_generating_core ()
1303 TARGET_DEFAULT_IGNORE ();
1305 /* Returns true if the target supports memory tagging, false otherwise. */
1306 virtual bool supports_memory_tagging ()
1307 TARGET_DEFAULT_RETURN (false);
1309 /* Return the allocated memory tags of type TYPE associated with
1310 [ADDRESS, ADDRESS + LEN) in TAGS.
1312 LEN is the number of bytes in the memory range. TAGS is a vector of
1313 bytes containing the tags found in the above memory range.
1315 It is up to the architecture/target to interpret the bytes in the TAGS
1316 vector and read the tags appropriately.
1318 Returns true if fetching the tags succeeded and false otherwise. */
1319 virtual bool fetch_memtags (CORE_ADDR address, size_t len,
1320 gdb::byte_vector &tags, int type)
1321 TARGET_DEFAULT_NORETURN (tcomplain ());
1323 /* Write the allocation tags of type TYPE contained in TAGS to the memory
1324 range [ADDRESS, ADDRESS + LEN).
1326 LEN is the number of bytes in the memory range. TAGS is a vector of
1327 bytes containing the tags to be stored to the memory range.
1329 It is up to the architecture/target to interpret the bytes in the TAGS
1330 vector and store them appropriately.
1332 Returns true if storing the tags succeeded and false otherwise. */
1333 virtual bool store_memtags (CORE_ADDR address, size_t len,
1334 const gdb::byte_vector &tags, int type)
1335 TARGET_DEFAULT_NORETURN (tcomplain ());
1337 /* Returns true if ADDRESS is tagged, otherwise returns false. */
1338 virtual bool is_address_tagged (gdbarch *gdbarch, CORE_ADDR address)
1339 TARGET_DEFAULT_NORETURN (tcomplain ());
1341 /* Return the x86 XSAVE extended state area layout. */
1342 virtual x86_xsave_layout fetch_x86_xsave_layout ()
1343 TARGET_DEFAULT_RETURN (x86_xsave_layout ());
1346 /* Deleter for std::unique_ptr. See comments in
1347 target_ops::~target_ops and target_ops::close about heap-allocated
1348 targets. */
1349 struct target_ops_deleter
1351 void operator() (target_ops *target)
1353 target->close ();
1357 /* A unique pointer for target_ops. */
1358 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1360 /* A policy class to interface gdb::ref_ptr with target_ops. */
1362 struct target_ops_ref_policy
1364 static void incref (target_ops *t)
1366 t->incref ();
1369 /* Decrement the reference count on T, and, if the reference count
1370 reaches zero, close the target. */
1371 static void decref (target_ops *t);
1374 /* A gdb::ref_ptr pointer to a target_ops. */
1375 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1377 /* Native target backends call this once at initialization time to
1378 inform the core about which is the target that can respond to "run"
1379 or "attach". Note: native targets are always singletons. */
1380 extern void set_native_target (target_ops *target);
1382 /* Get the registered native target, if there's one. Otherwise return
1383 NULL. */
1384 extern target_ops *get_native_target ();
1386 /* Type that manages a target stack. See description of target stacks
1387 and strata at the top of the file. */
1389 class target_stack
1391 public:
1392 target_stack () = default;
1393 DISABLE_COPY_AND_ASSIGN (target_stack);
1395 /* Push a new target into the stack of the existing target
1396 accessors, possibly superseding some existing accessor. */
1397 void push (target_ops *t);
1399 /* Remove a target from the stack, wherever it may be. Return true
1400 if it was removed, false otherwise. */
1401 bool unpush (target_ops *t);
1403 /* Returns true if T is pushed on the target stack. */
1404 bool is_pushed (const target_ops *t) const
1405 { return at (t->stratum ()) == t; }
1407 /* Return the target at STRATUM. */
1408 target_ops *at (strata stratum) const { return m_stack[stratum].get (); }
1410 /* Return the target at the top of the stack. */
1411 target_ops *top () const { return at (m_top); }
1413 /* Find the next target down the stack from the specified target. */
1414 target_ops *find_beneath (const target_ops *t) const;
1416 private:
1417 /* The stratum of the top target. */
1418 enum strata m_top {};
1420 /* The stack, represented as an array, with one slot per stratum.
1421 If no target is pushed at some stratum, the corresponding slot is
1422 null. */
1423 std::array<target_ops_ref, (int) debug_stratum + 1> m_stack;
1426 /* Return the dummy target. */
1427 extern target_ops *get_dummy_target ();
1429 /* Define easy words for doing these operations on our current target. */
1431 extern const char *target_shortname ();
1433 /* Find the correct target to use for "attach". If a target on the
1434 current stack supports attaching, then it is returned. Otherwise,
1435 the default run target is returned. */
1437 extern struct target_ops *find_attach_target (void);
1439 /* Find the correct target to use for "run". If a target on the
1440 current stack supports creating a new inferior, then it is
1441 returned. Otherwise, the default run target is returned. */
1443 extern struct target_ops *find_run_target (void);
1445 /* Some targets don't generate traps when attaching to the inferior,
1446 or their target_attach implementation takes care of the waiting.
1447 These targets must set to_attach_no_wait. */
1449 extern bool target_attach_no_wait ();
1451 /* The target_attach operation places a process under debugger control,
1452 and stops the process.
1454 This operation provides a target-specific hook that allows the
1455 necessary bookkeeping to be performed after an attach completes. */
1457 extern void target_post_attach (int pid);
1459 /* Display a message indicating we're about to attach to a given
1460 process. */
1462 extern void target_announce_attach (int from_tty, int pid);
1464 /* Display a message indicating we're about to detach from the current
1465 inferior process. */
1467 extern void target_announce_detach (int from_tty);
1469 /* Takes a program previously attached to and detaches it.
1470 The program may resume execution (some targets do, some don't) and will
1471 no longer stop on signals, etc. We better not have left any breakpoints
1472 in the program or it'll die when it hits one. FROM_TTY says whether to be
1473 verbose or not. */
1475 extern void target_detach (inferior *inf, int from_tty);
1477 /* Disconnect from the current target without resuming it (leaving it
1478 waiting for a debugger). */
1480 extern void target_disconnect (const char *, int);
1482 /* Resume execution (or prepare for execution) of the current thread
1483 (INFERIOR_PTID), while optionally letting other threads of the
1484 current process or all processes run free.
1486 STEP says whether to hardware single-step the current thread or to
1487 let it run free; SIGNAL is the signal to be given to the current
1488 thread, or GDB_SIGNAL_0 for no signal. The caller may not pass
1489 GDB_SIGNAL_DEFAULT.
1491 SCOPE_PTID indicates the resumption scope. I.e., which threads
1492 (other than the current) run free. If resuming a single thread,
1493 SCOPE_PTID is the same thread as the current thread. A wildcard
1494 SCOPE_PTID (all threads, or all threads of process) lets threads
1495 other than the current (for which the wildcard SCOPE_PTID matches)
1496 resume with their 'thread->suspend.stop_signal' signal (usually
1497 GDB_SIGNAL_0) if it is in "pass" state, or with no signal if in "no
1498 pass" state. Note neither STEP nor SIGNAL apply to any thread
1499 other than the current.
1501 In order to efficiently handle batches of resumption requests,
1502 targets may implement this method such that it records the
1503 resumption request, but defers the actual resumption to the
1504 target_commit_resume method implementation. See
1505 target_commit_resume below. */
1506 extern void target_resume (ptid_t scope_ptid,
1507 int step, enum gdb_signal signal);
1509 /* Ensure that all resumed threads are committed to the target.
1511 See the description of process_stratum_target::commit_resumed_state
1512 for more details. */
1513 extern void target_commit_resumed ();
1515 /* For target_read_memory see target/target.h. */
1517 /* The default target_ops::to_wait implementation. */
1519 extern ptid_t default_target_wait (struct target_ops *ops,
1520 ptid_t ptid,
1521 struct target_waitstatus *status,
1522 target_wait_flags options);
1524 /* Return true if the target has pending events to report to the core.
1525 See target_ops::has_pending_events(). */
1527 extern bool target_has_pending_events ();
1529 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1531 extern void target_fetch_registers (struct regcache *regcache, int regno);
1533 /* Store at least register REGNO, or all regs if REGNO == -1.
1534 It can store as many registers as it wants to, so target_prepare_to_store
1535 must have been previously called. Calls error() if there are problems. */
1537 extern void target_store_registers (struct regcache *regcache, int regs);
1539 /* Get ready to modify the registers array. On machines which store
1540 individual registers, this doesn't need to do anything. On machines
1541 which store all the registers in one fell swoop, this makes sure
1542 that REGISTERS contains all the registers from the program being
1543 debugged. */
1545 extern void target_prepare_to_store (regcache *regcache);
1547 /* Implement the "info proc" command. This returns one if the request
1548 was handled, and zero otherwise. It can also throw an exception if
1549 an error was encountered while attempting to handle the
1550 request. */
1552 int target_info_proc (const char *, enum info_proc_what);
1554 /* Returns true if this target can disable address space randomization. */
1556 int target_supports_disable_randomization (void);
1558 /* Returns true if this target can enable and disable tracepoints
1559 while a trace experiment is running. */
1561 extern bool target_supports_enable_disable_tracepoint ();
1563 extern bool target_supports_string_tracing ();
1565 /* Returns true if this target can handle breakpoint conditions
1566 on its end. */
1568 extern bool target_supports_evaluation_of_breakpoint_conditions ();
1570 /* Does this target support dumpcore API? */
1572 extern bool target_supports_dumpcore ();
1574 /* Generate the core file with target API. */
1576 extern void target_dumpcore (const char *filename);
1578 /* Returns true if this target can handle breakpoint commands
1579 on its end. */
1581 extern bool target_can_run_breakpoint_commands ();
1583 /* For target_read_memory see target/target.h. */
1585 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1586 ssize_t len);
1588 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1590 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1592 /* For target_write_memory see target/target.h. */
1594 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1595 ssize_t len);
1597 /* Fetches the target's memory map. If one is found it is sorted
1598 and returned, after some consistency checking. Otherwise, NULL
1599 is returned. */
1600 std::vector<mem_region> target_memory_map (void);
1602 /* Erases all flash memory regions on the target. */
1603 void flash_erase_command (const char *cmd, int from_tty);
1605 /* Erase the specified flash region. */
1606 void target_flash_erase (ULONGEST address, LONGEST length);
1608 /* Finish a sequence of flash operations. */
1609 void target_flash_done (void);
1611 /* Describes a request for a memory write operation. */
1612 struct memory_write_request
1614 memory_write_request (ULONGEST begin_, ULONGEST end_,
1615 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1616 : begin (begin_), end (end_), data (data_), baton (baton_)
1619 /* Begining address that must be written. */
1620 ULONGEST begin;
1621 /* Past-the-end address. */
1622 ULONGEST end;
1623 /* The data to write. */
1624 gdb_byte *data;
1625 /* A callback baton for progress reporting for this request. */
1626 void *baton;
1629 /* Enumeration specifying different flash preservation behaviour. */
1630 enum flash_preserve_mode
1632 flash_preserve,
1633 flash_discard
1636 /* Write several memory blocks at once. This version can be more
1637 efficient than making several calls to target_write_memory, in
1638 particular because it can optimize accesses to flash memory.
1640 Moreover, this is currently the only memory access function in gdb
1641 that supports writing to flash memory, and it should be used for
1642 all cases where access to flash memory is desirable.
1644 REQUESTS is the vector of memory_write_request.
1645 PRESERVE_FLASH_P indicates what to do with blocks which must be
1646 erased, but not completely rewritten.
1647 PROGRESS_CB is a function that will be periodically called to provide
1648 feedback to user. It will be called with the baton corresponding
1649 to the request currently being written. It may also be called
1650 with a NULL baton, when preserved flash sectors are being rewritten.
1652 The function returns 0 on success, and error otherwise. */
1653 int target_write_memory_blocks
1654 (const std::vector<memory_write_request> &requests,
1655 enum flash_preserve_mode preserve_flash_p,
1656 void (*progress_cb) (ULONGEST, void *));
1658 /* Print a line about the current target. */
1660 extern void target_files_info ();
1662 /* Insert a breakpoint at address BP_TGT->placed_address in
1663 the target machine. Returns 0 for success, and returns non-zero or
1664 throws an error (with a detailed failure reason error code and
1665 message) otherwise. */
1667 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1668 struct bp_target_info *bp_tgt);
1670 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1671 machine. Result is 0 for success, non-zero for error. */
1673 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1674 struct bp_target_info *bp_tgt,
1675 enum remove_bp_reason reason);
1677 /* Return true if the target stack has a non-default
1678 "terminal_ours" method. */
1680 extern bool target_supports_terminal_ours (void);
1682 /* Kill the inferior process. Make it go away. */
1684 extern void target_kill (void);
1686 /* Load an executable file into the target process. This is expected
1687 to not only bring new code into the target process, but also to
1688 update GDB's symbol tables to match.
1690 ARG contains command-line arguments, to be broken down with
1691 buildargv (). The first non-switch argument is the filename to
1692 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1693 0)), which is an offset to apply to the load addresses of FILE's
1694 sections. The target may define switches, or other non-switch
1695 arguments, as it pleases. */
1697 extern void target_load (const char *arg, int from_tty);
1699 /* On some targets, we can catch an inferior fork or vfork event when
1700 it occurs. These functions insert/remove an already-created
1701 catchpoint for such events. They return 0 for success, 1 if the
1702 catchpoint type is not supported and -1 for failure. */
1704 extern int target_insert_fork_catchpoint (int pid);
1706 extern int target_remove_fork_catchpoint (int pid);
1708 extern int target_insert_vfork_catchpoint (int pid);
1710 extern int target_remove_vfork_catchpoint (int pid);
1712 /* Call the follow_fork method on the current target stack.
1714 This function is called when the inferior forks or vforks, to perform any
1715 bookkeeping and fiddling necessary to continue debugging either the parent,
1716 the child or both. */
1718 void target_follow_fork (inferior *inf, ptid_t child_ptid,
1719 target_waitkind fork_kind, bool follow_child,
1720 bool detach_fork);
1722 /* Handle the target-specific bookkeeping required when the inferior makes an
1723 exec call.
1725 The current inferior at the time of the call is the inferior that did the
1726 exec. FOLLOW_INF is the inferior in which execution continues post-exec.
1727 If "follow-exec-mode" is "same", FOLLOW_INF is the same as the current
1728 inferior, meaning that execution continues with the same inferior. If
1729 "follow-exec-mode" is "new", FOLLOW_INF is a different inferior, meaning
1730 that execution continues in a new inferior.
1732 On exit, the target must leave FOLLOW_INF as the current inferior. */
1734 void target_follow_exec (inferior *follow_inf, ptid_t ptid,
1735 const char *execd_pathname);
1737 /* On some targets, we can catch an inferior exec event when it
1738 occurs. These functions insert/remove an already-created
1739 catchpoint for such events. They return 0 for success, 1 if the
1740 catchpoint type is not supported and -1 for failure. */
1742 extern int target_insert_exec_catchpoint (int pid);
1744 extern int target_remove_exec_catchpoint (int pid);
1746 /* Syscall catch.
1748 NEEDED is true if any syscall catch (of any kind) is requested.
1749 If NEEDED is false, it means the target can disable the mechanism to
1750 catch system calls because there are no more catchpoints of this type.
1752 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1753 being requested. In this case, SYSCALL_COUNTS should be ignored.
1755 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1756 element in this array is nonzero if that syscall should be caught.
1757 This argument only matters if ANY_COUNT is zero.
1759 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1760 for failure. */
1762 extern int target_set_syscall_catchpoint
1763 (int pid, bool needed, int any_count,
1764 gdb::array_view<const int> syscall_counts);
1766 /* The debugger has completed a blocking wait() call. There is now
1767 some process event that must be processed. This function should
1768 be defined by those targets that require the debugger to perform
1769 cleanup or internal state changes in response to the process event. */
1771 /* For target_mourn_inferior see target/target.h. */
1773 /* Does target have enough data to do a run or attach command? */
1775 extern int target_can_run ();
1777 /* Set list of signals to be handled in the target.
1779 PASS_SIGNALS is an array indexed by target signal number
1780 (enum gdb_signal). For every signal whose entry in this array is
1781 non-zero, the target is allowed -but not required- to skip reporting
1782 arrival of the signal to the GDB core by returning from target_wait,
1783 and to pass the signal directly to the inferior instead.
1785 However, if the target is hardware single-stepping a thread that is
1786 about to receive a signal, it needs to be reported in any case, even
1787 if mentioned in a previous target_pass_signals call. */
1789 extern void target_pass_signals
1790 (gdb::array_view<const unsigned char> pass_signals);
1792 /* Set list of signals the target may pass to the inferior. This
1793 directly maps to the "handle SIGNAL pass/nopass" setting.
1795 PROGRAM_SIGNALS is an array indexed by target signal
1796 number (enum gdb_signal). For every signal whose entry in this
1797 array is non-zero, the target is allowed to pass the signal to the
1798 inferior. Signals not present in the array shall be silently
1799 discarded. This does not influence whether to pass signals to the
1800 inferior as a result of a target_resume call. This is useful in
1801 scenarios where the target needs to decide whether to pass or not a
1802 signal to the inferior without GDB core involvement, such as for
1803 example, when detaching (as threads may have been suspended with
1804 pending signals not reported to GDB). */
1806 extern void target_program_signals
1807 (gdb::array_view<const unsigned char> program_signals);
1809 /* Check to see if a thread is still alive. */
1811 extern int target_thread_alive (ptid_t ptid);
1813 /* Sync the target's threads with GDB's thread list. */
1815 extern void target_update_thread_list (void);
1817 /* Make target stop in a continuable fashion. (For instance, under
1818 Unix, this should act like SIGSTOP). Note that this function is
1819 asynchronous: it does not wait for the target to become stopped
1820 before returning. If this is the behavior you want please use
1821 target_stop_and_wait. */
1823 extern void target_stop (ptid_t ptid);
1825 /* Interrupt the target. Unlike target_stop, this does not specify
1826 which thread/process reports the stop. For most target this acts
1827 like raising a SIGINT, though that's not absolutely required. This
1828 function is asynchronous. */
1830 extern void target_interrupt ();
1832 /* Pass a ^C, as determined to have been pressed by checking the quit
1833 flag, to the target, as if the user had typed the ^C on the
1834 inferior's controlling terminal while the inferior was in the
1835 foreground. Remote targets may take the opportunity to detect the
1836 remote side is not responding and offer to disconnect. */
1838 extern void target_pass_ctrlc (void);
1840 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1841 target_interrupt. */
1842 extern void default_target_pass_ctrlc (struct target_ops *ops);
1844 /* Send the specified COMMAND to the target's monitor
1845 (shell,interpreter) for execution. The result of the query is
1846 placed in OUTBUF. */
1848 extern void target_rcmd (const char *command, struct ui_file *outbuf);
1850 /* Does the target include memory? (Dummy targets don't.) */
1852 extern int target_has_memory ();
1854 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1855 we start a process.) */
1857 extern int target_has_stack ();
1859 /* Does the target have registers? (Exec files don't.) */
1861 extern int target_has_registers ();
1863 /* Does the target have execution? Can we make it jump (through
1864 hoops), or pop its stack a few times? This means that the current
1865 target is currently executing; for some targets, that's the same as
1866 whether or not the target is capable of execution, but there are
1867 also targets which can be current while not executing. In that
1868 case this will become true after to_create_inferior or
1869 to_attach. INF is the inferior to use; nullptr means to use the
1870 current inferior. */
1872 extern bool target_has_execution (inferior *inf = nullptr);
1874 /* Can the target support the debugger control of thread execution?
1875 Can it lock the thread scheduler? */
1877 extern bool target_can_lock_scheduler ();
1879 /* Controls whether async mode is permitted. */
1880 extern bool target_async_permitted;
1882 /* Can the target support asynchronous execution? */
1883 extern bool target_can_async_p ();
1885 /* An overload of the above that can be called when the target is not yet
1886 pushed, this calls TARGET::can_async_p directly. */
1887 extern bool target_can_async_p (struct target_ops *target);
1889 /* Is the target in asynchronous execution mode? */
1890 extern bool target_is_async_p ();
1892 /* Enables/disabled async target events. */
1893 extern void target_async (bool enable);
1895 /* Enables/disables thread create and exit events. */
1896 extern void target_thread_events (int enable);
1898 /* Returns true if the target supports setting thread options
1899 OPTIONS. */
1900 extern bool target_supports_set_thread_options (gdb_thread_options options);
1902 /* Whether support for controlling the target backends always in
1903 non-stop mode is enabled. */
1904 extern enum auto_boolean target_non_stop_enabled;
1906 /* Is the target in non-stop mode? Some targets control the inferior
1907 in non-stop mode even with "set non-stop off". Always true if "set
1908 non-stop" is on. */
1909 extern bool target_is_non_stop_p ();
1911 /* Return true if at least one inferior has a non-stop target. */
1912 extern bool exists_non_stop_target ();
1914 extern exec_direction_kind target_execution_direction ();
1916 /* Converts a process id to a string. Usually, the string just contains
1917 `process xyz', but on some systems it may contain
1918 `process xyz thread abc'. */
1920 extern std::string target_pid_to_str (ptid_t ptid);
1922 extern std::string normal_pid_to_str (ptid_t ptid);
1924 /* Return a short string describing extra information about PID,
1925 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1926 is okay. */
1928 extern const char *target_extra_thread_info (thread_info *tp);
1930 /* Return the thread's name, or NULL if the target is unable to determine it.
1931 The returned value must not be freed by the caller.
1933 You likely don't want to call this function, but use the thread_name
1934 function instead, which prefers the user-given thread name, if set. */
1936 extern const char *target_thread_name (struct thread_info *);
1938 /* Given a pointer to a thread library specific thread handle and
1939 its length, return a pointer to the corresponding thread_info struct. */
1941 extern struct thread_info *target_thread_handle_to_thread_info
1942 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1944 /* Given a thread, return the thread handle, a target-specific sequence of
1945 bytes which serves as a thread identifier within the program being
1946 debugged. */
1947 extern gdb::array_view<const gdb_byte> target_thread_info_to_thread_handle
1948 (struct thread_info *);
1950 /* Attempts to find the pathname of the executable file
1951 that was run to create a specified process.
1953 The process PID must be stopped when this operation is used.
1955 If the executable file cannot be determined, NULL is returned.
1957 Else, a pointer to a character string containing the pathname
1958 is returned. This string should be copied into a buffer by
1959 the client if the string will not be immediately used, or if
1960 it must persist. */
1962 extern const char *target_pid_to_exec_file (int pid);
1964 /* See the to_thread_architecture description in struct target_ops. */
1966 extern gdbarch *target_thread_architecture (ptid_t ptid);
1969 * Iterator function for target memory regions.
1970 * Calls a callback function once for each memory region 'mapped'
1971 * in the child process. Defined as a simple macro rather than
1972 * as a function macro so that it can be tested for nullity.
1975 extern int target_find_memory_regions (find_memory_region_ftype func,
1976 void *data);
1979 * Compose corefile .note section.
1982 extern gdb::unique_xmalloc_ptr<char> target_make_corefile_notes (bfd *bfd,
1983 int *size_p);
1985 /* Bookmark interfaces. */
1986 extern gdb_byte *target_get_bookmark (const char *args, int from_tty);
1988 extern void target_goto_bookmark (const gdb_byte *arg, int from_tty);
1990 /* Hardware watchpoint interfaces. */
1992 /* GDB's current model is that there are three "kinds" of watchpoints,
1993 with respect to when they trigger and how you can move past them.
1995 Those are: continuable, steppable, and non-steppable.
1997 Continuable watchpoints are like x86's -- those trigger after the
1998 memory access's side effects are fully committed to memory. I.e.,
1999 they trap with the PC pointing at the next instruction already.
2000 Continuing past such a watchpoint is doable by just normally
2001 continuing, hence the name.
2003 Both steppable and non-steppable watchpoints trap before the memory
2004 access. I.e, the PC points at the instruction that is accessing
2005 the memory. So GDB needs to single-step once past the current
2006 instruction in order to make the access effective and check whether
2007 the instruction's side effects change the watched expression.
2009 Now, in order to step past that instruction, depending on
2010 architecture and target, you can have two situations:
2012 - steppable watchpoints: you can single-step with the watchpoint
2013 still armed, and the watchpoint won't trigger again.
2015 - non-steppable watchpoints: if you try to single-step with the
2016 watchpoint still armed, you'd trap the watchpoint again and the
2017 thread wouldn't make any progress. So GDB needs to temporarily
2018 remove the watchpoint in order to step past it.
2020 If your target/architecture does not signal that it has either
2021 steppable or non-steppable watchpoints via either
2022 target_have_steppable_watchpoint or
2023 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
2024 watchpoints. */
2026 /* Returns true if we were stopped by a hardware watchpoint (memory read or
2027 write). Only the INFERIOR_PTID task is being queried. */
2029 extern bool target_stopped_by_watchpoint ();
2031 /* Returns true if the target stopped because it executed a
2032 software breakpoint instruction. */
2034 extern bool target_stopped_by_sw_breakpoint ();
2036 extern bool target_supports_stopped_by_sw_breakpoint ();
2038 extern bool target_stopped_by_hw_breakpoint ();
2040 extern bool target_supports_stopped_by_hw_breakpoint ();
2042 /* True if we have steppable watchpoints */
2044 extern bool target_have_steppable_watchpoint ();
2046 /* Provide defaults for hardware watchpoint functions. */
2048 /* If the *_hw_breakpoint functions have not been defined
2049 elsewhere use the definitions in the target vector. */
2051 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2052 Returns negative if the target doesn't have enough hardware debug
2053 registers available. Return zero if hardware watchpoint of type
2054 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2055 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2056 CNT is the number of such watchpoints used so far, including this
2057 one. OTHERTYPE is the number of watchpoints of other types than
2058 this one used so far. */
2060 extern int target_can_use_hardware_watchpoint (bptype type, int cnt,
2061 int othertype);
2063 /* Returns the number of debug registers needed to watch the given
2064 memory region, or zero if not supported. */
2066 extern int target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len);
2068 extern int target_can_do_single_step ();
2070 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2071 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2072 COND is the expression for its condition, or NULL if there's none.
2073 Returns 0 for success, 1 if the watchpoint type is not supported,
2074 -1 for failure. */
2076 extern int target_insert_watchpoint (CORE_ADDR addr, int len,
2077 target_hw_bp_type type, expression *cond);
2079 extern int target_remove_watchpoint (CORE_ADDR addr, int len,
2080 target_hw_bp_type type, expression *cond);
2082 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2083 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2084 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2085 masked watchpoints are not supported, -1 for failure. */
2087 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2088 enum target_hw_bp_type);
2090 /* Remove a masked watchpoint at ADDR with the mask MASK.
2091 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2092 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2093 for failure. */
2095 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2096 enum target_hw_bp_type);
2098 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2099 the target machine. Returns 0 for success, and returns non-zero or
2100 throws an error (with a detailed failure reason error code and
2101 message) otherwise. */
2103 extern int target_insert_hw_breakpoint (gdbarch *gdbarch,
2104 bp_target_info *bp_tgt);
2106 extern int target_remove_hw_breakpoint (gdbarch *gdbarch,
2107 bp_target_info *bp_tgt);
2109 /* Return number of debug registers needed for a ranged breakpoint,
2110 or -1 if ranged breakpoints are not supported. */
2112 extern int target_ranged_break_num_registers (void);
2114 /* Return non-zero if target knows the data address which triggered this
2115 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2116 INFERIOR_PTID task is being queried. */
2117 #define target_stopped_data_address(target, addr_p) \
2118 (target)->stopped_data_address (addr_p)
2120 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2121 LENGTH bytes beginning at START. */
2122 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2123 (target)->watchpoint_addr_within_range (addr, start, length)
2125 /* Return non-zero if the target is capable of using hardware to evaluate
2126 the condition expression. In this case, if the condition is false when
2127 the watched memory location changes, execution may continue without the
2128 debugger being notified.
2130 Due to limitations in the hardware implementation, it may be capable of
2131 avoiding triggering the watchpoint in some cases where the condition
2132 expression is false, but may report some false positives as well.
2133 For this reason, GDB will still evaluate the condition expression when
2134 the watchpoint triggers. */
2136 extern bool target_can_accel_watchpoint_condition (CORE_ADDR addr, int len,
2137 int type, expression *cond);
2139 /* Return number of debug registers needed for a masked watchpoint,
2140 -1 if masked watchpoints are not supported or -2 if the given address
2141 and mask combination cannot be used. */
2143 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2145 /* Target can execute in reverse? */
2147 extern bool target_can_execute_reverse ();
2149 extern const struct target_desc *target_read_description (struct target_ops *);
2151 extern ptid_t target_get_ada_task_ptid (long lwp, ULONGEST tid);
2153 /* Main entry point for searching memory. */
2154 extern int target_search_memory (CORE_ADDR start_addr,
2155 ULONGEST search_space_len,
2156 const gdb_byte *pattern,
2157 ULONGEST pattern_len,
2158 CORE_ADDR *found_addrp);
2160 /* Target file operations. */
2162 /* Return true if the filesystem seen by the current inferior
2163 is the local filesystem, zero otherwise. */
2165 extern bool target_filesystem_is_local ();
2167 /* Open FILENAME on the target, in the filesystem as seen by INF,
2168 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2169 the debugger (GDB or, for remote targets, the remote stub). Return
2170 a target file descriptor, or -1 if an error occurs (and set
2171 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2172 if the file is being accessed over a link that may be slow. */
2173 extern int target_fileio_open (struct inferior *inf,
2174 const char *filename, int flags,
2175 int mode, bool warn_if_slow,
2176 fileio_error *target_errno);
2178 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2179 Return the number of bytes written, or -1 if an error occurs
2180 (and set *TARGET_ERRNO). */
2181 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2182 ULONGEST offset, fileio_error *target_errno);
2184 /* Read up to LEN bytes FD on the target into READ_BUF.
2185 Return the number of bytes read, or -1 if an error occurs
2186 (and set *TARGET_ERRNO). */
2187 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2188 ULONGEST offset, fileio_error *target_errno);
2190 /* Get information about the file opened as FD on the target
2191 and put it in SB. Return 0 on success, or -1 if an error
2192 occurs (and set *TARGET_ERRNO). */
2193 extern int target_fileio_fstat (int fd, struct stat *sb,
2194 fileio_error *target_errno);
2196 /* Close FD on the target. Return 0, or -1 if an error occurs
2197 (and set *TARGET_ERRNO). */
2198 extern int target_fileio_close (int fd, fileio_error *target_errno);
2200 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2201 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2202 for remote targets, the remote stub). Return 0, or -1 if an error
2203 occurs (and set *TARGET_ERRNO). */
2204 extern int target_fileio_unlink (struct inferior *inf,
2205 const char *filename,
2206 fileio_error *target_errno);
2208 /* Read value of symbolic link FILENAME on the target, in the
2209 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2210 by the debugger (GDB or, for remote targets, the remote stub).
2211 Return a null-terminated string allocated via xmalloc, or NULL if
2212 an error occurs (and set *TARGET_ERRNO). */
2213 extern std::optional<std::string> target_fileio_readlink
2214 (struct inferior *inf, const char *filename, fileio_error *target_errno);
2216 /* Read target file FILENAME, in the filesystem as seen by INF. If
2217 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2218 remote targets, the remote stub). The return value will be -1 if
2219 the transfer fails or is not supported; 0 if the object is empty;
2220 or the length of the object otherwise. If a positive value is
2221 returned, a sufficiently large buffer will be allocated using
2222 xmalloc and returned in *BUF_P containing the contents of the
2223 object.
2225 This method should be used for objects sufficiently small to store
2226 in a single xmalloc'd buffer, when no fixed bound on the object's
2227 size is known in advance. */
2228 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2229 const char *filename,
2230 gdb_byte **buf_p);
2232 /* Read target file FILENAME, in the filesystem as seen by INF. If
2233 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2234 remote targets, the remote stub). The result is NUL-terminated and
2235 returned as a string, allocated using xmalloc. If an error occurs
2236 or the transfer is unsupported, NULL is returned. Empty objects
2237 are returned as allocated but empty strings. A warning is issued
2238 if the result contains any embedded NUL bytes. */
2239 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2240 (struct inferior *inf, const char *filename);
2242 /* Invalidate the target associated with open handles that were open
2243 on target TARG, since we're about to close (and maybe destroy) the
2244 target. The handles remain open from the client's perspective, but
2245 trying to do anything with them other than closing them will fail
2246 with EIO. */
2247 extern void fileio_handles_invalidate_target (target_ops *targ);
2249 /* Tracepoint-related operations. */
2251 extern void target_trace_init ();
2253 extern void target_download_tracepoint (bp_location *location);
2255 extern bool target_can_download_tracepoint ();
2257 extern void target_download_trace_state_variable (const trace_state_variable &tsv);
2259 extern void target_enable_tracepoint (bp_location *loc);
2261 extern void target_disable_tracepoint (bp_location *loc);
2263 extern void target_trace_start ();
2265 extern void target_trace_set_readonly_regions ();
2267 extern int target_get_trace_status (trace_status *ts);
2269 extern void target_get_tracepoint_status (tracepoint *tp, uploaded_tp *utp);
2271 extern void target_trace_stop ();
2273 extern int target_trace_find (trace_find_type type, int num, CORE_ADDR addr1,
2274 CORE_ADDR addr2, int *tpp);
2276 extern bool target_get_trace_state_variable_value (int tsv, LONGEST *val);
2278 extern int target_save_trace_data (const char *filename);
2280 extern int target_upload_tracepoints (uploaded_tp **utpp);
2282 extern int target_upload_trace_state_variables (uploaded_tsv **utsvp);
2284 extern LONGEST target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset,
2285 LONGEST len);
2287 extern int target_get_min_fast_tracepoint_insn_len ();
2289 extern void target_set_disconnected_tracing (int val);
2291 extern void target_set_circular_trace_buffer (int val);
2293 extern void target_set_trace_buffer_size (LONGEST val);
2295 extern bool target_set_trace_notes (const char *user, const char *notes,
2296 const char *stopnotes);
2298 extern bool target_get_tib_address (ptid_t ptid, CORE_ADDR *addr);
2300 extern void target_set_permissions ();
2302 extern bool target_static_tracepoint_marker_at
2303 (CORE_ADDR addr, static_tracepoint_marker *marker);
2305 extern std::vector<static_tracepoint_marker>
2306 target_static_tracepoint_markers_by_strid (const char *marker_id);
2308 extern traceframe_info_up target_traceframe_info ();
2310 extern bool target_use_agent (bool use);
2312 extern bool target_can_use_agent ();
2314 extern bool target_augmented_libraries_svr4_read ();
2316 extern bool target_supports_memory_tagging ();
2318 extern bool target_fetch_memtags (CORE_ADDR address, size_t len,
2319 gdb::byte_vector &tags, int type);
2321 extern bool target_store_memtags (CORE_ADDR address, size_t len,
2322 const gdb::byte_vector &tags, int type);
2324 extern bool target_is_address_tagged (gdbarch *gdbarch, CORE_ADDR address);
2326 extern x86_xsave_layout target_fetch_x86_xsave_layout ();
2328 /* Command logging facility. */
2330 extern void target_log_command (const char *p);
2332 extern int target_core_of_thread (ptid_t ptid);
2334 /* See to_get_unwinder in struct target_ops. */
2335 extern const struct frame_unwind *target_get_unwinder (void);
2337 /* See to_get_tailcall_unwinder in struct target_ops. */
2338 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2340 /* This implements basic memory verification, reading target memory
2341 and performing the comparison here (as opposed to accelerated
2342 verification making use of the qCRC packet, for example). */
2344 extern int simple_verify_memory (struct target_ops* ops,
2345 const gdb_byte *data,
2346 CORE_ADDR memaddr, ULONGEST size);
2348 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2349 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2350 if there's a mismatch, and -1 if an error is encountered while
2351 reading memory. Throws an error if the functionality is found not
2352 to be supported by the current target. */
2353 int target_verify_memory (const gdb_byte *data,
2354 CORE_ADDR memaddr, ULONGEST size);
2356 /* Routines for maintenance of the target structures...
2358 add_target: Add a target to the list of all possible targets.
2359 This only makes sense for targets that should be activated using
2360 the "target TARGET_NAME ..." command.
2362 push_target: Make this target the top of the stack of currently used
2363 targets, within its particular stratum of the stack. Result
2364 is 0 if now atop the stack, nonzero if not on top (maybe
2365 should warn user).
2367 unpush_target: Remove this from the stack of currently used targets,
2368 no matter where it is on the list. Returns 0 if no
2369 change, 1 if removed from stack. */
2371 /* Type of callback called when the user activates a target with
2372 "target TARGET_NAME". The callback routine takes the rest of the
2373 parameters from the command, and (if successful) pushes a new
2374 target onto the stack. */
2375 typedef void target_open_ftype (const char *args, int from_tty);
2377 /* Add the target described by INFO to the list of possible targets
2378 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2379 as the command's completer if not NULL. */
2381 extern void add_target (const target_info &info,
2382 target_open_ftype *func,
2383 completer_ftype *completer = NULL);
2385 /* Adds a command ALIAS for the target described by INFO and marks it
2386 deprecated. This is useful for maintaining backwards compatibility
2387 when renaming targets. */
2389 extern void add_deprecated_target_alias (const target_info &info,
2390 const char *alias);
2392 /* A unique_ptr helper to unpush a target. */
2394 struct target_unpusher
2396 void operator() (struct target_ops *ops) const;
2399 /* A unique_ptr that unpushes a target on destruction. */
2401 typedef std::unique_ptr<struct target_ops, target_unpusher> target_unpush_up;
2403 extern void target_pre_inferior (int);
2405 extern void target_preopen (int);
2407 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2408 CORE_ADDR offset);
2410 /* Return the "section" containing the specified address. */
2411 const struct target_section *target_section_by_addr (struct target_ops *target,
2412 CORE_ADDR addr);
2414 /* Return the target section table this target (or the targets
2415 beneath) currently manipulate. */
2417 extern const std::vector<target_section> *target_get_section_table
2418 (struct target_ops *target);
2420 /* Default implementation of get_section_table for dummy_target. */
2422 extern const std::vector<target_section> *default_get_section_table ();
2424 /* From mem-break.c */
2426 extern int memory_remove_breakpoint (struct target_ops *,
2427 struct gdbarch *, struct bp_target_info *,
2428 enum remove_bp_reason);
2430 extern int memory_insert_breakpoint (struct target_ops *,
2431 struct gdbarch *, struct bp_target_info *);
2433 /* Convenience template use to add memory breakpoints support to a
2434 target. */
2436 template <typename BaseTarget>
2437 struct memory_breakpoint_target : public BaseTarget
2439 int insert_breakpoint (struct gdbarch *gdbarch,
2440 struct bp_target_info *bp_tgt) override
2441 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2443 int remove_breakpoint (struct gdbarch *gdbarch,
2444 struct bp_target_info *bp_tgt,
2445 enum remove_bp_reason reason) override
2446 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2449 /* Check whether the memory at the breakpoint's placed address still
2450 contains the expected breakpoint instruction. */
2452 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2453 struct bp_target_info *bp_tgt);
2455 extern int default_memory_remove_breakpoint (struct gdbarch *,
2456 struct bp_target_info *);
2458 extern int default_memory_insert_breakpoint (struct gdbarch *,
2459 struct bp_target_info *);
2462 /* From target.c */
2464 extern void initialize_targets (void);
2466 extern void noprocess (void) ATTRIBUTE_NORETURN;
2468 extern void target_require_runnable (void);
2470 /* Find the target at STRATUM. If no target is at that stratum,
2471 return NULL. */
2473 struct target_ops *find_target_at (enum strata stratum);
2475 /* Read OS data object of type TYPE from the target, and return it in XML
2476 format. The return value follows the same rules as target_read_stralloc. */
2478 extern std::optional<gdb::char_vector> target_get_osdata (const char *type);
2480 /* Stuff that should be shared among the various remote targets. */
2483 /* Timeout limit for response from target. */
2484 extern int remote_timeout;
2488 /* Set the show memory breakpoints mode to show, and return a
2489 scoped_restore to restore it back to the current value. */
2490 extern scoped_restore_tmpl<int>
2491 make_scoped_restore_show_memory_breakpoints (int show);
2493 /* True if we should trust readonly sections from the
2494 executable when reading memory. */
2495 extern bool trust_readonly;
2497 extern bool may_write_registers;
2498 extern bool may_write_memory;
2499 extern bool may_insert_breakpoints;
2500 extern bool may_insert_tracepoints;
2501 extern bool may_insert_fast_tracepoints;
2502 extern bool may_stop;
2504 extern void update_target_permissions (void);
2507 /* Imported from machine dependent code. */
2509 /* See to_enable_btrace in struct target_ops. */
2510 extern struct btrace_target_info *
2511 target_enable_btrace (thread_info *tp, const struct btrace_config *);
2513 /* See to_disable_btrace in struct target_ops. */
2514 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2516 /* See to_teardown_btrace in struct target_ops. */
2517 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2519 /* See to_read_btrace in struct target_ops. */
2520 extern enum btrace_error target_read_btrace (struct btrace_data *,
2521 struct btrace_target_info *,
2522 enum btrace_read_type);
2524 /* See to_btrace_conf in struct target_ops. */
2525 extern const struct btrace_config *
2526 target_btrace_conf (const struct btrace_target_info *);
2528 /* See to_stop_recording in struct target_ops. */
2529 extern void target_stop_recording (void);
2531 /* See to_save_record in struct target_ops. */
2532 extern void target_save_record (const char *filename);
2534 /* Query if the target supports deleting the execution log. */
2535 extern int target_supports_delete_record (void);
2537 /* See to_delete_record in struct target_ops. */
2538 extern void target_delete_record (void);
2540 /* See to_record_method. */
2541 extern enum record_method target_record_method (ptid_t ptid);
2543 /* See to_record_is_replaying in struct target_ops. */
2544 extern int target_record_is_replaying (ptid_t ptid);
2546 /* See to_record_will_replay in struct target_ops. */
2547 extern int target_record_will_replay (ptid_t ptid, int dir);
2549 /* See to_record_stop_replaying in struct target_ops. */
2550 extern void target_record_stop_replaying (void);
2552 /* See to_goto_record_begin in struct target_ops. */
2553 extern void target_goto_record_begin (void);
2555 /* See to_goto_record_end in struct target_ops. */
2556 extern void target_goto_record_end (void);
2558 /* See to_goto_record in struct target_ops. */
2559 extern void target_goto_record (ULONGEST insn);
2561 /* See to_insn_history. */
2562 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2564 /* See to_insn_history_from. */
2565 extern void target_insn_history_from (ULONGEST from, int size,
2566 gdb_disassembly_flags flags);
2568 /* See to_insn_history_range. */
2569 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2570 gdb_disassembly_flags flags);
2572 /* See to_call_history. */
2573 extern void target_call_history (int size, record_print_flags flags);
2575 /* See to_call_history_from. */
2576 extern void target_call_history_from (ULONGEST begin, int size,
2577 record_print_flags flags);
2579 /* See to_call_history_range. */
2580 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2581 record_print_flags flags);
2583 /* See to_prepare_to_generate_core. */
2584 extern void target_prepare_to_generate_core (void);
2586 /* See to_done_generating_core. */
2587 extern void target_done_generating_core (void);
2589 #endif /* !defined (TARGET_H) */